WO2018101708A1 - 미토콘드리아를 포함하는 약학 조성물 - Google Patents
미토콘드리아를 포함하는 약학 조성물 Download PDFInfo
- Publication number
- WO2018101708A1 WO2018101708A1 PCT/KR2017/013707 KR2017013707W WO2018101708A1 WO 2018101708 A1 WO2018101708 A1 WO 2018101708A1 KR 2017013707 W KR2017013707 W KR 2017013707W WO 2018101708 A1 WO2018101708 A1 WO 2018101708A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- pharmaceutical composition
- stem cells
- preventing
- mitochondria
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/48—Reproductive organs
- A61K35/50—Placenta; Placental stem cells; Amniotic fluid; Amnion; Amniotic stem cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/28—Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/48—Reproductive organs
- A61K35/54—Ovaries; Ova; Ovules; Embryos; Foetal cells; Germ cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
Definitions
- the present invention relates to a pharmaceutical composition comprising mitochondria. More particularly, the present invention relates to a pharmaceutical composition for preventing or treating muscle or ischemic diseases comprising mitochondria as an active ingredient.
- Mitochondria are an organelle essential for the survival of eukaryotic cells involved in the synthesis and regulation of adenosine triphosphate (ATP) as an energy source. Mitochondria are involved in various metabolic pathways in vivo, such as cell signaling, cell differentiation, cell death, as well as the control of cell cycle and cell growth.
- ATP adenosine triphosphate
- the function of mitochondria may be altered by swelling due to mitochondrial membrane potential abnormalities, oxidative stress caused by reactive oxygen species, free radicals, etc., and defective oxidative phosphorylation for energy production of mitochondria.
- the dysfunction of the mitochondria is caused by a variety of factors including multiple sclerosis, encephalomyelitis, cerebral neuropathy, peripheral neuropathy, Lyme syndrome, Alper syndrome, MELAS, migraine, psychosis, depression, seizure and dementia, paroxysmal episodes, optic atrophy, Atherosclerosis, diabetic retinopathy, diabetic retinopathy, diabetic retinopathy, diabetic retinopathy, diabetic retinopathy, diabetic retinopathy, diabetic retinopathy, macular degeneration, cataract, , It is known to be a direct or indirect cause of various diseases such as hypoplasia, diarrhea, villus atrophy, multiple vomiting, dysphagia, constipation, sensory nerve deafness, epilepsy, mental retardation, epilepsy, Alzheimer's disease, Parkinson's disease and Huntington's disease (Schapira AH et al ., Lancet., 1: 368 (9529): 70-82, 2006 and Pieczenik et al .,
- mitochondrial muscle disorders include MELAS syndrome, MERRF syndrome, Kearns-Sayre syndrome, myopathies, cerebral apoplexy, myasthenia gravis, myasthenia gravis, amyotrophic lateral sclerosis, muscle regressive atrophy, muscular dystrophy, muscle weakness, muscle weakness, .
- the present invention provides a pharmaceutical composition for treating a muscle disorder and a method for treating a muscle disorder using the same.
- the present invention also provides a pharmaceutical composition for treating ischemic diseases and a method for treating ischemic diseases using the same.
- the present invention provides a pharmaceutical composition for preventing or treating muscle disorders comprising mitochondria as an active ingredient.
- the present invention provides a pharmaceutical composition for preventing or treating muscle diseases, which comprises cells having foreign mitochondria introduced therein as an active ingredient.
- the present invention provides a method of preventing or treating muscle disorders, comprising administering the pharmaceutical composition to the affected part of the animal.
- the present invention also provides a pharmaceutical composition for preventing or treating ischemic diseases comprising mitochondria as an active ingredient.
- the present invention provides a pharmaceutical composition for preventing or treating ischemic diseases, which comprises cells having foreign mitochondria introduced therein as an active ingredient.
- the present invention also provides a method of preventing or treating an ischemic disease comprising injecting the above pharmaceutical composition directly into the affected part of an animal by injection.
- the pharmaceutical composition of the present invention includes cells containing foreign mitochondria or foreign mitochondria as an active ingredient. Since the mitochondrial activity of the subject to be administered is improved, the pharmaceutical composition according to the present invention can be usefully used for the fundamental prevention or treatment of muscular diseases caused by deterioration of mitochondrial function.
- 1 is a graph showing changes in body weight of rats induced with ataxia by administering dexamethasone.
- Fig. 2 is a photograph showing the fluorescence staining of mitochondria in cells derived from rat skeletal muscle.
- the marker used (Mitotracker CMXRos Red) is a sample accumulating dependently on the membrane potential of mitochondria.
- FIG. 3 is a graph showing the results of analysis of proliferative capacity of cells after transferring foreign mitochondria to muscle cells with impaired mitochondrial function.
- FIG. 4 is a graph showing the results of analysis of ATP synthesis ability of cells after transferring foreign mitochondria to muscle cells with impaired mitochondrial function.
- FIG. 5 is a graph showing the result of analysis of the membrane potential of intracellular mitochondria after transferring exogenous mitochondria to muscle cells that induced muscle atrophy.
- FIG. 6 is a graph showing the results of analysis of mitochondria-derived reactive oxygen species after transferring foreign mitochondria to muscle cells induced by atrophy.
- FIG. 7 is a graph showing the results of analysis of intracellular mitochondrial biosynthesis ability after transferring exogenous mitochondria to muscle cells that induce atrophy.
- FIG. 8A is a graph showing the results of analysis of AMPK activity of cells after transferring foreign mitochondria to muscle cells that induce atrophy.
- FIG. 8B is a graph showing the results of analysis of the amount of FoxO protein accumulation in cells after transferring foreign mitochondria to muscle cells that induce atrophy.
- FIG. 9 is a graph showing the results of analysis of the expression amount of MuRF-1, which is a muscle atrophy marker, after transferring foreign mitochondria to muscle cells inducing atrophy.
- FIG. 10 is a graph showing the weight change of the soleus muscle after transferring the foreign mitochondria to the rat induced by the atrophy.
- FIG. 11A is a graph showing Western blotting of expression of PGC-1, a protein involved in biosynthesis in mitochondria, after transferring foreign mitochondria to rat induced roots.
- FIG. 11B is a graph showing the expression amount of PGC-1, a protein related to biosynthesis in mitochondria, after transferring exogenous mitochondria to rat induced atrophy.
- FIG. 12A is a graph showing the expression amount of MuRF-1, which is an atrophy marker, through western blotting after transferring foreign mitochondria to rats induced by atrophy.
- FIG. 12B is a graph showing the expression level of MuRF-1, which is an atrophy marker, after transferring foreign mitochondria to rats induced by atrophy.
- Fig. 13 is a photograph showing a histological examination of the regeneration process of myofibers following foreign mitochondrial transplantation.
- FIG. 14 is a photograph of a mitochondria of a target cell and mitochondria of a donor cell by a confocal scanning microscope.
- 15 is a graph showing the results of visual evaluation of the therapeutic effect on severe ischemic diseases using an animal model inducing severe ischemic diseases.
- 16A is a graph showing the results of evaluating the therapeutic effect on severe ischemic diseases using an animal model inducing severe ischemic diseases.
- FIG. 16B is a graph showing the results of evaluating the therapeutic effect on severe ischemic diseases using blood flow using an animal model inducing severe ischemic diseases.
- One aspect of the present invention provides a pharmaceutical composition for preventing or treating muscle disorders comprising mitochondria as an active ingredient.
- active ingredient refers to a component that exhibits activity alone or with an adjuvant (carrier) that is not active by itself.
- the mitochondria may be those obtained from mammals and those obtained from humans. Specifically, the mitochondria may be isolated from cells or tissues.
- the cells may be any one selected from the group consisting of somatic cells, germ cells, stem cells, and combinations thereof.
- the mitochondria may be derived from somatic cells, germ cells or stem cells.
- the mitochondria may be normal mitochondria obtained from cells whose mitochondrial biological activity is normal.
- the mitochondria may be cultured in vitro.
- the somatic cells may be any one selected from the group consisting of muscle cells, hepatocytes, nerve cells, fibroblasts, epithelial cells, adipocytes, bone cells, leukocytes, lymphocytes, platelets, mucosal cells and combinations thereof.
- muscle cells hepatocytes, nerve cells, fibroblasts, epithelial cells, adipocytes, bone cells, leukocytes, lymphocytes, platelets, mucosal cells and combinations thereof.
- it may be obtained from muscle cells or hepatocytes excellent in mitochondrial activity.
- the germ cell is a cell that undergoes meiosis and somatic cell division, and may be a sperm or egg.
- the stem cells may be any one selected from the group consisting of mesenchymal stem cells, adult stem cells, degenerated stem cells, embryonic stem cells, bone marrow stem cells, neural stem cells, limbal stem cells and tissue-derived stem cells .
- the mesenchymal stem cells may be obtained from any one selected from the group consisting of umbilical cord, umbilical cord blood, bone marrow, fat, muscle, nerve, skin, amniotic membrane and placenta.
- mitochondria when the mitochondria are separated from specific cells, mitochondria can be isolated through various known methods, for example, by using a specific buffer solution or using a potential difference and a magnetic field.
- the mitochondrial separation can be obtained by disrupting cells and centrifuging in terms of maintaining mitochondrial activity.
- a method of treating a cell comprising culturing a cell, firstly centrifuging the pharmaceutical composition comprising the cell to produce a pellet, resuspending the pellet in a buffer solution and homogenizing the homogenized solution, Preparing a supernatant by secondary centrifugation, and purifying the mitochondria by third centrifugation of the supernatant.
- the time for performing the second centrifugation is adjusted to be shorter than the time for performing the first and third centrifugation, The speed can be increased.
- the first to third centrifugation may be performed at a temperature of 0 to 10 ° C, preferably 3 to 5 ° C.
- the time for performing the centrifugation may be 1 to 50 minutes, and may be appropriately adjusted according to the number of centrifugation and the content of the sample.
- the first centrifugation may be performed at a rate of 100 to 1,000 x g, or 200 to 700 x g, or 300 to 450 x g.
- the secondary centrifugation may be performed at a speed of 1 to 2,000 x g, or 25 to 1,800 x g, or 500 to 1,600 x g.
- the third centrifugation may be performed at a speed of 100 to 20,000 x g, or 500 to 18,000 x g, or 800 to 15,000 x g.
- muscle disease to which the pharmaceutical composition can effectively be applied may be a disease including malfunction of mitochondrial function.
- muscle disorders may be MELAS syndrome, MERRF syndrome, Kearns-Sayre syndrome, myopathies, cerebral apoplexy, myasthenia gravis, myasthenia gravis, amyotrophic lateral sclerosis, muscle regressive atrophy, muscular dystrophy, muscle weakness, weak muscle strength, , And muscle cell disorders resulting from degradation of mitochondrial function.
- the pharmaceutical composition of the present invention contains mitochondria whose cell activity is maintained as an active ingredient, thereby improving the mitochondrial activity of the cells to which the pharmaceutical composition is applied, thereby improving mitochondrial diseases.
- the mitochondria may be contained at a concentration of 0.1 to 500 ⁇ g / ml, 0.2 to 450 ⁇ g / ml, or 0.5 to 400 ⁇ g / ml.
- the mitochondrial capacity can be easily regulated upon administration and the degree of improvement of the myopathy of the affected part can be further improved.
- the pharmaceutical composition according to the present invention may include mitochondria so that mitochondria per 1 ⁇ 10 5 cells can be administered at 0.005 to 50 ⁇ g or 0.05 to 25 ⁇ g on the basis of cells to which mitochondria are delivered. That is, it is most preferable that the mitochondria are administered in the above-described range based on the number of cells to which the pharmaceutical composition is to be administered or the number of cells of the affected part caused by muscle diseases.
- the pharmaceutical composition may be administered at a dose of 1 to 80 ⁇ ⁇ , 10 to 70 ⁇ ⁇ , or 40 to 60 ⁇ ⁇ per administration.
- a pharmaceutical composition for preventing or treating muscle disorders comprising cells having foreign mitochondria introduced therein as an active ingredient.
- the foreign mitochondria refer to mitochondria derived from different cells except the cells into which the mitochondria are introduced. Details of the foreign mitochondria and the method for separating them are as described above.
- the cell is a cell containing foreign mitochondria in the cytoplasm, and may be a normal cell in which cell activity is maintained.
- the cell is preferably a muscle cell or a stem cell.
- the muscle cell may be a cell isolated from muscle tissue, or may be a cell obtained by further culturing the isolated cells.
- the stem cells may be any one selected from the group consisting of mesenchymal stem cells, adult stem cells, degenerated stem cells, embryonic stem cells, bone marrow stem cells, neural stem cells, limbal stem cells and tissue-derived stem cells .
- the mesenchymal stem cells may be obtained from any one selected from the group consisting of umbilical cord, umbilical cord blood, bone marrow, fat, muscle, nerve, skin, amniotic membrane and placenta.
- the cells into which the foreign mitochondria are introduced and the cells that provide the foreign mitochondria may be allogeneic cells or xenogeneic cells.
- the cell into which the foreign mitochondria are introduced and the cell that has provided the foreign mitochondria may be obtained from the same individual or from another individual.
- the pharmaceutical composition containing the foreign mitochondria and the cells to be delivered therewith can be centrifuged to deliver the foreign mitochondria into cells.
- the centrifugation may be performed at a temperature of 0 to 40 ⁇ , 20 to 38 ⁇ , or 30 to 37 ⁇ . It may also be carried out for 0.5 to 20 minutes, 1 to 15 minutes, or 3 to 7 minutes. Further, it may be carried out at 1 to 2,400 x g, 25 to 1,800 x g, or 200 to 700 x g.
- the foreign mitochondria can be delivered to the cells with high efficiency without causing any damage to the cells.
- the pharmaceutical composition may be more efficient in terms of centrifugal force and contact efficiency applied to cells and mitochondria by centrifugation in a test tube whose diameter gradually decreases toward the lower end.
- the centrifugation may be performed one to three additional times under the same conditions.
- the method may further include incubating the pharmaceutical composition before performing the centrifugation.
- the incubation may be performed at a temperature of 0 to 40 ⁇ , 20 to 38 ⁇ , or 30 to 37 ⁇ . It may also be carried out for 0.1 to 4 hours, 0.5 to 3.8 hours or 0.8 to 3.5 hours.
- the incubation can be performed for a predetermined time after the mitochondria are delivered to the cells. In addition, the incubation time can be appropriately selected depending on the kind of cells and the amount of mitochondria.
- the method may further include adding a surfactant to the pharmaceutical composition.
- a surfactant is used to enhance the cell membrane permeability of the cells, and the time of addition may be added before, during or after mixing of the cells and the mitochondria.
- the surfactant may be added to the cells, the cells may be allowed to stand for a certain period of time in order to increase the cell membrane permeability.
- it may include adding PF-68 (Pluronic F-68) to the pharmaceutical composition.
- the surfactant is preferably a non-ionic surfactant such as PF-68, and may be selected from the group consisting of poloxamers, that is, a central hydrophobic chain of polyoxypropylene disposed sideways by two hydrophilic chains of polyoxyethylene Lt; / RTI >
- the concentration of the surfactant in the pharmaceutical composition may be 1 to 100 ⁇ g / ml, 3 to 80 mg / ml, or 5 to 40 ⁇ g / ml, preferably 10 to 30 ⁇ g / ml.
- the cells contained in the pharmaceutical composition may be 0.1 to 500 ⁇ g, 0.2 to 450 ⁇ g, or 0.5 to 400 ⁇ g of mitochondria per 10 5 cells. Since the pharmaceutical composition contains cells with foreign mitochondria transferred in such an amount, the cell function of the affected part may be improved upon administration.
- the dosage is 2 x 10 3 to 2 x 10 7 cells / kg (body weight), more preferably 1 x 10 4 to 1 x 10 7 cells / kg (body weight) . It is effective in terms of dose control and amelioration of myopathy to contain cells injected with foreign mitochondria at a concentration within the above range.
- muscle disease to which the pharmaceutical composition can effectively be applied may be a disease including malfunction of mitochondrial function.
- muscle disorders may be MELAS syndrome, MERRF syndrome, Kearns-Sayre syndrome, myopathies, cerebral apoplexy, myasthenia gravis, myasthenia gravis, amyotrophic lateral sclerosis, muscle regressive atrophy, muscular dystrophy, muscle weakness, weak muscle strength, , And muscle cell disorders resulting from degradation of mitochondrial function.
- the pharmaceutical composition according to the present invention may be administered to humans or other mammals suffering from, or suffering from, mitochondrial muscle diseases or diseases.
- the pharmaceutical composition may be an injectable agent that can be directly administered to the affected part, and preferably it may be a muscle-active agent.
- the pharmaceutical composition according to the present invention can be used as an injectable preparation which is physically or chemically very stable by controlling pH by using an acid solution or a buffer solution such as phosphate, which can be used as an injectable drug, .
- the pharmaceutical composition of the present invention may contain water for injection.
- the injection water is distilled water prepared for dissolving a solid injectable solution or diluting an aqueous injectable solution, and is used as a diluent for injections of glucose, xylitol, D-mannitol, fructose, physiological saline, dextran 40, dextran 70, Ringer's solution, Ringer's-Ringer's solution or phosphate buffer solution in the range of pH 3.5 to 7.5, or sodium dihydrogen phosphate-citrate buffer solution.
- the pharmaceutical composition of the present invention may contain a stabilizer or a dissolution aid.
