WO2018110792A1 - 생분해성 고분자의 다공성 미립자, 및 이를 포함하는 고분자 필러 - Google Patents

생분해성 고분자의 다공성 미립자, 및 이를 포함하는 고분자 필러 Download PDF

Info

Publication number
WO2018110792A1
WO2018110792A1 PCT/KR2017/008704 KR2017008704W WO2018110792A1 WO 2018110792 A1 WO2018110792 A1 WO 2018110792A1 KR 2017008704 W KR2017008704 W KR 2017008704W WO 2018110792 A1 WO2018110792 A1 WO 2018110792A1
Authority
WO
WIPO (PCT)
Prior art keywords
biodegradable polymer
polymer
filler
weight
fine particles
Prior art date
Application number
PCT/KR2017/008704
Other languages
English (en)
French (fr)
Inventor
김진수
신왕수
박나정
고영주
김준배
Original Assignee
주식회사 삼양바이오팜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170099514A external-priority patent/KR101942449B1/ko
Priority to BR112019011714-8A priority Critical patent/BR112019011714B1/pt
Priority to JP2019531828A priority patent/JP6886518B2/ja
Priority to EP17881729.2A priority patent/EP3556797A4/en
Priority to UAA201908028A priority patent/UA124117C2/uk
Priority to MX2019006787A priority patent/MX2019006787A/es
Application filed by 주식회사 삼양바이오팜 filed Critical 주식회사 삼양바이오팜
Priority to US16/468,828 priority patent/US11406733B2/en
Priority to CN201780076772.5A priority patent/CN110072921B/zh
Priority to AU2017377761A priority patent/AU2017377761B2/en
Priority to RU2019121702A priority patent/RU2737742C1/ru
Publication of WO2018110792A1 publication Critical patent/WO2018110792A1/ko
Priority to IL266983A priority patent/IL266983B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/025Explicitly spheroidal or spherical shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/0279Porous; Hollow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8147Homopolymers or copolymers of acids; Metal or ammonium salts thereof, e.g. crotonic acid, (meth)acrylic acid; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • A61K9/1647Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/413Nanosized, i.e. having sizes below 100 nm

