WO2018113478A1 - 一种以碳酸锂为原料生产一水氢氧化锂的方法 - Google Patents

一种以碳酸锂为原料生产一水氢氧化锂的方法 Download PDF

Info

Publication number
WO2018113478A1
WO2018113478A1 PCT/CN2017/113059 CN2017113059W WO2018113478A1 WO 2018113478 A1 WO2018113478 A1 WO 2018113478A1 CN 2017113059 W CN2017113059 W CN 2017113059W WO 2018113478 A1 WO2018113478 A1 WO 2018113478A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
lithium hydroxide
lithium carbonate
conversion
water
Prior art date
Application number
PCT/CN2017/113059
Other languages
English (en)
French (fr)
Inventor
胡简
郭永兴
王迎春
曾小毛
刘金练
樊磊
欧阳红勇
祝宏帅
Original Assignee
江西合纵锂业科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西合纵锂业科技有限公司 filed Critical 江西合纵锂业科技有限公司
Publication of WO2018113478A1 publication Critical patent/WO2018113478A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the invention relates to a method for preparing lithium hydroxide monohydrate, in particular to a method for producing lithium hydroxide monohydrate by using lithium carbonate as a raw material, and belongs to the field of preparation of lithium hydroxide monohydrate.
  • Lithium hydroxide is one of the important primary processed lithium products in lithium and its compounds.
  • the domestic method for producing lithium hydroxide is: using limestone roasting method to prepare lithium hydroxide from lithium mica; using sodium carbonate pressure leaching method Lithofene is used as a raw material to prepare lithium hydroxide.
  • the above two methods are mature in technology route, and the process flow is simple, but the material circulation is large, the cost is high, the energy consumption is large, and the environmental pollution is serious.
  • Lithium hydroxide produced by calcination method can remove impurities such as boron and magnesium during calcination, and improve the purity of lithium hydroxide.
  • the magnesium content makes the process complicated, the equipment is seriously corroded, the amount of evaporated water is large, and the energy consumption is high. .
  • the causticization method is the main method for producing lithium hydroxide at home and abroad, especially abroad.
  • This method is prepared by using a lithium carbonate as a raw material through a water causticization reaction between calcium hydroxide and lithium carbonate.
  • the method has high calcium impurity content, is difficult to completely remove, and seriously affects product purity.
  • the purification process of the method is cumbersome, the equipment investment is high, and the production cost is high.
  • the object of the present invention is to overcome the technical disadvantages of the prior art that the energy consumption is large, the environmental pollution is serious, the content of calcium impurities in the product is high, it is difficult to completely remove, and the purity of the product is seriously affected, and a battery-grade hydroxide is produced by using lithium carbonate as a raw material.
  • the method of lithium which avoids introducing a large amount of impurities in industrial lime into the system, greatly reduces the processing steps of the lithium hydroxide solution, reduces the cost, and prevents the loss of lithium.
  • the invention provides a method for producing lithium hydroxide monohydrate by using lithium carbonate as a raw material, which adopts a calcium circulation method, and comprises the following steps:
  • Conversion reaction a conversion reaction is carried out by adding water and calcium oxide to lithium carbonate, and solid-liquid separation is carried out to obtain a conversion slag and a lithium hydroxide solution, wherein the reaction temperature of the conversion reaction is 80 ° C to 90 ° C, and the conversion reaction time is 3 ⁇ 7h;
  • step 2) The conversion slag in step 1) is washed with water, filtered to obtain filter residue and washing liquid, and the obtained filter residue is dried, and the generated calcium oxide enters the calcium cycle and participates in the step 1) conversion reaction again;
  • the lithium hydroxide solution obtained in the step 1) is evaporated to crystallize and dried to obtain lithium hydroxide monohydrate; in the crystallization process, the condensed water and the washing liquid enter the water cycle, and then participate in the step 1) conversion reaction.
  • the weight ratio of lithium carbonate, calcium oxide and water in step 1) is 1:0.720 to 0.756:18-20.
  • the conversion slag in the conversion reaction in the step 1) is composed of calcium carbonate and unreacted A composition of lithium carbonate in which lithium carbonate is recycled for use in conjunction with calcium.
  • the present invention utilizes a calcium cycle process to convert lithium carbonate to lithium hydroxide monohydrate, which is accomplished by the addition of a calcium oxide cycle.
  • the conversion rate of lithium carbonate in the conversion reaction in the present invention is more than 95%; the obtained crystalline product of lithium hydroxide monohydrate is stable in quality, and the content of calcium is ⁇ 200 ppm.
