WO2023281627A1 - 表示装置、工作機械、および表示方法 - Google Patents
表示装置、工作機械、および表示方法 Download PDFInfo
- Publication number
- WO2023281627A1 WO2023281627A1 PCT/JP2021/025472 JP2021025472W WO2023281627A1 WO 2023281627 A1 WO2023281627 A1 WO 2023281627A1 JP 2021025472 W JP2021025472 W JP 2021025472W WO 2023281627 A1 WO2023281627 A1 WO 2023281627A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tool
- input
- vibration
- workpiece
- parameters
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 31
- 230000008569 process Effects 0.000 description 11
- 238000003754 machining Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 2
- 238000012840 feeding operation Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/409—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using manual data input [MDI] or by using control panel, e.g. controlling functions with the panel; characterised by control panel details or by setting parameters
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/406—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
- G05B19/4068—Verifying part programme on screen, by drawing or other means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B25/00—Accessories or auxiliary equipment for turning-machines
- B23B25/02—Arrangements for chip-breaking in turning-machines
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/35—Nc in input of data, input till input file format
- G05B2219/35292—By making, plotting a drawing
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/35—Nc in input of data, input till input file format
- G05B2219/35312—Display working state, process
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/35—Nc in input of data, input till input file format
- G05B2219/35313—Display, validate tool path for boundary, surface interference
Definitions
- the present disclosure relates to display devices, machine tools, and display methods.
- vibration cutting has multiple variable parameters, such as the period and width of tool vibration.
- the operator needs to determine setting parameters, such as the feed rate of the tool, according to multiple variable parameters.
- setting parameters such as the feed rate of the tool
- it is not easy to determine such setting parameters.
- one object of the present disclosure is to make it possible to easily determine setting parameters for vibration cutting.
- the display device includes an input unit for inputting input parameters for vibration cutting, and a display unit for displaying a graph showing allowable values of setting parameters for vibration cutting based on the input parameters. includes at least one of vibration frequency magnification, vibration amplitude magnification, and vibration direction, and the setting parameters include the number of revolutions of the workpiece or tool and the feed rate of the workpiece or tool.
- the machine tool includes the display device described above.
- the display method includes an input step of inputting input parameters for vibration cutting, and a display step of displaying a graph showing allowable values of setting parameters for vibration cutting based on the input parameters, wherein the input parameters are: At least one of vibration frequency magnification, vibration amplitude magnification, and vibration direction is included, and the setting parameters include the number of revolutions of a workpiece or tool and the feed rate of the workpiece or tool.
- setting parameters for vibration cutting can be easily determined.
- FIG. 1 is a block diagram showing the configuration of a machine tool according to the present disclosure
- FIG. FIG. 4 is a perspective view schematically showing how vibration cutting is performed
- 4 is a graph showing tool trajectories in vibration cutting under certain conditions.
- FIG. 5 is a graph showing tool trajectories in vibration cutting under different conditions;
- FIG. 10 is a graph showing tool trajectories in vibration cutting under still another condition; It is an example of a graph of setting parameters displayed on the display unit.
- Embodiments of a display device, a machine tool, and a display method according to the present disclosure will be described below with examples. However, the disclosure is not limited to the examples described below. In the following description, specific numerical values and materials may be exemplified, but other numerical values and materials may be applied as long as the effects of the present disclosure can be obtained.
- a display device includes an input unit and a display unit.
- the display device may be composed of, for example, a touch panel type operation panel.
- the input section is an element for inputting input parameters for vibration cutting.
- the input unit may display an input screen used by the operator to input input parameters.
- the display unit displays a graph showing the allowable values of the vibration cutting setting parameters based on the input parameters.
- the graph may be a two-dimensional graph or a three-dimensional graph.
- the input parameters include at least one of vibration frequency magnification, vibration amplitude magnification, and vibration direction.
- the input parameters may include a vibration frequency scale factor and a vibration amplitude scale factor, or may include a vibration frequency scale factor, a vibration amplitude scale factor, and a vibration direction.
- the vibration frequency multiplier is the number of vibrations of the workpiece or tool when the workpiece or tool rotates once. For example, if the vibration frequency multiplier is 0.5, the workpiece or tool vibrates once every two rotations of the workpiece or tool.
- Vibration amplitude magnification is the ratio of the amplitude of the work or tool to the feed amount per rotation of the work or tool. For example, if the vibration amplitude multiplier is 1.5, the workpiece or tool vibrates at both amplitudes of 1.5 times the feed amount per rotation of the workpiece or tool.