Definitions

  • the present invention relates to porous fine particles of a biodegradable polymer, and a polymer filler comprising the same.
  • botulinum toxin and facial fillers are typical products in the medical field.
  • Botulinum toxin which was initially used for muscle relaxation, is now more often used in the form of facial wrinkles for cosmetic purposes.
  • the filler market which can be used as a volume filler for skin by being safe and bioabsorbed, such as collagen and hyaluronic acid, is also rapidly growing.
  • First-generation fillers used collagen components extracted from animals. However, due to a collagen allergic reaction and a short maintenance period of 1 to 3 months, it is rarely used today.
  • the second-generation filler is a hyaluronic acid-based filler and currently occupies 90% of the market.
  • Hyaluronic acid is a safe ingredient present in joint fluid, cartilage, and skin in the human body.
  • non-crosslinked hyaluronic acid is ineffective in one day after injection into the skin. Therefore, many companies cross-link hyaluronic acid to make fillers that have a 1-1.5 year effect.
  • the more crosslinking agents used for crosslinking the more important is the technology to completely remove the crosslinking agent used because it may cause toxicity in the human body.
  • Third generation fillers are calcium fillers made of materials that do not readily degrade in vivo and polymethylmethacrylate (PMMA) fillers that do not permanently degrade. Calcium fillers do not decompose well, so the effect is long lasting if the procedure is good, but if you do not like the results after the procedure, you have to wait a long time until the raw material is completely biodegraded have. PMMA fillers can be expected to have a permanent effect, but it is difficult to remove if the procedure is wrong. In addition, the raw material remains in the human body for a long time, so the side effects are high, the market is in danger of exiting.
  • PMMA polymethylmethacrylate
  • Biodegradable polymer fillers unlike hyaluronic acid fillers that maintain the volume of the skin in the volume of the product itself, are fillers that naturally restore and maintain the volume by inducing the production of collagen as the polymer biodegrades.
  • the maintenance period can be controlled by the molecular weight of the polymer, and currently released products can maintain the volume for various periods of 1 to 4 years.
  • the initial volume decreases significantly within one week after the procedure, and the volume gradually rises over four weeks to six months.
  • Korean Patent No. 1572256 discloses solubilizing a polycaprolactone polymer in a solvent and then mixing the solubilized polycaprolactone polymer with a liquid containing a surfactant and having a viscosity ranging from 20 to approximately 10,000 cP;
  • a process for preparing polycaprolactone-comprising microparticles comprising forming polycaprolactone-comprising microparticles from a solution obtained, and at least i) a diameter in the range of from 5 to 200 ⁇ m, ii) uniformity obtained by said process Homogenous density, morphology and content, iii) essentially spherical microspheres, iv) soft particles characterized by a smooth surface.
  • these microparticles have a smooth and smooth surface, and the prepared filler has a disadvantage in that the initial volume decreases significantly within one week after the procedure, and then gradually increases in volume over 4 weeks to 6 months.
  • Korean Patent No. 1142234 includes a porous biodegradable polymer microparticle used as a bulking agent or filler for urinary incontinence after incorporation, and a temperature-sensitive phase-transition biocompatible polymer aqueous solution. Injectables are disclosed.
  • the biodegradable polymer microparticles have a porosity of 80 to 96%, the pore diameter of 25 to 500 ⁇ m, the diameter of the particle ranges from 100 to 5,000 ⁇ m, the size of the particles is too large, significant difficulty in injection injection Not only that, but it is almost impossible to use for facial use.
  • biocompatible, biodegradable polymer material that can induce collagen production, control the maintenance period for a long time, and maintain the volume right after the procedure like the existing hyaluronic acid filler, and can also be injected with needles with small particle size.
  • polymer fillers that can minimize pain and foreign body feeling after injection.
  • the present invention is to solve the problems of the above-mentioned conventional filler products, induce collagen generation after injection into the human body, and is a biodegradable polymer material with a long maintenance period, as well as maintaining the volume immediately after the procedure, like conventional hyaluronic acid fillers, It is a technical task to provide a polymer filler that can be injected with a needle that is smaller in size to minimize the pain and foreign body feeling that patients feel after injection.
  • ii particle diameter is 10-200 ⁇ m
  • iii) have pores with a diameter of 0.1 to 20 ⁇ m;
  • Another aspect of the present invention is a porous fine particle of the biodegradable polymer; And one or more biocompatible carriers.
  • the polymer filler according to the present invention can have a larger volume compared to the same mass as the existing product due to the porous polymer particles, it can provide an effect of maintaining the volume due to the volume of the polymer immediately after the procedure.
  • the polymer filler of the present invention is mixed with a polymer particle and a carrier similarly to a conventional polymer filler, and like a conventional product, the carrier is absorbed first and the remaining polymer is slowly biodegraded to induce self-collagen production of surrounding tissues for a long time, thereby providing hyaluronic acid filler. Longer retention periods are indicated.
  • the porous particulate polymer filler according to the present invention has almost no volume reduction effect because the volume of the polymer itself is larger than that of the existing polymer filler even when the carrier is absorbed first.
  • by adjusting the porosity of the porous particles can be adjusted to provide a volume as desired by adjusting the degree of volume reduction immediately after the procedure.
  • the biodegradable polymer filler according to the present invention can be used in various parts of the body including the face as a filler used in humans according to the particle size and porosity.
  • the particle size can be injected with a needle that is small in size to minimize the pain and foreign body feeling after the injection.
  • FIG. 1 is a scanning electron microscope (SEM) photograph of a specific example of porous fine particles of a biodegradable polymer used in the biodegradable polymer filler according to the present invention.
  • Example 4 is a view showing the particle size and distribution of the fine particles according to Example 1 and Comparative Example 1 of the present invention.
  • Example 5 is a photograph of the injection site after injecting the polymer filler prepared in Example 1 of the present invention and the filler of Comparative Example 1 into a rat.
  • the polymer filler of the present invention uses porous fine particles of a biodegradable polymer made of a polymer having biocompatibility and biodegradability.
  • biodegradable polymers that can be used in the preparation of porous fine particles of biodegradable polymers are polylactic acid (Poly (lactic acid)), polyglycolic acid (Poly (glycolic acid)), polydioxanone (Poly (dioxanone) )), Poly (caprolactone), Lactic acid-glycolic acid copolymer (Poly (lactic acid-co-glycolic acid)), Dioxanone-caprolactone copolymer (Poly (dioxanone-co-caprolactone) And lactic acid-caprolactone copolymers (Poly (lactic acid-co-caprolactone)), derivatives thereof, and copolymers thereof.
  • they are polylactic acid or polycaprolactone, particularly preferably polycaprolactone.
  • the biodegradable polymer may have a number average molecular weight (Mn) of preferably 10,000 to 1,000,000 g / mol, more preferably 10,000 to 100,000 g / mol in order to maintain the filler retention period for 2 years or more. .
  • Mn number average molecular weight
  • the particle size of the porous microparticles of the biodegradable polymer should be smaller than the diameter of the needle used to enable injection, and the shape of the particles is substantially spherical in shape so as not to cause pain and feel to the patient. to be.
  • the particle size (particle diameter) of the porous fine particles of the biodegradable polymer may be typically 200 ⁇ m or less, and preferably has a diameter of 10 ⁇ m or more so as not to be phagocytized by macrophages in biological tissues.
  • the porous microparticles of the biodegradable polymer have a diameter of less than 10-100 ⁇ m, more preferably 10-80 ⁇ m, even more preferably 10-50 ⁇ m, most preferably 20-40 ⁇ m.
  • the porous fine particles of the biodegradable polymer have d 10, which is the basis of the particle size distribution, larger than 20 ⁇ m, d 90 smaller than 100 ⁇ m, preferably d 10 larger than 20 ⁇ m, and d 90 is 60 ⁇ m. Smaller, more preferably d 10 is larger than 25 ⁇ m and d 90 is smaller than 40 ⁇ m.
  • the porous microparticles of the biodegradable polymer should have a span value of less than 1 indicating an even distribution of the particles, preferably less than 0.8, and more preferably less than 0.6.
  • the span value is larger when the particle distribution is wider, and becomes closer to zero when the distribution is narrower.
  • the span value is calculated by the following equation.