  • the invention can convert the incompletely converted lithium carbonate and calcium slag (transformation slag) together with the calcium carbonate thermal decomposition step and return to the conversion step of the system, and the introduction of less lime in the whole process avoids the introduction of a large amount of impurities in the industrial lime. .
  • the invention greatly reduces the processing steps of the lithium hydroxide solution, reduces the cost of the lithium hydroxide remaining in the conversion slag, and returns to the conversion reaction step with the calcium recycling step, prevents the loss of lithium, and the total lithium yield is greater than 99%;
  • FIG. 1 is a flow chart of producing battery-grade lithium hydroxide using lithium carbonate as a raw material according to the present invention.
  • Embodiment 1 A method for producing lithium hydroxide monohydrate by using lithium carbonate as a raw material
  • the method for producing lithium hydroxide monohydrate by using lithium carbonate as a raw material adopts a calcium circulation method, and includes the following steps:
  • the weight ratio is 1:0.72:18, the conversion reaction occurs at 80 ° C, and the solid residue is used to obtain the conversion slag and hydrogen.
  • step 2) The conversion slag in step 1) is washed with water, filtered to obtain filter residue and washing liquid, and the obtained residue is dried.
  • the lithium hydroxide solution obtained in the step 1) is evaporated to crystallize and dried to obtain lithium hydroxide monohydrate; in the crystallization process, the condensed water and the washing liquid enter the water cycle, and then participate in the conversion reaction.
  • the conversion rate of lithium carbonate was 94.6%; the total yield of lithium was 99.3%; and the content of calcium in lithium hydroxide monohydrate was 147 ppm.
  • Embodiment 2 A method for producing lithium hydroxide monohydrate from a lithium carbonate raw material
  • the method for producing lithium hydroxide monohydrate by using lithium carbonate as a raw material adopts a calcium circulation method, including the following step:
  • step 2) The conversion slag in step 1) is washed with water, filtered to obtain filter residue and washing liquid, and the obtained filter residue is dried, and the generated calcium oxide enters the calcium cycle and participates in the conversion reaction again.
  • the lithium hydroxide solution obtained in the step 1) is evaporated to crystallize and dried to obtain lithium hydroxide monohydrate; in the crystallization process, the condensed water and the washing liquid enter the water cycle, and then participate in the conversion reaction.
  • the conversion rate of lithium carbonate is 99.2%; the total yield of lithium is 99.4%; and the content of calcium in lithium hydroxide monohydrate is 183 ppm.
  • Embodiment 3 A method for producing lithium hydroxide monohydrate by using lithium carbonate as a raw material
  • the method for producing lithium hydroxide monohydrate by using lithium carbonate as a raw material adopts a calcium circulation method, and includes the following steps:
  • step 2) The conversion slag in step 1) is washed with water, filtered to obtain filter residue and washing liquid, and the obtained filter residue is dried, and the generated calcium oxide enters the calcium cycle and participates in the conversion reaction again;
  • the lithium hydroxide solution obtained in the step 1) is evaporated to crystallize and dried to obtain lithium hydroxide monohydrate; in the crystallization process, the condensed water and the washing liquid enter the water cycle, and then participate in the conversion reaction.
  • the conversion rate of lithium carbonate was 97.5%; the total yield of lithium was 99.6%; and the content of calcium in lithium hydroxide monohydrate was 165 ppm.
  • Embodiment 4 A method for producing lithium hydroxide monohydrate by using lithium carbonate as a raw material
  • the method for producing lithium hydroxide monohydrate by using lithium carbonate as a raw material adopts a calcium circulation method, and includes the following steps:
  • step 2) The conversion slag in step 1) is washed with water, filtered to obtain filter residue and washing liquid, and the obtained filter residue is dried, and the generated calcium oxide enters the calcium cycle and participates in the conversion reaction again.
  • the lithium hydroxide solution obtained in the step 1) is evaporated to crystallize and dried to obtain lithium hydroxide monohydrate; in the crystallization process, the condensed water and the washing liquid enter the water cycle, and then participate in the conversion reaction.
  • the conversion rate of lithium carbonate is 99.0%; the total yield of lithium is 99.2%; and the calcium content in lithium hydroxide monohydrate is 155 ppm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

