WO2023281627A1 - 表示装置、工作機械、および表示方法 - Google Patents

表示装置、工作機械、および表示方法 Download PDF

Info

Publication number
WO2023281627A1
WO2023281627A1 PCT/JP2021/025472 JP2021025472W WO2023281627A1 WO 2023281627 A1 WO2023281627 A1 WO 2023281627A1 JP 2021025472 W JP2021025472 W JP 2021025472W WO 2023281627 A1 WO2023281627 A1 WO 2023281627A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
input
vibration
workpiece
parameters
Prior art date
Application number
PCT/JP2021/025472
Other languages
English (en)
French (fr)
Inventor
浩司 飯山
Original Assignee
Dmg森精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dmg森精機株式会社 filed Critical Dmg森精機株式会社
Priority to US18/573,179 priority Critical patent/US20240302807A1/en
Priority to EP21949263.4A priority patent/EP4368322A1/en
Priority to CN202180100006.4A priority patent/CN117580677A/zh
Priority to PCT/JP2021/025472 priority patent/WO2023281627A1/ja
Priority to JP2021573874A priority patent/JP7039772B1/ja
Publication of WO2023281627A1 publication Critical patent/WO2023281627A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/409Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using manual data input [MDI] or by using control panel, e.g. controlling functions with the panel; characterised by control panel details or by setting parameters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4068Verifying part programme on screen, by drawing or other means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B25/00Accessories or auxiliary equipment for turning-machines
    • B23B25/02Arrangements for chip-breaking in turning-machines
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35292By making, plotting a drawing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35312Display working state, process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35313Display, validate tool path for boundary, surface interference