  • D 10 , D 50 , D 90 Definition A particle size distribution curve representing the relative cumulative amount of particles by size, corresponding to 10%, 50%, and 90% of the maximum value in the cumulative distribution of the particles. Measured, plotted, and divided into 10 pieces, showing the size of particles corresponding to 1/10, 5/10, 9/10 respectively.
  • the porous fine particles of the biodegradable polymer used in the present invention have pores, and thus have more volume to the same mass depending on the porosity.
  • the porosity of the porous fine particles of the biodegradable polymer may be 5 to 50%, preferably 10 to 50%, more preferably 10 to 30%.
  • the "porosity” is obtained by the following formula.
  • Porosity (volume of porous polymeric microparticles-volume of nonporous polymeric microparticles) / volume of porous polymeric microparticles x 100
  • the pore size (diameter) of the porous fine particles of the biodegradable polymer according to the present invention may be 0.1 ⁇ m ⁇ 20 ⁇ m, preferably 0.1 ⁇ 10 ⁇ m.
  • the method for preparing porous microparticles of such biodegradable polymers may be emulsification, solvent evaporation, precipitation, or other methods generally used in the art, and the present invention is not limited by the method for preparing porous microparticles.
  • the amount of the porous fine particles of the biodegradable polymer included in the polymer filler of the present invention may be 10 to 50% by weight, more specifically 10 to 30% by weight, based on 100% by weight of the polymer filler. It can be adjusted according to the desired volume effect of the injection site.
  • the polymeric filler of the present invention also includes one or more biocompatible carriers. Such carriers are usually absorbed into the body within one to six months after injection.
  • the biocompatible carrier may be selected from carboxymethyl cellulose, hyaluronic acid, dextran, collagen, and combinations thereof.
  • the amount of the biocompatible carrier included in the polymer filler of the present invention may be 50 to 90% by weight, and more specifically 70 to 90% by weight, based on 100% by weight of the polymer filler.
  • the biocompatible carrier may further include additive components normally included in the injection formulation, for example, a lubricant such as glycerin, a phosphate buffer, and the like.
  • a lubricant such as glycerin, a phosphate buffer, and the like.
  • the polymeric filler of the present invention may preferably be an injection formulation.
  • the injection formulation of the polymer filler of the present invention can be provided in a sterile syringe or a sterile vial, it is easy to use because it does not require pretreatment, and is 100% biodegradable over a predetermined time after injection, so it is safe to leave no foreign substances in biological tissues. It does not cause allergies because it does not contain any animal-derived materials.
  • the polymer filler of the present invention can produce more volume effect with the same amount of polymer compared to existing polymer products (eg, polymer ratio of 30%), so that the volume effect can be maintained even if the carrier is absorbed. Therefore, the polymer filler of the present invention can be preferably used for wrinkle improvement, face molding or body molding.
  • PCL Polycaprolactone having a number average molecular weight of 50,000 g / mol was used to prepare porous fine particles (porosity: 10%) of a biodegradable polymer having a diameter of 20 to 40 ⁇ m by membrane emulsification. That is, 1 g of a biodegradable polymer and 0.2 g of tetradecane for pore formation were dissolved in 20 g of methylene chloride, and homogeneously mixed in an aqueous PVA solution to prepare porous fine particles of a biodegradable polymer having a porosity of 10%.
  • the porous fine particles of the biodegradable polymer thus prepared were mixed with a carrier made of 3% by weight of carboxymethyl cellulose, 27% by weight of glycerin and 70% by weight of phosphate buffer. At this time, the mixing ratio was 30% by weight of the porous fine particles and 70% by weight of the carrier based on 100% by weight of the mixture.
  • porous fine particles (porosity: 20%) of a biodegradable polymer having a diameter of 20 to 40 ⁇ m were prepared by membrane emulsification. That is, 1 g of biodegradable polymer and 0.3 g of tetradecane for pore formation were dissolved in 20 g of methylene chloride, and homogeneously mixed in an aqueous PVA solution to prepare porous microparticles of biodegradable polymer having a porosity of 20%.
  • Porous microparticles of the prepared biodegradable polymer were mixed with a carrier made of 3% by weight of carboxymethyl cellulose, 27% by weight of glycerin and 70% by weight of phosphate buffer. At this time, the mixing ratio was 30% by weight of the porous fine particles and 70% by weight of the carrier based on 100% by weight of the mixture.
  • PCL Polycaprolactone having a number average molecular weight of 50,000 g / mol was used to prepare porous fine particles (porosity: 10%) of a biodegradable polymer having a diameter of 20 to 40 ⁇ m by membrane emulsification. That is, 1 g of a biodegradable polymer and 0.2 g of tetradecane for pore formation were dissolved in 20 g of methylene chloride, and homogeneously mixed in an aqueous PVA solution to prepare porous fine particles of a biodegradable polymer having a porosity of 10%.
  • Porous microparticles of the prepared biodegradable polymer were mixed with a carrier made of 3% by weight of carboxymethyl cellulose, 27% by weight of glycerin and 70% by weight of phosphate buffer. At this time, the mixing ratio was 40% by weight of the porous fine particles and 60% by weight of the carrier based on 100% by weight of the mixture.
  • porous fine particles (porosity: 20%) of a biodegradable polymer having a diameter of 20 to 40 ⁇ m were prepared by membrane emulsification. That is, 1 g of biodegradable polymer and 0.3 g of tetradecane for pore formation were dissolved in 20 g of methylene chloride, and homogeneously mixed in an aqueous PVA solution to prepare porous microparticles of biodegradable polymer having a porosity of 20%.
  • Porous microparticles of the prepared biodegradable polymer were mixed with a carrier made of 3% by weight of carboxymethyl cellulose, 27% by weight of glycerin and 70% by weight of phosphate buffer. At this time, the mixing ratio was 40% by weight of the porous fine particles and 60% by weight of the carrier based on 100% by weight of the mixture.
  • porous microparticles (porosity: 10%) of a biodegradable polymer having a diameter of 20 to 40 ⁇ m were prepared by the Microfluidic method. That is, 1 g of biodegradable polymer PCL and 0.2 g of tetradecane for pore formation were dissolved in 20 g of methylene chloride, and microparticles of 10% porosity were prepared by using a microfluidic device. .
  • the porous fine particles of the biodegradable polymer thus prepared were mixed with a carrier made of 3% by weight of carboxymethyl cellulose, 27% by weight of glycerin and 70% by weight of phosphate buffer. At this time, the mixing ratio was 30% by weight of the porous fine particles and 70% by weight of the carrier based on 100% by weight of the mixture.
  • porous microparticles (porosity: 10%) of a biodegradable polymer having a diameter of 20 to 40 ⁇ m were prepared by the Microfluidic method. That is, 1 g of biodegradable polymer PCL and 0.3 g of tetradecane for pore formation were dissolved in 20 g of methylene chloride, and microfluidic devices were used to uniformly add PVA aqueous solution to prepare porous microparticles of biodegradable polymer having a porosity of 20%. .
  • Porous microparticles of the prepared biodegradable polymer were mixed with a carrier made of 3% by weight of carboxymethyl cellulose, 27% by weight of glycerin and 70% by weight of phosphate buffer. At this time, the mixing ratio was 30% by weight of the porous fine particles and 70% by weight of the carrier based on 100% by weight of the mixture.
  • porous fine particles (porosity: 10%) of a biodegradable polymer having a diameter of 20 to 40 ⁇ m were prepared by membrane emulsification. That is, 1 g of biodegradable polymer PLA and 0.2 g of tetradecane for pore formation were dissolved in 20 g of methylene chloride, and homogeneously mixed in an aqueous PVA solution to prepare porous microparticles of biodegradable polymer having a porosity of 10%.
  • the porous fine particles of the biodegradable polymer thus prepared were mixed with a carrier made of 3% by weight of carboxymethyl cellulose, 27% by weight of glycerin and 70% by weight of phosphate buffer. At this time, the mixing ratio was 30% by weight of the porous fine particles and 70% by weight of the carrier based on 100% by weight of the mixture.
  • Facial fillers were purchased from polylactic acid (PLA).
  • the porous fine particles of the biodegradable polymer obtained in Example 1 and the fine particles of Comparative Examples 1 and 2 were observed by scanning electron microscope (SEM). The results are shown in FIGS. 1, 2 and 3, respectively.
  • the porous fine particles of the biodegradable polymer according to the present invention have a particle diameter of 20 to 40 ⁇ m and a pore diameter of 0.1 to 6 ⁇ m, and thus have a smaller size and a smaller diameter uniformity than conventional products.
  • the mixed formulation was filled in a syringe and then 200 ⁇ l injected into the back of the hairless mice.
  • the polymer fillers prepared in Examples 1 to 7 and the polymer fillers of Comparative Examples 1 and 2 were injected into mice, and photographs of the injection sites for 2 weeks are shown in FIG. 5. The size of the injection-injected site was measured, and the size change was continuously measured at regular intervals. The results are shown in Table 2.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Birds (AREA)
  • Polymers & Plastics (AREA)
  • Dermatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Medical Uses (AREA)