提供一种以碳酸锂为原料生产一水氢氧化锂的方法,包括:1)转化反应:向碳酸锂中加入水和氧化钙,生成转化渣和氢氧化锂溶液,反应温度为80-90℃,时间为3-7h;2)将步骤1)的转化渣用水洗涤,过滤,得滤渣和洗涤液,滤渣干燥得氧化钙进入钙循环再次参与步骤1)的转化反应;3)将步骤1)所得氢氧化锂溶液依次经蒸发结晶、干燥得一水氢氧化锂,结晶过程的冷凝水和洗涤液进入水循环,重新参与步骤1)的转化反应。该方法避免将工业石灰中大量杂质引入系统,减少了氢氧化锂溶液的处理步骤、降低了成本,防止锂的损失。

Description

一种以碳酸锂为原料生产一水氢氧化锂的方法 技术领域
本发明涉及一种制备一水氢氧化锂的方法,特别是一种以碳酸锂为原料生产一水氢氧化锂的方法,属于一水氢氧化锂制备领域。
背景技术
随着锂离子电池市场的高速发展,锂电在高能绿色能源领域的应用拓展很快。氢氧化锂是锂及其化合物中重要的初加工锂产品之一,国内生产氢氧化锂的方法有:采用的石灰石焙烧法以锂云母为原料制备氢氧化锂;采用碳酸钠加压浸取法以锂辉石为原料制备氢氧化锂。以上两种方法技术路线成熟,工艺流程简单,但物料流通量大、成本高、能耗大、环境污染较严重。采用煅烧法生产的氢氧化锂,虽然在煅烧过程中可以去除硼、镁等杂质,提高了氢氧化锂的纯度,但是镁含量使该工艺流程复杂,设备腐蚀严重,蒸发水量大,能耗高。
目前苛化法是国内外特别是国外生产氢氧化锂的主要方法,这种方法以碳酸锂为原料,通过氢氧化钙和碳酸锂之间的水苛化反应而制得。该方法产品中钙杂质含量高,难以彻底除去,严重影响产品纯度,此外,该法纯化工艺繁琐,设备投资高,生产成本偏高。
发明内容
本发明的目的在于克服现有技术能耗大、环境污染较严重、产品中钙杂质含量高,难以彻底除去,严重影响产品纯度的技术不足,提供一种以碳酸锂为原料生产电池级氢氧化锂的方法,该方法避免了将工业石灰中大量杂质引入系统,极大地减少了氢氧化锂溶液的处理步骤、降低了成本,防止了锂的损失。
本发明提供一种以碳酸锂为原料生产一水氢氧化锂的方法,其采用钙循环法,包括以下步骤:
1)转化反应:向碳酸锂中加入水和氧化钙发生转化反应,固液分离得到转化渣和氢氧化锂溶液,其中所述转化反应的反应温度为80℃~90℃,转化反应时间为3~7h;
2)将步骤1)中转化渣用水洗涤,过滤得滤渣和洗涤液,所得滤渣进行干燥,生成的氧化钙进入钙循环再次参与步骤1)转化反应;
3)将步骤1)所得氢氧化锂溶液蒸发结晶、干燥得一水氢氧化锂;结晶过程冷凝水和洗涤液进入水循环,再参与步骤1)转化反应。
优选地,步骤1)中碳酸锂、氧化钙与水的的重量比为1:0.720~0.756:18~20。
上述所述的方法中,所述步骤1)中转化反应中转化渣由碳酸钙和未反应的 碳酸锂组成,其中碳酸锂随同钙循环而返回利用。
进一步优选地,步骤1)中所述碳酸锂、氧化钙与水的重量比为碳酸锂:氧化钙:水=1:0.755:18.70,所述转化反应的反应温度为85℃。
本发明利用钙循环法将碳酸锂转化为一水氢氧化锂,钙循环法是通过加入一个氧化钙循环而完成。
本发明采用上述技术方案的有益效果:
1)本发明中转化反应中碳酸锂的转化率大于95%;所得一水氢氧化锂结晶产品质量稳定,钙的含量<200ppm。
2)本发明可以将转化不完全的碳酸锂与钙渣(转化渣)一起经碳酸钙热分解步骤后回到系统的转化步骤,整个过程引入石灰量少,避免了工业石灰中大量杂质引入系统。