Definitions

  • the present disclosure relates to display devices, machine tools, and display methods.
  • vibration cutting has multiple variable parameters, such as the period and width of tool vibration.
  • the operator needs to determine setting parameters, such as the feed rate of the tool, according to multiple variable parameters.
  • setting parameters such as the feed rate of the tool
  • it is not easy to determine such setting parameters.
  • one object of the present disclosure is to make it possible to easily determine setting parameters for vibration cutting.
  • the display device includes an input unit for inputting input parameters for vibration cutting, and a display unit for displaying a graph showing allowable values of setting parameters for vibration cutting based on the input parameters. includes at least one of vibration frequency magnification, vibration amplitude magnification, and vibration direction, and the setting parameters include the number of revolutions of the workpiece or tool and the feed rate of the workpiece or tool.
  • the machine tool includes the display device described above.
  • the display method includes an input step of inputting input parameters for vibration cutting, and a display step of displaying a graph showing allowable values of setting parameters for vibration cutting based on the input parameters, wherein the input parameters are: At least one of vibration frequency magnification, vibration amplitude magnification, and vibration direction is included, and the setting parameters include the number of revolutions of a workpiece or tool and the feed rate of the workpiece or tool.
  • setting parameters for vibration cutting can be easily determined.
  • FIG. 1 is a block diagram showing the configuration of a machine tool according to the present disclosure
  • FIG. FIG. 4 is a perspective view schematically showing how vibration cutting is performed
  • 4 is a graph showing tool trajectories in vibration cutting under certain conditions.
  • FIG. 5 is a graph showing tool trajectories in vibration cutting under different conditions;
  • FIG. 10 is a graph showing tool trajectories in vibration cutting under still another condition; It is an example of a graph of setting parameters displayed on the display unit.
  • Embodiments of a display device, a machine tool, and a display method according to the present disclosure will be described below with examples. However, the disclosure is not limited to the examples described below. In the following description, specific numerical values and materials may be exemplified, but other numerical values and materials may be applied as long as the effects of the present disclosure can be obtained.
  • a display device includes an input unit and a display unit.
  • the display device may be composed of, for example, a touch panel type operation panel.
  • the input section is an element for inputting input parameters for vibration cutting.
  • the input unit may display an input screen used by the operator to input input parameters.
  • the display unit displays a graph showing the allowable values of the vibration cutting setting parameters based on the input parameters.
  • the graph may be a two-dimensional graph or a three-dimensional graph.
  • the input parameters include at least one of vibration frequency magnification, vibration amplitude magnification, and vibration direction.
  • the input parameters may include a vibration frequency scale factor and a vibration amplitude scale factor, or may include a vibration frequency scale factor, a vibration amplitude scale factor, and a vibration direction.
  • the vibration frequency multiplier is the number of vibrations of the workpiece or tool when the workpiece or tool rotates once. For example, if the vibration frequency multiplier is 0.5, the workpiece or tool vibrates once every two rotations of the workpiece or tool.
  • Vibration amplitude magnification is the ratio of the amplitude of the work or tool to the feed amount per rotation of the work or tool. For example, if the vibration amplitude multiplier is 1.5, the workpiece or tool vibrates at both amplitudes of 1.5 times the feed amount per rotation of the workpiece or tool.
  • the vibration direction is the direction in which the workpiece or tool vibrates.
  • the X-axis direction can be input as the vibration direction.
  • the main component direction of the feed operation (for example, when the feed amount in the X-axis direction is larger than the feed amount in the Z-axis direction) X-axis direction) can be input as the vibration direction.
  • the setting parameters include the number of revolutions of the work or tool and the feed speed of the work or tool. Both the workpiece or tool rotation speed and feed rate tolerances tend to decrease as the vibration frequency or vibration amplitude scale factor increases.
  • the permissible values for the rotational speed and feed rate of the work or tool can be increased or decreased according to the difference in the vibration direction depending on the structure of the machine tool provided with the display device.
  • a graph showing the allowable values of the corresponding setting parameter is displayed on the display unit.
  • the "permissible value” may be an index for determining setting parameters so that the machining accuracy of the workpiece or the load applied to the machine tool is within a predetermined range.
  • the display device may further include a storage unit that stores a plurality of input patterns of input parameters.
  • the input parameter may be input by selecting one input pattern from a plurality of input patterns in the input unit.
  • the plurality of input patterns may be, for example, input patterns corresponding to frequently used combinations selected from a myriad of combinations of input parameters. By selecting one input pattern from such a plurality of input patterns, the operator can easily determine not only setting parameters but also input parameters.
  • the input parameters may further include the load factor of the motor that feeds the workpiece or tool provided in the machine tool that performs vibration cutting.
  • the load factor of the motor is the ratio of the motor output in the feeding operation to the rated output of the motor. Both the work or tool rotation speed and feed rate tolerances tend to increase as the motor load factor increases.
  • the graph may indicate setting parameters within a range in which the average value of the current flowing in the motor that feeds the workpiece or tool provided in the machine tool that performs vibration cutting does not exceed 100% of the rated output.
  • a machine tool according to the present disclosure is a machine tool that performs vibration cutting, and includes the display device described above. Therefore, by viewing the graph of the setting parameters displayed on the display unit, the operator of the machine tool can appropriately and easily determine the setting parameters for vibration cutting according to the input parameters that he or she has entered. By performing vibration cutting on the workpiece based on the determined setting parameters, it is possible to perform vibration cutting under flexible and appropriate conditions according to the situation.
  • a display method includes an input process and a display process.
  • input parameters for vibration cutting This input may be performed by a computer that receives a command from an operator.
  • the input parameters include at least one of a vibration frequency scale factor, a vibration amplitude scale factor, and a vibration direction.
  • a graph showing the allowable values of the setting parameters for vibration cutting is displayed based on the input parameters.
  • This display may be performed by the computer via any display device.
  • the setting parameters include the number of rotations of the workpiece or tool and the feed rate of the workpiece or tool.
