WO2021033320A1 - 活性ガス生成装置 - Google Patents

活性ガス生成装置 Download PDF

Info

Publication number
WO2021033320A1
WO2021033320A1 PCT/JP2019/032889 JP2019032889W WO2021033320A1 WO 2021033320 A1 WO2021033320 A1 WO 2021033320A1 JP 2019032889 W JP2019032889 W JP 2019032889W WO 2021033320 A1 WO2021033320 A1 WO 2021033320A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
electrode
partial
film thickness
active gas
Prior art date
Application number
PCT/JP2019/032889
Other languages
English (en)
French (fr)
Inventor
謙資 渡辺
廉 有田
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to JP2020509125A priority Critical patent/JP6851705B1/ja
Priority to PCT/JP2019/032889 priority patent/WO2021033320A1/ja
Priority to KR1020217006282A priority patent/KR102577022B1/ko
Priority to EP19942568.7A priority patent/EP3840018A4/en
Priority to US17/281,263 priority patent/US12004285B2/en
Priority to CN201980058546.3A priority patent/CN112703582B/xx
Priority to TW109113646A priority patent/TWI759723B/zh
Publication of WO2021033320A1 publication Critical patent/WO2021033320A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2418Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the electrodes being embedded in the dielectric
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2437Multilayer systems