3)本发明极大地减少了氢氧化锂溶液的处理步骤、降低了成本转化渣中残留的氢氧化锂随钙循环步骤回到系统的转化反应步骤,防止了锂的损失,锂总收率大于99%;
4)结晶过程所得冷凝水和洗涤液进入水循环,降低了成本,减少了对环境的污染。
附图说明
图1本发明所述的以碳酸锂为原料生产电池级氢氧化锂的流程图。
具体实施方式
以下通过实施例来说明本法的技术内容,但所述技术领域的技术人员应能知晓,所述实施例不以任何方式限定本发明专利的保护范围。本领域技术人员在此基础上做出的修饰或等同替代,均应包括在本专利保护范围之内。
实施例1一种以碳酸锂为原料生产一水氢氧化锂的方法
所述以碳酸锂为原料生产一水氢氧化锂的方法采用钙循环法,包括以下步骤:
1)转化反应:向碳酸锂中加入水和氧化钙,其中碳酸锂、氧化钙与水的
重量比为1:0.72:18,在80℃发生转化反应,固液分离得到转化渣和氢
氧化锂溶液;
2)将步骤1)中转化渣用水洗涤,过滤得滤渣和洗涤液,所得滤渣进行干
燥,生成的氧化钙进入钙循环再次参与转化反应。
3)将步骤1)所得氢氧化锂溶液蒸发结晶、干燥得一水氢氧化锂;结晶过程冷凝水和洗涤液进入水循环,再参与转化反应。
本实施例中碳酸锂转化率为94.6%;锂的总收率为99.3%;一水氢氧化锂中钙含量为147ppm。
实施例2一种以碳酸锂原料生产一水氢氧化锂的方法
所述以碳酸锂为原料生产一水氢氧化锂的方法采用钙循环法,包括以下 步骤:
1)转化反应:向碳酸锂中加入水和氧化钙,其中碳酸锂、氧化钙与水的的重量比为1:0.755:18.70,在85℃发生转化反应,固液分离得到转化渣和氢氧化锂溶液;
2)将步骤1)中转化渣用水洗涤,过滤得滤渣和洗涤液,所得滤渣进行干燥,生成的氧化钙进入钙循环再次参与转化反应。
3)将步骤1)所得氢氧化锂溶液蒸发结晶、干燥得一水氢氧化锂;结晶过程冷凝水和洗涤液进入水循环,再参与转化反应。
本实施例中碳酸锂转化率为99.2%;锂的总收率为99.4%;一水氢氧化锂中钙含量为183ppm。
实施例3一种以碳酸锂为原料生产一水氢氧化锂的方法
所述以碳酸锂为原料生产一水氢氧化锂的方法采用钙循环法,包括以下步骤:
1)转化反应:向碳酸锂中加入水和氧化钙,其中碳酸锂:氧化钙:水的重量比为1:0.745:20,在90℃发生转化反应,固液分离得到转化渣和氢氧化锂溶液;
2)将步骤1)中转化渣用水洗涤,过滤得滤渣和洗涤液,所得滤渣进行干燥,生成的氧化钙进入钙循环再次参与转化反应;
3)将步骤1)所得氢氧化锂溶液蒸发结晶、干燥得一水氢氧化锂;结晶过程冷凝水和洗涤液进入水循环,再参与转化反应。
本实施例中碳酸锂转化率为97.5%;锂的总收率为99.6%;一水氢氧化锂中钙含量为165ppm。
实施例4一种以碳酸锂为原料生产一水氢氧化锂的方法
所述以碳酸锂为原料生产一水氢氧化锂的方法采用钙循环法,包括以下步骤:
1)转化反应:向碳酸锂中加入水和氧化钙,其中碳酸锂、氧化钙与水的摩尔比为1:0.750:20,在80℃发生转化反应,固液分离得到转化渣和氢氧化锂溶液;
2)将步骤1)中转化渣用水洗涤,过滤得滤渣和洗涤液,所得滤渣进行干燥,生成的氧化钙进入钙循环再次参与转化反应。
3)将步骤1)所得氢氧化锂溶液蒸发结晶、干燥得一水氢氧化锂;结晶过程冷凝水和洗涤液进入水循环,再参与转化反应。
本实施例中碳酸锂转化率为99.0%;锂的总收率为99.2%;一水氢氧化锂中钙含量为155ppm。

