WO2018110304A1 - 半導体装置、および保護素子 - Google Patents

半導体装置、および保護素子 Download PDF

Info

Publication number
WO2018110304A1
WO2018110304A1 PCT/JP2017/043160 JP2017043160W WO2018110304A1 WO 2018110304 A1 WO2018110304 A1 WO 2018110304A1 JP 2017043160 W JP2017043160 W JP 2017043160W WO 2018110304 A1 WO2018110304 A1 WO 2018110304A1
Authority
WO
WIPO (PCT)
Prior art keywords
well region
semiconductor substrate
type
semiconductor device
protection
Prior art date
Application number
PCT/JP2017/043160
Other languages
English (en)
French (fr)
Inventor
場色 正昭
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US16/462,366 priority Critical patent/US10861847B2/en
Priority to KR1020197013196A priority patent/KR102416640B1/ko
Publication of WO2018110304A1 publication Critical patent/WO2018110304A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0296Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices involving a specific disposition of the protective devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823493MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the wells or tubs, e.g. twin tubs, high energy well implants, buried implanted layers for lateral isolation [BILLI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0292Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using a specific configuration of the conducting means connecting the protective devices, e.g. ESD buses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1207Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with devices in contact with the semiconductor body, i.e. bulk/SOI hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • the present technology relates to a semiconductor device and a protection element, and in particular, a semiconductor device capable of suppressing electrical damage that may occur in a MOSFET (metal-oxide-semiconductor field-effect transistor) formed on a substrate, and
  • MOSFET metal-oxide-semiconductor field-effect transistor
  • the present invention relates to a protective element.
  • the metal film is charged in the process, and an excessive electric field is applied to the gate insulating film of the MOSFET connected to the charged metal film. Further, the MOSFET gate insulating film may be destroyed (hereinafter referred to as plasma damage).
  • electrostatic damage when a static electricity (ESD) is applied to a completed semiconductor device, the gate insulating film of the MOSFET is destroyed (hereinafter referred to as electrostatic damage). Can occur.
  • ESD static electricity
  • a method of forming a protective diode as a protective element for protecting the MOSFET from such plasma damage and electrostatic damage is known (see, for example, Patent Document 1).
  • the protection diode is formed between the gate electrode of the MOSFET and the substrate so that it is reverse-biased when a gate voltage is applied. Therefore, the protection diode can prevent a voltage higher than the reverse breakdown voltage from being applied to the gate electrode of the MOSFET.
  • the MOSFET may be formed on an SOI (silicon-on-insulator) substrate in which the channel region of the MOSFET and the substrate are separated by an insulating film.
  • SOI silicon-on-insulator
  • the buried oxide film hereinafter also referred to as a BOX (buried x Oxide) layer
  • the BOX layer also has plasma damage or electrostatic damage. May be received.
  • a protective diode structure has also been proposed as a protective element for protecting the MOSFET and BOX layers on the SOI substrate from plasma damage and electrostatic damage (see, for example, Patent Document 2).
  • FIG. 1 is a cross-sectional view showing an example of the configuration of a conventional semiconductor device in which an N-type MOSFET is formed on an SOI substrate having a BOX layer.
  • a P-type well region (PW) 11 is formed on a P-type semiconductor substrate (PSUB) 10 made of Si, and a BOX layer 13 is interposed on the P-type well region 11.
  • An N-type MOSFET 14 is formed.
  • Protective diodes 21, 22, and 23 serving as protective elements are formed between the wiring connected to the drain, source, and gate of the N-type MOSFET 14 and the P-type well region 11.
  • the protection diodes 21 to 23 are PN diodes composed of an N-type diffusion layer (N +) 12 and a P-type well region 11.
  • FIG. 2 shows the current (IF) -voltage (VF) characteristics of the protection diodes 21 to 23.
  • the horizontal axis of the figure shows the voltage of the N-type diffusion layer 12 when the P-type well region 11 constituting the PN diode is set to 0V.
  • FIG. 3 shows the Vg-Id characteristic of the N-type MOSFET 14.
  • the characteristics shown in FIG. 2 mean that a forward current flows when a forward voltage of ⁇ 0.7 V or more is applied, but in the case of the configuration shown in FIG. 1, it can be applied to the P-type well region 11.
  • This voltage is limited depending on the voltage applied to the drain, source, and gate of the N-type MOSFET 14. For example, when 0 V is applied to the gate and 1 V is applied to the P-type well region 11, the protection diode 23 is forward biased, so that a current corresponding to the voltage from the P-type well region 11 toward the gate. Will flow.
  • the N-type MOSFET 14 has the Vg-Id characteristic shown in FIG. 3, when the P-type well region 11 is fixed to 0V, the gate of the N-type MOSFET 14 is set to ⁇ 1V or less to turn off the operating state. It is necessary to apply a voltage of 1 to a bias state. In this case, since the protection diode 23 is forward-biased as described above, a current corresponding to the potential difference flows from the P-type well region 11 in the gate direction. Hereinafter, this problem is referred to as a first problem.
  • FIG. 4 is a diagram for explaining a problem that may further occur in the configuration shown in FIG.
  • a P-type MOSFET 51 is formed on an SOI substrate as shown in FIG. Similar problems also exist in the formed conventional semiconductor device.
  • the circuit of the semiconductor device is designed with the polarity of the MOSFET and the polarity of the protection diode being mistaken, a large current flows through the protection diode in the driving state of the MOSFET. It may occur that the semiconductor device does not operate.
  • the present technology has been made in view of such a situation, and makes it possible to suppress electrical damage to a MOSFET or the like in a semiconductor substrate.
  • a semiconductor device includes a MOSFET as a protected element formed on a semiconductor substrate and a protective element that suppresses electrical damage to the protected element formed on the semiconductor substrate.
  • the protective element includes the semiconductor substrate, one or more well regions formed on the semiconductor substrate, and a diffusion layer formed on the well region.
  • the protection element may be composed of the semiconductor substrate, the well region having a conductivity type opposite to that of the semiconductor substrate, and the diffusion layer having the same conductivity type as the semiconductor substrate.
  • the well region can be in a floating state.
  • the protection element includes a first protection element connected to the drain layer of the MOSFET, a second protection element connected to the gate electrode of the MOSFET, and a second protection element connected to the source layer of the MOSFET. 3, and the diffusion layers constituting the first to third protection elements can be separated from each other.
  • the well region constituting the second protection element is shared with at least one of the well region constituting the first protection element or the well region constituting the third protection element. Can be.
  • the well regions constituting the first to third protection elements can be separated from each other.
  • the first protection element or the third protection element may be omitted.
  • the protection element is formed on the semiconductor substrate, the semiconductor substrate, a first well region having a conductivity type opposite to that of the semiconductor substrate, and formed on the first well region; A second well region having the same conductivity type and the diffusion layer having the opposite conductivity type to the semiconductor substrate can be used.
  • the second well region can be in a floating state.
  • the first well region can be in a floating state.
  • the first well region can be in a fixed potential state.
  • the protection element includes a first protection element connected to the drain layer of the MOSFET, a second protection element connected to the gate electrode of the MOSFET, and a second protection element connected to the source layer of the MOSFET. 3, and the diffusion layers constituting the first to third protection elements can be separated from each other.
  • the second well region that constitutes the second protection element is the second well region that constitutes the first protection element, or the second well region that constitutes the third protection element. It can be made common with at least one.
  • the second well regions constituting the first to third protection elements can be separated from each other.
  • the first well regions constituting the first to third protection elements can be made common.
  • the first well regions constituting the first to third protection elements can be separated from each other.
  • the first protection element or the third protection element may be omitted.
  • the semiconductor device according to the first aspect of the present technology may further include a buried insulating layer formed under the MOSFET.
  • a semiconductor device is a protective element that suppresses electrical damage to a protected element formed on a semiconductor substrate, and is formed on the semiconductor substrate and the semiconductor substrate.
  • the well region having a conductivity type opposite to that of the substrate, and the diffusion layer formed on the well region and having the same conductivity type as the semiconductor substrate.
  • a semiconductor device is a protective element that suppresses electrical damage to a protected element formed on a semiconductor substrate, and is formed on the semiconductor substrate and the semiconductor substrate.
  • electrical damage to the protected element formed on the semiconductor substrate can be suppressed.
  • FIG. 7 is a cross-sectional view showing a first modification of the first configuration example shown in FIG. 6.
  • FIG. 7 is a cross-sectional view showing a second modification of the first configuration example shown in FIG. 6.
  • FIG. 7 is a cross-sectional view showing a third modification of the first configuration example shown in FIG. 6.
  • FIG. 7 is a cross-sectional view showing a fourth modification of the first configuration example shown in FIG. 6.
  • FIG. 7 is a cross-sectional view showing a fifth modification of the first configuration example shown in FIG. 6.
  • FIG. 10 is a cross-sectional view showing a sixth modification of the first configuration example shown in FIG. 6. It is sectional drawing which shows the 7th modification of the 1st structural example shown by FIG.
  • FIG. 6 is a cross-sectional view illustrating a configuration example (first configuration example) of the semiconductor device according to the first embodiment of the present technology.
  • the first configuration example includes a P-type semiconductor substrate 10 made of Si, a BOX layer 13 provided on a P-type well region 11 on the P-type semiconductor substrate 10, and an N formed on the BOX layer 13.
  • a type MOSFET 14 is provided.
  • the N-type MOSFET 14 has a source layer 31 and a drain layer 32 made of an N-type diffusion layer (N +), and a channel layer 33 is formed between the source layer 31 and the drain layer 32.
  • a gate electrode 35 is provided on the channel layer 33 via a gate insulating film 34.
  • A reside layer and a contact plug are provided on the source layer 31, the drain layer 32, and the gate electrode 35.
  • the contact plug is electrically isolated by an interlayer insulating film.
  • Each contact plug is electrically connected to a wiring layer (not shown) made of a metal film.
  • Protection elements 71 to 73 are connected to the drain layer 32, the gate electrode 35, and the source layer 31, respectively.
  • the protective elements 71 to 73 include a P-type diffusion layer (P +) 61 of the same conductivity type (P-type in this case) as the P-type semiconductor substrate 10 and a reverse conductivity type (N-type in this case). And a floating N-type well region 62 whose potential is not fixed, and a P-type semiconductor substrate 10.
  • the P-type diffusion layer 61 is formed in the surface region of the P-type semiconductor substrate 10.
  • the N type well region 62 is formed so as to surround the P type diffusion layer 61.
  • the N-type well region 62 constituting the protection elements 71 to 73 is shared.
  • FIG. 7 shows a current (IF) -voltage (VF) characteristic between the P-type diffusion layer 61 constituting the protection elements 71 to 73 and the P-type semiconductor substrate 10.
  • IF current
  • VF voltage
  • the protection elements 71 to 73 have a withstand voltage characteristic of 5 V or more with respect to both positive and negative potential differences. Therefore, when an excessive voltage is applied to the N-type MOSFET 14 via wiring connected to the gate or the like due to plasma or static electricity to the semiconductor device during or after manufacture, the protective elements 71 to 73. Is destroyed before the gate insulating film 34 and the BOX layer 13, the charges from the wiring side can be discharged to the P-type semiconductor substrate 10 through the protected protective elements 71 to 73. Therefore, the gate insulating film 34 and the BOX layer 13 can be protected.
  • the protective elements 71 to 73 have a withstand voltage characteristic of 5 V or more with respect to both positive and negative potential differences, the occurrence of the first problem described above can be suppressed. That is, even if the P-type well region 11 is set to 0 V and the gate electrode 35 is set to a negative bias of 1 V or more, it is possible to prevent a large current from flowing from the P-type well region 11 in the gate direction. Therefore, the range of combinations in which the potential of the P-type well region 11, the gate potential, the drain potential, and the source potential can be applied can be greatly increased compared to the conventional configuration shown in FIG.
  • the N-type well region 62 constituting the protection elements 71 to 73 is shared, for example, even if a potential fluctuation occurs in the N-type well region 62, the breakdown voltage characteristics between the protection elements 71 to 73 are increased. It is possible to prevent a difference from occurring. Therefore, the occurrence of the second problem described above can be suppressed.
  • the charge flows from the gate electrode 35 to the protection element 73 via the gate insulating film 34 and the source layer 31, or from the gate electrode 35 to the gate insulating film 34. Further, since the flow to the protective element 71 via the drain layer 32 is suppressed, the probability that the gate insulating film 34 is damaged can be reduced, so that the reliability of the semiconductor device can be improved.
  • FIG. 8 shows a first modification of the first configuration example shown in FIG.
  • a P-type well region 64 is formed therebetween.
  • FIG. 9 shows a second modification of the first configuration example shown in FIG.
  • the N-type MOSFET 14 in the second modification shown in FIG. 8 is replaced with a P-type MOSFET 51, and the other configurations are the same. That is, even if the polarity of the MOSFET is changed from N-type to P-type, the same one is used as it is without changing the polarity of the protection elements 71 to 73.
  • FIG. 10 shows a third modification of the first configuration example shown in FIG.
  • the N-type MOSFET 14 in the first configuration example shown in FIG. 6 is replaced with a P-type MOSFET 51, and the other configurations are the same. That is, even if the polarity of the MOSFET is changed from N-type to P-type, the same one is used as it is without changing the polarity of the protection elements 71 to 73.
  • FIG. 11 shows a fourth modification of the first configuration example shown in FIG.
  • the N-type well region 62 constituting the protection elements 71 to 73 is shared.
  • the N-type well region 62 constituting the protection elements 72 and 73 is shared and separated by the N-type well region 62 and the P-type well region 64 constituting the protection element 71. It is a changed part.