Definitions

  • the present invention relates to an active gas generator in which a high-voltage dielectric electrode and a grounded dielectric electrode are installed in parallel, a high voltage is applied between the electrodes, and an active gas is obtained from the energy generated by the discharge.
  • the conventional active gas generator there is an apparatus in which a metal electrode such as an Au film is formed on a dielectric electrode such as ceramic to form an electrode constituent part.
  • the dielectric electrode is the main electrode component, and the metal electrode formed therein is subordinate.
  • the active gas required for semiconductor production is generated by a parallel plate type dielectric barrier discharge in a pressure atmosphere lower than atmospheric pressure, and the generated active gas is reduced in pressure as compared with this device. It is a device that supplies to the device in the latter stage, which is the environment of. As a subsequent device, for example, a film forming processing chamber can be considered.
  • a plurality of gas ejection holes are provided in a large rectangular shape of the dielectric electrode, and an active gas is generated from the plurality of gas ejection holes.
  • a generator is required.
  • Such an active gas generator is disclosed in, for example, Patent Document 1 or Patent Document 2.
  • discharge generator disclosed in Patent Document 3 as an active gas generator that employs a method of changing the concentration of active gas from each gas ejection hole in a plurality of gas ejection holes.
  • discharge control is individually performed for each of n small discharge cells by an n-phase inverter power supply device.
  • the discharge generator has only one power supply device itself, it is characterized in that the discharge state is changed for each of n small discharge cells by changing the phase of the AC high voltage.
  • the discharge generator has a feature that the concentration of the active gas can be shaded for each gas ejection hole, while only one power supply device is required.
  • the active gas includes a plurality of partially active gases ejected from the plurality of gas ejection holes.
  • the simplest method for providing a change in the active gas concentration among a plurality of partially active gases is the first active gas generation method described below.
  • a plurality of active gas generators having at least one ejection hole are prepared, a plurality of active gas generators are attached to the front stage of the film forming processing chamber, and the plurality of active gas generators are independent of each other. This is a method of controlling the discharge.
  • the above-mentioned problems are solved, and the activity including a plurality of kinds of partially active gases having different active gas concentrations by applying one kind of AC voltage without dividing the discharge space into a plurality of kinds. It is an object of the present invention to provide an active gas generator capable of ejecting gas to the outside.
  • the active gas generating device has an AC voltage on a first electrode component, a second electrode component provided below the first electrode component, and the first and second electrode components.
  • a discharge space is formed between the first and second electrode constituent parts by applying the AC voltage by the AC power supply unit, and the raw material gas supplied to the discharge space is provided.
  • An active gas generator that generates an active gas obtained by activating the above, wherein the first electrode component is selectively formed on the first dielectric electrode and the upper surface of the first dielectric electrode.
  • a second metal electrode having a first metal electrode to be formed, and the second electrode component is a second metal electrode selectively formed on a second dielectric electrode and a lower surface of the second dielectric electrode.
  • the region where the first and second metal electrodes overlap in a plan view is used as the discharge space.
  • the first and second metal electrodes are formed so as to extend in the electrode forming direction
  • the second dielectric electrode has a plurality of gas ejection holes for ejecting the active gas to the outside.
  • the active gas contains a plurality of partially active gases ejected from the plurality of gas ejection holes, the plurality of gas ejection holes are formed along the electrode forming direction, and the plurality of gas ejection holes in the electrode forming direction.
  • the discharge space is classified into a plurality of partial discharge spaces according to the position of, and one of the first and second dielectric electrodes is the plurality of portions when the AC voltage is applied. It is characterized by having a parameter change structure in which the discharge voltage contribution parameters are changed along the electrode forming direction so that a plurality of partial discharge voltages generated in the discharge space have different values.
  • the active gas generator of the present invention has a discharge voltage along an electrode forming direction so that a plurality of partial discharge voltages generated in a plurality of partial discharge spaces when an AC voltage is applied have different values. It is characterized by having a parameter change structure in which the contributing parameters are changed.
  • the invention of the present application according to claim 1 has the above-mentioned characteristics, so that the active gas concentrations are different from each other by applying one kind of AC voltage supplied from the AC power supply unit without dividing the discharge space into a plurality of parts. It has the effect of being able to eject an active gas containing a plurality of partially active gases to the outside.
  • FIG. 2 It is a perspective view which shows the whole structure of the dielectric electrode of the ground side electrode component part in the active gas generation apparatus of Embodiment 1.
  • FIG. It is explanatory drawing which shows the upper surface and the lower surface structure of the ground side electrode component part of Embodiment 1. It is explanatory drawing which expands and shows the area of interest of FIG. It is a top view which shows the area of interest of FIG. 2 enlarged. It is explanatory drawing which shows the upper surface and the lower surface structure of the high voltage side electrode component part.
  • the 1 which shows the assembly process of the high voltage side electrode component part and the ground side electrode component part.
  • FIG. 2 which shows the assembly process of the high voltage side electrode component part and the ground side electrode component part.
  • FIG. 3 It is a perspective view (No. 3) which shows the assembly process of the high voltage side electrode component part and the ground side electrode component part. It is explanatory drawing which shows the change of the partial discharge voltage and the generated N concentration with the film thickness change of the dielectric electrode of Embodiment 1 in a table form. It is explanatory drawing which shows the structure of the high voltage side electrode component part of the active gas generator which is Embodiment 2. FIG. It is explanatory drawing which shows the structure of the high voltage side electrode component part of the active gas generator which is Embodiment 3. FIG. It is sectional drawing which shows the high voltage side electrode component shown in FIG. 11 by disassembling. It is explanatory drawing which shows the structure of the high voltage side electrode component part of the active gas generator which is Embodiment 4.
  • FIG. 16 is an explanatory diagram schematically showing a basic configuration in the active gas generator of the present invention. As shown in the figure, the high voltage side electrode component 1 (first electrode component) and the ground side electrode component 2 (second electrode component) provided below the high voltage side electrode component 1. And a high-frequency power source 5 (AC power supply unit) that applies an AC voltage to the high-voltage side electrode component 1 and the ground side electrode component 2 as a basic configuration.
  • a high-frequency power source 5 AC power supply unit
  • the high voltage side electrode component 1 has a dielectric electrode 11 (first dielectric electrode) and a metal electrode 10 (first metal electrode) selectively formed on the upper surface of the dielectric electrode 11.
  • the ground-side electrode component 2 has a dielectric electrode 21 (second electrode) and a metal electrode 20 (second metal electrode) selectively formed on the lower surface of the dielectric electrode 21. ing.
  • the metal electrode 20 of the ground side electrode component 2 is connected to the ground level, and an AC voltage is applied from the high frequency power source 5 to the metal electrode 10 of the high voltage side electrode component 1.
  • the region where the metal electrodes 10 and 20 overlap in the plan view is defined as the discharge space in the dielectric space in which the dielectric electrodes 11 and 21 face each other.
  • the high-voltage side electrode component 1, the ground side electrode component 2, and the high-frequency power source 5 described above constitute an electrode group for generating an active gas.
  • the high-frequency power supply 5 which is an AC power supply unit
  • a discharge space is formed between the high-voltage side electrode component 1 and the ground side electrode component 2, and nitrogen is formed in this discharge space.
  • an active gas 7 such as a radicalized nitrogen atom can be obtained.
  • the active gas generators of the first to fourth embodiments described below are devices that are further developed as the basic configuration of the active gas generator shown in FIG.
  • FIG. 1 is a perspective view showing the overall structure of the dielectric electrode 211 of the ground side electrode component 2A in the active gas generator of the first embodiment.
  • FIG. 2 is an explanatory view showing the upper surface and lower surface structures of the ground side electrode component 2A.
  • the figure (a) is a top view
  • the figure (b) is a sectional view taken along the line AA of the figure (a)
  • the figure (c) is a bottom view
  • the figure (d) is the figure (a).
  • 3A and 3B are explanatory views showing an enlarged view of the region of interest R11 of FIG. 2A
  • FIG. 3A is a top view
  • FIG. 3B is a sectional view taken along the line AA in the region of interest R11.
  • the XYZ coordinate system is appropriately shown in each of FIGS. 1 to 3.
  • the ground side electrode component 2A (second electrode component) of the first embodiment is a dielectric electrode 211 and metal electrodes 201H and 201L (a pair of second partial metal electrodes; second). It has a metal electrode).
  • the dielectric electrode 211 has a rectangular flat plate structure in which the X direction is the longitudinal direction and the Y direction is the lateral direction in a plan view.
  • the central portion may be referred to as a main region 53, and both end portions may be referred to as end regions 54A and 54B, with the linear step-shaped portions 52A and 52B described later as boundaries.
  • a plurality of gas ejection holes 55 are provided along the X direction (first direction; electrode forming direction) in the central region R50 in the main region 53. Hole 55) is provided. The plurality of gas ejection holes 55 are provided so as to penetrate from the upper surface to the lower surface of the dielectric electrode 211, respectively.
  • the metal electrodes 201H and 201L are formed on the lower surface of the dielectric electrode 211, and the dielectric electrode 211 is viewed in a plan view. They are arranged so as to face each other with the central region R50 in between.
  • the metal electrodes 201H and 201L have a substantially rectangular shape in a plan view, the X direction (first direction) is the longitudinal direction (electrode forming direction), and the Y direction (second direction) intersecting the X direction at right angles.
  • the electrodes are opposed to each other.
  • the metal electrodes 201H and 201L have the same size in a plan view, and their arrangement is symmetrical with respect to the central region R50.
  • the metal electrodes 201H and 201L are formed by metallizing the lower surface of the dielectric electrode 211, and as a result, the dielectric electrode 211 and the metal electrodes 201H and 201L are integrally formed to form the ground side electrode component 2A. (Second electrode component) is configured.
  • the metallizing process a process using a printing firing method, a sputtering process, a vapor deposition process, or the like can be considered.
  • FIG. 5 is an explanatory view showing the upper surface and lower surface structures of the high voltage side electrode component 1A (first electrode component).
  • the figure (a) is a top view
  • the figure (b) is a sectional view taken along the line CC of the figure (a)
  • the figure (c) is a bottom view. Note that FIG. 5 shows the XYZ coordinate system as appropriate.
  • the high voltage side electrode component 1A is composed of a dielectric electrode 111 and metal electrodes 101H and 101L formed on the upper surface of the dielectric electrode 111.
  • the dielectric electrode 111 has a rectangular flat plate structure in a plan view with the X direction as the longitudinal direction and the Y direction as the lateral direction.
  • the dielectric electrode 111 has a structure in which the film thickness (thickness) continuously changes along the X direction.
  • the film thickness of the dielectric electrode 111 has a uniform thickness along the Y direction.
  • the film thickness at the right end (end in the + X direction) of the dielectric electrode 111 is set to the thickness dA1, and the film thickness at the left end (end in the ⁇ X direction).
  • the thickness is set to the thickness dB1 (> dA1).
  • the film thickness of the dielectric electrode 111 becomes continuously thicker from the right end (thickness dA1) to the left end (thickness dB1) along the X direction. Therefore, the upper surface of the dielectric electrode 111 has a constant inclination with respect to the horizontal direction (X direction). It is assumed that the height difference between the thickness dB1 and the thickness dB1 is, for example, about 80% of the thickness dB1.
  • the metal electrodes 101H and 101L are formed on the upper surface of the dielectric electrode 111 and correspond to the central region R50 of the dielectric electrode 211 in a plan view. They are arranged so as to face each other with the central region R60 having the same shape interposed therebetween.
  • the film thicknesses of the metal electrodes 101H and 101L are uniform.
  • the metal electrodes 101H and 101L like the metal electrodes 201H and 201L, have a substantially rectangular shape in a plan view, the X direction (first direction) is the longitudinal direction (electrode forming direction), and the metal electrodes are perpendicular to the X direction.
  • the Y direction (second direction) intersecting with each other is defined as the electrode facing direction facing each other.
  • the metal electrodes 101H and 101L have the same size in a plan view, and their arrangement is symmetrical with respect to the central region R60. However, the widths of the metal electrodes 101H and 101L in the lateral direction (Y direction) and the longitudinal direction (X direction) are set to be slightly shorter than those of the metal electrodes 201H and 201L.
  • the metal electrodes 101H and 101L can also be formed on the upper surface of the dielectric electrode 111 by metallizing treatment in the same manner as the metal electrodes 201H and 201L.
  • FIGS. 6 to 8 are perspective views showing an assembly process of the high voltage side electrode component 1A and the ground side electrode component 2A.
  • the XYZ coordinate system is shown in each of FIGS. 6 to 8.
  • FIGS. 6 to 8 for convenience of explanation, the above-mentioned change in film thickness of the dielectric electrode 111 and the inclination of the upper surface are not shown.
  • the active gas generation electrode group 301 can be assembled by arranging the high voltage side electrode component 1A on the ground side electrode component 2A. As shown in FIGS. 6 and 7, the central region R60 of the dielectric electrode 111 in the high voltage side electrode constituent portion 1A and the central region R50 of the dielectric electrode 211 in the ground side electrode constituent portion 2A overlap in a plan view. By stacking and combining the high voltage side electrode constituents 1A on the ground side electrode constituents 2A while positioning the electrodes, the active gas generation electrode group 301 can be finally completed as shown in FIG.
  • the region where the metal electrodes 101H and 101L and the metal electrodes 201H and 201L overlap in a plan view is the discharge space. Is defined as.
  • the metal electrodes 101H and 101L and the metal electrodes 201H and 201L which are metallized portions, are connected to the (high voltage) high frequency power supply 5 as shown in FIG. 16 of the metal electrodes 10 and 20.
  • the metal electrodes 201H and 201L of the ground side electrode component 2A are grounded, and in the present embodiment, the 0 peak value is fixed at 2 to 10 kV from the high frequency power supply 5, and the frequency is set at 10 kHz to 100 kHz. Is applied between the metal electrodes 101H and 101L and the metal electrodes 201H and 201L.
  • the dielectric electrode 111 of the high voltage side electrode constituent portion 1A has nothing formed on the upper surface and the lower surface. Therefore, when the high voltage side electrode component 1A and the ground side electrode component 2A are combined, they are only fixed from the upper part to the ground side electrode component 2A by a tightening force such as a spring or a bolt, and the counterbore shape, etc. By not daringly positioning the electrode component 2A on the ground side by providing an active gas, the possibility of contamination due to contact between the end faces of the dielectric electrode 111 and the dielectric electrode 211 during transportation is suppressed as much as possible.
  • the electrode group 301 for use can be obtained.
  • discharge space discharge field
  • the space on the central region R50 (R60) from passing through the discharge space to the gas ejection hole 55 becomes a non-discharge space (non-discharge field, dead space), and active gas is generated in this non-discharge space. It will only decrease.
  • the active gas is generated in the discharge space, and when it passes through the discharge space, it rapidly attenuates due to its high energy, and all of it disappears in a short time.
  • the damping mechanisms of the active gas in the case of the type that loses energy due to collision with other molecules in the ground state, it is possible to suppress the extinction rate of the active gas by simply lowering the pressure and reducing the collision frequency. Become. That is, it is important to promptly eject the active gas generated in the discharge space near the atmospheric pressure into the film forming chamber in the subsequent stage under reduced pressure, and for that purpose, the non-discharge space described above is defined. It is desirable that the width of the central region R50 (R60) in the Y direction be as narrow as possible.
  • the wedge-shaped step-shaped portion 51 (central region step portion) is projected upward in the central region R50 on the upper surface of the dielectric electrode 211 to form a dielectric. It is characterized in that it is integrally formed and provided as a component of the body electrode 211.
  • the wedge-shaped stepped portion 51 forms the Y direction (second direction) as it approaches each of the plurality of gas ejection holes 55 in a plan view without overlapping the plurality of gas ejection holes 55 in a plan view. It is formed so that the width is short.
  • four rhombic single portions 51s (see FIG. 3A) formed in a plan view rhombus shape between the five gas ejection holes 55 and separated from each other, and both ends of the five gas ejection holes 55.
  • a rhombus-shaped stepped portion 51 is formed by an aggregate with two triangular single portions 51t (see FIG. 3A) having a substantially isosceles right triangle shape in a plan view provided on the outside of the gas ejection hole 55.
  • the raw material gas is supplied from the outside along the Y direction (gas supply direction D1 shown in FIGS. 6 to 8) toward the upper central region R50 (lower central region R60) in the dielectric space. Generates an active gas obtained when the gas passes through the discharge space, and ejects the active gas from the plurality of gas ejection holes 55 along the ⁇ Z direction (gas ejection direction D2 shown in FIGS. 6 to 8) to the outside. Can be done.
  • a wedge-shaped stepped shape having four rhombic single portions 51s and two triangular single portions 51t, each of which is discretely formed so that the formation width in the Y direction becomes shorter as the gas ejection holes 55 approach each other. Due to the presence of the portion 51 (step portion in the central region), the plurality of gas flow paths of the active gas corresponding to the plurality of gas ejection holes 55 are narrowed down on the central region R50 (below the central region R60) in the dielectric space. Can be done. As a result, the active gas generator of the first embodiment can increase the gas flow velocity in each gas ejection hole 55, and as a result, can generate a higher density active gas.
  • the plane shape such as the wedge-shaped stepped shape portion 51
  • the plane shape may be a semicircular shape, and a plurality of gas jets are ejected in a plan view without overlapping the plurality of gas ejection holes 55 in a plan view. It goes without saying that the above-mentioned effect can be achieved if the shape is formed so that the forming width in the Y direction (second direction) becomes shorter as the holes 55 approach each other.
  • the raw material gas for example, a gas containing at least one of nitrogen, oxygen, fluorine, and hydrogen can be considered. That is, it is conceivable to supply oxygen, rare gases, hydrogen, and fluorine gases as raw material gases. These raw material gases proceed inward from the outer peripheral portion of the active gas generation electrode group 301 along the gas supply direction D1, become active gas via the internal discharge space, and the active gas (gas containing radicals) is dielectric. The gas is ejected from a plurality of gas ejection holes 55 provided in the body electrode 211 to the film forming processing chamber in the subsequent stage along the gas ejection direction D2.
  • the film forming process can be performed on the wafer which is the substrate to be processed.
  • the active gas contains a plurality of partially active gases ejected from the plurality of gas ejection holes 55.
  • a higher density active gas can be generated from the raw material gas containing at least one of nitrogen, oxygen, fluorine, and hydrogen.
  • the wedge-shaped stepped shape portion 51 is provided on the upper surface of the dielectric electrode 211 of the ground side electrode constituent portion 2A instead of the dielectric electrode 111 of the high voltage side electrode constituent portion 1A. That is, the plurality of gas ejection holes 55 and the wedge-shaped stepped portion 51 are formed on the same dielectric electrode 111. Therefore, as shown in FIGS. 6 to 8, it is not necessary to position the plurality of gas ejection holes 55 and the wedge-shaped stepped portion 51 when assembling the active gas generation electrode group 301, and the device configuration is simplified. It can also be converted.
  • the wedge-shaped stepped shape portion 51 defines the gap length (dielectric electrode 111, distance between the dielectric electrodes 211 in the Z direction) in the discharge space between the high voltage side electrode constituent portion 1 and the ground side electrode constituent portion 2. It also functions as a spacer.
  • the discharge space is determined by the formation height of the wedge-shaped step-shaped portion 51 by a simple assembly step of laminating the high-voltage side electrode constituent portion 1A on the ground-side electrode constituent portion 2A.
  • the gap length in can be set.
  • the wedge-shaped stepped portion 51 projecting from the upper surface of the dielectric electrode 211 is provided in the central region R50 outside the discharge space, which leads to suppression of contamination and the like.
  • the dielectric electrode 211 is a linear stepped portion 52A formed so as to project upward in the boundary region between the main region 53 and the end regions 54A and 54B existing on both end sides. And 52B (a pair of end region stepped portions).