Claims (5)

  1. 一种以碳酸锂为原料生产一水氢氧化锂的方法,其特征在于,采用钙循环法,所述钙循环法包括以下步骤:
    1)转化反应:向碳酸锂中加入水和氧化钙进行转化反应,生成转化渣和氢氧化锂溶液;其中所述转化反应的反应温度为80℃~90℃,转化反应时间为3~7h;
    2)将步骤1)中转化渣用水洗涤,过滤得滤渣和洗涤液,所得滤渣进行干燥得氧化钙,氧化钙进入钙循环再次参与步骤1)转化反应;
    3)将步骤1)所得氢氧化锂溶液依次经蒸发结晶、干燥得一水氢氧化锂;结晶过程冷凝水和洗涤液进入水循环,重新参与步骤1)转化反应。
  2. 根据权利要求1所述以碳酸锂为原料生产一水氢氧化锂的方法,其特征在于,所述步骤1)中碳酸锂与氧化钙的计量比略大于化学反应计量。
  3. 根据权利要求1或2所述以碳酸锂为原料生产一水氢氧化锂的方法,其特征在于,所述步骤1)中碳酸锂、氧化钙与水的重量比为1:0.720~0.756:18~20。
  4. 根据权利要求1所述以碳酸锂为原料生产一水氢氧化锂的方法,其特征在于,所述步骤1)中转化反应中转化渣由碳酸钙和未反应的碳酸锂组成,其中碳酸锂随同钙循环而返回利用。
  5. 根据权利要求1所述以碳酸锂为原料生产一水氢氧化锂的方法,其特征在 于,步骤1)中所述碳酸锂、氧化钙与水的重量比为1:0.755:18.70,所述转化反应的反应温度为85℃。
PCT/CN2017/113059 2016-12-23 2017-11-27 一种以碳酸锂为原料生产一水氢氧化锂的方法 WO2018113478A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611205943.3 2016-12-23
CN201611205943.3A CN106517256A (zh) 2016-12-23 2016-12-23 一种以碳酸锂为原料生产一水氢氧化锂的方法

Publications (1)

Publication Number Publication Date
WO2018113478A1 true WO2018113478A1 (zh) 2018-06-28

Family

ID=58337589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113059 WO2018113478A1 (zh) 2016-12-23 2017-11-27 一种以碳酸锂为原料生产一水氢氧化锂的方法

Country Status (2)

