WO2018101629A1 - 반사 방지막, 반사 방지 부재, 편광판 및 표시장치 - Google Patents
반사 방지막, 반사 방지 부재, 편광판 및 표시장치 Download PDFInfo
- Publication number
- WO2018101629A1 WO2018101629A1 PCT/KR2017/012575 KR2017012575W WO2018101629A1 WO 2018101629 A1 WO2018101629 A1 WO 2018101629A1 KR 2017012575 W KR2017012575 W KR 2017012575W WO 2018101629 A1 WO2018101629 A1 WO 2018101629A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- refractive index
- parts
- photoreactive
- polymer
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/111—Anti-reflection coatings using layers comprising organic materials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
Definitions
- the present invention relates to an antireflection film, an antireflection member, a polarizing plate, and a display device.
- display apparatuses such as a liquid crystal display or an organic electroluminescence (organic EL) display, prevent the fall of contrast or the superposition of an image by reflection of external light. Therefore, a low reflection film is provided on the outermost surface of the display device.
- the conventional low reflecting film having a luminous reflectance of more than 1% has an excessively high reflectance when used for applications in which higher contrast is required, resulting in insufficient antireflection.
- the sheet-like and plate-shaped low reflective members described in Patent Document 1 have high steel wool withstand load values of 500 g / cm 2 , which is an index of steel wool scratch resistance.
- the low reflecting member has a problem that the luminous reflectance exceeds 1% and the antireflection property is not sufficient.
- the conventional low reflecting film having a luminous reflectance of less than 0.3% has a problem that steel wool scratch resistance is inferior to the low reflecting film having a luminous reflectance of more than 1%.
- the antireflection member described in Patent Literature 2 sets the luminous reflectance to less than 0.3% by forming a laminated film of three layers having different refractive indices.
- this antireflection member has a steel wool withstand value of 200 g / cm 2, which is rather low.
- the luminous reflectance and the steel wool scratch resistance are in a trade-off relationship, and these two performances are not compatible.
- Patent Document 1 Patent No. 5723625
- Patent Document 2 Japanese Patent Application Laid-Open No. 2015-227934
- An object of the present invention is to provide an antireflection film, an antireflection member, a polarizing plate, and a display device excellent in antireflection and steel wool scratch resistance.
- An embodiment of the present invention is an antireflection film in which at least two layers or more layers having different refractive indices are stacked, and the uppermost layer is a polymer having a photoreactive fluorine compound A, a monomer having at least one hydroxyl group and two or more photoreactive functional groups.
- an embodiment of the present invention is the anti-reflection film described above, wherein the polymer having a main skeleton a by the siloxane bond may be a photoreactive modified silicone polymer.
- an embodiment of the present invention is the anti-reflection film described above, wherein the binder includes a polymer C having a main skeleton b by a siloxane bond represented by the following formula (1), and a main skeleton b by the siloxane bond.
- the constituting unit may be a polymer having one methoxy group directly bonded to a silicon atom and one methyl group directly bonded to the silicon atom, and the polymer C has a main skeleton a by the siloxane bond.
- n an integer of 2 to 10.
- one embodiment of the present invention is the anti-reflection film described above, the refractive index of the uppermost layer may be less than about 1.310.
- one embodiment of the present invention is the anti-reflection film described above, the luminous reflectance of the surface of the uppermost layer may be less than about 0.20%.
- one embodiment of the present invention is the anti-reflection film described above, the steel wool withstand value of the uppermost layer may be about 300g / cm 2 or more.
- an embodiment of the present invention is the anti-reflection film described above, wherein the uppermost layer is laminated on the hard coating layer, the refractive index of the hard coating layer may be about 1.500 to 1.650.
- another embodiment of the present invention comprises a transparent substrate and the above-described anti-reflection film formed on the transparent substrate, the anti-reflection film is an anti-reflection member consisting of the hard coating layer and the uppermost layer in order from the transparent substrate Can be.
- another embodiment of the present invention may be a polarizing plate in which the above-described anti-reflection film or the above-described anti-reflection member is formed on the outermost surface.
- another embodiment of the present invention may be a display device having the polarizing plate described above.
- an antireflection film it is possible to provide an antireflection film, an antireflection member, a polarizing plate, and a display device excellent in antireflection and steel wool scratch resistance.
- FIG. 1 is a cross-sectional view showing a configuration example of an antireflection film in a first embodiment of the present invention.
- FIG. 2 is a cross-sectional view showing an example of the configuration of an antireflection film in a second embodiment of the present invention.
- FIG 3 is a cross-sectional view showing an example of the configuration of an antireflection film in a third embodiment of the present invention.
- FIG. 6 is a cross-sectional view showing a configuration example of a display device according to a sixth embodiment of the present invention.
- FIG. 7 is a cross-sectional view showing a configuration example of a display device according to a seventh embodiment of the present invention.
- FIG. 1 is a cross-sectional view showing an example of the configuration of an antireflection film 1 according to a first embodiment of the present invention.
- the antireflection film 1 is laminated
- the low refractive index layer 3 is positioned on the uppermost layer.
- the low refractive index layer 3 located on the uppermost layer contains binder 4, hollow silica particles 5, photoreactive fluoropolymer 6, and photoreactive modified silicone polymer 7.
- the hollow silica particles 5 are dispersed in the binder 4.
- the photoreactive fluoropolymer 6 and the photoreactive modified silicone polymer 7 are distributed on the surface (most surface) 3a of the low refractive index layer 4.
- the binder 4 constituting the low refractive index layer 3 includes a crosslinked product in which a polymer made of the photoreactive fluorine compound A and a polymer made of the monomer B are crosslinked with each other.
- Monomer B has at least one hydroxyl group and two or more photoreactive functional groups.
- the photoreactive fluoropolymer 6 has one end bonded to the binder 4, and the other end side extends outside the low refractive index layer 3 based on the binder 4.
- one end of the photoreactive modified silicone polymer 7 is bonded to the binder 4, and the other end side of the photoreactive modified silicone polymer 7 extends to the outside of the low refractive index layer 3.
- the photoreactive fluoropolymer 6 is distributed on the surface 3a of the low refractive index layer 3 as fluorine (F) exists outside the surface 3a of the low refractive index layer 3.
- the photoreactive modified silicone polymer 7 is distributed on the surface 3a of the low refractive index layer 3 such that silicon (Si) is located outside the surface 3a of the low refractive index layer 3.
- the photoreactive fluoropolymer 6 and the photoreactive modified silicone polymer 7 are distributed almost uniformly over the entire surface 3a of the low refractive index layer 3.
- the present ratio of the photoreactive fluoropolymer 6 on the surface 3a of the low refractive index layer 3 can be appropriately controlled by the content of the photoreactive fluoropolymer 6 in the low refractive index layer 3.
- the presence rate of the photoreactive-modified silicone polymer 7 in the surface 3a of the low refractive index layer 3 can be suitably adjusted with content of the photoreactive-modified silicone polymer 7 in the low refractive index layer 3.
- the following method may be used as a method for confirming the distribution of the photoreactive fluoropolymer 6 and the photoreactive modified silicone polymer 7 on the surface 3a of the low refractive index layer 3.
- a method using a combination of Auger Electron Spectroscopy (ABS) and ion etching employing argon (Ar) ions can be used.
- the low refractive index layer 3 is cut (in the thickness direction) from the surface 3a side toward the hard coating layer 2 by ion etching employing argon ions.
- the elemental distribution of fluorine and silicon in the thickness direction of the low refractive index layer 3 is analyzed by Auger electron spectroscopy, while cutting the low refractive index layer 3.
- the photoreactive fluoropolymer 6 and the photoreactive modified silicone polymer 7 are distributed on the surface 3a of the low refractive index layer 3. According to the distribution, the distribution of fluorine and silicon is large on the surface 3a side of the low refractive index layer 3, and the distribution of fluorine and silicon may be small on the hard coating layer 2 side.
- the refractive index of the low refractive index layer 3 may be less than about 1.310, and more preferably about 1.300 or less. When the refractive index of the low refractive index layer 3 is less than about 1.310, the antireflection film 1 has sufficient antireflection property for application to a display device requiring high contrast.
- the method for measuring the refractive index of the low refractive index layer 3 is performed as follows.
- Black ink is applied to the back surface (the surface on which the anti-reflection film 1 is not formed) of the base material on which the antireflection film 1 is formed, and the reflected light from the back surface of the anti-reflection member is removed.
- the black members may be attached to the back surface of the antireflection member with a transparent adhesive or the like.
- the 8-degree incident diffused illumination is matched to the surface of the antireflective member, the 8-degree received light is measured, and the specular reflectance and diffuse reflectance of 380 nm to 740 nm are obtained.
- a spectrophotometer CM-2600d or CM-3600A manufactured by Konica Minolta Co., Ltd. can be used.
- the luminous reflectance of the surface 3a of the low refractive index layer 3 may be less than about 0.20%, more preferably about 0.19% or less, and even more preferably about 0.17% or less.
- the luminous reflectance is a reflectance corresponding to the brightness Y of the object color in the colorimetric system.
- the luminous reflectance of the surface 3a of the low refractive index layer 3 turns into the luminous reflectance of the surface 1a of the antireflection film 1. If the luminous reflectance of the low refractive index layer 3 is less than 0.20%, the antireflection film 1 possesses sufficient antireflection property for application to a display device in which high contrast is required.
- the measurement method of the luminous reflectance of the surface 3a of the low refractive index layer 3 is performed as follows.
- Black ink is applied to the back surface (the surface on which the anti-reflection film 1 is not formed) of the base material on which the antireflection film 1 is formed, and the reflected light from the back surface of the anti-reflection member is removed.
- the black members may be attached to the back surface of the antireflection member with a transparent adhesive or the like.
- the 8-degree incident diffused illumination is matched to the surface of the antireflective member, the 8-degree received light is measured, and the specular reflectance and diffuse reflectance of 380 nm to 740 nm are obtained.
- a spectrophotometer CM-2600d or CM-3600A manufactured by Konica Minolta Co., Ltd. can be used.
- the steel wool withstand value of the low refractive index layer 3 is preferably about 300 g / cm 2 or more.
- the steel wool withstand value of the low refractive index layer 3 is about 300 g / cm 2 or more, when the antireflection film 1 is applied to the display device, the display surface of the display device can be sufficiently protected.
- the steel wool withstand value of the low refractive index layer 3 is about 300 g / cm 2 to about 400 g / cm 2 and about 350 g / cm 2 to about 400 g / cm 2 .
- the measuring method of the steel wool withstand load value of the said low refractive index layer 3 is demonstrated.
- the steel wool of # 0000 on the low refractive index layer 3 is reciprocated 10 times at a contact area of 1 cm 2 , a moving speed of 100 mm / sec, and a moving distance of 100 mm.
- steel wool withstand value the maximum load when the number of wounds which can be confirmed when visually observing the surface of the low refractive index layer 3 after reciprocation.
- the average primary particle diameter of the hollow silica particles 5 may be about 50 nm to about 100 nm, more preferably about 60 nm to about 90 nm.
- the refractive index of the low refractive index layer 3 can be made less than about 1.310 without excessively increasing the refractive index of the hollow silica particles 5.
- the average primary particle diameter of the hollow silica particles 5 is about 100 nm or less, the strength of the hollow silica particles 5 does not become too low. Therefore, the steel wool scratch resistance and the pencil hardness of the low refractive index layer 3 do not fall. Therefore, the thickness of the low refractive index layer 3 can be made about 100 nm.
- the average primary particle diameter of the said hollow silica particle 5 can be obtained from the scanning electron microscope image obtained, for example by observing the hollow silica particle 5 with the scanning electron microscope (SEM).
- content (content rate) of the hollow silica particle 5 in the said low refractive index layer 3 is about 45 mass parts-about 56 mass parts.
- the refractive index of the low refractive index layer 3 can be made less than about 1.310, and the luminous reflectance of the low refractive index layer 3 can be made less than about 0.20%.
- the content of the hollow silica particles 5 is about 56 parts by mass or less, the content of the binder 4 in the low refractive index layer 3 does not become too small. Therefore, the strength of the low refractive index layer 3 can be sufficiently secured, and the steel wool scratch resistance can be sufficiently secured.
- the hard coat layer 2 is made of resin such as triacetyl cellulose (TAC), polyethylene terephthalate (PET), cycloolefin polymer (COP), polymethyl methacrylate (PMMA) and the like.
- TAC triacetyl cellulose
- PET polyethylene terephthalate
- COP cycloolefin polymer
- PMMA polymethyl methacrylate
- the hard coat layer 2 may be a member made of the above resin.
- the hard-coat layer which consists of an acrylic resin, a urethane resin, an epoxy resin, or a mixture of these on the member which consists of said resin.
- the hard coat layer 2 with high surface hardness may be formed.
- the refractive index of the hard coating layer 2 As the refractive index of the hard coating layer 2 is increased, the luminous reflectance of the surface 3a of the low refractive index layer 3 may be reduced. However, when the refractive index of the hard coating layer 2 is made high, the strength of the hard coating layer 2 may drop. In addition, the content of the high refractive material in the hard coating layer 2 may increase, resulting in cost up. Therefore, in consideration of these, the refractive index of the hard coat layer 2 is adjusted.
- the refractive index of the hard coating layer 2 is preferably about 1.500 to about 1.650.
- the refractive index of the hard coat layer 2 is more preferably about 1.550 to about 1.650.
- the refractive index of the low refractive index layer 3 may be less than about 1.310.
- the steel wool withstand value of the low refractive index layer 3 can be made into about 300 g / cm ⁇ 2> or more.
- the refractive index of the hard coat layer 2 is about 1.650 or less
- the reflectances on the low wavelength side and the high wavelength side do not increase on the surface 3a of the low refractive index layer 3. Therefore, the light reflected from the surface 3a of the low refractive index layer 3 can be prevented from becoming colored.
- the thickness of the hard coat layer 2 is not particularly limited, but is preferably about 1 ⁇ m to about 10 ⁇ m.
- the hard coating layer 2 and the low refractive index layer 3 having different refractive indices are laminated.
- the low refractive index layer 3 serving as the uppermost layer contains the binder 4, the hollow silica particles 5, the photoreactive fluoropolymer 6, and the photoreactive modified silicone polymer 7.
- the hollow silica particles 5 are dispersed in the binder 4.
- the photoreactive fluoropolymer 6 and the photoreactive modified silicone polymer 7 are distributed on the surface (most surface) 3a of the low refractive index layer 3. Therefore, the surface 3a of the low refractive index layer 3 becomes slippery, and it is excellent in steel wool scratch resistance, and the antireflection film excellent also in antireflection property can be obtained.
- the manufacturing method of the anti-reflection film 1 of this embodiment includes the process A mentioned later, the process B, the process C, and the process D at least.
- Process A is a process of manufacturing the coating liquid for forming the low refractive index layer 3.
- Process B is a process of forming the coating film which is a precursor of the low refractive index layer 3 using the coating liquid manufactured in process A.
- Step C is a step of drying the coating film formed in step B.
- Process D is a process of polymerizing the photoreactive fluorine compound A and monomer B contained in the dry coating film in process C.
- process D is a process of crosslinking the polymer which consists of a photoreactive fluorine compound A, and the polymer which consists of monomers B.
- each component is stirred and mixed uniformly so that it may become a predetermined compounding quantity (mixing ratio), and a coating liquid is manufactured.
- the coating solution includes a photoreactive fluorine compound A, a monomer B, a hollow silica particle 5, a photoreactive fluoropolymer, a photoreactive modified silicone polymer, a solvent, and a photopolymerization initiator.