  • the linear step-shaped portions 52A and 52B are formed so as to extend in the Y direction over the entire length of the dielectric electrode 211 in the lateral direction in a plan view, and the linear step-shaped portion 51 is formed together with the formation height of the wedge-shaped step-shaped portion 51.
  • the formation height of the portions 52A and 52B defines the gap length in the discharge space.
  • linear stepped portions 52A and 52B regulates the inflow of gas into the discharge space from both ends of the dielectric electrode 211 in the X direction.
  • the gas ejection holes 55 near both ends of the dielectric electrode 211 are active gases. Since the inflow amount of the gas is easily affected, the calculation of the gas flow rate of the active gas from each gas ejection hole 55 becomes complicated, and there is a problem that the control becomes difficult. The problem is solved by providing the linear step-shaped portions 52A and 52B.
  • the gas inflow path between the high voltage side electrode constituent portion 1A and the ground side electrode constituent portion 2A is only from two surfaces in the Y direction. Therefore, since the gas flow itself is relatively stable, the pressure distribution in the discharge space becomes constant, and a uniform discharge space can be formed.
  • the dielectric electrode 211 further has the linear stepped portions 52A and 52B, the gas ejection holes 55 having a short distance from both ends in the X direction among the plurality of gas ejection holes 55 are also concerned. Since the phenomenon that the inflow amount of the active gas does not change due to the influence of an unintended inflow of gas from both ends does not occur, the active gas can be ejected without causing variation among the plurality of gas ejection holes 55. .. As a result, the pressure distribution can be constant and the flow rates of the plurality of gas ejection holes 55 can be the same.
  • the non-discharge distance d25 which is the distance in the Y direction from the discharge space (the end of the metal electrodes 201H and 201L on the central region R50 side) to the plurality of gas ejection holes 55, is 10 mm or more. Is set to.
  • FIG. 4 is an enlarged top view showing the region of interest R12 in FIG. 2 (a). Note that FIG. 4 shows the XYZ coordinate system as appropriate. As shown in the figure, in order to minimize the non-discharge space, the ends 51H and 51L having the longest formation length in the Y direction of the wedge-shaped stepped portion 51 are the metal electrodes 201H and 201L forming the discharge space. It is extended to a position adjacent to. If the ends 51H and 51L of the wedge-shaped stepped portion 51 overlap with the metal electrodes 201H and 201L, abnormal discharge may be induced when the active gas is generated.
  • the ends of the metal electrodes 201H and 201L that define the discharge space Notches 61H and 61L having a substantially triangular shape in a plan view are provided in the regions corresponding to 51H and 51L.
  • a predetermined reference distance for example, 2 to 3 mm is secured between the wedge-shaped stepped portion 51 and the metal electrodes 201H and 201L.
  • the metal electrodes 101H and 101L are also provided with cutouts 71H and 71L at locations corresponding to the ends 51H and 51L.
  • the shortest distance between the discharge space defined by the overlapping regions of the metal electrodes 101H and 101L and the metal electrodes 201H and 201L in the plan view and the wedge-shaped stepped portion 51 is the predetermined reference distance.
  • the widths of the metal electrodes 101H and 101L in the lateral direction (Y direction) and the longitudinal direction (X direction; electrode forming direction) are slightly shorter than those of the metal electrodes 201H and 201L.
  • Part of the planar shape of the metal electrodes 101H and 101L and the metal electrodes 201H and 201L is different.
  • planar shapes of the metal electrodes 101H and 101L and the metal electrodes 201H and 201L may be completely matched.
  • the gas contact region which is the region in contact with the active gas, is made of quartz, alumina, silicon nitride or aluminum nitride. It is desirable to form it as a constituent material.
  • the active gas Since the surface formed of the above constituent materials is a substance that is chemically stable with respect to the active gas, the active gas is in a state where the deactivation of the active gas is suppressed between the active gas and the gas contact region in contact with the active gas. Can be ejected from the gas ejection hole.
  • each of the plurality of gas ejection holes 55 has the same shape (circular shape with the same diameter).
  • a modified configuration is also conceivable in which the shapes (diameters) of the plurality of gas ejection holes are set so as to be different from each other among the plurality of gas ejection holes 55.
  • the dielectric electrode 111 which is one of the dielectric electrode 111 and the dielectric electrode 211, changes its film thickness along the X direction, which is the electrode forming direction. It has a structure that changes the film thickness.
  • the positions of the five gas ejection holes 55 in the X direction are defined as the ejection hole positions P1 to P5 from the right side (+ X side).
  • the first to fifth partial discharge spaces are not divided at all in the discharge space.
  • the discharge space can be classified into a plurality of partial discharge spaces according to the positions of the plurality of gas ejection holes 55 in the electrode forming direction (X direction).
  • the active gas generator of the first embodiment includes the dielectric electrode 111 having the film thickness change structure described above, the first to fifth partial discharge voltages in the first to fifth subspaces can be generated.
  • the values can be different from each other.
  • FIG. 9 is an explanatory diagram showing in a table format changes in the partial discharge voltage and the generated N concentration due to the change in the film thickness of the dielectric electrode 111 of the first embodiment.
  • FIG. 9 shows a case where the nitrogen gas is used as the raw material gas 6 and the radicalized nitrogen atom is generated as the active gas 7.
  • the three partial discharge spaces PD1, PD2, and PD3 are formed when the film thickness of the dielectric electrode 111 is 1 mm, 3 mm, and 6 mm.
  • the gap length between the partial discharge spaces PD1 and PD3 is the same at 1 mm
  • the gap pressure which is the pressure of each of the partial discharge spaces PD1 to PD3
  • the AC voltage which is the total applied voltage, is also common at 5000 V. Is.
  • the partial discharge voltage of the partial discharge spaces PD1, PD2 and PD3 changes to 4200V, 3100V and 2300V
  • the generated N concentration (generated nitrogen concentration) in the active gas 7 generated in the partial discharge spaces PD1, PD2 and PD3 is 110 ppm. , 80 ppm and 50 ppm.
  • the generated N concentration means the concentration of radicalized nitrogen atoms in the active gas 7, that is, the concentration of the active gas.
  • the partial discharge voltage is inversely proportional to the film thickness of the dielectric electrode 111 between the partial discharge spaces PD1 and PD3. This is because, on the lower surface of the dielectric electrode 111, the potential of the lower surface having a relatively thin film thickness is higher than the potential of the lower surface having a relatively thick film thickness due to the thinner film thickness.
  • the generated N concentration is proportional to the partial discharge voltage
  • the generated N concentration of each of the partial discharge spaces PD1 to PD3 is in the order of the partial discharge spaces PD1, PD2 and PD3 from the high concentration side.
  • the dielectric electrode 111 is provided with the above-mentioned film thickness change structure, and the film thickness (thickness) of the dielectric electrode 111 is changed between the partial discharge spaces PD1 to PD3, whereby the partial discharge spaces PD1 to PD1 to A concentration gradient can be provided for the generated N concentration between PD3s.
  • the film thickness change structure of the dielectric electrode 111 is such that the plurality of partial discharge voltages generated in the plurality of partial discharge spaces when the AC voltage is applied from the high frequency power supply 5 have different values.
  • the film thickness is changed along the forming direction (X direction).
  • the film thickness of the dielectric electrode 111 serves as a discharge voltage contribution parameter
  • the film thickness change structure of the dielectric electrode 111 functions as a parameter change structure in which the discharge voltage contribution parameter is changed. ing.
  • the active gas generator according to the first embodiment having such a structure ejects an active gas containing a plurality of partially active gases ejected from a plurality of gas ejection holes 55 provided in the dielectric electrode 211 to the outside.
  • the gas is ejected by appropriately setting the difference in film thickness between the thickness dA1 and the thickness dB1 of the dielectric electrode 111 and the arrangement of the plurality of gas ejection holes 55. It is possible to change the concentration of the active gas, which is the concentration of radicalized atoms, molecules, etc., among the plurality of partially active gases in the active gas.
  • the film is formed along the electrode forming direction so that the plurality of partial discharge voltages generated in the plurality of partial discharge spaces when the AC voltage is applied have different values. It is characterized by having a film thickness change structure (parameter change structure) in which the thickness (discharge voltage contribution parameter) is changed.
  • the active gas generator of the first embodiment has the above-mentioned characteristics, the active gas concentrations differ from each other by applying one kind of AC voltage from the high frequency power source 5 without dividing the discharge space into a plurality of parts. It has the effect of being able to eject an active gas containing a plurality of partially active gases to the outside.
  • the active gas generator of the first embodiment adopts a film thickness change structure in which the film thickness of the dielectric electrode 111 is changed along the electrode forming direction (X direction) as the parameter change structure. Therefore, the active gas generator of the first embodiment has a relatively simple improved structure in which the film thickness of the dielectric electrode 111, which is one of the dielectric electrodes 111 and the dielectric electrodes 211, is changed. Therefore, the above-mentioned effect can be achieved.
  • the film thickness change structure a structure in which the film thickness of the dielectric electrode 111 is continuously changed along the electrode forming direction is adopted.
  • This structure has an advantage that the film thickness changing structure can be realized by a relatively simple setting, for example, having a significant difference in the film thickness at both ends of the dielectric electrode 111 along the electrode forming direction.
  • the active gas generator of the first embodiment passes through the discharge space by supplying a raw material gas 6 such as nitrogen gas from the outside toward the central region R60 of the dielectric space along the electrode facing direction. After this, the active gas containing the plurality of partially active gases having different active gas concentrations can be ejected to the outside from the plurality of gas ejection holes 55 provided in the central region R50 of the dielectric electrode 211.
  • a raw material gas 6 such as nitrogen gas
  • the film formation treatment content largely depends on the absolute number (flux) per unit time, which is greater than the concentration of the active gas.
  • the flux means the amount of active gas (atms / sec) per unit time obtained from each gas ejection hole 55.
  • a modified configuration is considered in which a substantial concentration difference, that is, a difference in flux is provided between the plurality of partially active gases by changing the gas flow rate per unit time ejected among the plurality of gas ejection holes 55. Be done.
  • the states of the plurality of partial discharge spaces are not changed at all, that is, the pore diameters of the plurality of gas ejection holes 55 are made the same, and the plurality of partial discharges are performed.
  • FIG. 10 is an explanatory diagram showing the structure of the high voltage side electrode component 1B of the active gas generator according to the second embodiment of the present invention.
  • FIG. (A) is a top view
  • FIG. (B) is a sectional view taken along the line DD of FIG. (A)
  • FIG. 6 (c) is a sectional view of the dielectric electrode 212 in the ground side electrode component 2B. It is sectional drawing which shows the structure.
  • the metal electrodes 202H and 202L are not shown.
  • the XYZ coordinate system is appropriately shown in FIG.
  • the active gas generator of the second embodiment is characterized in that the high voltage side electrode component 1A is replaced by the high voltage side electrode component 1B and the ground side electrode component 2A is replaced by the ground side electrode component 2B. Different from 1.
  • the dielectric electrode 212 is provided with a plurality of gas ejection holes 55 in the central region R50 along the electrode forming direction, similarly to the dielectric electrode 211 of the first embodiment. ing. As with the dielectric electrode 211, the dielectric electrode 212 may also have a structure having a wedge-shaped step-shaped portion 51 and a linear step-shaped portion 52A and 52B.
  • the metal electrodes 202H and 202L formed on the lower surface of the dielectric electrode 212 have a structure equivalent to the metal electrodes 201H and 201L formed on the lower surface of the dielectric electrode 211. It is presented.
  • the five gas ejection holes 55 are identifiable as 55 (1), 55 (2), 55 (3), 55 (4) and 55 (5) from the right side.
  • the high voltage side electrode component 1B is composed of a dielectric electrode 112 and metal electrodes 102H and 102L formed on the upper surface of the dielectric electrode 112.
  • the dielectric electrode 112 has a rectangular flat plate structure in a plan view with the X direction as the longitudinal direction and the Y direction as the lateral direction.
  • the dielectric electrode 112 has a structure in which the film thickness (thickness) changes stepwise (discretely) along the X direction.
  • the film thickness of the dielectric electrode 112 has a uniform thickness along the Y direction.
  • the film thickness at the right end (end in the + X direction) of the dielectric electrode 112 is set to the thickness dA2, and the film thickness at the left end (end in the ⁇ X direction).
  • the thickness is set to the thickness dB2 (> dA2).
  • the film thickness of the dielectric electrode 112 gradually increases from the right end (thickness dA2) to the left end (thickness dA2) along the X direction. Specifically, the film thickness changes in five steps from the right end to the left end of the dielectric electrode 111.
  • the dielectric electrodes 112 have five dielectric partial regions PX1 to PX5 as a plurality of dielectric partial regions having different film thicknesses.
  • the dielectric partial region PX1 is a region including the ejection hole position P1 of the gas ejection hole 55 (1) existing on the far right in the X direction which is the electrode forming direction.
  • the dielectric partial region PX2 is a region including the ejection hole position P2 of the gas ejection hole 55 (2) existing second from the right in the X direction.
  • the dielectric partial region PX3 is a region including the ejection hole position P3 of the gas ejection hole 55 (3) existing third from the right in the X direction.
  • the dielectric partial region PX4 is a region including the ejection hole position P4 of the gas ejection hole 55 (4) existing fourth from the right in the X direction.
  • the dielectric partial region PX5 is a region including the ejection hole position P5 of the gas ejection hole 55 (5) existing on the leftmost side in the X direction.
  • the film thickness in the dielectric partial region PX1 is the thickness dA2
  • the film thickness in the dielectric partial region PX2 is the thickness dA2 + ⁇ z
  • the film thickness in the dielectric partial region PX3 is the thickness dA2 + 2 ⁇ ⁇ z
  • the film thickness in the dielectric partial region PX4 is the thickness dA2 + 3 ⁇ ⁇ z
  • the step between the adjacent dielectric partial regions in the dielectric partial regions PX1 to PX5 is uniform at ⁇ z is shown, but it is not always necessary to make them uniform.
  • the step between adjacent dielectric partial regions may be set to different values so that a desired difference in active gas concentration can be obtained.
  • the dielectric electrode 112 is classified into five dielectric partial regions PX1 to PX5 based on the five ejection hole positions P1 to P5 in which the plurality of gas ejection holes 55 are provided in the X direction, which is the electrode forming direction. Will be done. Then, the film thickness is changed between the dielectric partial regions PX1 to PX5.
  • the metal electrodes 102H and 102L are formed on the upper surface of the dielectric electrode 112, and are the dielectric electrodes in a plan view. They are arranged so as to face each other with the central region R60 of the same shape corresponding to the central region R50 of 212 interposed therebetween.
  • the metal electrodes 102H and 102L like the metal electrodes 202H and 202L, have a substantially rectangular shape in a plan view, the X direction (first direction) is the longitudinal direction (electrode forming direction), and the metal electrodes are perpendicular to the X direction.
  • the Y direction (second direction) intersecting with each other is defined as the electrode facing direction facing each other.
  • the plurality of gas ejection holes 55 shown in FIG. 10A virtually overlap the plurality of gas ejection holes 55 existing in the dielectric electrode 212 in a plan view of the dielectric electrode 112. As shown, it is not actually formed on the dielectric electrode 112.
  • the metal electrodes 102H and 102L have uniform film thicknesses, and are formed in a five-step stepped manner corresponding to the dielectric partial regions PX1 to PX5 of the dielectric electrodes 111. There is.
  • the region where the metal electrodes 102H and 102L and the metal electrodes 202H and 202L overlap in a plan view is discharged. It is defined as a space.
  • the discharge space is classified into first to fifth partial discharge spaces corresponding to the dielectric partial regions PX1 to PX5 in the dielectric electrode 212 along the X direction which is the electrode forming direction. ..
  • the region where the metal electrodes 102H and 102L and the metal electrodes 202H and 202L overlap in a plan view is the i-th partial discharge space.
  • the first to fifth partial discharge spaces are not divided at all in the discharge space.
  • the discharge space is provided corresponding to the ejection hole positions P1 to P5 of the plurality of gas ejection holes 55 (five gas ejection holes 55 (1) to 55 (5)) in the electrode forming direction (X direction). It can be classified into the first to fifth partial discharge spaces.
  • the active gas generator of the second embodiment includes the dielectric electrode 112 having the film thickness change structure described above, the first to fifth subspaces of the first to fifth embodiments are the same as those of the first embodiment.
  • the fifth partial discharge voltage can be different from each other.
  • the film thickness change structure of the dielectric electrode 112 has an electrode forming direction (X direction) so that the plurality of partial discharge voltages generated in the plurality of partial discharge spaces when an AC voltage is applied have different values. ) Is changed in film thickness.
  • the film thickness of the dielectric electrode 112 serves as a discharge voltage contribution parameter
  • the film thickness change structure of the dielectric electrode 112 functions as a parameter change structure in which the discharge voltage contribution parameter is changed. ing.
  • the active gas generator according to the second embodiment having such a structure ejects an active gas containing a plurality of partially active gases ejected from a plurality of gas ejection holes 55 provided in the dielectric electrode 212 to the outside.
  • the active gas generator of the second embodiment has a film thickness change structure (parameter change structure) in which the film thickness (discharge voltage contribution parameter) is changed along the electrode forming direction, as in the first embodiment. It is characterized by having.
  • the discharge space is not divided into a plurality of parts, and one kind of AC voltage is applied from the high frequency power source 5. This has the effect of being able to eject an active gas containing a plurality of partially active gases having different active gas concentrations to the outside.
  • the active gas generator of the second embodiment has a film thickness change structure in which the film thickness of the dielectric electrode 112 is changed along the electrode formation direction (X direction) as a parameter change structure as in the first embodiment. Is adopted. Therefore, the active gas generator of the second embodiment has a relatively simple improved structure in which the film thickness of the dielectric electrode 112, which is one of the dielectric electrodes 112 and the dielectric electrodes 212, is changed. Therefore, the above-mentioned effect can be achieved.
  • the active gas generator of the second embodiment can accurately set the desired film thickness in the dielectric partial region PX1 to PX5 units in the dielectric electrode 112.
  • the discrete film thickness change structure of the dielectric electrode 112 in which a step is provided between the dielectric partial regions PX1 to PX5 requires more time and effort for processing than the continuous film thickness change structure of the dielectric electrode 111. The cost can be reduced.
  • the metal electrodes 102H and 102L are generally formed on the upper surface of the dielectric electrode 112 by using a film forming treatment method such as sputtering or a firing processing method by applying a metal paste, but the dielectric partial region PX1 It is necessary to be careful not to divide at the stepped portion between PX5.
  • FIG. 11 is an explanatory diagram showing the structure of the high voltage side electrode component 1C of the active gas generator according to the third embodiment of the present invention.
  • FIG. 3A is a top view
  • FIG. 6B is a sectional view taken along line EE of FIG. 6A.
  • FIG. 12 is a cross-sectional view showing the high voltage side electrode component 1C in an exploded manner, and shows the EE cross section of FIG. 11 (a).
  • FIG. 3A is a cross-sectional view of a laminated structure of the partial dielectric electrode 113B and the metal electrode 101H
  • FIG. 6B is a cross-sectional view of the cross-sectional structure of the partial dielectric electrode 113A.
  • the XYZ coordinate system is appropriately shown in FIGS. 11 and 12, respectively.
  • the active gas generator of the third embodiment is characterized in that the high voltage side electrode component 1A is replaced by the high voltage side electrode component 1C and the ground side electrode component 2A is replaced by the ground side electrode component 2C. Different from 1.
  • the structure of the ground side electrode component 2C is the same as that of the ground side electrode component 2A of the first embodiment. That is, the ground side electrode component 2C is composed of the dielectric electrode 213 and the metal electrodes 203H and 203L, the dielectric electrode 213 has the same structure as the dielectric electrode 211, and the metal electrodes 203H and 203L have the metal electrodes 201H and 203L. It has the same structure as the 201L, and is provided on the lower surface of the dielectric electrode 213 with the same contents as the metal electrodes 201H and 201L.
  • the ground side electrode component 2C may be formed with the same structure as the ground side electrode component 2B of the second embodiment. That is, in the ground side electrode component 2C, the dielectric electrode 213 may exhibit the same structure as the dielectric electrode 212.