- the stabilizer may be sodium pyrosulfite or ethylenediaminetetraacetic acid
- the solubility aid may be hydrochloric acid, acetic acid, sodium hydroxide, sodium hydrogen carbonate, sodium carbonate or potassium hydroxide.
- the present invention also provides a method of preventing or treating muscle disorders, which comprises directly administering the above-mentioned pharmaceutical composition to the affected part of an individual.
- the individual may be a mammal, preferably a human.
- the pharmaceutical composition according to the present invention can provide foreign mitochondria having normal activity directly to a lesion in which a muscle disease occurs, thereby increasing the activity of mitochondrial function-lowering cells or regenerating mitochondrial dysfunctional cells, And can be used for the treatment or prevention of abnormal mitochondrial muscle diseases.
- the present invention also provides the use of the above pharmaceutical composition for preventing or treating muscle disorders.
- the present invention also provides the use of the above pharmaceutical composition for the manufacture of a medicament for the prevention or treatment of muscle disorders.
- One aspect of the present invention provides a pharmaceutical composition for preventing or treating ischemic diseases comprising mitochondria as an active ingredient.
- active ingredient refers to a component that exhibits activity alone or with an adjuvant (carrier) that is not active by itself.
- the mitochondria may be those obtained from mammals and those obtained from humans.
- the mitochondria may be isolated from cells or cell culture fluids. Specifically, the mitochondria may be isolated from cells or tissues.
- the cells may be any one selected from the group consisting of somatic cells, germ cells, stem cells, and combinations thereof.
- the mitochondria may be derived from somatic cells derived from mammals or humans, germ cells, stem cells, or combinations thereof.
- the mitochondria may be normal mitochondria obtained from cells whose mitochondrial biological activity is normal.
- the mitochondria may be cultured in vitro.
- the somatic cells may be any one selected from the group consisting of muscle cells, hepatocytes, nerve cells, fibroblasts, epithelial cells, adipocytes, bone cells, leukocytes, lymphocytes, platelets, mucosal cells and combinations thereof.
- muscle cells hepatocytes, nerve cells, fibroblasts, epithelial cells, adipocytes, bone cells, leukocytes, lymphocytes, platelets, mucosal cells and combinations thereof.
- it may be obtained from muscle cells or hepatocytes excellent in mitochondrial activity.
- the germ cell is a cell that undergoes meiosis and somatic cell division, and may be a sperm or egg.
- the stem cells may be any one selected from the group consisting of mesenchymal stem cells, adult stem cells, degenerated stem cells, embryonic stem cells, bone marrow stem cells, neural stem cells, limbal stem cells and tissue-derived stem cells .
- the mesenchymal stem cells may be obtained from any one selected from the group consisting of umbilical cord, umbilical cord blood, bone marrow, fat, muscle, nerve, skin, amniotic membrane and placenta.
- mitochondria when the mitochondria are separated from specific cells, mitochondria can be isolated through various known methods, for example, by using a specific buffer solution or using a potential difference and a magnetic field.
- the mitochondrial separation is as described above.
- ischemic diseases in which the above-mentioned pharmaceutical composition can be effectively applied are irreversible damage of cells constituting the tissue due to reduction of supply of blood flow, and processes called ischemic cascade are triggered, Or peripheral tissue is permanently inoperable.
- the ischemic disease may be severe hypoalgesia, ischemic stroke, ischemic heart disease or ischemic colitis.
- the ischemic disease may be a disease caused by mitochondrial dysfunction, and may include ischemic cell dysfunction caused by a decrease in mitochondrial function.
- the pharmaceutical composition of the present invention contains mitochondria whose cell activity is maintained as an active ingredient, thereby improving the mitochondrial activity of the cells to which the pharmaceutical composition is applied, thereby improving mitochondrial diseases.
- the mitochondria may be contained at a concentration of 0.1 to 500 ⁇ g / ml, 0.1 to 200 ⁇ g / ml, or 0.2 to 10 ⁇ g / ml.
- mitochondrial capacity can be easily controlled upon administration and the degree of improvement of the ischemic pathology of the affected part can be further improved.
- Another aspect of the present invention provides a pharmaceutical composition for preventing or treating ischemic diseases, which comprises cells having foreign mitochondria introduced therein as an active ingredient.
- the exogenous mitochondria refer to mitochondria derived from the different normal cells except the cells into which the mitochondria are introduced. The details of the method for separating the foreign mitochondria and the foreign mitochondria are as described above.
- the cell is a cell containing foreign mitochondria in the cytoplasm, and may be a normal cell in which cell activity is maintained.
- the cells may be somatic cells, germ cells, stem cells or a combination thereof.
- the cells may be isolated cells or cells obtained by further culturing the isolated cells.
- the stem cells may be any one selected from the group consisting of mesenchymal stem cells, adult stem cells, degenerated stem cells, embryonic stem cells, bone marrow stem cells, neural stem cells, limbal stem cells and tissue-derived stem cells .
- the mesenchymal stem cells may be obtained from any one selected from the group consisting of umbilical cord, umbilical cord blood, bone marrow, fat, muscle, nerve, skin, amniotic membrane and placenta.
- the cells into which the foreign mitochondria are introduced and the cells that provide the foreign mitochondria may be allogeneic cells or xenogeneic cells.
- the cell into which the foreign mitochondria are introduced and the cell that has provided the foreign mitochondria may be obtained from the same individual or from another individual.
- the cells contained in the pharmaceutical composition may be 0.1 to 500 ⁇ g, 0.2 to 450 ⁇ g or 1 to 300 ⁇ g of mitochondria introduced per 10 5 cells.
- the pharmaceutical composition may include cells that have transferred foreign mitochondria in such an amount, so that the cell function of the ischemic lesion may be improved upon administration.
- the pharmaceutical composition containing the foreign mitochondria and the cells to be delivered therewith can be centrifuged to deliver the foreign mitochondria into cells.
- the centrifugation may be performed at a temperature of 0 to 40 ⁇ , 20 to 38 ⁇ , or 30 to 37 ⁇ . It may also be carried out for 0.5 to 20 minutes, 1 to 15 minutes, or 3 to 7 minutes. Further, it may be carried out at 1 to 2,400 x g, 25 to 1,800 x g, or 200 to 700 x g.
- the foreign mitochondria can be injected into the cells with high efficiency without causing any damage to the cells.
- the pharmaceutical composition is more effective in terms of effective centrifugal force and contact efficiency to be applied to cells and mitochondria by centrifugation in a test tube whose diameter gradually decreases toward the bottom.
- the centrifugation may be performed one to three additional times under the same conditions.
- the method may further include incubating the pharmaceutical composition before performing the centrifugation.
- the incubation may be performed at a temperature of 0 to 40 ⁇ , 20 to 38 ⁇ , or 30 to 37 ⁇ . It may also be carried out for 0.1 to 4 hours, 0.5 to 3.8 hours or 0.8 to 3.5 hours.
- the incubation can be performed for a predetermined time after the mitochondria are delivered to the cells. In addition, the incubation time can be appropriately selected depending on the kind of cells and the amount of mitochondria.
- the method may further include adding a surfactant to the pharmaceutical composition.
- a surfactant is used to enhance the cell membrane permeability of the cells, and the time of addition may be added before, during or after mixing of the cells and the mitochondria.
- the surfactant may be added to the cells, the cells may be allowed to stand for a certain period of time in order to increase the cell membrane permeability.
- it may include adding PF-68 (Pluronic F-68) to the pharmaceutical composition.
- the surfactant is preferably a non-ionic surfactant such as PF-68, and may be selected from the group consisting of poloxamers, that is, a central hydrophobic chain of polyoxypropylene disposed sideways by two hydrophilic chains of polyoxyethylene Lt; / RTI >
- the concentration of the surfactant in the pharmaceutical composition may be 1 to 100 mg / ml, 3 to 80 mg / ml or 5 to 40 mg / ml, and preferably 10 to 30 mg / ml.
- ischemic diseases in which the above-mentioned pharmaceutical composition can be effectively applied are irreversible damage of cells constituting the tissue due to reduction of supply of blood flow, and processes called ischemic cascade are triggered, Or peripheral tissue is permanently inoperable.
- the ischemic disease may be severe lower limb ischemia, ischemic stroke, ischemic heart disease or ischemic colitis.
- the ischemic disease may be a disease caused by mitochondrial dysfunction, and may include ischemic cell dysfunction caused by a decrease in mitochondrial function.
- compositions according to the present invention may be administered to humans or other mammals suffering from, or suffering from, mitochondrial ischemic diseases or diseases.
- pharmaceutical composition may be an injectable agent that can be directly administered to the affected part, and preferably it may be a injectable agent.
- the pharmaceutical composition according to the present invention can be used as an injectable preparation which is physically or chemically very stable by controlling pH by using an acid solution or a buffer solution such as phosphate, which can be used as an injectable drug, .
- the pharmaceutical composition of the present invention may contain water for injection.
- the injection water is distilled water prepared for dissolving a solid injectable solution or diluting an aqueous injectable solution, and is used as a diluent for injections of glucose, xylitol, D-mannitol, fructose, physiological saline, dextran 40, dextran 70, Ringer's solution, Ringer's-Ringer's solution or phosphate buffer solution in the range of pH 3.5 to 7.5, or sodium dihydrogen phosphate-citrate buffer solution.
- the pharmaceutical composition of the present invention may also contain a stabilizer or a solubilizer, for example, the stabilizer may be sodium pyrosulfite or ethylenediaminetetraacetic acid, Hydrochloric acid, acetic acid, sodium hydroxide, sodium hydrogencarbonate, sodium carbonate or potassium hydroxide.
- the stabilizer may be sodium pyrosulfite or ethylenediaminetetraacetic acid, Hydrochloric acid, acetic acid, sodium hydroxide, sodium hydrogencarbonate, sodium carbonate or potassium hydroxide.
- the present invention also provides a method of preventing or treating an ischemic disease comprising administering the above-mentioned pharmaceutical composition directly to the affected part of the subject by injection method.
- the individual may be a mammal, preferably a human.
- the pharmaceutical composition according to the present invention can provide foreign mitochondria having normal activity directly to the lesion in which the ischemic disease has occurred, thereby increasing the activity of the cells with reduced mitochondrial function or being useful for regenerating mitochondrial dysfunctional cells, May be used for the treatment or prevention of ischemic diseases with mitochondrial dysfunction.
- the present invention also provides the use of the above pharmaceutical composition for preventing or treating ischemic diseases.
- the present invention also provides the use of the above pharmaceutical composition for the manufacture of a medicament for the prophylaxis or treatment of ischemic diseases.
- dexamethasone was administered intraperitoneally for 5 days at a concentration of 5 mg / kg for 5 days.
- the animals were weighed at daily intervals and the weight of the dexamethasone-treated group was reduced by 30% compared to the normal group on the 5th day of dexamethasone treatment (Fig. 1).
- the donor cells of mitochondria were cultured in the same rat skeletal muscle-derived cell line (CRL1458, ATCC, Manassas, VA, USA) as the species of the experimental animals, and the cells were stained with mitochondria-specific markers (Mitotracker CMXRos Red) .
- cells were collected using a hemocyte calculator to collect cells at 2x10 7 cells / ml. Then, the cell line was subjected to primary centrifugation at a temperature of about 4 ° C for 10 minutes at a rate of 350 ⁇ g, and the resulting pellet was recovered and resuspended in a buffer solution for homogenization. The pharmaceutical composition containing the pellet was subjected to secondary centrifugation at a temperature of about 4 ° C for 3 minutes at a rate of 1,100 x g to obtain a supernatant. The supernatant was then subjected to tertiary centrifugation at a rate of 12,000 x g for 15 minutes at a temperature of about 4 < 0 > C to separate the mitochondria from the cell line.
- the intracellular mitochondria labeled with red fluorescence before the separation was photographed by fluorescence microscope and shown in FIG. 2, and isolated mitochondria were identified.
- the marker used at this time is a sample accumulating dependently on the membrane potential of mitochondria, showing the viability of isolated mitochondria (Fig. 2).
- L6 cells a rat skeletal muscle-derived cell line commonly used for cell-related experiments, were used as a control.
- L6 cells were treated with mitochondrial ATP synthesis inhibitor (oligomycin, Sigma-Aldrich, St. Louis, MO, USA) to artificially suppress mitochondrial function.
- mitochondrial ATP synthesis inhibitor oligomycin, Sigma-Aldrich, St. Louis, MO, USA
- healthy mitochondria extracted from WRL-68 hepatocytes CRL1458, ATCC
- the Colorimetric Cyto X TM Cell Viability Assay Kit (LPS solution, Daejeon, Korea) was used. At 24 and 48 hours after the incubation, the reaction solution contained in the experimental kit was mixed with each sample, followed by reaction in a 37 ° C CO 2 incubator for 2 hours. The absorbance was then measured at a wavelength of 450 nm.
- the absorbance of the mitochondrial transfected cell line was higher than that of the mitochondrial function-suppressed cell group.
- the increase of the absorbance means that the activity of mitochondrial dehydrogenase is increased while the number of viable cells of the sample increases, and it is confirmed that the cell proliferation capacity is improved through mitochondrial transfer through centrifugation.
- ATP bioluminescent somatic cell assay kit (Sigma-Aldrich, St. Louis, Mo., USA) was used to measure the amount of ATP in each sample.
- the ATP releasing solution was added to the prepared sample, and reacted at room temperature for 20 seconds to release ATP from the sample. Thereafter, the ATP assay mix solution was added to the sample, and the reaction was carried out at room temperature for 10 minutes, and the amount of ATP was measured using a luminometer. The amount of ATP in each sample can be calculated from the ATP standard curve.
- the amount of ATP present in the protein in the sample was calculated and the change in ATP amount relative to the control group was analyzed. As a result, compared with the mitochondrial function-inhibited cells, .
- muscle atrophy was induced in rat skeletal muscle-derived cell line L6 using an atrophy inducing agent (dexamethasone, Sigma-Aldrich, St. Louis, Mo., USA) .
- an atrophy inducing agent drug, Sigma-Aldrich, St. Louis, Mo., USA
- healthy mitochondria Intact MT
- mitochondrial ATP synthesis inhibitor were treated to obtain damaged mitochondria (Damaged MT) extracted from the same cells that impaired mitochondrial function.
- Mitochondria were transferred to muscle cells inducing atrophy of axon (0.05, 0.5, 5 ⁇ g) per 1 ⁇ 10 5 cells and cultured in a 37 ° C CO 2 incubator inoculated on a 24-well plate.
- JC-1 dye was used to measure the mitochondrial membrane potential in each sample. After reacting the sample with JC-1 dye, the absorbance was measured using properties having different spectra according to changes in membrane potential.
- the membrane potential of mitochondria is calculated as the ratio of green absorbance to red absorbance Respectively.
- the membrane potential of the cell that delivered the foreign mitochondria was recovered by about 12 to 22%, as compared with the cell in which the membrane potential of the mitochondria was induced by the induction of the atrophy. Especially when compared to the group receiving the damaged mitochondria.
- MitoSOX red dye (Invitrogen, Carlsbad, CA, USA) was used for analysis of mitochondrial-derived reactive oxygen species. Cells were washed with buffer solution and MitoSOX red dye was added to the cells in the medium and incubated in a 37 ° C CO 2 incubator for 20 minutes. After the reaction, the cells were washed with a buffer, and the cover slides in which the cells in the wells were inoculated were collected, placed on a slide, and observed with a fluorescence microscope. Red fluorescence signal was increased when active oxygen in mitochondria was increased due to injury. Fluorescence density of each sample was analyzed by an analysis program.
- mitochondria-transferred cells showed significantly less free radicals than those without mitochondria Respectively. Especially when compared to the group receiving the damaged mitochondria.
- the activity of mitochondrial biosynthesis in the cells was compared by comparing the expression of PGC-1 (Peroxisome proliferator-activated receptor Gamma Coactivator-1) in the protein.
- PGC-1 Peroxisome proliferator-activated receptor Gamma Coactivator-1
- each mitochondria was transferred into the muscle-induced atrophy cells in the same manner as in Example 5.
- the changes in the extracted proteins of each sample were analyzed by Western blot using a PGC-1 antibody (Santa Cruz Biotechnology Inc., Santa Cruz, CA, Cat no: sc-13067).
- mitochondrial biosynthesis is activated and PGC-1 expression is high, but mitochondrial biosynthesis is reduced by lowering the expression of PGC-1 at the level at which mitochondrial function is impaired.
- the mitochondrial biosynthesis capacity of the cells that received the foreign mitochondria was improved to a level similar to that of the normal cells, compared with the cells in which mitochondrial biosynthesis activity was induced by induction of atrophy. In particular, this showed a significant effect when compared to the group receiving the damaged mitochondria.
- Example 8 Muscle atrophy Induced In muscle cells AMPK activation of cells after foreign mitochondrial transfer and FoxO Accumulation amount evaluation
- AMPK activation and FoxO accumulation in the proteins were compared with those of mitochondrial function in the cells. To this end, each mitochondria was transferred into the muscle-induced atrophy cells in the same manner as in Example 5. Forty-eight hours after culture, the cells were collected and proteins were extracted. The changes in the extracted proteins of each sample were measured using AMPKa antibody (Cell Signaling Technology, Beverly, MA, # 2535), Phospho-AMPKa antibody (Cell Signaling Technology, Beverly, MA, # 2532) MA, (# 2497).