Abstract

본 발명은 생분해성 고분자의 다공성 미립자, 및 이를 포함하는 고분자 필러에 관한 것이다.

Description

생분해성 고분자의 다공성 미립자, 및 이를 포함하는 고분자 필러
본 발명은 생분해성 고분자의 다공성 미립자, 및 이를 포함하는 고분자 필러에 관한 것이다.
과거에는 건강한 삶을 바라는 사람이 많았지만, 인구 고령화 시대가 다가오면서 사람들은 건강한 삶과 함께 아름다운 삶을 원하고 있다. 아름다운 삶을 원하는 사람이 많아질수록, 다양한 관련 제품들이 시장에 나오고 있다.
식품, 의약, 화장품 등 다양한 분야에서 노화를 예방하고 치료하는 제품이 출시되었다. 그 중에서 의약분야의 대표적인 제품으로는 보툴리늄 톡신과 안면용 필러가 있다. 처음에는 근육이완을 위한 목적으로 사용되던 보툴리늄 톡신의 경우 현재는 미용을 목적으로 안면 주름 개선을 위한 형태로 사용되는 경우가 훨씬 많다. 또한 콜라겐, 히알루론산 등 안전하면서 생체흡수가 되어 피부의 볼륨 충진제로 사용할 수 있는 필러 시장도 급격하게 성장하고 있다.
필러 제품은 발전 과정에서 따라 4세대로 구분된다.
1세대 필러는 동물에게서 추출한 콜라겐 성분을 사용하였다. 하지만 콜라겐 알레르기 반응이 발생하고, 1~3개월의 짧은 유지기간으로 인해 현재는 거의 사용되지 않고 있는 필러이다.
2세대 필러는 히알루론산 성분의 필러로 현재 시장의 90%를 차지하고 있다. 히알루론산은 인체 내의 관절액, 연골, 피부 등에 존재하는 안전한 성분이다. 하지만 비가교 히알루론산의 경우는 피부내에 주사 주입 후 하루만에 분해가 되어 효과가 없다. 따라서 많은 업체들이 히알루론산을 가교하여 1~1.5년의 효과를 나타내는 필러를 만들고 있다. 이 때, 가교를 위해 사용되는 가교제가 많을수록, 인체에서 독성을 유발할 수 있기 때문에 사용된 가교제를 완벽히 제거하는 기술이 중요하다.
3세대 필러는 생체 내에서 쉽게 분해가 되지 않는 물질로 만들어진 칼슘 필러와 영구적으로 분해되지 않는 폴리메틸메타크릴레이트(PMMA) 필러이다. 칼슘 필러의 경우는 잘 분해가 되지 않기 때문에 시술이 잘 될 경우 효과가 오래 지속된다는 장점은 있으나, 시술 후 결과가 마음에 들지 않을 경우, 주입한 원료가 완전히 생분해되기까지 오랜 시간을 기다려야 한다는 단점이 있다. PMMA 필러는 영구적인 효과를 기대할 수 있으나, 시술이 잘 못될 경우 제거가 어렵다는 단점이 있다. 또한, 원료 물질이 인체 내에 오랜 시간 남아있게 되어 부작용 발생률도 높기 때문에 시장에서 퇴출 위기에 놓여 있다.
4세대 필러는 생분해성 고분자를 사용한 필러로 현재 시장에서 많은 주목을 받고 있다. 생분해성 고분자 필러는 제품 자체의 부피로 피부의 볼륨을 유지하는 히알루론산 필러와는 다르게, 고분자가 생분해되면서 콜라겐의 생성을 유도하여 자연스럽게 볼륨을 회복하고 유지하는 필러이다. 유지기간은 고분자의 분자량으로 조절이 가능하며 현재 출시된 제품들은 1~4년의 다양한 기간으로 볼륨 유지가 가능하다. 하지만 시술 후 1주일 이내에 초기 볼륨이 대폭 감소했다가, 4주~6개월에 걸쳐 서서히 볼륨이 차오른다는 단점이 있다.
한국등록특허 제1572256호는 폴리카프로락톤 폴리머를 용매에 가용화한 후 가용화된 폴리카프로락톤 폴리머를 계면활성제가 포함되어 있고, 20 내지 대략 10,000 cP 사이 범위의 점도를 가지는 액체와 혼합하고; 얻어진 용액으로부터 폴리카프로락톤-포함 마이크로입자들을 형성하는 단계를 포함하는 폴리카프로락톤-포함 마이크로 입자의 제조방법, 및 상기 제조방법에 의해 얻어진, 적어도 i) 5 내지 200 ㎛ 범위의 직경, ii) 균일한(homogenous) 밀도, 형태 및 함량(content), iii) 필수적으로 구형인 미소구체(spherical microspheres), iv) 부드러운 표면의 특징을 갖는 마이크로 입자를 개시하고 있다. 그러나, 이러한 마이크로 입자는 부드럽고 매끈한 표면을 갖는 것으로, 제조된 필러는 시술 후 1주일 이내에 초기 볼륨이 대폭 감소했다가, 4주~6개월에 걸쳐 서서히 볼륨이 차오른다는 단점이 있다.
한국등록특허 제1142234호는 체내 투입 후 요실금 치료용 벌킹제 또는 필러로 사용되는 다공성의 생분해성 고분자 미세입자, 및 온도감응성 상전이 생체적합성 고분자 수용액을 포함하고 체외에서 겔상으로 변환시킨 후, 체내에 도입되는 주사주입제를 개시하고 있다. 상기 생분해성 고분자 미세입자는 다공율이 80 ~ 96 %이고, 그 기공의 직경이 25 ~ 500㎛이며, 입자의 직경이 100 ~ 5,000㎛ 범위로서, 입자의 크기가 너무 커서, 주사주입에 상당한 어려움이 있을 뿐만 아니라 안면용으로는 사용이 거의 불가능하다.
그러므로 생체친화적이면서 콜라겐 생성을 유도하고, 유지 기간을 길고 다양하게 조절할 수 있는 생분해성 고분자 소재이면서도 기존의 히알루론산 필러처럼 시술 직후부터 볼륨을 유지할 뿐만 아니라, 입자의 크기가 작아 가는 주사바늘로 주사 가능하여 주사 후 환자들이 느끼는 통증과 이물감을 최소화할 수 있는 고분자 필러에 대한 요구가 계속되고 있다.
본 발명은 상기한 종래 필러 제품들의 문제점을 해결하고자 한 것으로, 인체 내로 주입 후 콜라겐 생성을 유도하고 유지 기간이 긴 생분해성 고분자 소재이면서도 기존 히알루론산 필러처럼 시술 직후부터 볼륨을 유지할 뿐만 아니라, 입자의 크기가 작아 가는 주사바늘로 주사 가능하여 주사 후 환자들이 느끼는 통증과 이물감을 최소화할 수 있는 고분자 필러를 제공하는 것을 기술적 과제로 한다.
본 발명의 일 태양은
i) 구형(spherical)이고,
ii 입자 직경이 10 내지 200 ㎛이며;
iii) 직경이 0.1 내지 20 ㎛인 기공을 가지고;
iv) 다공율이 5 내지 50%인, 생분해성 고분자의 다공성 미립자를 제공한다.
본 발명의 다른 태양은 상기 생분해성 고분자의 다공성 미립자; 및 하나 이상의 생체적합성 캐리어;를 포함하는, 고분자 필러를 제공한다.
본 발명에 따른 고분자 필러는 다공성 고분자 입자로 인하여 기존 제품과 동일 질량 대비하여 더 많은 부피를 가질 수 있어, 시술 직후에도 고분자의 부피로 인해 볼륨을 유지하는 효과를 제공할 수 있다.
본 발명의 고분자 필러는 기존 고분자 필러와 유사하게 고분자 미립자와 캐리어가 혼합되어 사용되고, 종래 제품과 마찬가지로 캐리어가 먼저 흡수되고 남아 있는 고분자가 천천히 생분해되면서 주변 조직의 자가 콜라겐 생성을 장기간 유도하여 히알루론산 필러보다 긴 유지 기간을 나타낸다. 또한, 본 발명에 따른 다공성 미립자 고분자 필러는 캐리어가 먼저 흡수되어도 기존 고분자 필러보다 고분자 자체의 부피가 많아서 볼륨 감소효과가 거의 없다. 또한, 다공성 입자의 다공율을 조절하여 시술 직후의 볼륨 감소 정도를 조절하여 원하는 만큼의 볼륨을 제공할 수 있다.
따라서, 본 발명에 따른 생분해성 고분자 필러는 입자 크기 및 다공율에 따라서 사람에게 사용되는 필러로서 안면을 포함한 신체의 다양한 부위에 사용될 수 있다. 뿐만 아니라, 입자의 크기가 작아 가는 주사바늘로 주사 가능하여 주사 후 환자들이 느끼는 통증과 이물감을 최소화할 수 있다.