- photoreactive fluorine compound A fluorine content is 30 mass%-60 mass%, and the fluorine monomer, fluorine oligomer, or fluoropolymer containing a photoreactive group is used. Within this range, the coating solution can be prepared in a suitable blending ratio of the photoreactive fluorine compound A.
- the photoreactive fluorine compound A is distributed throughout the uppermost layer, that is, the low refractive index layer.
- the compounding amount of the photoreactive fluorine compound A in the coating liquid is about 20 parts by mass to about 40 parts by mass, specifically about 25 parts by mass to about 35 when the total amount of solids content in the coating liquid is 100 parts by mass. It is preferable that it is a mass part.
- the refractive index of the low refractive index layer 3 can be made less than about 1.310.
- the luminous reflectance of the low refractive index layer 3 can be made less than about 0.20%.
- the compounding quantity of the photoreactive fluorine compound A is about 40 mass parts or less, the fall of the surface hardness resulting from too much fluorine component contained in the low refractive index layer 3 does not arise. Therefore, steel wool scratch resistance does not fall. In addition, compatibility with other components for forming the low refractive index layer 3 does not deteriorate.
- the photoreactive fluorine compound A is different from the following photoreactive fluorine polymer.
- the photoreactive fluorine compound A may be a monomer.
- Examples of the monomer B having at least one hydroxyl group and two or more photoreactive functional groups include 2-hydroxy-1,3-dimethacryloxypropane, dipentaerythritol hexaacrylate, and epoxidized dipentaerythritol hexa.
- Acrylate, propoxylated dipentaerythritol hexaacrylate, pentaerythritol triacrylate, epoxidized pentaerythritol triacrylate, propoxylated pentaerythritol triacrylate, isocyanuryl diacrylate Etc. can be used. Specifically, isocyanuryl diacrylate, dipentaerythritol hexaacrylate, pentaerythritol triacrylate, or the like can be used.
- the amount of the monomer B in the coating solution is about 5 parts by mass to about 20 parts by mass, specifically about 5 parts by mass to about 15 parts by mass, when the total amount of solids in the coating liquid is 100 parts by mass. It is preferable that they are 5 mass parts-about 10 mass parts, and about 10 mass parts-about 20 mass parts.
- strength sufficient for the low refractive index layer 3 can be obtained.
- the photoreactive fluoropolymer 6 and the photoreactive modified silicone polymer 7 can be sufficiently distributed on the surface 3a of the low refractive index layer 3. Therefore, sufficient smoothness can be obtained in the surface 3a of the low refractive index layer 3.
- the refractive index of the low refractive index layer 3 can be made less than about 1.310.
- the luminous reflectance of the low refractive index layer 3 can be made less than about 0.20%.
- the compounding quantity of the hollow silica particle 5 in the said coating liquid is about 45 mass parts-about 56 mass parts, Specifically, about 45 mass parts-about 55 mass parts, when the total amount of solid content compounding quantity in a coating liquid is 100 mass parts. , About 45 parts by mass to about 50 parts by mass, and about 50 parts by mass to about 55 parts by mass.
- the refractive index of the low refractive index layer 3 can be made less than about 1.310 as the compounding quantity of the hollow silica particle 5 is about 45 mass parts or more. As a result, the luminous reflectance of the low refractive index layer 3 can be made less than about 0.20%.
- the compounding quantity of hollow silica particle 5 is about 56 mass parts or less, content of the binder 4 in the low refractive index layer 3 does not become too small, and the strength of the low refractive index layer 3 can fully be ensured. In addition, steel wool scratch resistance can be sufficiently secured.
- the photoreactive fluoropolymer a polymer having a weight average molecular weight of about 2,000 to about 10,000 perfluoropolyether as the main skeleton may be used.
- the polymer mainly containing this perfluoropolyether has a functional group at the terminal or both terminals.
- the functional group of the photoreactive fluoropolymer is a photoreactive group.
- the photoreactive fluoropolymer is distributed only on the surface of the low refractive index layer, which is the uppermost layer.
- the compounding amount of the photoreactive fluoropolymer in the coating liquid is about 1 part by mass to about 10 parts by mass, specifically about 1 part by mass to about 5 parts by mass when the total amount of solids in the coating liquid is 100 parts by mass. , About 5 parts by mass to about 10 parts by mass.
- the compounding quantity of the photoreactive fluoropolymer is about 1 part by mass or more, sufficient smoothness can be obtained on the surface 3a of the low refractive index layer 3, and the steel wool scratch resistance is improved.
- the compounding quantity of a photoreactive fluoropolymer is about 10 mass parts or less, the fall of the surface hardness resulting from too much fluorine component contained in the low refractive index layer 3 does not arise. In addition, the steel wool scratch resistance does not decrease.
- the photoreactive modified silicone polymer is a polymer having a weight average molecular weight of about 10,000 to about 50,000 dimethylsiloxane as the main skeleton a, and has at least one photoreactive functional group.
- the photoreactive modified silicone polymer is a polymer having a main skeleton a by siloxane bonds.
- the addition site of the functional group of the photoreactive modified silicone polymer is preferably not only the terminal (edge) but also the side chain chain of the main skeleton a.
- the functional group of the photoreactive modified silicone polymer is a photoreactive group.
- the compounding quantity of the photoreactive modified silicone polymer in the said coating liquid is about 1 mass part-about 3 mass parts when the total amount of solid content compounding quantity in a coating liquid is 100 mass parts.
- the compounding quantity of a photoreactive modified silicone polymer is about 1 mass part or more, steel wool scratch resistance sufficient for the low refractive index layer 3 can be obtained.
- the compounding quantity of a photoreactive modified silicone polymer is 3 mass parts or less, the haze value of the low refractive index layer 3 does not rise.
- methyl isobutyl ketone (MB), methyl ethyl ketone (MB), isopropyl alcohol (APA), propylene glycol monomethyl ether (PM), propylene glycol monomethyl ether acetate (PM) and the like can be used.
- These solvent may be used individually by 1 type, and may mix and use 2 or more types.
- the solvent thereof may be appropriately selected in consideration of the dispersibility and compatibility of other materials for forming the low refractive index layer 3.
- the compounding quantity of the solvent in the said coating liquid is adjusted suitably so that it may become solid content concentration suitable for a coating apparatus or a coating speed.
- coating is performed by adjusting the compounding quantity of a solvent to about 1 mass%-about 3 mass%.
- the low refractive index layer 3 can be formed in about 100 nm film thickness.
- 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl ⁇ -2-methyl-propane-1-one, 2-methyl- 1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 1-hydroxy-cyclohexyl-phenyl ketone and the like can be used.
- the compounding quantity of the photoinitiator in the said coating liquid is about 1 mass part-about 5 mass parts, when the total amount of solid content compounding quantity in a coating liquid is 100 mass parts.
- the amount of the photopolymerization initiator is about 1 part by mass or more, the polymer composed of the photoreactive fluorine compound A and the polymer composed of the monomer B are sufficiently crosslinked. Therefore, steel wool scratch resistance sufficient for the low refractive index layer 3 can be obtained.
- the compounding quantity of a photoinitiator is about 5 mass parts or less, the refractive index of the low refractive index layer 3 can be made into less than about 1.310. As a result, the luminous reflectance of the low refractive index layer 3 can be said to be less than about 0.20%.
- the coating liquid mentioned above is apply
- the coating liquid is uniformly applied on the hard coating layer 2 so that the coating film formed on the hard coating layer 2 has a uniform thickness.
- coating the said coating liquid For example, a microgravure system, a slot die system, a knife coating system, a spray method, etc. are used.
- a coating film is dried and the solvent contained in a coating film is evaporated.
- the drying temperature (heating temperature) and drying time (heating time) for sufficiently evaporating the solvent contained in the coating film are appropriately determined by the kind of solvent.
- the drying temperature may be about 30 ° C. to about 150 ° C.
- the drying time may be about 20 seconds to about 5 minutes.
- the drying of the coating film may be natural drying or heat drying.
- step C the photoreactive fluoropolymer and the photoreactive modified silicone polymer are distributed on the surface side of the coating film while the coating film is dried.
- the reason why the photoreactive fluoropolymer and the photoreactive modified silicone polymer are distributed on the surface side of the coating film is estimated as follows. These polymers are relatively hydrophobic and have a low specific gravity. For this reason, these polymers are phase separated from a binder composed of a polymer composed of a monomer B and a polymer composed of a photoreactive fluorine compound A containing a hydroxyl group exhibiting hydrophilicity. As a result, these polymers are about to emerge from the binder.
- the photoreactive fluorine compound A and monomer B which are contained in a coating film are polymerized.
- the low refractive index layer 3 is formed by crosslinking the polymer made of the photoreactive fluorine compound A and the polymer made of the monomer B.
- the photoreactive fluoropolymer and the photoreactive modified silicone polymer are distributed on the surface side of the coating film after drying. Therefore, the photoreactive fluoropolymer and the photoreactive modified silicone polymer are also distributed on the surface 3a side of the obtained low refractive index layer 3.
- the coating film after the said drying can be ultraviolet-ray, visible light, an electron beam, ionizing radiation, etc., for example.
- a light source such as an ultra high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon lamp, a metal halide lamp, or the like can be used.
- the amount of ultraviolet radiation is, for example, a cumulative exposure amount at an ultraviolet wavelength of 365 nm, about 100 mPa / cm 2. To It is about 1000 mPa / cm 2 .
- the antireflection film 1 of this embodiment can be obtained.
- FIG. 2 is a cross-sectional view showing a configuration example of an antireflection film 10 according to a second embodiment of the present invention.
- symbol is attached
- the anti-reflection film 10 has the hard coat layer 2 and the low refractive index layer 3 laminated in this order.
- the low refractive index layer 3 forms the uppermost layer.
- the low refractive index layer 3 constituting the uppermost layer contains binder 4, hollow silica particles 5, and photoreactive fluoropolymer 6. Hollow silica particles 5 are dispersed in binder 4.
- the photoreactive fluoropolymer 6 is distributed on the surface (most surface) 3a of the low refractive index layer 3.
- the binder 4 which comprises the said low refractive index layer 3 contains the polymer C which has the crosslinked body in 1st Embodiment, and the main skeleton b by the siloxane bond represented by said Formula (1).
- binder 4 is composed of a crosslinked product in which a polymer made of a photoreactive fluorine compound A and a polymer made of monomer B are crosslinked with each other, and a mixture of polymer C.
- polymer C forms the uppermost layer of the low refractive index layer 3 together with the photoreactive fluoropolymer 6.
- the said polymer C has the main skeleton b by the siloxane bond represented by the said Formula (1), and forms a linear structure or a three-dimensional structure, and also has the structure which a linear structure and a three-dimensional structure mix.
- the main skeleton b by the siloxane bond in said Formula (1) is a thing of the structure shown in parentheses.
- n may be an integer of 2-10, and it is more preferable that it is an integer of 3-5.
- the unit constituting the main skeleton has one methoxy group directly bonded to the silicon atom and one methyl group directly bonded to the silicon atom.
- the unit which comprises a main skeleton is a structure shown in parentheses.
- polymer C examples include a siloxane compound having 3 to 4, 5 or 9, which represents the degree of polymerization of the structure in parentheses in the formula (1).
- the said polymer C has a refractive index lower than the polymer which consists of said monomer B. Therefore, by containing the polymer C in the binder 4, content of the monomer B in the binder 4 can be reduced, and the refractive index of the low refractive index layer 3 can be made lower.
- the polymer C may improve the scratch resistance of steel wool and lower the refractive index by decreasing the refractive index.
- the binder 4 constituting the low refractive index layer 3 contains the crosslinked product and the polymer C in the first embodiment.
- the polymer C forms the uppermost layer of the low refractive index layer 3 together with the photoreactive fluoropolymer 6. Therefore, although the surface 3a of the low refractive index layer 3 is slippery, it is excellent in abrasion resistance of steel wool, and the antireflection film excellent also in antireflection property can be obtained.
- the anti-reflection film 1 has a three-layer structure, or it is easier to form a lower refractive index at a lower cost than an inorganic vapor deposition film or an inorganic sputtering film.
- step A of manufacturing the coating liquid is different from the manufacturing method of the antireflection film 1 of the first embodiment.
- each component is stirred and mixed uniformly so that it may become a predetermined compounding quantity (mixing ratio), and a coating liquid is manufactured.
- the coating solution contains a photoreactive fluorine compound A, a monomer B, a polymer C, hollow silica particles 5, a photoreactive fluorine polymer, a solvent, and a photopolymerization initiator.
- the compounding quantity of the photoreactive fluorine compound A, the monomer B, and the polymer C differs from the coating liquid in 1st Embodiment.
- the compounding quantity of another component is the same as that of the coating liquid in 1st embodiment.
- the compounding amount of the photoreactive fluorine compound A in the coating solution is about 10 parts by mass to about 30 parts by mass, specifically about 15 parts by mass to about 30 parts by mass when the total amount of solids content in the coating liquid is 100 parts by mass. It is preferable that it is about 20 mass parts to about 30 mass parts. If the compounding quantity of the photoreactive fluorine compound A is about 10 mass parts or more, the refractive index of the low refractive index layer 3 can be made less than about 1.310. As a result, the luminous reflectance of the low refractive index layer 3 can be made less than about 0.20%.
- the compounding quantity of photoreactive fluorine compound A is about 30 mass parts or less, the fall of the surface hardness resulting from too much fluorine component contained in the low refractive index layer 3 does not arise. Therefore, steel wool scratch resistance does not fall. In addition, compatibility with other components for forming the low refractive index layer 3 does not deteriorate.
- the amount of the monomer B in the coating liquid is preferably about 3 parts by mass to about 10 parts by mass, specifically about 3 parts by mass to about 5 parts by mass when the total amount of the solid content in the coating liquid is 100 parts by mass. Do.
- the compounding quantity of monomer B is 3 mass parts or more, sufficient intensity
- the polymer C can be sufficiently exposed to the surface 3a of the low refractive index layer 3 by sufficiently distributing the photoreactive fluoropolymer 6 on the surface 3a of the low refractive index layer 3. Therefore, sufficient smoothness can be obtained on the surface 3a of the low refractive index layer 3.
- the refractive index of the low refractive index layer 3 can be made less than about 1.310.
- the luminous reflectance of the low refractive index layer 3 can be said to be less than about 0.20%.
- the blending amount of the polymer C in the coating liquid is preferably about 5 parts by mass to about 15 parts by mass, specifically about 5 parts by mass to about 10 parts by mass when the total amount of solids in the coating liquid is 100 parts by mass. Do.
- strength sufficient for the low refractive index layer 3 can be obtained.
- the photoreactive fluoropolymer 6 can be sufficiently distributed, and the polymer C can be sufficiently exposed on the surface 3a of the low refractive index layer 3. Therefore, sufficient smoothness can be obtained on the surface 3a of the low refractive index layer 3.
- the refractive index of the low refractive index layer 3 can be made less than about 1.310.
- the luminous reflectance of the low refractive index layer 3 can be said to be less than about 0.20%.
- the antireflection film 10 of this embodiment can be obtained by passing through the same process as this embodiment below using the above coating liquid.
- FIG. 3 is a cross-sectional view showing a configuration example of an antireflection film 20 according to a third embodiment of the present invention.
- symbol is attached
- the antireflection film 20 is formed by stacking the hard coating layer 2, the high refractive index layer 21, and the low refractive index layer 3 having different refractive indices from each other in this order.
- the refractive index of the high refractive index layer 21 may be about 1.650 to about 1.800, and preferably about 1.700 to about 1.750.