- AMPKa antibody Cell Signaling Technology, Beverly, MA, # 2535
- Phospho-AMPKa antibody Cell Signaling Technology, Beverly, MA, # 2532
- AMPK Ado Mono Phosphate Kinase
- FoxO activated by this signal, accumulates FoxO in the nucleus, It promotes the expression of important genes (atrogenes) that affect muscle atrophy, such as MAFbx, leading to muscular atrophy.
- MuRF-1 muscle ring finger-1
- the expression of MuRF-1 (muscle ring finger-1) in the protein was compared and the effect of mitochondria-induced mitogenesis was compared.
- Each mitochondria was transferred into cells induced by atrophy in the same manner as in Example 5. Forty-eight hours after culture, the cells were collected and proteins were extracted. Changes in the extracted proteins of each sample were analyzed by Western blot using MuRF-1 antibody (Santa Cruz Biotechnology Inc., Santa Cruz, CA, Cat no: sc-27642).
- Mitochondrial function is impaired during the induction of atrophy, and as shown in FIG. 8b, the atrophy transcription factor (eg, MuRF-1) is activated by FoxO accumulated in the nucleus, leading to atrophy.
- the atrophy transcription factor eg, MuRF-1
- the expression level of MuRF-1 was reduced to a level similar to that of normal cells in the group to which healthy extrinsic mitochondria were transferred, compared with the increase in the expression level of MuRF-1 in the atrophy induction group. In particular, this showed a significant effect when compared to the group receiving the damaged mitochondria.
- the mitochondria isolated from Example 1 were assayed for mitochondrial protein levels via a BCA assay, and their concentrations were set at a low concentration (MT low; 0.5 ⁇ g) and a high concentration (MT high; 5 ⁇ g). This concentration was used in an effective concentration range that validated the recovery efficacy in cells induced by atrophy.
- the prepared mitochondria were suspended in 100 ⁇ l of saline and injected into the 0.25 mm (31 G) ⁇ 8 mm (Insulin syringe, BD ULtra-Fine II) syringe and injected between the gastronemius muscles twice and up. In the atrophic group, 0.9% (v / v) saline solution of the same volume was injected.
- the weight of the soleus muscle was reduced to about twice that of the normal group. From day 1 after mitochondrial transplantation, it was confirmed that the weight change was restored and the weight of the soleus muscle was increased depending on the concentration of MT delivered. At 14 days after dexamethasone treatment, it was confirmed that the atrophic group also recovered naturally. Also, it was confirmed that the weight of the soleus muscle was increased by the transplantation of mitochondria than the normal group (Fig. 10).
- MuRF-1 Protein expression levels of MuRF-1, a specific muscle atrophy marker, were determined from western blots from 1, 7, and 14 days after mitochondrial transplantation. On the seventh day after induction of atrophy, MuRf-1 expression was increased by induction of atrophy. On the other hand, inhibition of MuRF-1 expression was observed in the mitochondria-transferring group, depending on the graft concentration. In addition, no expression of MuRF-1 in the induction group of the atrophy at 14 days indicates a time point when the muscle returns from the atrophy (Figs. 12A and 12B).
- the treatment effect of atrophy was analyzed histologically through external mitochondrial transplantation after atrophy induction.
- H & E staining it was confirmed that the size of muscle fiber decreased and the endomysium spread widely in the muscle atrophy group by 7 days.
- the size of muscle fibers increased and density increased.
- the myofiber induction group showed a natural recovery from the fact that the size of the myofiber and the endometrium became similar to the normal group (Fig. 13).
- the mesenchymal stem cells obtained from the placenta were suspended in 10% (v / v) fetal bovine serum (FBS, Gibco) Streptomycin and Alpha-MEM (Alpha-Minimum Essential Medium) medium containing 100 U / ml ampicillin and cultured for 72 hours. After incubation, the cells were washed twice with DPBS (Dulbecco's phosphate buffered saline, Gibco). The washed cells were treated with 0.25% trypsin-EDTA (TE, Gibco) to obtain cells.
- FBS fetal bovine serum
- Alpha-MEM Alpha-MEM (Alpha-Minimum Essential Medium) medium containing 100 U / ml ampicillin
- the thus obtained cells are then again washed twice using (Dulbecco's phosphate buffered saline, Gibco ) DPBS, 1x10 5, 1x10 6, 5x10 then each mixed with the water for injection 100 ⁇ l of six sheep was filled in the insulin syringe.
- Example 14 Preparation of a pharmaceutical composition comprising mitochondria
- Placenta-derived mesenchymal stem cells were inoculated on an Alpha-MEM medium containing 10% (v / v) fetal calf serum, 100 ⁇ g / ml streptomycin and 100 U / ml ampicillin and cultured for 72 hours. After incubation, the cells were washed twice with DPBS. The washed cells were treated with 0.25% Trypsin-EDTA to obtain cells.
- the obtained cells were counted using a hemocytometer to collect cells of about 3 ⁇ 10 6 cells / ml. Then, the cell line was subjected to primary centrifugation at a temperature of about 4 ° C for 10 minutes at a rate of 350 x g, and the resulting pellet was recovered and resuspended in a buffer solution and homogenized for 10 to 15 minutes.
- the pharmaceutical composition containing the pellet was subjected to secondary centrifugation at a temperature of about 4 ° C for 3 minutes at a rate of 1,100 x g to obtain a supernatant. The supernatant was then subjected to tertiary centrifugation at a rate of 12,000 x g for 15 minutes at a temperature of about 4 < 0 > C to separate the mitochondria from the cell line.
- the mitochondria thus obtained were mixed with injections of 100 ⁇ l in the amounts of 0.2, 2 and 10 ⁇ g, respectively, and filled in an insulin syringe.
- Example 14 a extracted from mitochondria (donor cells) in placenta-derived MSCs according to the method, each of the separate placental-derived mesenchymal stem cells (target cells), 1x10 5, 1x10 < 6 >, 5x10 < 6 & gt ;, and centrifuged at a temperature of about 4 [deg.] C for 15 minutes at a rate of 1,500 x g. The supernatant was removed, washed with PBS and centrifuged at a temperature of about 4 ° C for 5 minutes. Washing was carried out twice under the same conditions. At this time, the isolated mitochondria were treated with 1x10 < 5 > 1x10 < 6 >, 5x10 < 6 >
- the mitochondria-transferred cells thus obtained were treated with 1 ⁇ 10 5 , 1x10 < 6 >, and 5x10 < 6 >, respectively, and filled into an insulin syringe.
- the mitochondria of donor cells are labeled with green fluorescence (Mitotracker green) Were labeled with red fluorescence (Mitotracker red), respectively.
- Fluorescently labeled cells were fixed on slides using a fixative containing DAPI staining nuclei and photographed using a confocal microscope (Zeiss LSM 880 Confocal microscope), as shown in FIG.
- a part having a yellow color was observed in mitochondria-transferred cells. This result indicates that the mitochondria of donor cells are transferred to the mitochondria of the target cells through the fusion of the luminescent colors due to the coexistence of the target cell mitochondria emitting red light and the donor cell mitochondria luminescing green.
- Example 17 Through the naked eye Severe ischemic disease Check treatment evaluation
- mice Male Balb / c nude mice were purchased from Orient Bio Co., Ltd., Seoul, Korea for 5 to 6 weeks. The purchased mouse was subjected to an adaptation period in the clean zone of the experimental animal center of the University of Science and Technology, and then the experiment was carried out. During the adaptation period, the environment of the mice was maintained day and night at 12-hour intervals, with room temperature of 23 ⁇ 2 and humidity of 40-60%. This adaptation period was put into the experiment after 7 days.
- mice were ligated to the arterial blood vessels through surgical operations to induce severe ischemic diseases.
- 100 ⁇ l of the pharmaceutical compositions according to Comparative Examples 1, 14, and 15 were administered to the thigh region where the surgical operation proceeded, by intramuscular injection (IM, intramuscular injection) (See Table 1 below).
- IM intramuscular injection
- control group 1 a normal control group (control group 1) was prepared from normal mice not treated with injection or surgical operation. Control group 1 was also prepared in the same manner as experimental group 1, except that 100 ⁇ l of injection water was administered intramuscularly (IM, intramuscular injection).
- IM intramuscular injection
- mice of the control group 2 As shown in Fig. 15, no disease occurred in the normal mouse of the control group 1, but the mice of the control group 2 to which physiological saline was administered underwent more than 90% of the leg injury.
- the mice of the control group 2 In addition, in the experimental groups 1, 2, and 3 in which placenta derived mesenchymal stem cells were administered, it was found that not less than 40% restoration and not less than 50% undercutting occurred. On the contrary, mice in experimental groups 4, 5, and 6 treated with mitochondria showed 60 to 100% restoration and less than 20% of undercuts.
- administration of the pharmaceutical composition comprising the mitochondria or the mitochondria-transferred cell of the present invention has the effect of improving and treating the symptom of severe lower limb ischemia.
- the therapeutic effect was superior to that of the case where only the isolated stem cells were administered.
- Example 18 Evaluation of Treatment of Severe Brief Ischemic Disease by Measurement of Blood Flow
- the flow of blood flow was measured in red and green in the normal mouse of the control group 1, but it was confirmed that the flow of the blood flow was not measured in the mouse of the control group 2 administered with physiological saline.
- the experimental groups 1 to 3 in which the pharmaceutical composition containing the placenta-derived stem cells alone (comparative example) was administered it was confirmed that the flow of blood flow was not measured similarly to the control group 2.
- the experimental group 4 and 6 which received the pharmaceutical composition containing mitochondria (Example 14), and the experimental group, which administered the pharmaceutical composition containing mitochondria-transferred cells (Example 15) 8 and 9, blood flow was measured at a level similar to that of the normal mouse of the control group 1.
- the flow of blood flow in the experimental group 5 to which mitochondria were administered and the group 7 to which the cells to which mitochondria were transferred was measured to be about 50% in comparison with the control group 1.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Developmental Biology & Embryology (AREA)
- Cell Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Virology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Reproductive Health (AREA)
- Urology & Nephrology (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Pregnancy & Childbirth (AREA)
- Gynecology & Obstetrics (AREA)
- Neurology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Hematology (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
본 발명은 미토콘드리아를 포함하는 약학 조성물에 관한 것이며, 보다 상세하게는 미토콘드리아를 유효성분으로 포함하는 근질환 또는 허혈성 질환의 예방 또는 치료용 약학 조성물에 관한 것이다. 본 발명의 약학 조성물은 외래 미토콘드리아 또는 외래 미토콘드리아를 포함하는 세포를 포함함으로써, 이를 투여받는 세포의 미토콘드리아 활성을 향상시킬 수 있다. 이를 통해, 본 발명에 따른 약학 조성물은 미토콘드리아 기능저하와 관련하여 발병하는 근질환 또는 허혈성 질환에 대한 근본적인 예방 또는 치료에 유용하게 사용될 수 있다.
Description
본 발명은 미토콘드리아를 포함하는 약학 조성물에 관한 것이다. 보다 상세하게는, 미토콘드리아를 유효성분으로 포함하는 근질환 또는 허혈성 질환의 예방 또는 치료용 약학 조성물에 관한 것이다.
미토콘드리아는 에너지 공급원으로서 아데노신 트라이포스페이트(adenosine triphosphate: ATP) 합성 및 조절에 관여하는 진핵세포의 생존에 필수적인 세포 소기관이다. 미토콘드리아는 생체 내 다양한 대사 경로, 예를 들어, 세포 신호처리, 세포 분화, 세포 사멸뿐만 아니라 세포 주기 및 세포 성장의 제어와 연관이 있다.
따라서, 미토콘드리아가 손상되면 다양한 질병이 유발될 수 있는데, 대부분의 공지된 미토콘드리아 장애는 미토콘드리아 DNA에서 발생하는 유전성 또는 후천성 돌연변이에 기인한다.
예를 들어, 미토콘드리아 막전위 이상으로 인한 팽윤, 활성산소종, 자유라디칼 등에 의한 산화적 스트레스, 미토콘드리아의 에너지 생성을 위한 산화적 인산화 기능의 결함 등에 의해 미토콘드리아의 기능이 변형될 수 있다.
구체적으로, 미토콘드리아의 기능이상은 다발성경화증, 뇌척수염, 뇌신경근염, 말초신경변증, 라이증후군, 알퍼증후군, MELAS, 편두통, 정신병, 우울증, 발작과 치매, 중풍성 에피소드, 시신경위축, 시신경병증, 망막색소변성, 백내장, 고알도스테론혈증, 부갑상선기능저하증, 근육질환, 미오글로빈뇨, 근육긴장저해, 근육통, 운동내성저하, 세뇨관증, 신부전, 간부전, 간기능부전, 간비대, 철적혈구빈혈, 호중성백혈구 감소증, 저혈소판증, 설사, 융모위축, 다발성구토, 연하곤란, 변비, 감각신경난청, 간질, 정신지체, 간질, 알츠하이머, 파킨슨, 헌팅턴 질환 등의 다양한 질병에 직접 또는 간접적인 원인이 되는 것으로 알려져 있다(Schapira AH et al., Lancet., 1;368(9529):70-82, 2006 및 Pieczenik et al., Exp
.
Mol
.
Pathol
., 83(1):84-92, 2007).
특히, 근육은 고에너지 수준을 필요로 하여 미토콘드리아를 상대적으로 다량 함유하고 있는 조직으로, 미토콘드리아의 기능 저하에 따라 근육에서 다소 빠르게 병증이 진행될 수 있다. 예를 들어, 미토콘드리아성 근육 질환으로 MELAS 증후군, MERRF 증후군, Kearns-Sayre 증후군, 근병증, 뇌근육병증, 근무력증, 중증 근무력증, 근위축성 측삭 경화증, 근육퇴행위축, 근위축증, 근긴장저하, 근력약화, 근경직증 등이 있다.
이러한 미토콘드리아 질환을 치료하기 위하여, 미토콘드리아를 보호하거나 미토콘드리아의 기능장애를 회복하는데 사용될 수 있는 물질 또는 이러한 물질을 효율적으로 표적 전달할 수 있는 방법 등에 대한 연구가 진행되고 있으나, 치료범위가 다소 제한적이거나 부작용이 발생하는 문제가 있는 등 아직은 획기적인 치료법이 개발되지 않은 실정이다.
본 발명은 근질환을 치료하기 위한 약학 조성물 및 이를 이용한 근질환을 치료하는 방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 허혈성 질환을 치료하기 위한 약학 조성물 및 이를 이용한 허혈성 질환을 치료하는 방법을 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위하여,
본 발명은 미토콘드리아를 유효성분으로 포함하는 근질환 예방 또는 치료용 약학 조성물을 제공한다.
또한, 본 발명은 외래 미토콘드리아가 도입된 세포를 유효성분으로 포함하는 근질환 예방 또는 치료용 약학 조성물을 제공한다.
나아가, 본 발명은 상기 약학 조성물을 동물의 환부에 투여하는 단계를 포함하는 근질환의 예방 또는 치료 방법을 제공한다.
또한, 본 발명은 미토콘드리아를 유효성분으로 포함하는 허혈성 질환 예방 또는 치료용 약학 조성물을 제공한다.
나아가, 본 발명은 외래 미토콘드리아가 도입된 세포를 유효성분으로 포함하는 허혈성 질환 예방 또는 치료용 약학 조성물을 제공한다.
또한, 본 발명은 상기 약학 조성물을 동물의 환부에 직접 주사 방식으로 투여하는 단계를 포함하는 허혈성 질환의 예방 또는 치료 방법을 제공한다.
본 발명의 약학 조성물은 외래 미토콘드리아 또는 외래 미토콘드리아를 포함하는 세포를 유효성분으로 포함한다. 이를 투여받는 개체의 미토콘드리아 활성이 향상되므로, 본 발명에 따른 약학 조성물은 미토콘드리아 기능저하와 관련하여 발병하는 근질환에 대한 근본적인 예방 또는 치료에 유용하게 사용될 수 있다.
도 1은 덱사메타손을 투여하여 근위축을 유도한 래트의 체중 변화를 나타낸 도면이다.
도 2는 래트 골격근 유래 세포 내 미토콘드리아를 형광 염색한 사진이다. 이때, 사용된 표지자(Mitotracker CMXRos Red)는 미토콘드리아의 막 전위에 의존적으로 축적되는 시료이다.
도 3은 미토콘드리아 기능이 손상된 근육세포에 외래 미토콘드리아를 전달한 후, 세포의 증식능력을 분석한 결과를 나타낸 도면이다.
도 4는 미토콘드리아 기능이 손상된 근육세포에 외래 미토콘드리아를 전달한 후, 세포의 ATP 합성 능력을 분석한 결과를 나타낸 도면이다.
도 5는 근위축을 유도한 근육세포에 외래 미토콘드리아를 전달한 후, 세포 내 미토콘드리아의 막 전위를 분석한 결과를 나타낸 도면이다.
도 6은 근위축을 유도한 근육세포에 외래 미토콘드리아를 전달한 후, 미토콘드리아 유래 활성산소를 분석한 결과를 나타낸 도면이다.
도 7은 근위축을 유도한 근육세포에 외래 미토콘드리아를 전달한 후, 세포 내 미토콘드리아 생합성 능력을 분석한 결과를 나타낸 도면이다.
도 8a는 근위축을 유도한 근육세포에 외래 미토콘드리아를 전달한 후, 세포의 AMPK 활성을 분석한 결과를 나타낸 도면이다.
도 8b는 근위축을 유도한 근육세포에 외래 미토콘드리아를 전달한 후, 세포의 FoxO 단백질 축적 양을 분석한 결과를 나타낸 도면이다.