  • FIG. 12 shows a fifth modification of the first configuration example shown in FIG.
  • the N-type well region 62 constituting the protection elements 71 to 73 is shared.
  • the N-type well region 62 constituting the protection elements 71 and 72 is shared and separated by the N-type well region 62 and the P-type well region 64 constituting the protection element 73. It is a changed part.
  • FIG. 13 shows a sixth modification of the first configuration example shown in FIG.
  • the protection element 71 is omitted from the first configuration example shown in FIG. That is, the sixth modification is formed using an N-type well region 62 in which a protective element 72 connected to the gate and a protective element 73 connected to the source are shared.
  • FIG. 14 shows a seventh modification of the first configuration example shown in FIG.
  • the protective element 73 is omitted from the first configuration example shown in FIG. That is, the seventh modification is formed using an N-type well region 62 in which a protection element 71 connected to the drain and a protection element 72 connected to the gate are shared.
  • FIG. 15 shows an eighth modification of the first configuration example shown in FIG.
  • the N-type well region 62 constituting the protection elements 71 to 73 is shared.
  • the N-type well region 62 constituting the protection elements 71 to 73 is separated by three by the P-type well region 64.
  • FIG. 16 is a cross-sectional view showing a configuration example (second configuration example) of a semiconductor device according to the second embodiment of the present technology.
  • the second configuration example includes a P-type semiconductor substrate 10 made of Si, a BOX layer 13 provided on a P-type well region 11 on the P-type semiconductor substrate 10, and an N formed on the BOX layer 13.
  • a type MOSFET 14 is provided.
  • symbol is attached
  • Protection elements 101 to 103 are connected to the drain layer 32, the gate electrode 35, and the source layer 31 of the N-type MOSFET 14, respectively.
  • the protection elements 101 to 103 are N-type diffusion layers 91 having a conductivity type opposite to that of the P-type semiconductor substrate 10 (N-type in this case) and the same conductivity type as the P-type semiconductor substrate 10 (P-type in this case).
  • the N-type diffusion layer 91 is formed in the surface region of the P-type semiconductor substrate 10.
  • the P-type well region 92 is formed so as to surround the N-type diffusion layer 91.
  • the P-type well region 92 constituting the protection elements 101 to 103 is shared.
  • an N-type well region 94 is formed between them. Yes.
  • the N-type deep well region 93 is a region where the concentration of N-type impurities is higher than that of the N-type diffusion layer 91, and may be in a floating state where the potential is not fixed or in a state where the potential is fixed.
  • the N-type deep well region 93 constituting the protection elements 101 to 103 is shared.
  • FIG. 17 shows current (IF) -voltage (VF) characteristics between the N-type diffusion layer 91 and the P-type semiconductor substrate 10 constituting the protection elements 101 to 103.
  • the solid line indicates the case where the N-type deep well region 93 is in a floating state
  • the broken line indicates the case where the N-type deep well region 93 is fixed at the same potential as the P-type semiconductor substrate 10.
  • the protection elements 101 to 103 have a withstand voltage characteristic of 5 V or more with respect to both positive and negative potential differences regardless of the state of the N-type deep well region 93.
  • the second configuration example can also obtain the same operations and effects as the first configuration example.
  • FIG. 18 shows a first modification of the second configuration example shown in FIG.
  • a P-type well region 95 is added between the N-type well region 94 and the N-type well region 94 that surrounds the P-type well region 92 constituting the layers 101 to 103.
  • FIG. 19 shows a second modification of the second configuration example shown in FIG.
  • the P-type well region 92 constituting the protection elements 101 to 103 is shared.
  • an N-type well region 94 is added between the P-type well regions 92 corresponding to the protection elements 101 to 103, and the P-type well regions 92 corresponding to the protection elements 101 to 103 are respectively added. It is electrically separated. Note that the N-type deep well region 93 constituting the protection elements 101 to 103 remains common.
  • FIG. 20 shows a third modification of the second configuration example shown in FIG.
  • the P-type well region 92 constituting the protection elements 101 to 103 is shared.
  • an N-type well region 94 is added between the P-type well region 92 constituting the protection element 101 and the P-type well region 92 constituting the protection elements 102 and 103, and the protection element
  • the P-type well region 92 corresponding to 101 and the P-type well region 92 corresponding to the protection elements 102 and 103 are electrically separated.
  • the N-type deep well region 93 constituting the protection elements 101 to 103 remains common.
  • FIG. 21 shows a fourth modification of the second configuration example shown in FIG.
  • the P-type well region 92 constituting the protection elements 101 to 103 is shared.
  • an N-type well region 94 is added between the P-type well region 92 constituting the protection elements 101 and 102 and the P-type well region 92 constituting the protection element 103, and the protection element
  • the P-type well region 92 corresponding to 101 and 102 and the P-type well region 92 corresponding to the protection element 103 are electrically separated.
  • the N-type deep well region 93 constituting the protection elements 101 to 103 remains common.
  • FIG. 22 shows a fifth modification of the second configuration example shown in FIG. In the fifth modification, the protection element 101 is omitted from the second configuration example shown in FIG.
  • FIG. 23 shows a sixth modification of the second configuration example shown in FIG.
  • the protection element 103 is omitted from the second configuration example shown in FIG.
  • FIG. 24 shows a seventh modification of the second configuration example shown in FIG.
  • the P-type well region 92 and the N-type deep well region 93 constituting the protection elements 101 to 103 are shared.
  • an N-type well region 94 is formed between P-type well regions 92 corresponding to the protection elements 101 to 103, and an N-type deep well region 93 corresponding to the protection elements 101 to 103, respectively. Is also formed separately.
  • FIG. 25 is a cross-sectional view showing a configuration example (third configuration example) of a semiconductor device according to the third embodiment of the present technology.
  • the third configuration example is formed on an N semiconductor substrate (NSUB) 111 made of Si, a BOX layer 13 provided on a P-type well region 11 on the N-type semiconductor substrate 111, and the BOX layer 13. And an N-type MOSFET 14.
  • Protection elements 121 to 123 are connected to the drain layer 32, the gate electrode 35, and the source layer 31 of the N-type MOSFET 14, respectively.
  • the protection elements 121 to 123 are of the N type diffusion layer 112 having the same conductivity type (N type in this case) as the N type semiconductor substrate 111 and of the opposite conductivity type (P type in this case) to the N type semiconductor substrate 111.
  • a floating P-type well region 113 whose potential is not fixed and an N-type semiconductor substrate 111 are formed.
  • the N-type diffusion layer 112 is formed in the surface region of the N-type semiconductor substrate 111.
  • the P-type well region 113 is formed so as to surround the N-type diffusion layer 112.
  • the P-type well region 113 constituting the protection elements 121 to 123 is shared.
  • an N-type well region 114 is formed therebetween. Yes.
  • FIG. 26 is a cross-sectional view showing a configuration example (fourth configuration example) of a semiconductor device according to the fourth embodiment of the present technology.
  • the fourth configuration example includes an N-type semiconductor substrate 111 made of Si, a BOX layer 13 provided on a P-type well region 11 on the N-type semiconductor substrate 111, and an N-type formed on the BOX layer 13.
  • a type MOSFET 14 is provided.
  • symbol is attached
  • Protection elements 141 to 143 are connected to the drain layer 32, the gate electrode 35, and the source layer 31 of the N-type MOSFET 14, respectively.
  • the protection elements 141 to 143 have a P-type diffusion layer 131 having a conductivity type opposite to that of the N-type semiconductor substrate 111 (P-type in this case) and the same conductivity type as the N-type semiconductor substrate 111 (N-type in this case). And a floating N-type well region 132 in which the potential is not fixed, an N-type semiconductor substrate 111 and a P-type deep well region (DPW) 133 of a reverse conductivity type (P-type in this case). Yes.
  • the P-type diffusion layer 131 is formed in the surface region of the N-type semiconductor substrate 111.
  • the N-type well region 132 is formed so as to surround the P-type diffusion layer 131.
  • the N-type well region 132 constituting the protection elements 141 to 143 is shared.
  • a P-type well region 134 is formed so as to surround the N-type well region 132.
  • an N-type well region 135 is formed between them.
  • the P-type deep well region 133 is a region where the concentration of P-type impurities is higher than that of the P-type diffusion layer 131, and may be in a floating state where the potential is not fixed or in a state where the potential is fixed.
  • the N-type deep well region 93 constituting the protection elements 141 to 143 is shared.
  • the fourth configuration example can also obtain the same operations and effects as the first configuration example.
  • FIG. 27 is a cross-sectional view showing a configuration example (fifth configuration example) of a semiconductor device according to the fifth embodiment of the present technology.
  • the BOX layer 13 is omitted from the first configuration example shown in FIG. That is, the N-type MOSFET 14 in the fifth configuration example has a Bulk structure formed directly on the P-type well region 11 on the P-type semiconductor substrate 10.
  • the fifth configuration example can also obtain the same operations and effects as the first configuration example.
  • FIG. 28 is a cross-sectional view showing a configuration example (sixth configuration example) of a semiconductor device according to the sixth embodiment of the present technology.
  • the BOX layer 13 is omitted from the second configuration example shown in FIG. That is, the N-type MOSFET 14 in the sixth configuration example has a Bulk structure formed directly on the P-type well region 11 on the P-type semiconductor substrate 10.
  • the sixth configuration example can also obtain the same operations and effects as the first configuration example.
  • FIG. 29 is a cross-sectional view illustrating a configuration example (seventh configuration example) of a semiconductor device according to a seventh embodiment of the present technology.
  • the seventh configuration example is obtained by replacing the N-type MOSFET 14 in the first modification of the first configuration example shown in FIG.
  • the seventh configuration example can also obtain the same operations and effects as the first configuration example.
  • FIG. 30 is a cross-sectional view showing a configuration example (eighth configuration example) of the semiconductor device according to the eighth embodiment of the present technology.
  • the N-type MOSFET 14 in the first modification of the second configuration example shown in FIG. 18 is replaced with a P-type MOSFET 51.
  • the eighth configuration example can also obtain the same operations and effects as the first configuration example.
  • FIG. 31 is a cross-sectional view showing a configuration example (a ninth configuration example) of a semiconductor device according to the ninth embodiment of the present technology.
  • N is interposed between the P-type semiconductor substrate 10 and the P-type well region 11 so as to surround the P-type well region 11 under the BOX layer 13 in the first configuration example shown in FIG.
  • a type deep well region 151 is formed, and an N type well region 152 is formed in the lateral direction of the P type well region 11. Further, in order to separate the N-type well region 152 and the N-type well region 62, a P-type well region 153 is formed between them.
  • the ninth configuration example can also obtain the same operations and effects as the first configuration example.
  • the above-described first to ninth configuration examples and modifications thereof are applied to various types of electronic devices in which MOSFETs are mounted on an electronic substrate. be able to.
  • the present invention can be applied to CMOS image sensors, CPUs for servers, CPUs for PCs, CPUs for game machines, mobile devices, measuring devices, AV devices, communication devices, various home appliances, and the like.
  • CMOS image sensor it can be applied to an ADC comparator that AD converts an analog voltage signal output from a pixel array.
  • Embodiments of the present technology are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present technology.
  • the present technology can also have the following configurations.
  • MOSFET as a protected element formed on a semiconductor substrate;
  • the protective element is The semiconductor substrate; One or more well regions formed on the semiconductor substrate;
  • the protective element is The semiconductor substrate;
  • the semiconductor device according to (1) including the semiconductor substrate and the diffusion layer having the same conductivity type.
  • the protective element is A first protection element connected to the drain layer of the MOSFET; A second protection element connected to the gate electrode of the MOSFET; A third protection element connected to the source layer of the MOSFET,
  • the well region constituting the second protection element is shared with at least one of the well region constituting the first protection element or the well region constituting the third protection element.
  • (6) The semiconductor device according to (4), wherein the well regions respectively constituting the first to third protection elements are separated from each other.
  • the protective element is The semiconductor substrate; A first well region formed on the semiconductor substrate and having a conductivity type opposite to that of the semiconductor substrate; A second well region formed on the first well region and having the same conductivity type as the semiconductor substrate; The semiconductor device according to (1), including the semiconductor substrate and the diffusion layer having a reverse conductivity type. (9) The semiconductor device according to (8), wherein the second well region is in a floating state. (10) The semiconductor device according to (8) or (9), wherein the first well region is in a floating state. (11) The semiconductor device according to (8) or (9), wherein the first well region is in a fixed potential state.
  • the protective element is A first protection element connected to the drain layer of the MOSFET; A second protection element connected to the gate electrode of the MOSFET; A third protection element connected to the source layer of the MOSFET,
  • the second well region that constitutes the second protection element is the second well region that constitutes the first protection element, or the second well region that constitutes the third protection element.
  • the semiconductor device according to (8) which is shared with at least one.
  • the protective element that suppresses electrical damage to the protected element formed on the semiconductor substrate The semiconductor substrate; The well region formed on the semiconductor substrate and having a conductivity type opposite to that of the semiconductor substrate; A protection element formed on the well region and configured by the diffusion layer having the same conductivity type as the semiconductor substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本技術は、半導体基板におけるMOSFET等に対する電気的なダメージを抑止することができるようにする半導体装置、および保護素子に関する。 本技術の第1の側面である半導体装置は、半導体基板に形成された被保護素子としてのMOSFETと、前記半導体基板に形成された前記被保護素子に対する電気的なダメージを抑止する保護素子とを備え、前記保護素子は、前記半導体基板と、前記半導体基板の上に形成された1層以上のウェル領域と、前記ウェル領域の上に形成された拡散層とから構成される。本技術は、例えば、CMOSイメージセンサに適用できる。