  • the operator of the machine tool can easily determine appropriate setting parameters according to the input parameters by looking at the displayed graph.
  • the operator of the machine tool can easily determine setting parameters for vibration cutting by looking at the graph displayed on the display unit. Furthermore, according to the present disclosure, it is possible to display a graph showing appropriate setting parameters according to changes in input parameters.
  • the machine tool 10 of this embodiment is a turning center, it is not limited to this.
  • the machine tool 10 includes a work spindle 11, a tool spindle 12, a motor 13, and a display device .
  • the machine tool 10 can perform vibration cutting in which low-frequency (several tens of Hz) vibration is superimposed on the feed operation of the tool spindle 12 to machine a workpiece.
  • the machine tool 10 may be of a type that feeds the workpiece spindle 11 .
  • the work spindle 11 holds a work 20 (see FIG. 2), which is an object to be processed.
  • the work spindle 11 rotates the work 20 around a predetermined axis during machining of the work 20 .
  • the tool spindle 12 holds a tool 30 (see FIG. 2) used for machining the workpiece 20.
  • the tool spindle 12 is three-dimensionally movable within the machining space. The tool spindle 12 brings the blade of the tool 30 into contact with the work 20 during machining of the work 20 .
  • the motor 13 is a servomotor that feeds the tool 30 (or the tool spindle 12).
  • the motor 13 may generate a torque corresponding to the flowing current to drive a driving device (not shown) of the tool spindle 12 to feed the tool 30 .
  • the motor 13 superimposes low-frequency vibration on the feeding operation of the tool 30 when performing vibration cutting.
  • FIG. 2 schematically shows the locus of movement of the tool 30 in vibration cutting on the outer peripheral surface of the workpiece 20 .
  • the display device 14 receives the input of the vibration cutting input parameters and displays a graph showing the permissible values of the vibration cutting setting parameters for the operator.
  • the display device of the present embodiment is configured by a touch panel type operation panel, it is not limited to this.
  • the display device 14 has an input section 15 , a display section 16 and a storage section 17 .
  • the storage unit 17 may be integrated with the input unit 15 and the display unit 16, or may be separate units such as provided in a remote server.
  • the input unit 15 is an element for inputting input parameters for vibration cutting.
  • the input unit 15 is configured by the screen of the operation panel.
  • the input unit 15 displays an input screen used for inputting input parameters.
  • the input screen may include at least one input window for entering each input parameter.
  • the display unit 16 displays a graph showing the allowable values of the vibration cutting setting parameters based on the input parameters.
  • the graph of this embodiment is a two-dimensional graph as shown in FIG. 6, it is not limited to this.
  • the input parameters include vibration frequency magnification, vibration amplitude magnification, vibration direction, and load factor of the motor 13 .
  • vibration frequency magnification vibration frequency magnification
  • vibration amplitude magnification vibration direction
  • load factor of the motor 13 load factor
  • FIG. 3 shows the tool trajectory on the work surface when the vibration frequency magnification is 0.5 and the vibration amplitude magnification is 1.0.
  • the horizontal axis indicates the rotation angle (unit: °) of the workpiece 20
  • the vertical axis indicates the feed axis movement amount (unit: mm) of the tool 30
  • the dashed line indicates the tool trajectory when vibration is not superimposed. (similar to FIGS. 4 and 5).
  • the tool 30 vibrates 0.5 times for each rotation of the work 20, and the feed amount of the tool 30 per rotation of the work 20 (vertical distance between adjacent dashed lines ), the tool 30 vibrates with an amplitude equal to . Chips generated during turning are cut where the tool paths collide.
  • FIG. 4 shows the tool trajectory on the work surface with a solid line when the vibration frequency magnification is 1.5 and the vibration amplitude magnification is 1.0.
  • the tool 30 vibrates 1.5 times per rotation of the workpiece 20, and the tool 30 vibrates with an amplitude equal to the feed amount of the tool 30 per rotation of the workpiece 20. I know you are. Chips generated during turning are cut where the tool path collides.
  • FIG. 5 shows the tool trajectory on the work surface when the vibration frequency magnification is 1.5 and the vibration amplitude magnification is 1.4.
  • the tool 30 vibrates 1.5 times per rotation of the work 20, and the tool 30 vibrates with an amplitude larger than the feed amount of the tool 30 per rotation of the work 20. You can see it vibrating. Chips generated during turning are cut where the tool path collides.
  • the setting parameters include the rotation speed of the workpiece 20 and the feed speed of the tool 30. Note that if the tool 30 performs a feed operation and a rotation operation (for example, a drill), the setting parameters include the rotation speed of the tool 30 and the feed speed of the tool 30 .
  • the storage unit 17 stores a plurality of input patterns of input parameters.
  • the storage unit 17 may be configured with a nonvolatile memory. Information on a plurality of input patterns may be displayed on the input unit 15, for example, in response to requests from the operator. The operator can easily input the input parameters for vibration cutting by selecting one input pattern from a plurality of input patterns.
  • FIG. 6 shows an example of a graph displayed on the display unit 16.
  • the horizontal axis indicates the feed rate of the tool 30 (unit: mm/rev), and the vertical axis indicates the rotation speed of the workpiece 20 (unit: rev/min).
  • the curve shown as an example in FIG. It corresponds to the case of 100%. That is, the graph of FIG. 6 shows setting parameters within a range in which the average value of the current flowing through the motor 13 does not exceed 100% of the rated output (setting parameters in the area below the curve).
  • the area below this curve (the hatched area in FIG. 6) is the setting parameter area in which the machine tool 10 can perform vibration cutting while ensuring machining accuracy. After visually grasping this area, the operator can appropriately determine setting parameters from the area.
  • the curve displayed in the graph is created as a quadratic curve approximating the obtained multiple combinations by obtaining multiple combinations of rotation speed and feed rate that can stably perform vibration cutting for each combination of input parameters. can be done. Note that this method is merely an example, and curves may be created by other methods.
  • the display method includes an input process and a display process.
  • the operator inputs input parameters for vibration cutting.
  • the input parameters include vibration frequency scale, vibration amplitude scale, vibration direction, and motor 13 load factor.
  • the operator may input the input parameters via the display screen of the touch panel type operation panel provided in the machine tool 10 .
  • the display unit 16 displays a graph of setting parameters for vibration cutting based on the input parameters.
  • This graph may be, for example, the type of graph shown in FIG. 6, or may be another type of graph.
  • the setting parameters include the number of revolutions of the workpiece 20 and the feed rate of the tool 30 .
  • the present disclosure can be used for display devices, machine tools, and display methods.
  • Machine tool 11 Work spindle 12: Tool spindle 13: Motor 14: Display device 15: Input unit 16: Display unit 17: Storage unit 20: Work 30: Tool