Country Link
CN (1) CN106517256A (zh)
WO (1) WO2018113478A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112777615A (zh) * 2021-01-28 2021-05-11 江西云威新材料有限公司 一种低碳型电池级氢氧化锂制备方法
CN112875729A (zh) * 2019-11-29 2021-06-01 中国船舶重工集团公司第七一八研究所 一种氢氧化锂药粒废料的回收再利用处理方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106517256A (zh) * 2016-12-23 2017-03-22 江西合纵锂业科技有限公司 一种以碳酸锂为原料生产一水氢氧化锂的方法
CN107265483A (zh) * 2017-07-17 2017-10-20 中国恩菲工程技术有限公司 制备单水氢氧化锂的方法
CN108658099A (zh) * 2018-05-24 2018-10-16 白银中天化工有限责任公司 一种电池级单水氢氧化锂提纯工艺
CN108821313B (zh) * 2018-09-25 2020-06-23 青海大学 一种利用碳酸锂制备一水氢氧化锂的方法
CN109502611A (zh) * 2018-11-16 2019-03-22 湖南众德新材料科技有限公司 一种制备氢氧化锂微纳粉体的装置
CN109824066A (zh) * 2019-04-18 2019-05-31 王东升 一种由工业级碳酸锂制备电池级氢氧化锂的方法
CN110395748A (zh) * 2019-08-27 2019-11-01 福建常青新能源科技有限公司 碳酸锂苛化法制备氢氧化锂的方法
CN111115664A (zh) * 2020-02-27 2020-05-08 中国科学院青海盐湖研究所 一种碳酸锂转化为氢氧化锂的方法及系统
CN112939035A (zh) * 2021-04-07 2021-06-11 重庆天海电池材料有限公司 一种一水氢氧化锂的制备方法
CN115340109A (zh) * 2022-08-01 2022-11-15 广东邦普循环科技有限公司 一种利用粗制碳酸锂制备高纯碳酸锂的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1456505A (zh) * 2003-03-26 2003-11-19 邓月金 从碳酸锂混盐中制取锂化合物的方法
CN102115101A (zh) * 2011-01-05 2011-07-06 屈俊鸿 一种生产碳酸锂和氢氧化锂的新方法
CN106517256A (zh) * 2016-12-23 2017-03-22 江西合纵锂业科技有限公司 一种以碳酸锂为原料生产一水氢氧化锂的方法
CN106673022A (zh) * 2016-12-23 2017-05-17 江西合纵锂业科技有限公司 一种从电池级碳酸锂生产电池级一水氢氧化锂的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1456505A (zh) * 2003-03-26 2003-11-19 邓月金 从碳酸锂混盐中制取锂化合物的方法
CN102115101A (zh) * 2011-01-05 2011-07-06 屈俊鸿 一种生产碳酸锂和氢氧化锂的新方法
CN106517256A (zh) * 2016-12-23 2017-03-22 江西合纵锂业科技有限公司 一种以碳酸锂为原料生产一水氢氧化锂的方法
CN106673022A (zh) * 2016-12-23 2017-05-17 江西合纵锂业科技有限公司 一种从电池级碳酸锂生产电池级一水氢氧化锂的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112875729A (zh) * 2019-11-29 2021-06-01 中国船舶重工集团公司第七一八研究所 一种氢氧化锂药粒废料的回收再利用处理方法
CN112777615A (zh) * 2021-01-28 2021-05-11 江西云威新材料有限公司 一种低碳型电池级氢氧化锂制备方法

Also Published As

Publication number Publication date
CN106517256A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
WO2018113478A1 (zh) 一种以碳酸锂为原料生产一水氢氧化锂的方法
CN109052434B (zh) 一种以芒硝和碳酸氢铵为原料联合生产纯碱和复合氮肥的方法
CN104773744B (zh) 一种由老卤制备高纯氧化镁的方法
CN102320585A (zh) 湿法磷酸直接生产工业级磷酸一铵的方法
CN107857282A (zh) 一种芒硝制备硫酸钾的方法
CN108163812B (zh) 一种氟化氢的制备方法、氢氟酸的制备方法
CN101928022B (zh) 电池级氟化锂的制备方法
CN101643223B (zh) 氯化钾及副产品的制备方法
CN100393923C (zh) 用工业级氢氧化锂和硼酸生产高纯高清四硼酸锂晶体技术
WO2023169432A1 (zh) 一种制备电池级氢氧化锂和碳酸锂的方法和系统
CN111559750A (zh) 一种高效连续电子级氟化锂生产工艺
CN110835096A (zh) 利用电池级单水氢氧化锂制备高纯无水高氯酸锂的方法
CN103319326A (zh) 一种草酸氧钒的制备方法
CN103803622A (zh) 一种由六水氯化铝脱水制备无水氯化铝的方法
CN112299453B (zh) 一种高纯度氟化锂的制备方法
CN102796019A (zh) 高纯edta环保清洁生产方法
CN113896214B (zh) 一种硫酸锂溶液吸附碳化制备高纯碳酸锂的方法
CN102910638B (zh) 一种无水偏硼酸锂的制备方法
CN102838139B (zh) 利用盐湖卤水以兑卤方式生产硝酸钾的方法
CN103755625A (zh) 一种清洁制备高纯度吡啶盐酸盐的方法
CN110482576B (zh) 一种锂云母水热制备锂盐的方法
CN104944397B (zh) 一种由净化湿法磷酸低成本制备磷酸二氢钾的工艺
CN105883836A (zh) 一种偏硅酸钠联产氟化钠的生产方法
CN102649585A (zh) 一种红矾钠的制备方法
CN102417192B (zh) 一种制造离子膜氢氧化钾的氯化钾原料处理工艺方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17885398

Country of ref document: EP

Kind code of ref document: A1