Description

半導体装置、および保護素子
 本技術は、半導体装置、および保護素子に関し、特に、基板上に形成されたMOSFET(metal-oxide-semiconductor field-effect transistor)に発生し得る電気的なダメージを抑止できるようにした半導体装置、および保護素子に関する。
 近年、半導体装置の多機能化に伴い金属膜と絶縁膜を交互に積層した多層配線構造が採用されている。多層配線構造を形成するためには、MOSFETが形成された半導体基板上にプラズマCVD(Chemical Vapor Deposition)やRIE(Reactive Ion Etching)等の工程を繰り返し実行する必要がある。
 これらの工程は電気的な極性を利用して堆積やエッチングを行うため、その過程において金属膜が帯電し、帯電した金属膜と接続しているMOSFETのゲート絶縁膜に過大な電界が掛かることで、MOSFETのゲート絶縁膜が破壊してしまうこと(以下、プラズマダメージと称する)が発生し得る。
 完成された半導体装置に対して、例えば、人的な静電気(ESD:electro static discharge)が印加された場合にもMOSFETのゲート絶縁膜が破壊してしまうこと(以下、静電ダメージと称する)が発生し得る。
 そこで、このようなプラズマダメージや静電ダメージからMOSFETを保護するための保護素子として保護ダイオードを形成する方法が知られている(例えば、特許文献1参照)。保護ダイオードは、ゲート電圧が印加されたときに逆バイアスされるように、MOSFETのゲート電極と基板との間に形成される。したがって、保護ダイオードは、その逆方向耐圧以上の電圧がMOSFETのゲート電極に印加されることを抑止することができる。
 また、CMOSプロセスでは、MOSFETが、MOSFETのチャネル領域と基板とが絶縁膜で分離されているSOI(silicon on Insulator)基板に形成されることがある。この場合、該絶縁膜としてSOI基板に形成される埋め込み酸化膜(以下、BOX(buried Oxide)層とも称する)が非常に薄い(例えば、10乃至300nm)ので、BOX層もプラズマダメージや静電ダメージを受けてしまうことがある。
 そこで、SOI基板におけるMOSFETおよびBOX層をプラズマダメージや静電ダメージから保護するための保護素子として保護ダイオードの構造も提案されている(例えば、特許文献2参照)。
 ここで、MOSFETやBOX層に発生し得るプラズマダメージや静電ダメージについて詳述する。
 図1は、BOX層を有するSOI基板上にN型MOSFETが形成された従来の半導体装置の構成の一例を示す断面図を示している。
 図1に示された半導体装置は、Siから成るP型半導体基板(PSUB)10の上にP型ウェル領域(PW)11が形成され、P型ウェル領域11の上にBOX層13を介してN型MOSFET14が形成されている。
 N型MOSFET14のドレイン、ソース、およびゲートにそれぞれ接続される配線とP型ウェル領域11との間には、保護素子となる保護ダイオード21,22,23が形成される。保護ダイオード21乃至23は、N型拡散層(N+)12とP型ウェル領域11から成るPNダイオードである。
特開2016-009825号公報 特開2005-347539号公報
 図2は、保護ダイオード21乃至23の電流(IF)-電圧(VF)特性を示している。同図の横軸は、PNダイオードを構成するP型ウェル領域11を0Vにした場合におけるN型拡散層12の電圧を示している。図3は、N型MOSFET14のVg-Id特性を示している。
 図2に示された特性は、-0.7V以上の順方向電圧を印加すると順方向電流が流れることを意味するが、図1に示された構成の場合、P型ウェル領域11に印加可能な電圧は、N型MOSFET14のドレイン、ソース、およびゲートに印加する電圧に応じて制限を受けることになる。例えば、ゲートに0Vを印加し、P型ウェル領域11に1Vを印加した場合、保護ダイオード23が順方向バイアスになるため、P型ウェル領域11からゲート方向に向かって、その電圧に応じた電流が流れることになる。
 また、N型MOSFET14が図3に示されたVg-Id特性を有するので、P型ウェル領域11を0Vに固定した場合、N型MOSFET14の動作状態をオフ状態にするにはゲートに-1V以下の電圧を印加してバイアス状態にする必要がある。この場合、上記と同様に、保護ダイオード23が順方向バイアスになるため、P型ウェル領域11からゲート方向に、その電位差に応じた電流が流れてしまうことになる。以下、この問題を第1の問題と称する。
 このような過度な電流が流れてしまうと、基板バイアス効果技術を使って集積回路の低消費電力化を図るSOI-CMOS-LSIにとっては、所望の回路特性を得ることができなくなってしまう。また、MOSFETの電流-電圧特性を評価する場合にも、このような過度な電流が流れてしまうのでは、デバイスの電気的特性を正確に評価することができない。
 図4は、図1に示された構成に対してさらに発生し得る問題を説明するための図である。
 同図に示されるように、N型MOSFET14は、そのチャネル領域33と基板が絶縁膜(BOX層13)によって完全に分離されているため、例えば、プラズマ工程により、ゲートに繋がる金属膜からなる配線41に電荷が誘起されると、その電荷は、保護ダイオード21乃至23しか逃げる経路が無いことから、保護ダイオード21乃至23の耐圧特性に差分が発生した場合は、ゲート絶縁膜34の信頼性を劣化させてしまう可能性がある。以下、この問題を第2の問題と称する。
 例えば、ゲートに繋がる配線41で誘起された電荷は、経路1を介してその全てが保護ダイオート23から基板側に逃げていくことが期待される。しかしながら、何らかの要因で、保護ダイオード23の逆方向耐圧特性に比べて、保護ダイオード22の逆方向耐圧特性が大きく減少した場合、ゲートに接続された配線41で誘起された電荷は、耐圧の低い経路2を介して基板側に逃げる確率が増加する。その結果、N型MOSFET14のゲート絶縁膜34にダメージを与えてしまい、半導体装置の故障確率が増加してしまう。
 このような事態の発生を抑止するには、ゲート、ソース、およびドレインのそれぞれに接続されている保護ダイオード21乃至23に同等であって、正負の駆動電圧範囲に対して十分に大きな耐圧特性を持たせることが必要になる。
 なお、図1に示された半導体装置のN型MOSFET14とは駆動電圧の極性が逆のP型MOSFETを搭載した半導体装置、すなわち、図5に示されるにようにSOI基板上にP型MOSFET51が形成された従来の半導体装置においても同様の問題が存在する。
 ただし、この場合、保護ダイオードの極性を構成する拡散層52およびウェル領域53についてMOSFETの極性に応じて変更する必要がある。
 したがって、例えば仮に、MOSFETの極性と保護ダイオードの極性を間違えて半導体装置の回路を設計してしまうと、MOSFETの駆動状態において保護ダイオードに大きな電流が流れるようになってしまい、最悪の場合、該半導体装置が動作しないことが発生し得る。
 本技術はこのような状況に鑑みてなされたものであり、半導体基板におけるMOSFET等に対する電気的なダメージを抑止できるようにするものである。
 本技術の第1の側面である半導体装置は、半導体基板に形成された被保護素子としてのMOSFETと、前記半導体基板に形成された前記被保護素子に対する電気的なダメージを抑止する保護素子とを備え、前記保護素子は、前記半導体基板と、前記半導体基板の上に形成された1層以上のウェル領域と、前記ウェル領域の上に形成された拡散層とから構成される。
 前記保護素子は、前記半導体基板と、前記半導体基板と逆導電型の前記ウェル領域と、前記半導体基板と同一導電型の前記拡散層とから構成されるようにすることができる。
 前記ウェル領域はフローティング状態であるようにすることができる。
 前記保護素子は、前記MOSFETのドレイン層に接続されている第1の保護素子と、前記MOSFETのゲート電極に接続されている第2の保護素子と、前記MOSFETのソース層に接続されている第3の保護素子とから成るようにすることができ、前記第1乃至第3の保護素子をそれぞれ構成する前記拡散層は、互いに分離されているようにすることができる。
 前記第2の保護素子を構成する前記ウェル領域は、前記第1の保護素子を構成する前記ウェル領域、または前記第3の保護素子を構成する前記ウェル領域の少なくとも一方と共通化されているようにすることができる。
 前記第1乃至第3の保護素子をそれぞれ構成する前記ウェル領域は、互いに分離されているようにすることができる。
 前記第1乃至第3の保護素子のうち、前記第1の保護素子または前記第3の保護素子が省略されているようにすることができる。
 前記保護素子は、前記半導体基板と、前記半導体基板の上に形成され、前記半導体基板と逆導電型の第1のウェル領域と、前記第1のウェル領域の上に形成され、前記半導体基板と同一導電型の第2のウェル領域と、前記半導体基板と逆導電型の前記拡散層とから構成されるようにすることができる。
 前記第2のウェル領域はフローティング状態であるようにすることができる。
 前記第1のウェル領域はフローティング状態であるようにすることができる。
 前記第1のウェル領域は電位固定状態であるようにすることができる。
 前記保護素子は、前記MOSFETのドレイン層に接続されている第1の保護素子と、前記MOSFETのゲート電極に接続されている第2の保護素子と、前記MOSFETのソース層に接続されている第3の保護素子とから成るようにすることができ、前記第1乃至第3の保護素子をそれぞれ構成する前記拡散層は、互いに分離されているようにすることができる。
 前記第2の保護素子を構成する前記第2のウェル領域は、前記第1の保護素子を構成する前記第2のウェル領域、または前記第3の保護素子を構成する前記第2のウェル領域の少なくとも一方と共通化されているようにすることができる。
 前記第1乃至第3の保護素子をそれぞれ構成する前記第2のウェル領域は、互いに分離されているようにすることができる。
