WO2018104988A1 - 活性ガス生成装置 - Google Patents

活性ガス生成装置 Download PDF

Info

Publication number
WO2018104988A1
WO2018104988A1 PCT/JP2016/085999 JP2016085999W WO2018104988A1 WO 2018104988 A1 WO2018104988 A1 WO 2018104988A1 JP 2016085999 W JP2016085999 W JP 2016085999W WO 2018104988 A1 WO2018104988 A1 WO 2018104988A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
space
active gas
discharge
electrode
Prior art date
Application number
PCT/JP2016/085999
Other languages
English (en)
French (fr)
Inventor
謙資 渡辺
義人 山田
真一 西村
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to PCT/JP2016/085999 priority Critical patent/WO2018104988A1/ja
Priority to US16/343,236 priority patent/US10840065B2/en
Priority to CN201680091290.2A priority patent/CN110024088B/zh
Priority to JP2018555323A priority patent/JP6651652B2/ja
Priority to EP16923437.4A priority patent/EP3550594B1/en
Priority to KR1020197015716A priority patent/KR102127084B1/ko
Priority to TW106118855A priority patent/TWI639724B/zh
Publication of WO2018104988A1 publication Critical patent/WO2018104988A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32348Dielectric barrier discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32541Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/466Radiofrequency discharges using capacitive coupling means, e.g. electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating

Definitions

  • the present invention relates to an active gas generating device in which two electrodes are installed in parallel, a high voltage is applied between both electrodes, and an active gas is obtained with energy generated by discharge.
  • An active gas generator that installs two electrodes in parallel, applies a high voltage between the two electrodes, and obtains an active gas with the energy generated by the discharge phenomenon in the discharge space between the two electrodes.
  • the other electrode is set to a reference voltage such as a ground level.
  • a high voltage of several kVrms (Root Mean Square) is applied to one electrode serving as a high voltage power supply unit.
  • the power supply unit / grounding unit (the other electrode and parts electrically connected to the other electrode part) are arranged so that the gas existing there does not break down. The distance is well separated.
  • the concentration of the electric field intensity that inevitably causes the dielectric breakdown of the surrounding gas layer is unavoidable depending on the shape and surface state of the metal part of the power feeding portion.
  • Patent Document 1 there are a plasma generation apparatus disclosed in Patent Document 1 and a plasma processing apparatus disclosed in Patent Document 2 as active gas generation apparatuses in consideration of such metal contamination.
  • Patent Document 2 there are a plasma generation apparatus disclosed in Patent Document 1 and a plasma processing apparatus disclosed in Patent Document 2 as active gas generation apparatuses in consideration of such metal contamination.
  • the plasma generator disclosed in Patent Document 1 performs a dielectric barrier discharge at a discharge portion provided between opposed high-voltage side electrode component / ground-side electrode component, and passes an active gas by passing a raw material gas therethrough. It is a device to generate.
  • the discharge part and the AC voltage application part are not separated and exist in the same space, and the source gas is supplied to the discharge space after passing through the AC voltage application part, and finally processed. Supplied to the chamber.
  • Patent Document 2 employs a structure in which an insulator is inserted and sealed at the outer edge of the opposing electrode component. By adopting such a structure, it is intended to suppress abnormal discharge from the discharge part to the casing (including the ground electrode) where the electrode component part is installed.
  • the discharge due to the dielectric breakdown of the source gas does not necessarily occur only in the discharge part. From a macroscopic point of view, it is designed to suppress unnecessary discharges other than the discharge part by taking a sufficient insulation distance.
  • the unnecessary discharge for example, an abnormal discharge between the metal electrode of the high-voltage side electrode component that is applying the AC voltage and the metal housing that houses the electrode component can be considered.
  • Patent Document 1 induces evaporation of component constituent elements installed in the vicinity due to the above-described dielectric breakdown, which is mixed into the raw material gas and supplied to the discharge unit / processing chamber. As a result, there is a problem that metal contamination of the semiconductor is caused.
  • the plasma processing apparatus disclosed in Patent Document 2 is insufficient as a metal contamination mixing prevention measure when abnormal discharge occurs. This is because the discharge part and the AC voltage application part still exist in the same space, and there is no change in the structure that generates the active gas by the source gas passing through the AC voltage application part going to the discharge part. is there. That is, since the plasma processing apparatus disclosed in Patent Document 2 cannot avoid the occurrence of metal contamination as the plasma generating apparatus disclosed in Patent Document 1, the quality of the generated active gas is deteriorated accordingly. There was a problem.
  • an object of the present invention is to provide an active gas generation apparatus that can solve the above-described problems and generate high-quality active gas.
  • An active gas generation apparatus includes an active gas generation electrode group having a first electrode configuration section and a second electrode configuration section provided below the first electrode configuration section, the first and An AC power source that applies an AC voltage so that the first electrode component becomes a high voltage, and the first and second electrodes are applied by the application of the AC voltage by the AC power source.
  • a discharge space is formed between the two electrode components, and an active gas obtained by activating the source gas supplied to the discharge space is ejected from a gas outlet provided in the second electrode component, A first auxiliary member provided so as to form an AC voltage application space separated from the discharge space between the first electrode component and a non-metallic material, and the active gas generating electrode group A second auxiliary member supported from the second electrode component side.
  • the second auxiliary member has an auxiliary member gas discharge port through which the active gas ejected from the gas ejection port passes, and the active gas generating electrode group and the second auxiliary member
  • a housing made of metal for housing all and at least a part of the first auxiliary member, the housing exhausting the active gas passing through the auxiliary member gas exhaust port to the outside;
  • a housing contact space separated from the discharge space is provided between the housing and the first and second auxiliary members, and the first auxiliary member includes the AC voltage application space and
  • an evaporating substance such as a constituent material of the first electrode constituent portion, which is generated when an abnormal discharge occurs in the alternating voltage application space, is mixed into the discharge space directly or via the source gas supply path.
  • the first mixing phenomenon can be surely avoided.
  • the housing contact space is provided separately from the discharge space, and the first auxiliary member is provided for the source gas supply path independently of the housing contact space. By having the source gas flow path, the gas flow between the discharge space and the housing contact space is separated.
  • the active gas generation apparatus according to the present invention described in claim 1 has an effect of reliably avoiding the above-described first and second mixing phenomena and discharging good quality active gas to the outside. .
  • a pair of the high-voltage side electrode component and the ground-side electrode component separated from each other by a gap length is disposed opposite to each other to form an active gas generation electrode group for dielectric barrier discharge.
  • a space formed between the high-voltage side electrode component and the ground-side electrode component is a discharge space.
  • the active gas generation electrode group is housed in a metal housing, and the active gas generation device including the active gas generation electrode group and the housing is installed immediately above a processing chamber for forming a silicon wafer. Yes.
  • a metal electrode is metallized on a part of the surface of the dielectric electrode of the active gas generation electrode group, whereby the dielectric electrode and the metal electrode are integrally formed.
  • the metallization process is formed using a printing baking method, a sputtering process, a vapor deposition process, or the like.
  • a high frequency power source is connected to the metal electrode part.
  • the ground side electrode component is grounded together with the housing, and is fixed to the reference potential.
  • a dielectric barrier discharge is generated in the discharge space of the active gas generating electrode group by applying an AC voltage V0p (0 peak value) of 10 kHz to 100 kHz and 2 to 10 kV from the high frequency power source to the active gas generating electrode group. Yes.
  • the active gas generator is supplied with nitrogen, oxygen, rare gases, hydrogen, and fluorine source gases from the outside via a gas supply port (source gas flow path). These source gases proceed to the discharge space inside the electrode via the source gas supply path provided on the outer periphery of the active gas generating electrode group, and are activated in the internal discharge space, and contain this active gas.
  • the gas is ejected from a gas ejection port provided in the ground side electrode component to a processing chamber outside the housing, and a film forming process is performed.
  • FIG. 1 is an explanatory view schematically showing a cross-sectional structure of an active gas generator according to Embodiment 1 of the present invention.
  • FIG. 2 is an explanatory view showing the main components of the active gas generator of Embodiment 1 in an exploded state. 1 and 2 and FIGS. 3 and 4 to be described later show XYZ orthogonal coordinate systems.
  • the active gas generation electrode group 301 is provided below the high-voltage side electrode component 1A (first electrode component) and the high-voltage electrode component 1A. 2A (second electrode component).
  • the ground-side electrode component 2A has a dielectric electrode 211 and metal electrodes 201H and 201L.
  • the dielectric electrode 211 has a rectangular flat plate structure in which the X direction is the longitudinal direction and the Y direction is the short direction. ing.
  • a plurality of gas outlets 55 are provided along the X direction at the center.
  • Each of the plurality of gas ejection ports 55 is provided so as to penetrate from the upper surface to the lower surface of the dielectric electrode 211.
  • the wedge-shaped stepped shape portion 51 does not overlap the plurality of gas ejection ports 55 in a plan view, and the formation width in the Y direction becomes shorter as approaching each of the plurality of gas ejection ports 55 in a plan view. It is formed. Specifically, it is formed between the five gas jets 55 in a rhombus shape in plan view, and is provided outside the gas jets 55 at both ends of the four rhomboid single parts 51 s and the five gas jets 55.
  • a wedge-shaped stepped portion 51 is formed by an aggregate of the two triangular single-piece portions 51t having a substantially isosceles triangle shape in plan view.
  • the dielectric electrode 211 further has linear step-shaped portions 52A and 52B formed to protrude upward at both ends in the X direction.
  • the linear step shape portions 52A and 52B are formed to extend in the Y direction over the entire length in the short direction of the dielectric electrode 211 in plan view, and along with the formation height of the wedge shape step shape portion 51, the linear step shape.
  • the gap length in the discharge space 66 is defined by the formation height of the portions 52A and 52B.
  • the metal electrodes 201H and 201L are formed on the lower surface of the dielectric electrode 211, and are arranged to face each other with the central region of the dielectric electrode 211 in plan view.
  • the metal electrodes 201H and 201L have a substantially rectangular shape in plan view, and the X direction is the longitudinal direction, and the Y direction that intersects the X direction at a right angle is the opposite direction.
  • the metal electrodes 201H and 201L are formed by metallization processing on the lower surface of the dielectric electrode 211. As a result, the dielectric electrode 211 and the metal electrodes 201H and 201L are integrally formed to form the ground-side electrode component 2A. Configure.
  • As the metallization process a process using a printing and firing method, a sputtering process, a vapor deposition process, or the like can be considered.
  • the dielectric electrode 111 of the high-voltage side electrode constituting portion 1A has a rectangular flat plate structure in which the X direction is the longitudinal direction and the Y direction is the short direction.
  • the dielectric electrode 111 and the dielectric electrode 211 are made of, for example, ceramic.
  • the metal electrodes 101H and 101L are formed on the upper surface of the dielectric electrode 111, and are disposed to face each other with a central region having the same shape corresponding to the central region of the dielectric electrode 211 in plan view.
  • the metal electrodes 101H and 101L similarly to the metal electrodes 201H and 201L, the metal electrodes 101H and 101L have a substantially rectangular shape in plan view, the X direction is the longitudinal direction, and the Y directions intersecting at right angles to the X direction are opposite directions. Yes.
  • the metal electrodes 101H and 101L can also be formed on the upper surface of the dielectric electrode 111 by metallization.
  • the active gas generating electrode group 301 can be assembled by disposing the high voltage side electrode component 1A on the ground electrode component 2A. At this time, while positioning so that the central region of the dielectric electrode 111 in the high-voltage electrode component 1A and the central region of the dielectric electrode 211 in the ground-side electrode component 2A overlap in plan view, the high-voltage electrode component By stacking and combining 1A on the ground electrode assembly 2A, the active gas generating electrode group 301 can be finally completed.