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

開示される表示装置14は、振動切削の入力パラメータを入力するための入力部15と、入力パラメータに基づいて、振動切削の設定パラメータの許容値を示すグラフを表示する表示部16と、を備え、入力パラメータは、振動周波数倍率、振動振幅倍率、および振動方向の少なくとも1つを含み、設定パラメータは、ワーク20または工具30の回転数と、ワーク20または工具30の送り速度とを含む。これにより、振動切削の設定パラメータを容易に決定することができる。

Description

表示装置、工作機械、および表示方法
 本開示は、表示装置、工作機械、および表示方法に関する。
 従来、旋削機能を有する工作機械において、工具を送り方向に振動させながらワークの旋削を行うことで、旋削中に生じる切屑を分断する技術(振動切削とも呼ばれる。)が知られている(例えば、特許文献1)。
特開2020-112985号公報
 ところで、振動切削には、工具振動の周期や幅など、複数の可変パラメータが存在する。オペレータは、複数の可変パラメータに応じて、工具の送り速度などの設定パラメータを決定する必要がある。しかし、可変パラメータが複数存在するために、そのような設定パラメータの決定は容易でない。このような状況において、本開示は、振動切削の設定パラメータを容易に決定可能とすることを目的の1つとする。
 本開示に係る一局面は、表示装置に関する。当該表示装置は、振動切削の入力パラメータを入力するための入力部と、前記入力パラメータに基づいて、振動切削の設定パラメータの許容値を示すグラフを表示する表示部と、を備え、前記入力パラメータは、振動周波数倍率、振動振幅倍率、および振動方向の少なくとも1つを含み、前記設定パラメータは、ワークまたは工具の回転数と、前記ワークまたは前記工具の送り速度とを含む。
 本開示に係る別の一局面は、工作機械に関する。当該工作機械は、上述の表示装置を備える。
 本開示に係る別の一局面は、表示方法に関する。当該表示方法は、振動切削の入力パラメータを入力する入力工程と、前記入力パラメータに基づいて、振動切削の設定パラメータの許容値を示すグラフを表示する表示工程と、を備え、前記入力パラメータは、振動周波数倍率、振動振幅倍率、および振動方向の少なくとも1つを含み、前記設定パラメータは、ワークまたは工具の回転数と、前記ワークまたは前記工具の送り速度とを含む。
 本開示によれば、振動切削の設定パラメータを容易に決定可能とすることができる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本願の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
本開示に係る工作機械の構成を示すブロック図である。 振動切削の様子を模式的に示す斜視図である。 ある条件下での振動切削における工具軌跡を示すグラフである。 別の条件下での振動切削における工具軌跡を示すグラフである。 さらに別の条件下での振動切削における工具軌跡を示すグラフである。 表示部に表示される設定パラメータのグラフの一例である。
 本開示に係る表示装置、工作機械、および表示方法の実施形態について例を挙げて以下に説明する。しかしながら、本開示は以下に説明する例に限定されない。以下の説明では、具体的な数値や材料を例示する場合があるが、本開示の効果が得られる限り、他の数値や材料を適用してもよい。
 (表示装置)
 本開示に係る表示装置は、入力部と、表示部とを備える。表示装置は、例えば、タッチパネル式の操作盤で構成されてもよい。
 入力部は、振動切削の入力パラメータを入力するための要素である。入力部は、オペレータが入力パラメータの入力に用いる入力画面を表示してもよい。
 表示部は、入力パラメータに基づいて、振動切削の設定パラメータの許容値を示すグラフを表示する。グラフは、二次元グラフであってもよいし、三次元グラフであってもよい。
 入力パラメータは、振動周波数倍率と、振動振幅倍率と、振動方向との少なくとも1つを含む。例えば、入力パラメータは、振動周波数倍率および振動振幅倍率を含んでもよいし、振動周波数倍率、振動振幅倍率、および振動方向を含んでもよい。
 振動周波数倍率とは、ワークまたは工具が1回転する際の、ワークまたは工具の振動回数のことである。例えば、振動周波数倍率が0.5であれば、ワークまたは工具が2回転する毎に、ワークまたは工具が1回振動する。
 振動振幅倍率とは、ワークまたは工具の1回転あたりの送り量に対する、ワークまたは工具の振幅の比率のことである。例えば、振動振幅倍率が1.5であれば、ワークまたは工具の1回転あたりの送り量の1.5倍の両振幅でワークまたは工具が振動する。
 振動方向とは、ワークまたは工具が振動する方向のことである。例えば、X軸方向のみにおいて送り動作を行う際には、X軸方向が振動方向として入力され得る。一方、例えば、X軸方向とZ軸方向の二軸において送り動作を行う際には、送り動作の主成分方向(例えば、X軸方向の送り量がZ軸方向の送り量よりも大きい場合のX軸方向)が振動方向として入力され得る。
 設定パラメータは、ワークまたは工具の回転数と、ワークまたは工具の送り速度とを含む。ワークまたは工具の回転数および送り速度の許容値は、両方とも、振動周波数倍率または振動振幅倍率が大きくなるにつれて小さくなる傾向にある。また、ワークまたは工具の回転数および送り速度の許容値は、表示装置が備えられる工作機械の構造などに応じて、振動方向の違いにしたがって増減し得る。