 前記第1乃至第3の保護素子をそれぞれ構成する前記第1のウェル領域は、共通化されているようにすることができる。
 前記第1乃至第3の保護素子をそれぞれ構成する前記第1のウェル領域は、互いに分離されているようにすることができる。
 前記第1乃至第3の保護素子のうち、前記第1の保護素子または前記第3の保護素子が省略されているようにすることができる。
 本技術の第1の側面である半導体装置は、前記MOSFETの下に形成されている埋め込み絶縁層をさらに備えることができる。
 本技術の第2の側面である半導体装置は、半導体基板に形成された被保護素子に対する電気的なダメージを抑止する保護素子において、前記半導体基板と、前記半導体基板の上に形成され、前記半導体基板と逆導電型の前記ウェル領域と、前記ウェル領域の上に形成され、前記半導体基板と同一導電型の前記拡散層とから構成される。
 本技術の第3の側面である半導体装置は、半導体基板に形成された被保護素子に対する電気的なダメージを抑止する保護素子において、前記半導体基板と、前記半導体基板の上に形成され、前記半導体基板と逆導電型の第1のウェル領域と、前記第1のウェル領域の上に形成され、前記半導体基板と同一導電型の第2のウェル領域と、前記第2のウェル領域の上に形成され、前記半導体基板と逆導電型の前記拡散層とから構成される。
 本技術の第1乃至第3の側面によれば、半導体基板に形成された被保護素子に対する電気的なダメージを抑止することができる。
SOI基板上にN型MOSFETが形成された従来の半導体装置の構成の一例を示す断面図である。 図1に示された保護素子の電流-電圧特性を示す図である。 図1に示されたN型MOSFETのVg-Id特性を示す図である。 図1に示された構成に対してさらに発生し得る問題を説明するための図である。 SOI基板上にP型MOSFETが形成された従来の半導体装置の構成の一例を示す断面図である。 本技術を適用した半導体装置の第1の構成例を示す断面図である。 図6に示された保護素子の電流-電圧特性を示す図である。 図6に示された第1の構成例の第1の変形例を示す断面図である。 図6に示された第1の構成例の第2の変形例を示す断面図である。 図6に示された第1の構成例の第3の変形例を示す断面図である。 図6に示された第1の構成例の第4の変形例を示す断面図である。 図6に示された第1の構成例の第5の変形例を示す断面図である。 図6に示された第1の構成例の第6の変形例を示す断面図である。 図6に示された第1の構成例の第7の変形例を示す断面図である。 図6に示された第1の構成例の第8の変形例を示す断面図である。 本技術を適用した半導体装置の第2の構成例を示す断面図である。 図16に示された保護素子の電流-電圧特性を示す図である。 図16に示された第2の構成例の第1の変形例を示す断面図である。 図16に示された第2の構成例の第2の変形例を示す断面図である。 図16に示された第2の構成例の第3の変形例を示す断面図である。 図16に示された第2の構成例の第4の変形例を示す断面図である。 図16に示された第2の構成例の第5の変形例を示す断面図である。 図16に示された第2の構成例の第6の変形例を示す断面図である。 図16に示された第2の構成例の第7の変形例を示す断面図である。 本技術を適用した半導体装置の第3の構成例を示す断面図である。 本技術を適用した半導体装置の第4の構成例を示す断面図である。 本技術を適用した半導体装置の第5の構成例を示す断面図である。 本技術を適用した半導体装置の第6の構成例を示す断面図である。 本技術を適用した半導体装置の第7の構成例を示す断面図である。 本技術を適用した半導体装置の第8の構成例を示す断面図である。 本技術を適用した半導体装置の第9の構成例を示す断面図である。
 以下、本技術を実施するための最良の形態(以下、実施の形態と称する)について、図面を参照しながら詳細に説明する。
 <第1の実施の形態>
 図6は、本技術の第1の実施の形態である半導体装置の構成例(第1の構成例)を示す断面図である。
 該第1の構成例は、Siから成るP型半導体基板10と、P型半導体基板10上のP型ウェル領域11の上に設けられたBOX層13と、BOX層13上に形成されたN型MOSFET14を有する。
 N型MOSFET14は、N型拡散層(N+)から成るソース層31およびドレイン層32を有し、ソース層31とドレイン層32の間にはチャネル層33が形成されている。チャネル層33上には、ゲート絶縁膜34を介してゲート電極35が設けられている。
 ソース層31、ドレイン層32、およびゲート電極35上には、リサイド層とコンタクトプラグが設けられている。コンタクトプラグは層間絶縁膜で電気的に分離されている。各コンタクトプラグは、金属膜からなる配線層(いずれも不図示)と電気的に接続されている。
 ドレイン層32、ゲート電極35、およびソース層31には、それぞれ保護素子71乃至73が接続されている。保護素子71乃至73は、P型半導体基板10と同一導電型(いまの場合、P型)のP型拡散層(P+)61と、P型半導体基板10と逆導電型(いまの場合、N型)であって電位が固定されていないフローティング状態のN型ウェル領域62と、P型半導体基板10とから構成されている。
 P型拡散層61はP型半導体基板10の表面領域に形成される。N型ウェル領域62は、P型拡散層61を囲うように形成される。保護素子71乃至73を構成するN型ウェル領域62は共通化されている。
 図7は、保護素子71乃至73を構成するP型拡散層61とP型半導体基板10との間の電流(IF)-電圧(VF)特性を示している。
 同図に示されるように、保護素子71乃至73は、正および負の両方の電位差に対して、5V以上の耐圧特性を有する。したがって、製造途中や製造後の該半導体装置に対し、プラズマや静電気等によってゲート等に接続されている配線を介してN型MOSFET14に過大な電圧が印加された場合には、保護素子71乃至73がゲート絶縁膜34やBOX層13よりも先に破壊されることにより、配線側からの電荷を破壊された保護素子71乃至73を介してP型半導体基板10に排出することができる。よって、ゲート絶縁膜34やBOX層13を保護することができる。
 また、保護素子71乃至73が、正および負の両方の電位差に対して、5V以上の耐圧特性を有することにより、上述した第1の問題の発生を抑止できる。すなわち、P型ウェル領域11を0Vにしてゲート電極35を1V以上の負バイアスにしても、P型ウェル領域11からゲート方向に大きな電流が流れてしまうことを抑止できる。よって、図1に示された従来の構成に対して、P型ウェル領域11の電位、ゲート電位、ドレイン電位、およびソース電位の印加可能な組み合わせの範囲を大幅に増やすことが可能となる。
 また、保護素子71乃至73を構成するN型ウェル領域62が共通化されていることにより、例えば、N型ウェル領域62に電位変動が発生しても、保護素子71乃至73の間で耐圧特性に差が発生することを抑止できる。したがって、上述した第2の問題の発生を抑止できる。
 すなわち、何らかの原因によってゲートに繋がる配線で電荷が誘起された場合、その電荷がゲート電極35からゲート絶縁膜34およびソース層31を介して保護素子73に流れたり、ゲート電極35からゲート絶縁膜34およびドレイン層32を介して保護素子71に流れたりするが抑止されるので、ゲート絶縁膜34がダメージを受ける確率を低減できるため、半導体装置の信頼性を向上させることができる。
 <第1の実施の形態の第1の変形例>
 図8は、図6に示された第1の構成例の第1の変形例を示している。この第1の変形例は、図6に示された第1の構成例におけるN型MOSFET14およびBOX層13の下方のP型ウェル領域11を、N型ウェル領域63に置換したものである。ただし、N型ウェル領域63とN型ウェル領域62とを電気的に分離するため、両者の間にP型ウェル領域64が形成されている。
 この第1の変形例についても、第1の構成例と同様の作用、効果を得ることができる。
 <第1の実施の形態の第2の変形例>
 図9は、図6に示された第1の構成例の第2の変形例を示している。この第2の変形例は、図8に示された第2の変形例におけるN型MOSFET14を、P型MOSFET51に置換したものであり、その他の構成については同一である。すなわち、MOSFETの極性をN型からP型に変更しても、保護素子71乃至73の極性は変更することなく、そのまま同じものが用いられている。
 該第2の変形例についても、第1の構成例と同様の作用、効果を得ることができる。
 <第1の実施の形態の第3の変形例>
 図10は、図6に示された第1の構成例の第3の変形例を示している。該第3の変形例は、図6に示された第1の構成例におけるN型MOSFET14を、P型MOSFET51に置換したものであり、その他の構成については同一である。すなわち、MOSFETの極性をN型からP型に変更しても、保護素子71乃至73の極性は変更することなく、そのまま同じものが用いられている。
 該第3の変形例についても、第1の構成例と同様の作用、効果を得ることができる。
 <第1の実施の形態の第4の変形例>
 図11は、図6に示された第1の構成例の第4の変形例を示している。図6に示された第1の構成例では、保護素子71乃至73を構成するN型ウェル領域62が共通化されていた。これに対し、該第4の変形例では、保護素子72および73を構成するN型ウェル領域62が共通化され、保護素子71を構成するN型ウェル領域62とP型ウェル領域64によって分離されていることが変更箇所である。
 該第4の変形例についても、第1の構成例と同様の作用、効果を得ることができる。
 <第1の実施の形態の第5の変形例>
 図12は、図6に示された第1の構成例の第5の変形例を示している。図6に示された第1の構成例では、保護素子71乃至73を構成するN型ウェル領域62が共通化されていた。これに対し、該第5の変形例では、保護素子71および72を構成するN型ウェル領域62が共通化され、保護素子73を構成するN型ウェル領域62とP型ウェル領域64によって分離されていることが変更箇所である。
 該第5の変形例についても、第1の構成例と同様の作用、効果を得ることができる。
 <第1の実施の形態の第6の変形例>