  • a pair of spacers 37 is provided between the linear stepped portions 52A and 52B on both side surfaces extending in the X direction of the active gas generation electrode group 301.
  • the pair of spacers 37 are provided between the high-voltage side electrode component 1A and the ground-side electrode component 2A, and together with the wedge-shaped step shape portion 51 and the linear step shape portions 52A and 52B described above, depending on the formation height thereof, the discharge space. 66 defines the gap length.
  • the spacer 37 is made of a non-metallic material and is preferably formed of the same material as the dielectric electrodes 111 and 211.
  • the pair of spacers 37 are provided with a plurality of through-holes 37h extending in the Y direction, and from the outside of the active gas generating electrode group 301, the high-voltage side electrode constituting portion 1A and the ground-side electrode through the plurality of through-holes 37h.
  • the source gas can be supplied into the discharge space 66 between the components 2A.
  • a region where the metal electrodes 101H and 101L and the metal electrodes 201H and 201L overlap in plan view in a dielectric space where the dielectric electrode 111 and the dielectric electrode 211 constituting the active gas generation electrode group 301 face each other is a discharge space.
  • the metal electrodes 101H and 101L and the metal electrodes 201H and 201L are connected to a (high voltage) high-frequency power supply 5 (AC power supply unit).
  • the metal electrodes 201H and 201L of the ground-side electrode component 2A are connected via metal parts (not shown) that are selectively provided inside the metal housing 34 and the electrode component mounting base 33.
  • the AC voltage in which the zero peak value is fixed at 2 to 10 kV and the frequency is set at 10 kHz to 100 kHz is set to the metal electrodes 101H and 101L, and the metal electrodes 201H and 201L in the present embodiment. Applied between.
  • the electrode component mounting base 33 is made of a constituent material having an insulating property except for the metal parts, and is made of, for example, ceramic.
  • a plurality of punched holes penetrating up and down the electrode component mounting base 33 are provided like an active gas discharge port 33k described later, and the ground side electrode component is provided in each of the plurality of cutout holes. It is conceivable that the metal parts are provided so that the 2A metal electrodes 201H and 201L and the metal housing 44 are electrically connected.
  • the active gas generation apparatus includes an active gas generation electrode group 301 (including the high-voltage side electrode component 1A and the ground-side electrode component 2A) configured as described above. It is accommodated in the housing 34 using a cover 31, a cover 32, and an electrode component installation base 33.
  • the high-frequency power source 5 (AC power source unit) for applying an AC voltage to the active gas generating electrode group 301 so that the high voltage side electrode constituting unit 1A has a high voltage is provided.
  • a discharge space 66 is formed between the high-voltage side electrode component 1A and the ground-side electrode component 2A, and an active gas obtained by activating the raw material gas supplied to the discharge space 66 Are ejected downward from a plurality of gas ejection ports 55 provided in the ground side electrode constituting portion 2A.
  • the first auxiliary member constituted by the combined structure of the covers 31 and 32 is formed of the high voltage side electrode component 1A so as to form an AC voltage application space R31 separated from the discharge space 66 by the high voltage side electrode component 1A. Is provided above.
  • the electrode component mounting base 33 which is the second auxiliary member is arranged on the main surface 33b (see FIG. 2 (d)), and the entire lower surface of the ground side electrode component 2A is arranged, and an active gas generating electrode group 301 is supported from the ground electrode assembly part 2A side.
  • the outer peripheral portion of the electrode component mounting base 33 has an outer peripheral protruding portion 33x protruding upward (+ Z direction) from the main surface 33b, and the outer peripheral protruding portion 33x surrounds the entire active gas generating electrode group 301. Therefore, a space between the outer peripheral protrusion 33x and the spacer 37 is a side space R33 (see FIG. 1 and FIG. 2 (c)).
  • the electrode component mounting base 33 allows the active gas ejected from the plurality of gas ejection ports 55 to pass therethrough, and guides the plurality of active gas passage ports 33i and the plurality of them.
  • the active gas outlet 33k is provided.
  • the plurality of active gas passage ports 33i are arranged so as to coincide with the plurality of gas jet ports 55 in plan view, and a plurality of active gas discharge ports 33k are provided below the plurality of active gas passage ports 33i.
  • the combination of the active gas passage port 33i and the active gas discharge port 33k constitutes an auxiliary member gas discharge port through which the active gas discharged from the corresponding gas discharge port 55 passes.
  • the cover 32 constituting a part of the first auxiliary member is formed in a rectangular ring shape in plan view as shown in FIG. 2 (a), and includes an end of the high-voltage side electrode component 1A and an electrode component mounting base. 33 is disposed on the outer peripheral protrusion 33x.
  • a hollow region 32c that is an inner peripheral region of the cover 32 is smaller than the shape of the high-voltage side electrode component 1A in plan view, and is disposed on the high-voltage electrode component 1A so as to be accommodated in the high-voltage electrode component 1A.
  • the outer peripheral region of the electrode component installation base 33 is larger than the high voltage side electrode component 1A in plan view and is arranged to include the entire high voltage side electrode component 1A.
  • the cover 32 has a raw material gas flow path 32h that penetrates the cover 32 in the vertical direction (Z direction).
  • the source gas flow path 32h extends in the X direction at the center and is formed in a straight line.
  • a side space R33 is located below the source gas flow path 32h.
  • a cover 31 is disposed on the cover 32.
  • the cover 31 is formed in the same rectangular ring shape as the cover 32 in a plan view, the upper part is formed in a rectangular shape in a plan view, and the upper end is disposed on the upper surface of the metal housing 34.
  • a hollow region 31c that is an inner peripheral region of the cover 31 has the same shape as the hollow region 32c of the cover 32 in plan view. Then, the upper end of the cover 31 is fixed to the upper surface of the metal casing 34 by using a fixing means such as a bolt.
  • the cover 31 has a source gas channel 31h penetrating in the vertical direction, the source gas channel 31h is formed in a columnar shape, and the source gas is disposed below the source gas channel 31h. A part of the flow path 32h is located. Similarly to the source gas channel 32h, the source gas channel 31h is formed in a straight line extending in the X direction at the center in the long side region extending in the X direction of the cover 31, and below the source gas channel 31h. Alternatively, the entire source gas channel 32h may be positioned.
  • the cover 31 has a purge gas supply port 31p that is a second gas supply port for a purge gas that is a second gas other than the source gas and a purge gas discharge port 31e that is a second gas discharge port that penetrates in the vertical direction at the top. have.
  • the purge gas supply port 31p and the purge gas discharge port 31e are each provided in a cylindrical shape. Both the purge gas supply port 31p and the purge gas discharge port 31e are provided so that the lower part reaches the hollow region 31c. Further, the purge gas supply port 31p and the purge gas discharge port 31e are provided independently of the raw material gas flow path 31h so that the purge gas and the raw material gas are not mixed.
  • purge gas supply port 31p nitrogen or an inert gas is used as the purge gas supplied from the purge gas supply port 31p.
  • the purge gas supply port 31p and the purge gas discharge port 31e are also formed independently of the discharge space 66 and a housing contact space R34 described later.
  • An AC voltage application space R31 composed of the hollow region 31c of the cover 31 and the hollow region 32c of the cover 32 is provided above the high-voltage side electrode component 1A by the first auxiliary member configured by the combined structure of the covers 31 and 32. Provided.
  • the AC voltage application space R31 is completely separated from the other spaces by the high-voltage side electrode component 1A and the covers 31 and 32. It becomes a separate and independent space.
  • the side space R33 is also completely separated from other spaces except the discharge space 66 and the source gas flow paths 31h and 32h by the bottom surface of the cover 32, the end region of the main surface 33b of the electrode component mounting base 33, and the outer peripheral protrusion 33x. It is separated.
  • a raw material gas supply connected to the discharge space 66 from the outside above the raw material gas flow passage 31h by the raw gas flow passage 31h, the raw material gas flow passage 32h, the side space R33, and the plurality of through holes 37h provided in the spacer 37. Forming a pathway.
  • the source gas channels 31h and 32h are provided independently of the hollow regions 31c and 32c.
  • the source gas supply path leading from the upper side of the source gas channel 31h to the discharge space 66 by the source gas channels 31h and 32h, the side surface space R33, and the plurality of through holes 37h of the spacer 37 is independent from the AC voltage application space R31. Formed.
  • the AC voltage application space R31 and the discharge space 66 are not spatially connected via the source gas supply path, the AC voltage application space R31 can completely separate the gas flow from the discharge space 66. it can.
  • the cover 32 is made of a non-metallic material.
  • the cover 32 is preferably made of the same material as that of the dielectric electrodes 111 and 211 so that it can cope with abnormal discharge occurring in the source gas flow path 32h.
  • the cover 31 is made of metal using a metal material as a constituent material. In order to install the cover 31 in a region where the electric field strength is low, the formation height of the cover 32 is set so as to ensure a sufficient distance from the metal electrodes 101H and 101L which are high voltage application regions.
  • an insulating material that does not cause a problem depending on a generation device generated by the active gas such as quartz or silicon nitride, may be used as the constituent material of the cover 32.
  • a generation device generated by the active gas such as quartz or silicon nitride
  • metal contamination derived from metal parts can be prevented by completely excluding the metal material from the source gas supply path provided at a position relatively close to the high-voltage side electrode component 1A that is a strong electric field region. It becomes possible.
  • the metal casing 34 which is a metal casing, includes an active gas generating electrode group 301 (the high-voltage side electrode component 1 ⁇ / b> A, the ground-side electrode component 2 ⁇ / b> A), the cover 32, and the electrode component unit mounting base 33.
  • the lower part of 31 is accommodated in an internal cavity.
  • the electrode component mounting base 33 is disposed on the bottom surface 34b of the hollow portion of the metal casing 34.
  • the active gas discharge port 34k (case gas discharge port) is positioned below the active gas discharge port 33k. Accordingly, the active gas ejected from the gas ejection port 55 is externally disposed along the gas flow 8 via the active gas passage port 33i, the active gas discharge port 33k, and the active gas discharge port 34k. It is ejected into the chamber.
  • the housing contacts between the side surface 34 d of the hollow portion of the metal housing 34, the side surface region of the lower part of the electrode component mounting base 33, the cover 32, and the cover 31, and a part of the bottom surface region of the upper part of the cover 31.
  • a space R34 is provided. As described above, the housing contact space R34 is provided between the covers 31 and 32 and the metal housing 34 outside the electrode component installation base 33. The housing contact space R34 is provided mainly to ensure an insulation distance from the metal electrodes 101H and 101L of the active gas generation electrode group 301.
  • the AC voltage application space R31 is configured to be an internal space completely independent from other spaces by the high-voltage electrode component 1A and the covers 31 and 32, and the discharge space 66 also supplies the source gas. It is configured to be an internal space independent of other spaces except for the route. Therefore, the housing contact space R34 is provided separately from the AC voltage application space R31 and the discharge space 66.
  • the above-described source gas supply path leading to the discharge space 66 is also an internal space independent of other spaces.
  • the gas flow between the discharge space 66 and the housing contact space R34 is completely separated.
  • the source gas supply path including the AC voltage application space R31, the discharge space 66, and the source gas flow paths 31h and 32h is separated from the housing contact space R34 so that the gas flow is separated. It is provided independently from the housing contact space R34.