- the refractive index of the high refractive index layer 21 is in the range of about 1.650 to about 1.800, it is possible to obtain an optimum condition that the reflectance of the antireflection film 20 determined by the thickness or refractive index of the three layers is the lowest. On the other hand, it is difficult to make the luminous reflectance of the antireflection film 20 less than about 0.2% outside the range of this refractive index.
- the high refractive index layer 21 is composed of an organic high refractive index material having a fluorene skeleton, a mixture of high refractive index nanoparticles such as zirconium oxide and titanium oxide, and an acrylic resin.
- nanoparticles having an average primary particle diameter of about 3 nm to about 30 nm may be used.
- the thickness of the high refractive index layer 21 is preferably about 130 nm to about 160 nm, for example. When the thickness of the high refractive index layer 21 is in the range of about 130 nm to about 160 nm, the reflectance can be lowered and the reflected light close to achromatic color can be obtained.
- the refractive index of the high refractive index layer 21 can be made higher than that of the two-layer structure in order to have a three-layer structure including the high refractive index layer 21. Therefore, the luminous reflectance of the surface 3a of the low refractive index layer 3 can be made small.
- the antireflection film 1 in the first embodiment may be configured, or the antireflection film 10 in the second embodiment may be configured.
- FIG. 4 is a cross-sectional view showing a configuration example of an antireflection member 30 according to a fourth embodiment of the present invention. 4, the same code
- the antireflection member 30 is a sheet-like or plate-shaped member including the antireflection film 1 formed on the transparent base material 31 and the transparent base material 31.
- the hard-coat layer 2 and the low refractive index layer 3 are laminated
- the transparent base material 31 is made of resin such as triacetyl cellulose (TAC), polyethylene terephthalate (PET), cycloolefin polymer (COP), polymethyl methacrylate (PMMA), and the like.
- resin such as triacetyl cellulose (TAC), polyethylene terephthalate (PET), cycloolefin polymer (COP), polymethyl methacrylate (PMMA), and the like.
- the thickness of the said transparent base material 31 is not specifically limited, For example, it is preferable that it is about 20 micrometers-about 200 micrometers.
- the antireflection member 30 of the present embodiment has the antireflection film 1 described above. Therefore, like the antireflection film 1, the surface 3a of the low refractive index layer 3 tends to be slippery, and is excellent in steel wool scratch resistance, and the antireflection member excellent also in antireflection can be obtained.
- 5 is a cross-sectional view illustrating a configuration example of the polarizing plate 40 in the fifth embodiment of the present invention. 5 the same code
- the polarizing plate 40 has the anti-polarizing film 1 provided in the polarizing plate main body 41 and the surface 41a.
- polarizing plate main body 41 A general viewing angle improvement polarizing plate, circular polarizing plate, etc. are mentioned.
- the antireflection film 10 in the second embodiment described above or the antireflection member 30 in the fourth embodiment described above may be employed.
- the polarizing plate 40 of the present embodiment the polarizing plate possessing sufficient anti-reflective property can be obtained in order to be applied to a display device requiring high contrast because of the antireflection film 1 described above.
- FIG. 6 is a cross-sectional view showing a configuration example of a display device 50 according to a sixth embodiment of the present invention.
- symbol is attached
- a liquid crystal display is illustrated as the display device 50.
- the display apparatus 50 has the liquid crystal display element 51, the polarizing plate (1st polarizing plate) 40, and the polarizing plate (2nd polarizing plate) 52 which were provided so that this may be bonded by both surfaces.
- the polarizing plate 40 is provided so that the polarizing plate main body 41 faces the display surface 51a side of the liquid crystal display element 51.
- liquid crystal display element 51 A general liquid crystal display element is mentioned.
- polarizing plate 52 A general circular flat plate etc. are mentioned.
- the polarizing plate 40 described above can be provided, whereby a liquid crystal display excellent in antireflection can be obtained.
- FIG. 7 is a cross-sectional view showing a configuration example of a display device 60 according to a seventh embodiment of the present invention.
- symbol is attached
- the organic EL display is illustrated as the display device 60.
- the display apparatus 60 has the organic EL element 61 and the polarizing plate 40 provided on this.
- the polarizing plate 40 is a circularly polarizing plate having a quarter wavelength retardation or the like, and the polarizing plate main body 41 is provided on the display surface 61a side of the organic EL element 61.
- organic EL element 61 A general organic EL element is mentioned.
- the polarizing plate 40 described above can be provided, whereby an organic EL display excellent in antireflection can be obtained.
- Photoreactive fluorine compound A, monomer B, hollow silica particles, photoreactive fluorine polymer, photoreactive modified silicone polymer, and photopolymerization initiator were mixed. It mixed so that the mixing ratio of each component might become solid content compounding quantity (solid content compounding ratio (mass ratio)) shown in Table 1.
- Example 1 a solvent was added to the obtained mixture, these were uniformly stirred and mixed to prepare a coating solution of Example 1.
- the compounding quantity of the solvent in a coating liquid made it 97 mass% when the total amount of the coating liquid was 100 mass%.
- photoreactive fluorine compound A As a photoreactive fluorine compound A (it describes as "fluorine compound A” in Table 1), the thing whose fluorine content is 50 mass% (DAIKIN, AR-110) was used.
- Isocyanuryl diacrylate was used as the monomer B.
- hollow silica particles those having an average primary particle diameter of 75 nm (Thule 5320) were used.
- silicone polymer As the photoreactive modified silicone polymer (hereinafter referred to as "silicone polymer” in Table 1), a weight average molecular weight of 30,000 (EVONIK, TEGO Rad2700) was used.
- Methyl isobutyl ketone was used as a solvent.
- a hard coat substrate having a transparent substrate made of TAC and a hard coat layer formed on the transparent substrate was prepared.
- the hard coat layer had transparent acrylic resin as a main component, and its refractive index was 1.580 and thickness was 5 micrometers.
- the total light transmittance of this hard coat base material was 91.9%, and the haze value was 0.30%.
- the said coating film was dried in 80 degreeC oven for 2 minutes, and the solvent contained in a coating film was evaporated.
- the ultraviolet irradiation amount was 200 mJ / cm 2 as a cumulative exposure amount at an ultraviolet wavelength of 365 nm.
- Example 2 the antireflection member of Example 2 was obtained in the same manner as in Example 1 except that dipentaerythritol hexaacrylate was used.
- the antireflection member of Example 3 was obtained in the same manner as in Example 1 except that pentaerythritol triacrylate was used.
- the antireflection member of Comparative Example 1 was obtained in the same manner as in Example 1 except that trimethylolpropane acrylate was used instead of isocyanuryl diacrylate.
- Example 1 As shown in Table 1, the Example except having made 20 mass parts of solid content compounding quantities of the photoreactive fluorine compound A, 10 mass parts of solid content compounding amounts of isocyanuryl diacrylate, and 60 mass parts of solid content compounding amounts of a hollow silica particle In the same manner as in 1, the antireflection member of Comparative Example 3 was obtained.
- the antireflection member of Comparative Example 5 was obtained in the same manner as in Example 1 except that the weight average molecular weight was 800 (Solvay, MT70).
- the refractive index of the low refractive index layer of the antireflection member of Examples 1-3 and Comparative Examples 1-5 was measured.
- the measuring method of the refractive index of the low refractive index layer was as follows.
- the 8-degree incident diffused illumination was fitted to the surface of the antireflective member, and the 8-degree received light beam was measured to obtain specular reflectance and diffuse reflectance of 380 nm to 740 nm.
- CM-2600d manufactured by Konica Minolta was used.
- the luminous reflectance of the surface of the low refractive index layer of the antireflective member of Examples 1-3 and Comparative Examples 1-5 was measured.
- the measuring method of the luminous reflectance of the surface of the low refractive index layer was as follows.
- the 8-degree incident diffused illumination was fitted to the surface of the antireflective member, and the 8-degree received light beam was measured to obtain specular reflectance and diffuse reflectance of 380 nm to 740 nm.
- CM-2600d manufactured by Konica Minolta was used.
- Table 2 The results are shown in Table 2.
- the steel wool withstand values of the low refractive index layers of the antireflection members of Examples 1 to 3 and Comparative Examples 1 to 5 were measured.
- the measurement method of the steel wool withstand value of the low refractive index layer was as follows. Steel wool of # 0000 on the low refractive index layer was reciprocated 10 times with a contact area of 1 cm 2 , a moving speed of 100 mm / sec, and a moving distance of 100 mm. And when visually observing the surface of the low refractive index layer after reciprocation, the maximum weight when the number of scratches which can be recognized is less than ten was made into the steel wool withstand value. The results are shown in Table 2.
- the antireflective member of Comparative Example 2 had 35 parts by mass of the solid content of the photoreactive fluorine compound A, 15 parts by mass of the solid content of the isocyanuryl diacrylate and 40 parts by mass of the solid content of the hollow silica particles. Therefore, it was analyzed that the refractive index of the low refractive index layer and the luminous reflectance of the surface of the low refractive index layer were inferior.
- the antireflection member of Comparative Example 3 was out of the composition content range of the present invention, and it was analyzed that steel wool scratch resistance was poor.
- the antireflection member of Comparative Example 4 was a photoreactive modified silicone polymer, and the weight average molecular weight was 9000, so that steel wool scratch resistance was analyzed.
- the antireflection member of Comparative Example 5 was a photoreactive fluoropolymer, and the weight average molecular weight was 800, so that the steel wool scratch resistance was analyzed.
- the photoreactive fluorine compound A, the monomer B, the polymer C, the hollow silica particles, the photoreactive fluoropolymer and the photopolymerization initiator were mixed. It mixed so that the mixing ratio of each component might become solid content compounding quantity (solid content compounding ratio (mass ratio)) shown in Table 3.
- Example 4 a solvent was added to the obtained mixture, these were uniformly stirred and mixed to prepare a coating solution of Example 4.
- the compounding quantity of the solvent in a coating liquid was 97 mass% when the total amount of the coating liquid was 100 mass%.
- photoreactive fluorine compound A As a photoreactive fluorine compound A (it describes as "fluorine compound A” in Table 3), the thing whose fluorine content is 50 mass% (DAIKIN, AR-110) was used.
- Isocyanuryl diacrylate was used as the monomer B.
- n showing the degree of polymerization of the structure in parentheses in the formula (1) used a siloxane compound of 3 to 4 (KR-515, KR-515).
- hollow silica particles those having an average primary particle diameter of 75 nm (Thru 5320) were used.
- fluorine polymer As the photoreactive fluorine polymer (hereinafter referred to as "fluorine polymer” in Table 3), a weight average molecular weight of 5,000 (Fluoro Technology, FS-7024) was used.
- Methyl isobutyl ketone was used as a solvent.
- the hard-coat base material which has the transparent base material which consists of TAC, the hard-coat layer formed on this transparent base material, and the high refractive index layer formed on this hard-coat layer was prepared.
- the hard-coat layer had transparent acrylic resin as a main component, the refractive index was 1.580, and thickness was 5 micrometers.
- the high refractive index layer crosslinked the zirconium oxide particles and the acrylic resin binder, and the refractive index was 1.73 and the thickness was 150 nm.
- the total light transmittance of this hard coat base material was 91.9%, and the haze value was 0.50%.
- it carried out similarly to Example 1 and obtained the antireflection member of Example 5.
- the antireflection member was obtained by the same method.
- the antireflection member was obtained by the same method.
- the antireflection member was obtained by the same method.
- the measuring method of the refractive index of the low refractive index layer was the same as the method in the antireflection member of Examples 1-3 and Comparative Examples 1-5. The results are shown in Table 4.
- the luminous reflectance of the surface of the low refractive index layer of the antireflective member of Examples 4 and 5 and Comparative Examples 6-8 was measured.
- the measuring method of the luminous reflectance of the surface of the low refractive index layer was made the same as the method in the antireflection member of Examples 1-3 and Comparative Examples 1-5.
- the results are shown in Table 4.
- the steel wool withstand values of the low refractive index layers of the antireflection members of Examples 4 and 5 and Comparative Examples 6 to 8 were measured.
- the measuring method of the steel wool withstand load value of the low refractive index layer was made the same as the method in the antireflection member of Examples 1-3 and Comparative Examples 1-5. The results are shown in Table 4.
- Example 5 was more excellent in steel wool scratch resistance than the antireflection members of Examples 1-3.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Laminated Bodies (AREA)
Abstract
본 발명은 반사 방지성 및 스틸 울 내찰상성에서 뛰어난 반사방지막, 반사 방지 부재, 편광판 및 표시장치에 관한 것이다. 이를 통해 적어도 2층 이상의 서로 굴절률이 다른 층이 적층되는 반사방지막으로서, 최상층이 광 반응성 함 불소 화합물 A 로 이루어지는 중합체와, 적어도 1개 이상의 수산기와 2개 이상의 광 반응성 관능기를 갖는 모노머 B 로 이루어지는 중합체가 서로 가교된 가교체를 포함하는 바인더와, 상기 바인더 중에 분산되어진 중공 실리카 입자와, 상기 최상층의 표면 측에 분포되는 광 반응성 함 불소 폴리머 및 실록산 결합에 의한 주 골격 a를 갖는 폴리머를 함유하는 반사방지막을 제공할 수 있다.
Description
본 발명은 반사 방지막, 반사 방지 부재, 편광판 및 표시장치에 관한다.
종래 액정 디스플레이 또는 유기 일렉트로루미네슨스(electroluminescence)(유기EL) 디스플레이 등의 표시 장치에서는 외광의 반사에 의한 콘트라스트(contrast)의 저하 또는 상의 겹쳐 보임을 방지하고 있다. 그 때문에 표시장치의 최 표면에 저 반사 막이 마련되어 있다.
그러나 종래의 시감 반사율이 1%를 초과하는 저 반사 막은 보다 고 콘트라스트(contrast)가 요청되는 용도에 사용할 경우에는 반사율이 지나치게 높아서, 반사 방지성이 불충분하였다.
예를 들면 특허문헌 1에 기재되어 있는 시트상, 판상의 저 반사 부재는 스틸 울(steel wool) 내찰상성의 지표인 스틸 울 내하중값이 500g/cm2로 높은 값이다. 그러나, 상기 저 반사 부재는 시감 반사율이 1%를 초과하여, 반사 방지성이 충분하지 않다는 과제가 있었다.
한편, 종래의 시감 반사율이 0.3% 미만의 저 반사 막은 스틸 울 내찰상성이 상기의 시감 반사율이 1%를 초과하는 저 반사 막보다도 뒤떨어진다고 하는 과제가 있었다. 특허문헌 2에 기재되어 있는 반사 방지 부재는 굴절률이 다른 3층의 적층막을 형성하는 것에 의해, 시감 반사율을 0.3% 미만으로 하고 있다. 그러나, 이 반사 방지 부재는 스틸 울 내하중값이 200g/cm2으로 다소 낮은 값이 되어 있다. 이와 같이, 종래의 반사 방지 부재는 시감 반사율과 스틸 울 내찰상성이 트레이드 오프(trade off)의 관계가 되고 있어, 이들 2개의 성능을 양립할 수 없었다.
<선행 기술문헌>
<특허문헌>
<특허문헌 1>특허 제5723625호 공보
<특허문헌 2>특개 2015-227934호 공보
본 발명의 목적은 반사 방지성 및 스틸 울 내찰상성이 뛰어난 반사방지막, 반사 방지 부재, 편광판 및 표시장치를 제공하는 것이다.