도 9는 근위축을 유도한 근육세포에 외래 미토콘드리아를 전달한 후, 근위축 마커인 MuRF-1의 발현량을 분석한 결과를 나타낸 도면이다.
도 10은 근위축을 유도한 래트에 외래 미토콘드리아를 전달한 후, 가자미근의 무게 변화를 나타낸 도면이다.
도 11a는 근위축을 유도한 래트에 외래 미토콘드리아를 전달한 후, 미토콘드리아 내의 생합성과 관련된 단백질인 PGC-1의 발현량을 웨스턴 블랏을 통해 확인한 도면이다.
도 11b는 근위축을 유도한 래트에 외래 미토콘드리아를 전달한 후, 미토콘드리아 내의 생합성과 관련된 단백질인 PGC-1의 발현량을 나타낸 그래프이다.
도 12a는 근위축을 유도한 래트에 외래 미토콘드리아를 전달한 후, 근위축 마커인 MuRF-1의 발현량을 웨스턴 블랏을 통해 확인한 도면이다.
도 12b는 근위축을 유도한 래트에 외래 미토콘드리아를 전달한 후, 근위축 마커인 MuRF-1의 발현량을 나타낸 그래프이다.
도 13은 외래 미토콘드리아 이식에 따른 근 섬유의 재생과정을 조직학적으로 확인한 사진이다.
도 14는 대상세포의 미토콘드리아와 공여세포의 미토콘드리아를 공초점 주사 현미경으로 촬영한 사진이다.
도 15는 중증하지허혈질환 유발 동물모델을 이용하여 중증하지허혈질환에 대한 치료 효과를 육안적으로 평가한 결과를 나타낸 그래프이다.
도 16a는 중증하지허혈질환 유발 동물모델을 이용하여 중증하지허혈질환에 대한 치료 효과를 혈류량을 통해 평가한 결과를 나타낸 도면이다.
도 16b는 중증하지허혈질환 유발 동물모델을 이용하여 중증하지허혈질환에 대한 치료 효과를 혈류량을 통해 평가한 결과를 나타낸 도면이다.
이하, 본 발명에 대하여 상세히 설명하도록 한다.
본 발명의 일 측면은 미토콘드리아를 유효성분으로 포함하는 근질환 예방 또는 치료용 약학 조성물을 제공한다.
본 명세서에서 특별한 언급이 없는 한, "유효성분"은 단독으로 활성을 나타내거나 또는 그 자체로는 활성이 없는 보조제(담체)와 함께 활성을 나타내는 성분을 지칭한다.
상기 미토콘드리아는 포유동물로부터 수득된 것일 수 있으며, 인간으로부터 수득된 것일 수 있다. 구체적으로, 상기 미토콘드리아는 세포 또는 조직으로부터 분리된 것일 수 있다. 상기 세포는 체세포, 생식세포, 줄기세포 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나일 수 있다. 예를 들어, 상기 미토콘드리아는 체세포, 생식세포 또는 줄기세포로부터 수득된 것일 수 있다. 또한, 상기 미토콘드리아는 미토콘드리아의 생물학적 활성이 정상인 세포로부터 수득된 정상적인 미토콘드리아일 수 있다. 또한, 상기 미토콘드리아는 체외에서 배양된 것일 수 있다.
구체적으로, 상기 체세포는 근육세포, 간세포, 신경세포, 섬유아세포, 상피세포, 지방세포, 골세포, 백혈구, 림프구, 혈소판, 점막세포 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나일 수 있다. 바람직하게는, 미토콘드리아 활성이 뛰어난 근육세포 또는 간세포로부터 수득된 것일 수 있다.
또한, 상기 생식세포는 감수분열과 체세포 분열을 하는 세포로서 정자 또는 난자일 수 있다.
또한, 상기 줄기세포는 중간엽줄기세포, 성체줄기세포, 역분화줄기세포, 배아줄기세포, 골수줄기세포, 신경줄기세포, 윤부줄기세포 및 조직 유래 줄기세포로 구성된 군으로부터 선택되는 어느 하나일 수 있다. 이때, 상기 중간엽줄기세포는 탯줄, 제대혈, 골수, 지방, 근육, 신경, 피부, 양막 및 태반으로 구성된 군으로부터 선택되는 어느 하나로부터 수득된 것일 수 있다.
한편, 상기 미토콘드리아를 특정 세포로부터 분리하는 경우에는, 예를 들어, 특정 버퍼 용액을 사용하거나 전위차 및 자기장을 이용하는 등 공지된 다양한 방법을 통해 미토콘드리아를 분리할 수 있다.
상기 미토콘드리아 분리는 미토콘드리아 활성 유지 측면에서, 세포를 파쇄하고 원심분리하여 수득할 수 있다. 일 구체예로, 세포를 배양하고, 이러한 세포를 포함하는 약학 조성물을 제1차 원심분리하여 펠렛을 생성하는 단계, 상기 펠렛을 버퍼 용액에 재현탁시키고, 균질화하는 단계, 상기 균질화된 용액을 제2차 원심분리하여 상청액을 제조하는 단계 및 상기 상청액을 제3차 원심분리하여 미토콘드리아를 정제하는 단계로 수행될 수 있다. 이때, 제2차 원심분리가 수행되는 시간은 제1차 및 제3차 원심분리가 수행되는 시간보다 짧도록 조절되는 것이 세포 활성 유지 면에서 바람직하며, 제1차 원심분리에서 제3차 원심분리로 갈수록 속도를 높일 수 있다.
구체적으로, 상기 제1차 내지 제3차 원심분리는 0 내지 10℃의 온도, 바람직하게는 3 내지 5℃의 온도에서 수행될 수 있다. 또한, 상기 원심분리가 수행되는 시간은 1 내지 50분 동안 수행될 수 있으며, 원심분리 횟수 및 샘플의 함량 등에 따라 적절히 조정될 수 있다.
아울러, 상기 제1차 원심분리는 100 내지 1,000×g, 또는 200 내지 700×g, 또는 300 내지 450×g의 속도로 수행될 수 있다. 또한, 상기 제2차 원심분리는 1 내지 2,000×g, 또는 25 내지 1,800×g, 또는 500 내지 1,600×g의 속도로 수행될 수 있다. 또한, 상기 제3차 원심분리는 100 내지 20,000×g, 또는 500 내지 18,000×g, 또는 800 내지 15,000×g의 속도로 수행될 수 있다.
또한, 상기 약학 조성물이 유효하게 적용될 수 있는 근질환은 미토콘드리아 기능이상을 포함하는 질환일 수 있다. 예를 들어, 근질환은 MELAS 증후군, MERRF 증후군, Kearns-Sayre 증후군, 근병증, 뇌근육병증, 근무력증, 중증 근무력증, 근위축성 측삭 경화증, 근육퇴행위축, 근위축증, 근긴장저하, 근력약화, 근경직증일 수 있으며, 미토콘드리아 기능 저하로 인해 발생하는 근육 세포 장애를 모두 포함할 수 있다.
즉, 본 발명의 약학 조성물은 세포 활성이 유지되는 미토콘드리아를 유효성분으로 포함함으로써, 상기 약학 조성물이 적용되는 세포의 미토콘드리아 활성을 향상시켜 미토콘드리아성 병증이 개선될 수 있다.
또한, 상기 약학 조성물에 대하여, 미토콘드리아는 0.1 내지 500 ㎍/㎖, 0.2 내지 450 ㎍/㎖ 또는 0.5 내지 400 ㎍/㎖의 농도로 포함될 수 있다. 상기 범위로 미토콘드리아를 포함함으로써, 투여 시 미토콘드리아 용량 조절이 용이하고, 환부의 근육 병증 개선 정도가 보다 향상될 수 있다.
특히, 본 발명에 따른 상기 약학 조성물은, 미토콘드리아를 전달받을 세포를 기준으로 세포 1x105 개당 미토콘드리아를 0.005 내지 50 ㎍ 또는 0.05 내지 25 ㎍로 투여될 수 있도록 미토콘드리아를 포함할 수 있다. 즉, 상기 약학 조성물이 투여될 세포 또는 근질환이 유발된 환부의 세포의 개수를 기준으로 상기 범위의 함량으로 미토콘드리아가 투여되는 것이 세포 활성 측면에서 가장 바람직하다. 또한, 상기 약학 조성물은 1회 투여시 1 내지 80 ㎕, 10 내지 70 ㎕, 또는 40 내지 60 ㎕의 용량으로 투여될 수 있다.
또한, 본 발명의 다른 측면은 외래 미토콘드리아가 도입된 세포를 유효성분으로 포함하는 근질환 예방 또는 치료용 약학 조성물을 제공한다. 상기 외래 미토콘드리아란 상기 미토콘드리아가 도입되는 세포를 제외한 별개의 세포로부터 유래된 미토콘드리아를 지칭한다. 상기 외래 미토콘드리아 및 이를 분리하는 방법에 대한 구체적인 내용은 전술한 바와 같다.
또한, 상기 세포는 외래 미토콘드리아를 세포질 내에 포함하고 있는 세포로서, 세포 활성이 유지되는 정상세포일 수 있다. 또한, 상기 세포는 근육세포 또는 줄기세포인 것이 바람직하다. 이때, 상기 근육세포는 근육조직에서 분리한 세포일 수 있고, 분리한 세포를 추가적으로 배양하여 수득한 세포일 수 있다. 또한, 상기 줄기세포는 중간엽줄기세포, 성체줄기세포, 역분화줄기세포, 배아줄기세포, 골수줄기세포, 신경줄기세포, 윤부줄기세포 및 조직 유래 줄기세포로 구성된 군으로부터 선택되는 어느 하나일 수 있다. 이때, 상기 중간엽줄기세포는 탯줄, 제대혈, 골수, 지방, 근육, 신경, 피부, 양막 및 태반으로 구성된 군으로부터 선택되는 어느 하나로부터 수득된 것일 수 있다.
또한, 상기 외래 미토콘드리아가 도입된 세포와 상기 외래 미토콘드리아를 제공한 세포는 동종 세포 또는 이종 세포일 수 있다. 또한, 상기 외래 미토콘드리아가 도입된 세포와 상기 외래 미토콘드리아를 제공한 세포는 동일한 개체 또는 다른 개체로부터 수득된 것일 수 있다.
한편, 상기 외래 미토콘드리아와 이를 전달받을 세포가 혼합된 약학 조성물을 원심분리하여, 상기 외래 미토콘드리아를 세포 내로 전달시킬 수 있다. 또한, 상기 원심분리는 0 내지 40℃, 20 내지 38℃, 또는 30 내지 37℃의 온도에서 수행될 수 있다. 또한, 0.5 내지 20분, 1 내지 15분, 또는 3 내지 7분 동안 수행될 수 있다. 또한, 1 내지 2,400×g, 25 내지 1,800×g, 또는 200 내지 700×g으로 수행될 수 있다.
상기 조건으로 세포와 외래 미토콘드리아에 함께 원심력을 가해줌으로써, 세포에 다른 손상이 발생하지 않으면서도 높은 효율로 외래 미토콘드리아를 세포로 전달할 수 있다.
또한, 상기 약학 조성물은 하단으로 갈수록 점진적으로 직경이 좁아지는 시험관 내에서 원심분리되는 것이 세포와 미토콘드리아에 가해지는 원심력 및 접촉 효율 측면에서 보다 효율적일 수 있다. 상기 원심분리는 동일한 조건으로 1회 내지 3회 추가로 수행될 수 있다.
아울러, 상기 원심분리를 수행하기 전에, 상기 약학 조성물을 인큐베이션을 하는 단계를 더 포함할 수 있다. 상기 인큐베이션은 0 내지 40℃, 20 내지 38℃, 또는 30 내지 37℃의 온도에서 수행될 수 있다. 또한, 0.1 내지 4시간, 0.5 내지 3.8시간 또는 0.8 내지 3.5시간 동안 수행될 수 있다. 또한, 인큐베이션은 세포에 미토콘드리아가 전달된 후에 소정의 시간 동안 수행될 수 있다. 또한, 인큐베이션 시간은 세포의 종류 및 미토콘드리아의 양에 따라 적절히 선택될 수 있다.
아울러, 상기 약학 조성물에 계면활성제를 첨가하는 단계를 더 포함할 수 있다. 계면활성제는 세포의 세포막 투과성을 증진시키기 위해 사용되며, 첨가 시점은 세포와 미토콘드리아를 혼합하기 전, 혼합시점 또는 혼합 후에 첨가될 수 있다. 또한, 계면활성제를 세포에 첨가한 후 세포의 세포막 투과성을 높이기 위해 일정 시간 세포를 방치할 수 있다. 구체적으로, 상기 약학 조성물에 PF-68(Pluronic F-68)을 첨가하는 단계를 포함할 수 있다.
구체적으로, 상기 계면활성제는 PF-68과 같은 비이온성 계면활성제인 것이 바람직하며, 폴록사머(poloxamers) 즉, 폴리옥시에틸렌의 두 개의 친수성 사슬에 의해 옆으로 배치된 폴리옥시프로필렌의 중심 소수성 사슬로 구성된 삼블록 공중합체일 수 있다. 또한, 상기 약학 조성물에서 계면활성제의 농도는 1 내지 100 ㎍/㎖, 3 내지 80 mg/㎖ 또는 5 내지 40 ㎍/㎖ 일 수 있으며, 바람직하게는 10 내지 30 ㎍/㎖이다.
또한, 상기 약학 조성물에 포함되는 세포는, 105개 세포당 0.1 내지 500 ㎍, 0.2 내지 450 ㎍ 또는 0.5 내지 400 ㎍의 미토콘드리아가 도입된 것일 수 있다. 상기 약학 조성물은 이와 같은 함량으로 외래 미토콘드리아가 전달된 세포를 포함함으로써 투여시 근육 병증 환부의 세포 기능이 개선될 수 있다.
또한, 미토콘드리아를 전달받은 세포를 유효성분으로 포함하는 약학 조성물의 경우, 투여량은 2x103 내지 2x107 세포 수/㎏(체중), 보다 바람직하게는 1x104 내지 1x107 세포 수/㎏(체중)이 될 수 있다. 상기 범위 내의 농도로 외래 미토콘드리아가 주입된 세포를 함유하는 것이 투여 용량 조절 및 근육 병증 개선 측면에서 효율적이다.
또한, 상기 약학 조성물이 유효하게 적용될 수 있는 근질환은 미토콘드리아 기능이상을 포함하는 질환일 수 있다. 예를 들어, 근질환은 MELAS 증후군, MERRF 증후군, Kearns-Sayre 증후군, 근병증, 뇌근육병증, 근무력증, 중증 근무력증, 근위축성 측삭 경화증, 근육퇴행위축, 근위축증, 근긴장저하, 근력약화, 근경직증일 수 있으며, 미토콘드리아 기능 저하로 인해 발생하는 근육 세포 장애를 모두 포함할 수 있다.
또한, 본 발명에 따른 약학 조성물은 미토콘드리아성 근육 질환 또는 질병에 걸릴 수 있거나, 그러한 질환 또는 질병을 앓고 있는 인간 또는 다른 포유동물에 대하여 투여될 수 있다. 또한, 상기 약학 조성물은 환부에 직접적으로 투여될 수 있는 주사제일 수 있고, 바람직하게는 근육주사용 제제일 수 있다.
따라서, 본 발명에 따른 약학 조성물은 주사제 처방의 유통에 따른 제품 안정성을 확보하기 위하여, 주사제로 사용 가능한 산수용액 또는 인산염 등의 완충용액을 사용하여 pH를 조절함으로써, 물리적으로나 화학적으로 매우 안정한 주사제로 제조될 수 있다.
구체적으로, 본 발명의 약학 조성물은 주사용수를 포함할 수 있다. 상기 주사용수는 고형주사제의 용해나 수용성 주사제를 희석하기 위하여 만들어진 증류수로서, 글루코스 주사, 자일리톨 주사, D-만니톨 주사, 프룩토스 주사, 생리식염수, 덱스트란 40 주사, 덱스트란 70 주사, 아미노산 주사, 링거액, 락트산-링거액 또는 pH 3.5 내지 7.5 범위의 인산염 완충용액 또는 인산이수소나트륨-구연산 완충용액 등 일 수 있다.
또한, 본 발명의 약학 조성물은 안정화제 또는 용해보조제를 포함할 수 있다. 예를 들어, 안정화제는 나트륨 피로설파이트(sodium pyrosulfite) 또는 에틸렌 디아민테트라아세트산(ethylenediaminetetraacetic acid)일 수 있고, 용해보조제는 염산, 아세트산, 수산화나트륨, 탄산수소나트륨, 탄산나트륨 또는 수산화칼륨일 수 있다.
또한, 본 발명은 전술한 약학 조성물을 개체의 환부에 직접적으로 투여하는 단계를 포함하는 근질환의 예방 또는 치료 방법을 제공한다. 여기서 개체는 포유동물일 수 있으며, 바람직하게는 인간일 수 있다.
이를 통해, 본 발명에 따른 약학 조성물은 근육 질환이 발생한 환부에 직접적으로 정상적인 활성을 갖는 외래 미토콘드리아를 공급할 수 있어, 미토콘드리아 기능이 저하된 세포의 활성을 증가시키거나 미토콘드리아 기능 이상 세포 재생에 유용하며, 미토콘드리아 이상 근육 질환의 치료 또는 예방에 이용될 수 있다.
또한, 본 발명은 근질환을 예방 또는 치료하기 위한 상기 약학 조성물의 용도를 제공한다.