  • an O-ring 70 is provided so as to surround the source gas flow paths 31h and 32h on the contact surface between the cover 31 and the cover 32.
  • an O-ring 70 is provided so as to surround the source gas flow path 32h and the side surface space R33 at the contact surface between the cover 32 and the electrode component installation base 33.
  • an O-ring 70 is provided so as to surround the active gas passage 33 i on the contact surface between the ground side electrode component 2 A and the electrode component mount 33, and the electrode component mount 33 and the metal housing 34 are in contact with each other.
  • An O-ring 70 is provided on the surface so as to surround the active gas discharge ports 33k and 34k. These O-rings 70 enhance the degree of sealing between the active gas passage port 33i, the active gas discharge port 33k, and the other space of the active gas discharge port 34k. In FIG. 1, all small circles indicate the O-ring 70.
  • FIG. 4 is an explanatory view schematically showing a general structure of a conventional active gas generator.
  • an active gas generating electrode group including a high-voltage side electrode constituting portion 81 and a ground side electrode constituting portion 82 is housed in a metal casing 84.
  • the high-voltage side electrode constituting portion 81 is formed on the dielectric electrode 811 by being provided on the metal electrode 801, and the ground-side electrode constituting portion 82 is formed on the metal electrode below the dielectric electrode.
  • the high-frequency power source 5 is provided between the metal electrode 801 of the high-voltage side electrode component 81 and the metal casing 84, and the ground level is electrically connected to the metal electrode of the ground-side electrode component 82 via the metal casing 84. Connected to.
  • a discharge space 86 is formed between the high-voltage side electrode component 81 and the ground-side electrode component 82 by applying a high voltage from the high-frequency power source 5. Active gas is jetted downward from a gas jet outlet 85 provided in the ground side electrode component 82.
  • the bottom surface of the hollow portion of the metal casing 84 has a main surface 84b and an outer peripheral protruding portion 84x protruding upward (+ Z direction) from the main surface 84b along the outer periphery of the main surface 84b.
  • the ground side electrode constituting portion 82 is disposed on the main surface 84b, and the end portion of the dielectric electrode 812 of the high voltage side electrode constituting portion 81 is disposed on the outer peripheral protruding portion 84x.
  • a raw material supply port 84 h is provided at the upper part of the metal casing 84, and an active gas discharge port 84 k located below the gas outlet 85 is provided at the lower part. Accordingly, the active gas ejected from the gas ejection port 55 is discharged to the outside along the gas flow 88 through the active gas discharge port 84k.
  • an AC voltage application space R81 is formed by the high voltage side electrode component 81 and the metal casing 84, and the AC voltage application space R81 is connected to the discharge space 86 via the flow path 84y provided in the outer peripheral protrusion 84x. ing.
  • the AC voltage application space R31 is provided separately from the discharge space 66, and the first auxiliary member composed of the covers 31 and 32 is the AC voltage application space R31.
  • the housing contact space R34 is provided separately from the discharge space 66, and the first auxiliary member constituted by the covers 31 and 32 is the housing contact. Independently of the space R34, the gas flow between the discharge space 66 and the housing contact space R34 is completely separated by having the source gas flow paths 31h and 32h for the source gas supply path.
  • the active gas generator of Embodiment 1 can surely avoid the first and second mixing phenomena described above, which cannot be avoided by the conventional active gas generator, so that a good quality active gas can be externally supplied. There is an effect that can be discharged.
  • the active gas generation apparatus of Embodiment 1 can supply the purge gas as the second gas other than the source gas into the AC voltage application space R31 from the purge gas supply port 31p. For this reason, the evaporative substance produced
  • FIG. 3 is an explanatory view schematically showing a cross-sectional structure of an active gas generation apparatus according to Embodiment 2 of the present invention.
  • the configuration of the active gas generation electrode group including the high voltage side electrode configuration unit 1A, the ground side electrode configuration unit 2A, and the spacer 37 is the same as that of the active gas generation electrode group 301 of the first embodiment.
  • cover 41 and the gas seal unit cover 42 constituting the first auxiliary member correspond to the cover 31 and the cover 32 of the first embodiment.
  • a source gas flow path 41h formed in the cover 41, a purge gas supply port 41p (second gas supply port), and a purge gas discharge port 41e (second gas discharge port) are formed in the source gas flow path 31h formed in the cover 31, This corresponds to the purge gas supply port 31p and the purge gas discharge port 31e.
  • the raw material gas flow path 42 h formed in the gas seal unit cover 42 corresponds to the raw material gas flow path 32 h formed in the cover 32.
  • the electrode component installation base 43 as the second auxiliary member corresponds to the electrode component installation base 33 of the first embodiment, and the active gas passage 43i and the active gas discharge port 43k are the active gas passage 33i and the active gas outlet 43k. Corresponds to the gas outlet 33k.
  • the active member gas outlet 43i and the active gas outlet 44k constitute an auxiliary member gas outlet.
  • the metal housing 44 corresponds to the metal housing 34 of the first embodiment, and the active gas discharge port 44k corresponds to the active gas discharge port 34k.
  • the AC voltage application space R41 corresponds to the AC voltage application space R31
  • the housing contact space R44 corresponds to the housing contact space R34.
  • the gas seal unit cover 42 holds the outer peripheral portions of the high-voltage side electrode component 1A and the ground-side electrode component 2A so as to be sandwiched from above and below. That is, the gas seal unit cover 42 functions as an electrode group holding member that holds the active gas generation electrode group 301 alone.
  • the raw material gas flow path 42 h is provided in the middle in the direction of the spacer 37, and is provided so as to be directly connected to the plurality of through holes 37 h of the spacer 37.
  • the electrode component mounting base 43 has the ground-side electrode component 2A disposed on the upper main surface 43s and is provided in the outer peripheral region of the main surface 43s, and the gas is formed on the stepped portion 43d having a lower formation height than the main surface 43s.
  • the electrode component installation base 43 as the second auxiliary member supports the active gas generating electrode group 301 together with the gas seal unit cover 42 from the ground side electrode component 2A side.
  • an AC voltage application space R41 is provided above the high-voltage side electrode component 1A by the first auxiliary member that is a combined structure of the cover 41 and the gas seal unit cover 42. It is done.
  • the source gas connected to the discharge space 66 from the outside above the source gas channel 41h by the source gas channel 41h, the source gas channel 42h, and the plurality of through holes 37h provided in the spacer 37.
  • a supply path is formed.
  • the source gas supply path that leads to the discharge space 66 from above the source gas flow path 41h is formed independently of the AC voltage application space R41. That is, the gas flow between the discharge space 66 and the AC voltage application space R41 is completely separated.
  • the AC voltage application space R41 is a space completely independent of other spaces by the high-voltage side electrode component 1A, the cover 41, and the gas seal unit cover 42.
  • the material gas supply path leading to the discharge space 66 is also completely separated from other spaces. Therefore, the housing contact space R44 is completely separated from the AC voltage application space R41 and the discharge space 66. That is, the gas flow between the discharge space 66 and the housing contact space R44 is completely separated.
  • the active gas generation apparatus can reliably avoid the first and second mixing phenomena as in the first embodiment, and can discharge a good quality active gas to the outside. There is an effect.
  • the active gas generation apparatus of the second embodiment can supply the purge gas from the purge gas supply port 41p to the AC voltage application space R41 as in the first embodiment, abnormal discharge occurs in the AC voltage application space R41.
  • the evaporated substance generated when it is generated can be removed to the outside from the purge gas discharge port 41e.
  • the raw material gas is provided between the source gas supply path, the AC voltage application space R41, and the housing contact space R44 by the amount that the side space R33 is not provided as in the first embodiment.
  • the gas shielding function can be enhanced.
  • the active gas generator of Embodiment 2 is characterized by having a gas seal unit cover 42 that functions as an electrode group holding member that holds the active gas generating electrode group 301 alone.
  • the combination structure of the active gas generation electrode group 301 and the gas seal unit cover 42 is the minimum necessary when the active gas generation electrode group 301 needs to be replaced for maintenance or the like. Since it can be transported as a configuration, it is possible to improve convenience.
  • the active gas generation electrode group 301 when the active gas generation electrode group 301 needs to be replaced in the active gas generation apparatus of the first embodiment, the active gas generation electrode group 301 is transported alone or “electrode configuration unit mounting base 33 + active gas generation” The electrode group 301 + covers 31 and 32 "need to be transported together as one combined structure.
  • the high-voltage side electrode component 1A and the ground-side electrode component 2A need to be individually conveyed, which is troublesome and is not easy to fix. There is a problem that the risk of breakage of the ground side electrode component 2A increases. On the other hand, in the case of the latter transportation, the combined structure has a problem that it is too large as a minimum structural unit.
  • the active gas generation apparatus of the second embodiment since the combined structure of the active gas generation electrode group 301 and the gas seal unit cover 42 can be transported as a necessary minimum configuration, the problem of the first embodiment described above. Will not occur.
  • the basic configuration is the same as that of the first embodiment shown in FIGS. 1 and 2 or the second embodiment shown in FIG. That is, the discharge space 66, the AC voltage application space R31 (R41), and the housing contact space R34 (R34) are completely separated from each other, and the gas generated in one space is not mixed into the other space.
  • the pressure in the discharge space 66 is set to a relatively weak weak atmospheric pressure of about 10 kPa to 30 kPa.
  • 100% of nitrogen gas can be considered as a raw material gas in the said pressure setting.
  • the discharge space 66 is a space that generates the discharge D1 and activates the source gas, it is desirable to start the discharge at a lower voltage.
  • the discharge D1 itself is caused by the dielectric breakdown of the gas when the electric field strength exceeds a certain value.
  • the electric field strength that causes dielectric breakdown is determined by the type and pressure of the source gas, and the lower the pressure near atmospheric pressure, the lower the electric field strength that leads to dielectric breakdown. From the above viewpoint, the pressure setting described above is performed in the discharge space 66.
  • the structure shown in the first embodiment or the second embodiment has a structure in which the discharge space 66 and the gas layers in the AC voltage application space R31 and the housing contact space R34 are separated from each other. Is set lower than the pressure in the AC voltage application space R31 and the housing contact space R34, so that the discharge D1 in the discharge space 66 is generated even at a lower applied voltage, and the AC voltage application space R31 and the housing contact
  • the active gas generation apparatus sets the pressure in the discharge space 66 to be relatively low so that the discharge phenomenon occurs even at a lower applied voltage, and the AC voltage application space R31 and the casing. There is an effect that the discharge phenomenon does not occur by setting the pressure of the contact space R34 to be relatively high.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本発明は、良質な活性ガスを生成することができる活性ガス生成装置を提供することを目的とする。そして、本発明は、活性ガス生成用電極群(301)の高圧側電極構成部(1A)と接地側電極構成部(2A)との間に形成される放電空間(66)による放電によって、供給された原料ガスを活性化して活性ガスを生成する。カバー(31及び32)の組み合わせ構造は、放電空間(66)と交流電圧印加空間(R31)とを完全分離し、かつ、交流電圧印加空間(R31)と独立して、外部から供給される原料ガスを放電空間(66)に導く、原料ガス供給経路用の原料ガス流路(31h,32h)を有する。金属筐体(34)とカバー(31及び32)並びに電極構成部設置台(33)との間に形成される筐体接触空間(R34)は、交流電圧印加空間(R31)、放電空間(66)それぞれと完全分離される。

Description

活性ガス生成装置
 この発明は、2つの電極を平行に設置して、両電極間に高電圧を印加し、放電を発生させたエネルギーで活性ガスを得る活性ガス生成装置に関する。
 2つの電極を平行に設置して、両電極間に高電圧を印加し、両電極間の放電空間に放電現象を発生させたエネルギーで活性ガスを得る活性ガス生成装置は、一方の電極に交流の高電圧が印加され、他方の電極は接地レベル等の基準電圧に設定されるのが一般的である。
 このような活性ガス生成装置は、高電圧の給電部となる一方の電極には数kVrms(Root Mean Square)の高電圧を印加している。また、一対の電極間に形成される放電空間以外の空間においては、そこに存在するガスが絶縁破壊しないよう給電部/接地部(他方の電極及びそれに電気的に接続される部品箇所)との距離は十分離している。しかしながら、ミクロ的な視点において給電部の金属部品の形状や表面状態によって周辺ガス層の絶縁破壊を引き起こすに足る電界強度の集中はどうしても避けられない。
 そして、放電空間以外で絶縁破壊が発生した場合、近傍部品の構成元素の蒸発を招く現象が生じ、近傍部品が金属製の場合、上記現象が半導体成膜工程においてはメタルコンタミネーションの要因となってしまう。
 このようなメタルコンタミネーションを考慮した活性ガス生成装置として例えば特許文献1で開示されたプラズマ発生装置や特許文献2で開示されたプラズマ処理装置がある。
 特許文献1で開示されたプラズマ発生装置は、対向した高圧側電極構成部/接地側電極構成部間に設けた放電部で誘電体バリア放電を行い、そこに原料ガスを通すことで活性ガスを生成する装置である。この装置は、放電部と交流電圧印加部とが分離されておらず、同一空間に存在しており、原料ガスは交流電圧印加部を通過した後に放電空間へと供給され、最終的には処理チャンバーへと供給される。
 特許文献2で開示されたプラズマ処理装置は、対向する電極構成部の外縁部に絶縁体を挿入・密閉する構造が用いられている。このような構造にすることにより、放電部から電極構成部が設置されている筺体(接地極を含む)への異常放電を抑制することを意図している。
特許第5694543号公報 特許第5328685号公報(図10)
 しかしながら、特許文献1で開示されたプラズマ発生装置では、原料ガスの絶縁破壊による放電は必ずしも放電部でのみ発生する訳では無い。巨視的観点からは、絶縁距離を十分取ることで放電部以外での不要な放電を抑制するよう設計している。不要な放電として、例えば、交流電圧を印加している高圧側電極構成部の金属電極と電極構成部を収納している金属筺体間での異常放電が考えられる。
 しかしながら、微視的観点にたつと交流電圧を印加する電流導入端子やそれに接続される金属部品等の表面には必ず凹凸が形成されており、その凸部周辺では場所によっては強電界領域が形成され、その結果ガスの絶縁破壊、すなわち異常放電が発生するという可能性を“0”をすることは非常に困難である。
 したがって、特許文献1で開示されたプラズマ発生装置は、上述した絶縁破壊によって近傍に設置されている部品構成元素の蒸発を誘発し、それが原料ガスに混入して放電部・処理チャンバーへと供給されることで半導体のメタルコンタミネーションとなってしまう問題点があった。
 また、特許文献2で開示されたプラズマ処理装置においても、異常放電が発生してしまった際のメタルコンタミネーション混入防止処置としては不十分である。なぜなら、放電部と交流電圧印加部は依然として同一空間内に存在しており、交流電圧印加部を経由した原料ガスが放電部へと進むことで活性ガスを生成する構造には変わりはないからである。すなわち、特許文献2で開示されたプラズマ処理装置は、特許文献1で開示されたプラズマ発生装置と同様にメタルコンタミネーションの発生が回避できないため、その分、生成する活性ガスの品質を劣化してしまう問題点があった。
 本発明では、上記のような問題点を解決し、良質な活性ガスを生成することができる活性ガス生成装置を提供することを目的とする。
 この発明の係る活性ガス生成装置は、第1の電極構成部と前記第1の電極構成部の下方に設けられる第2の電極構成部とを有する活性ガス生成用電極群と、前記第1及び第2の電極構成部に前記第1の電極構成部が高電圧となるように交流電圧を印加する交流電源部とを備え、前記交流電源部による前記交流電圧の印加により、前記第1及び第2の電極構成部間に放電空間が形成され、前記放電空間に供給された原料ガスを活性化して得られる活性ガスが前記第2の電極構成部に設けられたガス噴出口から噴出され、前記第1の電極構成部との間に前記放電空間と分離して交流電圧印加空間を形成するように設けられる第1の補助部材と、非金属材料で構成され、前記活性ガス生成用電極群を前記第2の電極構成部側から支持する第2の補助部材とを備え、前記第2の補助部材は前記ガス噴出口から噴出される活性ガスを通過させる補助部材用ガス排出口を有し、前記活性ガス生成用電極群及び前記第2の補助部材の全てと、前記第1の補助部材の少なくとも一部を収容する金属製の筐体をさらに備え、前記筐体は補助部材用ガス排出口を通過する活性ガスを外部に排出する筐体用ガス排出口を有し、前記筐体と前記第1及び第2の補助部材との間に前記放電空間と分離した筐体接触空間が設けられ、前記第1の補助部材は、前記交流電圧印加空間及び前記筐体接触空間それぞれと独立して、外部から供給される原料ガスを前記放電空間に導く、原料ガス供給経路用の原料ガス流路を有することにより、前記放電空間と前記交流電圧印加空間とのガスの流れを分離し、かつ、前記放電空間と前記筐体接触空間とのガスの流れを分離する。
 請求項1記載の本願発明である活性ガス生成装置において、交流電圧印加空間は放電空間から分離して設けられており、第1の補助部材は、交流電圧印加空間と独立して、外部から供給される原料ガスを前記放電空間に導く、原料ガス供給経路用の原料ガス流路を有することにより、放電空間と交流電圧印加空間とのガスの流れを分離している。
 このため、交流電圧印加空間で異常放電が発生した場合に生成される、第1の電極構成部の構成材料等の蒸発物質が、直接あるいは原料ガス供給経路を経由して放電空間に混入される第1の混入現象を確実に回避することができる。
 加えて、請求項1記載の本願発明において、筐体接触空間は放電空間から分離して設けられており、第1の補助部材は、筐体接触空間と独立して、原料ガス供給経路用の原料ガス流路を有することにより、放電空間と筐体接触空間とのガスの流れを分離している。
 このため、筐体接触空間で生成された蒸発物質が放電空間に混入する第2の混入現象も確実に回避することができる。
 その結果、請求項1記載の本願発明である活性ガス生成装置は、上述した第1及び第2の混入現象を確実に回避して、良質な活性ガスを外部に排出することができる効果を奏する。
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
この発明の実施の形態1である活性ガス生成装置の断面構造を模式的に示す説明図である。 実施の形態1の活性ガス生成装置の主要構成部を分解した状態で示す説明図である。 この発明の実施の形態2である活性ガス生成装置の断面構造を模式的に示す説明図である。 従来の活性ガス生成装置の一般的な構造を模式的に示す説明図である。
 <活性ガス生成装置の概略>
 以下での述べる実施の形態1~実施の形態3で共通する活性ガス生成装置の特徴箇所について説明する。高圧側電極構成部及び接地側電極構成部をギャップ長だけ離して対向的に一対配置することにより、誘電体バリア放電の活性ガス生成用電極群としている。活性ガス生成用電極群において、高圧側電極構成部及び接地側電極構成部間に形成される空間が放電空間となる。
 この活性ガス生成用電極群は金属製の筺体内に収納されており、活性ガス生成用電極群及び筐体を含む活性ガス生成装置はシリコンウェハーを成膜処理する処理チャンバーの直上に設置されている。活性ガス生成用電極群の誘電体電極表面の一部には金属電極がメタライズ処理されており、それによって誘電体電極と金属電極は一体形成されている。メタライズ処理は印刷焼成方法やスパッタリング処理、蒸着処理等を用いて形成されている。
 金属電極部には高周波電源が接続されている。接地側電極構成部は筺体と共に接地されており、基準電位に固定されている。高周波電源から活性ガス生成用電極群に10kHz~100kHz、2~10kVの交流電圧V0p(0ピーク値)を印加することにより、活性ガス生成用電極群の放電空間において誘電体バリア放電を発生させている。
 活性ガス生成装置には外部からガス供給口(原料ガス流路)を経由して窒素や酸素、希ガス類や水素、弗素類の原料ガスを供給している。これら原料ガスが活性ガス生成用電極群の外周部に設けられた原料ガス供給経路を経由して電極内部の放電空間へと進み、内部の放電空間にて活性化され、この活性ガスを含んだガスは接地側電極構成部に設けられたガス噴出口から筐体外部の処理チャンバーへと噴出され、成膜処理を行うものである。
 <実施の形態1>
 図1はこの発明の実施の形態1である活性ガス生成装置の断面構造を模式的に示す説明図である。図2は実施の形態1の活性ガス生成装置の主要構成部を分解した状態で示す説明図である。なお、図1及び図2並びに以降で述べる図3及び図4それぞれにXYZ直交座標系を示している。
 図2の(b)及び(c)に示すように、活性ガス生成用電極群301は、高圧側電極構成部1A(第1の電極構成部)と高圧側電極構成部1Aの下方に設けられる接地側電極構成部2A(第2の電極構成部)とを有している。
 接地側電極構成部2Aは誘電体電極211と金属電極201H及び201Lとを有しており、誘電体電極211はX方向を長手方向、Y方向を短手方向とした長方形状の平板構造を呈している。
 誘電体電極211に関し、中央においてX方向に沿って、複数のガス噴出口55が設けられる。複数のガス噴出口55はそれぞれ誘電体電極211の上面から下面に貫通して設けられる。
 さらに、クサビ形段差形状部51は、平面視して複数のガス噴出口55に重複することなく、平面視して複数のガス噴出口55それぞれに近づくに従いY方向の形成幅が短くなるように形成される。具体的には、5つのガス噴出口55間に平面視菱形状に形成され、互いに離散した4つの菱形単体部51sと、5つのガス噴出口55のうち両端のガス噴出口55の外側に設けられた平面視略二等辺三角形状の2つの三角単体部51tとの集合体によりクサビ形段差形状部51が形成される。
 加えて、誘電体電極211はX方向の両端側に上方に突出して形成される直線形段差形状部52A及び52Bをさらに有している。直線形段差形状部52A及び52Bは平面視して、誘電体電極211の短手方向の全長に亘ってY方向に延びて形成され、クサビ形段差形状部51の形成高さと共に直線形段差形状部52A及び52Bの形成高さにより、放電空間66におけるギャップ長を規定している。
 図2(b) に示すように、金属電極201H及び201Lは誘電体電極211の下面上に形成され、平面視して誘電体電極211の中央領域を挟んで互いに対向して配置される。金属電極201H及び201Lは平面視して略長方形状を呈し、X方向を長手方向とし、X方向に直角に交差するY方向を互いに対向する方向としている。
 なお、金属電極201H及び201Lは誘電体電極211の下面にてメタライズ処理されることにより形成され、その結果、誘電体電極211と金属電極201H及び201Lとは一体形成されて接地側電極構成部2Aを構成する。メタライズ処理として印刷焼成方法やスパッタリング処理、蒸着処理等を用いた処理が考えられる。
 一方、高圧側電極構成部1Aの誘電体電極111は誘電体電極211と同様、X方向を長手方向、Y方向を短手方向とした長方形状の平板構造を呈している。なお、誘電体電極111及び誘電体電極211は例えばセラミックを構成材料としている。
 また、金属電極101H及び101Lは誘電体電極111の上面上に形成され、平面視して誘電体電極211の中央領域に対応する同形状の中央領域を挟んで互いに対向して配置される。この際、金属電極101H及び101Lは、金属電極201H及び201Lと同様、平面視して略長方形状を呈し、X方向を長手方向とし、X方向に直角に交差するY方向を互いに対向する方向としている。金属電極101H及び101Lも、金属電極201H及び201Lと同様にメタライズ処理により誘電体電極111の上面上に形成することができる。
 そして、図2(c) に示すように、接地側電極構成部2A上に高圧側電極構成部1Aを配置することにより活性ガス生成用電極群301を組み立てることができる。この際、高電圧電極構成部1Aにおける誘電体電極111の中央領域と、接地側電極構成部2Aにおける誘電体電極211の中央領域とが平面視重複するように位置決めしつつ、高圧側電極構成部1Aを接地側電極構成部2A上に積み上げて組み合わせることにより、最終的に活性ガス生成用電極群301を完成することができる。
 なお、活性ガス生成用電極群301のX方向に延びる両側面の直線形段差形状部52A及び52B間において一対のスペーサ37が設けられる。一対のスペーサ37は高圧側電極構成部1A,接地側電極構成部2A間に設けられ、上述したクサビ形段差形状部51、直線形段差形状部52A及び52Bと共に、その形成高さにより、放電空間66におけるギャップ長を規定している。スペーサ37は非金属材料で構成されており、誘電体電極111及び211と同じ材質で形成することが望ましい。
 さらに、一対のスペーサ37にはY方向に延びる複数の貫通口37hが設けられ、活性ガス生成用電極群301の外部から、複数の貫通口37hを介して高圧側電極構成部1A及び接地側電極構成部2A間の放電空間66内に原料ガスを供給することができる。
 活性ガス生成用電極群301を構成する誘電体電極111と誘電体電極211とが対向する誘電体空間内において、金属電極101H及び101Lと金属電極201H及び201Lとが平面視重複する領域が放電空間として規定される。
 金属電極101H及び101L並びに金属電極201H及び201Lには、(高圧)高周波電源5(交流電源部)に接続されている。具体的には、接地側電極構成部2Aの金属電極201H及び201Lは、金属筐体34及び電極構成部設置台33の内部に選択的に設けられたけられた金属部品(図示せず)を介して接地されており、本実施の形態では、高周波電源5より0ピーク値を2~10kVで固定して、周波数を10kHz~100kHzで設定した交流電圧を金属電極101H及び101L,金属電極201H及び201L間に印加している。なお、電極構成部設置台33は上記金属部品を除き絶縁性を有する構成材料で形成されており、例えばセラミックを構成材料としている。また、上記金属部品の設置態様としては、後述する活性ガス排出口33kのように電極構成部設置台33を上下に貫通するくり抜き穴を複数個設け、複数のくり抜き穴内それぞれに接地側電極構成部2Aの金属電極201H及び201Lと金属筐体44とを電気的に接続するように、上記金属部品を設ける等の態様が考えられる。
 そして、実施の形態1の活性ガス生成装置は、図1に示すように、上述した構成の活性ガス生成用電極群301(高圧側電極構成部1A,接地側電極構成部2Aを含む)が金属筐体34内にカバー31、カバー32及び電極構成部設置台33を用いて収容されている。
 前述したように、活性ガス生成用電極群301に対し高圧側電極構成部1Aが高電圧となるように交流電圧を印加する高周波電源5(交流電源部)が設けられる。高周波電源5による交流電圧の印加により、高圧側電極構成部1A及び接地側電極構成部2A間に放電空間66が形成され、この放電空間66に供給された原料ガスを活性化して得られる活性ガスが接地側電極構成部2Aに設けられた複数のガス噴出口55から下方に向けて噴出される。
 カバー31及び32の組み合わせ構造で構成される第1の補助部材は、高圧側電極構成部1Aとにより、放電空間66と分離した交流電圧印加空間R31を形成するように、高圧側電極構成部1Aの上方に設けられる。
 一方、第2の補助部材である電極構成部設置台33は、その主要面33b(図2(d) 参照)上に接地側電極構成部2Aの下面全面を配置し、活性ガス生成用電極群301を接地側電極構成部2A側から支持している。また、電極構成部設置台33の外周部は主要面33bより上方(+Z方向)に突出している外周突出部33xを有しており、外周突出部33xにより活性ガス生成用電極群301全体を囲んでおり、外周突出部33xとスペーサ37との間が側面空間R33(図1,図2(c) 参照)となる。
 また、図1及び図2(d) に示すように、電極構成部設置台33は複数のガス噴出口55から噴出される活性ガスを通過させ、下方に導く複数の活性ガス通過口33i及び複数の活性ガス排出口33kを有している。複数の活性ガス通過口33iは複数のガス噴出口55と平面視一致するように配置され、複数の活性ガス通過口33iの下方に複数の活性ガス排出口33kがそれぞれ設けられる。活性ガス通過口33i及び活性ガス排出口33kの組み合わせにより、対応するガス噴出口55から噴出される活性ガスを通過させる補助部材用ガス排出口が構成される。
 第1の補助部材の一部を構成するカバー32は、図2(a) に示すように、平面視して矩形環状に形成され、高圧側電極構成部1Aの端部及び電極構成部設置台33の外周突出部33x上に配置される。カバー32の内周領域である中空領域32cは平面視して高圧側電極構成部1Aの形状より小さく、高圧側電極構成部1A内に収まるように高圧側電極構成部1A上に配置される。一方、電極構成部設置台33の外周領域は、平面視して高圧側電極構成部1Aより大きく、高圧側電極構成部1A全体を含むように配置される。
 さらに、カバー32は、図1及び図2(a)に示すように、カバー32を上下方向(Z方向)に貫通する原料ガス流路32hを有している。原料ガス流路32hはカバー32のX方向に延びる長辺領域において、中央部にX方向に延びて直線状に形成される。そして、原料ガス流路32hの下方に側面空間R33が位置する。
 さらに、カバー32上にカバー31が配置される。カバー31は下部が平面視して、カバー32と同一の矩形環状に形成され、上部が平面視して矩形状に形成され、上部の端部が金属筐体34の上面上に配置される。カバー31の内周領域である中空領域31cは平面視してカバー32の中空領域32cと同一形状を呈している。そして、カバー31の上部の端部がボルト等の固定手段を用いて、金属筐体34の上面に固定される。
 図1に示すように、カバー31は上下方向に貫通する原料ガス流路31hを有しており、原料ガス流路31hは円柱状に形成されており、原料ガス流路31hの下方に原料ガス流路32hの一部が位置する。なお、原料ガス流路31hを原料ガス流路32hと同様に、カバー31のX方向に延びる長辺領域において、中央部にX方向に延びて直線状に形成し、原料ガス流路31hの下方に原料ガス流路32hの全体が位置するようにしても良い。
 さらに、カバー31は上部において、上下方向に貫通する,原料ガス以外の第2ガスであるパージガス用の第2ガス供給口であるパージガス供給口31pと第2ガス排出口であるパージガス排出口31eとを有している。パージガス供給口31p及びパージガス排出口31eはそれぞれ円柱状に設けられる。パージガス供給口31p及びパージガス排出口31eは共に下方が中空領域31cに達するように設けられる。また、パージガス供給口31p及びパージガス排出口31eは原料ガス流路31hとは独立して設けられており、パージガスと原料ガスとが混在することがないようにしている。なお、パージガス供給口31pから供給するパージガスとして、窒素あるいは不活性ガスが用いられる。また、パージガス供給口31p及びパージガス排出口31eは放電空間66及び後述する筐体接触空間R34とも独立して形成されている。
 カバー31及び32の組み合わせ構造により構成される第1の補助部材によって、高圧側電極構成部1Aの上方に、カバー31の中空領域31cとカバー32の中空領域32cとからなる交流電圧印加空間R31が設けられる。
 前述したように、カバー31及び32は共に平面視して矩形環状に形成されているため、交流電圧印加空間R31は高圧側電極構成部1A、カバー31及び32により、他の空間とは完全に分離された独立した空間となる。側面空間R33もカバー32の底面と電極構成部設置台33の主要面33bの端部領域と外周突出部33xとにより、放電空間66及び原料ガス流路31h及び32hを除く他の空間から完全に分離されている。
 加えて、原料ガス流路31h、原料ガス流路32h、側面空間R33及びスペーサ37に設けられる複数の貫通口37hによって、原料ガス流路31hの上方である外部から放電空間66に繋がる原料ガス供給経路を形成している。この際、原料ガス流路31h及び32hは中空領域31c及び32cと独立して設けられる。
 したがって、原料ガス流路31h及び32h、側面空間R33並びにスペーサ37の複数の貫通口37hによって、原料ガス流路31hの上方から放電空間66に導く原料ガス供給経路は、交流電圧印加空間R31から独立して形成される。
 その結果、原料ガス供給経路を介して交流電圧印加空間R31と放電空間66とが空間的に繋がることはいため、交流電圧印加空間R31は放電空間66とのガスの流れを完全に分離することができる。
 なお、カバー32は非金属材料を構成材料としている。カバー32は、原料ガス流路32h内で異常放電が発生しても対応可能なように、誘電体電極111及び211の構成材料と同一材料を構成材料とすることが望ましい。また、カバー31は金属材料を構成材料とした金属製である。カバー31を電界強度が低い領域に設置すべく、カバー32の形成高さは、高電圧印加領域である金属電極101H及び101Lから十分な距離を確保するよう設定される。
 また、活性ガスによって生成される生成デバイスによっては混入しても問題の無い絶縁物質、例えば石英や窒化シリコン等をカバー32の構成材料としても良い。この場合、仮に原料ガス供給経路(例えばカバー32やスペーサ37)で異常放電が発生してその構成元素が蒸発し、原料ガス中に混入しても成膜処理上は全く問題が無い。
 このように、強電界領域である高圧側電極構成部1Aに比較的近い位置に設けられる原料ガス供給経路から金属材料を完全に排除することにより、金属部品由来のメタルコンタミネーションを防止することが可能となる。
 金属製の筐体である金属筐体34は、活性ガス生成用電極群301(高圧側電極構成部1A,接地側電極構成部2A)、カバー32及び電極構成部設置台33の全てと、カバー31の下部を内部の空洞部内に収容する。
 金属筐体34の空洞部の底面34b上に電極構成部設置台33が配置され、この際、活性ガス排出口33kの下方に活性ガス排出口34k(筐体用ガス排出口)が位置する。したがって、ガス噴出口55から噴出される活性ガスは、ガスの流れ8に沿って、活性ガス通過口33i、活性ガス排出口33k及び活性ガス排出口34kを介して、下方に設けられる外部の処理チャンバー等に噴出される。
 また、金属筐体34の空洞部の側面34dと電極構成部設置台33、カバー32、及びカバー31の下部の側面領域、並びにカバー31の上部の底面領域の一部との間に筐体接触空間R34が設けられる。このように、カバー31及び32並びに電極構成部設置台33の外部において金属筐体34との間に筐体接触空間R34が設けられる。筐体接触空間R34は主として活性ガス生成用電極群301の金属電極101H及び101Lとの絶縁距離を確保するため設けられる。
 前述したように、交流電圧印加空間R31は高圧側電極構成部1A、カバー31及び32により、他の空間から完全に独立した内部空間となるように構成されており、放電空間66も原料ガス供給経路以外を除き他の空間から独立した内部空間となるように構成されている。したがって、筐体接触空間R34は交流電圧印加空間R31及び放電空間66と分離して設けられる。
 さらに、原料ガス供給経路用の原料ガス流路31h,32hを筐体接触空間R34と独立して設けることにより、放電空間66に至る上述した原料ガス供給経路も他の空間から独立した内部空間となるように構成されているため、放電空間66と筐体接触空間R34とのガスの流れを完全に分離している。
 このように、交流電圧印加空間R31、放電空間66、並びに原料ガス流路31h及び32hを含む原料ガス供給経路はそれぞれ、筐体接触空間R34との間にガスの流れが分離されるように、筐体接触空間R34から独立して設けられる。
 また、カバー31とカバー32との接触面において原料ガス流路31h及び32hを取り囲むようにOリング70が設けられる。同様にして、カバー32と電極構成部設置台33との接触面においての原料ガス流路32h及び側面空間R33を取り囲むようにOリング70が設けられる。これらのOリング70によって原料ガス供給経路の他の空間との間の密封度合を高めている。
 また、接地側電極構成部2Aと電極構成部設置台33との接触面において活性ガス通過口33iを取り囲むようにOリング70が設けられ、電極構成部設置台33と金属筐体34との接触面において活性ガス排出口33k及び34kを取り囲むようにOリング70が設けられる。これらのOリング70によって活性ガス通過口33i、活性ガス排出口33k及び活性ガス排出口34kの他の空間との間の密封度合を高めている。また、図1において、小さい丸印はいずれもOリング70を示している。
 図4は従来の活性ガス生成装置の一般的な構造を模式的に示す説明図である。同図に示すように、金属筐体84内に高圧側電極構成部81及び接地側電極構成部82からなる活性ガス生成用電極群が収納される。高圧側電極構成部81は誘電体電極811上に金属電極801に設けられて形成され、接地側電極構成部82は誘電体電極下に金属電極に設けられて形成される。
 そして、高圧側電極構成部81の金属電極801と金属筐体84との間に高周波電源5が設けられ、接地レベルは金属筐体84を介して接地側電極構成部82の金属電極に電気的に接続される。
 高周波電源5による高電圧に印加により、高圧側電極構成部81と接地側電極構成部82との間に放電空間86が形成される。接地側電極構成部82に設けられたガス噴出口85から活性ガスを下方に噴出している。