 図13は、図6に示された第1の構成例の第6の変形例を示している。該第6の変形例は、図6に示された第1の構成例から保護素子71を省略したものである。すなわち、第6の変形例は、ゲートに接続された保護素子72とソースに接続された保護素子73が共通化されたN型ウェル領域62を用いて形成されている。
 該第6の変形例についても、第1の構成例と同様の作用、効果を得ることができる。
 <第1の実施の形態の第7の変形例>
 図14は、図6に示された第1の構成例の第7の変形例を示している。該第7の変形例は、図6に示された第1の構成例から保護素子73を省略したものである。すなわち、第7の変形例は、ドレインに接続された保護素子71とゲートに接続された保護素子72が共通化されたN型ウェル領域62を用いて形成されている。
 該第7の変形例についても、第1の構成例と同様の作用、効果を得ることができる。
 <第1の実施の形態の第8の変形例>
 図15は、図6に示された第1の構成例の第8の変形例を示している。図6に示された第1の構成例では、保護素子71乃至73を構成するN型ウェル領域62が共通化されていた。これに対し、該第8の変形例では、保護素子71乃至73を構成するN型ウェル領域62がP型ウェル領域64によって3分離されていることが変更箇所である。
 該第8の変形例の場合、上述した第1の問題の発生を抑止することができる。
 <第2の実施の形態>
 次に、図16は、本技術の第2の実施の形態である半導体装置の構成例(第2の構成例)を示す断面図である。
 該第2の構成例は、Siから成るP型半導体基板10と、P型半導体基板10上のP型ウェル領域11の上に設けられたBOX層13と、BOX層13上に形成されたN型MOSFET14を有する。なお、第1の構成例と共通する構成要素については同一の符号を付しているので、その説明は適宜省略する。
 N型MOSFET14のドレイン層32、ゲート電極35、およびソース層31には、それぞれ保護素子101乃至103が接続されている。保護素子101乃至103は、P型半導体基板10と逆導電型(いまの場合、N型)のN型拡散層91と、P型半導体基板10と同一導電型(いまの場合、P型)であって電位が固定されていないフローティング状態のP型ウェル領域92と、P型半導体基板10と逆導電型(いまの場合、N型)のN型ディープウェル領域(DNW)93とから構成されている。
 N型拡散層91はP型半導体基板10の表面領域に形成される。P型ウェル領域92は、N型拡散層91を囲うように形成される。保護素子101乃至103を構成するP型ウェル領域92は共通化されている。また、保護素子101乃至103を構成するP型ウェル領域92と、BOX層13下のP型ウェル領域11を電気的に分離するために、両者の間にはN型ウェル領域94が形成されている。
 N型ディープウェル領域93は、N型拡散層91に比較してN型不純物の濃度が高い領域であり、電位が固定されていないフローティング状態でもよいし、電位が固定されている状態でもよい。保護素子101乃至103を構成するN型ディープウェル領域93は共通化されている。
 図17は、保護素子101乃至103を構成するN型拡散層91とP型半導体基板10との間の電流(IF)-電圧(VF)特性を示している。なお、同図における実線はN型ディープウェル領域93をフローティング状態にした場合、破線はN型ディープウェル領域93をP型半導体基板10と同電位に固定した場合をそれぞれ示している。
 同図に示されるように、保護素子101乃至103は、N型ディープウェル領域93の状態に拘わらず、正および負の両方の電位差に対して、5V以上の耐圧特性を有する。
 したがって、該第2の構成例も、第1の構成例と同様の作用、効果を得ることができる。
 <第2の実施の形態の第1の変形例>
 図18は、図16に示された第2の構成例の第1の変形例を示している。該第1の変形例は、図16に示された第1の構成例におけるN型MOSFET14およびBOX層13の下方のP型ウェル領域11を、N型ウェル領域63に置換し、さらに、保護素子101乃至103を構成するP型ウェル領域92を囲うN型ウェル領域94と電気的に分離するため、両者の間にP型ウェル領域95を追加したものである。
 該第1の変形例についても、第2の構成例と同様の作用、効果を得ることができる。
 <第2の実施の形態の第2の変形例>
 図19は、図16に示された第2の構成例の第2の変形例を示している。図16に示された第2の構成例においては保護素子101乃至103を構成するP型ウェル領域92が共通化されていた。該第2の変形例は、保護素子101乃至103それぞれに対応するP型ウェル領域92の間にN型ウェル領域94を追加して、保護素子101乃至103それぞれに対応するP型ウェル領域92を電気的に分離したものである。なお、保護素子101乃至103を構成するN型ディープウェル領域93については共通化されたままとする。
 該第2の変形例についても、第2の構成例と同様の作用、効果を得ることができる。
 <第2の実施の形態の第3の変形例>
 図20は、図16に示された第2の構成例の第3の変形例を示している。図16に示された第2の構成例においては保護素子101乃至103を構成するP型ウェル領域92が共通化されていた。該第3の変形例は、保護素子101を構成するP型ウェル領域92と、保護素子102および103を構成するP型ウェル領域92との間にN型ウェル領域94を追加して、保護素子101に対応するP型ウェル領域92と、保護素子102および103に対応するP型ウェル領域92を電気的に分離したものである。なお、保護素子101乃至103を構成するN型ディープウェル領域93については共通化されたままとする。
 該第3の変形例についても、第2の構成例と同様の作用、効果を得ることができる。
 <第2の実施の形態の第4の変形例>
 図21は、図16に示された第2の構成例の第4の変形例を示している。図16に示された第2の構成例においては保護素子101乃至103を構成するP型ウェル領域92が共通化されていた。該第4の変形例は、保護素子101および102を構成するP型ウェル領域92と、保護素子103を構成するP型ウェル領域92との間にN型ウェル領域94を追加して、保護素子101および102に対応するP型ウェル領域92と、保護素子103に対応するP型ウェル領域92を電気的に分離したものである。なお、保護素子101乃至103を構成するN型ディープウェル領域93については共通化されたままとする。
 該第4の変形例についても、第2の構成例と同様の作用、効果を得ることができる。
 <第2の実施の形態の第5の変形例>
 図22は、図16に示された第2の構成例の第5の変形例を示している。該第5の変形例は、図16に示された第2の構成例から保護素子101を省略したものである。
 該第5の変形例についても、第2の構成例と同様の作用、効果を得ることができる。
 <第2の実施の形態の第6の変形例>
 図23は、図16に示された第2の構成例の第6の変形例を示している。該第6の変形例は、図16に示された第2の構成例から保護素子103を省略したものである。
 該第6の変形例についても、第2の構成例と同様の作用、効果を得ることができる。
 <第2の実施の形態の第7の変形例>
 図24は、図16に示された第2の構成例の第7の変形例を示している。図16に示された第2の構成例においては保護素子101乃至103を構成するP型ウェル領域92とN型ディープウェル領域93がそれぞれ共通化されていた。該第7の変形例は、保護素子101乃至103それぞれに対応するP型ウェル領域92の間にN型ウェル領域94を形成するとともに、保護素子101乃至103それぞれに対応するN型ディープウェル領域93も分離して形成したものである。
 該第7の変形例についても、第2の構成例と同様の作用、効果を得ることができる。
 <第3の実施の形態>
 次に、図25は、本技術の第3の実施の形態である半導体装置の構成例(第3の構成例)を示す断面図である。
 該第3の構成例は、Siから成るN半導体基板(NSUB)111と、N型半導体基板111上のP型ウェル領域11の上に設けられたBOX層13と、BOX層13上に形成されたN型MOSFET14を有する。
 N型MOSFET14のドレイン層32、ゲート電極35、およびソース層31には、それぞれ保護素子121乃至123が接続されている。保護素子121乃至123は、N型半導体基板111と同一導電型(いまの場合、N型)のN型拡散層112と、N型半導体基板111と逆導電型(いまの場合、P型)であって電位が固定されていないフローティング状態のP型ウェル領域113と、N型半導体基板111とから構成されている。
 N型拡散層112はN型半導体基板111の表面領域に形成される。P型ウェル領域113は、N型拡散層112を囲うように形成される。保護素子121乃至123を構成するP型ウェル領域113は共通化されている。
 ただし、BOX層13の下方のP型ウェル領域11と、保護素子121乃至123を構成するP型ウェル領域113とを電気的に分離するため、両者の間にN型ウェル領域114が形成されている。
 該第3の構成例についても、第1の構成例と同様の作用、効果を得ることができる。
 <第4の実施の形態>
 次に、図26は、本技術の第4の実施の形態である半導体装置の構成例(第4の構成例)を示す断面図である。
 該第4の構成例は、Siから成るN型半導体基板111と、N型半導体基板111上のP型ウェル領域11の上に設けられたBOX層13と、BOX層13上に形成されたN型MOSFET14を有する。なお、第1の構成例と共通する構成要素については同一の符号を付しているので、その説明は適宜省略する。
 N型MOSFET14のドレイン層32、ゲート電極35、およびソース層31には、それぞれ保護素子141乃至143が接続されている。保護素子141乃至143は、N型半導体基板111と逆導電型(いまの場合、P型)のP型拡散層131と、N型半導体基板111と同一導電型(いまの場合、N型)であって電位が固定されていないフローティング状態のN型ウェル領域132と、N型半導体基板111と逆導電型(いまの場合、P型)のP型ディープウェル領域(DPW)133とから構成されている。