- the vibration direction is the direction in which the workpiece or tool vibrates.
- the X-axis direction can be input as the vibration direction.
- the main component direction of the feed operation (for example, when the feed amount in the X-axis direction is larger than the feed amount in the Z-axis direction) X-axis direction) can be input as the vibration direction.
- the setting parameters include the number of revolutions of the work or tool and the feed speed of the work or tool. Both the workpiece or tool rotation speed and feed rate tolerances tend to decrease as the vibration frequency or vibration amplitude scale factor increases.
- the permissible values for the rotational speed and feed rate of the work or tool can be increased or decreased according to the difference in the vibration direction depending on the structure of the machine tool provided with the display device.
- a graph showing the allowable values of the corresponding setting parameter is displayed on the display unit.
- the "permissible value” may be an index for determining setting parameters so that the machining accuracy of the workpiece or the load applied to the machine tool is within a predetermined range.
- the display device may further include a storage unit that stores a plurality of input patterns of input parameters.
- the input parameter may be input by selecting one input pattern from a plurality of input patterns in the input unit.
- the plurality of input patterns may be, for example, input patterns corresponding to frequently used combinations selected from a myriad of combinations of input parameters. By selecting one input pattern from such a plurality of input patterns, the operator can easily determine not only setting parameters but also input parameters.
- the input parameters may further include the load factor of the motor that feeds the workpiece or tool provided in the machine tool that performs vibration cutting.
- the load factor of the motor is the ratio of the motor output in the feeding operation to the rated output of the motor. Both the work or tool rotation speed and feed rate tolerances tend to increase as the motor load factor increases.
- the graph may indicate setting parameters within a range in which the average value of the current flowing in the motor that feeds the workpiece or tool provided in the machine tool that performs vibration cutting does not exceed 100% of the rated output.
- a machine tool according to the present disclosure is a machine tool that performs vibration cutting, and includes the display device described above. Therefore, by viewing the graph of the setting parameters displayed on the display unit, the operator of the machine tool can appropriately and easily determine the setting parameters for vibration cutting according to the input parameters that he or she has entered. By performing vibration cutting on the workpiece based on the determined setting parameters, it is possible to perform vibration cutting under flexible and appropriate conditions according to the situation.
- a display method includes an input process and a display process.
- input parameters for vibration cutting This input may be performed by a computer that receives a command from an operator.
- the input parameters include at least one of a vibration frequency scale factor, a vibration amplitude scale factor, and a vibration direction.
- a graph showing the allowable values of the setting parameters for vibration cutting is displayed based on the input parameters.
- This display may be performed by the computer via any display device.
- the setting parameters include the number of rotations of the workpiece or tool and the feed rate of the workpiece or tool.
- the operator of the machine tool can easily determine appropriate setting parameters according to the input parameters by looking at the displayed graph.
- the operator of the machine tool can easily determine setting parameters for vibration cutting by looking at the graph displayed on the display unit. Furthermore, according to the present disclosure, it is possible to display a graph showing appropriate setting parameters according to changes in input parameters.
- the machine tool 10 of this embodiment is a turning center, it is not limited to this.
- the machine tool 10 includes a work spindle 11, a tool spindle 12, a motor 13, and a display device .
- the machine tool 10 can perform vibration cutting in which low-frequency (several tens of Hz) vibration is superimposed on the feed operation of the tool spindle 12 to machine a workpiece.
- the machine tool 10 may be of a type that feeds the workpiece spindle 11 .
- the work spindle 11 holds a work 20 (see FIG. 2), which is an object to be processed.
- the work spindle 11 rotates the work 20 around a predetermined axis during machining of the work 20 .
- the tool spindle 12 holds a tool 30 (see FIG. 2) used for machining the workpiece 20.
- the tool spindle 12 is three-dimensionally movable within the machining space. The tool spindle 12 brings the blade of the tool 30 into contact with the work 20 during machining of the work 20 .
- the motor 13 is a servomotor that feeds the tool 30 (or the tool spindle 12).
- the motor 13 may generate a torque corresponding to the flowing current to drive a driving device (not shown) of the tool spindle 12 to feed the tool 30 .
- the motor 13 superimposes low-frequency vibration on the feeding operation of the tool 30 when performing vibration cutting.