  • the high voltage side electrode component 1C is composed of a dielectric electrode 113 and metal electrodes 103H and 103L formed on the upper surface of the dielectric electrode 113.
  • the dielectric electrode 113 like the dielectric electrode 111, has a rectangular flat plate structure in a plan view with the X direction as the longitudinal direction and the Y direction as the lateral direction.
  • the dielectric electrode 113 (one of the dielectric electrodes) is formed on the partial dielectric electrode 113A, which is the first partial dielectric electrode for lamination, and the dielectric electrode 113. It is configured to include a partial dielectric electrode 113B which is a second lamination partial dielectric electrode. Therefore, the dielectric electrode 113 is configured by the laminated structure of the partial dielectric electrodes 113A and 113B.
  • the partial dielectric electrode 113A has a uniform film thickness
  • the partial dielectric electrode 113B has a continuously changing film thickness as in the case of the dielectric electrode 111 of the first embodiment. It has a film thickness change structure.
  • the film thickness of the right end (end in the + X direction) of the partial dielectric electrode 113B is set to the thickness dA3, and the film thickness of the left end (end in the ⁇ X direction).
  • the film thickness is set to the thickness dB3 (> dA3).
  • the partial dielectric electrode 113A is set to have a uniform thickness d3.
  • the film thickness of the partial dielectric electrode 113B becomes continuously thicker from the right end (thickness dA3) to the left end (thickness dB3) along the X direction.
  • the film thickness of the entire dielectric electrode 113 becomes continuously thicker from the right end (thickness dA3 + d3) to the left end (thickness dB3 + d3) along the X direction. Therefore, the upper surface of the dielectric electrode 113 (partial dielectric electrode 113B) has a constant inclination with respect to the horizontal direction (X direction).
  • the dielectric electrode 113 (one of the dielectric electrodes) having the partial dielectric electrode 113B has an electrode forming direction X like the dielectric electrode 111. It has a film thickness change structure in which the film thickness is continuously changed along the direction.
  • the metal electrodes 103H and 103L (a pair of first partial metal electrodes; the first metal electrode) are formed on the upper surface of the dielectric electrode 113 (partial dielectric electrode 113B), and the dielectric electrodes 213 are viewed in a plan view. They are arranged so as to face each other with the central region R60 having the same shape corresponding to the central region R50 of the above.
  • the metal electrodes 103H and 103L like the metal electrodes 203H and 203L, have a substantially rectangular shape in a plan view, the X direction (first direction) is the longitudinal direction (electrode forming direction), and the metal electrodes are perpendicular to the X direction.
  • the Y direction (second direction) intersecting with each other is defined as the electrode facing direction facing each other.
  • the region where the metal electrodes 103H and 103L and the metal electrodes 203H and 203L overlap in a plan view is discharged. It is defined as a space.
  • the discharge space can be classified into a plurality of partial discharge spaces according to the positions of the plurality of gas ejection holes 55 in the electrode forming direction (X direction).
  • the active gas generator of the third embodiment includes the dielectric electrode 113 (partial dielectric electrode 113B) having the above-mentioned film thickness change structure
  • the first to fifth embodiments are the same as those of the first embodiment.
  • the first to fifth partial discharge voltages in the subspace of can be set to different values.
  • the film thickness change structure of the dielectric electrode 113 (partial dielectric electrode 113B)
  • the plurality of partial discharge voltages generated in the plurality of partial discharge spaces when an AC voltage is applied have different values.
  • the film thickness is changed along the electrode forming direction (X direction).
  • the film thickness of the dielectric electrode 113 serves as a discharge voltage contribution parameter
  • the film thickness change structure of the dielectric electrode 113 functions as a parameter change structure in which the discharge voltage contribution parameter is changed. ing.
  • the active gas generator according to the third embodiment having such a structure ejects an active gas containing a plurality of partially active gases ejected from a plurality of gas ejection holes 55 provided in the dielectric electrode 213 to the outside.
  • the film thickness of the partial dielectric electrode 113A, the film thickness difference between the thickness dA3 and the thickness dB3 of the partial dielectric electrode 113B, and the arrangement of the plurality of gas ejection holes 55 are determined.
  • the active gas concentration can be changed among a plurality of partially active gases in the ejected active gas.
  • the active gas generator of the third embodiment has a film thickness change structure (discharge voltage contribution parameter) in which the film thickness (discharge voltage contribution parameter) is changed along the electrode forming direction, as in the first and second embodiments. It is characterized by having a parameter change structure).
  • the active gas generator of the third embodiment has the above-mentioned characteristics, the active gas concentrations differ from each other by applying one kind of AC voltage from the high frequency power source 5 without dividing the discharge space into a plurality of parts. It has the effect of being able to eject an active gas containing a plurality of partially active gases to the outside.
  • the active gas generator of the third embodiment has, as a parameter changing structure, a film thickness changing structure in which the film thickness of the partial dielectric electrode 113B in the dielectric electrode 113 is changed along the electrode forming direction (X direction).
  • a film thickness changing structure in which the film thickness of the partial dielectric electrode 113B in the dielectric electrode 113 is changed along the electrode forming direction (X direction).
  • the film thickness changing structure a structure in which the film thickness of the partial dielectric electrode 113B is continuously changed along the electrode forming direction is adopted.
  • This structure has an advantage that the film thickness changing structure can be realized by a relatively simple setting, for example, having a significant difference in the film thickness of both ends of the partial dielectric electrode 113B along the electrode forming direction.
  • the dielectric electrode 113 is configured by a laminated structure of the partial dielectric electrode 113A and the partial dielectric electrode 113B.
  • the active gas generator of the third embodiment uses the existing dielectric electrode as the partial dielectric electrode 113A, which is the first partial dielectric electrode for lamination, and serves as the second partial dielectric electrode for lamination.
  • a film thickness change structure can be realized as the dielectric electrode 113 only by newly adding the partial dielectric electrode 113B. As a result, the active gas generator of the third embodiment can be obtained at a relatively low cost.
  • FIG. 13 is an explanatory diagram showing the structure of the high voltage side electrode component 1D of the active gas generator according to the fourth embodiment of the present invention.
  • FIG. 3A is a top view
  • FIG. 6B is a sectional view taken along line FF of FIG. 6A. Note that FIG. 13 shows the XYZ coordinate system as appropriate.
  • the high voltage side electrode component 1A is replaced with the high voltage side electrode component 1D
  • the ground side electrode component 2A is replaced with the ground side electrode component 2D (not shown). Is different from Form 1.
  • the ground side electrode component 2D is composed of a dielectric electrode 214 and metal electrodes 204H and 204L formed on the lower surface of the dielectric electrode 214.
  • the dielectric electrode 214 has the same structure as the dielectric electrode 211 of the first embodiment, the metal electrodes 204H and 204L have the same structure as the metal electrodes 201H and 201L, and the metal electrodes 201H and 201L are formed on the lower surface of the dielectric electrode 214. It is provided with the same contents.
  • the dielectric electrode 214 may have the same structure as the dielectric electrode 212 of the second embodiment.
  • the high voltage side electrode component 1D is composed of a dielectric electrode 114 and metal electrodes 104H and 104L formed on the upper surface of the dielectric electrode 114.
  • the dielectric electrode 114 As shown in FIG. 13A, the dielectric electrode 114, like the dielectric electrode 111, has a rectangular flat plate structure in a plan view with the X direction in the longitudinal direction and the Y direction in the lateral direction.
  • the dielectric electrode 114 (one of the dielectric electrodes) is formed on the partial dielectric electrode 114A, which is the first partial dielectric electrode for lamination, and the dielectric electrode 114. It is configured to include a partial dielectric electrode 114B which is a second lamination partial dielectric electrode. Therefore, the dielectric electrode 114 is configured by the laminated structure of the partial dielectric electrodes 114A and 113B.
  • both the partial dielectric electrodes 114A and 114B have a uniform film thickness, and the partial dielectric electrodes 114B have different dielectric constants along the X direction, which is the electrode forming direction. It has a dielectric constant changing structure in which five different types of partial dielectric regions 14a to 14e are provided adjacent to each other.
  • the partial dielectric regions 14a to 14e are provided in a positional relationship corresponding to the ejection hole positions P1 to P5 (see FIG. 10C) of the plurality of gas ejection holes 55 in the electrode forming direction (X direction).
  • the partial dielectric region 14e includes the ejection hole position P1 in the X direction
  • the partial dielectric region 14d includes the ejection hole position P2 in the X direction
  • the partial dielectric region 14c includes the ejection hole position in the X direction
  • the partial dielectric region 14b includes the ejection hole position P4 in the X direction
  • the partial dielectric region 14a includes the ejection hole position P5 in the X direction.
  • partial dielectric regions 14a to 14e from the left end (end in the ⁇ X direction) to the right end (end in the + X direction) of the partial dielectric electrode 114B. doing.
  • the partial dielectric regions 14a to 14e are composed of constituent materials having different dielectric constants.
  • the partial dielectric electrode 114A is made of the same material throughout.
  • the partial dielectric regions 14a to 14e are constituent materials (dielectric a, dielectric b, dielectric c, dielectric d and dielectric e) in which the dielectric constant increases in the order of 14a, 14b, 14c, 14d and 14e. ) Is formed.
  • the permittivity of the partial dielectric electrode 114B gradually increases from the left end (dielectric a) to the right (dielectric e) along the X direction.
  • the dielectric synthesis capacitance of the entire dielectric electrode 114 gradually increases from the left end to the right end along the X direction.
  • the dielectric electrode 114 (one of the dielectric electrodes) having the partial dielectric electrode 114B is a dielectric whose dielectric constant is gradually changed along the X direction, which is the electrode forming direction. It has a rate change structure.
  • the metal electrodes 104H and 104L are formed on the upper surface of the dielectric electrode 114 (partial dielectric electrode 114B), and are viewed in plan view from the dielectric electrode 214. They are arranged so as to face each other with the central region R60 having the same shape corresponding to the central region R50 of the above.
  • the metal electrodes 104H and 104L like the metal electrodes 204H and 204L, have a substantially rectangular shape in a plan view, the X direction (first direction) is the longitudinal direction (electrode forming direction), and the metal electrodes are perpendicular to the X direction.
  • the Y direction (second direction) intersecting with each other is defined as the electrode facing direction facing each other.
  • the region where the metal electrodes 104H and 104L and the metal electrodes 204H and 204L overlap in a plan view is discharged. It is defined as a space.
  • the discharge space is classified into the first to fifth partial discharge spaces corresponding to the regions overlapping the partial dielectric regions 14a to 14e in a plan view. These first to fifth partial discharge spaces are not divided in the discharge space at all.
  • the discharge space is provided corresponding to the ejection hole positions P1 to P5 of the plurality of gas ejection holes 55 (five gas ejection holes 55 (1) to 55 (5)) in the electrode forming direction (X direction). It can be classified into the first to fifth partial discharge spaces.
  • the active gas generator of the fourth embodiment includes the dielectric electrode 114 (partial dielectric electrode 114B) having the above-mentioned dielectric constant changing structure, the first one in the first to fifth partial discharge spaces.
  • the fifth partial discharge voltage can be different from each other.
  • FIG. 14 is an explanatory diagram showing a change in the partial discharge voltage due to the laminated structure of the partial dielectric electrodes 114A and 114B of the fourth embodiment in a table format.
  • the contents classified into the partial dielectric regions 14a to 14e are shown.
  • the film thickness of the partial dielectric electrode 114A is uniform at 1 mm, and the film thickness of the partial dielectric electrode 114B is also uniform 1 mm between the partial dielectric regions 14a and 14e.
  • the discharge area is 3300 mm 2 , and the AC voltage, which is the total applied voltage, is 5000 V.
  • the discharge area is an area where the dielectric electrodes 114 (partial dielectric electrodes 114A and 114B) overlap with the metal electrodes 104H and 104L in a plan view.
  • the relative permittivity of the partial dielectric electrode 114A is "10".
  • the specific dielectric constant of the dielectric a which is a constituent material of the partial dielectric region 14a
  • the specific dielectric constant of the dielectric b which is a constituent material of the partial dielectric region 14b
  • the partial dielectric region is "20”
  • the specific dielectric constant of the dielectric c which is the constituent material of 14c
  • the specific dielectric constant of the dielectric d which is the constituent material of the partial dielectric region 14d
  • the specific dielectric constant of the dielectric e is "50".
  • the values differ between the laminated regions in the partial dielectric regions 14a to 14e.
  • partial dielectric regions 14a 7.34 ⁇ 10 -11 F in stack area in, part deposition area in the dielectric region 14b 9.79 ⁇ 10 -11 F, a stack area in the partial dielectric region 14c 1.10 / 10-10 F, 1.17 / 10-10 F in the laminated region in the partial dielectric region 14d , 1.22 / 10-10 F in the laminated region in the partial dielectric region 14e.
  • the partial discharge voltages of the first to fifth partial discharge spaces corresponding to the partial dielectric regions 14a to 14e change to 3550V, 3850V, 3950V, 4000V and 4050V.
  • the active gas concentration of the partially active gas proportional to the partial discharge voltage can be set to a different value among the plurality of partially active gases.
  • the partial discharge voltage has a positive correlation with the dielectric constant of the partial dielectric regions 14a to 14e.
  • the active gas concentration in the partially active gas is proportional to the partial discharge voltage
  • the active gas concentrations of the partially active gas generated in each of the first to fifth partial discharge spaces are the first and second from the low concentration side. , ..., in the fifth order.
  • the dielectric electrode 114 (partial dielectric electrode 114B) with the above-mentioned dielectric constant changing structure, it is possible to provide a concentration gradient in the active gas concentration between the first to fifth partial discharge spaces.
  • FIG. 15 is a graph showing changes in the partial discharge voltage according to a specific example of the dielectric type in a tabular form. In FIG. 15, the contents classified into the partial dielectric regions 14a to 14c are shown.
  • the film thickness of the partial dielectric electrode 114A is uniform at 1 mm, and the film thickness of the partial dielectric electrode 114B is also uniform 1 mm between the partial dielectric regions 14a and 14c.
  • the discharge area is 3300 mm 2
  • the AC voltage, which is the total applied voltage, is 5000 V.
  • the AC voltage, which is the total applied voltage, is 5000V.
  • the relative permittivity of the partial dielectric electrode 114A is "9.9".
  • the relative permittivity of quartz, which is a constituent material of the partial dielectric region 14a is "3.8”
  • the relative permittivity of alumina which is a constituent material of the partial dielectric region 14b
  • the partial dielectric region is "15”.
  • the dielectric synthesis capacitance due to the laminated structure of the partial dielectric electrodes 114A and 114B has different values between the partial dielectric regions 14a to 14c.
  • the partial discharge voltage of the first to third partial discharge spaces corresponding to the partial dielectric regions 14a to 14c changes to 2900V, 3550V, and 3750V.
  • the active gas concentration of the partially active gas proportional to the partial discharge voltage between the partial dielectric regions 14a to 14c can be set to a different value among the plurality of partially active gases.
  • the dielectric constant changing structure of the dielectric electrode 114 has an electrode forming direction (X) so that the plurality of partial discharge voltages generated in the plurality of partial discharge spaces when an AC voltage is applied have different values from each other.
  • the dielectric constant is changed along the direction).
  • the dielectric constant of the partial dielectric electrode 114B in the dielectric electrode 114 (one of the dielectric electrodes) became the discharge voltage contribution parameter, and the dielectric constant change structure of the dielectric electrode 114 changed the discharge voltage contribution parameter. It functions as a parameter change structure.
  • the active gas generator according to the fourth embodiment having such a structure ejects an active gas containing a plurality of partially active gases ejected from a plurality of gas ejection holes 55 provided in the dielectric electrode 214 to the outside.
  • the dielectric constant of the partial dielectric electrode 114A, each dielectric constant in the partial dielectric regions 14a to 14e of the partial dielectric electrode 114B, and the arrangement of the plurality of gas ejection holes 55 are appropriate.
  • the active gas concentration can be changed among a plurality of partially active gases in the ejected active gas.
  • the first to fifth partial discharge voltages generated in the first to fifth partial discharge spaces when the AC voltage is applied are set to different values. It is characterized by having a permittivity change structure (parameter change structure) in which the permittivity (discharge voltage contribution parameter) is changed along the electrode forming direction.
  • the active gas generator of the fourth embodiment has the above-mentioned characteristics, the active gas concentrations are different from each other by applying one kind of AC voltage from the high frequency power source 5 without dividing the discharge space into a plurality of parts. It has the effect of being able to eject an active gas containing a plurality of types of partially active gases to the outside.
  • both the dielectric electrode 114 and the dielectric electrode 214 have the same film thickness as the conventional structure. Can be made uniform.
  • the metal electrodes 104H and 104L are accurately formed on the upper surface of the dielectric electrode 114, and the metal electrodes 204H and 204L are formed on the lower surface of the dielectric electrode 214. It can be formed with high accuracy. In addition, even under conditions where it is difficult to increase the thickness of the dielectric electrode in terms of space, the active gas generator of the fourth embodiment can handle it without any problem.
  • the existing partial dielectric electrode 114A having a uniform dielectric constant and the thickness can be used as the first partial dielectric electrode for lamination, the existing dielectric electrode can be used while using the existing dielectric electrode.
  • a dielectric constant changing structure can be realized only by newly adding the partial dielectric electrode 114B which is the second partial dielectric electrode for lamination.
  • the partial dielectric regions 14a to 14e made of the dielectrics a to e each having a high dielectric constant may be formed in a plate shape and placed on the upper surface of the partial dielectric electrode 114A, or the dielectric constant may be placed on the upper surface. If is sufficiently high, the partial dielectric regions 14a to 14e may be directly formed on the upper surface of the partial dielectric electrode 114A by sputtering or the like.
  • the material of the partial dielectric electrode 114A which is the discharge surface, is fixed to high-purity alumina or sapphire from the viewpoint of not generating impurities such as particles.
  • the dielectric constant can be selected with the highest priority as the constituent material of the partial dielectric regions 14a to 14e of the partial dielectric electrode 114B.
  • the AC voltage applied from the high frequency power source 5 must be increased in the discharge space. Sufficient discharge power cannot be obtained.
  • the AC voltage is increased, many insulation measures are required. Therefore, it is desirable that the AC voltage, which is the applied voltage, be as low as possible. Therefore, there is a concern that the AC voltage cannot be increased without limitation.
  • the active gas generators of the first to third embodiments adopting the film thickness change structure have the above-mentioned concerns.
  • the film thicknesses of the dielectric electrodes 114 and 214 can be made uniform. Therefore, when it is desired to suppress the voltage level of the AC voltage, all the dielectrics a to e used as the constituent materials of the partial dielectric regions 14a to 14e are generated with a high dielectric constant material having a higher dielectric constant than a predetermined dielectric constant. Can be solved with.
  • the parameter change structure (film thickness change structure or dielectric constant change structure) is provided on the dielectric electrodes 111 to 114 (first dielectric electrodes). , Not limited to that.
  • the dielectric electrodes 211 to 214 (second dielectric electrodes) are provided with the parameter change structure, or both the dielectric electrodes 111 to 114 and the dielectric electrodes 211 to 214 have the above parameters.
  • a changing structure may be provided.
  • the parameter change structure can be easily provided as compared with the dielectric electrodes 211 to 214. Further, when the parameter change structure is provided on both the dielectric electrodes 111 to 114 and the dielectric electrodes 211 to 214, the discharge voltage contribution parameters (film thickness, dielectric constant) are compared with the case where the parameter change structure is provided on one side. It has the advantage of being able to increase the change in.
  • each embodiment can be freely combined, and each embodiment can be appropriately modified or omitted within the scope of the invention.
  • the thickness of the partial dielectric regions 14a to 14e is increased in the order of the partial dielectric regions 14e to 14a, so that the dielectric constant changing structure and the film thickness change A combination structure of structures may be realized.
  • the structure of the partial dielectric electrode 113B may be changed to a structure in which the film thickness changes stepwise like the dielectric electrode 112 of the second embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