 また、金属筐体84の空洞部の底面に主要面84bと、主要面84bの外周に沿って主要面84bより上方(+Z方向)に突出している外周突出部84xを有している。主要面84b上に接地側電極構成部82が配置され、外周突出部84x上に高圧側電極構成部81の誘電体電極812の端部が配置される。
 また、金属筐体84の上部には原料供給口84hが設けられ、下部にはガス噴出口85の下方に位置する活性ガス排出口84kが設けられる。したがって、ガス噴出口55から噴出される活性ガスは、ガスの流れ88に沿って、活性ガス排出口84kを介して外部に排出される。
 一方、高圧側電極構成部81と金属筐体84によって交流電圧印加空間R81が形成され、交流電圧印加空間R81は外周突出部84xに設けられた流路84yを経由して、放電空間86に繋がっている。
 以下、実施の形態1の活性ガス生成装置の効果について、図4で示した従来の活性ガス生成装置と対比して説明する。
 実施の形態1の活性ガス生成装置において、交流電圧印加空間R31は放電空間66から分離して設けられており、カバー31及び32より構成される第1の補助部材は、交流電圧印加空間R31と独立して、外部から供給される原料ガスを放電空間66に導く、原料ガス供給経路用の原料ガス流路31h及び32hを有することにより、放電空間66と交流電圧印加空間R31とのガスの流れを完全分離している。
 このため、交流電圧印加空間R31で異常放電D2が発生した場合に生成される、高圧側電極構成部1A(特に金属電極101H及び101L)の構成材料等の蒸発物質が、直接あるいは原料ガス供給経路を経由して放電空間66に混入される第1の混入現象を確実に回避することができる。
 一方、図4で示した従来の活性ガス生成装置では、交流電圧印加空間R81と放電空間86とが流路84yを介して空間的に繋がっているため、交流電圧印加空間R31で生成される上記蒸発物質が、原料ガス供給経路である流路84yに混入される第1の混入現象を回避することができない。
 加えて、実施の形態1の活性ガス生成装置において、筐体接触空間R34は放電空間66から分離して設けられており、カバー31及び32より構成される第1の補助部材は、筐体接触空間R34と独立して、原料ガス供給経路用の原料ガス流路31h及び32hを有することにより、放電空間66と筐体接触空間R34とのガスの流れを完全分離している。
 このため、筐体接触空間R34における異常放電D3等により生成された蒸発物質が放電空間66に混入する第2の混入現象も確実に回避することができる。
 一方、従来の活性ガス生成装置では、高圧側電極構成部81及び接地側電極構成部82を通過して交流電圧印加空間R81から、金属筐体84に向かって異常放電D4が発生した場合を考える。この場合、接地側電極構成部82が上部に配置されておらず、上部が露出した主要面84b上の空間(実施の形態1の筐体接触空間R34に相当する空間)で生成された蒸発物質が放電空間86に混入する第2の混入現象を回避することができない。
 その結果、実施の形態1の活性ガス生成装置は、従来の活性ガス生成装置では回避できない上述した第1及び第2の混入現象を確実に回避することができるため、良質な活性ガスを外部に排出することができる効果を奏する。
 さらに、実施の形態1の活性ガス生成装置は、原料ガス以外の第2のガスとしてパージガスをパージガス供給口31pから交流電圧印加空間R31内に供給することができる。このため、交流電圧印加空間R31内に異常放電が発生した場合に生成される蒸発物質をパージガス排出口31eから外部に除去することができる。
 なお、上記した原料ガス供給経路は交流電圧印加空間R31と独立して設けられているため、パージガスの供給によって原料ガスが影響を受けることはない。
 <実施の形態2>
 図3はこの発明の実施の形態2である活性ガス生成装置の断面構造を模式的に示す説明図である。
 高圧側電極構成部1A、接地側電極構成部2A及びスペーサ37を含む活性ガス生成用電極群の構成は実施の形態1の活性ガス生成用電極群301と同じである。
 また、第1の補助部材を構成するカバー41及びガスシールユニットカバー42は、実施の形態1のカバー31及びカバー32に対応する。カバー41に形成される原料ガス流路41h、パージガス供給口41p(第2ガス供給口)、及びパージガス排出口41e(第2ガス排出口)は、カバー31に形成される原料ガス流路31h、パージガス供給口31p、及びパージガス排出口31eに対応する。
 また、ガスシールユニットカバー42に形成される原料ガス流路42hは、カバー32に形成される原料ガス流路32hに対応する。
 第2の補助部材である電極構成部設置台43は、実施の形態1の電極構成部設置台33に対応し、活性ガス通過口43i及び活性ガス排出口43kは、活性ガス通過口33i及び活性ガス排出口33kに対応する。活性ガス通過口43i及び活性ガス排出口44kにより補助部材用ガス排出口を構成する。
 金属筐体44は実施の形態1の金属筐体34に対応し、活性ガス排出口44kは活性ガス排出口34kに対応する。
 また、交流電圧印加空間R41は交流電圧印加空間R31に対応し、筐体接触空間R44は筐体接触空間R34に対応する。
 以下、実施の形態2の特徴部分を中心に説明する。なお、同一符号、または上記対応関係を有する箇所は、以下で説明した内容を除き、実施の形態1と同様な特徴を有しているため、説明を省略する。
 ガスシールユニットカバー42は高圧側電極構成部1A及び接地側電極構成部2Aそれぞれの外周部を上下から挟み込むようにして保持する。すなわち、ガスシールユニットカバー42は、活性ガス生成用電極群301を単独で保持する電極群保持部材として機能する。
 また、ガスシールユニットカバー42において、原料ガス流路42hは途中でスペーサ37の方向に屈曲して設けられ、スペーサ37の複数の貫通口37hと直結するように設けられる。
 電極構成部設置台43は上部の主要面43s上に接地側電極構成部2Aを配置するともに、主要面43sの外周領域に設けられ、主要面43sより形成高さが低い段差部43d上にガスシールユニットカバー42の一部を配置することにより、ガスシールユニットカバー42を含む活性ガス生成用電極群301を、接地側電極構成部2A側から支持している。
 このように、第2の補助部材である電極構成部設置台43は、ガスシールユニットカバー42と共に活性ガス生成用電極群301を接地側電極構成部2A側から支持している。
 実施の形態1のカバー31及び32と同様、カバー41とガスシールユニットカバー42との組み合わせ構造である第1の補助部材により、高圧側電極構成部1Aの上方に、交流電圧印加空間R41が設けられる。
 また、実施の形態2において、原料ガス流路41h、原料ガス流路42h及びスペーサ37に設けられる複数の貫通口37hによって、原料ガス流路41hの上方である外部から放電空間66に繋がる原料ガス供給経路を形成している。
 したがって、実施の形態2の活性ガス生成装置は、原料ガス流路41hの上方から放電空間66に導く上記原料ガス供給経路は、交流電圧印加空間R41から独立して形成される。すなわち、放電空間66と交流電圧印加空間R41とのガスの流れを完全分離している。
 また、金属筐体44の空洞部の側面44dと電極構成部設置台43、ガスシールユニットカバー42、及びカバー41の下部の側面領域、並びにカバー41の上部の底面領域の一部との間に筐体接触空間R44が設けられる。
 交流電圧印加空間R41は、実施の形態1の交流電圧印加空間R31と同様、高圧側電極構成部1A、カバー41及びガスシールユニットカバー42により、他の空間から完全に独立した空間となるように構成されており、放電空間66に至る原料ガス供給経路も他の空間から完全に分離されている。したがって、筐体接触空間R44は、交流電圧印加空間R41及び放電空間66と完全分離されている。すなわち、放電空間66と筐体接触空間R44とのガスの流れを完全分離している。
 したがって、実施の形態2の活性ガス生成装置は、実施の形態1と同様、第1及び第2の混入現象を確実に回避することができるため、良質な活性ガスを外部に排出することができる効果を奏する。
 さらに、実施の形態2の活性ガス生成装置は、実施の形態1と同様、パージガスをパージガス供給口41pから交流電圧印加空間R41に供給することができるため、交流電圧印加空間R41内に異常放電が発生した場合に生成される蒸発物質をパージガス排出口41eから外部に除去することができる。
 また、実施の形態2は、原料ガス供給経路として、実施の形態1のように側面空間R33を設けない分、原料ガス供給経路と交流電圧印加空間R41及び筐体接触空間R44との間で原料ガスのシールド機能を高めることができる。
 さらに、実施の形態2の活性ガス生成装置は、活性ガス生成用電極群301を単独で保持する電極群保持部材として機能するガスシールユニットカバー42を有していることを特徴としている。
 実施の形態2は上記特徴を有することにより、メンテナンス等で活性ガス生成用電極群301の交換が必要な際、活性ガス生成用電極群301とガスシールユニットカバー42との組み合わせ構造体を必要最小構成として運搬することができるため、利便性の向上を図ることができる。
 一方、実施の形態1の活性ガス生成装置で活性ガス生成用電極群301の交換が必要な場合、活性ガス生成用電極群301を単独で運搬するか、「電極構成部設置台33+活性ガス生成用電極群301+カバー31及び32」をまとめて1つの組み合わせ構造体として運搬する必要がある。
 前者の運搬の場合、高圧側電極構成部1A及び接地側電極構成部2Aをそれぞれ個別に運搬する必要が生じて煩わしく、かつ固定が容易ではないのでセラミックが主材料の高圧側電極構成部1Aあるいは接地側電極構成部2Aの破損リスクが高まるという問題点を有している。一方、後者の運搬の場合、組み合わせ構造体は最小構成単位としては大き過ぎる問題を有している。
 一方、実施の形態2の活性ガス生成装置では、活性ガス生成用電極群301とガスシールユニットカバー42の組み合わせ構造体を必要最小構成として運搬することができるため、上述した実施の形態1の問題が生じることはない。
 <実施の形態3>
 実施の形態3において、基本的な構成は図1及び図2で示した実施の形態1あるいは図3で示した実施の形態2と同じである。すなわち、放電空間66、交流電圧印加空間R31(R41)及び筐体接触空間R34(R34)は互いに完全分離されており、一方の空間で発生したガスが、他方の空間に混入することはない。
 実施の形態3では、放電空間66の圧力は概ね10kPa~30kPa程度の比較的弱い弱大気圧に設定されている。なお、上記圧力設定における原料ガスとして例えば窒素ガス100%が考えられる。
 放電空間66では、放電D1を発生させて原料ガスを活性化させる空間であることから、より低い電圧で放電を開始させることが望ましい。放電D1自体は電界強度がある値を超えるとガスが絶縁破壊を起こすことで引き起こされる。
 絶縁破壊を引き起こす電界強度は原料ガスの種類と圧力によって決定され、大気圧近傍においては圧力が低い程、絶縁破壊に至る電界強度も低くなる。以上の観点から放電空間66では上述した圧力設定としている。
 一方、交流電圧印加空間R31(R41)や筐体接触空間R34(R44)では放電は可能な限り発生させないことが望ましい。予期せぬ放電である異常放電を発生させない最も確実な方法は絶縁距離を十分取ることであるが、活性ガス生成用電極群301の設置スペースの問題からその距離には限りがあるため、実施の形態3では、圧力を上げることで絶縁破壊電界強度をより高くする方法を採用している。ただし、圧力の上限値は構成部品の強度によって概ね決定されるため、交流電圧印加空間R31及び筐体接触空間R34の圧力は100kPa~300kPa(絶対圧)程度とすることが望ましい。
 実施の形態1あるいは実施の形態2で示した構造は、放電空間66と交流電圧印加空間R31及び筐体接触空間R34内のガス層を互いに分離した構造となっているため、放電空間66の圧力を、交流電圧印加空間R31及び筐体接触空間R34の圧力より低く設定することにより、放電空間66における放電D1がより低い印加電圧でも発生するようにし、かつ、交流電圧印加空間R31及び筐体接触空間R34の圧力を比較的高くすることにより、放電を抑制するという、放電空間66、交流電圧印加空間R31及び筐体接触空間R34それぞれに適した圧力設定が可能となる。
 このように、実施の形態3の活性ガス生成装置は、放電空間66の圧力を比較的低く設定して放電現象がより低い印加電圧でも発生するようにし、かつ、交流電圧印加空間R31及び筐体接触空間R34の圧力を比較的高く設定して放電現象が発生しないようにすることができる効果を奏する。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 1A 高圧側電極構成部
 2A 接地側電極構成部
 31,32,41 カバー
 31h,32h,41h,42h 原料ガス流路
 31e,41e パージガス排出口
 31p,41p パージガス供給口
 33,43 電極構成部設置台
 37 スペーサ
 42 ガスシールユニットカバー
 301 活性ガス生成用電極群