 本開示では、このような入力パラメータと設定パラメータとの関係に基づいて、ある入力パラメータが入力された場合に、それに応じた設定パラメータの許容値を示すグラフを表示部に表示する。オペレータは、当該グラフを見ることで、自身が入力した入力パラメータに応じた適切な設定パラメータを容易に決定することができる。「許容値」は、ワークの加工精度もしくは工作機械にかかる負荷が所定範囲内になるように設定パラメータを決定するための指標であってもよい。
 表示装置は、入力パラメータの入力パターンが複数格納された記憶部をさらに備えてもよい。入力部において、複数の入力パターンから一の入力パターンが選択されることにより入力パラメータが入力されてもよい。複数の入力パターンは、例えば無数に存在する入力パラメータの組合せの中から選択される、使用頻度が高い組合せに対応する入力パターンであってもよい。オペレータは、そのような複数の入力パターンから一の入力パターンを選択することで、設定パラメータのみでなく入力パラメータをも容易に決定することができる。
 入力パラメータは、振動切削を行う工作機械が備える、ワークまたは工具を送り動作させるモータの負荷率をさらに含んでもよい。モータの負荷率とは、モータの定格出力に対する、送り動作におけるモータ出力の比率のことである。ワークまたは工具の回転数および送り速度の許容値は、両方とも、モータの負荷率が高くなるにつれて大きくなる傾向にある。入力パラメータにモータの負荷率が含まれる場合、そのような傾向を加味して設定パラメータのグラフを表示することが可能となる。
 グラフは、振動切削を行う工作機械が備える、ワークまたは工具を送り動作させるモータに流れる電流の平均値が、定格出力の100%を超えない範囲の設定パラメータを示してもよい。そのような範囲から設定パラメータを決定することで、モータに過負荷がかからない状態で振動切削を行うことが可能となる。
 (工作機械)
 本開示に係る工作機械は、振動切削を行う工作機械であって、上述の表示装置を備える。したがって、工作機械のオペレータは、表示部に表示される設定パラメータのグラフを見ることで、自身が入力した入力パラメータに応じた振動切削の設定パラメータを適切かつ容易に決定することができる。決定された設定パラメータに基づいてワークを振動切削することで、状況に応じた柔軟かつ適切な条件で振動切削を行うことが可能になる。
 (表示方法)
 本開示に係る表示方法は、入力工程と、表示工程とを備える。
 入力工程では、振動切削の入力パラメータを入力する。この入力は、オペレータからの指令を受けたコンピュータが行ってもよい。入力パラメータは、振動周波数倍率と、振動振幅倍率と、振動方向との少なくとも1つを含む。
 表示工程では、入力パラメータに基づいて、振動切削の設定パラメータの許容値を示すグラフを表示する。この表示は、上記コンピュータが任意の表示装置を介して行ってもよい。設定パラメータは、ワークまたは工具の回転数と、ワークまたは工具の送り速度とを含む。
 このような表示方法によると、工作機械のオペレータは、表示されたグラフを見ることで、入力パラメータに応じた適切な設定パラメータを容易に決定することができる。
 以上のように、本開示によれば、工作機械のオペレータは、表示部に表示されるグラフを見て、振動切削の設定パラメータを容易に決定することができる。さらに、本開示によれば、入力パラメータの変更に応じて、適切な設定パラメータを示すグラフを表示することができる。
 以下では、本開示に係る表示装置、工作機械、および表示方法の一例について、図面を参照して具体的に説明する。以下で説明する一例の表示装置、工作機械、および表示方法の構成要素および工程には、上述した構成要素および工程を適用できる。以下で説明する一例の表示装置、工作機械、および表示方法の構成要素および工程は、上述した記載に基づいて変更できる。また、以下で説明する事項を、上記の実施形態に適用してもよい。以下で説明する一例の表示装置、工作機械、および表示方法の構成要素および工程のうち、本開示に係る表示装置、工作機械、および表示方法に必須ではない構成要素および工程は省略してもよい。なお、以下で示す図は模式的なものであり、実際の部材の形状や数を正確に反映するものではない。
 本実施形態の工作機械10は、ターニングセンタであるが、これに限られるものではない。図1に示すように、工作機械10は、ワーク主軸11と、工具主軸12と、モータ13と、表示装置14とを備える。工作機械10は、図2~図5に示すように、工具主軸12の送り動作に低周波(数十Hz程度)の振動を重畳させてワーク加工を行う振動切削を実行することができる。なお、工作機械10は、ワーク主軸11の送り動作を行うタイプであってもよい。
 ワーク主軸11は、加工対象物であるワーク20(図2を参照)を保持する。ワーク主軸11は、ワーク20の加工中に、ワーク20を所定の軸心回りに回転させる。
 工具主軸12は、ワーク20の加工に用いる工具30(図2を参照)を保持する。工具主軸12は、加工空間内を三次元的に移動可能である。工具主軸12は、ワーク20の加工中に、ワーク20に対して工具30の刃を接触させる。
 モータ13は、工具30(あるいは、工具主軸12)を送り動作させるサーボモータである。モータ13は、流れる電流に対応するトルクを生じることで、工具主軸12の駆動装置(図示せず)を駆動して工具30を送り動作させてもよい。モータ13は、振動切削を行う際に、工具30の送り動作に低周波の振動を重畳させる。図2では、ワーク20の外周面に、振動切削における工具30の移動軌跡を模式的に示してある。
 表示装置14は、振動切削の入力パラメータの入力を受けると共に、オペレータに対して振動切削の設定パラメータの許容値を示すグラフを表示する。本実施形態の表示装置は、タッチパネル式の操作盤によって構成されるが、これに限られるものではない。表示装置14は、入力部15と、表示部16と、記憶部17とを有する。記憶部17は、入力部15および表示部16と一体でもよく、遠隔サーバに具備されるなど別体でもよい。