本発明は、放電空間を複数に分断することなく、かつ、1種類の交流電圧の印加によって、互いに活性ガス濃度が異なる複数種の部分活性ガスを含む活性ガスを外部に噴出することができる活性ガス生成装置を提供することを目的とする。そして、本発明において、高電圧側電極構成部(1A)は、誘電体電極(111)と、誘電体電極(111)の上面上に形成された金属電極(101H,101L)とから構成される。誘電体電極(111)は、X方向に沿って膜厚が連続的に変化した構造となっている。すなわち、誘電体電極(111)の右端の膜厚は厚さdA1に設定され、左端の膜厚は厚さdB1(>dA1)に設定され、X方向に沿って右端から左端にかけて連続的に厚くなる。

Description

活性ガス生成装置
 この発明は、高圧誘電体電極と接地誘電体電極とを平行に設置して、両電極間に高電圧を印加し、放電を発生させたエネルギーで活性ガスを得る活性ガス生成装置に関する。
 従来の活性ガス生成装置において、セラミック等の誘電体電極にAu膜などの金属電極を成膜処理して電極構成部としている装置がある。このような装置では、電極構成部において誘電体電極がメインであり、そこに形成されている金属電極は従属的なものとなっている。
 上述した活性ガス生成装置は、半導体製造に必要な活性ガスを平行平板方式の誘電体バリア放電を大気圧よりも低い圧力雰囲気下で発生させ、生成された活性ガスを、本装置よりも減圧下の環境となっている後段の装置へ供給する装置である。後段の装置として例えば成膜処理チャンバが考えられる。
 上記成膜処理チャンバ内において、大型基板の成膜処理を可能とするために、誘電体電極を大型長方形状として複数のガス噴出孔を設け、複数のガス噴出孔から活性ガスを発生する活性ガス生成装置が必要となる。このような活性ガス生成装置は、例えば特許文献1あるいは特許文献2に開示されている。
 また、複数のガス噴出孔において、各ガス噴出孔からの活性ガス濃度を変化させる方法を採用した活性ガス生成装置として、特許文献3で開示された放電発生器がある。この放電発生器では、n個の小型放電セルに対し、n相インバータ電源装置にてそれぞれ個別に放電制御を実施している。この放電発生器が有する電源装置自体は1つだが、交流高電圧の位相を変化させることにより、n個の小型放電セル毎に放電状態を変化させることを特徴としている。上記放電発生器では、ガス噴出孔毎に活性ガス濃度に濃淡を付けることが可能であり、一方、電源装置は1つで済むという特徴を有している。
国際公開第2018/104988号 国際公開第2017/126007号 国際公開第2016/067380号
 複数のガス噴出孔から活性ガスを発生する従来の活性ガス生成装置を利用する場合を考える。この場合、活性ガスは複数のガス噴出孔から噴出される複数の部分活性ガスを含むことになる。
 この際、当該活性ガス生成装置の後段に取り付ける成膜処理チャンバの構造によっては、複数の部分活性ガス間において、活性ガス濃度に濃淡を付ける必要性が生じてきた。
 複数の部分活性ガス間で活性ガス濃度に変化を設けるための最も簡易な方法として、以下で述べる第1の活性ガス発生方法がある。
 第1の活性ガス発生方法は、少なくとも一つの噴出孔を有する活性ガス発生器を複数準備し、複数の活性ガス発生器を成膜処理チャンバの前段に取り付け、複数の活性ガス発生器をそれぞれ独立して放電制御する方法である。
 この第1の活性ガス発生方法を採用する場合、複数の活性ガス発生器を準備し、さらに、複数の活性ガス発生器に対応して複数のガス供給機構/電源機構等を準備する必要あるため、装置設置エリアの極大化及び装置の高額化が免れ得ないという問題点があった。
 また、複数の部分活性ガス間で活性ガス濃度に変化を設けるための第2の活性ガス発生方法として、特許文献3で開示された放電発生器を採用する方法が考えられる。
 しかしながら、第2の活性ガス生成方法においても、位相を変化させるためのインバータ素子等が別途必要であるという問題が解消されていない。
 加えて、第2の活性ガス生成方法では、複数の小型放電セル間は絶縁距離を隔てて分離させる必要があり、全体の放電空間が(複数の小型放電セルにおける)複数の部分放電空間に分断されてしまうため、全体として活性ガス濃度の低下を招くという問題点があった。
 本発明では、上記のような問題点を解決し、放電空間を複数に分断することなく、かつ、1種類の交流電圧の印加によって、互いに活性ガス濃度が異なる複数種の部分活性ガスを含む活性ガスを外部に噴出することができる活性ガス生成装置を提供することを目的とする。
 この発明に係る活性ガス生成装置は、第1の電極構成部と前記第1の電極構成部の下方に設けられる第2の電極構成部と、前記第1及び第2の電極構成部に交流電圧を印加する交流電源部とを有し、前記交流電源部による前記交流電圧の印加により、前記第1及び第2の電極構成部間に放電空間が形成され、前記放電空間に供給された原料ガスを活性化して得られる活性ガスを生成する活性ガス生成装置であって、前記第1の電極構成部は、第1の誘電体電極と前記第1の誘電体電極の上面上に選択的に形成される第1の金属電極とを有し、前記第2の電極構成部は、第2の誘電体電極と前記第2の誘電体電極の下面上に選択的に形成される第2の金属電極とを有し、前記交流電圧の印加により前記第1及び第2の誘電体電極が対向する誘電体空間内において、前記第1及び第2の金属電極が平面視重複する領域が前記放電空間として規定され、前記第1及び第2の金属電極は電極形成方向に伸びて形成され、前記第2の誘電体電極は、前記活性ガスを外部に噴出するための複数のガス噴出孔を有し、前記活性ガスは前記複数のガス噴出孔から噴出される複数の部分活性ガスを含み、前記複数のガス噴出孔は前記電極形成方向に沿って形成され、前記電極形成方向における前記複数のガス噴出孔の位置に対応して前記放電空間は複数の部分放電空間に分類され、前記第1及び第2の誘電体電極のうち、一方の誘電体電極は、前記交流電圧の印加時において前記複数の部分放電空間で発生する複数の部分放電電圧が互いに異なる値になるように、前記電極形成方向に沿って放電電圧寄与パラメータを変化させたパラメータ変化構造を有することを特徴する。
 請求項1記載の本願発明の活性ガス生成装置は、交流電圧の印加時において複数の部分放電空間で発生する複数の部分放電電圧が互いに異なる値になるように、電極形成方向に沿って放電電圧寄与パラメータを変化させたパラメータ変化構造を有することを特徴としている。
 請求項1記載の本願発明は、上記特徴を有することにより、放電空間を複数に分断することなく、かつ、交流電源部から供給される1種類の交流電圧の印加によって、互いに活性ガス濃度が異なる複数の部分活性ガスを含む活性ガスを外部に噴出することができる効果を奏する。
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
実施の形態1の活性ガス生成装置における接地側電極構成部の誘電体電極の全体構造を示す斜視図である。 実施の形態1の接地側電極構成部の上面及び下面構造等を示す説明図である。 図2の着目領域を拡大して示す説明図である。 図2の着目領域を拡大して示す上面図である。 高電圧側電極構成部の上面及び下面構造等を示す説明図である。 高電圧側電極構成部と接地側電極構成部との組立工程を示す斜視図(その1)である。 高電圧側電極構成部と接地側電極構成部との組立工程を示す斜視図(その2)である。 高電圧側電極構成部と接地側電極構成部との組立工程を示す斜視図(その3)である。 実施の形態1の誘電体電極の膜厚変化に伴う部分放電電圧及び発生N濃度の変化を表形式で示す説明図である。 実施の形態2である活性ガス生成装置の高電圧側電極構成部の構造を示す説明図である。 実施の形態3である活性ガス生成装置の高電圧側電極構成部の構造を示す説明図である。 図11で示した高電圧側電極構成部を分解して示す断面図である。 実施の形態4である活性ガス生成装置の高電圧側電極構成部の構造を示す説明図である。 実施の形態4の部分誘電体電極の積層構造による部分放電電圧の変化を表形式で示す説明図である。 誘電体種類の具体例による部分放電電圧の変化を表形式で示すグラフである。 本願発明の活性ガス生成装置における基本構成を模式的に示す説明図である。
 <前提技術>
 図16は本願発明の活性ガス生成装置における基本構成を模式的に示す説明図である。同図に示すように、高電圧側電極構成部1(第1の電極構成部)と、高電圧側電極構成部1の下方に設けられる接地側電極構成部2(第2の電極構成部)と、高電圧側電極構成部1及び接地側電極構成部2に交流電圧を印加する高周波電源5(交流電源部)とを基本構成として有している。
 高電圧側電極構成部1は、誘電体電極11(第1の誘電体電極)と誘電体電極11の上面上に選択的に形成される金属電極10(第1の金属電極)とを有し、接地側電極構成部2は、誘電体電極21(第2の誘電体電極)と誘電体電極21の下面上に選択的に形成される金属電極20(第2の金属電極)とを有している。接地側電極構成部2の金属電極20が接地レベルに接続され、高電圧側電極構成部1の金属電極10に高周波電源5から交流電圧が印加される。
 そして、高周波電源5の交流電圧の印加により、誘電体電極11及び21が対向する誘電体空間内において、金属電極10及び20が平面視重複する領域が放電空間として規定される。上述した高電圧側電極構成部1、接地側電極構成部2及び高周波電源5によって活性ガス生成用電極群が構成される。
 このような構成において、交流電源部である高周波電源5による交流電圧の印加により、高電圧側電極構成部1と接地側電極構成部2との間に放電空間が形成され、この放電空間に窒素分子等の原料ガス6を供給すると、ラジカル化した窒素原子等の活性ガス7を得ることができる。
 以下で述べる実施の形態1~実施の形態4の活性ガス生成装置は、図16で示した活性ガス生成装置は基本構成として、さらに発展させた装置である。
 <実施の形態1>
 図1は実施の形態1の活性ガス生成装置における接地側電極構成部2Aの誘電体電極211の全体構造を示す斜視図である。図2は接地側電極構成部2Aの上面及び下面構造等を示す説明図である。同図(a)が上面図であり、同図(b)が同図(a)のA-A断面図、同図(c)が下面図であり、同図(d)が同図(a)のB-B断面図である。図3は図2(a)の着目領域R11を拡大して示す説明図であり、同図(a)が上面図、同図(b)が着目領域R11におけるA-A断面図である。なお、図1~図3それぞれにおいて適宜XYZ座標系を示している。
 これらの図に示すように、実施の形態1の接地側電極構成部2A(第2の電極構成部)は誘電体電極211と金属電極201H及び201L(一対の第2の部分金属電極;第2の金属電極)とを有している。
 誘電体電極211は、平面視して、X方向を長手方向、Y方向を短手方向とした長方形状の平板構造を呈している。以下、誘電体電極211において、後述する直線形段差形状部52A及び52Bを境界として、中心部を主要領域53、両端部を端部領域54A及び54Bと呼ぶ場合がある。
 誘電体電極211(第2の誘電体電極)に関し、主要領域53内の中央領域R50においてX方向(第1の方向;電極形成方向)に沿って、複数のガス噴出孔55(5つのガス噴出孔55)が設けられる。複数のガス噴出孔55はそれぞれ誘電体電極211の上面から下面に貫通して設けられる。
 図2(b),(c)に示すように、金属電極201H及び201L(一対の第2の部分金属電極)は誘電体電極211の下面上に形成され、平面視して誘電体電極211の中央領域R50を挟んで互いに対向して配置される。金属電極201H及び201Lは平面視して略長方形状を呈し、X方向(第1の方向)を長手方向(電極形成方向)とし、X方向に直角に交差するY方向(第2の方向)を互いに対向する電極対向方向としている。金属電極201H及び201Lは平面視した大きさは同一であり、その配置は中央領域R50を中心として対称となっている。
 なお、金属電極201H及び201Lは誘電体電極211の下面にてメタライズ処理されることにより形成され、その結果、誘電体電極211と金属電極201H及び201Lとは一体形成されて接地側電極構成部2A(第2の電極構成部)を構成する。メタライズ処理として印刷焼成方法やスパッタリング処理、蒸着処理等を用いた処理が考えられる。
 図5は高電圧側電極構成部1A(第1の電極構成部)の上面及び下面構造等を示す説明図である。同図(a)が上面図であり、同図(b)が同図(a)のC-C断面図、同図(c)が下面図である。なお、図5において適宜XYZ座標系を示している。
 同図に示すように、高電圧側電極構成部1Aは、誘電体電極111と、誘電体電極111の上面上に形成された金属電極101H及び101Lとから構成される。誘電体電極111は誘電体電極211と同様、X方向を長手方向、Y方向を短手方向とした、平面視して長方形状の平板構造を呈している。
 同図(b)に示すように、誘電体電極111は、X方向に沿って膜厚(厚み)が連続的に変化した構造となっている。なお、誘電体電極111の膜厚はY方向に沿って均一の厚さを呈している。
 具体的には、同図(b)に示すように、誘電体電極111の右端(+X方向の端部)の膜厚は厚さdA1に設定され、左端(-X方向の端部)の膜厚は厚さdB1(>dA1)に設定されている。
 そして、誘電体電極111の膜厚は、X方向に沿って右端(厚さdA1)から左端(厚さdB1)にかけて連続的に厚くなる。したがって、誘電体電極111の上面は水平方向(X方向)に対し一定の傾きを有している。なお、厚さdA1と厚さdB1との高低差として、例えば、厚さdB1の80%程度にすることが想定される。
 また、金属電極101H及び101L(一対の第1の部分金属電極;第1の金属電極)は誘電体電極111の上面上に形成され、平面視して誘電体電極211の中央領域R50に対応する同形状の中央領域R60を挟んで互いに対向して配置される。金属電極101H及び101Lの膜厚は均一である。
 この際、金属電極101H及び101Lは、金属電極201H及び201Lと同様、平面視して略長方形状を呈し、X方向(第1の方向)を長手方向(電極形成方向)とし、X方向に直角に交差するY方向(第2の方向)を互いに対向する電極対向方向としている。金属電極101H及び101Lは平面視した大きさは同一であり、その配置は中央領域R60を中心として対称となっている。ただし、金属電極101H及び101Lの短手方向(Y方向)並びに長手方向(X方向)の幅が、金属電極201H及び201Lに比べて少し短く設定される。なお、金属電極101H及び101Lも、金属電極201H及び201Lと同様にメタライズ処理により誘電体電極111の上面上に形成することができる。
 図6~図8は高電圧側電極構成部1Aと接地側電極構成部2Aとの組立工程を示す斜視図である。なお、図6~図8それぞれにおいてXYZ座標系を示している。なお、図6~図8では、説明の都合上、誘電体電極111の上述した膜厚の変化及び上面の傾きの図示を省略している。
 図6に示すように、接地側電極構成部2A上に高電圧側電極構成部1Aを配置することにより活性ガス生成用電極群301を組み立てることができる。図6及び図7に示すように、高電圧側電極構成部1Aにおける誘電体電極111の中央領域R60と、接地側電極構成部2Aにおける誘電体電極211の中央領域R50とが平面視重複するように位置決めしつつ、高電圧側電極構成部1Aを接地側電極構成部2A上に積み上げて組み合わせることにより、最終的に図8に示すように活性ガス生成用電極群301を完成することができる。
 活性ガス生成用電極群301を構成する誘電体電極111と誘電体電極211とが対向する誘電体空間内において、金属電極101H及び101Lと金属電極201H及び201Lとが平面視重複する領域が放電空間として規定される。
 メタライズ部である金属電極101H及び101L並びに金属電極201H及び201Lには、図16で示した金属電極10及び20のように、(高圧)高周波電源5に接続されている。接地側電極構成部2Aの金属電極201H及び201Lは接地されており、本実施の形態では、高周波電源5より0ピーク値を2~10kVで固定して、周波数を10kHz~100kHzで設定した交流電圧を金属電極101H及び101L,金属電極201H及び201L間に印加している。
 上述したように、高電圧側電極構成部1Aの誘電体電極111は、接地側電極構成部2Aの誘電体電極211と異なって、上面上及び下面上に何も形成されていない。したがって、高電圧側電極構成部1Aと接地側電極構成部2Aとを組み合わせる際には上部から接地側電極構成部2A側にバネやボルト等の締付力によって固定するのみとなり、座ぐり形状等を設けて敢えて接地側電極構成部2Aと位置決めしないことで、輸送時等に誘電体電極111と誘電体電極211との端面間の接触によるコンタミ発生の可能性を極力抑制した構造の活性ガス生成用電極群301を得ることができる。
 上述した放電空間(放電場)は異常放電を抑制するために一定間隔以上、ガス噴出孔55に近付けることはできない。したがって、放電空間を抜けてからガス噴出孔55までの中央領域R50(R60)上の空間は、非放電空間(非放電場,デッドスペース)となり、この非放電空間では活性ガスは生成されることなく減少していくだけとなる。
 活性ガスは放電空間にて生成され、放電空間を通過すると、その高エネルギーさ故に急激に減衰し、短時間で全て消滅してしまう。活性ガスの減衰メカニズムのうち、基底状態の他分子との衝突等によってエネルギーを失うタイプの場合、単純に圧力を下げて衝突頻度を低くするだけで活性ガスの消滅速度を抑制することが可能となる。つまり、大気圧近傍の放電空間で生成した活性ガスを速やかに減圧下の後段の成膜処理チャンバへと噴出するようにすることが重要であり、そのために先に記した非放電空間を規定する中央領域R50(R60)のY方向の幅は可能な限り狭くすることが望ましい。
 非放電空間を極小化するために放電空間をガス噴出孔55に近付けることはできない。なぜなら、ガス噴出孔55を放電空間に近づけすぎると、活性ガスに生成時に異常放電が発生する恐れがあるからである。そこで、実施の形態1の活性ガス生成装置は、非放電空間を埋めるべく、クサビ形段差形状部51(中央領域段差部)を誘電体電極211の上面の中央領域R50において上方に突出して、誘電体電極211の構成要素として一体形成して設けたことを特徴としている。
 すなわち、クサビ形段差形状部51は、平面視して複数のガス噴出孔55に重複することなく、平面視して複数のガス噴出孔55それぞれに近づくに従いY方向(第2の方向)の形成幅が短くなるように形成される。具体的には、5つのガス噴出孔55間に平面視菱形状に形成され、互いに離散した4つの菱形単体部51s(図3(a)参照)と、5つのガス噴出孔55のうち両端のガス噴出孔55の外側に設けられた平面視略二等辺三角形状の2つの三角単体部51t(図3(a)参照)との集合体によりクサビ形段差形状部51が形成される。
 したがって、外部から原料ガスをY方向(図6~図8で示すガス供給方向D1)に沿って、誘電体空間における中央領域R50上(中央領域R60下)に向けて供給することにより、原料ガスが放電空間を通過する際に得られる活性ガスを生成し、複数のガス噴出孔55から-Z方向(図6~図8で示すガス噴出方向D2)に沿って活性ガスを外部に噴出することができる。
 この際、複数のガス噴出孔55それぞれに近づくに従いY方向の形成幅が短くなるように、それぞれが離散形成された4つの菱形単体部51sと2つの三角単体部51tとを有するクサビ形段差形状部51(中央領域段差部)の存在により、誘電体空間内の中央領域R50上(中央領域R60下)において、複数のガス噴出孔55に対応する活性ガスの複数のガス流路をそれぞれ絞り込むことができる。その結果、実施の形態1の活性ガス生成装置は、各ガス噴出孔55においてガス流速を高めることができる結果、より高密度の活性ガスを生成することができる。
 なお、クサビ形段差形状部51のような平面形状以外でも、例えば平面形状が半円形状でも良く、平面視して複数のガス噴出孔55に重複することなく、平面視して複数のガス噴出孔55それぞれに近づくに従いY方向(第2の方向)の形成幅が短くなるように形成された形状であれば、上述した効果を達成することができることは勿論である。
 なお、原料ガスとして例えば窒素、酸素、弗素、及び水素のうち少なくとも一つを含むガスが考えられる。すなわち、酸素、希ガス類や水素、弗素類のガスを原料ガスとして供給する態様が考えられる。これら原料ガスが活性ガス生成用電極群301の外周部からガス供給方向D1に沿って内部へと進み、内部の放電空間を経由して活性ガスとなり、活性ガス(ラジカルを含んだガス)は誘電体電極211に設けられた複数のガス噴出孔55からガス噴出方向D2に沿って後段の成膜処理チャンバへと噴出される。成膜処理チャンバ内において、反応性の高い活性ガスを利用することで処理対象基板であるウェハに対し成膜処理を行うことができる。なお、活性ガスは複数のガス噴出孔55から噴出される複数の部分活性ガスを含んでいる。
 このように、窒素、酸素、弗素、及び水素のうち少なくとも一つを含む原料ガスから、より高密度の活性ガスを生成することができる。
 クサビ形段差形状部51は、高電圧側電極構成部1Aの誘電体電極111ではなく、接地側電極構成部2Aの誘電体電極211の上面上に設けている。すなわち、複数のガス噴出孔55とクサビ形段差形状部51とは同一の誘電体電極111に形成されている。このため、図6~図8で示すように、活性ガス生成用電極群301の組立時において複数のガス噴出孔55とクサビ形段差形状部51との位置決めを不要なものとし、装置構成の簡易化を図ることもできる。
 このクサビ形段差形状部51は高電圧側電極構成部1と接地側電極構成部2との間の放電空間におけるギャップ長(誘電体電極111,誘電体電極211間のZ方向の距離)を規定するスペーサとしても機能する。
 したがって、図6~図8で示したように、接地側電極構成部2A上に高電圧側電極構成部1Aを積層する簡単な組立工程によって、クサビ形段差形状部51の形成高さによって放電空間におけるギャップ長を設定することができる。
 また、従来、スペーサは放電空間に形成されることが多かった。この場合、スペーサ側面を経由した沿面放電が発生し、放電ロスやコンタミの発生の原因となってきた。本実施の形態では、誘電体電極211の上面に突出して設けたクサビ形段差形状部51は放電空間外の中央領域R50に設けられているため、コンタミ発生等の抑制につながっている。
 図1~図3に示すように、誘電体電極211は両端側に存在する、主要領域53と端部領域54A及び54Bとの境界領域において、上方に突出して形成される直線形段差形状部52A及び52B(一対の端部領域段差部)をさらに有している。直線形段差形状部52A及び52Bは平面視して、誘電体電極211の短手方向の全長に亘ってY方向に延びて形成され、クサビ形段差形状部51の形成高さと共に直線形段差形状部52A及び52Bの形成高さにより、放電空間におけるギャップ長を規定している。