 P型拡散層131はN型半導体基板111の表面領域に形成される。N型ウェル領域132は、P型拡散層131を囲うように形成される。保護素子141乃至143を構成するN型ウェル領域132は共通化されている。さらに、N型ウェル領域132を囲うように、P型ウェル領域134が形成される。P型ウェル領域134と、BOX層13下のP型ウェル領域11を電気的に分離するために、両者の間にはN型ウェル領域135が形成されている。
 P型ディープウェル領域133は、P型拡散層131に比較してP型不純物の濃度が高い領域であり、電位が固定されていないフローティング状態でもよいし、電位が固定されている状態でもよい。保護素子141乃至143を構成するN型ディープウェル領域93は共通化されている。
 保護素子141乃至143を構成するP型拡散層131とN型半導体基板11との間の電流-電圧特性は、第2の構成例と同様である。
 したがって、該第4の構成例も、第1の構成例と同様の作用、効果を得ることができる。
 <第5の実施の形態>
 次に、図27は、本技術の第5の実施の形態である半導体装置の構成例(第5の構成例)を示す断面図である。
 該第5の構成例は、図6に示された第1の構成例からBOX層13を省略したものである。すなわち、該第5の構成例におけるN型MOSFET14は、P型半導体基板10上のP型ウェル領域11の上に直接形成されたBulk構造を有する。
 該第5の構成例も、第1の構成例と同様の作用、効果を得ることができる。
 <第6の実施の形態>
 次に、図28は、本技術の第6の実施の形態である半導体装置の構成例(第6の構成例)を示す断面図である。
 該第6の構成例は、図16に示された第2の構成例からBOX層13を省略したものである。すなわち、該第6の構成例におけるN型MOSFET14は、P型半導体基板10上のP型ウェル領域11の上に直接形成されたBulk構造を有する。
 該第6の構成例も、第1の構成例と同様の作用、効果を得ることができる。
 <第7の実施の形態>
 次に、図29は、本技術の第7の実施の形態である半導体装置の構成例(第7の構成例)を示す断面図である。
 該第7の構成例は、図8に示された第1の構成例の第1の変形例におけるN型MOSFET14をP型MOSFET51に置換したものである。
 該第7の構成例も、第1の構成例と同様の作用、効果を得ることができる。
 <第8の実施の形態>
 次に、図30は、本技術の第8の実施の形態である半導体装置の構成例(第8の構成例)を示す断面図である。
 該第8の構成例は、図18に示された第2の構成例の第1の変形例におけるN型MOSFET14をP型MOSFET51に置換したものである。
 該第8の構成例も、第1の構成例と同様の作用、効果を得ることができる。
 <第9の実施の形態>
 次に、図31は、本技術の第9の実施の形態である半導体装置の構成例(第9の構成例)を示す断面図である。
 該第9の構成例は、図6に示された第1の構成例におけるBOX層13下のP型ウェル領域11を囲むように、P型半導体基板10とP型ウェル領域11の間にN型ディープウェル領域151を形成するとともに、P型ウェル領域11の横方向にN型ウェル領域152を形成したものである。さらに、N型ウェル領域152とN型ウェル領域62を分離するため、両者間にはP型ウェル領域153が形成されている。
 該第9の構成例も、第1の構成例と同様の作用、効果を得ることができる。
 <本実施の形態の適用例>
 上述した第1乃至第9の構成例およびこれらの変形例(以下、一括して本実施の形態と称する)については、電子基板上にMOSFETが搭載されている様々な種類の電子機器に適用することができる。具体的には、CMOSイメージセンサ、サーバ用CPU、PC用CPU、ゲーム機用CPU、モバイル機器、計測機器、AV機器、通信機器、各種家電製品等に適用できる。
 例えば、CMOSイメージセンサにおいては、画素アレイから出力されるアナログの電圧信号をAD変換するADCのコンパレータに適用できる。
 なお、本実施の形態を電子機器に適用する場合、上述した第1乃至第9の構成例およびこれらの変形例を適宜組み合わせて適用してもよい。
 本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 本技術は以下のような構成も取ることができる。
(1)
 半導体基板に形成された被保護素子としてのMOSFETと、
 前記半導体基板に形成された前記被保護素子に対する電気的なダメージを抑止する保護素子とを備え、
 前記保護素子は、
  前記半導体基板と、
  前記半導体基板の上に形成された1層以上のウェル領域と、
  前記ウェル領域の上に形成された拡散層とから構成される
 半導体装置。
(2)
 前記保護素子は、
  前記半導体基板と、
  前記半導体基板と逆導電型の前記ウェル領域と、
  前記半導体基板と同一導電型の前記拡散層とから構成される
 前記(1)に記載の半導体装置。
(3)
 前記ウェル領域はフローティング状態である
 前記(1)または(2)に記載の半導体装置。
(4)
 前記保護素子は、
 前記MOSFETのドレイン層に接続されている第1の保護素子と、
 前記MOSFETのゲート電極に接続されている第2の保護素子と、
 前記MOSFETのソース層に接続されている第3の保護素子とから成り、
 前記第1乃至第3の保護素子をそれぞれ構成する前記拡散層は、互いに分離されている
 前記(1)から(3)のいずれかに記載の半導体装置。
(5)
 前記第2の保護素子を構成する前記ウェル領域は、前記第1の保護素子を構成する前記ウェル領域、または前記第3の保護素子を構成する前記ウェル領域の少なくとも一方と共通化されている
 前記(4)に記載の半導体装置。
(6)
 前記第1乃至第3の保護素子をそれぞれ構成する前記ウェル領域は、互いに分離されている
 前記(4)に記載の半導体装置。
(7)
 前記第1乃至第3の保護素子のうち、前記第1の保護素子または前記第3の保護素子が省略されている
 前記(4)から(6)のいずれかに記載の半導体装置。
(8)
 前記保護素子は、
  前記半導体基板と、
  前記半導体基板の上に形成され、前記半導体基板と逆導電型の第1のウェル領域と、
  前記第1のウェル領域の上に形成され、前記半導体基板と同一導電型の第2のウェル領域と、
  前記半導体基板と逆導電型の前記拡散層とから構成される
 前記(1)に記載の半導体装置。
(9)
 前記第2のウェル領域はフローティング状態である
 前記(8)に記載の半導体装置。
(10)
 前記第1のウェル領域はフローティング状態である
 前記(8)または(9)に記載の半導体装置。
(11)
 前記第1のウェル領域は電位固定状態である
 前記(8)または(9)に記載の半導体装置。
(12)
 前記保護素子は、
 前記MOSFETのドレイン層に接続されている第1の保護素子と、
 前記MOSFETのゲート電極に接続されている第2の保護素子と、
 前記MOSFETのソース層に接続されている第3の保護素子とから成り、
 前記第1乃至第3の保護素子をそれぞれ構成する前記拡散層は、互いに分離されている
 前記(8)から(11)のいずれかに記載の半導体装置。
(13)
 前記第2の保護素子を構成する前記第2のウェル領域は、前記第1の保護素子を構成する前記第2のウェル領域、または前記第3の保護素子を構成する前記第2のウェル領域の少なくとも一方と共通化されている
 前記(8)に記載の半導体装置。
(14)
 前記第1乃至第3の保護素子をそれぞれ構成する前記第2のウェル領域は、互いに分離されている
 前記(8)に記載の半導体装置。
(15)
 前記第1乃至第3の保護素子をそれぞれ構成する前記第1のウェル領域は、共通化されている
 前記(8)から(14)のいずれかに記載の半導体装置。
(16)
 前記第1乃至第3の保護素子をそれぞれ構成する前記第1のウェル領域は、互いに分離されている
 前記(8)から(14)のいずれかに記載の半導体装置。
(17)
 前記第1乃至第3の保護素子のうち、前記第1の保護素子または前記第3の保護素子が省略されている
 前記(8)から(16)のいずれかに記載の半導体装置。
(18)
 前記MOSFETの下に形成されている埋め込み絶縁層をさらに備える
 前記(1)から(17)のいずれかに記載の半導体装置。
(19)
 半導体基板に形成された被保護素子に対する電気的なダメージを抑止する保護素子において、
 前記半導体基板と、
 前記半導体基板の上に形成され、前記半導体基板と逆導電型の前記ウェル領域と、
 前記ウェル領域の上に形成され、前記半導体基板と同一導電型の前記拡散層と
 から構成される保護素子。
(20)
 半導体基板に形成された被保護素子に対する電気的なダメージを抑止する保護素子において、
 前記半導体基板と、
 前記半導体基板の上に形成され、前記半導体基板と逆導電型の第1のウェル領域と、
 前記第1のウェル領域の上に形成され、前記半導体基板と同一導電型の第2のウェル領域と、
 前記第2のウェル領域の上に形成され、前記半導体基板と逆導電型の前記拡散層と
 から構成される保護素子。
 10 P型半導体基板, 11 P型ウェル領域, 12 N型拡散層, 13 BOX層, 14 N型MOSFET, 21乃至23 保護ダイオード, 31 ソース層, 32 ドレイン層, 33 チャネル層, 34 ゲート絶縁膜, 35 ゲート電極, 51 P型MOSFET, 52 P型拡散層, 53 N型ウェル領域, 61 P型拡散層, 62 N型ウェル領域, 63 N型ウェル領域, 64 P型ウェル領域, 71乃至73 保護素子, 91 N型拡散層, 92 P型ウェル領域, 93 N型ディープウェル領域, 94 N型ウェル領域, 101乃至103 保護素子, 111 N型半導体基板, 112 N型拡散層, 113 P型ウェル領域, 114 N型ウェル領域, 121乃至123 保護素子, 131 P型拡散層, 132 N型ウェル領域, 133 P型ディープウェル領域, 134 P型ウェル領域, 135 N型ウェル領域, 141乃至143 保護素子, 151 N型ディープウェル領域, 152 N型ウェル領域, 153 P型ウェル領域