- FIG. 2 schematically shows the locus of movement of the tool 30 in vibration cutting on the outer peripheral surface of the workpiece 20 .
- the display device 14 receives the input of the vibration cutting input parameters and displays a graph showing the permissible values of the vibration cutting setting parameters for the operator.
- the display device of the present embodiment is configured by a touch panel type operation panel, it is not limited to this.
- the display device 14 has an input section 15 , a display section 16 and a storage section 17 .
- the storage unit 17 may be integrated with the input unit 15 and the display unit 16, or may be separate units such as provided in a remote server.
- the input unit 15 is an element for inputting input parameters for vibration cutting.
- the input unit 15 is configured by the screen of the operation panel.
- the input unit 15 displays an input screen used for inputting input parameters.
- the input screen may include at least one input window for entering each input parameter.
- the display unit 16 displays a graph showing the allowable values of the vibration cutting setting parameters based on the input parameters.
- the graph of this embodiment is a two-dimensional graph as shown in FIG. 6, it is not limited to this.
- the input parameters include vibration frequency magnification, vibration amplitude magnification, vibration direction, and load factor of the motor 13 .
- vibration frequency magnification vibration frequency magnification
- vibration amplitude magnification vibration direction
- load factor of the motor 13 load factor
- FIG. 3 shows the tool trajectory on the work surface when the vibration frequency magnification is 0.5 and the vibration amplitude magnification is 1.0.
- the horizontal axis indicates the rotation angle (unit: °) of the workpiece 20
- the vertical axis indicates the feed axis movement amount (unit: mm) of the tool 30
- the dashed line indicates the tool trajectory when vibration is not superimposed. (similar to FIGS. 4 and 5).
- the tool 30 vibrates 0.5 times for each rotation of the work 20, and the feed amount of the tool 30 per rotation of the work 20 (vertical distance between adjacent dashed lines ), the tool 30 vibrates with an amplitude equal to . Chips generated during turning are cut where the tool paths collide.
- FIG. 4 shows the tool trajectory on the work surface with a solid line when the vibration frequency magnification is 1.5 and the vibration amplitude magnification is 1.0.
- the tool 30 vibrates 1.5 times per rotation of the workpiece 20, and the tool 30 vibrates with an amplitude equal to the feed amount of the tool 30 per rotation of the workpiece 20. I know you are. Chips generated during turning are cut where the tool path collides.
- FIG. 5 shows the tool trajectory on the work surface when the vibration frequency magnification is 1.5 and the vibration amplitude magnification is 1.4.
- the tool 30 vibrates 1.5 times per rotation of the work 20, and the tool 30 vibrates with an amplitude larger than the feed amount of the tool 30 per rotation of the work 20. You can see it vibrating. Chips generated during turning are cut where the tool path collides.
- the setting parameters include the rotation speed of the workpiece 20 and the feed speed of the tool 30. Note that if the tool 30 performs a feed operation and a rotation operation (for example, a drill), the setting parameters include the rotation speed of the tool 30 and the feed speed of the tool 30 .
- the storage unit 17 stores a plurality of input patterns of input parameters.
- the storage unit 17 may be configured with a nonvolatile memory. Information on a plurality of input patterns may be displayed on the input unit 15, for example, in response to requests from the operator. The operator can easily input the input parameters for vibration cutting by selecting one input pattern from a plurality of input patterns.
- FIG. 6 shows an example of a graph displayed on the display unit 16.
- the horizontal axis indicates the feed rate of the tool 30 (unit: mm/rev), and the vertical axis indicates the rotation speed of the workpiece 20 (unit: rev/min).
- the curve shown as an example in FIG. It corresponds to the case of 100%. That is, the graph of FIG. 6 shows setting parameters within a range in which the average value of the current flowing through the motor 13 does not exceed 100% of the rated output (setting parameters in the area below the curve).
- the area below this curve (the hatched area in FIG. 6) is the setting parameter area in which the machine tool 10 can perform vibration cutting while ensuring machining accuracy. After visually grasping this area, the operator can appropriately determine setting parameters from the area.
- the curve displayed in the graph is created as a quadratic curve approximating the obtained multiple combinations by obtaining multiple combinations of rotation speed and feed rate that can stably perform vibration cutting for each combination of input parameters. can be done. Note that this method is merely an example, and curves may be created by other methods.
- the display method includes an input process and a display process.
- the operator inputs input parameters for vibration cutting.
- the input parameters include vibration frequency scale, vibration amplitude scale, vibration direction, and motor 13 load factor.
- the operator may input the input parameters via the display screen of the touch panel type operation panel provided in the machine tool 10 .
- the display unit 16 displays a graph of setting parameters for vibration cutting based on the input parameters.
- This graph may be, for example, the type of graph shown in FIG. 6, or may be another type of graph.
- the setting parameters include the number of revolutions of the workpiece 20 and the feed rate of the tool 30 .
- the present disclosure can be used for display devices, machine tools, and display methods.
- Machine tool 11 Work spindle 12: Tool spindle 13: Motor 14: Display device 15: Input unit 16: Display unit 17: Storage unit 20: Work 30: Tool
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Numerical Control (AREA)
- Automatic Control Of Machine Tools (AREA)
Abstract
Description
本開示に係る表示装置は、入力部と、表示部とを備える。表示装置は、例えば、タッチパネル式の操作盤で構成されてもよい。
本開示に係る工作機械は、振動切削を行う工作機械であって、上述の表示装置を備える。したがって、工作機械のオペレータは、表示部に表示される設定パラメータのグラフを見ることで、自身が入力した入力パラメータに応じた振動切削の設定パラメータを適切かつ容易に決定することができる。決定された設定パラメータに基づいてワークを振動切削することで、状況に応じた柔軟かつ適切な条件で振動切削を行うことが可能になる。
本開示に係る表示方法は、入力工程と、表示工程とを備える。
上述の表示装置14を用いて実行可能な本開示に係る表示方法について説明する。表示方法は、入力工程と、表示工程とを備える。
11:ワーク主軸
12:工具主軸
13:モータ
14:表示装置
15:入力部
16:表示部
17:記憶部
20:ワーク
30:工具
Claims (6)
- 振動切削の入力パラメータを入力するための入力部と、
前記入力パラメータに基づいて、振動切削の設定パラメータの許容値を示すグラフを表示する表示部と、
を備え、
前記入力パラメータは、振動周波数倍率、振動振幅倍率、および振動方向の少なくとも1つを含み、
前記設定パラメータは、ワークまたは工具の回転数と、前記ワークまたは前記工具の送り速度とを含む、表示装置。 - 前記入力パラメータの入力パターンが複数格納された記憶部をさらに備え、
前記入力部において、複数の前記入力パターンから一の前記入力パターンが選択されることにより前記入力パラメータが入力される、請求項1に記載の表示装置。 - 前記入力パラメータは、振動切削を行う工作機械が備える、前記ワークまたは前記工具を送り動作させるモータの負荷率をさらに含む、請求項1または2に記載の表示装置。
- 前記グラフは、振動切削を行う工作機械が備える、前記ワークまたは前記工具を送り動作させるモータに流れる電流の平均値が、定格出力の100%を超えない範囲の前記設定パラメータを示す、請求項1または2に記載の表示装置。
- 振動切削を行う工作機械であって、
請求項1~4のいずれか1項に記載の表示装置を備える工作機械。 - 振動切削の入力パラメータを入力する入力工程と、
前記入力パラメータに基づいて、振動切削の設定パラメータの許容値を示すグラフを表示する表示工程と、
を備え、
前記入力パラメータは、振動周波数倍率、振動振幅倍率、および振動方向の少なくとも1つを含み、
前記設定パラメータは、ワークまたは工具の回転数と、前記ワークまたは前記工具の送り速度とを含む、表示方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21949263.4A EP4368322A1 (en) | 2021-07-06 | 2021-07-06 | Display device, machine tool and display method |
US18/573,179 US20240302807A1 (en) | 2021-07-06 | 2021-07-06 | Display device, machine tool and display method |
PCT/JP2021/025472 WO2023281627A1 (ja) | 2021-07-06 | 2021-07-06 | 表示装置、工作機械、および表示方法 |
JP2021573874A JP7039772B1 (ja) | 2021-07-06 | 2021-07-06 | 表示装置、工作機械、および表示方法 |
CN202180100006.4A CN117580677A (zh) | 2021-07-06 | 2021-07-06 | 显示装置、机床及显示方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/025472 WO2023281627A1 (ja) | 2021-07-06 | 2021-07-06 | 表示装置、工作機械、および表示方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023281627A1 true WO2023281627A1 (ja) | 2023-01-12 |
Family
ID=81214263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/025472 WO2023281627A1 (ja) | 2021-07-06 | 2021-07-06 | 表示装置、工作機械、および表示方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240302807A1 (ja) |
EP (1) | EP4368322A1 (ja) |
JP (1) | JP7039772B1 (ja) |
CN (1) | CN117580677A (ja) |
WO (1) | WO2023281627A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016059729A1 (ja) * | 2014-10-17 | 2016-04-21 | 三菱電機株式会社 | 振動切削加工診断装置 |
WO2018117203A1 (ja) * | 2016-12-22 | 2018-06-28 | シチズン時計株式会社 | 工作機械およびその制御装置 |
JP2019191857A (ja) * | 2018-04-24 | 2019-10-31 | ファナック株式会社 | 表示装置 |
JP2020112985A (ja) | 2019-01-10 | 2020-07-27 | シチズン時計株式会社 | 工作機械の制御装置および工作機械 |
-
2021
- 2021-07-06 US US18/573,179 patent/US20240302807A1/en active Pending
- 2021-07-06 WO PCT/JP2021/025472 patent/WO2023281627A1/ja active Application Filing
- 2021-07-06 EP EP21949263.4A patent/EP4368322A1/en active Pending
- 2021-07-06 CN CN202180100006.4A patent/CN117580677A/zh active Pending
- 2021-07-06 JP JP2021573874A patent/JP7039772B1/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016059729A1 (ja) * | 2014-10-17 | 2016-04-21 | 三菱電機株式会社 | 振動切削加工診断装置 |
WO2018117203A1 (ja) * | 2016-12-22 | 2018-06-28 | シチズン時計株式会社 | 工作機械およびその制御装置 |
JP2019191857A (ja) * | 2018-04-24 | 2019-10-31 | ファナック株式会社 | 表示装置 |
JP2020112985A (ja) | 2019-01-10 | 2020-07-27 | シチズン時計株式会社 | 工作機械の制御装置および工作機械 |
Also Published As
Publication number | Publication date |
---|---|
EP4368322A1 (en) | 2024-05-15 |
JPWO2023281627A1 (ja) | 2023-01-12 |
JP7039772B1 (ja) | 2022-03-22 |
US20240302807A1 (en) | 2024-09-12 |
CN117580677A (zh) | 2024-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5368232B2 (ja) | 振動抑制装置 | |
TWI679079B (zh) | 工具機及其控制裝置 | |
JP6439542B2 (ja) | 数値制御装置と制御方法 | |
CN102554685A (zh) | 机床中的振动抑制方法以及振动抑制装置 | |
JP6371335B2 (ja) | 加工状態表示装置 | |
TWI781353B (zh) | 工作機械以及控制裝置 | |
JP5908182B1 (ja) | 振動切削加工診断装置 | |
WO2022181594A1 (ja) | 計算装置 | |
WO2015037143A1 (ja) | 工具経路評価方法、工具経路生成方法、及び工具経路生成装置 | |
JP6990134B2 (ja) | 切削装置及びその制御方法 | |
JP6302794B2 (ja) | 回転速度表示方法 | |
JP2013196327A (ja) | 多軸加工機用切削距離演算装置 | |
JP7036786B2 (ja) | 数値制御装置、プログラム及び制御方法 | |
WO2021153482A1 (ja) | 工作機械の制御装置 | |
WO2023281627A1 (ja) | 表示装置、工作機械、および表示方法 | |
JP7444697B2 (ja) | 数値制御装置、制御プログラム及び制御方法 | |
CN112130524B (zh) | 数值控制装置、程序记录介质以及控制方法 | |
JP2021163077A (ja) | 数値制御装置及び数値制御方法 | |
WO2022163634A1 (ja) | 表示装置及びコンピュータプログラム | |
JP5666397B2 (ja) | 工作機械 | |
WO2018198274A1 (ja) | 加工制御装置及び工作機械、並びに加工制御方法 | |
JP7131454B2 (ja) | 数値制御装置、工作機械、制御プログラム、及び記憶媒体 | |
JP7052353B2 (ja) | ツーリング及び加工治具の設計支援装置 | |
Insperger et al. | The effect of runout on the chatter frequencies of milling processes | |
JP7252426B1 (ja) | 工作機械の制御装置及び工作機械の表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021573874 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21949263 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180100006.4 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021949263 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021949263 Country of ref document: EP Effective date: 20240206 |