 これら直線形段差形状部52A及び52Bの存在により、誘電体電極211のX方向両端部からの放電空間へのガスの流入を規制している。誘電体電極211の両端部からのガス流入が可能となると誘電体電極211の両端部近傍のガス噴出孔55(図1で最右、あるいは最左に存在するガス噴出孔55)は、活性ガスの流入量が影響を受け易いため、各ガス噴出孔55からの活性ガスのガス流量の計算が複雑化し、制御が困難となるという不具合がある。その不具合を直線形段差形状部52A及び52Bを設けることによって解消している。
 直線形段差形状部52A及び52Bが設けられることにより、高電圧側電極構成部1A及び接地側電極構成部2A間のガスの流入進路はY方向の2面からのみとなる。したがって、ガスの流れ自体が比較的安定化するため放電空間内の圧力分布が一定となり、均一な放電空間を形成することができる。
 このように、誘電体電極211はさらに直線形段差形状部52A及び52Bを有することにより、複数のガス噴出孔55のうち、X方向における両端部からの距離が近いガス噴出孔55においても、当該両端部から意図しないガスの流入等の影響で活性ガスの流入量が変化してしまう現象が生じないため、複数のガス噴出孔55間でバラツキを生じさせることなく活性ガスを噴出することができる。その結果、圧力分布が一定でかつ複数のガス噴出孔55それぞれの流量が同一とすることができる。
 なお、後述する図4に示すように、放電空間(金属電極201H及び201Lの中央領域R50側の端部)から複数のガス噴出孔55に至るY方向における距離である非放電距離d25を10mm以上に設定している。
 このように、非放電距離d25を10mm以上に設定することにより、活性ガス生成時に異常放電を発生しにくくすることができる。
 図4は図2(a)の着目領域R12を拡大して示す上面図である。なお、図4において適宜XYZ座標系を示している。同図に示すように、非放電空間の極小化のため、クサビ形段差形状部51のY方向の形成長さが最長となった端部51H及び51Lは放電空間を形成する金属電極201H及び201Lに隣接する位置まで延ばされている。クサビ形段差形状部51の端部51H及び51Lと金属電極201H及び201Lとが重なると、活性ガス生成時に異常放電を誘発しかねないため、放電空間を規定する金属電極201H及び201Lにおいて、端部51H及び51Lに対応する領域に平面視略三角形状の切り欠き部61H及び61Lを設けている。その結果、クサビ形段差形状部51と金属電極201H及び201Lとの間に所定の基準距離(例えば、2~3mm)を確保している。
 同様にして、図5(a),(b)に示すように、金属電極101H及び101Lにおいても、端部51H及び51Lに対応する箇所に切り欠き部71H及び71Lを設けている。
 このように、金属電極101H及び101L並びに金属電極201H及び201Lの平面視重複領域で規定される放電空間とクサビ形段差形状部51との間において、平面視した両者の最短距離が所定の基準距離以上になるように、金属電極101H及び101L並びに金属電極201H及び201Lの平面形状を設定することにより、活性ガス生成時に異常放電を発生しにくくすることができる。
 また、上述したように、金属電極101H及び101Lの短手方向(Y方向)並びに長手方向(X方向;電極形成方向)の幅を、金属電極201H及び201Lに比べて少し短く設定することにより、金属電極101H及び101Lと金属電極201H及び201Lとの平面形状の一部を異ならせている。
 その結果、金属電極101H及び101Lあるいは金属電極201H及び201Lの端面で生じ易い異常放電の発生を抑制することができる。
 なお、上記効果を重視しない場合、金属電極101H及び101Lと金属電極201H及び201Lとの平面形状を完全一致させても良い。
 さらに、高電圧側電極構成部1A及び接地側電極構成部2A(特に誘電体電極111及び211)のうち、活性ガスと接触する領域であるガス接触領域を石英、アルミナ、窒化珪素あるいは窒化アルミを構成材料として形成することが望ましい。
 上記構成材料で形成した面は、活性ガスに対して化学的に安定な物質であるため、活性ガスと接触するガス接触領域との間で、活性ガスの失活を抑制した状態で、活性ガスをガス噴出孔から噴出することができる。
 なお、複数のガス噴出孔55それぞれ同一形状(直径を同一の円状)で形成することが基本構成である。
 一方、複数のガス噴出孔の形状(直径)を複数のガス噴出孔55間で互いに異なるように設定する変形構成も考えられる。
 実施の形態1の活性ガス生成装置において、上記変形構成を採用した場合、複数のガス噴出孔55間で噴出量を異なる内容に設定することができる効果を奏する。なお、この変形構成については後に詳述する。
 (誘電体電極111)
 図5(b)で示したように、誘電体電極111及び誘電体電極211のうちの一方の誘電体電極である誘電体電極111は、電極形成方向であるX方向に沿って膜厚を変化させた膜厚変化構造を有している。
 ここで、X方向における5つのガス噴出孔55の位置を右側(+X側)から噴出孔位置P1~P5とする。噴出孔位置P1~P5に対応して5つの第1~第5の部分放電空間に上記放電空間を分類することができる。すなわち、第i(i=1~5のいずれか)の部分放電空間は、上記放電空間内で、X方向に沿って噴出孔位置Pi及びその近傍を含む空間となる。なお、第1~第5の部分放電空間は放電空間内で何ら分断されていない。
 このように、電極形成方向(X方向)における複数のガス噴出孔55の位置に対応して、上記放電空間を複数の部分放電空間に分類することができる。
 したがって、実施の形態1の活性ガス生成装置は、上述した膜厚変化構造を有する誘電体電極111は備えているため、第1~第5の部分空間における第1~第5の部分放電電圧を互いに異なる値にすることができる。
 図9は実施の形態1の誘電体電極111の膜厚変化に伴う部分放電電圧及び発生N濃度の変化を表形式で示す説明図である。図9では、窒素ガスを原料ガス6とし、活性ガス7としてラジカル化した窒素原子を発生させる場合を示している。
 図9に示すように、誘電体電極111の膜厚が1mm、3mm、6mmの場合の3つの部分放電空間PD1、PD2及びPD3を形成した場合を想定する。
 部分放電空間PD1~PD3間それぞれのギャップ長は1mmで同一であり、部分放電空間PD1~PD3それぞれの圧力であるギャップ部圧力も30kPaで同一であり、全体印加電圧となる交流電圧も5000Vで共通である。
 一方、部分放電空間PD1、PD2及びPD3の部分放電電圧は4200V、3100V及び2300Vと変化し、部分放電空間PD1、PD2及びPD3で発生する活性ガス7における発生N濃度(発生窒素濃度)は、110ppm、80ppm及び50ppmと変化する。発生N濃度は、活性ガス7におけるラジカル化した窒素原子の濃度、すなわち、活性ガス濃度を意味する。
 図9で示したように、部分放電空間PD1~PD3間において、部分放電電圧は誘電体電極111の膜厚に反比例する。なぜなら、誘電体電極111の下面において、比較的膜厚が薄い下面の電位が、比較的膜厚が厚い下面の電位より、膜厚が薄い分、高くなっているからである。
 一方、発生N濃度は部分放電電圧に比例するため、部分放電空間PD1~PD3それぞれの発生N濃度は、高濃度側から部分放電空間PD1、PD2及びPD3の順となる。
 図9に示すように、誘電体電極111に上記膜厚変化構造を持たせて、部分放電空間PD1~PD3間で誘電体電極111の膜厚(厚み)を変えることにより、部分放電空間PD1~PD3間における発生N濃度に濃度勾配を設けることができる。
 このように、誘電体電極111の上記膜厚変化構造は、高周波電源5からの交流電圧の印加時において複数の部分放電空間で発生する複数の部分放電電圧が互いに異なる値になるように、電極形成方向(X方向)に沿って膜厚を変化させている。
 すなわち、誘電体電極111(一方の誘電体電極)の膜厚は放電電圧寄与パラメータとなり、誘電体電極111の上記膜厚変化構造は、上記放電電圧寄与パラメータを変化させたパラメータ変化構造として機能している。
 このような構造の実施の形態1の活性ガス生成装置は、誘電体電極211に設けられる複数のガス噴出孔55から噴出される複数の部分活性ガスを含む活性ガスを外部に噴出している。
 したがって、実施の形態1の活性ガス生成装置において、誘電体電極111における厚さdA1~厚さdB1間の膜厚差、複数のガス噴出孔55の配置を適切に設定することにより、噴出される活性ガス内の複数の部分活性ガス間でラジカル化された原子や分子等の濃度である活性ガス濃度を変化させることができる。
 このように、実施の形態1の活性ガス生成装置は、交流電圧の印加時において複数の部分放電空間で発生する複数の部分放電電圧が互いに異なる値になるように、電極形成方向に沿って膜厚(放電電圧寄与パラメータ)を変化させた膜厚変化構造(パラメータ変化構造)を有することを特徴としている。
 実施の形態1の活性ガス生成装置は、上記特徴を有することにより、放電空間を複数に分断することなく、かつ、高周波電源5からの1種類の交流電圧の印加によって、互いに活性ガス濃度が異なる複数の部分活性ガスを含む活性ガスを外部に噴出することができる効果を奏する。
 さらに、実施の形態1の活性ガス生成装置は、パラメータ変化構造として、電極形成方向(X方向)に沿って誘電体電極111の膜厚を変化させた膜厚変化構造を採用している。このため、実施の形態1の活性ガス生成装置は、誘電体電極111及び誘電体電極211のうち、一方の誘電体電極である誘電体電極111の膜厚を変化させるという比較的簡単な改良構造で、上述した効果を達成することができる。
 さらに、実施の形態1では、上記膜厚変化構造として、電極形成方向に沿って、誘電体電極111の膜厚を連続的に変化させる構造を採用している。この構造では、例えば、誘電体電極111の電極形成方向に沿った両端部の膜厚に有意差をもたせるという、比較的簡単な設定により膜厚変更構造を実現することができる利点を有する。
 加えて、実施の形態1の活性ガス生成装置は、外部から窒素ガス等の原料ガス6を電極対向方向に沿って誘電体空間の中央領域R60上に向けて供給することにより、放電空間を通過させた後、誘電体電極211の中央領域R50に設けられた複数のガス噴出孔55から、互いの活性ガス濃度が異なる複数の部分活性ガスを含む活性ガスを外部に噴出することができる。
 ここで、活性ガス生成装置の後段に配置された成膜処理チャンバ等において、活性ガスを利用して基板の成膜処理を行う場合を考える。
 この場合、活性ガス濃度以上に単位時間当たりの絶対数(フラックス)に成膜処理内容が大きく依存する。なお、フラックスとは、各ガス噴出孔55から得られる単位時間当たりの活性ガス量(atms/sec)を意味する。
 すなわち、活性ガス濃度が高くてもガス流量そのものが微量であれば多くの成膜時間が必要となる。そこで、複数のガス噴出孔55間で噴出される単位時間当たりのガス流量を変化させることにより、複数の部分活性ガス間で実質的な濃度差、すなわち、フラックスに差を設けるという変形構成が考えられる。
 このように、誘電体電極111の膜厚を均一にして、複数のガス噴出孔55で孔径を変化させることにより、複数のガス噴出孔55間でガス流量を変化させるという変形構成が考えられる。
 しかし、上記変形構成では、複数の部分放電空間におけるギャップ部圧力に有意差が生じることになる。なぜなら、孔径の大きなガス噴出孔近傍の部分放電空間ほど圧力が低下するからである。ギャップ部圧力は放電の状態を大きく変化させてしまうと同時に、ギャップ部圧力が10kPa~30kPa程度、ギャップ長1~3mm程度の部分放電空間では圧力が低下するほど放電電力も低下してしまう傾向がある。このため、ガス流量の増加分を放電電力の低下が相殺してしまうため、上記変形構成では、フラックスを精度良く制御することが非常に困難となってしまう。
 一方、実施の形態1の活性ガス生成装置では、複数の部分放電空間(放電場)の状態は一切変更することなく、つまり、複数のガス噴出孔55の孔径を同一にして、複数の部分放電空間の圧力は一定のギャップ部圧力に設定することにより、部分活性ガス間で精度良く活性ガス濃度差を設けることができるため、上記変更構成から達成不可能な効果を奏している。
 <実施の形態2>
 図10はこの発明の実施の形態2である活性ガス生成装置の高電圧側電極構成部1Bの構造を示す説明図である。同図(a)が上面図であり、同図(b)が同図(a)のD-D断面図であり、同図(c)が接地側電極構成部2Bにおける誘電体電極212の断面構造を示す断面図である。同図(c)では金属電極202H及び202Lの図示を省略している。なお、図10において適宜XYZ座標系を示している。
 実施の形態2の活性ガス生成装置は、高電圧側電極構成部1Aが高電圧側電極構成部1Bに置き換わり、接地側電極構成部2Aが接地側電極構成部2Bに置き換わった点が実施の形態1と異なる。
 なお、図10(c)に示すように、誘電体電極212は、実施の形態1の誘電体電極211と同様、中央領域R50内に電極形成方向に沿って複数のガス噴出孔55が設けられている。なお、誘電体電極212においても、誘電体電極211と同様、さらに、クサビ形段差形状部51、直線形段差形状部52A及び52Bを有する構造を採用しても良い。
 なお、図10では図示を省略しているが、誘電体電極212の下面に形成される金属電極202H及び202Lは、誘電体電極211の下面に形成される金属電極201H及び201Lと等価な構造を呈している。
 図10(c)において、5つのガス噴出孔55を右側から55(1)、55(2)、55(3)、55(4)及び55(5)と識別可能に示している。
 図10に示すように、高電圧側電極構成部1Bは誘電体電極112と、誘電体電極112の上面上に形成された金属電極102H及び102Lとから構成されている。
 誘電体電極112は誘電体電極111と同様、X方向を長手方向、Y方向を短手方向とした平面視して長方形状の平板構造を呈している。
 同図(b)に示すように、誘電体電極112は、X方向に沿って膜厚(厚み)が段階的(離散的)に変化した構造となっている。なお、誘電体電極112の膜厚はY方向に沿って均一の厚みを呈している。
 具体的には、同図(b)に示すように、誘電体電極112の右端(+X方向の端部)の膜厚は厚さdA2に設定され、左端(-X方向の端部)の膜厚は厚さdB2(>dA2)に設定されている。
 そして、誘電体電極112の膜厚は、X方向に沿って右端(厚さdA2)から左端(厚さdA2)にかけて段階的に厚くなる。具体的には、誘電体電極111の右端から左端にかけて5段階で膜厚が変化している。
 同図(b)に示すように、誘電体電極112は互いに膜厚が異なる、複数の誘電体部分領域として、5つの誘電体部分領域PX1~PX5を有している。誘電体部分領域PX1は、電極形成方向であるX方向において、最右に存在するガス噴出孔55(1)の噴出孔位置P1を含む領域である。
 誘電体部分領域PX2はX方向において右から2番目に存在するガス噴出孔55(2)の噴出孔位置P2を含む領域である。誘電体部分領域PX3はX方向において右から3番目に存在するガス噴出孔55(3)の噴出孔位置P3を含む領域である。誘電体部分領域PX4はX方向において右から4番目に存在するガス噴出孔55(4)の噴出孔位置P4を含む領域である。誘電体部分領域PX5はX方向において最左に存在するガス噴出孔55(5)の噴出孔位置P5を含む領域である。
 誘電体電極112において、誘電体部分領域PX1における膜厚は厚さdA2であり、誘電体部分領域PX2における膜厚は厚さdA2+Δzであり、誘電体部分領域PX3における膜厚は厚さdA2+2・Δzであり、誘電体部分領域PX4における膜厚は厚さdA2+3・Δzであり、誘電体部分領域PX5における膜厚は厚さdB1(=厚さdA2+4・Δz)である。なお、上述した例では誘電体部分領域PX1~PX5における隣接する誘電体部分領域間の段差がΔzで均一である場合を示したが、必ずしも均一にする必要はない。例えば、所望の活性ガス濃度差が得られるように、隣接する誘電体部分領域間の段差を異なる値に設定しても良い。
 このように、誘電体電極112は、電極形成方向であるX方向において、複数のガス噴出孔55が設けられる5つの噴出孔位置P1~P5に基づき、5つの誘電体部分領域PX1~PX5に分類される。そして、誘電体部分領域PX1~PX5間で膜厚を変化させている。
 図10(a)に示すように、金属電極102H及び102L(一対の第1の部分金属電極;第1の金属電極)は誘電体電極112の上面上に形成され、平面視して誘電体電極212の中央領域R50に対応する同形状の中央領域R60を挟んで互いに対向して配置される。この際、金属電極102H及び102Lは、金属電極202H及び202Lと同様、平面視して略長方形状を呈し、X方向(第1の方向)を長手方向(電極形成方向)とし、X方向に直角に交差するY方向(第2の方向)を互いに対向する電極対向方向としている。
 なお、図10(a)に示された複数のガス噴出孔55は、誘電体電極212に存在する複数のガス噴出孔55を、誘電体電極112に平面視して重複する位置に仮想的に示したものであり、実際には誘電体電極112には形成されていない。
 図10(b)に示すように、金属電極102H及び102Lはそれぞれ膜厚を均一にし、かつ、誘電体電極111の誘電体部分領域PX1~PX5に対応して5段階の階段状に形成されている。
 なお、金属電極102H及び102Lの他の構造的特徴は、実施の形態1の金属電極101H及び101Lと同様であるため、説明を省略する。
 実施の形態2の活性ガス生成装置において、誘電体電極112と誘電体電極212とが対向する誘電体空間内において、金属電極102H及び102Lと金属電極202H及び202Lとが平面視重複する領域が放電空間として規定される。
 実施の形態2において、上記放電空間は、電極形成方向であるX方向に沿って、誘電体電極212における誘電体部分領域PX1~PX5に対応する第1~第5の部分放電空間に分類される。
 すなわち、誘電体部分領域PXi(i=1~5のいずれか)において、金属電極102H及び102Lと金属電極202H及び202Lとが平面視重複する領域が第iの部分放電空間となる。なお、第1~第5の部分放電空間は放電空間内で何ら分断されていない。
 このように、電極形成方向(X方向)における複数のガス噴出孔55(5つのガス噴出孔55(1)~55(5))の噴出孔位置P1~P5に対応して、上記放電空間を第1~第5の部分放電空間に分類することができる。
 したがって、実施の形態2の活性ガス生成装置は、上述した膜厚変化構造を有する誘電体電極112は備えているため、実施の形態1と同様、第1~第5の部分空間における第1~第5の部分放電電圧を互いに異なる値にすることができる。
 このように、誘電体電極112の上記膜厚変化構造は、交流電圧の印加時において複数の部分放電空間で発生する複数の部分放電電圧が互いに異なる値になるように、電極形成方向(X方向)に沿って膜厚を変化させている。
 すなわち、誘電体電極112(一方の誘電体電極)の膜厚は放電電圧寄与パラメータとなり、誘電体電極112の上記膜厚変化構造は、上記放電電圧寄与パラメータを変化させたパラメータ変化構造として機能している。
 このような構造の実施の形態2の活性ガス生成装置は、誘電体電極212に設けられる複数のガス噴出孔55から噴出される複数の部分活性ガスを含む活性ガスを外部に噴出している。
 したがって、実施の形態2の活性ガス生成装置において、誘電体電極112の誘電体部分領域PX1~PX5における各膜厚、複数のガス噴出孔55の配置を適切に設定することにより、噴出される活性ガス内の複数の部分活性ガス間でラジカル化された原子や分子の濃度である活性ガス濃度を変化させることができる。
 このように、実施の形態2の活性ガス生成装置は、実施の形態1と同様、電極形成方向に沿って膜厚(放電電圧寄与パラメータ)を変化させた膜厚変化構造(パラメータ変化構造)を有することを特徴としている。
 実施の形態2の活性ガス生成装置は、上記特徴を有することにより、実施の形態1と同様、放電空間を複数に分断形成することなく、かつ、高周波電源5からの1種類の交流電圧の印加によって、互いに活性ガス濃度が異なる複数の部分活性ガスを含む活性ガスを外部に噴出することができる効果を奏する。
 さらに、実施の形態2の活性ガス生成装置は、実施の形態1と同様、パラメータ変化構造として、電極形成方向(X方向)に沿って誘電体電極112の膜厚を変化させた膜厚変化構造を採用している。このため、実施の形態2の活性ガス生成装置は、誘電体電極112及び誘電体電極212のうち、一方の誘電体電極である誘電体電極112の膜厚を変化させるという比較的簡単な改良構造で、上述した効果を達成することができる。
 加えて、実施の形態2では、誘電体電極112における膜厚変化構造として、誘電体部分領域PX1~PX5間で膜厚を離散的に変化させた構造を採用している。このため、実施の形態2の活性ガス生成装置は、誘電体電極112における誘電体部分領域PX1~PX5単位に所望の膜厚に精度良く設定することができる。
 さらに、誘電体部分領域PX1~PX5間で段差が設けられる、誘電体電極112の離散的な膜厚変化構造は、誘電体電極111の連続的な膜厚変化構造に比べ、加工に要する手間や費用の低減化を図ることができる。
 なお、金属電極102H及び102Lは、一般的にスパッタ等の成膜処理方法もしくは金属ペースト塗布による焼成加工方法等を用いて、誘電体電極112の上面上に形成さされるが、誘電体部分領域PX1~PX5間の段差部にて分断しないように注意する必要がある。
 <実施の形態3>
 図11はこの発明の実施の形態3である活性ガス生成装置の高電圧側電極構成部1Cの構造を示す説明図である。同図(a)が上面図であり、同図(b)が同図(a)のE-E断面図である。
 図12は高電圧側電極構成部1Cを分解して示す断面図であり、図11(a)のE-E断面を示している。同図(a)が部分誘電体電極113Bと金属電極101Hとの積層構造の断面図であり、同図(b)が部分誘電体電極113Aの断面構造の断面図である。なお、図11及び図12それぞれにおいて適宜XYZ座標系を示している。
 実施の形態3の活性ガス生成装置は、高電圧側電極構成部1Aが高電圧側電極構成部1Cに置き換わり、接地側電極構成部2Aが接地側電極構成部2Cに置き換わった点が実施の形態1と異なる。
 なお、図示しないが、接地側電極構成部2Cの構造は、実施の形態1の接地側電極構成部2Aと同一構造を呈している。すなわち、接地側電極構成部2Cは誘電体電極213と金属電極203H及び203Lとから構成され、誘電体電極213は誘電体電極211と同一構造を呈し、金属電極203H及び203Lは、金属電極201H及び201Lと同一構造を呈し、誘電体電極213の下面に金属電極201H及び201Lと同一内容で設けられる。