본 발명의 일 구현예는 적어도 2층 이상의 서로 굴절률이 다른 층이 적층된 반사 방지막으로서, 최상층이 광 반응성 함 불소 화합물 A로 이루어지는 중합체와 적어도 1 개 이상의 수산기 및 2개 이상의 광 반응성 관능기를 갖는 모노머 B로 이루어지는 중합체가 서로 가교된 가교체를 포함하는 바인더와, 상기 바인더 중에 분산된 중공 실리카 입자와, 상기 최상층의 표면측에 분포된 광 반응성 함 불소 폴리머 및 실록산 결합에 의한 주 골격 a를 갖는 폴리머를 함유하는 반사방지막에 관한 것이다.
또한, 본 발명의 일 구현예는 전술한 반사방지막으로서, 상기 실록산 결합에 의한 주 골격 a를 갖는 폴리머가 광 반응성 변성 실리콘 폴리머일 수 있다.
또한, 본 발명의 일 구현예는 전술한 반사방지막으로서, 상기 바인더는 하기 식 (1)로 표시되는 실록산 결합에 의해 주 골격 b를 갖는 중합체 C를 포함하고, 상기 실록산 결합에 의해 주 골격 b를 구성하는 유닛이 규소 원자에 직접 결합된 1개의 메톡시기와, 상기 규소 원자에 직접 결합된 1개의 메틸기를 갖고, 상기 중합체 C가 상기 실록산 결합에 의한 주 골격 a를 갖는 폴리머일 수 있다.
<식 1>
(식 중, n은 2 내지 10의 정수를 의미한다)
또한, 본 발명의 일 구현예는 전술한 반사방지막으로서, 상기 최상층의 굴절률이 약 1.310 미만일 수 있다.
또한, 본 발명의 일 구현예는 전술한 반사방지막으로서, 상기 최상층의 표면의 시감 반사율이 약 0.20% 미만일 수 있다.
또한, 본 발명의 일 구현예는 전술한 반사방지막으로서, 상기 최상층의 스틸 울 내하중값이 약 300g/cm2 이상일 수 있다.
또한, 본 발명의 일 구현예는 전술한 반사방지막으로서, 상기 최상층이 하드 코팅층 상에 적층되어 있고, 상기 하드 코팅층의 굴절률이 약 1.500 내지 1.650일 수 있다.
또한, 본 발명의 다른 구현예는 투명 기재와, 상기 투명 기재 상에 형성된 전술한 반사방지막을 구비하고, 상기 반사방지막은 상기 투명 기재로부터 순서대로, 상기 하드 코팅층과, 상기 최상층으로 이루어지는 반사 방지 부재일 수 있다.
또한, 본 발명의 또 다른 구현예는 전술한 반사방지막 또는 전술한 반사 방지 부재가 최표면에 형성된 편광판일 수 있다.
또한, 본 발명의 또 다른 구현예는 전술한 편광판을 구비하는 표시장치일 수 있다.
본 발명에 따르면 반사 방지성 및 스틸 울 내찰상성에서 뛰어난 반사방지막, 반사 방지 부재, 편광판 및 표시장치를 제공할 수 있다.
도 1은 본 발명의 제1의 실시 형태에 있어서의 반사방지막의 구성예를 나타내는 단면도다.
도 2는 본 발명의 제2의 실시 형태에 있어서의 반사방지막의 구성예를 나타내는 단면도다.
도 3은 본 발명의 제3의 실시 형태에 있어서의 반사방지막의 구성예를 나타내는 단면도다.
도 4는 본 발명의 제4의 실시 형태에 있어서의 반사 방지 부재의 구성예를 나타내는 단면도다.
도 5는 본 발명의 제5의 실시 형태에 있어서의 편광판의 구성예를 나타내는 단면도다.
도 6은 본 발명의 제6의 실시 형태에 있어서의 표시장치의 구성예를 나타내는 단면도다.
도 7은 본 발명의 제7의 실시 형태에 있어서의 표시장치의 구성예를 나타내는 단면도다.
이하에, 실시 형태에 있어서의 반사방지막, 반사 방지 부재, 편광판 및 표시장치를, 도면을 사용하여 설명한다.
[제1의 실시 형태]
(반사방지막)
이하, 제1의 실시 형태에 있어서의 반사방지막 1에 대해서 도면을 사용해서 설명한다. 도 1은 본 발명의 제1의 실시 형태에 있어서의 반사방지막 1의 구성예를 나타내는 단면도다.
도 1에 개시된 바와 같이, 반사방지막 1은 서로 굴절률이 다른 하드 코팅층(고굴절률층) 2와 저굴절률층 3이 이 순서대로 적층된다. 또한, 반사방지막 1에서는 저굴절률층 3이 최상층에 위치한다.
상기 최상층에 위치 하는 저굴절률층 3은 바인더 4와, 중공 실리카 입자 5와, 광 반응성 함 불소 폴리머 6과, 광 반응성 변성 실리콘 폴리머 7을 함유한다.
상기 중공 실리카 입자 5는 바인더 4 중에 분산되어 있다. 상기 광 반응성 함 불소 폴리머 6 및 상기 광 반응성 변성 실리콘 폴리머 7은 저굴절률층 4의 표면(최 표면) 3a에 분포한다.
상기 저굴절률층 3을 구성하는 바인더 4는 광 반응성 함 불소 화합물 A 로 이루어지는 중합체와 모노머 B로 이루어지는 중합체가 서로 가교된 가교체를 포함한다. 모노머 B는 적어도 1개 이상의 수산기와 2개 이상의 광 반응성 관능기를 가진다.
상기 광 반응성 함 불소 폴리머 6은 일 말단이 바인더 4와 결합하고, 바인더 4를 기초로 하여 다른 말단 측이 저굴절률층 3의 외부에 뻗어 있다. 또한, 광 반응성 변성 실리콘 폴리머 7은 일 말단이 바인더 4와 결합하고, 바인더 4를 기초로 하여 다른 말단 측이 저굴절률층 3의 외부에 뻗어 있다. 보다 상세하게는 광 반응성 함 불소 폴리머 6은 불소(F)가 저굴절률층 3의 표면 3a보다도 외측에 존재하는 것과 같이 저굴절률층 3의 표면 3a에 분포되고 있다. 동일 구현예로, 광 반응성 변성 실리콘 폴리머 7은 규소(Si)가 저굴절률층 3의 표면 3a 보다도 외측에 존재하는 것과 같이, 저굴절률층 3의 표면 3a에 분포하고 있다. 또한, 광 반응성 함 불소 폴리머 6 및 광 반응성 변성 실리콘 폴리머 7은 저굴절률층 3의 표면 3a 전면에 거의 균일하게 분포하고 있다. 한편, 저굴절률층 3의 표면 3a에 있어서의 광 반응성 함 불소 폴리머 6의 존재 비율은 저굴절률층 3에서의 광 반응성 함 불소 폴리머 6의 함유량에 의해 적당히 조절될 수 있다. 또한, 저굴절률층 3의 표면 3a에 있어서의 광 반응성 변성 실리콘 폴리머 7의 존재 비율은 저굴절률층 3에 있어서의 광 반응성 변성 실리콘 폴리머 7의 함유량에 의해 적당히 조정될 수 있다.
상기 저굴절률층 3의 표면 3a에 있어서 광 반응성 함 불소 폴리머 6 및 광 반응성 변성 실리콘 폴리머 7의 분포를 확인하는 방법으로서는 이하의 방법이 사용될 수 있다. 예를 들면, 오제 전자 분광법(Auger Electron Spectroscopy, AES)과, 아르곤(Ar) 이온을 채용한 이온 에칭을 병용하는 방법이 사용될 수 있다. 구체적으로는 아르곤 이온을 채용한 이온 에칭에 의해 저굴절률층 3을 그의 표면 3a 측으로부터 하드 코팅층 2를 향해서 (두께 방향으로) 깍는다. 저굴절률층 3을 깍으면서, 오제 전자 분광법에 의해 저굴절률층 3의 두께 방향에 있어서의 불소 및 규소의 원소 분포를 분석한다. 이 분석으로, 후술하는 분포가 확인되면, 저굴절률층 3의 표면 3a에 광 반응성 함 불소 폴리머 6 및 광 반응성 변성 실리콘 폴리머 7이 분포하고 있는 것으로 판단한다. 그 분포에 의하면 저굴절률층 3의 표면 3a 측에서 불소 및 규소의 분포가 많고, 하드 코팅층 2 측을 향해서는 불소 및 규소의 분포가 적을 수 있다.
상기 저굴절률층 3의 굴절률은 약 1.310 미만인 것일 수 있고, 약 1.300 이하인 것이 보다 바람직하다. 저굴절률층 3의 굴절률이 약 1.310 미만이면, 반사방지막 1은 고콘트라스트가 요구되는 표시장치에 적용하기에 충분한 반사 방지성을 갖는다.
상기 저굴절률층 3의 굴절률의 측정 방법은, 다음과 같이 수행한다.
1) 반사방지막 1이 형성된 기재(반사 방지 부재)의 이면(반사방지막 1이 형성되지 않은 면)에 흑색 잉크를 도포하고, 그 반사 방지 부재의 이면으로부터의 반사광을 제거한다. 흑색의 부재를 투명 접착제 등을 매개로, 반사 방지 부재의 이면에 서로 붙이게 해도 좋다.
2) 시판의 분광 측색계를 이용해서 8도 입사 확산 조명을 반사 방지 부재의 표면에 맞추고, 8도 수광 광선을 측정하고, 380nm 내지 740nm의 정반사율 및 확산 반사율을 얻는다.
3) 시판의 분광 측색계로서는 예를 들면, 코니카 미놀타((Konica Minolta)사제의 분광 측색계 CM-2600d 또는 CM-3600A를 사용할 수 있다. 이것에 의해, D광원, 2도 시야 상당의 전반사율 Y값(SCI) 및 확산 반사율 Y값(SCE)이 각각 측정 값으로서 얻을 수 있고, Y=SCI-SCE에서 요구되는 값을 시감 반사율로 정의한다.
4) 시감 반사율의 스펙트럼과 박막 광학에서 계산되는 반사 스펙트럼의 곡률이 일치하도록 조정된 박막층의 막 두께와 굴절률을 구하고, 이것을 저굴절률층 3의 굴절률이라고 한다.
상기 저굴절률층 3의 표면 3a의 시감 반사율은 약 0.20% 미만인 것일 수 있고, 약 0.19% 이하인 것이 보다 바람직하고, 약 0.17% 이하인 것이 더욱 바람직하다. 시감 반사율과는, XYZ 표색계에 있어서, 물체색의 밝기(Y)에 대응하는 반사율이다. 또한, 저굴절률층 3의 표면 3a의 시감 반사율은 반사방지막 1의 표면 1a의 시감 반사율이 된다. 저굴절률층 3의 시감 반사율이 0.20% 미만이면, 반사방지막 1은 고 콘트라스트(contrast)가 요구되는 표시장치에 적용하기 위해서 충분한 반사 방지성을 소유한다.
상기 저굴절률층 3의 표면 3a의 시감 반사율의 측정 방법은 다음과 같이 수행한다.
1) 반사방지막 1이 형성된 기재(반사 방지 부재)의 이면(반사방지막 1이 형성되지 않은 면)에 흑색 잉크를 도포하고, 그 반사 방지 부재의 이면으로부터의 반사광을 제거한다. 흑색의 부재를 투명 접착제 등을 매개로, 반사 방지 부재의 이면에 서로 붙이게 해도 좋다.
2) 시판의 분광 측색계를 이용해서 8도 입사 확산 조명을 반사 방지 부재의 표면에 맞추고, 8도 수광 광선을 측정하고, 380nm 내지 740nm의 정반사율 및 확산 반사율을 얻는다.
3) 시판의 분광 측색계로서는 예를 들면, 코니카 미놀타((Konica Minolta)사제의 분광 측색계 CM-2600d 또는 CM-3600A를 사용할 수 있다. 이것에 의해, D광원, 2도 시야 상당의 전반사율 Y값(SCI) 및 확산 반사율 Y값(SCE)이 각각 측정 값으로서 얻을 수 있고, Y=SCI-SCE에서 요청되는 값을 시감 반사율로 정의한다.
상기 저굴절률층 3의 스틸 울 내하중값은 약 300g/cm2 이상인 것이 바람직하다. 저굴절률층 3의 스틸 울 내하중값이 약 300g/cm2 이상이면, 반사방지막 1을 표시장치에 적용했을 경우에, 표시장치의 표시면을 충분히 보호할 수 있다. 구체적으로는, 저굴절률층 3의 스틸 울 내하중값은 약 300g/cm2 내지 약 400g/cm2, 약 350g/cm2 내지 약 400g/cm2 이다.
상기 저굴절률층 3의 스틸 울 내하중값의 측정 방법을 설명한다. 상기 저굴절률층 3 위에서 #0000의 스틸 울을 접촉 면적 1cm2, 이동 속도 100mm/sec, 이동 거리 100mm로 10회 왕복하여 슬라이딩시킨다. 그리고, 왕복 후의 저굴절률층 3의 표면을 목시에 의해 관찰하였을 경우에 확인할 수 있는 상처의 수가 10개 미만일 때의 최대 하중을 스틸 울 내하중값이라고 한다.
상기 중공 실리카 입자 5로서는 아크릴 수지나 용제와의 상용성을 양호하게 하는 표면 처리가 되어 있는 것을 이용할 수 있다.
상기 중공 실리카 입자 5의 평균 일차 입자 지름은 약 50nm 내지 약 100nm인 것일 수 있고, 약 60nm 내지 약 90nm인 것이 보다 바람직하다. 중공 실리카 입자 5의 평균 일차 입자 지름이 50nm 이상이면, 중공 실리카 입자 5의 굴절률이 지나치게 높아지는 일 없이, 저굴절률층 3의 굴절률을 약 1.310 미만으로 할 수 있다. 한편, 중공 실리카 입자 5의 평균 일차 입자 지름이 약 100nm 이하이면, 중공 실리카 입자 5의 강도가 너무 낮아지지 않는다. 따라서, 저굴절률층 3의 스틸 울 내찰상성이나 연필 경도가 저하할 일이 없다. 그 때문에, 저굴절률층 3의 두께를 약 100nm 정도로 할 수 있다.
상기 중공 실리카 입자 5의 평균 일차 입자 지름은 예를 들면 중공 실리카 입자 5를 주사형 전자 현미경(SEM)에 의해 관찰하고, 얻을 수 있었던 주사형 전자현미경 상으로부터 얻을 수 있다.
상기 저굴절률층 3에 있어서의 중공 실리카 입자 5의 함유량(함유율)은 약 45질량부 내지 약 56질량부인 것이 바람직하다. 중공 실리카 입자 5의 함유량이 약 45질량부 이상이면 저굴절률층 3의 굴절률을 약 1.310 미만으로 할 수 있고, 저굴절률층 3의 시감 반사율을 약 0.20% 미만으로 할 수 있다. 한편, 중공 실리카 입자 5의 함유량이 약 56질량부 이하이면 저굴절률층 3에 있어서의 바인더 4의 함유량이 지나치게 적어질 일이 없다. 따라서, 저굴절률층 3의 강도를 충분히 확보할 수 있는 동시에, 스틸 울 내찰상성을 충분히 확보할 수 있다.
상기 하드 코팅층 2는 트리아세틸셀룰로스(TAC), 폴리에틸렌테레프탈레이트 (PET), 시클로올레핀폴리머(COP), 폴리메틸메타아크릴레이트(PMMA) 등의 수지로 이루어진다. 하드 코팅층 2는 상기의 수지로 이루어지는 부재이어도 좋다.