또한, 본 발명은 근질환 예방 또는 치료용 약제를 제조하기 위한 상기 약학 조성물의 용도를 제공한다.
본 발명의 일 측면은 미토콘드리아를 유효성분으로 포함하는 허혈성 질환 예방 또는 치료용 약학 조성물을 제공한다.
본 명세서에서 특별한 언급이 없는 한, "유효성분"은 단독으로 활성을 나타내거나 또는 그 자체로는 활성이 없는 보조제(담체)와 함께 활성을 나타내는 성분을 지칭한다.
상기 미토콘드리아는 포유동물로부터 수득된 것일 수 있으며, 인간으로부터 수득된 것일 수 있다. 또한, 상기 미토콘드리아는 세포 또는 세포 배양액으로부터 분리된 것일 수 있다. 구체적으로, 상기 미토콘드리아는 세포 또는 조직으로부터 분리된 것일 수 있다. 상기 세포는 체세포, 생식세포, 줄기세포 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나일 수 있다. 예를 들어, 상기 미토콘드리아는 포유동물 또는 인간으로부터 유래한 체세포, 생식세포, 줄기세포 또는 이들의 조합으로부터 수득된 것일 수 있다. 또한, 상기 미토콘드리아는 미토콘드리아의 생물학적 활성이 정상인 세포로부터 수득된 정상적인 미토콘드리아일 수 있다. 또한, 상기 미토콘드리아는 체외에서 배양된 것일 수 있다.
구체적으로, 상기 체세포는 근육세포, 간세포, 신경세포, 섬유아세포, 상피세포, 지방세포, 골세포, 백혈구, 림프구, 혈소판, 점막세포 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나일 수 있다. 바람직하게는, 미토콘드리아 활성이 뛰어난 근육세포 또는 간세포로부터 수득된 것일 수 있다.
또한, 상기 생식세포는 감수분열과 체세포 분열을 하는 세포로서 정자 또는 난자일 수 있다.
또한, 상기 줄기세포는 중간엽줄기세포, 성체줄기세포, 역분화줄기세포, 배아줄기세포, 골수줄기세포, 신경줄기세포, 윤부줄기세포 및 조직 유래 줄기세포로 구성된 군으로부터 선택되는 어느 하나일 수 있다. 이때, 상기 중간엽줄기세포는 탯줄, 제대혈, 골수, 지방, 근육, 신경, 피부, 양막 및 태반으로 구성된 군으로부터 선택되는 어느 하나로부터 수득된 것일 수 있다.
한편, 상기 미토콘드리아를 특정 세포로부터 분리하는 경우에는, 예를 들어, 특정 버퍼 용액을 사용하거나 전위차 및 자기장을 이용하는 등 공지된 다양한 방법을 통해 미토콘드리아를 분리할 수 있다. 상기 미토콘드리아 분리는 상술한 바와 같다.
또한, 상기 약학 조성물이 유효하게 적용될 수 있는 허혈성 질환은 혈류의 공급 감소로 인해 조직을 구성하는 세포의 비가역적인 손상이 발생된 것으로, 허혈 연쇄반응(ischemic cascade)이라 불리는 과정들이 촉발되어 뇌, 심장 또는 말초 조직이 영구적으로 기능을 상실하는 질병이다. 예를 들어, 상기 허혈성 질환은, 중증하지허혈증, 허혈성 뇌졸중, 허혈성 심장질환 또는 허혈성 대장염일 수 있다. 이때, 상기 허혈성 질환은 미토콘드리아 이상에 의해 발병하는 질환일 수 있으며, 미토콘드리아 기능 저하로 인해 발생하는 허혈성 세포 장애를 모두 포함할 수 있다.
즉, 본 발명의 약학 조성물은 세포 활성이 유지되는 미토콘드리아를 유효성분으로 포함함으로써, 상기 약학 조성물이 적용되는 세포의 미토콘드리아 활성을 향상시켜 미토콘드리아성 병증이 개선될 수 있다.
또한, 상기 약학 조성물에 대하여, 상기 미토콘드리아는 0.1 내지 500 ㎍/ml, 0.1 내지 200 ㎍/ml 또는 0.2 내지 10 ㎍/ml 의 농도로 포함될 수 있다. 상기 범위로 미토콘드리아를 포함함으로써, 투여 시 미토콘드리아 용량 조절이 용이하고, 환부의 허혈성 병증 개선 정도가 보다 향상될 수 있다.
또한, 본 발명의 다른 측면은 외래 미토콘드리아가 도입된 세포를 유효성분으로 포함하는 허혈성 질환 예방 또는 치료용 약학 조성물을 제공한다. 상기 외래 미토콘드리아란 상기 미토콘드리아가 도입되는 세포를 제외한 별개의 정상세포로부터 유래된 미토콘드리아를 지칭한다. 상기 외래 미토콘드리아와 이를 분리하는 방법에 대한 구체적인 내용은 전술한 바와 같다.
또한, 상기 세포는 외래 미토콘드리아를 세포질 내에 포함하고 있는 세포로서, 세포 활성이 유지되는 정상세포일 수 있다. 또한, 상기 세포는 체세포, 생식세포, 줄기세포 또는 이들의 조합인 것이 바람직하다. 이때, 상기 세포는 분리된 세포이거나 분리된 세포를 추가적으로 배양하여 수득한 세포일 수 있다. 또한, 상기 줄기세포는 중간엽줄기세포, 성체줄기세포, 역분화줄기세포, 배아줄기세포, 골수줄기세포, 신경줄기세포, 윤부줄기세포 및 조직 유래 줄기세포로 구성된 군으로부터 선택되는 어느 하나일 수 있다. 이때, 상기 중간엽줄기세포는 탯줄, 제대혈, 골수, 지방, 근육, 신경, 피부, 양막 및 태반으로 구성된 군으로부터 선택되는 어느 하나로부터 수득된 것일 수 있다.
또한, 상기 외래 미토콘드리아가 도입된 세포와 상기 외래 미토콘드리아를 제공한 세포는 동종 세포 또는 이종 세포일 수 있다. 또한, 상기 외래 미토콘드리아가 도입된 세포와 상기 외래 미토콘드리아를 제공한 세포는 동일한 개체 또는 다른 개체로부터 수득된 것일 수 있다.
또한, 상기 약학 조성물에 포함되는 세포는, 105개 세포당 0.1 내지 500 ㎍, 0.2 내지 450 ㎍ 또는 1 내지 300 ㎍의 미토콘드리아가 도입된 것일 수 있다. 상기 약학 조성물은 이와 같은 함량으로 외래 미토콘드리아가 전달된 세포를 포함함으로써 투여 시 허혈성 병증 환부의 세포 기능이 개선될 수 있다.
한편, 상기 외래 미토콘드리아와 이를 전달받을 세포가 혼합된 약학 조성물을 원심분리하여, 상기 외래 미토콘드리아를 세포 내로 전달시킬 수 있다. 또한, 상기 원심분리는 0 내지 40℃, 20 내지 38℃, 또는 30 내지 37℃의 온도에서 수행될 수 있다. 또한, 0.5 내지 20분, 1 내지 15분, 또는 3 내지 7분 동안 수행될 수 있다. 또한, 1 내지 2,400×g, 25 내지 1,800×g, 또는 200 내지 700×g으로 수행될 수 있다.
상기 조건으로 세포와 외래 미토콘드리아에 함께 원심력을 가해줌으로써, 세포에 다른 손상이 발생하지 않으면서도 높은 효율로 외래 미토콘드리아를 세포로 주입할 수 있다.
또한, 상기 약학 조성물은 하단으로 갈수록 점진적으로 직경이 좁아지는 시험관 내에서 원심분리되는 것이 세포와 미토콘드리아에 가해지는 유효 원심력 및 접촉 효율 측면에서 보다 효율적이다. 상기 원심분리는 동일한 조건으로 1회 내지 3회 추가로 수행될 수 있다.
아울러, 상기 원심분리를 수행하기 전에, 상기 약학 조성물을 인큐베이션을 하는 단계를 더 포함할 수 있다. 상기 인큐베이션은 0 내지 40℃, 20 내지 38℃, 또는 30 내지 37℃의 온도에서 수행될 수 있다. 또한, 0.1 내지 4시간, 0.5 내지 3.8시간 또는 0.8 내지 3.5시간 동안 수행될 수 있다. 또한, 인큐베이션은 세포에 미토콘드리아가 전달된 후에 소정의 시간 동안 수행될 수 있다. 또한, 인큐베이션 시간은 세포의 종류 및 미토콘드리아의 양에 따라 적절히 선택될 수 있다.
또한, 상기 약학 조성물에 계면활성제를 첨가하는 단계를 더 포함할 수 있다. 계면활성제는 세포의 세포막 투과성을 증진시키기 위해 사용되며, 첨가 시점은 세포와 미토콘드리아를 혼합하기 전, 혼합시점 또는 혼합 후에 첨가될 수 있다. 또한, 계면활성제를 세포에 첨가한 후 세포의 세포막 투과성을 높이기 위해 일정 시간 세포를 방치할 수 있다. 구체적으로, 상기 약학 조성물에 PF-68(Pluronic F-68)을 첨가하는 단계를 포함할 수 있다.
구체적으로, 상기 계면활성제는 PF-68과 같은 비이온성 계면활성제인 것이 바람직하며, 폴록사머(poloxamers) 즉, 폴리옥시에틸렌의 두 개의 친수성 사슬에 의해 옆으로 배치된 폴리옥시프로필렌의 중심 소수성 사슬로 구성된 삼블록 공중합체일 수 있다. 또한, 상기 약학 조성물에서 계면활성제의 농도는 1 내지 100 ㎎/㎖, 3 내지 80 ㎎/㎖ 또는 5 내지 40 ㎎/㎖ 일 수 있으며, 바람직하게는 10 내지 30 ㎎/㎖이다.
또한, 상기 약학 조성물이 유효하게 적용될 수 있는 허혈성 질환은 혈류의 공급 감소로 인해 조직을 구성하는 세포의 비가역적인 손상이 발생된 것으로, 허혈 연쇄반응(ischemic cascade)이라 불리는 과정들이 촉발되어 뇌, 심장 또는 말초 조직이 영구적으로 기능을 상실하는 질병이다. 예를 들어, 상기 허혈성 질환은, 중증하지허혈증, 허혈성 뇌졸중, 허혈성 심장질환 또는 허혈성 대장염 등 일 수 있다. 이때, 상기 허혈성 질환은 미토콘드리아 이상에 의해 발병하는 질환일 수 있으며, 미토콘드리아 기능 저하로 인해 발생하는 허혈성 세포 장애를 모두 포함할 수 있다.
또한, 본 발명에 따른 약학 조성물은 미토콘드리아성 허혈성 질환 또는 질병에 걸릴 수 있거나, 그러한 질환 또는 질병을 앓고 있는 인간 또는 다른 포유동물에 대하여 투여될 수 있다. 또한, 상기 약학 조성물은 환부에 직접적으로 투여될 수 있는 주사제일 수 있고, 바람직하게는 주사용 제제일 수 있다.
따라서, 본 발명에 따른 약학 조성물은 주사제 처방의 유통에 따른 제품 안정성을 확보하기 위하여, 주사제로 사용 가능한 산수용액 또는 인산염 등의 완충용액을 사용하여 pH를 조절함으로써, 물리적으로나 화학적으로 매우 안정한 주사제로 제조될 수 있다.
구체적으로, 본 발명의 약학 조성물은 주사용수를 포함할 수 있다. 상기 주사용수는 고형주사제의 용해나 수용성 주사제를 희석하기 위하여 만들어진 증류수로서, 글루코스 주사, 자일리톨 주사, D-만니톨 주사, 프룩토스 주사, 생리식염수, 덱스트란 40 주사, 덱스트란 70 주사, 아미노산 주사, 링거액, 락트산-링거액 또는 pH 3.5 내지 7.5 범위의 인산염 완충용액 또는 인산이수소나트륨-구연산 완충용액 등 일 수 있다.
또한, 본 발명의 약학 조성물은 안정화제 또는 용해보조제를 포함할 수 있으며, 예를 들어, 안정화제는 나트륨 피로설파이트(sodium pyrosulfite) 또는 에틸렌 디아민테트라아세트산(ethylenediaminetetraacetic acid)일 수 있고, 용해보조제는 염산, 아세트산, 수산화나트륨, 탄산수소나트륨, 탄산나트륨 또는 수산화칼륨일 수 있다.
또한, 본 발명은 전술한 약학 조성물을 개체의 환부에 직접 주사 방식으로 투여하는 단계를 포함하는 허혈성 질환의 예방 또는 치료 방법을 제공한다. 여기서 개체는 포유동물일 수 있으며, 바람직하게는 인간일 수 있다.
이를 통해, 본 발명에 따른 약학 조성물은 허혈성 질환이 발생한 환부에 직접적으로 정상적인 활성을 갖는 외래 미토콘드리아를 공급할 수 있어, 미토콘드리아 기능이 저하된 세포의 활성을 증가시키거나 미토콘드리아 기능 이상 세포 재생에 유용하며, 미토콘드리아 이상 허혈성 질환의 치료 또는 예방에 이용될 수 있다.
또한, 본 발명은 허혈성 질환을 예방 또는 치료하기 위한 상기 약학 조성물의 용도를 제공한다.
또한, 본 발명은 허혈성 질환 예방 또는 치료용 약제를 제조하기 위한 상기 약학 조성물의 용도를 제공한다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
I. 미토콘드리아 및 외래 미토콘드리아를 포함한 세포의
근질환
치료효과 확인
실시예 1. 근위축 유발 동물모델 확립과 무게 변화 측정
실험 동물은 5주령 SD-래트 암컷을 오리엔트 바이오(Orient Bio., Ltd., Seoul, Kors)로부터 구매하였다. 구입한 래트는 차의과학대학교 실험동물센터의 청정구역에서 적응기간을 거친 후 실험을 진행하였다. 적응기간 동안 래트가 지내는 환경은 12시간 간격으로 낮과 밤이 조성되고, 23±2℃의 실내온도 및 40 내지 60 %의 습도가 유지되었다. 이러한 적응기간을 7일 거친 후 실험에 투입되었다.
근위축을 유도하기 위해, 덱사메타손을 5일간 5 ㎎/㎏ 농도로 5일간 복강 내에 투여하였다. 매일 간격으로 동물 무게를 확인하였고, 덱사메타손 투여 5일에는 정상군 대비 덱사메타손 투여 군의 무게가 30 % 가량 감소하는 것을 확인하였다(도 1).
실시예 2. 이식을 위한 미토콘드리아 준비
미토콘드리아의 공여 세포는 실험 동물의 종과 동일한 래트 골격근 유래 세포주인(CRL1458, ATCC, Manassas, VA, USA)를 배양하고, 상기 세포들을 붉은색을 띄는 미토콘드리아 특이적 표지자(Mitotracker CMXRos Red)로 염색시켰다.
미토콘드리아를 추출하기 위하여, 혈구계산기를 이용하여 세포수를 측정하여 2x107 cells/㎖ 정도의 세포를 회수하였다. 이후 상기 세포주를 약 4℃의 온도에서 10분 동안 350×g의 속도로 제1차 원심분리를 수행하였고, 이때 얻어진 펠렛을 회수하여 버퍼 용액에 재현탁시켜 균질화시켰다. 상기 펠렛을 포함하는 약학 조성물을 약 4℃의 온도에서 3분 동안 1,100×g의 속도로 제2차 원심분리시켜 상청액을 수득하였다. 이후, 상기 상청액을 약 4℃의 온도에서 15분 동안 12,000×g의 속도로 제3차 원심분리시켜 세포주로부터 미토콘드리아를 분리하였다.
분리된 미토콘드리아를 확인하기 위하여, 분리 수행 전 붉은색 형광으로 표지된 세포 내 미토콘드리아를 형광현미경으로 촬영하여 도 2에 나타내었고, 분리된 미토콘드리아를 확인하였다. 특히, 이때 사용된 표지자(Mitotracker CMXRos Red)는 미토콘드리아의 막 전위에 의존적으로 축적되는 시료로서, 분리된 미토콘드리아의 생존력을 보여준다(도 2).
실시예 3. 미토콘드리아를 전달받은 세포의 증식 능력 평가
일반적으로 세포관련 실험에 많이 사용되어온 래트 골격근 유래 세포주인 L6 세포를 대조군(control)으로 사용하였다. 또한, L6 세포에 미토콘드리아 ATP합성 억제제(올리고마이신, Sigma-Aldrich, St. Louis, MO, USA)를 처리하여 미토콘드리아 기능을 인위적으로 억제시켰다. 그 후, WRL-68 간세포(CRL1458, ATCC)로부터 추출한 건강한 미토콘드리아를 1x105 개의 세포에 대하여 농도 별(0.05, 0.5, 5 ㎍)로 전달한 뒤, 24-웰-플레이트(24-well-plate)에 접종(seeding)시켜 37℃ CO2 인큐베이터에서 배양시켰다.
세포의 증식 능력을 비교하기 위해 Colorimetric Cyto X™ Cell Viability Assay Kit(LPS solution, Daejeon, Korea)를 사용하였다. 배양 후 24, 48시간에 각각의 샘플에 실험 키트에 포함된 반응용액을 섞어준 뒤, 37℃ CO2 인큐베이터에서 2시간 동안 반응 시켰다. 그 후, 450 nm 파장에서 흡광도를 측정하였다.