 入力部15は、振動切削の入力パラメータを入力するための要素である。入力部15は、操作盤の画面によって構成される。入力部15は、入力パラメータの入力に用いる入力画面を表示する。この入力画面は、各入力パラメータを入力するための少なくとも1つの入力窓を含んでもよい。
 表示部16は、入力パラメータに基づいて、振動切削の設定パラメータの許容値を示すグラフを表示する。本実施形態のグラフは、図6に示すように二次元グラフであるが、これに限られるものではない。
 入力パラメータは、振動周波数倍率と、振動振幅倍率と、振動方向と、モータ13の負荷率とを含む。ここで、振動周波数倍率および振動振幅倍率を変動させた場合の工具軌跡の違いを、図3~図5を参照して説明する。
 図3は、振動周波数倍率が0.5であり、かつ振動振幅倍率が1.0である場合の、ワーク表面における工具軌跡を実線で示す。図3において、横軸はワーク20の回転角度(単位:°)を示し、縦軸は工具30の送り軸移動量(単位:mm)を示し、破線は振動が重畳されていない場合の工具軌跡を示す(図4および図5も同様)。図3に示すように、ワーク20が1回転する毎に工具30が0.5回振動していること、ならびに、ワーク20の1回転あたりの工具30の送り量(隣り合う破線同士の上下間隔)と等しい振幅で工具30が振動していることがわかる。旋削時に生じる切屑は、工具軌跡同士がぶつかる箇所で切断される。
 図4は、振動周波数倍率が1.5であり、かつ振動振幅倍率が1.0である場合の、ワーク表面における工具軌跡を実線で示す。図4に示すように、ワーク20が1回転する毎に工具30が1.5回振動していること、ならびに、ワーク20の1回転あたりの工具30の送り量と等しい振幅で工具30が振動していることがわかる。旋削時に生じる切屑は、工具軌跡がぶつかる箇所で切断される。
 図5は、振動周波数倍率が1.5であり、かつ振動振幅倍率が1.4である場合の、ワーク表面における工具軌跡を実線で示す。図4に示すように、ワーク20が1回転する毎に工具30が1.5回振動していること、ならびに、ワーク20の1回転あたりの工具30の送り量よりも大きい振幅で工具30が振動していることがわかる。旋削時に生じる切屑は、工具軌跡がぶつかる箇所で切断される。
 設定パラメータは、ワーク20の回転数と、工具30の送り速度とを含む。なお、工具30が送り動作および回転動作を行うもの(例えば、ドリル)である場合、設定パラメータは、工具30の回転数と、工具30の送り速度とを含む。
 記憶部17は、入力パラメータの入力パターンが複数格納されている。記憶部17は、不揮発性メモリによって構成されてもよい。複数の入力パターンの情報は、例えばオペレータの要求に応じて、入力部15に表示されてもよい。オペレータは、複数の入力パターンから一の入力パターンを選択することで、振動切削の入力パラメータを簡易に入力することができる。
 図6は、表示部16に表示されるグラフの一例を示す。図6において、横軸は工具30の送り速度(単位:mm/rev)を示し、縦軸はワーク20の回転数(単位:rev/min)を示す。図6に一例として示す曲線は、振動周波数倍率が0.5、振動振幅倍率が0.6、振動方向がZ軸方向(ワーク主軸11の軸心に沿った方向)、モータ13の負荷率が100%である場合に対応する。つまり、図6のグラフは、モータ13に流れる電流の平均値が、定格出力の100%を超えない範囲の設定パラメータ(曲線よりも下側の領域の設定パラメータ)を示す。そして、この曲線よりも下側の領域(図6にハッチングで示す領域)が、工作機械10において加工精度を確保しながら振動切削を行うことができる設定パラメータの領域である。オペレータは、この領域を視覚的に把握した後、その中から設定パラメータを適宜決定することができる。
 グラフに表示される曲線は、入力パラメータの各組合せに対して振動切削を安定的に行える回転数と送り速度の組合せを複数取得し、取得した複数の組合せを近似する二次曲線として作成することができる。なお、この方法はあくまで一例であり、他の方法で曲線を作成してもよい。
 なお、図6に一例を示す曲線には、振動周波数倍率や振動振幅倍率が大きいほど左下側(原点側)にシフトする傾向がある。これは、両パラメータが大きいほど、重畳振動に起因する負荷が大きくなるためである。また、同曲線には、モータ13の負荷率が低いほど左下側にシフトする傾向がある。
 -表示方法-
 上述の表示装置14を用いて実行可能な本開示に係る表示方法について説明する。表示方法は、入力工程と、表示工程とを備える。
 入力工程では、オペレータが、振動切削の入力パラメータを入力する。入力パラメータは、振動周波数倍率と、振動振幅倍率と、振動方向と、モータ13の負荷率とを含む。オペレータは、工作機械10が備えるタッチパネル式の操作盤の表示画面を介して入力パラメータを入力してもよい。
 表示工程では、表示部16が、入力パラメータに基づいて、振動切削の設定パラメータのグラフを表示する。このグラフは、例えば、図6に示すタイプのグラフであってもよいし、他のタイプのグラフであってもよい。設定パラメータは、ワーク20の回転数と、工具30の送り速度とを含む。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 本開示は、表示装置、工作機械、および表示方法に利用できる。
10:工作機械
 11:ワーク主軸
 12:工具主軸
 13:モータ
 14:表示装置
  15:入力部
  16:表示部
  17:記憶部
20:ワーク
30:工具