Claims (4)

  1.  第1の電極構成部(1A)と前記第1の電極構成部の下方に設けられる第2の電極構成部(2A)とを有する活性ガス生成用電極群(301)と、
     前記第1及び第2の電極構成部に前記第1の電極構成部が高電圧となるように交流電圧を印加する交流電源部(5)とを備え、前記交流電源部による前記交流電圧の印加により、前記第1及び第2の電極構成部間に放電空間が形成され、前記放電空間に供給された原料ガスを活性化して得られる活性ガスが前記第2の電極構成部に設けられたガス噴出口(55)から噴出され、
     前記第1の電極構成部との間に前記放電空間と分離して交流電圧印加空間(R31,R41)を形成するように設けられる第1の補助部材(31,32,41,42)と、
     非金属材料で構成され、前記活性ガス生成用電極群を前記第2の電極構成部側から支持する第2の補助部材(33,43)とを備え、前記第2の補助部材は前記ガス噴出口から噴出される活性ガスを通過させる補助部材用ガス排出口(33i,33k,43i,43k)を有し、
     前記活性ガス生成用電極群及び前記第2の補助部材の全てと、前記第1の補助部材の少なくとも一部を収容する金属製の筐体(34,44)をさらに備え、前記筐体は補助部材用ガス排出口を通過する活性ガスを外部に排出する筐体用ガス排出口(34k,44k)を有し、前記筐体と前記第1及び第2の補助部材との間に前記放電空間と分離した筐体接触空間(R34,R44)が設けられ、
     前記第1の補助部材は、前記交流電圧印加空間及び前記筐体接触空間それぞれと独立して、外部から供給される原料ガスを前記放電空間に導く、原料ガス供給経路用の原料ガス流路(31h,32h,41h,42h)を有することにより、前記放電空間と前記交流電圧印加空間とのガスの流れを分離し、かつ、前記放電空間と前記筐体接触空間とのガスの流れを分離する、
    活性ガス生成装置。
  2.  請求項1記載の活性ガス生成装置であって、
     前記第1の補助部材は外部から原料ガス以外の第2のガスを前記交流電圧印加空間に供給する第2ガス供給口(31p,41p)をさらに有し、前記第2ガス供給口は前記原料ガス流路と独立して設けられる、
    活性ガス生成装置。
  3.  請求項1または請求項2記載の活性ガス生成装置であって、
     前記放電空間の圧力に比べ、前記交流電圧印加空間の圧力を高く設定したことを特徴とする、
    活性ガス生成装置。
  4.  請求項1または請求項2記載の活性ガス生成装置であって、
     前記第1の補助部材は前記活性ガス生成用電極群を単独で保持する電極群保持部材(42)を含み、
     前記第2の補助部材(43)は、前記電極群保持部材と共に前記活性ガス生成用電極群を前記第2の電極構成部側から支持する、
    活性ガス生成装置。
PCT/JP2016/085999 2016-12-05 2016-12-05 活性ガス生成装置 WO2018104988A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2016/085999 WO2018104988A1 (ja) 2016-12-05 2016-12-05 活性ガス生成装置
US16/343,236 US10840065B2 (en) 2016-12-05 2016-12-05 Active gas generation apparatus including a metal housing, first and second auxiliary members, and a housing contact
CN201680091290.2A CN110024088B (zh) 2016-12-05 2016-12-05 活性气体生成装置
JP2018555323A JP6651652B2 (ja) 2016-12-05 2016-12-05 活性ガス生成装置
EP16923437.4A EP3550594B1 (en) 2016-12-05 2016-12-05 Active gas generation device
KR1020197015716A KR102127084B1 (ko) 2016-12-05 2016-12-05 활성 가스 생성 장치
TW106118855A TWI639724B (zh) 2016-12-05 2017-06-07 活性氣體生成裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/085999 WO2018104988A1 (ja) 2016-12-05 2016-12-05 活性ガス生成装置

Publications (1)

Publication Number Publication Date
WO2018104988A1 true WO2018104988A1 (ja) 2018-06-14

Family

ID=62491640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085999 WO2018104988A1 (ja) 2016-12-05 2016-12-05 活性ガス生成装置

Country Status (7)

Country Link
US (1) US10840065B2 (ja)
EP (1) EP3550594B1 (ja)
JP (1) JP6651652B2 (ja)
KR (1) KR102127084B1 (ja)
CN (1) CN110024088B (ja)
TW (1) TWI639724B (ja)
WO (1) WO2018104988A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033320A1 (ja) 2019-08-22 2021-02-25 東芝三菱電機産業システム株式会社 活性ガス生成装置
JP7297399B1 (ja) * 2022-05-18 2023-06-26 東芝三菱電機産業システム株式会社 活性ガス生成装置
US12004285B2 (en) 2019-08-22 2024-06-04 Toshiba Mitsubishi—Electric Industrial Systems Corporation Activated gas generation apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6851706B2 (ja) * 2018-05-30 2021-03-31 東芝三菱電機産業システム株式会社 活性ガス生成装置
EP3879946B1 (en) 2019-11-12 2023-02-15 Toshiba Mitsubishi-Electric Industrial Systems Corporation Activated gas generation device
CN113179676B (zh) * 2019-11-27 2024-04-09 东芝三菱电机产业系统株式会社 活性气体生成装置
EP4258822A1 (en) * 2020-12-07 2023-10-11 Toshiba Mitsubishi-Electric Industrial Systems Corporation Active gas generation device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328685B2 (ja) 1974-09-30 1978-08-16
WO2008123142A1 (ja) * 2007-03-27 2008-10-16 Sekisui Chemical Co., Ltd. プラズマ処理装置
WO2008132901A1 (ja) * 2007-04-19 2008-11-06 Sekisui Chemical Co., Ltd. プラズマ処理装置
JP2009199740A (ja) * 2008-02-19 2009-09-03 Sekisui Chem Co Ltd プラズマ処理装置
JP2010108665A (ja) * 2008-10-29 2010-05-13 Sekisui Chem Co Ltd プラズマ処理装置
JP2011154973A (ja) * 2010-01-28 2011-08-11 Mitsubishi Electric Corp プラズマ処理装置及びプラズマ処理方法
WO2013035377A1 (ja) * 2011-09-08 2013-03-14 東芝三菱電機産業システム株式会社 プラズマ発生装置、cvd装置およびプラズマ処理粒子生成装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW315340B (ja) * 1995-02-13 1997-09-11 Komatsu Mfg Co Ltd
JP4151862B2 (ja) * 1998-02-26 2008-09-17 キヤノンアネルバ株式会社 Cvd装置
US7819081B2 (en) * 2002-10-07 2010-10-26 Sekisui Chemical Co., Ltd. Plasma film forming system
JP4634138B2 (ja) * 2004-12-27 2011-02-16 日本碍子株式会社 プラズマ発生電極及びプラズマ反応器
JP2008269907A (ja) * 2007-04-19 2008-11-06 Sekisui Chem Co Ltd プラズマ処理装置
JP5158084B2 (ja) * 2007-08-31 2013-03-06 東芝三菱電機産業システム株式会社 誘電体バリア放電ガスの生成装置
FR2921388B1 (fr) * 2007-09-20 2010-11-26 Air Liquide Dispositif et procede de depot cvd assiste par plasma tres haute frequence a la pression atmospherique, et ses applications
WO2009069204A1 (ja) * 2007-11-28 2009-06-04 Toshiba Mitsubishi-Electric Industrial Systems Corporation 誘電体バリア放電装置
JP2009272165A (ja) * 2008-05-08 2009-11-19 Sekisui Chem Co Ltd プラズマ処理装置
JP4861387B2 (ja) * 2008-09-19 2012-01-25 積水化学工業株式会社 プラズマ処理装置
JP2010209281A (ja) * 2009-03-12 2010-09-24 Kanagawa Acad Of Sci & Technol 基材の被膜形成方法および装置
JP5700632B2 (ja) * 2010-11-04 2015-04-15 東京エレクトロン株式会社 プラズマ処理装置
JP5725993B2 (ja) * 2011-06-20 2015-05-27 三菱電機株式会社 表面処理装置
US20140174359A1 (en) * 2011-09-09 2014-06-26 Toshiba Mitsubishi-Electric Industrial Systems Corporation Plasma generator and cvd device
US10544045B2 (en) * 2014-09-22 2020-01-28 Mitsubishi Electric Corporation Ozone generation system and method for operating same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328685B2 (ja) 1974-09-30 1978-08-16
WO2008123142A1 (ja) * 2007-03-27 2008-10-16 Sekisui Chemical Co., Ltd. プラズマ処理装置
WO2008132901A1 (ja) * 2007-04-19 2008-11-06 Sekisui Chemical Co., Ltd. プラズマ処理装置
JP2009199740A (ja) * 2008-02-19 2009-09-03 Sekisui Chem Co Ltd プラズマ処理装置
JP2010108665A (ja) * 2008-10-29 2010-05-13 Sekisui Chem Co Ltd プラズマ処理装置
JP2011154973A (ja) * 2010-01-28 2011-08-11 Mitsubishi Electric Corp プラズマ処理装置及びプラズマ処理方法
WO2013035377A1 (ja) * 2011-09-08 2013-03-14 東芝三菱電機産業システム株式会社 プラズマ発生装置、cvd装置およびプラズマ処理粒子生成装置
JP5694543B2 (ja) 2011-09-08 2015-04-01 東芝三菱電機産業システム株式会社 プラズマ発生装置、cvd装置およびプラズマ処理粒子生成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3550594A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033320A1 (ja) 2019-08-22 2021-02-25 東芝三菱電機産業システム株式会社 活性ガス生成装置
KR20210039430A (ko) 2019-08-22 2021-04-09 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 활성 가스 생성 장치
US12004285B2 (en) 2019-08-22 2024-06-04 Toshiba Mitsubishi—Electric Industrial Systems Corporation Activated gas generation apparatus
JP7297399B1 (ja) * 2022-05-18 2023-06-26 東芝三菱電機産業システム株式会社 活性ガス生成装置
WO2023223454A1 (ja) * 2022-05-18 2023-11-23 東芝三菱電機産業システム株式会社 活性ガス生成装置

Also Published As

Publication number Publication date
JP6651652B2 (ja) 2020-02-19
EP3550594A4 (en) 2020-07-22
EP3550594A1 (en) 2019-10-09
EP3550594B1 (en) 2021-06-23
US20200176223A1 (en) 2020-06-04
CN110024088A (zh) 2019-07-16
US10840065B2 (en) 2020-11-17
TW201821640A (zh) 2018-06-16
KR102127084B1 (ko) 2020-06-25
CN110024088B (zh) 2023-02-21
JPWO2018104988A1 (ja) 2019-03-28
KR20190077488A (ko) 2019-07-03
TWI639724B (zh) 2018-11-01

Similar Documents

Publication Publication Date Title
WO2018104988A1 (ja) 活性ガス生成装置
CN111527796B (zh) 活性气体生成装置
KR102421455B1 (ko) 활성 가스 생성 장치
KR102524433B1 (ko) 활성 가스 생성 장치
KR101087445B1 (ko) 플라즈마 처리 장치
JP6873588B1 (ja) 活性ガス生成装置
US20210057192A1 (en) Active gas generation apparatus
CN114916255A (zh) 活性气体生成装置
KR102510329B1 (ko) 활성 가스 생성 장치 및 성막 처리 장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018555323

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923437

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197015716

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016923437

Country of ref document: EP