 なお、接地側電極構成部2Cを実施の形態2の接地側電極構成部2Bと同一構成で形成しても良い。すなわち、接地側電極構成部2Cにおいて、誘電体電極213は誘電体電極212と同一構造を呈しても良い。
 図11に示すように、高電圧側電極構成部1Cは、誘電体電極113と誘電体電極113の上面上に形成された金属電極103H及び103Lとから構成される。
 図11(a)に示すように、誘電体電極113は誘電体電極111と同様、X方向を長手方向、Y方向を短手方向とした平面視して長方形状の平板構造を呈している。
 図11(b)に示すように、誘電体電極113(一方の誘電体電極)は、第1の積層用部分誘電体電極である部分誘電体電極113Aと、誘電体電極113上に形成される第2の積層用部分誘電体電極である部分誘電体電極113Bとを含んで構成される。したがって、部分誘電体電極113A及び113Bによる積層構造により誘電体電極113が構成される。
 図11及び図12に示すように、部分誘電体電極113Aは均一の膜厚を有し、部分誘電体電極113Bは、実施の形態1の誘電体電極111と同様、膜厚が連続的に変化する膜厚変化構造を有する。
 具体的には、図12(a)に示すように、部分誘電体電極113Bの右端(+X方向の端部)の膜厚は厚さdA3に設定され、左端(-X方向の端部)の膜厚は厚さdB3(>dA3)に設定されている。一方、図12(b)に示すように、部分誘電体電極113Aは均一の厚さd3に設定されている。
 したがって、部分誘電体電極113Bの膜厚は、X方向に沿って右端(厚さdA3)から左端(厚さdB3)にかけて連続的に厚くなる。その結果、誘電体電極113全体の膜厚は、X方向に沿って右端(厚さdA3+d3)から左端(厚さdB3+d3)にかけて連続的に厚くなる。したがって、誘電体電極113(部分誘電体電極113B)の上面は水平方向(X方向)に対し一定の傾きを有している。
 ここで、「dA3+d3=dA1」及び「dB3+d3=dB1」になるように、設定すれば、誘電体電極113は膜厚に関し、実施の形態1の誘電体電極111と等価な構造を有することになる。
 図11(b)及び図12(a)で示したように、部分誘電体電極113Bを有する誘電体電極113(一方の誘電体電極)は、誘電体電極111と同様、電極形成方向であるX方向に沿って膜厚を連続的に変化させた膜厚変化構造を有している。
 また、金属電極103H及び103L(一対の第1の部分金属電極;第1の金属電極)は誘電体電極113(部分誘電体電極113B)の上面上に形成され、平面視して誘電体電極213の中央領域R50に対応する同形状の中央領域R60を挟んで互いに対向して配置される。この際、金属電極103H及び103Lは、金属電極203H及び203Lと同様、平面視して略長方形状を呈し、X方向(第1の方向)を長手方向(電極形成方向)とし、X方向に直角に交差するY方向(第2の方向)を互いに対向する電極対向方向としている。
 実施の形態3の活性ガス生成装置において、誘電体電極113と誘電体電極213とが対向する誘電体空間内において、金属電極103H及び103Lと金属電極203H及び203Lとが平面視重複する領域が放電空間として規定される。
 したがって、実施の形態3の活性ガス生成装置において、実施の形態1と同様、X方向に沿って5つの第1~第5の部分放電空間に上記放電空間を分類することができる。すなわち、第i(i=1~5のいずれか)の部分放電空間は、上記放電空間において、噴出孔位置Pi及びその近傍を含む空間となる。なお、第1~第5の部分放電空間は放電空間内で何ら分断されていない。
 このように、電極形成方向(X方向)における複数のガス噴出孔55の位置に対応して、上記放電空間を複数の部分放電空間に分類することができる。
 したがって、実施の形態3の活性ガス生成装置は、上述した膜厚変化構造を有する誘電体電極113(部分誘電体電極113B)を備えているため、実施の形態1と同様、第1~第5の部分空間における第1~第5の部分放電電圧を互いに異なる値にすることができる。
 このように、誘電体電極113(部分誘電体電極113B)の上記膜厚変化構造は、交流電圧の印加時において複数の部分放電空間で発生する複数の部分放電電圧が互いに異なる値になるように、電極形成方向(X方向)に沿って膜厚を変化させている。
 すなわち、誘電体電極113(一方の誘電体電極)の膜厚は放電電圧寄与パラメータとなり、誘電体電極113の上記膜厚変化構造は、上記放電電圧寄与パラメータを変化させたパラメータ変化構造として機能している。
 このような構造の実施の形態3の活性ガス生成装置は、誘電体電極213に設けられる複数のガス噴出孔55から噴出される複数の部分活性ガスを含む活性ガスを外部に噴出している。
 したがって、実施の形態3の活性ガス生成装置において、部分誘電体電極113Aの膜厚、部分誘電体電極113Bにおける厚さdA3~厚さdB3間の膜厚差、複数のガス噴出孔55の配置を適切に設定することにより、噴出される活性ガス内の複数の部分活性ガス間で活性ガス濃度を変化させることができる。
 このように、実施の形態3の活性ガス生成装置は、実施の形態1及び実施の形態2と同様、電極形成方向に沿って膜厚(放電電圧寄与パラメータ)を変化させた膜厚変化構造(パラメータ変化構造)を有することを特徴としている。
 実施の形態3の活性ガス生成装置は、上記特徴を有することにより、放電空間を複数に分断することなく、かつ、高周波電源5からの1種類の交流電圧の印加によって、互いに活性ガス濃度が異なる複数の部分活性ガスを含む活性ガスを外部に噴出することができる効果を奏する。
 さらに、実施の形態3の活性ガス生成装置は、パラメータ変化構造として、電極形成方向(X方向)に沿って誘電体電極113における部分誘電体電極113Bの膜厚を変化させた膜厚変化構造を採用することにより、誘電体電極113及び誘電体電極213のうち、一方の誘電体電極である誘電体電極113の膜厚を変化させるという比較的簡単な改良構造で、上述した効果を達成することができる。
 さらに、実施の形態3では、上記膜厚変化構造として、電極形成方向に沿って、部分誘電体電極113Bの膜厚を連続的に変化させる構造を採用している。この構造では、例えば、部分誘電体電極113Bの電極形成方向に沿った両端部の膜厚に有意差をもたせるという、比較的簡単な設定により膜厚変更構造を実現することができる利点を有する。
 加えて、実施の形態3では、誘電体電極113を部分誘電体電極113Aと部分誘電体電極113Bとの積層構造により構成している。
 このため、実施の形態3の活性ガス生成装置は、第1の積層用部分誘電体電極である部分誘電体電極113Aとして既存の誘電体電極を用いつつ、第2の積層用部分誘電体電極として部分誘電体電極113Bを新たに追加するだけで、誘電体電極113として膜厚変化構造を実現することができる。その結果、実施の形態3の活性ガス生成装置を比較的安価に得ることができる。
 <実施の形態4>
 図13はこの発明の実施の形態4である活性ガス生成装置の高電圧側電極構成部1Dの構造を示す説明図である。同図(a)が上面図であり、同図(b)が同図(a)のF-F断面図である。なお、図13において適宜XYZ座標系を示している。
 実施の形態4の活性ガス生成装置は、高電圧側電極構成部1Aが高電圧側電極構成部1Dに置き換わり、接地側電極構成部2Aが図示しない接地側電極構成部2Dに置き換わった点が実施の形態1と異なる。
 図示しないが、接地側電極構成部2Dは誘電体電極214と誘電体電極214の下面に形成される金属電極204H及び204Lにより構成される。
 誘電体電極214は実施の形態1の誘電体電極211と同一構造を呈し、金属電極204H及び204Lは金属電極201H及び201Lと同一構造を呈し、誘電体電極214の下面に金属電極201H及び201Lと同一内容で設けられる。なお、誘電体電極214を実施の形態2の誘電体電極212と同一構造にしても良い。
 図13に示すように、高電圧側電極構成部1Dは、誘電体電極114と誘電体電極114の上面上に形成される金属電極104H及び104Lとから構成される。
 図13(a)に示すように、誘電体電極114は誘電体電極111と同様、X方向を長手方向、Y方向を短手方向とした平面視して長方形状の平板構造を呈している。
 図13(b)に示すように、誘電体電極114(一方の誘電体電極)は、第1の積層用部分誘電体電極である部分誘電体電極114Aと、誘電体電極114上に形成される第2の積層用部分誘電体電極である部分誘電体電極114Bとを含んで構成される。したがって、部分誘電体電極114A及び113Bによる積層構造により誘電体電極114が構成される。
 図13(b)に示すように、部分誘電体電極114A及び114Bは共に均一の膜厚を有し、部分誘電体電極114Bは、電極形成方向であるX方向に沿って、互いの誘電率が異なる5種類の部分誘電体領域14a~14eが互いに隣接して設けられる誘電率変化構造を有する。
 部分誘電体領域14a~14eは、電極形成方向(X方向)における複数のガス噴出孔55の噴出孔位置P1~P5(図10(c)参照)に対応する位置関係で設けられている。
 すなわち、部分誘電体領域14eはX方向において噴出孔位置P1を含んでおり、部分誘電体領域14dはX方向において噴出孔位置P2を含んでおり、部分誘電体領域14cはX方向において噴出孔位置P3を含んでおり、部分誘電体領域14bはX方向において噴出孔位置P4を含んでおり、部分誘電体領域14aはX方向において噴出孔位置P5を含んでいる。
 具体的には、図13に示すように、部分誘電体電極114Bの左端(-X方向の端部)から、右端(+X方向の端部)にかけて、5つの部分誘電体領域14a~14eを有している。部分誘電体領域14a~14eは互いに異なる誘電率を有する構成材料で構成されている。一方、部分誘電体電極114Aは、全体に亘って同一材料で構成されている。
 ここで、部分誘電体領域14a~14eは14a、14b、14c、14d及び14eの順で誘電率が高くなる構成材料(誘電体a、誘電体b、誘電体c、誘電体d及び誘電体e)で形成されている。
 したがって、部分誘電体電極114Bの誘電率は、X方向に沿って左端(誘電体a)から右(誘電体e)にかけて段階的に高くなる。その結果、誘電体電極114全体の誘電体合成容量は、X方向に沿って左端から右端にかけて段階的に高くなる。
 このように、実施の形態4において、部分誘電体電極114Bを有する誘電体電極114(一方の誘電体電極)は、電極形成方向であるX方向に沿って誘電率を段階的に変化させた誘電率変化構造を有している。
 また、金属電極104H及び104L(一対の第1の部分金属電極;第1の金属電極)は誘電体電極114(部分誘電体電極114B)の上面上に形成され、平面視して誘電体電極214の中央領域R50に対応する同形状の中央領域R60を挟んで互いに対向して配置される。この際、金属電極104H及び104Lは、金属電極204H及び204Lと同様、平面視して略長方形状を呈し、X方向(第1の方向)を長手方向(電極形成方向)とし、X方向に直角に交差するY方向(第2の方向)を互いに対向する電極対向方向としている。
 実施の形態4の活性ガス生成装置において、誘電体電極114と誘電体電極214とが対向する誘電体空間内において、金属電極104H及び104Lと金属電極204H及び204Lとが平面視重複する領域が放電空間として規定される。
 実施の形態4において、上記放電空間は、部分誘電体領域14a~14eと平面視して重複する領域に対応して第1~第5の部分放電空間に分類される。これら第1~第5の部分放電空間は放電空間内で何ら分断されていない。
 このように、電極形成方向(X方向)における複数のガス噴出孔55(5つのガス噴出孔55(1)~55(5))の噴出孔位置P1~P5に対応して、上記放電空間を第1~第5の部分放電空間に分類することができる。
 したがって、実施の形態4の活性ガス生成装置は、上述した誘電率変化構造を有する誘電体電極114(部分誘電体電極114B)は備えているため、第1~第5の部分放電空間における第1~第5の部分放電電圧を互いに異なる値にすることができる。
 図14は実施の形態4の部分誘電体電極114A及び114Bの積層構造による部分放電電圧の変化を表形式で示す説明図である。図14では、部分誘電体領域14a~14eに分類した内容で示している。
 図14に示すように、部分誘電体電極114Aの膜厚は1mmで均一であり、部分誘電体電極114Bの膜厚も部分誘電体領域14a~14e間は変化なく均一の1mmである。放電面積は3300mmであり、全体印加電圧となる交流電圧は5000Vとなる。なお、放電面積は、誘電体電極114(部分誘電体電極114A及び114B)が金属電極104H及び104Lと平面視して重複する面積となる。
 ここで、部分誘電体電極114Aの比誘電率は「10」である。一方、部分誘電体領域14aの構成材料である誘電体aの比誘電率は「10」、部分誘電体領域14bの構成材料である誘電体bの比誘電率は「20」、部分誘電体領域14cの構成材料である誘電体cの比誘電率は「30」、部分誘電体領域14dの構成材料である誘電体dの比誘電率は「40」、部分誘電体領域14eの構成材料である誘電体eの比誘電率は「50」である。
 したがって、部分誘電体電極114A及び114Bの積層構造による誘電体合成容量に関し、部分誘電体領域14a~14eにおける積層領域間で異なる値となる。
 具体的には、部分誘電体領域14aにおける積層領域で7.34・10-11F、部分誘電体領域14bにおける積層領域で9.79・10-11F、部分誘電体領域14cにおける積層領域で1.10・10-10F、部分誘電体領域14dにおける積層領域で1.17・10-10F、部分誘電体領域14eにおける積層領域で1.22・10-10Fとなる。
 その結果、部分誘電体領域14a~14eに対応する第1~第5の部分放電空間の部分放電電圧は3550V、3850V、3950V、4000V及び4050Vと変化する。
 したがって、実施の形態4の活性ガス生成装置は、部分放電電圧に比例する部分活性ガスの活性ガス濃度を、複数の部分活性ガス間で異なる値に設定することができる。
 このように、部分誘電体領域14a~14eに対応する第1~第5の部分放電空間において、部分放電電圧は部分誘電体領域14a~14eの誘電率に対し正の相関を有する。
 一方、部分活性ガスにおける活性ガス濃度は部分放電電圧に比例するため、第1~第5の部分放電空間それぞれで生成される部分活性ガスの活性ガス濃度は、低濃度側から第1、第2、…、第5の順となる。
 このように、誘電体電極114(部分誘電体電極114B)に上記誘電率変化構造を持たせることにより、第1~第5の部分放電空間間における活性ガス濃度に濃度勾配を設けることができる。
 図15は誘電体種類の具体例による部分放電電圧の変化を表形式で示すグラフである。図15では、部分誘電体領域14a~14cに分類した内容で示している。
 図15に示すように、部分誘電体電極114Aの膜厚は1mmで均一であり、部分誘電体電極114Bの膜厚も部分誘電体領域14a~14c間は変化なく均一の1mmである。放電面積は3300mmであり、全体印加電圧となる交流電圧は5000Vとなる。全体印加電圧となる交流電圧は5000Vとなる。
 ここで、部分誘電体電極114Aの比誘電率は「9.9」である。一方、部分誘電体領域14aの構成材料である石英の比誘電率は「3.8」、部分誘電体領域14bの構成材料であるアルミナの比誘電率は「9.9」、部分誘電体領域14cの構成材料であるHfO(酸化ハフニウム)の比誘電率は「15」である。
 したがって、部分誘電体電極114A及び114Bの積層構造による誘電体合成容量は、部分誘電体領域14a~14c間で異なる値となる。
 すなわち、部分誘電体領域14aにおける積層領域で4.0・10-11F、部分誘電体領域14bにおける積層領域で7.0・10-11F、部分誘電体領域14cにおける積層領域で9.0・10-10Fとなる。
 その結果、部分誘電体領域14a~14cに対応する第1~第3の部分放電空間の部分放電電圧は2900V、3550V、及び3750Vと変化する。
 したがって、部分誘電体領域14a~14c間で部分放電電圧に比例する部分活性ガスの活性ガス濃度を、複数の部分活性ガス間で異なる値に設定することができる。
 このように、図15から、部分誘電体領域14a~14c間で異なる構成材料を用いることにより、部分誘電体領域14a~14c間の誘電率に有意な差異を持たせることができる。
 上述したように、誘電体電極114の上記誘電率変化構造は、交流電圧の印加時において複数の部分放電空間で発生する複数の部分放電電圧が互いに異なる値になるように、電極形成方向(X方向)に沿って誘電率を変化させている。
 すなわち、誘電体電極114(一方の誘電体電極)における部分誘電体電極114Bの誘電率は放電電圧寄与パラメータとなり、誘電体電極114の上記誘電率変化構造は、上記放電電圧寄与パラメータを変化させたパラメータ変化構造として機能している。
 このような構造の実施の形態4の活性ガス生成装置は、誘電体電極214に設けられる複数のガス噴出孔55から噴出される複数の部分活性ガスを含む活性ガスを外部に噴出している。
 したがって、実施の形態4の活性ガス生成装置において、部分誘電体電極114Aの誘電率、部分誘電体電極114Bの部分誘電体領域14a~14eにおける各誘電率、複数のガス噴出孔55の配置を適切に設定することにより、噴出される活性ガス内の複数の部分活性ガス間で活性ガス濃度を変化させることができる。
 このように、実施の形態4の活性ガス生成装置は、交流電圧の印加時において第1~第5の部分放電空間で発生する第1~第5の部分放電電圧が互いに異なる値になるように、電極形成方向に沿って誘電率(放電電圧寄与パラメータ)を変化させた誘電率変化構造(パラメータ変化構造)を有することを特徴としている。
 実施の形態4の活性ガス生成装置は、上記特徴を有することにより、放電空間を複数に分断することなく、かつ、高周波電源5からの1種類の交流電圧の印加によって、互いに活性ガス濃度が異なる複数種の部分活性ガスを含む活性ガスを外部に噴出することができる効果を奏する。
 さらに、実施の形態4では、一方の誘電体電極である誘電体電極114の膜厚を均一にすることができるため、従来構造と同様、誘電体電極114及び誘電体電極214は共に膜厚を均一にすることができる。
 その結果、実施の形態4の活性ガス生成装置は、誘電体電極114の上面上に金属電極104H及び104Lを精度良く形成し、かつ、及び誘電体電極214の下面上に金属電極204H及び204Lを精度良く形成することができる。加えて、スペース的に誘電体電極に厚みを持たせることが困難な条件下においても、実施の形態4の活性ガス生成装置は支障無く対応可能である。
 また、実施の形態4は、第1の積層用部分誘電体電極として、誘電率及び膜厚が均一な既存の部分誘電体電極114Aを用いることができるため、既存の誘電体電極を用いつつ、第2の積層用部分誘電体電極となる部分誘電体電極114Bを新たに追加するだけで、誘電率変化構造を実現することができる。
 各々が高誘電率を有する誘電体a~誘電体eを構成材料とした部分誘電体領域14a~14eは板状に構成して部分誘電体電極114Aの上面上に載せても良いし、誘電率が十分高い場合は、部分誘電体領域14a~14eをスパッタ等で部分誘電体電極114Aの上面上に直接成膜しても良い。
 なお、放電面となる部分誘電体電極114Aの素材は、パーティクル等の不純物を発生させない観点から高純度アルミナもしくはサファイアに固定される。
 一方、金属電極形成面となる部分誘電体電極114Bは、放電に晒されないため、基板汚染の観点における制約を考慮する必要は無い。このため、部分誘電体電極114Bの部分誘電体領域14a~14eの構成材料として、誘電率を最優先して選択することができる。
 <その他>
 実施の形態1~実施の形態4において、一般に誘電体電極111~114及び誘電体電極211~214の膜厚が厚くなり過ぎると高周波電源5から印加する交流電圧をより高くしないと、放電空間において十分な放電電力が得られなくなる。一方、交流電圧を高くすると、多くの絶縁対策が必要となるため、可能な限り印加電圧なる交流電圧は低い方が望ましい。このため、制限無く交流電圧を高くできないという懸念材料がある。
 上記膜厚変化構造を採用した実施の形態1~実施の形態3の活性ガス生成装置は上記懸念材料を有している。
 一方、実施の形態4の活性ガス生成装置は、誘電体電極114及び214の膜厚を共に均一にすることができる。したがって、交流電圧の電圧レベルを抑制したい場合には、部分誘電体領域14a~14eの構成材料として用いる誘電体a~誘電体eを全て所定の誘電率よりも高い高誘電率素材で生成することで解消することができる。なお、所定の誘電率として比誘電率=10が考えられる。
 なお、上述の実施の形態1~実施の形態4において、上記パラメータ変化構造(膜厚変化構造,または誘電率変化構造)を誘電体電極111~114(第1の誘電体電極)に設けたが、それに限定される訳ではない。
 すなわち、誘電体電極111~114に代えて誘電体電極211~214(第2の誘電体電極)に上記パラメータ変化構造を設けたり、誘電体電極111~114及び誘電体電極211~214共に上記パラメータ変化構造を設けたりしても良い。
 なお、誘電体電極111~114は下面に何も設けていないため、誘電体電極211~214に比べ、上記パラメータ変化構造を容易に設けることができる利点を奏する。また、誘電体電極111~114及び誘電体電極211~214双方に上記パラメータ変化構造を設ける場合、片方に上記パラメータ変化構造を設ける場合と比較して、放電電圧寄与パラメータ(膜厚,誘電率)の変化を大きくできる利点を奏する。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 すなわち、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
 例えば、実施の形態4の活性ガス生成装置において、部分誘電体領域14a~14eの膜厚を部分誘電体領域14e~14aの順で厚くするようにして、上記誘電率変化構造及び上記膜厚変化構造の組合せ構造を実現しても良い。
 また、実施の形態3の誘電体電極113において、部分誘電体電極113Bの構造を、実施の形態2の誘電体電極112のように膜厚が段階的に変化する構造に変更しても良い。
 1A~1D 高電圧側電極構成部
 2A~2D 接地側電極構成部
 5 高周波電源
 14a~14e 部分誘電体領域
 51 クサビ形段差形状部
 52A,52B 直線形段差形状部
 55 ガス噴出孔
 111~114,211~214 誘電体電極
 113A,113B,114A,114B 部分誘電体電極
 101H~104H,101L~104L,201H~204H,201L~204L 金属電極
 301 活性ガス生成用電極群
 PX1~PX5 誘電体部分領域