도 3에 나타난 바와 같이, 미토콘드리아 기능이 억제된 세포군에 비하여, 미토콘드리아를 전달한 세포주의 흡광도가 증가한 것을 확인하였다. 이때, 흡광도의 증가는 시료의 생존세포수가 증가하면서 미토콘드리아의 탈수소효소(mitochondrial dehydrogenase)의 활성이 증가하였음을 의미하는 것으로, 원심분리를 통한 미토콘드리아 전달을 통해 세포의 증식 능력이 향상된 것을 확인하였다.
실시예
4. 미토콘드리아를 전달받은 세포의 ATP 합성 능력 평가
실시예 3.과 동일한 방법으로 ATP 합성 억제제에 의해 미토콘드리아 기능을 손상시킨 뒤 외래 미토콘드리아를 전달받은 세포를 배양 후 24, 48시간에 각각 수득하였다.
각 시료 내에 ATP 양을 측정하기 위해 ATP bioluminescent somatic cell assay kit(Sigma-Aldrich, St. Louis, MO, USA)를 사용하였다. 준비된 시료에 ATP 방출(releasing) 용액을 첨가하여 상온에서 20초 동안 반응시켜 시료로부터 ATP를 방출시켰다. 그 후, 시료에 ATP assay mix 용액을 첨가하여 상온에서 10분 동안 반응시켜 루미노미터(Luminometer) 장비를 이용하여 ATP의 양을 측정하였다. 각 시료의 ATP의 양은 ATP 표준곡선(standard curve)으로부터 산출할 수 있다.
도 4에 나타난 바와 같이, 시료 내의 단백질 안의 존재하는 ATP 양을 계산하여 대조군에 대비한 ATP 양의 변화를 분석한 결과, 미토콘드리아 기능이 억제된 세포에 비하여, 외래 미토콘드리아를 전달받은 세포의 ATP 합성 능력이 증가된 것을 확인하였다.
이러한 결과를 통해, 세포의 미토콘드리아 기능이 손상된 경우, 해당 세포로 건강한 미토콘드리아를 전달하여 줌으로써 이러한 손상이 회복되는 것을 확인하였다.
실시예
5.
근위축을
유도한
근육세포에서
외래 미토콘드리아 전달 후 세포의 막 전위 평가
실제, 미토콘드리아 기능 저하를 동반하는 근위축의 치료 효능 평가를 위하여, 래트 골격근 유래 세포주인 L6에 근위축 유도제(덱사메타손, Sigma-Aldrich, St. Louis, MO, USA)를 이용하여 근위축을 유도하였다. 그 후, WRL-68 간세포로부터 추출한 건강한 미토콘드리아(Intact MT)와 미토콘드리아 ATP 합성 억제제를 처리하여 미토콘드리아 기능이 손상시킨 동일 세포로부터 추출한 손상된 미토콘드리아(Damaged MT)를 각각 확보하였다. 근위축을 유도한 근육세포에 미토콘드리아를 1x105 개의 세포에 대하여 농도 별(0.05, 0.5, 5 ㎍)로 전달하고 24-웰-플레이트에 접종시켜 37℃ CO2 인큐베이터에서 배양시켰다.
배양 48시간 뒤, 각 시료 내에 미토콘드리아 막 전위를 측정하기 위하여 JC-1 염료를 사용하였다. 시료는 JC-1 염료와 반응 시킨 뒤, 막 전위의 변화에 따라 다른 스펙트럼을 가지는 성질을 이용하여 흡광도를 측정하였다.
저농도에서는 모노머(monomer)로 존재하며 녹색 형광을 띄고, 높은 농도에서는 염료가 응집(J-aggregate)되어 붉은색 형광을 나타내는 바, 미토콘드리아의 막 전위는 붉은색 흡광도에 대한 녹색 흡광도의 비율로 계산하여 분석하였다.
도 5에 나타난 바와 같이, 근위축이 유도되어 미토콘드리아의 막 전위가 변화한 세포에 비하여, 외래 미토콘드리아를 전달받은 세포의 막 전위가 약 12 내지 22 % 회복되는 것을 확인하였다. 특히 손상된 미토콘드리아를 전달받은 그룹과 비교하였을 때, 유의미한 효과를 나타내었다.
이러한 결과는 외부의 미토콘드리아 전달을 통해 세포의 활성화를 의미하는 바, 외래 미토콘드리아를 전달받음으로써 세포의 ATP 생성 능력이 증가될 수 있음을 확인하였다.
실시예
6.
근위축을
유도한
근육세포에서
외래 미토콘드리아 전달 후 미토콘드리아 유래 활성산소 평가
근위축으로 유도된 근육세포 내의 미토콘드리아 내 활성산소에 대하여 평가하기 위해, 실시예 5.와 동일한 방법으로 각각의 미토콘드리아를 전달 후, 배양 48시간 뒤에 활성산소를 평가하였다.
미토콘드리아 유래 활성 산소를 분석을 위해 MitoSOX red 염료(Invitrogen, Carlsbad, CA, USA)를 사용하였다. 세포는 완충용액을 이용하여 세척해주고, MitoSOX red 염료를 배지에 섞어 세포에 첨가하고 37℃ CO2 인큐베이터에서 20분간 반응시켰다. 반응 후 세포는 완충액을 이용하여 세척 후, 웰(well) 안의 세포가 접종된 커버슬라이드를 회수하여 슬라이드에 얹어 형광현미경으로 관찰하였다. 손상으로 인해 미토콘드리아 내 활성산소가 증가하였을 때 빨간색 형광 시그널이 증가하며, 각 시료의 형광 밀도는 분석프로그램으로 분석하였다.
도 6에 나타난 바와 같이, 본 발명에 따른 방법으로 근위축이 유도되어 미토콘드리아의 유래 활성산소가 증가한 세포에 비하여, 미토콘드리아를 전달받은 세포군은 미토콘드리아를 전달받지 않은 세포군에 비하여 활성산소가 월등히 줄어든 것을 확인하였다. 특히 이는 손상된 미토콘드리아를 전달받은 그룹과 비교하였을 때, 유의미한 효과를 나타내었다.
이러한 결과로부터 외래 미토콘드리아 전달이 전달 받은 세포의 미토콘드리아의 ATP 합성과 활성산소 생성의 균형에 영향을 미치는 것을 확인하다.
실시예
7.
근위축을
유도한
근육세포에서
외래 미토콘드리아 전달 후
미토콘드리아의생합성
능력 평가
단백질 내의 PGC-1(Peroxisome proliferator-activated receptor Gamma Coactivator-1) 발현을 비교하여 세포 내에 미토콘드리아 생합성의 활성을 비교하였다. 이를 위하여, 실시예 5.와 동일한 방법으로 각각의 미토콘드리아를 근위축이 유도된 세포 내로 전달하였다. 배양 48시간 뒤에 세포를 수합하고, 단백질을 추출하였다. 각 시료의 추출된 단백질 내의 변화는 PGC-1 항체(Santa Cruz Biotechnology Inc., Santa Cruz, CA, Cat no: sc-13067)를 이용하여 웨스턴 블랏(Western blot)을 통해 분석하였다.
미토콘드리아 기능이 정상 수준에서는 미토콘드리아 생합성이 활성화되어, PGC-1의 발현이 높게 나타나지만, 미토콘드리아 기능이 손상된 수준에서는 이러한 PGC-1의 발현이 저하됨으로써 미토콘드리아 생합성이 감소되는 것을 의미한다.
도 7에 나타난 바와 같이, 근위축이 유도되어 미토콘드리아의 생합성 활성이 저하된 세포에 비하여, 외래 미토콘드리아를 전달받은 세포의 미토콘드리아 생합성 능력이 정상 세포와 유사한 수준으로 향상된 것을 확인하였다. 특히, 이는 손상된 미토콘드리아를 전달받은 그룹과 비교하였을 때, 유의미한 효과를 나타내었다.
이러한 결과로부터, 외래 미토콘드리아 전달을 통해 미토콘드리아 생합성을 활성화시킬 수 있으며, 이에 따라 세포 내 미토콘드리아의 기능이 개선되는 것을 확인하였다.
실시예
8.
근위축을
유도한
근육세포에서
외래 미토콘드리아 전달 후 세포의 AMPK 활성화 및
FoxO
축적 양
평가
단백질 내의 AMPK 활성화와 FoxO 축적 양을 비교하여 세포 내의 미토콘드리아 기능 변화에 따른 수준을 비교하였다. 이를 위하여, 실시예 5.와 동일한 방법으로 각각의 미토콘드리아를 근위축이 유도된 세포 내로 전달하였다. 배양 48시간 뒤에 세포를 수합하고, 단백질을 추출하였다. 각 시료의 추출된 단백질 내의 변화는 AMPKα 항체(Cell Signaling Technology, Beverly, MA, #2535), Phospho-AMPKα 항체(Cell Signaling Technology, Beverly, MA, #2532) 및 FoxO3α 항체(Cell Signaling Technology, Beverly, MA, (#2497)를 이용하여 웨스턴 블랏을 통해 분석하였다.
미토콘드리아 기능이 손상되면 세포 내에 ATP의 부족하게 되고, 이로 인해 세포 내 에너지 대사의 센서인 AMPK(Adeno Mono Phosphate Kinase)가 활성화되고, 이러한 신호로 활성화된 FoxO가 핵 내에 FoxO가 축적됨으로써 MuRF-1 또는 MAFbx와 같은 근조직의 위축에 영향을 미치는 중요 유전자(atrogenes)들의 발현을 촉진하여 근위축증을 유발한다.
도 8a 및 도 8b에 나타난 바와 같이, 미토콘드리아 기능이 억제된 세포에 비하여, 외래 미토콘드리아를 전달받은 세포의 AMPK 활성화와 FoxO 축적 양이 정상 세포와 유사한 수준으로 줄어든 것을 확인하였다. 특히, 이는 손상된 미토콘드리아를 전달받은 그룹과 비교하였을 때, 유의미한 효과를 나타내었다.
이러한 결과로부터, 외래 미토콘드리아 전달을 통해 세포 내 에너지 센서인 AMPK 의 신호 전달을 억제하고, 그에 따른 FoxO의 활성화를 억제해 줌으로써, 근위축 신호 전달 기전을 억제할 수 있는 것을 확인하였다.
실시예
9.
근위축을
유도한
근육세포에
외래 미토콘드리아 전달 후
근위축
마커인
MuRF
-1 발현량 평가
단백질 내의 MuRF-1(muscle ring finger-1) 발현을 비교하여 세포 내 전달된 미토콘드리아에 의한 근위축 보호 효능을 비교하였다. 실시예 5.와 동일한 방법으로 각각의 미토콘드리아를 근위축이 유도된 세포 내로 전달하였다. 배양 48시간 뒤에 세포를 수합하고, 단백질을 추출하였다. 각 시료의 추출된 단백질 내의 변화는 MuRF-1 항체(Santa Cruz Biotechnology Inc., Santa Cruz, CA, Cat no: sc-27642)를 이용하여 웨스턴 블랏을 통해 분석하였다.
근위축 유도 시 미토콘드리아 기능이 손상되어 도 8b에 나타난 바와 같이, 핵 내에 축적된 FoxO에 의해 근위축 전사인자(예, MuRF-1)가 활성화되어 근위축이 유도된다.
도 9에 나타난 바와 같이, 근위축 유도 군에서 MuRF-1의 발현량의 증가에 비하여, 건강한 외래 미토콘드리아를 전달받은 군에서는 MuRF-1의 발현량이 정상세포와 유사한 수준으로 줄어든 것을 확인하였다. 특히, 이는 손상된 미토콘드리아를 전달받은 그룹과 비교하였을 때, 유의미한 효과를 나타내었다.
이는 근위축이 유도 시 동반되는 미토콘드리아 기능 손상으로 인해 이와 같은 경로(AMPK-FoxO/Atrogene pathway)를 자극함으로써 근 위축 질환을 유도할 수 있다는 이론과 부합하는 내용이며, 실제 본 연구를 통해 건강한 미토콘드리아를 외부에서 전달하여 줌으로써, 이러한 경로를 막아 근 위축 질환으로부터 회복될 수 있음을 확인하였다.
실시예
10. 미토콘드리아 이식에 의한 가자미근의 무게 변화 측정
실시예 1.에서 분리한 미토콘드리아는 BCA 어세이를 통해 미토콘드리아 단백질 양을 측정한 뒤, 투여 농도는 저농도(MT low; 0.5 ㎍)와 고농도(MT high; 5 ㎍)로 설정하였다. 이러한 농도는 근위축이 유도된 세포에서 회복 효능을 검증한 유효한 농도 범위로 사용되었다. 준비된 미토콘드리아는 100 ㎕의 식염수에 현탁하여 0.25 mm(31G) × 8 mm(Insulin syringe, BD ULtra-Fine II) 주사기에 넣고 비복근(gastronemius muscle) 사이에 아래와 위로 두 번 주사하였다. 근위축 유발군은 동일한 용량의 0.9%(v/v) 식염수를 주사하였다.
미토콘드리아 이식 후 1, 7, 14일째에 부검을 실시하였다. 각 실험군 별로 몸무게와 가자미근의 무게를 측정하고, 측정된 무게를 기준으로 몸무게에 대비하여 가자미근 무게 변화를 분석하였다.
그 결과, 근위축 유발 동물에 식염수를 투여한 경우, 정상생활을 한 그룹보다 가자미근의 무게가 약 2배 정도 감소하였다. 미토콘드리아 이식 후 1일째부터 무게의 변화가 회복됨을 확인할 수 있었으며, 전달된 MT의 농도에 의존적으로 가자미근의 무게가 증가함을 확인하였다. 덱사메타손 처리 이후 14일째에는 근위축 그룹의 경우도 자연회복 되는 것을 확인하였다. 또한, 미토콘드리아의 이식을 통해 가자미근의 무게가 정상군보다도 증가하였음을 확인하였다(도 10).
실시예
11. 미토콘드리아 이식에 의한 미토콘드리아 생합성 단백질 발현 확인
미토콘드리아 이식 후 1, 7, 14일째에 수합한 가자미근으로부터 미토콘드리아 생합성의 합성을 비교하기 위해 PGC-1의 단백질 양을 웨스턴 블롯을 통해 확인하였다. 근위축이 유도된 후의 1일째에서는 근위축으로 인한 PGC-1의 발현량이 감소하였다. 반면, 미토콘드리아 전달군에서는 이식 농도에 의존적으로 PGC-1의 발현량이 회복됨을 확인하였다. 그에 반해 자연회복 단계인 7, 14일째의 근위축 유도군에서는 PGC-1의 발현량이 정상군과 유사하게 회복 되는 것을 확인하였다(도 11a 및 도 11b).
즉, 근위축 유도로 인한 미토콘드리아 생합성의 저해를 확인하였고, 외래 미토콘드리아 이식 후 조직 내 미토콘드리아의 PGC-1의 발현량이 증가됨을 확인하였다. 따라서, 이러한 결과를 통해 외래 미토콘드리아 이식함으로써 조직 내 미토콘드리아 생합성의 활성을 증가시킬 수 있음을 확인하였다.
실시예
12. 미토콘드리아 이식에 의한
근위축
관련 단백질 발현
미토콘드리아 이식 후 1, 7, 14일째에 수합한 가자미근으로부터 근위축 특이 마커인 MuRF-1의 단백질 발현량을 웨스턴 블롯을 통해 확인하였다. 근위축이 유도된 후의 7일째에서는 근위축 유도로 인한 MuRf-1의 발현량이 증가함을 확인하였다. 반면, 미토콘드리아 전달군에서는 이식 농도에 의존적으로 MuRF-1의 발현 억제를 확인하였다. 또한, 14일째의 근위축 유도군에서도 MuRF-1의 발현이 나타나지 않음은 근위축으로부터 자연회복이 되는 시점을 의미한다(도 12a 및 12b).
즉, 근위축 유도된 근육 내 MuRF-1의 발현을 확인하였고, 이는 7일째까지 지속되었다. 반면, 외래 미토콘드리아 이식 후 MuRF-1의 발현을 억제되는 것을 확인하였다. 따라서, 이러한 결과를 통해 외래 미토콘드리아를 이식함으로써 근위축을 회복시킬 수 있음을 확인하였다.
실시예
13. 미토콘드리아 이식에 의한 근 섬유 재생의 조직학적 분석
근위축 유발 후 외래 미토콘드리아 이식을 통해 근위축의 치료 효과를 조직학적으로 분석하였다. H&E 염색 결과, 근위축 유발 그룹에서는 7일째까지 근섬유의 크기가 작아지고 근 내막(endomysium)이 정상군에 비해 넓게 퍼져있는 것을 확인하였다. 한편, 외래 미토콘드리아를 이식한 그룹에서는 근 섬유의 크기가 증가하고 밀도도 높게 나타났다. 14일째에는 근위축 유도군은 근 섬유의 크기와 근내막이 정상군과 유사해진 것으로 보아 자연회복 되는 것을 확인하였다(도 13).
이러한 결과를 통해 근위축 유도로 인한 손상된 근육에 외래 미토콘드리아를 이식함으로써 근 재생을 촉진시킬 수 있음을 확인하였다.
II. 미토콘드리아 및 미토콘드리아를 포함한 세포의 허혈성 질환 치료효과 확인
비교예. 태반 유래 중간엽줄기세포를 포함하는 약학 조성물의 제조
태반(분당차병원으로부터 제공받음, IRB No, 1044308-201511-BR-022-02) 유래 중간엽줄기세포를 10%(v/v) 우태혈청(fetal bovine serum, FBS, Gibco), 100 ㎍/㎖ 스트렙토마이신 및 100 U/㎖ 암피실린을 함유하는 Alpha-MEM(Alpha-Minimum Essential Medium)배지에 접종하고 72시간 동안 배양하였다. 배양이 종료된 후, DPBS(Dulbecco's phosphate buffered saline, Gibco)를 이용하여 2회 세척하였다. 세척된 세포는 0.25% Trypsin-EDTA(TE, Gibco)를 처리하여 세포를 획득하였다.
이렇게 획득한 세포는 다시 DPBS(Dulbecco's phosphate buffered saline, Gibco)를 이용하여 2회 세척한 뒤, 1x105, 1x106, 5x106개의 양으로 각각 주사용수 100 ㎕와 혼합한 뒤 인슐린 주사기에 충진하였다.
실시예
14. 미토콘드리아를 포함하는 약학 조성물의 제조
태반 유래 중간엽줄기세포를 10%(v/v) 우태혈청, 100 ㎍/ml 스트렙토마이신 및 100 U/㎖ 암피실린을 함유하는 Alpha-MEM 배지에 접종하고 72시간 동안 배양하였다. 배양이 종료된 후, DPBS를 이용하여 2회 세척하였다. 세척된 세포는 0.25% Trypsin-EDTA를 처리하여 세포를 획득하였다.
획득한 세포는 미토콘드리아를 추출하기 위하여, 혈구계산기를 이용 하여 세포수를 측정하여 3x106 cells/㎖ 정도의 세포를 회수하였다. 이후, 상기 세포주를 약 4℃의 온도에서 10분 동안 350×g의 속도로 제1차 원심분리를 수행하였고, 이 때 얻어진 펠렛을 회수하여 버퍼 용액에 재현탁시켜 10 내지 15분 동안 균질화시켰다. 상기 펠렛을 포함하는 약학 조성물을 약 4℃의 온도에서 3분 동안 1,100×g의 속도로 제2차 원심분리시켜 상청액을 수득하였다. 이후, 상기 상청액을 약 4℃의 온도에서 15분 동안 12,000×g의 속도로 제3차 원심분리시켜 세포주로부터 미토콘드리아를 분리하였다.
이렇게 얻어진 미토콘드리아를 각각 0.2, 2, 10 ㎍의 양으로 각각 주사용수 100 ㎕와 혼합한 뒤 인슐린 주사기에 충진 하였다.
실시예
15. 미토콘드리아가 전달된 세포를 포함하는 약학 조성물의 제조
실시예 14.의 방법에 따라 태반 유래 중간엽줄기세포로(공여세포)부터 추출된 미토콘드리아를, 별도의 태반 유래 중간엽줄기세포(대상세포)가 각각 1x105, 1x106, 5x106의 양으로 포함된 3개의 시험관에 주입하고, 약 4℃의 온도에서, 15분 동안 1,500×g의 속도로 원심 분리하였다. 상등액을 제거하고 PBS로 세척하고 약 4℃의 온도에서, 5분 동안 원심분리 하였다. 같은 조건으로 세척은 2회 수행하였다. 이때, 분리된 미토콘드리아는 각각 대상세포 1x105, 1x106, 5x106개당 2 ㎍의 중량으로 전달되었다.
이렇게 얻어진 미토콘드리아가 전달된 세포는 각각 1x105, 1x106, 5x106의 양으로 각각 주사용수 100 ㎕와 혼합하여 인슐린 주사기에 충진하였다.
실시예 16. 외래 미토콘드리아 전달 확인
실시예 15.에서 외래 미토콘드리아가 세포로 전달된 것을 확인하기 위하여, 공여세포의 미토콘드리아와 대상세포의 미토콘드리아를 구분하기 위해 공여세포의 미토콘드리아는 녹색의 형광(Mitotracker green)으로 표지하고, 대상세포의 미토콘드리아는 빨간색의 형광(Mitotracker red)으로 각각 표지하였다. 형광이 표지된 세포는 핵을 염색하는 DAPI가 포함된 고정액을 이용하여 슬라이드에 고정하고 공초점 주사 현미경(Zeiss LSM 880 Confocal microscope)을 이용하여 촬영하였고, 이를 도 14에 나타내었다.
도 14에 나타난 바와 같이, 미토콘드리아가 전달된 세포에는 노랑색을 띄는 부분이 관찰되었다. 이는 빨간색으로 발광되는 대상세포 미토콘드리아와 녹색으로 발광되는 공여세포 미토콘드리아가 공존함으로써 발광되는 색이 융합(merge)된 것으로, 이를 통해 대상세포의 미토콘드리아에 공여세포의 미토콘드리아가 전달된 것을 확인하였다.
실시예
17. 육안을 통한
중증하지허혈질환
치료 평가 확인
오리엔트 바이오(Orient Bio Co., Ltd., Seoul, Korea)로부터 5주 내지 6주령의 수컷 Balb/c nude 마우스를 구입하였다. 구입한 마우스는 차의과학대학교 실험동물센터의 청정구역에서 적응기간을 거친 후, 실험을 진행하였다. 적응기간 동안 마우스가 지내는 환경은 12시간 간격으로 낮과 밤이 조성되고, 23±2의 실내 온도 및 40 내지 60%의 습도가 유지되었다. 이러한 적응기간을 7일 거친 후 실험에 투입되었다.
이렇게 준비된 마우스의 하지 부분을 외과적 수술을 통해 동맥혈관을 결찰하여 중증하지허혈질환을 유발하였다. 이때, 외과적 수술이 진행된 대퇴부 부위에 상기 비교예 1., 실시예 14. 및 실시예 15.에 따른 약학 조성물을 100 ㎕를 근육내주사(IM, Intramuscular injection)방식으로 투여하여 실험군 1 내지 9를 제작하였다(하기 표 1 참조).
실험군1 | 실험군2 | 실험군3 | 실험군4 | 실험군5 | 실험군6 | 실험군7 | 실험군8 | 실험군9 | |
투여된 조성물 | 비교예(MSC) | 비교예(MSC) | 비교예(MSC) | 실시예14(MT) | 실시예14(MT) | 실시예14(MT) | 실시예15(2 ㎍ MT 전달된 MSC) | 실시예15(2 ㎍ MT 전달된 MSC) | 실시예15(2 ㎍ MT 전달된 MSC) |
투여량 | 1x105 | 1x106 | 5x106 | 0.2 ㎍ | 2 ㎍ | 10 ㎍ | 1x105 | 1x106 | 5x106 |
또한, 주사 투여나 외과적 수술을 처리하지 않은 정상 마우스로 정상 대조군(대조군 1)을 제작하였다. 또한, 주사용수 100 ㎕를 근육내주사(IM, Intramuscular injection)방식으로 투여한 것을 제외하고는 실험군 1과 동일한 방법으로 대조군 1을 제작하였다.
7일 후 육안적 증상을 평가하기 위해, 실험군 1 내지 9 및 대조군 1, 2에 대하여, 하지절단(Limb loss), 족부괴사(Foot necrosis) 및 하지회복(Limb salvage)으로 구분하여 치료의 효과를 평가하여 도 15에 나타내었다.
도 15에 나타난 바와 같이, 대조군 1의 정상 마우스에는 어떠한 병증도 나타나지 않았으나, 생리식염수를 투여한 대조군 2의 마우스는 하지 손상이 90%이상 진행되었다. 또한, 태반 유래 중간엽줄기세포를 투여한 실험군 1, 2, 3에서는 40% 이상 하지회복과 50% 이상 하지절단이 발생된 것을 알 수 있다. 이와 달리, 미토콘드리아를 투여한 실험군 4, 5, 6의 마우스에서는 60 내지 100% 하지회복과 20% 미만의 하지절단이 발생된 것을 알 수 있다. 또한, 미토콘드리아가 전달된 세포를 투여한 실험군 8, 9의 마우스에서는 하지절단이 발생하지 않았으며, 실험군 7의 마우스에서만 50%의 하지절단이 발생된 것을 알 수 있다.
즉, 상기 결과를 통해, 본 발명의 미토콘드리아를 포함하는 약학 조성물 또는 미토콘드리아가 전달된 세포를 포함하는 약학 조성물을 투여하는 경우, 중증하지허혈증상의 개선 및 치료 효과가 있음을 확인하였다, 특히, 일반적으로 분리된 줄기세포만을 투여하는 경우에 비해서 치료 효과가 보다 우수한 것을 확인하였다.
실시예 18. 혈류량 측정을 통한 중증하지허혈질환 치료 평가 확인
실험군 1 내지 9 및 대조군 1, 2에 대하여 하지혈류 흐름을 평가하기 위해, 레이저미세혈류영상측정기(LDI, Laser doppler imaging)를 통해 일정 시점(투여직후, 3일, 5일, 7일 및 14일 후)의 혈류량의 흐름을 측정하여 도 16a 및 도 16b에 나타내었다.
도 16a에 나타난 바와 같이, 대조군 1의 정상마우스에서는 빨간색과 초록색으로 혈류량의 흐름이 측정되었으나, 생리식염수를 투여한 대조군 2의 마우스는 하지절단으로 인해 혈류량의 흐름이 측정되지 않은 것을 확인하였다. 또한, 태반 유래 줄기세포만을 포함하는 약학 조성물(비교예)을 투여한 실험군 1 내지 3에서는 대조군 2와 유사하게 혈류량의 흐름이 측정되지 않은 것을 확인하였다.
이와 달리, 도 16b에 나타난 바와 같이, 미토콘드리아를 포함하는 약학 조성물(실시예 14.)을 투여한 실험군 4, 6과 미토콘드리아가 전달된 세포를 포함하는 약학 조성물(실시예 15.)를 투여한 실험군 8, 9에서 대조군 1의 정상마우스와 유사한 수준으로 혈류량이 측정된 것을 확인할 수 있다. 또한, 미토콘드리아를 투여한 실험군 5와 미토콘드리아가 전달된 세포를 투여한 실험군 7의 혈류량의 흐름을 대조군 1과 비교 시 약 50% 수준의 혈류량의 흐름이 측정된 것을 확인할 수 있다.
이상, 본 발명의 일 실시예에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.
Claims (38)
- 미토콘드리아를 유효성분으로 포함하는,근질환 예방 또는 치료용 약학 조성물.
- 제1항에 있어서,상기 미토콘드리아는 세포 또는 조직으로부터 분리된 것인,근질환 예방 또는 치료용 약학 조성물.
- 제2항에 있어서,상기 세포는 체세포, 생식세포, 줄기세포 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나인 것인,근질환 예방 또는 치료용 약학 조성물.
- 제3항에 있어서,상기 체세포가 근육세포, 간세포, 신경세포, 섬유아세포, 상피세포, 지방세포, 골세포, 백혈구, 림프구, 혈소판 또는 점막세포 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나인 것인,근질환 예방 또는 치료용 약학 조성물.
- 제3항에 있어서,상기 생식세포가 정자, 난자 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나인 것인,근질환 예방 또는 치료용 약학 조성물.
- 제3항에 있어서,상기 줄기세포가 중간엽줄기세포, 성체줄기세포, 역분화줄기세포, 배아줄기세포, 골수줄기세포, 신경줄기세포, 윤부줄기세포, 조직 유래 줄기세포 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나인 것인,근질환 예방 또는 치료용 약학 조성물.
- 제6항에 있어서,상기 중간엽줄기세포가 탯줄, 제대혈, 골수, 지방, 근육, 신경, 피부, 양막, 태반, 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나로부터 수득된 것인,근질환 예방 또는 치료용 약학 조성물.
- 제1항에 있어서,상기 조성물에 대하여, 상기 미토콘드리아는 0.1 내지 500 ㎍/㎖의 농도로 포함되는,근질환 예방 또는 치료용 약학 조성물.
- 제1항에 있어서,상기 근질환은, MELAS 증후군, MERRF 증후군, Kearns-Sayre 증후군, 근병증, 뇌근육병증, 근무력증, 중증 근무력증, 근위축성 측삭 경화증, 근육퇴행위축, 근위축증 또는 근경직증인,근질환 예방 또는 치료용 약학 조성물.
- 외래 미토콘드리아가 도입된 세포를 유효성분으로 포함하는,근질환 예방 또는 치료용 약학 조성물.
- 제10항에 있어서,상기 세포는 근육세포 또는 줄기세포인,근질환 예방 또는 치료용 약학 조성물.
- 제11항에 있어서,상기 줄기세포가 중간엽줄기세포, 성체줄기세포, 역분화줄기세포, 배아줄기세포, 골수줄기세포, 신경줄기세포, 윤부줄기세포, 조직 유래 줄기세포 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나인 것인,근질환 예방 또는 치료용 약학 조성물.
- 제12항에 있어서,상기 중간엽줄기세포가 탯줄, 제대혈, 골수, 지방, 근육, 신경, 피부, 양막, 태반, 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나로부터 수득된 것인,근질환 예방 또는 치료용 약학 조성물.
- 제10항에 있어서,세포와 외래 미토콘드리아 혼합물을 원심분리하여, 외래 미토콘드리아를 세포 내로 전달시킨,근질환 예방 또는 치료용 약학 조성물.
- 제10항에 있어서,상기 조성물은, 105개 세포당 0.1 내지 500 ㎍의 미토콘드리아가 도입된 세포를 포함하는,근질환 예방 또는 치료용 약학 조성물.
- 제10항에 있어서,상기 근질환은, MELAS 증후군, MERRF 증후군, Kearns-Sayre 증후군, 근병증, 뇌근육병증, 근무력증, 중증 근무력증, 근위축성 측삭 경화증, 근육퇴행위축, 근위축증 또는 근경직증인,근질환 예방 또는 치료용 약학 조성물.
- 제1항 내지 제16항 중 어느 한 항에 따른 조성물을 개체의 환부에 투여하는 단계를 포함하는,근질환의 예방 또는 치료 방법.
- 미토콘드리아를 유효성분으로 포함하는,허혈성 질환 예방 또는 치료용 약학 조성물.
- 제18항에 있어서,상기 미토콘드리아는 세포 또는 조직으로부터 분리된 것인,허혈성 질환 예방 또는 치료용 약학 조성물.
- 제19항에 있어서,상기 세포는 체세포, 생식세포, 줄기세포 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나인 것인,허혈성 질환 예방 또는 치료용 약학 조성물.
- 제20항에 있어서,상기 체세포가 근육세포, 간세포, 신경세포, 섬유아세포, 상피세포, 지방세포, 골세포, 백혈구, 림프구, 혈소판 또는 점막세포 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나인 것인,근질환 예방 또는 치료용 약학 조성물.
- 제20항에 있어서,상기 생식세포가 정자, 난자 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나인 것인,근질환 예방 또는 치료용 약학 조성물.
- 제20항에 있어서,상기 줄기세포가 중간엽줄기세포, 성체줄기세포, 역분화줄기세포, 배아줄기세포, 골수줄기세포, 신경줄기세포, 윤부줄기세포, 조직 유래 줄기세포 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나인 것인,근질환 예방 또는 치료용 약학 조성물.
- 제23항에 있어서,상기 중간엽줄기세포가 탯줄, 제대혈, 골수, 지방, 근육, 신경, 피부, 양막, 태반, 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나로부터 수득된 것인,근질환 예방 또는 치료용 약학 조성물.
- 제18항에 있어서,상기 조성물에 대하여, 상기 미토콘드리아는 0.1 내지 500 ㎍/ml의 농도로 포함되는,허혈성 질환 예방 또는 치료용 약학 조성물.
- 제18항에 있어서,상기 허혈성 질환은, 중증하지허혈증, 허혈성 뇌졸중, 허혈성 심장질환 또는 허혈성 대장염인,허혈성 질환 예방 또는 치료용 약학 조성물.
- 외래 미토콘드리아가 도입된 세포를 유효성분으로 포함하는,허혈성 질환 예방 또는 치료용 약학 조성물.
- 제27항에 있어서,상기 세포는 근육세포 또는 줄기세포인,허혈성 질환 예방 또는 치료용 약학 조성물.
- 제28항에 있어서,상기 줄기세포가 중간엽줄기세포, 성체줄기세포, 역분화줄기세포, 배아줄기세포, 골수줄기세포, 신경줄기세포, 윤부줄기세포, 조직 유래 줄기세포 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나인 것인,근질환 예방 또는 치료용 약학 조성물.
- 제29항에 있어서,상기 중간엽줄기세포가 탯줄, 제대혈, 골수, 지방, 근육, 신경, 피부, 양막, 태반, 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나로부터 수득된 것인,근질환 예방 또는 치료용 약학 조성물.
- 제27항에 있어서,세포와 외래 미토콘드리아의 혼합물을 원심분리하여, 외래 미토콘드리아를 세포 내로 전달시킨,허혈성 질환 예방 또는 치료용 약학 조성물.
- 제27항에 있어서,상기 조성물은, 105개 세포당 0.1 내지 500 ㎍의 미토콘드리아가 도입된 세포를 포함하는,허혈성 질환 예방 또는 치료용 약학 조성물.
- 제27항에 있어서,상기 허혈성 질환은, 중증하지허혈증, 허혈성 뇌졸중, 허혈성 심장질환 또는 허혈성 대장염인,허혈성 질환 예방 또는 치료용 약학 조성물.
- 제18항 내지 제33항 중 어느 한 항에 따른 조성물을 개체의 환부에 투여하는 단계를 포함하는,허혈성 질환의 예방 또는 치료 방법.