도 1은 본 발명에 따른 생분해성 고분자 필러에 사용되는, 생분해성 고분자의 다공성 미립자의 구체예에 대한 주사전자현미경(SEM) 사진이다.
도 2는 본 발명의 비교예 1에 따른 미립자에 대한 주사전자현미경(SEM) 사진이다.
도 3은 본 발명의 비교예 2에 따른 미립자에 대한 주사전자현미경(SEM) 사진이다.
도 4는 본 발명의 실시예 1 및 비교예 1에 따른 미립자의 입자 크기와 분포를 보여주는 도면이다.
도 5는 본 발명의 실시예1에서 제조한 고분자 필러와 비교예1의 필러를 쥐에 주입한 후, 주입 부위를 촬영한 사진이다.
이하에서 본 발명에 대하여 더욱 상세히 설명한다.
본 발명의 고분자 필러는 생체적합성과 생분해성을 지닌 폴리머로 제조된 생분해성 고분자의 다공성 미립자를 사용한다. 본 발명에 있어서, 생분해성 고분자의 다공성 미립자의 제조에 사용될 수 있는 생분해성 고분자는 폴리락틱산(Poly(lactic acid)), 폴리글리콜산(Poly(glycolic acid)), 폴리다이옥산온(Poly(dioxanone)), 폴리카프로락톤(Poly(caprolactone)), 락틱산-글리콜산 공중합체(Poly(lactic acid-co-glycolic acid)), 다이옥산온-카프로락톤 공중합체(Poly(dioxanone-co-caprolactone)), 락틱산-카프로락톤 공중합체(Poly(lactic acid-co-caprolactone)), 이들의 유도체 및 이들의 공중합체로 구성된 군에서 선택된 1종 이상일 수 있다. 바람직하게는, 폴리락틱산 또는 폴리카프로락톤, 특히 바람직하게는 폴리카프로락톤이다.
또한 상기 생분해성 고분자는, 필러 유지 기간을 2년 이상으로 유지하기 위해서는 수평균분자량(Mn)이 바람직하게는 10,000~1,000,000 g/mol, 보다 바람직하게는 10,000 ~ 100,000 g/mol 의 범위일 수 있다.
상기 생분해성 고분자의 다공성 미립자의 입자 크기는 주사 주입이 가능하도록 사용되는 주사 바늘의 직경보다는 작아야 하고, 입자의 형태는 환자에게 통증을 유발하지 않고 촉감으로 느낄 수 없도록 실질적으로 구형(spherical)의 형태이다.
일 구체예에서, 상기 생분해성 고분자의 다공성 미립자의 입자 크기(입자 직경)는 통상적으로 200㎛ 이하일 수 있고, 생체 조직 내에서 대식 세포에 의해 탐식되지 않도록 10㎛ 이상의 직경을 가지는 것이 바람직하다. 바람직한 구체예에서, 생분해성 고분자의 다공성 미립자는 10~100 ㎛ 미만, 보다 바람직하게는 10~80 ㎛, 보다 더 바람직하게는 10~50 ㎛, 가장 바람직하게는 20~40 ㎛의 직경을 갖는다.
바람직한 구체예에서, 생분해성 고분자의 다공성 미립자는 입도분포의 기준이 되는 d10이 20㎛보다 크고, d90은 100㎛보다 작고, 바람직하게는 d10은 20㎛보다 크고, d90은 60㎛보다 작고, 보다 바람직하게는 d10은 25㎛보다 크고, d90은 40㎛보다 작다.
또한 바람직한 구체예에서, 생분해성 고분자의 다공성 미립자는 입자의 고른 분포를 나타내는 span 값이 1보다 작아야 하며, 바람직하게는 0.8 보다 작아야 하고, 보다 바람직하게는 0.6 보다 작아야 한다. span값은 입자의 분포도가 넓어질수록 수치가 크게 나타나고, 분포도가 좁아질수록 0에 가까워진다. span값은 아래의 식으로 계산된다.
Figure PCTKR2017008704-appb-I000001
[D10, D50, D90 정의: 입자의 누적분포에서 최대값에 대하여 10%, 50%, 90%에 해당하는 크기 값으로, 크기에 따른 입자의 상대적인 누적 양을 곡선으로 나타내는 입도 분포 곡선을 측정 및 도식화하고 10조각으로 나누었을 때, 각각 1/10, 5/10, 9/10에 해당하는 입자의 크기를 구하여 표시한 것.]
본 발명에서 사용되는 생분해성 고분자의 다공성 미립자는 다공을 가지고 있어, 다공율에 따라 동일 질량 대비 더 많은 부피를 가진다.
일 구체예에서, 상기 생분해성 고분자의 다공성 미립자의 다공율은 5~50%일 수 있고, 바람직하게는 10~50%일 수 있으며, 더 바람직하게는 10~30%일 수 있다.
본 발명에 있어서, "다공율"은 아래 식에 따라 얻어지는 것이다.
다공율 = (다공성 고분자 미립자의 부피 - 비다공성 고분자 미립자의 부피) / 다공성 고분자 미립자의 부피 x 100
본 발명에 따른 생분해성 고분자의 다공성 미립자의 기공 크기(직경)는 0.1㎛ ~20㎛, 바람직하게는 0.1~10㎛일 수 있다.
이러한 생분해성 고분자의 다공성 미립자의 제조 방법은 당업계에서 일반적으로 사용되는 유화법, 용매증발법, 침전법 또는 기타 방법을 사용할 수 있으며, 다공성 미립자의 제조 방법에 의해 본 발명이 제한받지는 않는다.
본 발명의 고분자 필러에 포함되는 생분해성 고분자의 다공성 미립자의 양은 통상적으로 고분자 필러 100중량%를 기준으로, 10~50 중량%일 수 있고, 보다 구체적으로는 10~30 중량%일 수 있으며, 원하는 주사 부위의 원하는 볼륨 효과에 따라 조절이 가능하다.
본 발명의 고분자 필러는 하나 이상의 생체적합성 캐리어를 또한 포함한다. 이러한 캐리어는 주사 후 통상 1일~6개월 이내에 체내에 흡수된다.
일 구체예에서, 상기 생체적합성 캐리어로는 카르복시메틸셀룰로우스(Carboxymethyl cellulose), 히알루론산(hyaluronic acid), 덱스트란(Dextran), 콜라겐(Collagen) 및 이들의 조합으로부터 선택된 것을 사용할 수 있다.
본 발명의 고분자 필러에 포함되는 생체적합성 캐리어의 양은 통상적으로 고분자 필러 100중량%를 기준으로, 50~90 중량%일 수 있고, 보다 구체적으로는 70~90 중량%일 수 있다.
상기 생체적합성 캐리어에는, 상기 성분들 이외에, 주사 제형에 통상 포함되는 첨가제 성분들, 예컨대, 글리세린 등의 윤활제, 인산 완충액 등이 더 포함될 수 있다.
본 발명의 고분자 필러는 바람직하게 주사 제형일 수 있다. 본 발명의 고분자 필러의 주사 제형은 멸균 주사기 또는 멸균 바이알에 넣어 제공할 수 있으며, 전처리가 필요 없어 사용편의성이 높고, 주입 후 정해진 시간에 걸쳐 100% 생분해되기 때문에 생체 조직 내에 이물질을 남기지 않아 안전하며 동물 유래 물질을 전혀 포함하지 않기 때문에 알러지를 일으키지 않는다.
또한 본 발명의 고분자 필러는 기존 고분자 제품(예컨대, 고분자 비율이 30%)과 비교하여 동일량의 고분자로 더 많은 부피 효과를 낼 수 있어, 캐리어가 흡수되어도 볼륨 효과를 유지할 수 있다. 따라서, 본 발명의 고분자 필러는 주름 개선, 안면 성형 또는 바디 성형용으로 바람직하게 사용될 수 있다.
이하, 실시예에 의거하여 본 발명을 보다 상세히 설명한다. 그러나, 이하의 실시예는 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되어서는 안 된다.
[ 실시예 ]
실시예 1
수평균 분자량 50,000 g/mol인 폴리카프로락톤(PCL)을 사용하여, 막 유화법으로 20~40㎛ 직경의, 생분해성 고분자의 다공성 미립자(다공율: 10%)를 제조하였다. 즉, 생분해성 고분자인 PCL 1g과 다공형성을 위한 tetradecane 0.2g을 methylene chloride 20g에 녹이고, PVA 수용액 내에서 균질하게 혼합하여 다공율 10%의, 생분해성 고분자의 다공성 미립자를 제조하였다.
제조된 생분해성 고분자의 다공성 미립자를, 카르복시메틸셀룰로우스 3중량%와 글리세린 27중량% 및 인산완충액70중량%으로 제조한 캐리어와 혼합하였다. 이 때, 혼합비율은 혼합물 100중량% 기준으로 다공성 미립자 30중량% 및 캐리어 70중량%이었다.
실시예 2
수평균 분자량 50,000 g/mol인 폴리카프로락톤(PCL)을 사용하여, 막 유화법으로 20~40㎛ 직경의, 생분해성 고분자의 다공성 미립자(다공율: 20%)를 제조하였다. 즉, 생분해성 고분자인 PCL 1g과 다공형성을 위한 tetradecane 0.3g을 methylene chloride 20g에 녹이고, PVA 수용액 내에서 균질하게 혼합하여 다공율 20%의, 생분해성 고분자의 다공성 미립자를 제조하였다.
제조된 생분해성 고분자의 다공성 미립자를, 카르복시메틸셀룰로우스 3중량%와 글리세린 27중량% 및 인산완충액 70중량%으로 제조한 캐리어와 혼합하였다. 이 때, 혼합비율은 혼합물 100중량% 기준으로 다공성 미립자 30중량% 및 캐리어 70중량%이었다.
실시예 3
수평균 분자량 50,000 g/mol인 폴리카프로락톤(PCL)을 사용하여, 막 유화법으로 20~40㎛ 직경의, 생분해성 고분자의 다공성 미립자(다공율: 10%)를 제조하였다. 즉, 생분해성 고분자인 PCL 1g과 다공형성을 위한 tetradecane 0.2g을 methylene chloride 20g에 녹이고, PVA 수용액 내에서 균질하게 혼합하여 다공율 10%의, 생분해성 고분자의 다공성 미립자를 제조하였다.
제조된 생분해성 고분자의 다공성 미립자를, 카르복시메틸셀룰로우스 3중량%와 글리세린 27중량% 및 인산완충액 70중량%로 제조한 캐리어와 혼합하였다. 이 때, 혼합비율은 혼합물 100중량% 기준으로 다공성 미립자 40중량% 및 캐리어 60중량%이었다.
실시예 4
수평균 분자량 50,000 g/mol인 폴리카프로락톤(PCL)을 사용하여, 막 유화법으로 20~40㎛ 직경의, 생분해성 고분자의 다공성 미립자(다공율: 20%)를 제조하였다. 즉, 생분해성 고분자인 PCL 1g과 다공형성을 위한 tetradecane 0.3g을 methylene chloride 20g에 녹이고, PVA 수용액 내에서 균질하게 혼합하여 다공율 20%의, 생분해성 고분자의 다공성 미립자를 제조하였다.
제조된 생분해성 고분자의 다공성 미립자를, 카르복시메틸셀룰로우스 3중량%와 글리세린 27중량% 및 인산완충액 70중량%로 제조한 캐리어와 혼합하였다. 이 때, 혼합비율은 혼합물 100중량% 기준으로 다공성 미립자 40중량% 및 캐리어 60중량%이었다.
실시예 5
수평균 분자량 50,000 g/mol인 폴리카프로락톤(PCL)을 사용하여, Microfluidic 법으로 20~40㎛ 직경의, 생분해성 고분자의 다공성 미립자(다공율: 10%)를 제조하였다. 즉, 생분해성 고분자인 PCL 1g과 다공형성을 위한 tetradecane 0.2g을 methylene chloride 20g에 녹이고, Microfluidic 장치를 이용하여 PVA수용액으로 균일하게 투입하여 다공율 10%의, 생분해성 고분자의 다공성 미립자를 제조하였다.
제조된 생분해성 고분자의 다공성 미립자를, 카르복시메틸셀룰로우스 3중량%와 글리세린 27중량% 및 인산완충액70중량%으로 제조한 캐리어와 혼합하였다.  이 때, 혼합비율은 혼합물 100중량% 기준으로 다공성 미립자 30중량% 및 캐리어 70중량%이었다.
실시예 6
수평균 분자량 50,000 g/mol인 폴리카프로락톤(PCL)을 사용하여, Microfluidic 법으로 20~40㎛ 직경의, 생분해성 고분자의 다공성 미립자(다공율: 10%)를 제조하였다. 즉, 생분해성 고분자인 PCL 1g과 다공형성을 위한 tetradecane 0.3g을 methylene chloride 20g에 녹이고, Microfluidic 장치를 이용하여 PVA수용액으로 균일하게 투입하여 다공율 20%의, 생분해성 고분자의 다공성 미립자를 제조하였다.
제조된 생분해성 고분자의 다공성 미립자를, 카르복시메틸셀룰로우스 3중량%와 글리세린 27중량% 및 인산완충액 70중량%으로 제조한 캐리어와 혼합하였다. 이 때, 혼합비율은 혼합물 100중량% 기준으로 다공성 미립자 30중량% 및 캐리어 70중량%이었다.
실시예 7
수평균 분자량 80,000 g/mol인 폴리락틱산(PLA)을 사용하여, 막 유화법으로 20~40㎛ 직경의, 생분해성 고분자의 다공성 미립자(다공율: 10%)를 제조하였다. 즉, 생분해성 고분자인 PLA 1g과 다공형성을 위한 tetradecane 0.2g을 methylene chloride 20g에 녹이고, PVA 수용액 내에서 균질하게 혼합하여 다공율 10%의, 생분해성 고분자의 다공성 미립자를 제조하였다.
제조된 생분해성 고분자의 다공성 미립자를, 카르복시메틸셀룰로우스 3중량%와 글리세린 27중량% 및 인산완충액70중량%으로 제조한 캐리어와 혼합하였다.  이 때, 혼합비율은 혼합물 100중량% 기준으로 다공성 미립자 30중량% 및 캐리어 70중량%이었다.
비교예 1
기존 판매중인 PCL을 원료로 나온 안면용 필러(Ellanse®)를 구입하였다.
비교예 2
기존 판매중인 폴리락틱산(PLA)을 원료로 나온 안면용 필러(Sculptra®)를 구입하였다.
실험예 1
상기 실시예 1에서 얻어진 생분해성 고분자의 다공성 미립자와 비교예 1및 2의 미립자를 주사전자현미경(SEM)으로 관찰하였다. 그 결과를 각각 도 1, 도2 및 도3에 나타내었다. 도 1에 나타난 바와 같이, 본 발명에 따른 생분해성 고분자의 다공성 미립자는 20 내지 40㎛의 입자 직경 및 0.1 내지 6 ㎛의 기공 직경을 가져, 기존 제품에 비해 더 작은 크기를 가지며 더 작은 직경의 균일한 기공을 갖는다.
실험예 2
실시예 1에서 제조된 생분해성 고분자의 다공성 미립자와 비교예 1의 미립자의 입자 크기 및 분포를 측정하였다. 그 결과를 도 4에 나타내었다. 도 4 에 나타난 바와 같이, 본 발명에 따른 생분해성 고분자의 다공성 미립자는 비교예 1의 미립자에 비해 전체적으로 크기가 더 작고(실시예 1: 20~40 ㎛, 비교예 1: 30~50 ㎛) 평균값으로 보았을 때 더 균일하며, 더 좁은 분포를 나타냄을 확인할 수 있다. 그 결과를 표1에 나타내었다.
[표 1]
Figure PCTKR2017008704-appb-I000002
실험예 3
혼합된 제형을 시린지에 충전 후, 헤어리스 마우스의 등에 200㎕를 주사하였다. 실시예 1 내지 7에서 제조한 고분자 필러와 비교예1 및 2의 고분자 필러를 쥐에 주입하고, 2주 동안 주입 부위를 촬영한 사진을 도 5에 나타내었다. 주사 주입된 부위의 크기를 측정하였고, 일정 기간을 주기로 지속적으로 크기의 변화를 측정하였다. 그 결과를 표 2에 나타내었다.
표 2에 나타낸 바와 같이, 본 발명에 따른 생분해성 고분자의 다공성 미립자를 포함하는 필러 제형의 경우 시술 초기 볼륨 감소가 현저히 개선됨을 확인할 수 있다.
[표 2]
Figure PCTKR2017008704-appb-I000003

Claims (11)

  1. i) 구형(spherical)이고,
    ii 입자 직경이 10 내지 200 ㎛이며;
    iii) 직경 0.1 내지 20 ㎛의 기공을 가지고;
    iv) 다공율이 5 내지 50%인, 생분해성 고분자의 다공성 미립자.
  2. 제1항에 있어서, 생분해성 고분자가 폴리락틱산, 폴리글리콜산, 폴리다이옥산온, 폴리카프로락톤, 락틱산-글리콜산 공중합체, 다이옥산온-카프로락톤 공중합체, 락틱산-카프로락톤 공중합체, 이들의 유도체 및 이들의 공중합체로 구성된 군에서 선택된 1종 이상인 것을 특징으로 하는 생분해성 고분자의 다공성 미립자.
  3. 제1항에 있어서, 생분해성 고분자의 수평균분자량(Mn)이 10,000~1,000,000 g/mol인 것을 특징으로 하는 생분해성 고분자의 다공성 미립자.
  4. 제1항에 있어서, 10~100 ㎛ 미만의 직경을 갖는 것을 특징으로 하는 생분해성 고분자의 다공성 미립자.
  5. 제1항에 있어서, d10이 20㎛보다 크고, d90은 100㎛보다 작은 것을 특징으로 하는 생분해성 고분자의 다공성 미립자.
  6. 제1항에 있어서, span 값이 1보다 작은 것을 특징으로 하는 생분해성 고분자의 다공성 미립자.
  7. 제1항 내지 제6항 중 어느 한 항에 따른 생분해성 고분자의 다공성 미립자; 및
    하나 이상의 생체적합성 캐리어;를 포함하는, 고분자 필러.
  8. 제7항에 있어서, 생체적합성 캐리어가 카르복시메틸셀룰로우스, 히알루론산, 덱스트란, 콜라겐 및 이들의 조합으로부터 선택되는 것을 특징으로 하는 고분자 필러.
  9. 제7항에 있어서, 고분자 필러 100중량%를 기준으로, 생분해성 고분자의 다공성 미립자의 함량이 10~50 중량%이고, 생체적합성 캐리어의 함량이 50~90 중량%인 것을 특징으로 하는 고분자 필러.
  10. 제7항에 있어서, 주사 제형으로 제조된 것을 특징으로 하는 고분자 필러.
  11. 제7항에 있어서, 주름 개선, 안면 성형 또는 바디 성형용으로 사용되는 것을 특징으로 하는 고분자 필러.
PCT/KR2017/008704 2016-12-13 2017-08-10 생분해성 고분자의 다공성 미립자, 및 이를 포함하는 고분자 필러 WO2018110792A1 (ko)

Priority Applications (10)

Application Number Priority Date Filing Date Title
RU2019121702A RU2737742C1 (ru) 2016-12-13 2017-08-10 Пористые микрочастицы биоразлагаемого полимера и полимерный наполнитель, их содержащий
JP2019531828A JP6886518B2 (ja) 2016-12-13 2017-08-10 生分解性高分子の多孔性微粒子、及びそれを含む高分子フィラー
EP17881729.2A EP3556797A4 (en) 2016-12-13 2017-08-10 POROUS MICRO PARTICLES OF BIODEGRADABLE POLYMER AND POLYMER FILLING INCLUDING THEM
UAA201908028A UA124117C2 (uk) 2016-12-13 2017-08-10 Пористі мікрочастинки біорозкладного полімеру і полімерний наповнювач, який їх містить
MX2019006787A MX2019006787A (es) 2016-12-13 2017-08-10 Microparticulas porosas de polimero biodegradable y rellenador de polimero que comprende las mismas.
BR112019011714-8A BR112019011714B1 (pt) 2016-12-13 2017-08-10 Micropartícula porosa de polímero biodegradável, e, carga de polímero
US16/468,828 US11406733B2 (en) 2016-12-13 2017-08-10 Porous microparticles of biodegradable polymer, and polymer filler comprising same
CN201780076772.5A CN110072921B (zh) 2016-12-13 2017-08-10 生物降解性高分子的多孔性微粒及包含其的高分子填充物
AU2017377761A AU2017377761B2 (en) 2016-12-13 2017-08-10 Porous microparticles of biodegradable polymer, and polymer filler comprising same
IL266983A IL266983B2 (en) 2016-12-13 2019-05-29 Porous microparticles of a naturally degradable polymer and a polymer filler containing them

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0169309 2016-12-13
KR20160169309 2016-12-13
KR10-2017-0099514 2017-08-07
KR1020170099514A KR101942449B1 (ko) 2016-12-13 2017-08-07 생분해성 고분자의 다공성 미립자, 및 이를 포함하는 고분자 필러

Publications (1)

Publication Number Publication Date
WO2018110792A1 true WO2018110792A1 (ko) 2018-06-21

Family

ID=62558920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008704 WO2018110792A1 (ko) 2016-12-13 2017-08-10 생분해성 고분자의 다공성 미립자, 및 이를 포함하는 고분자 필러

Country Status (1)

Country Link
WO (1) WO2018110792A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100840394B1 (ko) * 2007-02-12 2008-06-23 최명 생분해성 폴리머를 이용한 주사주입용 조직재생 생분해성지지체 입자 및 그의 제조방법
KR20100065309A (ko) * 2007-07-26 2010-06-16 아키스 아이피 비브이 폴리카프로락톤을 포함하는 마이크로입자들 및 그것의 용도
KR20110075618A (ko) * 2009-12-28 2011-07-06 한남대학교 산학협력단 주사 주입이 용이한 다공성 미세입자 필러 시스템
KR20150108956A (ko) * 2014-03-18 2015-10-01 단국대학교 천안캠퍼스 산학협력단 다공성 고분자 입자, 이의 제조방법, 및 이를 이용한 조직공학용 생분해성 재료
KR101572256B1 (ko) 2014-07-04 2015-11-26 주식회사 삼육오엠씨네트웍스 수평방향으로 등반하는 실내클라이밍장치
US20160222193A1 (en) * 2013-09-06 2016-08-04 Joseph BRINGLEY Porous composite filler compositions

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100840394B1 (ko) * 2007-02-12 2008-06-23 최명 생분해성 폴리머를 이용한 주사주입용 조직재생 생분해성지지체 입자 및 그의 제조방법
KR20100065309A (ko) * 2007-07-26 2010-06-16 아키스 아이피 비브이 폴리카프로락톤을 포함하는 마이크로입자들 및 그것의 용도
KR20110075618A (ko) * 2009-12-28 2011-07-06 한남대학교 산학협력단 주사 주입이 용이한 다공성 미세입자 필러 시스템
KR101142234B1 (ko) 2009-12-28 2012-07-09 한남대학교 산학협력단 주사 주입이 용이한 다공성 미세입자 필러 시스템
US20160222193A1 (en) * 2013-09-06 2016-08-04 Joseph BRINGLEY Porous composite filler compositions
KR20150108956A (ko) * 2014-03-18 2015-10-01 단국대학교 천안캠퍼스 산학협력단 다공성 고분자 입자, 이의 제조방법, 및 이를 이용한 조직공학용 생분해성 재료
KR101572256B1 (ko) 2014-07-04 2015-11-26 주식회사 삼육오엠씨네트웍스 수평방향으로 등반하는 실내클라이밍장치

Similar Documents

Publication Publication Date Title
KR102259560B1 (ko) 생분해성 고분자의 다공성 미립자, 및 이를 포함하는 고분자 필러
Ramot et al. Biocompatibility and safety of PLA and its copolymers
KR20190132113A (ko) 생분해성 고분자의 다공성 미립자를 포함하는 성형 필러 조성물
DE60208869T2 (de) Poröse Gerüstmatrix zur Reparatur und Regeneraton von dermalem Gewebe
KR102181033B1 (ko) 생분해성 고분자 미립자, 이를 포함하는 고분자 필러 및 이의 제조방법
CN111558083B (zh) 可生物降解的注射填充物及其制备方法和其应用
US20120301436A1 (en) Polyelectrolyte complex gels and soft tissue augmentation implants comprising the same
AU2007219355A1 (en) Regenerative medicine devices and melt-blown methods of manufacture
JP2003514006A (ja) 生物分解性ポリマー組成物
KR20000068167A (ko) 피하 또는 피부내 주사용 삽입물
WO2015009035A1 (ko) 소수성 생체적합성 고분자 및 친수성 생체적합성 고분자를 중합시킨 중합체를 포함하는 조직 수복용 주사 주입제
WO2019022502A1 (ko) 생분해성 고분자 미립자의 제조 방법 및 그로부터 제조되는 생분해성 고분자 미립자
CN111617315B (zh) 可生物降解的注射填充物及其制备方法和其应用
CN113117142B (zh) 可生物降解的注射填充物及其制备方法和其应用
WO2018110792A1 (ko) 생분해성 고분자의 다공성 미립자, 및 이를 포함하는 고분자 필러
Gallardo et al. Preparation and in vitro release studies of ibuprofen-loaded films and microspheres made from graft copolymers of poly (L-lactic acid) on acrylic backbones
CN116370707A (zh) 一种注射填充剂及其制备方法
KR20090129669A (ko) 고분자 구형입자의 제조방법
KR0180585B1 (ko) 치주조직 재생용 생분해성 차폐막 및 그의 제조방법
EP4037719A1 (en) 3d-patterned fiber material for the topical delivery of nucleic acid and the process for its preparation
KR100262142B1 (ko) 치주조직재생용약물함유생분해성차폐막및그의제조방법
CN113117143B (zh) 透明质酸用于制备可生物降解的聚合物微粒制剂的应用
CN116531352B (zh) 促进伤口愈合的纳米纤维膜
CN115926259B (zh) 一种聚己内酯微球凝胶
CN116333378A (zh) 一种聚羟基脂肪酸酯微球复合凝胶及其制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881729

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019531828

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017377761

Country of ref document: AU

Date of ref document: 20170810

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019011714

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017881729

Country of ref document: EP

Effective date: 20190715

ENP Entry into the national phase

Ref document number: 112019011714

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190611