Claims (20)

  1.  半導体基板に形成された被保護素子としてのMOSFETと、
     前記半導体基板に形成された前記被保護素子に対する電気的なダメージを抑止する保護素子とを備え、
     前記保護素子は、
      前記半導体基板と、
      前記半導体基板の上に形成された1層以上のウェル領域と、
      前記ウェル領域の上に形成された拡散層とから構成される
     半導体装置。
  2.  前記保護素子は、
      前記半導体基板と、
      前記半導体基板と逆導電型の前記ウェル領域と、
      前記半導体基板と同一導電型の前記拡散層とから構成される
     請求項1に記載の半導体装置。
  3.  前記ウェル領域はフローティング状態である
     請求項2に記載の半導体装置。
  4.  前記保護素子は、
     前記MOSFETのドレイン層に接続されている第1の保護素子と、
     前記MOSFETのゲート電極に接続されている第2の保護素子と、
     前記MOSFETのソース層に接続されている第3の保護素子とから成り、
     前記第1乃至第3の保護素子をそれぞれ構成する前記拡散層は、互いに分離されている
     請求項2に記載の半導体装置。
  5.  前記第2の保護素子を構成する前記ウェル領域は、前記第1の保護素子を構成する前記ウェル領域、または前記第3の保護素子を構成する前記ウェル領域の少なくとも一方と共通化されている
     請求項4に記載の半導体装置。
  6.  前記第1乃至第3の保護素子をそれぞれ構成する前記ウェル領域は、互いに分離されている
     請求項4に記載の半導体装置。
  7.  前記第1乃至第3の保護素子のうち、前記第1の保護素子または前記第3の保護素子が省略されている
     請求項4に記載の半導体装置。
  8.  前記保護素子は、
      前記半導体基板と、
      前記半導体基板の上に形成され、前記半導体基板と逆導電型の第1のウェル領域と、
      前記第1のウェル領域の上に形成され、前記半導体基板と同一導電型の第2のウェル領域と、
      前記半導体基板と逆導電型の前記拡散層とから構成される
     請求項1に記載の半導体装置。
  9.  前記第2のウェル領域はフローティング状態である
     請求項8に記載の半導体装置。
  10.  前記第1のウェル領域はフローティング状態である
     請求項9に記載の半導体装置。
  11.  前記第1のウェル領域は電位固定状態である
     請求項9に記載の半導体装置。
  12.  前記保護素子は、
     前記MOSFETのドレイン層に接続されている第1の保護素子と、
     前記MOSFETのゲート電極に接続されている第2の保護素子と、
     前記MOSFETのソース層に接続されている第3の保護素子とから成り、
     前記第1乃至第3の保護素子をそれぞれ構成する前記拡散層は、互いに分離されている
     請求項8に記載の半導体装置。
  13.  前記第2の保護素子を構成する前記第2のウェル領域は、前記第1の保護素子を構成する前記第2のウェル領域、または前記第3の保護素子を構成する前記第2のウェル領域の少なくとも一方と共通化されている
     請求項8に記載の半導体装置。
  14.  前記第1乃至第3の保護素子をそれぞれ構成する前記第2のウェル領域は、互いに分離されている
     請求項8に記載の半導体装置。
  15.  前記第1乃至第3の保護素子をそれぞれ構成する前記第1のウェル領域は、共通化されている
     請求項8に記載の半導体装置。
  16.  前記第1乃至第3の保護素子をそれぞれ構成する前記第1のウェル領域は、互いに分離されている
     請求項8に記載の半導体装置。
  17.  前記第1乃至第3の保護素子のうち、前記第1の保護素子または前記第3の保護素子が省略されている
     請求項12に記載の半導体装置。
  18.  前記MOSFETの下に形成されている埋め込み絶縁層をさらに備える
     請求項2に記載の半導体装置。
  19.  半導体基板に形成された被保護素子に対する電気的なダメージを抑止する保護素子において、
     前記半導体基板と、
     前記半導体基板の上に形成され、前記半導体基板と逆導電型の前記ウェル領域と、
     前記ウェル領域の上に形成され、前記半導体基板と同一導電型の前記拡散層と
     から構成される保護素子。
  20.  半導体基板に形成された被保護素子に対する電気的なダメージを抑止する保護素子において、
     前記半導体基板と、
     前記半導体基板の上に形成され、前記半導体基板と逆導電型の第1のウェル領域と、
     前記第1のウェル領域の上に形成され、前記半導体基板と同一導電型の第2のウェル領域と、
     前記第2のウェル領域の上に形成され、前記半導体基板と逆導電型の前記拡散層と
     から構成される保護素子。
PCT/JP2017/043160 2016-12-14 2017-11-30 半導体装置、および保護素子 WO2018110304A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/462,366 US10861847B2 (en) 2016-12-14 2017-11-30 Semiconductor device and protection element
KR1020197013196A KR102416640B1 (ko) 2016-12-14 2017-11-30 반도체 장치 및 보호 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016242146A JP2018098375A (ja) 2016-12-14 2016-12-14 半導体装置、および保護素子
JP2016-242146 2016-12-14