- 근질환을 예방 또는 치료하기 위한 제1항 또는 제10항의 약학 조성물의 용도.
- 근질환 예방 또는 치료용 약제를 제조하기 위한 제1항의 또는 제10항의 약학 조성물의 용도.
- 허혈성 질환을 예방 또는 치료하기 위한 제18항 또는 제27항의 약학 조성물의 용도.
- 허혈성 질환 예방 또는 치료용 약제를 제조하기 위한 제18항 또는 제27항의 약학 조성물의 용도.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17877156.4A EP3549589A4 (en) | 2016-11-30 | 2017-11-28 | PHARMACEUTICAL COMPOSITION WITH MITOCHONDRIA |
CN201780074366.5A CN110022884A (zh) | 2016-11-30 | 2017-11-28 | 含有线粒体的药物组合物 |
JP2019529183A JP2020502078A (ja) | 2016-11-30 | 2017-11-28 | ミトコンドリアを含む医薬組成物 |
US16/464,928 US20200009198A1 (en) | 2016-11-30 | 2017-11-28 | Pharmaceutical compostion containing mitochondria |
JP2022016415A JP2022065004A (ja) | 2016-11-30 | 2022-02-04 | ミトコンドリアを含む医薬組成物 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0161059 | 2016-11-30 | ||
KR20160161059 | 2016-11-30 | ||
KR10-2016-0173748 | 2016-12-19 | ||
KR1020160173748A KR102019277B1 (ko) | 2016-12-19 | 2016-12-19 | 미토콘드리아를 포함하는 허혈성 질환 예방 또는 치료용 조성물 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018101708A1 true WO2018101708A1 (ko) | 2018-06-07 |
Family
ID=62241620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/013707 WO2018101708A1 (ko) | 2016-11-30 | 2017-11-28 | 미토콘드리아를 포함하는 약학 조성물 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20200009198A1 (ko) |
EP (1) | EP3549589A4 (ko) |
JP (2) | JP2020502078A (ko) |
CN (1) | CN110022884A (ko) |
WO (1) | WO2018101708A1 (ko) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020021539A1 (en) * | 2018-07-22 | 2020-01-30 | Minovia Therapeutics Ltd. | Mitochondrial augmentation therapy of muscle diseases |
WO2020021538A1 (en) * | 2018-07-22 | 2020-01-30 | Minovia Therapeutics Ltd. | Mitochondrial augmentation therapy of brain diseases |
WO2021004477A1 (zh) * | 2019-07-09 | 2021-01-14 | 唐凌峰 | 一种基于线粒体的药物递送系统及其用途 |
US20210252075A1 (en) * | 2018-07-22 | 2021-08-19 | Minovia Therapeutics Ltd. | Mitochondrial augmentation therapy of liver diseases |
JP2021531284A (ja) * | 2018-07-22 | 2021-11-18 | ミノヴィア セラピューティクス リミテッド | 原発性ミトコンドリア病のためのミトコンドリア増強療法 |
JP2022519409A (ja) * | 2018-07-22 | 2022-03-24 | ミノヴィア セラピューティクス リミテッド | 機能的ミトコンドリアで富化された幹細胞を用いたミトコンドリア増強療法 |
EP3964219A4 (en) * | 2019-04-29 | 2022-07-06 | Paean Biotechnology Inc. | PHARMACEUTICAL COMPOSITION FOR TREATMENT OF SEPSIS OR SYSTEMIC INFLAMMATORY REACTION WITH ISOLATED MITOCHONDRIA AS ACTIVE INGREDIENT |
RU2810508C2 (ru) * | 2019-04-30 | 2023-12-27 | Паэн Байотекнолоджи Инк. | Фармацевтическая композиция для профилактики или лечения миозита, содержащая выделенные митохондрии в качестве активного ингредиента |
US11944642B2 (en) | 2011-09-11 | 2024-04-02 | Minovia Therapeutics Ltd. | Compositions of functional mitochondria and uses thereof |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102275822B1 (ko) * | 2018-02-02 | 2021-07-12 | 주식회사 파이안바이오테크놀로지 | 분리된 미토콘드리아를 포함하는 류마티스 관절염 예방 또는 치료용 약학 조성물 |
TWI706780B (zh) * | 2019-03-27 | 2020-10-11 | 台灣粒線體應用技術股份有限公司 | 粒線體用於製備治療阿茲海默症之醫藥組合物的用途 |
US20220226387A1 (en) * | 2019-05-30 | 2022-07-21 | Seoul National University R&Db Foundation | Pharmaceutical composition for promoting osteogenesis, comprising osteoblast-derived mitochondria |
TWI789724B (zh) * | 2020-03-20 | 2023-01-11 | 台灣粒線體應用技術股份有限公司 | 粒線體用於治療及/或預防肌腱受損或其相關疾病之用途 |
KR102273163B1 (ko) * | 2020-09-10 | 2021-07-05 | 주식회사 파이안바이오테크놀로지 | 혈소판 유래 미토콘드리아의 수득 방법 및 이의 용도 |
CN112999357A (zh) * | 2021-03-03 | 2021-06-22 | 中国药科大学 | 一种外源线粒体载体、复合物及其制备方法和应用 |
CN113288916A (zh) * | 2021-04-21 | 2021-08-24 | 康妍葆(北京)干细胞科技有限公司 | 一种用于修复海马体内线粒体功能的间充质干细胞 |
CN113122497B (zh) * | 2021-04-26 | 2023-08-11 | 重庆理工大学 | 工程化线粒体及其制备方法 |
CN113444692A (zh) * | 2021-06-29 | 2021-09-28 | 上海交通大学医学院附属第九人民医院 | 一种重组心肌细胞及其用途 |
CN114469849B (zh) * | 2022-01-14 | 2024-10-18 | 康诺生物制药股份有限公司 | 一种温敏水凝胶封装线粒体的应用 |
WO2023234678A1 (ko) * | 2022-05-30 | 2023-12-07 | 주식회사 파이안바이오테크놀로지 | 분리된 미토콘드리아를 유효성분으로 포함하는 고혈압성 질환 예방 또는 치료용 약학 조성물 |
CN115212188B (zh) * | 2022-07-29 | 2023-04-07 | 西安交通大学医学院第一附属医院 | 一种缺血脑区靶向纳米线粒体及其制备方法、用途 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004100773A2 (en) * | 2003-05-13 | 2004-11-25 | The Regents Of The University Of Colorado | Diagnostic and therapeutic treatments related to mitochondrial disorders |
WO2008137035A1 (en) * | 2007-05-02 | 2008-11-13 | The Mclean Hospital Corporation | Methods and compositions for mitochondrial replacement therapy |
US20090226898A1 (en) * | 2005-07-14 | 2009-09-10 | Inverness Medical Switzerland Gmbh | Mitochondrial markers of ischemia |
US20120171716A1 (en) * | 2009-08-11 | 2012-07-05 | The Johns Hopkins University | Measurement of Mitochondrial Membrane Potential to Assess Organ Dysfunction |
WO2013171752A1 (en) * | 2012-05-16 | 2013-11-21 | Minovia Therapeutics Ltd. | Compositions and methods for inducing angiogenesis |
WO2017124037A1 (en) * | 2016-01-15 | 2017-07-20 | The Children's Medical Center Corporation | Therapeutic use of mitochondria and combined mitochondrial agents |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2742935A1 (en) * | 2012-12-14 | 2014-06-18 | Tissue Med Biosciences Forschungs- und Entwicklungsgesellschaft mbH | SERF2 for the treatment of atrophy and for increasing cell growth |
WO2016008937A1 (en) * | 2014-07-16 | 2016-01-21 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for the intercellular transfer of isolated mitochondria in recipient cells |
EP3261649A4 (en) * | 2015-02-26 | 2018-08-15 | Minovia Therapeutics Ltd. | Mammalian cells enriched with functional mitochondria |
US20160278647A1 (en) * | 2015-03-26 | 2016-09-29 | Intel Corporation | Misalignment detection of a wearable device |
WO2018058026A1 (en) * | 2016-09-26 | 2018-03-29 | Boston Scientific Scimed, Inc. | Mitochondrial epigenetic reprogramming and transplant |
JP7187036B2 (ja) * | 2016-11-14 | 2022-12-12 | パイアン バイオテクノロジ- インコーポレイテッド | 外因性ミトコンドリアを細胞内に送達する方法 |
-
2017
- 2017-11-28 EP EP17877156.4A patent/EP3549589A4/en not_active Withdrawn
- 2017-11-28 US US16/464,928 patent/US20200009198A1/en not_active Abandoned
- 2017-11-28 WO PCT/KR2017/013707 patent/WO2018101708A1/ko unknown
- 2017-11-28 JP JP2019529183A patent/JP2020502078A/ja active Pending
- 2017-11-28 CN CN201780074366.5A patent/CN110022884A/zh active Pending
-
2022
- 2022-02-04 JP JP2022016415A patent/JP2022065004A/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004100773A2 (en) * | 2003-05-13 | 2004-11-25 | The Regents Of The University Of Colorado | Diagnostic and therapeutic treatments related to mitochondrial disorders |
US20090226898A1 (en) * | 2005-07-14 | 2009-09-10 | Inverness Medical Switzerland Gmbh | Mitochondrial markers of ischemia |
WO2008137035A1 (en) * | 2007-05-02 | 2008-11-13 | The Mclean Hospital Corporation | Methods and compositions for mitochondrial replacement therapy |
US20120171716A1 (en) * | 2009-08-11 | 2012-07-05 | The Johns Hopkins University | Measurement of Mitochondrial Membrane Potential to Assess Organ Dysfunction |
WO2013171752A1 (en) * | 2012-05-16 | 2013-11-21 | Minovia Therapeutics Ltd. | Compositions and methods for inducing angiogenesis |
WO2017124037A1 (en) * | 2016-01-15 | 2017-07-20 | The Children's Medical Center Corporation | Therapeutic use of mitochondria and combined mitochondrial agents |
Non-Patent Citations (2)
Title |
---|
PIECZENIK ET AL., EXP. MOL. PATHOL., vol. 83, no. 1, 2007, pages 84 - 92 |
SCHAPIRA AH ET AL., LANCET., vol. 368, no. 9529, 2006, pages 70 - 82 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11944642B2 (en) | 2011-09-11 | 2024-04-02 | Minovia Therapeutics Ltd. | Compositions of functional mitochondria and uses thereof |
JP2021532093A (ja) * | 2018-07-22 | 2021-11-25 | ミノヴィア セラピューティクス リミテッド | 脳疾患のミトコンドリア増強療法 |
WO2020021538A1 (en) * | 2018-07-22 | 2020-01-30 | Minovia Therapeutics Ltd. | Mitochondrial augmentation therapy of brain diseases |
US20210252075A1 (en) * | 2018-07-22 | 2021-08-19 | Minovia Therapeutics Ltd. | Mitochondrial augmentation therapy of liver diseases |
JP2021531284A (ja) * | 2018-07-22 | 2021-11-18 | ミノヴィア セラピューティクス リミテッド | 原発性ミトコンドリア病のためのミトコンドリア増強療法 |
JP2021532094A (ja) * | 2018-07-22 | 2021-11-25 | ミノヴィア セラピューティクス リミテッド | 筋疾患のミトコンドリア増強療法 |
WO2020021539A1 (en) * | 2018-07-22 | 2020-01-30 | Minovia Therapeutics Ltd. | Mitochondrial augmentation therapy of muscle diseases |
JP2022519409A (ja) * | 2018-07-22 | 2022-03-24 | ミノヴィア セラピューティクス リミテッド | 機能的ミトコンドリアで富化された幹細胞を用いたミトコンドリア増強療法 |
JP7524157B2 (ja) | 2018-07-22 | 2024-07-29 | ミノヴィア セラピューティクス リミテッド | 脳疾患のミトコンドリア増強療法 |
JP7522095B2 (ja) | 2018-07-22 | 2024-07-24 | ミノヴィア セラピューティクス リミテッド | 原発性ミトコンドリア病のためのミトコンドリア増強療法 |
JP7458368B2 (ja) | 2018-07-22 | 2024-03-29 | ミノヴィア セラピューティクス リミテッド | 筋疾患のミトコンドリア増強療法 |
US11951135B2 (en) | 2018-07-22 | 2024-04-09 | Minovia Therapeutics Ltd. | Mitochondrial augmentation therapy of muscle diseases |
EP3964219A4 (en) * | 2019-04-29 | 2022-07-06 | Paean Biotechnology Inc. | PHARMACEUTICAL COMPOSITION FOR TREATMENT OF SEPSIS OR SYSTEMIC INFLAMMATORY REACTION WITH ISOLATED MITOCHONDRIA AS ACTIVE INGREDIENT |
RU2810508C2 (ru) * | 2019-04-30 | 2023-12-27 | Паэн Байотекнолоджи Инк. | Фармацевтическая композиция для профилактики или лечения миозита, содержащая выделенные митохондрии в качестве активного ингредиента |
WO2021004477A1 (zh) * | 2019-07-09 | 2021-01-14 | 唐凌峰 | 一种基于线粒体的药物递送系统及其用途 |
Also Published As
Publication number | Publication date |
---|---|
JP2020502078A (ja) | 2020-01-23 |
JP2022065004A (ja) | 2022-04-26 |
EP3549589A4 (en) | 2020-07-15 |
US20200009198A1 (en) | 2020-01-09 |
CN110022884A (zh) | 2019-07-16 |
EP3549589A1 (en) | 2019-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018101708A1 (ko) | 미토콘드리아를 포함하는 약학 조성물 | |
WO2016048107A1 (ko) | 인터페론-감마 또는 인터류킨-1베타를 처리한 줄기세포 또는 그 배양물을 포함하는 면역질환 또는 염증질환의 예방 또는 치료용 약학조성물 | |
KR20180071030A (ko) | 미토콘드리아를 포함하는 허혈성 질환 예방 또는 치료용 조성물 | |
WO2018097628A2 (ko) | 신경줄기세포의 분화 촉진 및 보호용 조성물 및 이를 이용하여 신경재생을 유도하는 방법 | |
WO2019050071A1 (ko) | 엑소좀 또는 엑소좀 유래 리보핵산을 포함하는 간섬유증 예방 또는 치료용 조성물 | |
WO2018056706A1 (ko) | 티오레독신 결합단백질 유래 펩타이드 또는 이를 암호화 하는 폴리뉴클레오타이드를 유효성분으로 함유하는 노화 줄기세포의 역노화용 조성물 및 이의 용도 | |
KR20210096052A (ko) | 미토콘드리아를 포함하는 근질환 예방 또는 치료용 약학 조성물 | |
WO2023033500A1 (ko) | 세포 밖 소포체 함유 안표면 염증 질환 예방 또는 치료용 조성물 | |
WO2017146538A1 (ko) | 조절 t 세포 매개성 질환의 예방 또는 치료용 약학적 조성물 | |
WO2020222483A1 (ko) | 분리된 미토콘드리아를 유효성분으로 포함하는 패혈증 또는 전신성 염증 반응 증후군 치료용 약학 조성물 | |
WO2019004792A9 (ko) | 인간 유래 심장 줄기세포 미세구의 제조 방법 및 용도 | |
KR20120034167A (ko) | 진피세포의 트리코겐 효능을 증가시키기 위한 방법 및 조성물 | |
WO2020091463A1 (ko) | 분리된 미토콘드리아를 포함하는 건병증 예방 또는 치료용 약학 조성물 | |
WO2009151304A2 (ko) | 에이케이에이피일이를 함유하는 조성물 및 동물 모델로서 에이케이에이피일이 돌연변이 제브라피쉬의 용도 | |
WO2012161519A1 (en) | An adult stem cell line introduced with hepatocyte growth factor gene and neurogenic transcription factor gene with basic helix-loop-helix motif and uses thereof | |
WO2023027317A1 (ko) | 편도 중간엽 줄기세포 유래 엑소좀을 포함하는 근육 감소 관련 질환 치료용 조성물 | |
WO2022075809A1 (ko) | 중간엽 줄기세포에서 분화된 골모세포 및 이를 포함하는 골질환 치료용 조성물 | |
WO2022235088A1 (ko) | 3차원 스페로이드형 세포 응집체 유래 세포외소포를 포함하는 신경 재생 촉진 조성물 | |
WO2020222566A1 (ko) | 분리된 미토콘드리아를 유효성분으로 포함하는 근염 예방 또는 치료용 약학 조성물 | |
WO2016048052A1 (ko) | 비만세포 과립을 처리한 줄기세포 또는 그 배양물을 포함하는 면역질환 또는 염증질환의 예방 또는 치료용 약학조성물 | |
WO2016068616A1 (ko) | C3 또는 c1r 보체를 분비하는 태반 유래 세포 및 이를 포함하는 조성물 | |
WO2020122666A1 (ko) | 중간엽줄기세포가 포함된 생체 이식용 임플란트를 포함하는 간 질환의 예방 또는 치료용 약학적 조성물 | |
WO2015111971A1 (ko) | Gpr119 리간드를 유효성분으로 포함하는 비알콜성 지방간 질환의 예방 또는 치료용 약학적 조성물 | |
WO2022158698A1 (ko) | Ptx-3, timp1 및 bdnf를 발현하는 간엽줄기세포를 유효성분으로 포함하는 염증 질환 또는 통증의 예방 또는 치료용 약학 조성물 | |
WO2024014721A1 (ko) | 줄기세포 유래 엑소좀을 포함하는 항암 조성물 및 이의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17877156 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019529183 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017877156 Country of ref document: EP Effective date: 20190701 |