혹은, 상기의 수지로 이루어지는 부재 위에, 아크릴 수지, 우레탄 수지, 에폭시 수지 또는 이것들의 혼합물로 이루어지는 하드 코팅층을 형성해도 좋다. 이것에 의해서 표면경도가 높은 하드 코팅층 2를 형성해도 좋다.
상기 하드 코팅층 2의 굴절률을 높게 할수록, 저굴절률층 3의 표면 3a의 시감 반사율을 줄일 수 있다. 그러나, 하드 코팅층 2의 굴절률을 높게 하면 하드 코팅층 2의 강도가 떨어질 수 있다. 또한, 하드 코팅층 2에 있어서의 고굴절 재료의 함유량이 증가해서 코스트 업(cost up)이 생길 수 있다. 그 때문에, 이것들을 고려하여, 하드 코팅층 2의 굴절률을 조정한다.
본 실시 형태의 반사방지막 1과 같이, 하드 코팅층 2 위에 저굴절률층 3이 적층된 2층 구조의 경우, 하드 코팅층 2의 굴절률은 약 1.500 내지 약 1.650인 것이 바람직하다. 또한, 하드 코팅층 2의 굴절률은 약 1.550 내지 약 1.650인 것이 보다 바람직하다. 하드 코팅층 2의 굴절률이 약 1.500 이상이면, 저굴절률층 3의 굴절률을 약 1.310 미만으로 할 수 있다. 또한, 저굴절률층 3의 스틸 울 내하중값을 약 300g/cm2 이상으로 할 수 있다. 한편, 하드 코팅층 2의 굴절률이 약 1.650 이하이면, 저굴절률층 3의 표면 3a에 있어서 저파장측 및 고파장측의 반사율이 높아질 일이 없다. 따라서, 저굴절률층 3의 표면 3a에서 반사된 빛이 유색이 되는 것을 방지할 수 있다.
상기 하드 코팅층 2의 두께는 특히 한정되지 않지만 예를 들면 약 1㎛ 내지 약 10㎛인 것이 바람직하다.
본 실시 형태의 반사방지막 1은 서로 굴절률이 다른 하드 코팅층 2와 저굴절률층 3이 적층된다. 또한, 최상층이 되는 저굴절률층 3은 바인더 4와 중공 실리카 입자 5와, 광 반응성 함 불소 폴리머 6과, 광 반응성 변성 실리콘 폴리머 7을 함유한다. 또한, 중공 실리카 입자 5는 바인더 4 중에 분산되어 있다. 더욱이, 광 반응성 함 불소 폴리머 6 및 광 반응성 변성 실리콘 폴리머 7은 저굴절률층 3의 표면(최표면) 3a에 분포된다. 그 때문에, 저굴절률층 3의 표면 3a가 미끄러지기 쉬워져, 스틸 울 내찰상성이 뛰어나고, 반사 방지성에서도 뛰어난 반사방지막을 얻을 수 있다.
(반사방지막의 제조 방법)
그 다음에, 제1의 실시 형태에 있어서의 반사방지막 1의 제조 방법을 설명한다.
본 실시 형태의 반사방지막 1의 제조 방법은 후술하는 공정 A와, 공정 B와, 공정 C와, 공정 D를 적어도 포함한다.
공정 A는 저굴절률층 3을 형성하기 위한 코팅액을 제조하는 공정이다.
공정 B는 공정 A에서 제조한 코팅액을 사용해서 저굴절률층 3의 전구체인 도막을 형성하는 공정이다.
공정 C는 공정 B로 형성한 도막을 건조하는 공정이다.
공정 D는 공정 C에서 건조한 도막에 포함된 광 반응성 함 불소 화합물 A와 모노머 B를 중합시키는 공정이다. 또한, 공정 D는 광 반응성 함 불소 화합물 A 로 이루어지는 중합체와 모노머 B로 이루어지는 중합체를 가교시키는 공정이다.
상기 공정 A에서는 각 성분을 소정의 배합량(배합비)이 되도록 균일하게 교반, 혼합해서 코팅액을 제조한다.
상기 코팅액은 광 반응성 함 불소 화합물 A와 모노머 B와 중공 실리카 입자 5와 광 반응성 함 불소 폴리머와 광 반응성 변성 실리콘 폴리머와 용매와 광중합 개시제를 포함한다.
상기 광 반응성 함 불소 화합물 A로서는 불소 함유량이 30질량% 내지 60질량%이며, 광 반응성기를 포함하는 불소 모노머, 불소 올리고머 또는 불소 폴리머가 사용된다. 상기 범위에서, 광 반응성 함 불소 화합물 A를 적절한 배합비로 코팅액을 제조할 수 있다. 광 반응성 함 불소 화합물 A는 최상층 즉 저굴절률층 전체에 분포되어 있다.
상기 코팅액에 있어서의 광 반응성 함 불소 화합물 A의 배합량은 코팅액에 있어서의 고형분 배합량의 총량을 100질량부라고 했을 경우, 약 20질량부 내지 약 40질량부, 구체적으로는 약 25질량부 내지 약 35질량부인 것이 바람직하다. 광 반응성 함 불소 화합물 A의 배합량이 약 20질량부 이상이면 저굴절률층 3의 굴절률을 약 1.310 미만으로 할 수 있다. 그 결과로서 저굴절률층 3의 시감 반사율을 약 0.20% 미만으로 할 수 있다. 한편, 광 반응성 함 불소 화합물 A의 배합량이 약 40질량부 이하이면 저굴절률층 3에 포함되는 불소 성분이 지나치게 많아지는 것에 기인하는 표면경도의 저하가 생길 일이 없다. 따라서, 스틸 울 내찰상성이 저하되지 않는다. 또한, 저굴절률층 3을 형성하기 위한 다른 성분과의 상용성이 나빠질 일도 없다.
상기 광 반응성 함 불소 화합물 A는 하기 광 반응성 함 불소 폴리머와 다르다. 광 반응성 함 불소 화합물 A는 모노머일 수 있다.
상기 적어도 1개 이상의 수산기와 2개 이상의 광 반응성 관능기를 갖는 모노머 B로서는 2-히드록시-1,3-디메타크릴옥시프로판, 디펜타에리쓰리톨헥사아크릴레이트, 에폭시화 디펜타에리쓰리톨헥사아크릴레이트, 프로폭시화 디펜타에리쓰리톨헥사아크릴레이트, 펜타에리쓰리톨트리아크릴레이트, 에폭시화 펜타에리쓰리톨트리아크릴레이트, 프로폭시화 펜타에리쓰리톨트리아크릴레이트, 이소시아누릴디아크릴레이트 등을 쓸 수 있다. 구체적으로는, 이소시아누릴디아크릴레이트, 디펜타에리쓰리톨헥사아크릴레이트, 펜타에리쓰리톨트리아크릴레이트 등을 사용할 수 있다.
상기 코팅액에 있어서의 모노머 B의 배합량은 코팅액에 있어서의 고형분 배합량의 총량을 100질량부라고 했을 경우, 약 5질량부 내지 약 20질량부, 구체적으로는 약 5질량부 내지 약 15질량부, 약 5질량부 내지 약 10질량부, 약 10질량부 내지 약 20질량부인 것이 바람직하다. 모노머 B의 배합량이 약 5질량부 이상이면 저굴절률층 3에 충분한 강도를 얻을 수 있다. 또한, 저굴절률층 3의 표면 3a에 있어서 광 반응성 함 불소 폴리머 6 및 광 반응성 변성 실리콘 폴리머 7을 충분히 분포되게 할 수 있다. 그 때문에, 저굴절률층 3의 표면 3a에 있어서 충분한 평활성을 얻을 수 있다. 한편, 모노머 B의 배합량이 약 20질량부 이하로 되면, 저굴절률층 3의 굴절률을 약 1.310 미만으로 할 수 있다. 그 결과로서, 저굴절률층 3의 시감 반사율을 약 0.20% 미만으로 할 수 있다.
상기 코팅액에 있어서의 중공 실리카 입자 5의 배합량은 코팅액에 있어서의 고형분 배합량의 총량을 100질량부라고 했을 경우, 약 45질량부 내지 약 56질량부, 구체적으로는 약 45질량부 내지 약 55질량부, 약 45질량부 내지 약 50질량부, 약 50질량부 내지 약 55질량부인 것이 바람직하다. 중공 실리카 입자 5의 배합량이 약 45질량부 이상이면 저굴절률층 3의 굴절률을 약 1.310 미만으로 할 수 있다. 그 결과로서, 저굴절률층 3의 시감 반사율을 약 0.20% 미만으로 할 수 있다. 한편, 중공 실리카 입자 5의 배합량이 약 56질량부 이하이면, 저굴절률층 3에 있어서의 바인더 4의 함유량이 지나치게 적어질 일이 없고, 저굴절률층 3의 강도를 충분히 확보할 수 있다. 또한, 스틸 울 내찰상성을 충분히 확보할 수 있다.
상기 광 반응성 함 불소 폴리머로서는 중량 평균 분자량이 약 2,000 내지 약 10,000의 퍼플루오로폴리에테르를 주 골격으로 하는 폴리머가 사용될 수 있다. 이 퍼플루오로폴리에테르를 주 골격으로 하는 폴리머는 말단 혹은 양쪽 말단에 관능기를 갖는다. 광 반응성 함 불소 폴리머의 관능기는 광 반응성 기이다. 광 반응성 함 불소 폴리머는 최상층인 저굴절률층 표면에만 분포되어 있다.
상기 코팅액에 있어서의 광 반응성 함 불소 폴리머의 배합량은 코팅액에 있어서의 고형분 배합량의 총량을 100질량부라고 했을 경우 약 1질량부 내지 약 10질량부, 구체적으로는 약 1질량부 내지 약 5질량부, 약 5질량부 내지 약 10질량부인 것이 바람직하다. 광 반응성 함 불소 폴리머의 배합량이 약 1질량부 이상이면 저굴절률층 3의 표면 3a에 있어서 충분한 평활성을 얻을 수 있고, 스틸 울 내찰상성이 향상한다. 한편, 광 반응성 함 불소 폴리머의 배합량이 약 10질량부 이하이면, 저굴절률층 3에 포함되는 불소 성분이 지나치게 많아지는 것에 기인하는 표면경도의 저하가 생길 일이 없다. 또한, 스틸 울 내찰상성이 저하할 일도 없다.
상기 광 반응성 변성 실리콘 폴리머로서는 중량 평균 분자량이 약 10,000 내지 약 50,000의 디메틸실록산을 주 골격 a로 하는 폴리머이며, 적어도 1개 이상의 광 반응성 관능기를 갖는다. 다시 말해, 광 반응성 변성 실리콘 폴리머는 실록산 결합에 의한 주 골격 a을 가지는 폴리머이다. 광 반응성 변성 실리콘 폴리머의 관능기의 부가 부위는 말단(가장자리)뿐만 아니라, 주 골격 a의 측쇄 사슬인 것이 바람직하다. 광 반응성 변성 실리콘 폴리머의 관능기는 광 반응성 기이다.
상기 코팅액에 있어서의 광 반응성 변성 실리콘 폴리머의 배합량은 코팅액에 있어서의 고형분 배합량의 총량을 100질량부라고 했을 경우, 약 1질량부 내지 약 3질량부인 것이 바람직하다. 광 반응성 변성 실리콘 폴리머의 배합량이 약 1질량부 이상이면, 저굴절률층 3에 충분한 스틸 울 내찰상성을 얻을 수 있다. 한편, 광 반응성 변성 실리콘 폴리머의 배합량이 3질량부 이하이면 저굴절률층 3의 헤이즈(haze) 값이 상승할 일이 없다.
상기 용매로서는 메틸이소부틸케톤(MIBK), 메틸에틸케톤(MEK), 이소프로필 알코올(IPA), 프로필렌글리콜모노메틸에테르(PGME), 프로필렌글리콜모노메틸에테르아세테이트(PGMEA) 등이 사용될 수 있다. 이들 용매는 1종을 단독으로 써도 좋고, 2종 이상을 혼합해서 써도 좋다. 또한, 이것의 용매는 저굴절률층 3을 형성하기 위한 다른 재료의 분산성이나 상용성을 고려해서 적당히 선택될 수 있다.
상기 코팅액에 있어서의 용매의 배합량은 코팅 장치나 코팅 속도에 알맞은 고형분 농도가 되도록 적당히 조정된다. 예를 들면, 슬롯 다이 코팅으로 코팅할 경우에는 코팅액의 총량을 100질량%이라고 했을 경우, 용매의 배합량을 약 1질량% 내지 약 3질량%로 조정해서 코팅을 수행한다. 이것에 의해, 약 100nm의 막 두께에서 저굴절률층 3을 형성할 수 있다.
상기 광중합개시제로서는 2-히드록시-1-{4-[4-(2-히드록시-2-메틸-프로피오닐)-벤질]페닐}-2-메틸-프로판-1-온, 2-메틸-1-(4-메틸티오페닐)-2-몰폴리노프로판-1-온, 1-히드록시-시클로헥실-페닐 케톤 등이 사용될 수 있다.
상기 코팅액에 있어서의 광중합개시제의 배합량은 코팅액에 있어서의 고형분 배합량의 총량을 100질량부라고 했을 경우, 약 1질량부 내지 약 5질량부인 것이 바람직하다.
상기 광중합개시제의 배합량이 약 1질량부 이상이면 광 반응성 함 불소 화합물 A로 이루어진 중합체와, 모노머 B로 이루어진 중합체가 충분히 가교된다. 따라서, 저굴절률층 3에 충분한 스틸울 내찰상성이 얻어질 수 있다. 한편, 광중합개시제의 배합량이 약 5질량부 이하이면 저굴절률층 3의 굴절률을 약 1.310 미만으로 할 수 있다. 그 결과로서, 저굴절률층 3의 시감 반사율을 약 0.20% 미만이라고 할 수 있다.
상기 공정 B에서는 예를 들면 투명 기재 상에 형성된 하드 코팅층 2 상에 전술한 코팅액을 도포하여, 저굴절률층 3의 전구체인 도막을 형성한다. 하드 코팅층 2 상에 형성된 도막이 균일한 두께가 되도록, 하드 코팅층 2 상에 코팅액을 균일하게 도포한다.
상기 코팅액을 도포하는 방법으로서는, 특히 한정되지 않지만, 예를 들면 마이크로그라비아 방식, 슬롯다이 방식, 나이프 코팅 방식, 스프레이법 등이 이용된다.
상기 공정 C에서는 도막을 건조하고, 도막에 포함된 용매를 증발시킨다. 도막에 포함된 용매를 충분히 증발시키기 위한 건조 온도(가열 온도)와 건조 시간(가열 시간)은 용매의 종류 등에 의해서 적당히 결정된다. 예를 들면, 건조 온도를 약 30℃ 내지 약 150℃, 건조 시간을 약 20초 내지 약 5분으로 할 수 있다. 한편, 도막의 건조는 자연 건조라도 좋고, 가열 건조라도 좋다.
또한, 공정 C에서는 도막을 건조시키는 중에 광 반응성 함 불소 폴리머 및 광 반응성 변성 실리콘 폴리머가 도막의 표면 측에 분포되게 된다. 한편, 광 반응성 함 불소 폴리머 및 광 반응성 변성 실리콘 폴리머가 도막의 표면측에 분포되게 되는 이유는 다음과 같이 추측된다. 이들의 폴리머는 비교적 소수성을 갖고, 또한 저 비중이다. 이 때문에, 이들의 폴리머는 친수성을 나타내는 수산기를 포함하는 광 반응성 함 불소 화합물 A로 이루어진 중합체와 모노머 B로 이루어진 중합체로 이루어진 바인더로부터 상 분리된다. 그 결과로서, 이들 폴리머는, 바인더로부터 떠오르려고 한다.