Claims (6)

  1.  振動切削の入力パラメータを入力するための入力部と、
     前記入力パラメータに基づいて、振動切削の設定パラメータの許容値を示すグラフを表示する表示部と、
    を備え、
     前記入力パラメータは、振動周波数倍率、振動振幅倍率、および振動方向の少なくとも1つを含み、
     前記設定パラメータは、ワークまたは工具の回転数と、前記ワークまたは前記工具の送り速度とを含む、表示装置。
  2.  前記入力パラメータの入力パターンが複数格納された記憶部をさらに備え、
     前記入力部において、複数の前記入力パターンから一の前記入力パターンが選択されることにより前記入力パラメータが入力される、請求項1に記載の表示装置。
  3.  前記入力パラメータは、振動切削を行う工作機械が備える、前記ワークまたは前記工具を送り動作させるモータの負荷率をさらに含む、請求項1または2に記載の表示装置。
  4.  前記グラフは、振動切削を行う工作機械が備える、前記ワークまたは前記工具を送り動作させるモータに流れる電流の平均値が、定格出力の100%を超えない範囲の前記設定パラメータを示す、請求項1または2に記載の表示装置。
  5.  振動切削を行う工作機械であって、
     請求項1~4のいずれか1項に記載の表示装置を備える工作機械。
  6.  振動切削の入力パラメータを入力する入力工程と、
     前記入力パラメータに基づいて、振動切削の設定パラメータの許容値を示すグラフを表示する表示工程と、
    を備え、
     前記入力パラメータは、振動周波数倍率、振動振幅倍率、および振動方向の少なくとも1つを含み、
     前記設定パラメータは、ワークまたは工具の回転数と、前記ワークまたは前記工具の送り速度とを含む、表示方法。
PCT/JP2021/025472 2021-07-06 2021-07-06 表示装置、工作機械、および表示方法 WO2023281627A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/573,179 US20240302807A1 (en) 2021-07-06 2021-07-06 Display device, machine tool and display method
EP21949263.4A EP4368322A1 (en) 2021-07-06 2021-07-06 Display device, machine tool and display method
CN202180100006.4A CN117580677A (zh) 2021-07-06 2021-07-06 显示装置、机床及显示方法
PCT/JP2021/025472 WO2023281627A1 (ja) 2021-07-06 2021-07-06 表示装置、工作機械、および表示方法
JP2021573874A JP7039772B1 (ja) 2021-07-06 2021-07-06 表示装置、工作機械、および表示方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/025472 WO2023281627A1 (ja) 2021-07-06 2021-07-06 表示装置、工作機械、および表示方法

Publications (1)

Publication Number Publication Date
WO2023281627A1 true WO2023281627A1 (ja) 2023-01-12

Family

ID=81214263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025472 WO2023281627A1 (ja) 2021-07-06 2021-07-06 表示装置、工作機械、および表示方法

Country Status (5)

Country Link
US (1) US20240302807A1 (ja)
EP (1) EP4368322A1 (ja)
JP (1) JP7039772B1 (ja)
CN (1) CN117580677A (ja)
WO (1) WO2023281627A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016059729A1 (ja) * 2014-10-17 2016-04-21 三菱電機株式会社 振動切削加工診断装置
WO2018117203A1 (ja) * 2016-12-22 2018-06-28 シチズン時計株式会社 工作機械およびその制御装置
JP2019191857A (ja) * 2018-04-24 2019-10-31 ファナック株式会社 表示装置
JP2020112985A (ja) 2019-01-10 2020-07-27 シチズン時計株式会社 工作機械の制御装置および工作機械

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016059729A1 (ja) * 2014-10-17 2016-04-21 三菱電機株式会社 振動切削加工診断装置
WO2018117203A1 (ja) * 2016-12-22 2018-06-28 シチズン時計株式会社 工作機械およびその制御装置
JP2019191857A (ja) * 2018-04-24 2019-10-31 ファナック株式会社 表示装置
JP2020112985A (ja) 2019-01-10 2020-07-27 シチズン時計株式会社 工作機械の制御装置および工作機械

Also Published As

Publication number Publication date
CN117580677A (zh) 2024-02-20
JPWO2023281627A1 (ja) 2023-01-12
EP4368322A1 (en) 2024-05-15
JP7039772B1 (ja) 2022-03-22
US20240302807A1 (en) 2024-09-12

Similar Documents

Publication Publication Date Title
JP5368232B2 (ja) 振動抑制装置
TWI679079B (zh) 工具機及其控制裝置
JP6439542B2 (ja) 数値制御装置と制御方法
CN102554685A (zh) 机床中的振动抑制方法以及振动抑制装置
JP6371335B2 (ja) 加工状態表示装置
TWI781353B (zh) 工作機械以及控制裝置
JP5908182B1 (ja) 振動切削加工診断装置
WO2022181594A1 (ja) 計算装置
WO2015037143A1 (ja) 工具経路評価方法、工具経路生成方法、及び工具経路生成装置
JP6990134B2 (ja) 切削装置及びその制御方法
JP6302794B2 (ja) 回転速度表示方法
JP2013196327A (ja) 多軸加工機用切削距離演算装置
JP7036786B2 (ja) 数値制御装置、プログラム及び制御方法
WO2021153482A1 (ja) 工作機械の制御装置
WO2023281627A1 (ja) 表示装置、工作機械、および表示方法
JP7444697B2 (ja) 数値制御装置、制御プログラム及び制御方法
CN112130524B (zh) 数值控制装置、程序记录介质以及控制方法
JP7230872B2 (ja) 数値制御装置及び数値制御方法
WO2022163634A1 (ja) 表示装置及びコンピュータプログラム
JP5666397B2 (ja) 工作機械
WO2018198274A1 (ja) 加工制御装置及び工作機械、並びに加工制御方法
JP7131454B2 (ja) 数値制御装置、工作機械、制御プログラム、及び記憶媒体
JP7052353B2 (ja) ツーリング及び加工治具の設計支援装置
Insperger et al. The effect of runout on the chatter frequencies of milling processes
JP7252426B1 (ja) 工作機械の制御装置及び工作機械の表示装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021573874

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949263

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100006.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021949263

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021949263

Country of ref document: EP

Effective date: 20240206