Publications (1)

Publication Number Publication Date
WO2018110304A1 true WO2018110304A1 (ja) 2018-06-21

Family

ID=62558705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043160 WO2018110304A1 (ja) 2016-12-14 2017-11-30 半導体装置、および保護素子

Country Status (4)

Country Link
US (1) US10861847B2 (ja)
JP (1) JP2018098375A (ja)
KR (1) KR102416640B1 (ja)
WO (1) WO2018110304A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210150765A (ko) 2020-06-04 2021-12-13 에스케이하이닉스 주식회사 이미지 센싱 장치 및 이를 포함하는 촬영 장치
FR3139234A1 (fr) * 2022-08-31 2024-03-01 Stmicroelectronics Sa Protection contre des décharges électrostatiques

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61100954A (ja) * 1984-10-22 1986-05-19 Nec Corp 半導体装置
JPS63228667A (ja) * 1987-03-18 1988-09-22 Hitachi Ltd 半導体装置
JPH04280670A (ja) * 1991-03-08 1992-10-06 Nec Kansai Ltd スイッチ回路およびゲート電圧クランプ型半導体装置
JPH07312424A (ja) * 1994-05-18 1995-11-28 Nippondenso Co Ltd 半導体装置及びその製造方法
JPH08316471A (ja) * 1995-05-23 1996-11-29 Fuji Electric Co Ltd 半導体装置
JP2005294581A (ja) * 2004-03-31 2005-10-20 Nec Electronics Corp 半導体装置およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5923067A (en) * 1997-04-04 1999-07-13 International Business Machines Corporation 3-D CMOS-on-SOI ESD structure and method
JP3962729B2 (ja) 2004-06-03 2007-08-22 株式会社東芝 半導体装置
JP6354381B2 (ja) 2014-06-26 2018-07-11 富士通セミコンダクター株式会社 半導体装置及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61100954A (ja) * 1984-10-22 1986-05-19 Nec Corp 半導体装置
JPS63228667A (ja) * 1987-03-18 1988-09-22 Hitachi Ltd 半導体装置
JPH04280670A (ja) * 1991-03-08 1992-10-06 Nec Kansai Ltd スイッチ回路およびゲート電圧クランプ型半導体装置
JPH07312424A (ja) * 1994-05-18 1995-11-28 Nippondenso Co Ltd 半導体装置及びその製造方法
JPH08316471A (ja) * 1995-05-23 1996-11-29 Fuji Electric Co Ltd 半導体装置
JP2005294581A (ja) * 2004-03-31 2005-10-20 Nec Electronics Corp 半導体装置およびその製造方法

Also Published As

Publication number Publication date
US20190341380A1 (en) 2019-11-07
JP2018098375A (ja) 2018-06-21
KR20190094341A (ko) 2019-08-13
KR102416640B1 (ko) 2022-07-05
US10861847B2 (en) 2020-12-08

Similar Documents

Publication Publication Date Title
JP3962729B2 (ja) 半導体装置
US20210202469A1 (en) Transient voltage suppressor and method for manufacturing the same
JP4146672B2 (ja) 静電気保護素子
US9978689B2 (en) Ion sensitive field effect transistors with protection diodes and methods of their fabrication
US9159719B2 (en) ESD protection
JP2010016177A (ja) 静電気放電保護素子
US20120280323A1 (en) Device having a gate stack
US20050285198A1 (en) High voltage device and high voltage device for electrostatic discharge protection circuit
JP5020330B2 (ja) 静電放電保護デバイスならびに半導体デバイスを静電放電事象から保護するための方法
US9941364B2 (en) High voltage semiconductor device and method of manufacturing the same
JP5022643B2 (ja) 半導体装置のesd保護回路
WO2018110304A1 (ja) 半導体装置、および保護素子
JP2009064974A (ja) 半導体装置
US8183637B2 (en) Semiconductor device
WO2019163417A1 (ja) 半導体集積回路装置、半導体集積回路装置を用いた電流制御装置、及び、電流制御装置を用いた自動変速機制御装置
US20100254050A1 (en) Integrated circuit protection device
JP2006245093A (ja) 高電圧デバイス並びに静電気保護回路用高電圧デバイス
US8952457B2 (en) Electrostatic discharge protection circuit
US11094553B2 (en) Semiconductor device and manufacturing method
CN110571213A (zh) 静电放电防护元件
JP5085045B2 (ja) 半導体装置
JP2018092983A (ja) 光受信回路
EP3024034B1 (en) Esd protection semiconductor device
JP2009038099A (ja) 半導体装置
WO2014181565A1 (ja) 半導体装置およびesd保護デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880947

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197013196

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17880947

Country of ref document: EP

Kind code of ref document: A1