상기 공정 D에서는 건조 후의 도막에 빛을 조사하고, 도막에 포함되는 광 반응성 함 불소 화합물 A와 모노머 B를 중합시킨다. 또한, 공정 D에서는 광 반응성 함 불소 화합물 A로 이루어진 중합체와 모노머 B로 이루어진 중합체를 가교시켜서 저굴절률층 3을 형성한다. 한편, 건조 후의 도막의 표면측에는 광 반응성 함 불소 폴리머 및 광 반응성 변성 실리콘 폴리머가 분포되고 있다. 그 때문에, 얻을 수 있었던 저굴절률층 3의 표면 3a 측에도 광 반응성 함 불소 폴리머 및 광 반응성 변성 실리콘 폴리머가 분포되고 있다.
상기 건조후의 도막에 조사하는 빛으로서는 예를 들면, 자외선, 가시광, 전자선, 전리 방사선 등이 될 수 있다.
예를 들면, 도막에 자외선을 조사할 경우에는, 초고압 수은등, 저압 수은등, 카본 아크(carbon arc), 크세논 램프, 메탈할라이드 램프 등의 광원이 사용될 수 있다. 또한, 자외선 조사량은 예를 들면 자외선 파장 365nm에서의 누적 노광량으로서, 약 100mJ/cm2
내지 약 1000mJ/cm2이다.
또한, 도막의 경화시의 산소 저해를 막기 위해서, 산소 농도가 약 1000ppm 이하의 질소 분위기 하에서 도막에 빛을 조사하는 것이 바람직하다.
이상과 같은 공정을 경과하는 것에 의해, 본실시 형태의 반사방지막 1을 얻을 수 있다.
[제2의 실시 형태]
(반사방지막)
이하, 제2의 실시 형태에 있어서의 반사방지막 10에 대해서, 도면을 채용해서 설명한다. 도 2는 본 발명의 제2의 실시 형태에 있어서의 반사방지막 10의 구성예를 나타내는 단면도다. 한편, 도 2에 있어서 도 1에서 보여진 제1의 실시 형태에 있어서의 반사방지막 1과 동일한 구성에는 동일한 부호를 첨부하고, 중복하는 설명을 생략한다.
도 2에 나타낸 바와 같이, 반사방지막 10은 하드 코팅층 2와 저굴절률층 3이 이 순서대로 적층되어 있다. 또한, 반사방지막 10에서는 저굴절률층 3이 최상층을 이루고 있다. 최상층을 이루는 저굴절률층 3은 바인더 4와, 중공 실리카 입자 5와, 광 반응성 함 불소 폴리머 6을 함유한다. 중공 실리카 입자 5는 바인더 4 가운데 분산되어 있다. 광 반응성 함 불소 폴리머 6은 저굴절률층 3의 표면(최표면) 3a에 분포된다.
상기 저굴절률층 3을 구성하는 바인더 4는 제1의 실시 형태에 있어서의 가교체와, 상기 식 (1)로 표현되는 실록산 결합에 의한 주 골격 b를 갖는 중합체 C를 포함한다. 다시 말해서, 바인더 4는 광 반응성 함 불소 화합물 A로 이루어진 중합체와 모노머 B로 이루어진 중합체가 서로 가교된 가교체와, 중합체 C와의 혼합물로 구성되어 있다. 게다가, 중합체 C가 광 반응성 함 불소 폴리머 6과 함께 저굴절률층 3의 최상층을 이루고 있다.
상기 중합체 C는 상기 식 (1)로 나타내지는 실록산 결합에 의한 주 골격 b를 갖고, 직쇄 구조 또는 삼차원 구조를 이루나, 또한, 직쇄 구조 및 삼차원 구조가 혼재하는 구조를 이루고 있다. 한편, 상기 식 (1)에 있어서의 실록산 결합에 의한 주 골격 b는 괄호 내에 보여지는 구조의 것이다.
상기 식 (1) 중에서, n은 2 내지 10의 정수인 것일 수 있고, 3 내지 5의 정수인 것이 보다 바람직하다.
상기 식 (1)에 있어서, 주 골격을 구성하는 유닛이 규소 원자에 직접 결합하는 1개의 메톡시기와 규소 원자에 직접 결합하는 1개의 메틸기를 가진다. 상기 식 (1)에 있어서, 주 골격을 구성하는 유닛과는 괄호 내에 내보이는 구조다.
이러한 중합체 C로서는 구체적으로 상기 식 (1) 중, 괄호 내의 구조의 중합도를 나타내는 n이 3 내지 4, 5 또는 9의 실록산 화합물을 들 수 있다.
상기 중합체 C는 상기의 모노머 B로 이루어지는 중합체보다도 굴절률이 낮다. 그래서, 바인더 4에 중합체 C를 함유시키는 것에 의해 바인더 4에 있어서의 모노머 B의 함유량을 줄여서, 저굴절률층 3의 굴절률을 보다 낮게 할 수 있다.
상기 중합체 C는 스틸울 내찰상성을 향상시키고, 굴절률을 저하시켜 시감 반사율을 저하시킬 수 있다.
본 실시 형태의 반사방지막 10은 저굴절률층 3을 구성하는 바인더 4가 제1의 실시 형태에 있어서의 가교체와 중합체 C를 포함한다. 또한, 중합체 C가 광 반응성 함 불소 폴리머 6과 함께 저굴절률층 3의 최상층을 이루고 있다. 그 때문에, 저굴절률층 3의 표면 3a가 미끄럽지만, 스틸울 내찰상성이 뛰어나고, 보다 반사 방지성에서도 뛰어난 반사방지막을 얻을 수 있다. 본 실시 형태의 반사방지막 10에 따르면 특히 반사방지막 1을 3층 구조로 하거나, 무기 증착막 또는 무기 스퍼티링 막을 형성하는 것보다도 간편하고 동시에 저 가격으로 저굴절률화를 꾀할 수 있다.
(반사방지막의 제조 방법)
이하, 제2의 실시 형태에 있어서의 반사방지막 10의 제조 방법을 설명한다.
본 실시 형태의 반사방지막 10의 제조 방법은 코팅액을 제조하는 공정 A가 제1의 실시 형태의 반사방지막 1의 제조 방법과 다르다.
상기 공정 A에서는 각 성분을 소정의 배합량(배합비)이 되도록 균일하게 교반, 혼합해서 코팅액을 제조한다. 코팅액은 광 반응성 함 불소 화합물 A와, 모노머 B와, 중합체 C와, 중공 실리카 입자 5와, 광 반응성 함 불소 폴리머와, 용매와, 광중합 개시제를 포함한다.
본 실시 형태에 있어서의 코팅액에서는 광 반응성 함 불소 화합물 A, 모노머 B 및 중합체 C의 배합량이 제1의 실시 형태에 있어서의 코팅액과 다르다. 한편, 본 실시 형태에 있어서의 코팅액에서는 그 밖의 성분의 배합량은 제1의 실시 형태에 있어서의 코팅액과 동일하다.
상기 코팅액에 있어서의 광 반응성 함 불소 화합물 A의 배합량은 코팅액에 있는 고형분 배합량의 총량을 100질량부라고 하였을 경우, 약 10질량부 내지 약 30질량부, 구체적으로는 약 15질량부 내지 약 30질량부, 약 20질량부 내지 약 30질량부인 것이 바람직하다. 광 반응성 함 불소 화합물 A의 배합량이 약 10질량부 이상이면, 저굴절률층 3의 굴절률을 약 1.310 미만으로 할 수 있다. 그 결과로서, 저굴절률층 3의 시감 반사율을 약 0.20% 미만으로 할 수 있다. 한편, 광 반응성 함 불소 화합물 A의 배합량이 약 30질량부 이하면, 저굴절률층 3에 포함되는 불소 성분이 지나치게 많아지는 것에 기인하는 표면 경도의 저하가 생길 일이 없다. 따라서, 스틸 울 내찰상성이 저하할 일이 없다. 또한, 저굴절률층 3을 형성하기 위한 다른 성분과의 상용성이 나빠질 일도 없다.
상기 코팅액에 있어서의 모노머 B의 배합량은 코팅액에 있어서의 고형분 배합량의 총량을 100질량부라고 했을 경우, 약 3질량부 내지 약 10질량부, 구체적으로는 약 3질량부 내지 약 5질량부인 것이 바람직하다. 모노머 B의 배합량이 3질량부 이상이면 저굴절률층 3에 충분한 강도를 얻을 수 있다. 또한, 저굴절률층 3의 표면 3a에 있어서 광 반응성 함 불소 폴리머 6을 충분히 분포되게 함으로써, 저굴절률층 3의 표면 3a에 중합체 C를 충분히 노출시킬 수 있다. 그래서, 저굴절률층 3의 표면 3a에 있어서 충분한 평활성을 얻을 수 있다. 한편, 모노머 B의 배합량이 약 10질량부 이하이면 저굴절률층 3의 굴절률을 약 1.310 미만으로 할 수 있다. 그 결과로서, 저굴절률층 3의 시감 반사율을 약 0.20% 미만이라고 할 수 있다.
상기 코팅액에 있어서의 중합체 C의 배합량은 코팅액에 있어서의 고형분 배합량의 총량을 100질량부라고 했을 경우, 약 5질량부 내지 약 15질량부, 구체적으로는 약 5질량부 내지 약 10질량부인 것이 바람직하다. 중합체 C의 배합량이 5질량부 이상이면 저굴절률층 3에 충분한 강도를 얻을 수 있다. 또한, 저굴절률층 3의 표면 3a에 있어서, 광 반응성 함 불소 폴리머 6을 충분히 분포되게 함과 동시에, 저굴절률층 3의 표면 3a에 중합체 C를 충분히 노출시킬 수 있다. 그래서, 저굴절률층 3의 표면 3a에 있어서 충분한 평활성을 얻을 수 있다. 한편, 중합체 C의 배합량이 15질량부 이하이면 저굴절률층 3의 굴절률을 약 1.310 미만으로 할 수 있다. 그 결과로서, 저굴절률층 3의 시감 반사율을 약 0.20% 미만이라고 할 수 있다.
상기와 같은 코팅액을 사용하고, 이하, 본 실시 형태와 동일한 공정을 경과하는 것에 의해, 본 실시 형태의 반사방지막 10을 얻을 수 있다.
[제3의 실시 형태]
(반사방지막)
이하, 제3의 실시 형태에 있어서의 반사방지막 20에 대해서, 도면을 채용해서 설명한다.
도 3은 본 발명의 제3의 실시 형태에 있어서의 반사방지막 20의 구성예를 나타내는 단면도다. 한편, 도 3에 있어서 도 1에서 보여진 제1의 실시 형태에 있어서의 반사방지막 1과 동일한 구성에는 동일한 부호를 첨부하고, 중복하는 설명을 생략한다.
도 3에서 가리키는 것 같이, 반사방지막 20은 서로 굴절률이 다른 하드 코팅층 2와, 고굴절률층 21과, 저굴절률층 3이 이 순서대로 적층되어 있다.
본 실시 형태의 반사방지막 20과 같이, 3층 구조의 경우, 고굴절률층 21의 굴절률은 약 1.650 내지 약 1.800인 것일 수 있고, 약 1.700 내지 약 1.750인 것이 바람직하다.
상기 고굴절률층 21의 굴절률이 약 1.650 내지 약 1.800의 범위 내이면, 3개의 층의 두께 또는 굴절률로 결정되는 반사방지막 20의 반사율이 가장 낮아지는 최적인 조건을 얻을 수 있다. 한편, 이 굴절률의 범위 외에서는 반사방지막 20의 시감 반사율을 약 0.2% 미만으로 하는 것이 곤란하다.
상기 고굴절률층 21은 플루오렌 골격을 갖는 유기 고굴절률 재료나, 산화 지르코늄, 산화 티타늄 등의 고굴절률 나노 입자와, 아크릴 수지 등과의 배합물로 이루어진다.
상기 고굴절률 나노 입자로서는 평균 일차 입자 지름이 약 3nm 내지 약 30nm의 나노 입자를 이용할 수 있다.
상기 고굴절률층 21의 두께는 예를 들면, 약 130nm 내지 약 160nm인 것이 바람직하다. 고굴절률층 21의 두께가 약 130nm 내지 약 160nm의 범위 내이면, 반사율을 보다 낮게 할 수 있으며, 무채색에 가까운 반사광을 얻을 수 있다.
본 실시 형태의 반사방지막 20에 따르면 고굴절률층 21을 포함하는 3층 구조를 하기 위해서 2층 구조보다도 고굴절률층 21의 굴절률을 높게 할 수 있다. 따라서, 보다 저굴절률층 3의 표면 3a의 시감 반사율을 작게 할 수 있다.
한편, 저굴절률층 3으로서는 제1의 실시 형태에 있어서의 반사방지막 1을 구성하는 것이어도 좋고, 또한 제2의 실시 형태에 있어서의 반사방지막 10을 구성하는 것이어도 좋다.
[제4의 실시 형태]
(반사 방지 부재)
이하, 제4의 실시 형태에 있어서의 반사 방지 부재 30에 대해서, 도면을 채용해서 설명한다.
도 4는 본 발명의 제4의 실시 형태에 있어서의 반사 방지 부재 30의 구성예를 나타내는 단면도다. 한편, 도 4에 있어서, 도 1에서 보여진 제1의 실시 형태에 있어서의 반사방지막 1과 동일한 구성에는 동일한 부호를 첨부하고, 중복하는 설명을 생략한다.
도 4에 가리키는 것 같이, 반사 방지 부재 30은, 투명 기재 31과 투명 기재 31 상에 형성된 반사방지막 1을 구비하는 시트상 또는 판상의 부재이다.
상기 반사 방지 부재 30은 투명 기재 31 측으로부터, 순서대로 하드 코팅층 2와, 저굴절률층 3이 이 순서대로 적층되어 있다.
상기 투명 기재 31은 트리아세틸셀룰로스(TAC), 폴리에틸렌테레프탈레이트(PET), 시클로올레핀폴리머(COP), 폴리메틸메타아크릴레이트(PMMA) 등의 수지로 이루어진다.
상기 투명 기재 31의 두께는 특히 한정되지 않지만 예를 들면 약 20㎛ 내지 약 200㎛인 것이 바람직하다.
본 실시 형태의 반사 방지 부재 30은 전술한 반사방지막 1을 갖는다. 그 때문에, 반사 방지막 1과 같이 저굴절률층 3의 표면 3a가 미끄러지기 쉬워져, 스틸 울 내찰상성이 매우 뛰어나고, 반사 방지성에서도 뛰어난 반사 방지 부재를 얻을 수 있다.
한편, 반사방지막 1의 대신에 전술한 제2의 실시 형태로 있어서의 반사방지막 10을 채용해도 좋다.
[제5의 실시 형태]
(편광판)
이하, 제5의 실시 형태에 있어서의 편광판 40에 대해서, 도면을 채용해서 설명한다. 도 5는 본 발명의 제5의 실시 형태에 있어서의 편광판 40의 구성 예를 나타내는 단면도다. 한편, 도 5에 있어서, 도 1에서 보여진 제1의 실시 형태에 있어서의 반사방지막 1과 동일한 구성에는 동일한 부호를 첨부하고, 중복하는 설명을 생략한다.
도 5에서 가리키는 것 같이, 편광판 40은 편광판 본체 41과 그 표면 41a에 마련된 반사방지막 1을 갖는다.
상기 편광판 본체 41로서는 특히 한정되지 않고 일반적인 시야각 개선 편광판 또는 원편광판 등을 들 수 있다.
또한, 반사방지막 1 대신에, 전술한 제2의 실시 형태에 있어서의 반사방지막 10이나 전술한 제4의 실시 형태에 있어서의 반사 방지 부재 30을 채용해도 좋다.
본 실시 형태의 편광판 40에 따르면 전술한 반사방지막 1을 갖춤으로 인해 고 콘트라스트가 요구되는 표시 장치에 적용하기 위해서 충분한 반사 방지성을 소유하는 편광판을 얻을 수 있다.
[제6의 실시 형태]
(표시장치: 액정 디스플레이)
이하, 제6의 실시 형태에 있어서의 표시 장치 50에 대해서, 도면을 채용해서 설명한다. 도 6은 본 발명의 제6의 실시 형태에 있어서의 표시 장치 50의 구성 예를 나타내는 단면도다. 한편, 도 6에 있어서, 도 1에서 보여진 제1의 실시 형태에 있어서의 반사방지막 1 및 도 5에서 보여진 제5의 실시 형태에 있어서의 편광판 40과 동일한 구성에 대해서는 동일한 부호를 첨부하고, 중복하는 설명을 생략한다.
또한, 본 실시 형태에서는 표시장치 50로서 액정 디스플레이를 예시한다.
도 6에 가리키는 것 같이, 표시장치 50은 액정표시소자 51과 이것을 양면측에서 접합하도록 마련된 편광판(제1편광판) 40 및 편광판(제2편광판) 52를 갖는다. 편광판 40은 액정표시소자 51의 표시면 51a 측에 편광판 본체 41이 대향하도록 마련된다.
액정표시소자 51로서는 특히 한정되지 않고, 일반적인 액정표시소자를 들 수 있다.
편광판 52로서는 특히 한정되지 않고, 일반적인 원평광판 등을 들 수 있다.
본 실시 형태의 표시장치 50에 따르면, 전술한 편광판 40을 갖추어서, 반사 방지성이 매우 뛰어난 액정 디스플레이를 얻을 수 있다.
[제7의 실시 형태]
(표시장치: 유기 EL 디스플레이)
이하, 제7의 실시 형태로 있어서의 표시장치 60에 대해서, 도면을 채용해서 설명한다. 도 7은 본 발명의 제7의 실시 형태에 있어서의 표시장치 60의 구성예를 나타내는 단면도다. 한편, 도 7에 있어서, 도 1에서 보여진 제1의 실시 형태에 있어서의 반사방지막 1 및 도 5에서 보여진 제5의 실시 형태에 있어서의 편광판 40과 동일한 구성에 대해서는 동일한 부호를 첨부하고, 중복하는 설명을 생략한다.
또한, 본 실시 형태에서는, 표시장치 60으로서, 유기 EL 디스플레이를 예시한다.
도 7에 가리키는 것 같이, 표시장치 60은, 유기 EL 소자 61과 이것 위에 마련된 편광판 40을 갖는다. 편광판 40은 1/4파장 위상차 등을 갖춘 원편광판이며, 유기 EL 소자 61의 표시면 61a 측에 편광판 본체 41이 대향하여 마련된다.
상기 유기 EL 소자 61로서는 특히 한정되지 않고, 일반적인 유기EL소자를 들 수 있다.
본 실시 형태의 표시장치 60에 따르면 전술한 편광판 40을 갖추어서, 반사 방지성이 매우 뛰어난 유기 EL 디스플레이를 얻을 수 있다.
이하, 실시예 및 비교예에 의해 본 발명을 더욱 구체적으로 설명하지만, 본 발명은 이하의 실시예에 한정되는 것이 아니다.
[실시예 1]
광 반응성 함 불소 화합물 A와, 모노머 B와, 중공 실리카 입자와, 광 반응성 함 불소 폴리머와, 광 반응성 변성 실리콘 폴리머와, 광중합 개시제를 혼합하였다. 각각의 성분의 혼합비가 표 1에 보여지는 고형분 배합량(고형분 배합비(질량비))이 되도록 혼합하였다.
이어서, 얻은 혼합물에 용매를 첨가하고, 이것들을 균일하게 교반, 혼합하고, 실시예 1의 코팅액을 제조하였다.
코팅액에 있어서의 용매의 배합량은 코팅액의 총량을 100질량%이라고 했을 경우, 97질량%로 했다.
광 반응성 함 불소 화합물 A(표 1에 있어서 「불소 화합물A」라고 적는다)로서는 불소 함유량이 50질량%(DAIKIN사, AR-110)인 것을 사용했다.
모노머 B로서는 이소시아누릴디아크릴레이트를 사용했다.
중공 실리카 입자로서는 평균 일차 입자 지름이 75nm(日揮媒化成, Thrulya 5320)인 것을 사용했다.
광 반응성 함 불소 폴리머(표 1에 있어서 「불소 폴리머」라고 적는다)로서는 중량평균분자량이 5,000(信越化工業, KY-1203)인 것을 사용했다.
광 반응성 변성 실리콘 폴리머(표 1에 있어서「실리콘 폴리머」라고 적는다)로서는 중량평균분자량이 30,000(EVONIK, TEGO Rad2700)인 것을 사용했다.
광중합개시제로서는 2-히드록시-1-{4-[4-(2-히드록시-2-메틸-프로피오닐)-벤질]페닐}-2-메틸-프로판-1-온(상품명:IRGACURE 127, BASF사제)을 사용했다.
용매로서는 메틸이소부틸케톤을 사용했다.
그 다음에, TAC으로 이루어지는 투명 기재와 이 투명 기재 위에 형성된 하드 코팅층을 갖는 하드 코팅 기재를 준비했다. 하드 코팅층은 투명한 아크릴 수지를 주성분으로 하고, 그의 굴절률이 1.580, 두께가 5㎛이었다. 이 하드 코트 기재의 전광선 투과율은 91.9%, 헤이즈 값은 0.30% 이었다.
이 하드 코팅 기재의 하드 코팅층 위에, 상기의 코팅액을 도포하고, 두께가 3.3㎛의 도막을 형성하였다.
그 다음에, 상기의 도막을 80℃의 오븐 내에서 2분간 건조하고, 도막에 포함되는 용매를 증발시켰다.
그 다음에, 건조 후의 도막에 자외선을 조사하고, 도막에 포함되는 광 반응성 함 불소 화합물 A와 모노머 B를 중합시켰다. 그것과 함께, 광 반응성 함 불소 화합물 A로 이루어지는 중합체와, 모노머 B로 이루어지는 중합체를 가교시켜, 저굴절률층을 형성하였다. 이것에 의해 실시예 1의 반사 방지 부재를 얻었다.
자외선 조사량은, 자외선 파장 365nm에서의 누적 노광량으로서, 200mJ/cm2으로 하였다.
[실시예 2]
모노머 B로서는 디펜타에리쓰리톨헥사아크릴레이트를 사용한 것 이외에는 실시예 1과 같이 하여, 실시예 2의 반사 방지 부재를 얻었다.
[실시예 3]
모노머 B로서는 펜타에리쓰리톨트리아크릴레이트를 사용한 것 이외에는 실시예 1과 같이 하여, 실시예 3의 반사 방지 부재를 얻었다.
[비교예 1]
이소시아누릴디아크릴레이트 대신에, 트리메틸올프로판아크릴레이트를 사용한 것 이외에는 실시예 1과 같이 하여, 비교예 1의 반사 방지 부재를 얻었다.
[비교예 2]
표 1에서 가리키는 것 같이, 광 반응성 함 불소 화합물 A의 고형분 배합량을 35질량부, 이소시아누릴디아크릴레이트의 고형분 배합량을 15질량부, 중공 실리카 입자의 고형분 배합량을 40질량부로 한 것 이외에는 실시예 1과 같이 하여, 비교예 2의 반사 방지 부재를 얻었다.
[비교예 3]
표 1에서 가리키는 것 같이, 광 반응성 함 불소 화합물 A의 고형분 배합량을 20질량부, 이소시아누릴디아크릴레이트의 고형분 배합량을 10질량부, 중공 실리카 입자의 고형분 배합량을 60질량부로 한 것 이외에는 실시예 1과 같이 하여 비교예 3의 반사 방지 부재를 얻었다.
[비교예 4]
광 반응성 변성 실리콘 폴리머로서 중량평균분자량이 9000(ARKEMA, CN990)인 것을 이용한 것 이외에는 실시예 1과 같이 하여 비교예 4의 반사 방지 부재를 얻었다.
[비교예 5]
광 반응성 함 불소 폴리머로서는 중량평균분자량이 800(Solvay, MT70)인 것을 채용한 것 이외에는 실시예 1과 같이 하여, 비교예 5의 반사 방지 부재를 얻었다.
[평가]
(1)저굴절률층의 굴절률
실시예 1 내지 3 및 비교예 1 내지 5의 반사 방지 부재의 저굴절률층의 굴절률을 측정했다. 저굴절률층의 굴절률의 측정 방법은 다음과 같이 되었다.
1)반사방지막이 형성된 투명 기재(반사 방지 부재)의 이면(반사방지막이 형성되지 않은 면)에 흑색 잉크를 도포하고, 그 반사 방지 부재의 이면에서의 반사광을 제거했다.
2)시판의 분광측색계를 이용해서 8도 입사 확산 조명을 반사 방지 부재의 표면에 맞추고, 8도 수광 광선을 측정하고, 380nm 내지 740nm의 정반사율 및 확산 반사율을 얻었다.
3)시판의 분광측색계로서는 코니카 미놀타사제의 분광측색계 CM-2600d를 썼다.
이것에 의해, D 광원, 2도 시야 상당의 전반사율 Y값(SCI) 및 확산 반사율 Y값(SCE)이 각각 측정값으로서 얻을 수 있고, Y=SCI - SCE에서 요청되는 값을 시감 반사율로 정의했다.
4)시감 반사율의 스펙트럼과 박막 광학에서 계산되는 반사 스펙트럼의 곡률이 일치하도록 조정된 박막층의 막 두께와 굴절률을 구하고, 이것을 저굴절률층의 굴절률이라고 했다. 결과를 표 2에 나타낸다.
(2)저굴절률층의 표면의 시감 반사율
실시예 1 내지 3 및 비교예 1 내지 5의 반사 방지 부재의 저굴절률층의 표면의 시감 반사율을 측정해졌다. 저굴절률층의 표면의 시감 반사율의 측정 방법은 다음과 같이 되었다.
1)반사방지막이 형성된 투명 기재(반사 방지 부재)의 이면(반사방지막이 형성되지 않은 면)에 흑색 잉크를 도포하고, 그 반사 방지 부재의 이면에서의 반사광을 제거했다.
2)시판의 분광측색계를 이용해서 8도 입사 확산 조명을 반사 방지 부재의 표면에 맞추고, 8도 수광 광선을 측정하고, 380nm 내지 740nm의 정반사율 및 확산 반사율을 얻었다.
3)시판의 분광측색계로서는 코니카 미놀타사제의 분광측색계 CM-2600d를 썼다.
이것에 의해, D 광원, 2도 시야 상당의 전반사율 Y값(SCI) 및 확산 반사율 Y값(SCE)이 각각 측정값으로서 얻을 수 있고, Y=SCI - SCE에서 요청되는 값을 시감 반사율로 정의했다. 결과를 표 2에 나타낸다.
(3)저굴절률층의 스틸 울 내하중값
실시예 1 내지 3 및 비교예 1 내지 5의 반사 방지 부재의 저굴절률층의 스틸 울 내하중값을 측정했다. 저굴절률층의 스틸 울 내하중값의 측정 방법은 다음과 같이 했다. 저굴절률층 상에서 #0000의 스틸 울을 접촉 면적 1cm2, 이동 속도 100mm/sec, 이동 거리 100mm으로 10회 왕복 이동시켰다. 그리고, 왕복 후의 저굴절률층의 표면을 목시에 의해 관찰했을 경우에, 확인할 수 있는 스크래치의 수가 10개 미만인 때의 최대 가중을 스틸 울 내하중값으로 하였다. 결과를 표 2에 나타낸다.
불소 화합물 A[질량부] | 모노머 B[질량부] | 중공 실리카 입자[질량부] | 불소 폴리머[질량부] | 실리콘 폴리머[질량부] | 광중합 개시제[질량부] | |
실시예 1 | 30 | 10 | 50 | 5 | 2 | 3 |
실시예 2 | 30 | 10 | 50 | 5 | 2 | 3 |
실시예 3 | 30 | 10 | 50 | 5 | 2 | 3 |
비교예 1 | 30 | 10 | 50 | 5 | 2 | 3 |
비교예 2 | 35 | 15 | 40 | 5 | 2 | 3 |
비교예 3 | 20 | 10 | 60 | 5 | 2 | 3 |
비교예 4 | 30 | 10 | 50 | 5 | 2 | 3 |
비교예 5 | 30 | 10 | 50 | 5 | 2 | 3 |
저굴절률층의 굴절률 | 저굴절률층의 표면의 시감 반사율[%] | 저굴절률층의 스틸 울 내하중값[g/cm2] | |
실시예 1 | 1.300 | 0.19 | 300 |
실시예 2 | 1.297 | 0.17 | 300 |
실시예 3 | 1.297 | 0.17 | 300 |
비교예 1 | 1.296 | 0.17 | 200 |
비교예 2 | 1.323 | 0.34 | 500 |
비교예 3 | 1.283 | 0.12 | 100 |
비교예 4 | 1.300 | 0.19 | 150 |
비교예 5 | 1.300 | 0.19 | 200 |
표 2의 결과로부터, 실시예 1 내지 3의 반사 방지 부재는 스틸 울 내찰상성에서 뛰어나고, 반사 방지성에서도 우수하다는 것이 분석되었다.
한편, 비교예 1의 반사 방지 부재는 이소시아누릴디아크릴레이트 대신에 트리메틸올프로판아크릴레이트를 사용했기 때문에, 스틸 울 내찰상성이 떨어지는 것이 분석되었다.
비교예 2의 반사 방지 부재는 광 반응성 함 불소 화합물 A의 고형분 배합량을 35질량부, 이소시아누릴디아크릴레이트의 고형분 배합량을 15질량부, 중공 실리카 입자의 고형분 배합량을 40질량부로 하였다. 그 때문에, 저굴절률층의 굴절률 및 저굴절률층의 표면의 시감 반사율이 떨어지는 것이 분석되었다.
비교예 3의 반사 방지 부재는 본 발명의 조성 함량 범위를 벗어나서, 스틸 울 내찰상성이 떨어지는 것이 분석되었다.
비교예 4의 반사 방지 부재는 광 반응성 변성 실리콘 폴리머로서, 중량평균분자량이 9000인 것을 썼기 때문에 스틸 울 내찰상성이 떨어지는 것이 분석되었다.
비교예 5의 반사 방지 부재는 광 반응성 함 불소 폴리머로서, 중량평균분자량이 800인 것을 썼기 때문에 스틸 울 내찰상성이 떨어지는 것이 분석되었다.
[실시예 4]
광 반응성 함 불소 화합물 A와, 모노머 B와, 중합체 C와, 중공 실리카 입자와, 광 반응성 함 불소 폴리머와, 광중합 개시제를 혼합했다. 각각의 성분의 혼합비가 표 3에 가리키는 고형분 배합량(고형분 배합비(질량비))이 되도록 혼합했다.
이어서, 얻은 혼합물에 용매를 첨가하고, 이것들을 균일하게 교반, 혼합하고, 실시예 4의 코팅액을 제조하였다.
코팅액에 있어서의 용매의 배합량은 코팅액의 총량을 100질량%이라고 했을 경우, 97질량%이라고 했다.
광 반응성 함 불소 화합물 A(표 3에 있어서 「불소 화합물A」라고 적는다)로서는 불소 함유량이 50질량%(DAIKIN사, AR-110)인 것을 이용했다.
모노머 B로서는 이소시아누릴디아크릴레이트를 썼다.
중합체 C로서는, 상기 식 (1) 중, 괄호 내의 구조의 중합도를 나타내는 n이 3 내지 4의 실록산 화합물(信越化工業, KR-515)을 썼다.
중공 실리카 입자로서는, 평균 일차 입자 지름이 75nm(日揮媒化成, Thrulya 5320)인 것을 이용했다.
광 반응성 함 불소 폴리머(표 3에 있어서 「불소 폴리머」라고 적는다)로서는 중량평균분자량이 5,000(Fluoro Technology, FS-7024)인 것을 사용했다.
광중합 개시제로서는 2-히드록시-1-{4-[4-(2-히드록시-2-메틸-프로피오닐)-벤질]페닐}-2-메틸-프로판-1-온(상품명:IRGACURE 127, BASF사제)을 사용했다.
용매로서는 메틸이소부틸케톤을 사용했다.
이하, 실시예 1과 같이 하고, 실시예 4의 반사 방지 부재를 얻었다.
[실시예 5]
광 반응성 함 불소 폴리머(표 3에 있어서 「불소 폴리머」라고 적는다)로서는 중량평균분자량이 5,000(信越化工業, KY-1203)인 것을 사용했다. 그 외에는 실시예 4와 동일한 방법으로 코팅액을 제조했다.
그 다음에, TAC으로부터 이루어지는 투명 기재와, 이 투명 기재 위에 형성된 하드 코트층과, 이 하드 코트층 위에 형성된 고굴절률층을 갖는 하드 코트 기재를 준비했다.
하드 코트층은 투명한 아크릴 수지를 주성분이으로 하고 그 굴절률이 1.580, 두께가 5㎛이었다.
고굴절률층은 산화 지르코늄 입자 및 아크릴 수지 바인더를 가교시켜, 그 굴절률이 1.73, 두께가 150nm이었다. 이 하드 코트 기재의 전광선 투과율은 91.9%, 헤이즈 값은 0.50%이었다. 이하, 실시예 1과 같이 하고, 실시예 5의 반사 방지 부재를 얻었다.
[비교예 6]
실시예 4에서 각 성분을 하기 표 3과 같이 변경한 것을 제외하고는 동일한 방법으로 반사 방지 부재를 얻었다.
[비교예 7]
실시예 4에서 각 성분을 하기 표 3과 같이 변경한 것을 제외하고는 동일한 방법으로 반사 방지 부재를 얻었다.
[비교예 8]
실시예 4에서 각 성분을 하기 표 3과 같이 변경한 것을 제외하고는 동일한 방법으로 반사 방지 부재를 얻었다.
[평가]
(1)저굴절률층의 굴절률
실시예 4 및 5, 비교예 6 내지 비교예 8의 반사 방지 부재의 저굴절률층의 굴절률을 측정했다.
저굴절률층의 굴절률의 측정 방법은, 실시예 1 내지 3 및 비교예 1 내지 5의 반사 방지 부재에 있어서의 방법과 동일하게 했다. 결과를 표 4에 나타낸다.
(2)저굴절률층의 표면의 시감 반사율
실시예 4 및 5, 비교예 6 내지 8의 반사 방지 부재의 저굴절률층의 표면의 시감 반사율을 측정했다. 저굴절률층의 표면의 시감 반사율의 측정 방법은 실시예 1 내지 3 및 비교예 1 내지 5의 반사 방지 부재에 있어서의 방법과 동일하게 했다. 결과를 표 4에 나타낸다.
(3)저굴절률층의 스틸 울 내하중값
실시예 4 및 5, 비교예 6 내지 8의 반사 방지 부재의 저굴절률층의 스틸 울 내하중값을 측정했다. 저굴절률층의 스틸 울 내하중값의 측정 방법은, 실시예 1 내지 3 및 비교예 1 내지 5의 반사 방지 부재에 있어서의 방법과 동일하게 했다. 결과를 표 4에 나타낸다.
불소 화합물 A[질량부] | 모노머 B[질량부] | 중합체C[질량부] | 중공 실리카 입자[질량부] | 불소 폴리머[질량부] | 광중합 개시제[질량부] | |
실시예 4 | 23 | 5 | 9 | 54 | 6 | 3 |
실시예 5 | 30 | 4 | 7.5 | 52 | 4.5 | 2 |
비교예 6 | 31.1 | 5.0 | 4.9 | 52.5 | 4.5 | 2 |
비교예 7 | 31.1 | 9.9 | 0 | 52.5 | 4.5 | 2 |
비교예 8 | 21 | 4 | 16 | 52.5 | 4.5 | 2 |
저굴절률층의 굴절률 | 저굴절률층의 표면의 시감 반사율[%] | 저굴절률층의 스틸 울 내하중값[g/cm2] | |
실시예 4 | 1.280 | 0.10 | 300 |
실시예 5 | 1.290 | 0.08 | 350 |
비교예 6 | 1.304 | 0.21 | 200 |
비교예 7 | 1.307 | 0.23 | 200 |
비교예 8 | 1.311 | 0.25 | 300 |
표 4의 결과로부터, 실시예 4 및 5의 반사 방지 부재는 실시예 1 내지 3의 반사 방지 부재 보다도 더욱 반사 방지성이 뛰어난 것이 분석되었다.
또한, 실시예 5의 반사 방지 부재는 실시예 1 내지 3의 반사 방지 부재 보다도 더욱 스틸 울 내찰상성이 뛰어난 것이 분석되었다.
(부호의 설명)
1 : 반사방지막,
2 : 하드 코트층,
3 : 저굴절률층,
4 : 바인더,
5 : 중공 실리카 입자,
6 : 광 반응성 함 불소 폴리머,
7 : 광 반응성 변성 실리콘 폴리머,
10 : 반사방지막,
20 : 반사방지막,
21 : 고굴절률층,
30 : 반사 방지 부재,
31 : 투명 기재,
40 : 편광판,
41 : 편광판 본체,
50 : 표시장치,
51 : 액정표시소자,
52 : 편광판,
60 : 표시장치,
61 : 유기 EL 소자
Claims (10)
- 적어도 2층 이상의 서로 굴절률이 다른 층이 적층된 반사방지막으로서, 최상층이 광 반응성 함 불소 화합물 A로 이루어지는 중합체와, 적어도 1 개 이상의 수산기 및 2개 이상의 광 반응성 관능기를 갖는 모노머 B로 이루어지는 중합체가 서로 가교된 가교체를 포함하는 바인더와, 상기 바인더 중에 분산된 중공 실리카 입자와, 상기 최상층의 표면측에 분포된 광 반응성 함 불소 폴리머 및 실록산 결합에 의한 주 골격 a를 갖는 폴리머를 함유하는 반사방지막이고,상기 최상층의 굴절률이 약 1.310 미만이고,상기 최상층의 표면의 시감 반사율이 약 0.20% 미만이고,상기 최상층의 스틸 울 내하중값이 약 300g/cm2 이상인 것인 반사방지막.
- 제1에 있어서, 상기 실록산 결합에 의한 주 골격 a를 갖는 폴리머가 광 반응성 변성 실리콘 폴리머인 것인 반사방지막.
- 제1항에 있어서, 상기 최상층이 하드 코팅층 상에 적층되어 있고, 상기 하드 코팅층의 굴절률이 약 1.500 내지 약 1.650인 것인 반사방지막.
- 제2항에 있어서, 상기 최상층은 고형분 배합량의 총량 100질량부 기준으로 상기 광 반응성 함 불소 화합물 A 약 20질량부 내지 약 40질량부, 상기 적어도 1 개 이상의 수산기 및 2개 이상의 광 반응성 관능기를 갖는 모노머 B 약 5질량부 내지 약 20질량부, 상기 중공 실리카 입자 약 45질량부 내지 약 56질량부, 상기 광반응성 함 불소 폴리머 약 1질량부 내지 약 10질량부, 상기 광 반응성 변성 실리콘 폴리머 약 1질량부 내지 약 3질량부 및 광중합 개시제 약 1질량부 내지 약 5질량부를 포함하는 코팅액으로 형성된 것인 반사 방지막.
- 제5항에 있어서, 상기 광 반응성 함 불소 폴리머는 중량평균분자량이 약 2,000 내지 약 10,000이고, 상기 광 반응성 변성 실리콘 폴리머는 중량평균분자량이 약 10,000 내지 약 50,000인 것인 반사 방지막.
- 제3항에 있어서, 상기 최상층은 고형분 배합량의 총량 100질량부 기준으로 상기 광 반응성 함 불소 화합물 A 약 10질량부 내지 약 30질량부, 상기 적어도 1 개 이상의 수산기 및 2개 이상의 광 반응성 관능기를 갖는 모노머 B 약 3질량부 내지 약 10질량부, 상기 중공 실리카 입자 약 45질량부 내지 약 56질량부, 상기 광반응성 함 불소 폴리머 약 1질량부 내지 약 10질량부, 상기 중합체 C 약 5질량부 내지 약 15질량부 및 광중합 개시제 약 1질량부 내지 약 5질량부를 포함하는 코팅액으로 형성된 것인, 반사 방지막.
- 투명 기재와, 상기 투명 기재 상에 형성된 제1항 내지 제7항 중 어느 한 항의 반사방지막을 구비하고,상기 반사 방지막은 상기 투명 기재로부터 순서대로, 상기 하드 코팅층과, 상기 최상층으로 이루어지는 반사 방지 부재.
- 제1항 내지 제7항 중 어느 한 항의 반사 방지막이 최표면에 형성된 편광판.
- 제9항의 편광판을 구비하는 표시장치.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019528813A JP7101673B2 (ja) | 2016-11-30 | 2017-11-08 | 反射防止膜、反射防止部材、偏光板及び表示装置 |
CN201780074312.9A CN110036311B (zh) | 2016-11-30 | 2017-11-08 | 抗反射膜、抗反射元件、偏光板和显示装置 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-232908 | 2016-11-30 | ||
JP2016232908A JP2018091906A (ja) | 2016-11-30 | 2016-11-30 | 反射防止膜、反射防止部材、偏光板、表示装置 |
KR1020170092282A KR102097801B1 (ko) | 2016-11-30 | 2017-07-20 | 반사 방지막, 반사 방지 부재, 편광판, 표시장치 |
KR10-2017-0092282 | 2017-07-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018101629A1 true WO2018101629A1 (ko) | 2018-06-07 |
Family
ID=62242196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/012575 WO2018101629A1 (ko) | 2016-11-30 | 2017-11-08 | 반사 방지막, 반사 방지 부재, 편광판 및 표시장치 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018101629A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008009348A (ja) * | 2006-06-30 | 2008-01-17 | Dainippon Printing Co Ltd | 反射防止積層体 |
JP2010092003A (ja) * | 2008-09-11 | 2010-04-22 | Toppan Printing Co Ltd | 反射防止フィルム |
JP2012168416A (ja) * | 2011-02-15 | 2012-09-06 | Fujifilm Corp | 反射防止フィルムの製造方法、反射防止フィルム、塗布組成物 |
KR20130132094A (ko) * | 2012-05-25 | 2013-12-04 | 주식회사 엘지화학 | 내찰상성이 우수한 저반사 코팅용 조성물 및 이를 사용한 반사 방지 필름 |
JP2015227934A (ja) * | 2014-05-30 | 2015-12-17 | 大日本印刷株式会社 | 反射防止フィルム、偏光板、および画像表示装置 |
-
2017
- 2017-11-08 WO PCT/KR2017/012575 patent/WO2018101629A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008009348A (ja) * | 2006-06-30 | 2008-01-17 | Dainippon Printing Co Ltd | 反射防止積層体 |
JP2010092003A (ja) * | 2008-09-11 | 2010-04-22 | Toppan Printing Co Ltd | 反射防止フィルム |
JP2012168416A (ja) * | 2011-02-15 | 2012-09-06 | Fujifilm Corp | 反射防止フィルムの製造方法、反射防止フィルム、塗布組成物 |
KR20130132094A (ko) * | 2012-05-25 | 2013-12-04 | 주식회사 엘지화학 | 내찰상성이 우수한 저반사 코팅용 조성물 및 이를 사용한 반사 방지 필름 |
JP2015227934A (ja) * | 2014-05-30 | 2015-12-17 | 大日本印刷株式会社 | 反射防止フィルム、偏光板、および画像表示装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017073903A1 (ko) | 폴리머막, 이를 채용한 광학 부재, 편광 부재 및 표시 장치 | |
WO2018155940A1 (ko) | 편광층 및 터치 센서 일체형 광학 적층체 및 이를 포함하는 화상 표시 장치 | |
WO2017048077A1 (ko) | 편광자 보호필름, 이를 포함하는 편광판 및 상기 편광판을 포함하는 액정 디스플레이 장치 | |
WO2014178517A1 (ko) | 폴리에스테르계 프라이머 조성물, 이를 이용한 광학 필름 및 이를 포함하는 편광판 | |
WO2017039209A1 (ko) | 커버 윈도우 기판 및 이를 구비하는 화상표시장치 | |
WO2019083247A1 (ko) | 회절 도광판 및 회절 도광판의 제조 방법 | |
WO2021187859A1 (ko) | 반사 방지 필름 | |
WO2021167377A1 (ko) | 다층 필름 및 이를 포함하는 적층체 | |
WO2014185685A1 (ko) | 편광판 | |
CN101276009A (zh) | 光散射薄膜、偏振片和液晶显示装置 | |
WO2013094969A2 (ko) | 편광판 및 이를 구비한 화상표시장치 | |
WO2017119764A1 (ko) | 필름 터치 센서 및 이의 제조 방법 | |
WO2016003179A1 (ko) | 저굴절률층을 갖는 광학 부재 | |
WO2014092391A1 (ko) | 강화유리 대체용 하드코팅필름 | |
WO2017074039A1 (ko) | 폴리머막, 이를 채용한 광학 부재, 편광 부재 및 표시 장치 | |
WO2018101629A1 (ko) | 반사 방지막, 반사 방지 부재, 편광판 및 표시장치 | |
WO2021045557A1 (ko) | 플렉서블 디스플레이 장치를 위한 폴리에스테르 보호 필름 | |
WO2021066496A1 (ko) | 주름진 표면을 갖는 적층 필름 | |
WO2022250489A1 (ko) | 수지막, 수지막의 제작 방법 및 표시 장치 | |
WO2023167562A1 (ko) | 광학 필름, 코팅층 형성용 조성물, 및 전자 기기 | |
WO2022019610A1 (ko) | 눈부심 방지 필름, 편광판 및 디스플레이 장치 | |
WO2021246851A1 (ko) | 폴리에스테르 이형 필름 및 이의 제조 방법 | |
WO2021132924A1 (ko) | 봉지용 조성물, 이를 포함하는 봉지층 및 이를 포함하는 봉지화된 장치 | |
WO2018194262A1 (ko) | 명암비 개선 광학 필름, 이를 포함하는 편광판 및 이를 포함하는 액정표시장치 | |
WO2022092749A1 (ko) | 점착 필름, 이를 포함하는 광학 부재 및 이를 포함하는 광학표시장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17877012 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019528813 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17877012 Country of ref document: EP Kind code of ref document: A1 |