Claims (8)

  1.  第1の電極構成部と
     前記第1の電極構成部の下方に設けられる第2の電極構成部と、
     前記第1及び第2の電極構成部に交流電圧を印加する交流電源部とを有し、
     前記交流電源部による前記交流電圧の印加により、前記第1及び第2の電極構成部間に放電空間が形成され、前記放電空間に供給された原料ガスを活性化して得られる活性ガスを生成する活性ガス生成装置であって、
     前記第1の電極構成部は、第1の誘電体電極と前記第1の誘電体電極の上面上に選択的に形成される第1の金属電極とを有し、前記第2の電極構成部は、第2の誘電体電極と前記第2の誘電体電極の下面上に選択的に形成される第2の金属電極とを有し、前記交流電圧の印加により前記第1及び第2の誘電体電極が対向する誘電体空間内において、前記第1及び第2の金属電極が平面視重複する領域が前記放電空間として規定され、
     前記第1及び第2の金属電極は電極形成方向に伸びて形成され、
     前記第2の誘電体電極は、
     前記活性ガスを外部に噴出するための複数のガス噴出孔を有し、前記活性ガスは前記複数のガス噴出孔から噴出される複数の部分活性ガスを含み、
     前記複数のガス噴出孔は前記電極形成方向に沿って形成され、前記電極形成方向における前記複数のガス噴出孔の位置に対応して前記放電空間は複数の部分放電空間に分類され、
     前記第1及び第2の誘電体電極のうち、一方の誘電体電極は、
     前記交流電圧の印加時において前記複数の部分放電空間で発生する複数の部分放電電圧が互いに異なる値になるように、前記電極形成方向に沿って放電電圧寄与パラメータを変化させたパラメータ変化構造を有することを特徴する、
    活性ガス生成装置。
  2.  請求項1記載の活性ガス生成装置であって、
     前記放電電圧寄与パラメータは、前記一方の誘電体電極の膜厚を含み、
     前記パラメータ変化構造は、
     前記電極形成方向に沿って前記一方の誘電体電極の膜厚を変化させた膜厚変化構造を含む、
    活性ガス生成装置。
  3.  請求項2記載の活性ガス生成装置であって、
     前記膜厚変化構造は、前記電極形成方向に沿って、前記一方の誘電体電極の膜厚を連続的に変化させた構造である、
    活性ガス生成装置。
  4.  請求項2記載の活性ガス生成装置であって、
     前記一方の誘電体電極は、前記電極形成方向において、前記複数のガス噴出孔が設けられる位置に基づき、複数の誘電体部分領域に分類され、
     前記膜厚変化構造は、前記複数の誘電体部分領域間で膜厚を変化させた構造である、
    活性ガス生成装置。
  5.  請求項2から請求項4のうち、いずれか1項に記載の活性ガス生成装置であって、
     前記一方の誘電体電極は、
     第1の積層用部分誘電体電極と、
     第2の積層用部分誘電体電極とを含み、前記第1及び第2の積層用部分誘電体電極は積層され、
     前記第1の積層用部分誘電体電極は均一の膜厚を有し、
     前記第2の積層用部分誘電体電極は前記膜厚変化構造を有する、
    活性ガス生成装置。
  6.  請求項1記載の活性ガス生成装置であって、
     前記放電電圧寄与パラメータは、前記一方の誘電体電極の誘電率を含み、
     前記パラメータ変化構造は、前記電極形成方向に沿って、前記一方の誘電体電極の誘電率を変化させた誘電率変化構造を含む、
    活性ガス生成装置。
  7.  請求項6記載の活性ガス生成装置であって、
     前記一方の誘電体電極は、
     第1の積層用部分誘電体電極と、
     第2の積層用部分誘電体電極とを含み、前記第1及び第2の積層用部分誘電体電極は積層され、
     前記第1の積層用部分誘電体電極は均一の誘電率を有し、
     前記第2の積層用部分誘電体電極は前記誘電率変化構造を有する、
    活性ガス生成装置。
  8.  請求項1から請求項7のうち、いずれか1項に記載の活性ガス生成装置であって、
     前記第2の金属電極は、平面視して前記第2の誘電体電極の中央領域を挟んで互いに対向して形成される一対の第2の部分金属電極を有し、前記一対の第2の部分金属電極は前記電極形成方向に沿って形成され、前記電極形成方向に交差する方向を互いに対向する電極対向方向としており、
     前記第1の金属電極は、平面視して前記一対の第2の部分金属電極と重複する領域を有する一対の第1の部分金属電極を有し、
     前記複数のガス噴出孔は、前記中央領域に形成される、
    活性ガス生成装置。
PCT/JP2019/032889 2019-08-22 2019-08-22 活性ガス生成装置 WO2021033320A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2020509125A JP6851705B1 (ja) 2019-08-22 2019-08-22 活性ガス生成装置
PCT/JP2019/032889 WO2021033320A1 (ja) 2019-08-22 2019-08-22 活性ガス生成装置
KR1020217006282A KR102577022B1 (ko) 2019-08-22 2019-08-22 활성 가스 생성 장치
EP19942568.7A EP3840018A4 (en) 2019-08-22 2019-08-22 ACTIVATED GAS GENERATOR
US17/281,263 US12004285B2 (en) 2019-08-22 2019-08-22 Activated gas generation apparatus
CN201980058546.3A CN112703582B (en) 2019-08-22 Active gas generating device
TW109113646A TWI759723B (zh) 2019-08-22 2020-04-23 活性氣體生成裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/032889 WO2021033320A1 (ja) 2019-08-22 2019-08-22 活性ガス生成装置

Publications (1)

Publication Number Publication Date
WO2021033320A1 true WO2021033320A1 (ja) 2021-02-25

Family

ID=74659658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032889 WO2021033320A1 (ja) 2019-08-22 2019-08-22 活性ガス生成装置

Country Status (6)

Country Link
US (1) US12004285B2 (ja)
EP (1) EP3840018A4 (ja)
JP (1) JP6851705B1 (ja)
KR (1) KR102577022B1 (ja)
TW (1) TWI759723B (ja)
WO (1) WO2021033320A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102545951B1 (ko) 2019-11-12 2023-06-22 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 활성 가스 생성 장치
EP3886540B1 (en) * 2019-11-27 2023-05-03 Toshiba Mitsubishi-Electric Industrial Systems Corporation Active gas generation device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0881205A (ja) * 1994-09-09 1996-03-26 Toshiba Corp オゾン発生装置
JP2004253275A (ja) * 2003-02-20 2004-09-09 Iwasaki Electric Co Ltd プラズマ生成方法およびプラズマ生成装置
JP2009502719A (ja) * 2005-08-03 2009-01-29 デグレモン ソシエテ アノニム オゾン発生器
JP2010272355A (ja) * 2009-05-21 2010-12-02 Mitsubishi Electric Corp 活性粒子発生装置
JP2011041889A (ja) * 2009-08-20 2011-03-03 Toshiba Corp 気流発生装置および移動体
WO2016067380A1 (ja) 2014-10-29 2016-05-06 東芝三菱電機産業システム株式会社 放電発生器とその電源装置
WO2017126007A1 (ja) 2016-01-18 2017-07-27 東芝三菱電機産業システム株式会社 活性ガス生成装置及び成膜処理装置
WO2018104988A1 (ja) 2016-12-05 2018-06-14 東芝三菱電機産業システム株式会社 活性ガス生成装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9117616B2 (en) * 2012-07-13 2015-08-25 Sp Tech Co., Ltd. Dielectric barrier discharge-type electrode structure for generating plasma having conductive body protrusion on electrodes
EP3468309B1 (en) 2016-05-27 2020-10-21 Toshiba Mitsubishi-Electric Industrial Systems Corporation Active gas generation device
US11532458B2 (en) * 2018-05-30 2022-12-20 Toshiba Mitsubishi-Electric Industrial Systems Corporation Active gas generation apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0881205A (ja) * 1994-09-09 1996-03-26 Toshiba Corp オゾン発生装置
JP2004253275A (ja) * 2003-02-20 2004-09-09 Iwasaki Electric Co Ltd プラズマ生成方法およびプラズマ生成装置
JP2009502719A (ja) * 2005-08-03 2009-01-29 デグレモン ソシエテ アノニム オゾン発生器
JP2010272355A (ja) * 2009-05-21 2010-12-02 Mitsubishi Electric Corp 活性粒子発生装置
JP2011041889A (ja) * 2009-08-20 2011-03-03 Toshiba Corp 気流発生装置および移動体
WO2016067380A1 (ja) 2014-10-29 2016-05-06 東芝三菱電機産業システム株式会社 放電発生器とその電源装置
WO2017126007A1 (ja) 2016-01-18 2017-07-27 東芝三菱電機産業システム株式会社 活性ガス生成装置及び成膜処理装置
WO2018104988A1 (ja) 2016-12-05 2018-06-14 東芝三菱電機産業システム株式会社 活性ガス生成装置

Also Published As

Publication number Publication date
CN112703582A (zh) 2021-04-23
TW202114479A (zh) 2021-04-01
JP6851705B1 (ja) 2021-03-31
US12004285B2 (en) 2024-06-04
TWI759723B (zh) 2022-04-01
EP3840018A1 (en) 2021-06-23
JPWO2021033320A1 (ja) 2021-09-13
KR20210039430A (ko) 2021-04-09
EP3840018A4 (en) 2022-06-08
KR102577022B1 (ko) 2023-09-12
US20220007487A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
JP6851705B1 (ja) 活性ガス生成装置
TWI482194B (zh) 電漿處理裝置及電漿處理方法
JP6440871B2 (ja) 活性ガス生成装置及び成膜処理装置
CN108292603B (zh) 气体供给装置
EP3214906B1 (en) Electrical discharge generator
TW201320184A (zh) 原子層蝕刻用之方法與設備
US10971338B2 (en) Active gas generating apparatus
JPWO2017203674A1 (ja) 活性ガス生成装置
CN109477220B (zh) 活性气体生成装置和成膜处理装置
KR102183551B1 (ko) 비-열적인 대기압-플라즈마를 발생하기 위한 장치 및 방법
US11476122B2 (en) Plasma etching method and plasma etching apparatus
CN112703582B (en) Active gas generating device
KR101050443B1 (ko) 플라즈마 밀도 균일도 향상을 위한 다분할 적층형 플레이트 구조의 유전체 윈도우를 가지는 플라즈마 발생장치
JP7077136B2 (ja) オゾン発生装置
JP2008053367A (ja) プラズマ処理装置
KR101425191B1 (ko) 표면 처리를 위한 유전체 장벽 방전 반응기
JP2002217174A (ja) 表面処理装置
JP2022124451A (ja) オゾン発生装置
JP2021048075A (ja) プラズマ発生装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020509125

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217006282

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019942568

Country of ref document: EP

Effective date: 20210319

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE