WO2018101445A1 - 熱伝導シート - Google Patents
熱伝導シート Download PDFInfo
- Publication number
- WO2018101445A1 WO2018101445A1 PCT/JP2017/043186 JP2017043186W WO2018101445A1 WO 2018101445 A1 WO2018101445 A1 WO 2018101445A1 JP 2017043186 W JP2017043186 W JP 2017043186W WO 2018101445 A1 WO2018101445 A1 WO 2018101445A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat conductive
- conductive sheet
- less
- heat
- elastomer resin
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/08—Materials not undergoing a change of physical state when used
- C09K5/14—Solid materials, e.g. powdery or granular
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/02—Layered products comprising a layer of natural or synthetic rubber with fibres or particles being present as additives in the layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/04—Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B25/042—Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/12—Layered products comprising a layer of natural or synthetic rubber comprising natural rubber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/14—Layered products comprising a layer of natural or synthetic rubber comprising synthetic rubber copolymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/16—Layered products comprising a layer of natural or synthetic rubber comprising polydienes homopolymers or poly-halodienes homopolymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/20—Layered products comprising a layer of natural or synthetic rubber comprising silicone rubber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/041—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/042—Graphene or derivatives, e.g. graphene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/28—Nitrogen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/38—Boron-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3733—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3735—Laminates or multilayers, e.g. direct bond copper ceramic substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3737—Organic materials with or without a thermoconductive filler
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/24—All layers being polymeric
- B32B2250/248—All polymers belonging to those covered by group B32B25/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/105—Ceramic fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/106—Carbon fibres, e.g. graphite fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/302—Conductive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/536—Hardness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/14—Semiconductor wafers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2309/00—Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2309/00—Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
- C08J2309/02—Copolymers with acrylonitrile
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/16—Ethene-propene or ethene-propene-diene copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2383/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
- C08J2383/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2217—Oxides; Hydroxides of metals of magnesium
- C08K2003/222—Magnesia, i.e. magnesium oxide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2227—Oxides; Hydroxides of metals of aluminium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/28—Nitrogen-containing compounds
- C08K2003/282—Binary compounds of nitrogen with aluminium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/38—Boron-containing compounds
- C08K2003/382—Boron-containing compounds and nitrogen
- C08K2003/385—Binary compounds of nitrogen with boron
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/001—Conductive additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/005—Additives being defined by their particle size in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3731—Ceramic materials or glass
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
Definitions
- the present invention relates to a heat conductive sheet.
- the heat conductive sheet is mainly disposed between a heat generating body such as a semiconductor package and a heat radiating body such as aluminum or copper, and has a function of quickly moving heat generated by the heat generating body to the heat radiating body.
- a heat generating body such as a semiconductor package
- a heat radiating body such as aluminum or copper
- Patent Document 1 discloses a technique relating to a heat conductive sheet obtained by heating and curing a mixture containing boron nitride as a heat conductive filler and an addition reaction type liquid silicone.
- the heat conductive sheet described in Patent Document 1 has an Asker C hardness of 45 or less and good flexibility, the residual stress is reduced after the heat conductive sheet is compressed and introduced between the heat generator and the heat radiator. Therefore, resilience tended to be strong.
- a heat conductive sheet when a heat conductive sheet is placed between a heat generating body such as a semiconductor package and a heat radiating body and has a high restoring force, it is used for a heat generating body such as an electronic component that is weak against pressure. May be damaged.
- it when it is introduced between the heating element and the heat dissipation body, it has flexibility to improve the shape followability, and prevents damage to the heating element such as electronic parts after a certain period of time.
- the present invention has been made in view of the above-described conventional problems, and has an initial flexibility that improves shape followability, and heat that reduces residual stress after compression by applying pressure.
- An object is to provide a conductive sheet.
- the present inventors are a heat conductive sheet containing an elastomer resin and a heat conductive filler, and adjust the volume ratio of the elastomer resin and the heat conductive filler, And it discovered that the heat conductive sheet which controlled the viscosity and lamella length of elastomer resin solved the said subject, and completed this invention.
- a heat conductive sheet comprising an elastomer resin having a volume ratio of 30 to 70% and a heat conductive filler having a volume ratio of 30 to 70%, wherein the viscosity of the elastomer resin at 25 ° C. is 3000 Pa ⁇ s.
- the heat conductive filler is at least one selected from the group consisting of aluminum oxide, magnesium oxide, boron nitride, talc, aluminum nitride, graphene, boron nitride nanotubes, carbon nanotubes, and diamond. [1] to [6]. [8] The heat conductive sheet according to any one of [1] to [7], wherein the heat conductive filler has an average particle size of 200 ⁇ m or less and a heat conductivity of 8 W / m ⁇ K or more.
- thermoelectric sheet that has an initial flexibility that makes the shape followability good and that has a reduced residual stress after being compressed by applying pressure.
- the heat conductive sheet of the present invention is a heat conductive sheet containing an elastomer resin having a volume ratio of 30 to 70% and a heat conductive filler having a volume ratio of 30 to 70%. It is a heat conductive sheet having a viscosity of 3000 Pa ⁇ s or less and a lamellar length of the elastomer resin of 20 mm or more and an initial Asker C hardness of 50 or less.
- the elastomer resin constituting the heat conductive sheet of the present invention has a volume ratio of 30 to 70% in the whole heat conductive sheet. When the volume ratio is less than 30%, the flexibility of the heat conductive sheet is insufficient, and when it exceeds 70%, the heat conductivity is deteriorated.
- the volume ratio of the elastomer resin in the entire heat conductive sheet is preferably 35 to 65%, more preferably 40 to 60%, and still more preferably 45 to 55%.
- the volume ratio of the elastomer resin can be calculated from the mass because the specific gravity is known.
- the viscosity of the elastomer resin at 25 ° C. is 3000 Pa ⁇ s or less.
- the viscosity at 25 ° C. of the elastomer resin is preferably 2000 Pa ⁇ s or less, more preferably 1000 Pa ⁇ s or less, and further preferably 500 Pa ⁇ s or less, from the viewpoint of further improving the flexibility of the heat conductive sheet. More preferably, it is 200 Pa ⁇ s or less.
- the viscosity of the elastomer resin at 25 ° C. is preferably 1 Pa ⁇ s or more, more preferably 10 Pa ⁇ s or more, from the viewpoint of moldability.
- the viscosity of the elastomer resin can be measured by the method described in the examples.
- the lamella length of the elastomer resin is defined.
- the lamella length is measured in detail by the method described in the examples.
- the ring is submerged in a liquid made of an elastomer resin and the ring is pulled up at a constant speed, the liquid film formed on the ring is cut. This is a value obtained by measuring the length of the film and is an index indicating the elongation of the liquid film.
- the lamella length is an index of the elongation of the heat conductive sheet containing the elastomer resin.
- the lamella length of the elastomer resin of the present invention is 20 mm or more.
- the lamella length is less than 20 mm, the flexibility of the heat conductive sheet is deteriorated, and the residual stress after pressure is hardly reduced.
- the lower the viscosity of the elastomer resin and the shorter the lamella length the better the flexibility of the sheet containing the elastomer resin, but in addition to the elastomer resin as in the present invention, a certain amount of thermally conductive filler is added.
- the lamella length is too small, the flexibility deteriorates.
- the lamella length is preferably 25 mm or more, more preferably 30 mm or more, and preferably 140 mm or less, more preferably 100 mm or less, and further preferably 65 mm or less.
- the lamella length of the elastomer resin generally correlates with the viscosity of the elastomer resin. Therefore, the molecular weight of the elastomer resin, the type of monomer as a structural unit, and the copolymer can be adjusted by the composition ratio of the comonomer.
- the glass transition temperature of the elastomer resin is preferably room temperature or lower (for example, 25 ° C. or lower).
- a heat conductive sheet using such an elastomer resin is excellent in flexibility.
- elastomer resin examples include acrylonitrile butadiene rubber, liquid acrylonitrile butadiene rubber, ethylene-propylene-diene rubber, liquid ethylene-propylene-diene rubber, ethylene-propylene rubber, liquid ethylene-propylene rubber, natural rubber, liquid natural rubber, polybutadiene.
- Rubber Liquid polybutadiene rubber, Polyisoprene rubber, Liquid polyisoprene rubber, Styrene-butadiene block copolymer, Liquid styrene-butadiene block copolymer, Hydrogenated styrene-butadiene block copolymer, Liquid hydrogenated styrene-butadiene block Polymer, hydrogenated styrene-butadiene-styrene block copolymer, liquid hydrogenated styrene-butadiene-styrene block copolymer, hydrogenated styrene-isopropylene Block copolymer, liquid hydrogenated styrene-isoprene block copolymer, hydrogenated styrene-isoprene-styrene block copolymer, liquid hydrogenated styrene-isoprene-styrene block copolymer, silicone, liquid silicone
- liquid elastomer resins are preferable, and liquid acrylonitrile butadiene rubber, liquid ethylene-propylene-diene rubber, liquid polyisoprene rubber, and liquid silicone are preferable. Further, in order to obtain flexibility, the non-liquid elastomer is preferably used after being kneaded with a liquid similar resin or the like.
- the heat conductive filler constituting the heat conductive sheet of the present invention has a volume ratio of 30 to 70% in the whole heat conductive sheet. When the volume ratio is less than 30%, the thermal conductivity of the heat conductive sheet becomes insufficient, and when it exceeds 70%, the flexibility is deteriorated.
- the volume ratio of the heat conductive filler in the whole heat conductive sheet is preferably 35 to 65%, more preferably 40 to 60%, and still more preferably 45 to 55%.
- the volume ratio of the thermally conductive filler can be calculated by mass because the specific gravity is known.
- the thermal conductivity of the thermally conductive filler is preferably 8 W / m ⁇ K or more, more preferably 20 W / m ⁇ K or more, from the viewpoint of improving the thermal conductivity.
- the shape of the heat conductive filler is not particularly limited, and for example, a spherical filler, a crushed filler, a plate filler, and the like can be used.
- a plate filler from the viewpoint of improving the heat conductivity of the heat conductive sheet. Is preferably used.
- the length of the XY plane It preferably has a shape of directional dimension / thickness> 2.0.
- the thickness of the plate filler is preferably 0.05 to 500 ⁇ m, more preferably 0.25 to 250 ⁇ m, from the viewpoint of improving the thermal conductivity.
- the average particle size measured by the light scattering method of the thermally conductive filler is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, still more preferably 1 ⁇ m or more, and preferably 200 ⁇ m or less, more Preferably it is 150 micrometers or less, More preferably, it is 100 micrometers or less.
- the particle size in a plate-shaped filler be the dimension of the longitudinal direction of the said XY plane.
- Examples of the material for the thermally conductive filler include carbide, nitride, oxide, hydroxide, metal, and carbon-based material.
- Examples of the carbide include silicon carbide, boron carbide, aluminum carbide, titanium carbide, and tungsten carbide.
- Examples of the nitride include silicon nitride, boron nitride, boron nitride nanotube, aluminum nitride, gallium nitride, chromium nitride, tungsten nitride, magnesium nitride, molybdenum nitride, and lithium nitride.
- the oxide examples include iron oxide, silicon oxide (silica), aluminum oxide (alumina) (including aluminum oxide hydrates (boehmite, etc.)), magnesium oxide, titanium oxide, cerium oxide, and zirconium oxide. Can be mentioned.
- the oxide include transition metal oxides such as barium titanate, and further doped with metal ions such as indium tin oxide and antimony tin oxide.
- hydroxide examples include aluminum hydroxide, calcium hydroxide, and magnesium hydroxide.
- metal examples include copper, gold, nickel, tin, iron, and alloys thereof.
- carbon-based material examples include carbon black, graphite, diamond, graphene, fullerene, carbon nanotube, carbon nanofiber, nanohorn, carbon microcoil, and nanocoil.
- the heat conductive filler other than the above examples include talc which is a silicate mineral. These thermally conductive fillers can be used alone or in combination of two or more. From the viewpoint of thermal conductivity, the thermally conductive filler is preferably at least one of aluminum oxide, magnesium oxide, boron nitride, talc, aluminum nitride, graphene, boron nitride nanotube, carbon nanotube, and diamond. Boron nitride More preferably, it is at least one of graphene. Further, boron nitride is more preferable for applications that require electrical insulation.
- heat conduction such as an antioxidant, a heat stabilizer, a colorant, a flame retardant, an antistatic agent, a filler other than the heat conductive filler, and a decomposition temperature adjusting agent.
- Additives commonly used in the sheet may be blended.
- the heat conductive sheet of the present invention may be a single layer containing an elastomer resin and a heat conductive filler, or may be a laminate in which a resin layer containing an elastomer resin and a heat conductive filler is laminated. From the viewpoint of improving thermal conductivity, a laminate is preferred.
- FIGS. 1 and 2 in order to clarify the presence of the plate-like thermally conductive filler 6, hatching indicating a cross section of the resin is omitted.
- each filler overlaps with the filler which adjoins up and down, in this invention, duplication of fillers is not essential. As shown in FIG.
- the heat conductive sheet 1 has a structure in which a plurality of resin layers 2 are laminated. A surface perpendicular to the laminated surface of the plurality of resin layers 2 is the sheet surface 5. As shown in FIG. 2, the heat conductive sheet 1 is disposed so that the sheet surface 5 is in contact with the heat generating body 3 and the heat radiating body 4. Moreover, the heat conductive sheet 1 is arrange
- the heating element 3 is, for example, a semiconductor package
- the radiator 4 is, for example, a metal such as aluminum or copper.
- the thickness of the heat conductive sheet 1 (that is, the distance between the sheet surface 5 and the sheet surface 5) is not particularly limited, but may be, for example, in the range of 0.1 to 30 mm.
- the thickness of one layer (resin layer width) of the resin layer 2 is not particularly limited, but is preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, still more preferably 100 ⁇ m or less, and preferably 0.1 ⁇ m or more, more preferably It can be 0.5 ⁇ m or more, more preferably 1 ⁇ m or more.
- heat conductivity can be improved by adjusting thickness.
- the resin layer 2 is a heat conductive resin layer 7 containing a heat conductive filler 6.
- the heat conductive resin layer 7 is a resin layer 2 having a structure in which a heat conductive heat conductive filler 6 is dispersed in an elastomer resin 8.
- the kind of heat conductive filler is not specifically limited, as shown in FIGS. 1 and 2, it is preferable to use a plate-like filler, and the long axis of the plate-like filler is at an angle of 45 ° or more with respect to the sheet surface. It is preferable that the orientation is more preferably 50 ° or more, more preferably 60 ° or more, still more preferably 70 ° or more, and further preferably 80 ° or more. When the plate filler has such an orientation, the thermal conductivity of the heat conductive sheet is improved. This is probably because a heat conduction path from the heating element toward the heat radiating body is formed in the heat conduction sheet.
- the method for obtaining the angle is not particularly limited.
- the central portion in the thickness direction is in the direction in which the plate-like filler 6 is most oriented, the direction parallel to the resin flow direction during normal molding.
- This thin film slice can be prepared and observed by a scanning electron microscope (SEM).
- SEM scanning electron microscope
- the thermally conductive plate-like filler was observed at a magnification of 3000 times, and the major axis of the observed plate-like filler and the surface constituting the sheet surface in the thermally conductive resin layer 7
- the angle can be obtained by measuring the angle formed.
- the angle of 45 °, 50 °, 60 °, 70 °, 80 ° or more means that the average value of the values measured as described above is equal to or greater than that angle, and the orientation angle is The presence of the plate-like filler 6 of less than 80 ° is not denied. If the angle formed exceeds 90 °, the complement angle is taken as the measurement value.
- the thickness of the heat conductive resin layer 7 is preferably 1 to 1000 times, more preferably 1 to 500 times, and still more preferably 1 to 1 times the thickness of the heat conductive plate filler 6 contained in the heat conductive resin layer 7. 50 times, more preferably 1 to 10 times, more preferably 1 to 3 times, and further preferably 1 to 2 times.
- the heat conductive plate filler 6 can be oriented so that the major axis thereof is at an angle of 80 ° or more with respect to the sheet surface. .
- variety of the heat conductive resin layer 7 may not be equal if it is in the said range.
- the initial Asker C hardness of the heat conductive sheet of the present invention is 50 or less. When the initial Asker C hardness exceeds 50, the flexibility is deteriorated, and the shape followability to the heating element is lowered.
- the initial Asker C hardness is a measured value of hardness at the time when measurement of Asker C hardness is started on the heat conductive sheet.
- the initial Asker C hardness of the heat conductive sheet is preferably 45 or less, more preferably 40 or less, and preferably 10 or more.
- the Asker C hardness at the time of 30 seconds of the heat conductive sheet of this invention becomes like this. Preferably it is 30 or less, More preferably, it is 20 or less.
- the Asker C hardness of the heat conductive sheet after 30 seconds is preferably half or less of the initial Asker C hardness. By setting it as such a value, the residual stress after applying a fixed pressure with respect to a heat conductive sheet is reduced, and damage to the electronic components etc. which are heat generating bodies can be suppressed.
- the Asker C hardness after 30 seconds is the Asker C hardness at the time when 30 seconds have elapsed after starting the measurement of Asker C hardness, and can be measured in detail by the method described in the examples. .
- the Asker C hardness can be adjusted by controlling the content of a filler such as a heat conductive filler, the softness of the elastomer resin, the affinity between the filler and the elastomer resin, and the like.
- the thermal conductivity of the heat conductive sheet is preferably 5 W / m ⁇ K or more, more preferably 6 W / m ⁇ K or more, and further preferably 7 W / m ⁇ K or more, from the viewpoint of heat dissipation of the sheet. is there. Moreover, the heat conductivity of a heat conductive sheet is 100 W / m * K or less normally.
- the gel fraction of the heat conductive sheet is preferably 20% or less, more preferably 10% or less, still more preferably 5% or less, and still more preferably 0%.
- the Asker C hardness after 30 seconds with respect to the initial Asker C hardness can be reduced.
- the gel fraction can be measured by the method described in the examples. As will be described later, the gel fraction can be adjusted, for example, by controlling the presence or absence of crosslinking of the elastomer resin and the degree of crosslinking, and using an uncrosslinked elastomer resin lowers the gel fraction. This is preferable.
- the 25% compressive strength of the heat conductive sheet is preferably 200 kPa or less, more preferably 190 kPa or less, from the viewpoint of improving flexibility and reducing the residual stress after compression.
- the 50% compressive strength of the heat conductive sheet is preferably 1000 kPa or less, more preferably 800 kPa or less, and still more preferably 700 kPa or less.
- the method for producing the heat conductive sheet of the present invention is not particularly limited, but a heat conductive filler, an elastomer resin, and, if necessary, additives are supplied to an extruder, melt kneaded, and extruded from the extruder into a sheet form. What is necessary is just to shape
- the manufacturing method of the heat conductive sheet which consists of a laminated body of this invention is not specifically limited, It can manufacture using the method of including the kneading
- a thermally conductive filler and an elastomer resin are kneaded to prepare a thermally conductive resin composition.
- a thermally conductive resin composition for example, it is preferable to knead the heat conductive filler and the elastomer resin under heating by using a twin screw kneader or a twin screw extruder such as a plast mill.
- a thermally conductive resin composition in which the filler is uniformly dispersed in the elastomer can be obtained.
- a sheet-like resin layer thermal conductive resin layer
- the resin layer obtained in the kneading step is laminated to create a laminate having an n-layer structure.
- a lamination method for example, a resin layer was prepared in the kneading step is laminated with x i split, after making a stack of x i layer structure, if necessary, subjected to hot pressing, then, further, needs Accordingly, it is possible to use a method of manufacturing a laminated body having a width of D ⁇ m and an n-layer structure by repeating division, lamination, and the above-described hot press.
- the width (D ⁇ m) of the laminate after the lamination process and the thickness (d ⁇ m) of the thermally conductive filler satisfy 0.02 ⁇ d / (D / n) ⁇ 1. It is preferable to do.
- the molding pressure at each time can be reduced as compared with a case where molding is performed once. It can be avoided.
- a method of obtaining a laminated body having the n-layer structure and the thickness D ⁇ m by preparing the multilayer forming block using an extruder provided with a multilayer forming block and performing coextrusion molding Can also be used.
- the heat conductive resin composition obtained in the kneading step is introduced into both the first extruder and the second extruder, and the heat conductivity is obtained from the first extruder and the second extruder.
- the resin composition is extruded at the same time.
- the thermally conductive resin composition extruded from the first extruder and the second extruder is sent to a feed block.
- the heat conductive resin composition extruded from the first extruder and the second extruder joins. Thereby, a two-layer body in which the thermally conductive resin composition is laminated can be obtained.
- the two-layer body is transferred to a multilayer forming block, and the two-layer body is divided into a plurality of layers along a plurality of surfaces that are parallel to the extrusion direction and perpendicular to the stacking surface, and then stacked.
- a laminate having an n-layer structure and a thickness of D ⁇ m can be manufactured.
- the thickness (D / n) per layer can be adjusted to a desired value by adjusting the multilayer forming block.
- the laminated body obtained in the laminating step is laminated so as to have a desired height as necessary, and after applying pressure and joining, a heat conductive sheet is produced by slicing in a direction parallel to the laminating direction. To do.
- Elastomer resin Liquid acrylonitrile butadiene rubber 1 Product name “N231L” manufactured by JSR Corporation (Ii) Acrylonitrile butadiene rubber 2 Mixture of 7.2% by volume (A) below and 40.8% by volume (B) below (A) Acrylonitrile butadiene rubber JSR Corporation, trade name “N280” (B) Liquid acrylonitrile butadiene rubber, manufactured by JSR Corporation, trade name “N231L” (Iii) Acrylonitrile butadiene rubber 3 Mixture of 38% by volume (A) below and 10% by volume (B) below (A) Acrylonitrile butadiene rubber JSR Corporation, trade name “N280” (B) Liquid acrylonitrile butadiene rubber, manufactured by JSR Corporation, trade name “N231L
- Example 1 A mixture of 48% by volume of liquid acrylonitrile butadiene rubber 1 (manufactured by JSR Corporation, N231L) and 52% by volume of boron nitride is melt-kneaded and then pressed to form a sheet having a thickness of 0.5 mm, a width of 80 mm, and a depth of 80 mm A resin layer was obtained. Next, as a laminating step, the obtained resin layer was divided into 16 equal parts and laminated to obtain a laminated body composed of 16 layers having a total thickness of 8 mm, a width of 20 mm, and a depth of 20 mm.
- the thickness of one layer of the resin layer constituting the laminate is 0.5 mm (500 ⁇ m).
- the thermal performance, hardness, and compressive strength of this heat conductive sheet were measured from the cross-sectional direction (thickness direction).
- Examples 2-8, Comparative Examples 1-2 A resin foam sheet was obtained in the same manner as in Example 1 except that the formulation was changed as shown in Table 1. The evaluation results are shown in Table 1.
- Examples 1 to 8 which are heat conductive sheets of the present invention have an initial Asker C hardness of 50 or less, good flexibility, and an Asker C hardness of 30 seconds or less after 30 seconds. Therefore, it was found that the residual stress was reduced after the pressure was applied.
- Comparative Example 1 is an example using an elastomer resin whose viscosity is higher than the value specified in the present invention, but it was found that the initial Asker C hardness was high and the flexibility was poor.
- Comparative Example 2 is an example in which an elastomer resin having a lamella length lower than the value specified in the present invention was used, but the initial Asker C hardness was low, but the Asker C hardness after 30 seconds had changed much from the initial value. It was found that the residual stress was not reduced.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Combustion & Propulsion (AREA)
- Ceramic Engineering (AREA)
- Nanotechnology (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Laminated Bodies (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
また、様々な形状を有する半導体パッケージ等の発熱体に密着させるために、形状追従性のよい熱伝導シート(柔軟な熱伝導シート)が望まれている。
特許文献1には、熱伝導性フィラーである窒化ホウ素、及び付加反応型液状シリコーンを含む混合物を加熱・硬化させて得られる熱伝導シートに関する技術が開示されている。
一般に、熱伝導シートは、半導体パッケージ等の発熱体と放熱体の間に配置された際に、復元力が強いと、圧力に弱い電子部品等の発熱体に対して用いる場合には、発熱体を破損するおそれがある。
すなわち、発熱体と放熱体との間に導入する際には、形状追従性を良好とする程度の柔軟性を有し、かつ、一定時間経過後は、電子部品等の発熱体の破損を防止するため、残留応力が低減する熱伝導シートが求められている。
本発明は、上記従来の課題に鑑みてなされたものであって、形状追従性を良好とする程度の初期の柔軟性を有し、かつ圧力を加え圧縮した後には、残留応力が低下する熱伝導シートを提供することを目的とする。
[1]体積割合が30~70%のエラストマー樹脂と、体積割合が30~70%の熱伝導性フィラーとを含む熱伝導シートであって、前記エラストマー樹脂の25℃での粘度が3000Pa・s以下で、かつエラストマー樹脂のラメラ長が20mm以上である、初期のアスカーC硬度が50以下の熱伝導シート。
[2]熱伝導率が5W/m・K以上である、上記[1]に記載の熱伝導シート。
[3]測定開始から30秒経過時のアスカーC硬度が、前記初期のアスカーC硬度の半分以下である、上記[1]又は[2]に記載の熱伝導シート。
[4]25%圧縮強度が200kPa以下である、上記[1]~[3]のいずれかに記載の熱伝導シート。
[5]50%圧縮強度が1000kPa以下である、上記[1]~[4]のいずれかに記載の熱伝導シート。
[6]ゲル分率が20%以下である、上記[1]~[5]のいずれかに記載の熱伝導シート。
[7]前記熱伝導性フィラーが、酸化アルミニウム、酸化マグネシウム、窒化ホウ素、タルク、窒化アルミニウム、グラフェン、窒化ホウ素ナノチューブ、カーボンナノチューブ、及びダイヤモンドからなる群から選択される少なくとも1種である、上記[1]~[6]のいずれかに記載の熱伝導シート。
[8]前記熱伝導性フィラーの平均粒径が200μm以下であり、熱伝導率が8W/m・K以上である、上記[1]~[7]のいずれかに記載の熱伝導シート。
[9]前記エラストマー樹脂と、熱伝導性フィラーとを含有する樹脂層が面方向に積層された積層体であり、積層された樹脂層の1層の厚みが1000μm以下である、上記[1]~[8]のいずれかに記載の熱伝導シート。
本発明の熱伝導シートは、体積割合が30~70%のエラストマー樹脂と、体積割合が30~70%の熱伝導性フィラーとを含む熱伝導シートであって、前記エラストマー樹脂の25℃での粘度が3000Pa・s以下で、かつ前記エラストマー樹脂のラメラ長が20mm以上である、初期のアスカーC硬度が50以下の熱伝導シートである。
本発明の熱伝導シートを構成するエラストマー樹脂は、熱伝導シート全体における体積割合は30~70%である。体積割合が30%未満であると、熱伝導シートの柔軟性が不十分となり、70%を超えると、熱伝導性が悪くなる。
熱伝導シート全体におけるエラストマー樹脂の体積割合は、好ましくは35~65%であり、より好ましくは40~60%であり、更に好ましくは45~55%である。エラストマー樹脂の体積割合は、比重が既知であることより、質量により算出することができる。
エラストマー樹脂の25℃における粘度は、3000Pa・s以下である。3000Pa・sを超えると、熱伝導シートの柔軟性が不十分となる。エラストマー樹脂の25℃における粘度は、熱伝導シートの柔軟性をより向上させる観点から、好ましくは2000Pa・s以下であり、より好ましくは1000Pa・s以下であり、更に好ましくは500Pa・s以下であり、更に好ましくは200Pa・s以下である。そして、エラストマー樹脂の25℃における粘度は、成型性の観点から、好ましくは1Pa・s以上であり、より好ましくは10Pa・s以上である。
なお、エラストマー樹脂の粘度は、実施例に記載の方法で測定することができる。
本発明のエラストマー樹脂のラメラ長は20mm以上である。ラメラ長が20mm未満であると、熱伝導シートの柔軟性が悪くなり、また圧力を加えた後の残留応力も低減し難くなる。一般に、エラストマー樹脂の粘度が低くなって、ラメラ長が小さいほうがエラストマー樹脂を含むシートの柔軟性は良好になると考えられるが、本発明のようなエラストマー樹脂に加え、一定量の熱伝導性フィラーを含有している熱伝導シートの場合、ラメラ長が小さすぎると、逆に柔軟性は悪化する。これは、ラメラ長が小さいエラストマー樹脂を用いると、熱伝導性フィラー同士が衝突しやすくなり、これにより流動性が低下し、結果、柔軟性が悪くなるものと推察される。また、流動性が低下すると、圧力を加えた後の残留応力も低減し難くなると考えられる。このように、エラストマー樹脂と熱伝導性フィラーとを含む熱伝導シートの場合、エラストマー樹脂の粘度に加えて、ラメラ長を制御することが、シートの柔軟性をコントロールする上で重要である。
ラメラ長は好ましくは25mm以上であり、より好ましくは30mm以上であり、そして、好ましくは140mm以下であり、より好ましくは100mm以下であり、更に好ましくは65mm以下である。ラメラ長がこのような範囲であると、熱伝導シートの柔軟性がより向上する。
エラストマー樹脂のラメラ長は、上記のように、一般にはエラストマー樹脂の粘度に相関する。そのため、エラストマー樹脂の分子量や、構成単位であるモノマーの種類、共重合体であればコモノマーの組成比等により調整することができる。
本発明の熱伝導シートを構成する熱伝導性フィラーは、熱伝導シート全体における体積割合は30~70%である。体積割合が30%未満であると、熱伝導シートの熱伝導性が不十分となり、70%を超えると、柔軟性が悪くなる。
熱伝導シート全体における熱伝導性フィラーの体積割合は、好ましくは35~65%であり、より好ましくは40~60%であり、更に好ましくは45~55%である。熱伝導性フィラーの体積割合は、比重が既知であることより、質量により算出することができる。
熱伝導性フィラーの熱伝導率は、熱伝導性を向上させる観点から、好ましくは8W/m・K以上であり、より好ましくは20W/m・K以上である。
熱伝導性フィラーの光散乱法によって測定される平均粒径は、好ましくは0.1μm以上、より好ましくは0.5μm以上、更に好ましくは1μm以上であり、そして、好ましくは200μm以下であり、より好ましくは150μm以下であり、更に好ましくは100μm以下である。なお、板状フィラーにおける粒径は、前記XY平面の長手方向の寸法とする。
炭化物としては、例えば、炭化ケイ素、炭化ホウ素、炭化アルミニウム、炭化チタン、炭化タングステンなどが挙げられる。
窒化物としては、例えば、窒化ケイ素、窒化ホウ素、窒化ホウ素ナノチューブ、窒化アルミニウム、窒化ガリウム、窒化クロム、窒化タングステン、窒化マグネシウム、窒化モリブデン、窒化リチウムなどが挙げられる。
酸化物としては、例えば、酸化鉄、酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)(酸化アルミニウムの水和物(ベーマイトなど)を含む。)、酸化マグネシウム、酸化チタン、酸化セリウム、酸化ジルコニウムなどが挙げられる。また、酸化物として、チタン酸バリウムなどの遷移金属酸化物などや、さらには、金属イオンがドーピングされている、例えば、酸化インジウムスズ、酸化アンチモンスズなどが挙げられる。
金属としては、例えば、銅、金、ニッケル、錫、鉄、または、それらの合金が挙げられる。
炭素系材料としては、例えば、カーボンブラック、黒鉛、ダイヤモンド、グラフェン、フラーレン、カーボンナノチューブ、カーボンナノファイバー、ナノホーン、カーボンマイクロコイル、ナノコイルなどが挙げられる。
これら熱伝導性フィラーは、単独使用または2種類以上併用することができる。熱伝導性フィラーは、熱伝導性の観点からは、酸化アルミニウム、酸化マグネシウム、窒化ホウ素、タルク、窒化アルミニウム、グラフェン、窒化ホウ素ナノチューブ、カーボンナノチューブ、ダイヤモンドの少なくとも何れかであることが好ましく、窒化ホウ素、グラフェンの少なくとも何れかであることがより好ましい。さらに電気絶縁性が要求される用途では、窒化ホウ素がより好ましい。
本発明の熱伝導シートには、必要に応じて、酸化防止剤、熱安定剤、着色剤、難燃剤、帯電防止剤、前記熱伝導性フィラー以外の充填材、分解温度調整剤等の熱伝導シートに一般的に使用する添加剤を配合されてもよい。
本発明の熱伝導シートはエラストマー樹脂及び熱伝導性フィラーを含む単層でもよいし、エラストマー樹脂及び熱伝導性フィラーを含む樹脂層が積層された積層体でもよい。熱伝導性を良好とする観点から積層体が好ましい。以下、積層体の実施形態の一例を図1、2により説明する。
図1、2においては、板状の熱伝導性フィラー6の存在を明確にするため、樹脂の断面であることを表すハッチングを省略している。また、各図において、各フィラーは上下に隣接するフィラーと重複しているが、本発明においてフィラー同士の重複は必須ではない。
図1に示すように、熱伝導シート1は、複数の樹脂層2を積層した構造を有している。複数の樹脂層2の積層面に対する垂直面がシート面5となる。図2に示すように、熱伝導シート1は、シート面5が発熱体3や放熱体4と接するように配置される。また、熱伝導シート1は、発熱体3と放熱体4等の2つの部材の間において、圧縮した状態で配置される。なお、発熱体3は、例えば、半導体パッケージ等であり、放熱体4は、例えば、アルミニウムや銅などの金属等である。
樹脂層2の1層の厚み(樹脂層幅)は特に限定されないが、好ましくは1000μm以下、より好ましくは500μm以下、更に好ましくは100μm以下であり、そして、好ましくは0.1μm以上、より好ましくは0.5μm以上、更に好ましくは1μm以上とすることができる。このように厚みを調整することにより、熱伝導性を高めることができる。
樹脂層2は、熱伝導性フィラー6を含有する熱伝導性樹脂層7である。熱伝導性樹脂層7は、エラストマー樹脂8中に熱伝導性の熱伝導性フィラー6を分散させた構造を有する樹脂層2である。
本発明の熱伝導シートの初期のアスカーC硬度は50以下である。初期のアスカーC硬度が50を超えると、柔軟性が悪くなり、発熱体に対する形状追従性が低下する。なお、初期のアスカーC硬度は、熱伝導シートに対してアスカーC硬度の測定を開始した時点での硬度の測定値のことである。熱伝導シートの初期のアスカーC硬度は、好ましくは45以下であり、より好ましくは40以下であり、そして、好ましくは10以上である。
本発明の熱伝導シートの30秒経過時のアスカーC硬度は、好ましくは30以下であり、より好ましくは20以下である。また、熱伝導シートの30秒経過時のアスカーC硬度は、好ましくは初期のアスカーC硬度の半分以下である。このような値にすることにより、熱伝導シートに対して、一定の圧力を加えた後の残留応力が低減され、発熱体である電子部品等の破損を抑制することができる。なお、30秒経過時のアスカーC硬度は、アスカーC硬度の測定を開始した後、30秒経過した時点でのアスカーC硬度であり、詳細には実施例に記載した方法により測定することができる。アスカーC硬度は、熱伝導性フィラー等の充填材の含有量、エラストマー樹脂の柔らかさ、充填材とエラストマー樹脂との親和性等を制御することにより調節することができる。
熱伝導シートのゲル分率は、好ましくは20%以下であり、より好ましくは10%以下であり、更に好ましくは5%以下であり、より更に好ましくは0%である。熱伝導シートのゲル分率を低くすることにより、初期のアスカーC硬度に対する30秒経過後のアスカーC硬度(30秒経過後のアスカーC硬度/初期のアスカーC硬度)を低くすることができる。ゲル分率は、実施例に記載の方法で測定することができる。ゲル分率は、後述するように、例えば、エラストマー樹脂の架橋の有無や、架橋の程度を制御することにより調整することができ、未架橋のエラストマー樹脂を用いることがゲル分率を低くすることができ好ましい。
本発明の熱伝導シートの製造方法は、特に限定されないが、熱伝導性フィラー、エラストマー樹脂、及び必要に応じて添加剤を押出機に供給し溶融混練して、押出機からシート状に押出すことによって熱伝導シートを成形すればよい。
本発明の積層体からなる熱伝導シートの製造方法は、特に限定されないが、以下説明する、混練工程、積層工程、さらに必要に応じてスライス工程を含む方法を用いて製造することができる。
熱伝導性フィラーとエラストマー樹脂とを混練して、熱伝導性樹脂組成物を作製する。
前記の混練は、例えば、熱伝導性フィラーとエラストマー樹脂とを、プラストミル等の二軸スクリュー混練機や二軸押出機等を用いて、加熱下において混練することが好ましく、これにより、熱伝導性フィラーがエラストマー中に均一に分散された熱伝導性樹脂組成物を得ることができる。
次いで、該熱伝導性樹脂組成物をプレスすることにより、シート状の樹脂層(熱伝導性樹脂層)を得ることができる。
積層工程では、前記混練工程で得た樹脂層を積層してn層構造の積層体を作成する。積層方法としては、例えば、混練工程で作製した樹脂層をxi分割して積層し、xi層構造の積層体を作製後、必要に応じて、熱プレスを行い、その後、更に、必要に応じて、分割と積層と前記の熱プレスを繰り替えして、幅がDμmでn層構造の積層体を作製する方法を用いることができる。
熱伝導性フィラーが板状である場合、積層工程後の積層体の幅(Dμm)、前記熱伝導性フィラーの厚み(dμm)は、0.02≦d/(D/n)≦1を満足することが好ましい。
このように、複数回の成形を行う場合には、各回における成形圧を、1回の成形で行う場合に比べて、小さくすることができるため、成形に起因する積層構造の破壊等の現象を回避することができる。
その他の積層方法として、例えば、多層形成ブロックを備える押出機を用い、前記多層形成ブロックを調製して、共押出し成形により、前記n層構造で、かつ、前記厚さDμmの積層体を得る方法を用いることもできる。
具体的には、第1の押出機及び第2の押出機の双方に前記混練工程で得た熱伝導性樹脂組成物を導入し、第1の押出機及び第2の押出機から熱伝導性樹脂組成物を同時に押出す。第1の押出機及び第2の押出機から押出された熱伝導性樹脂組成物は、フィードブロックに送られる。フィードブロックでは、第1の押出機及び上記第2の押出機から押出された熱伝導性樹脂組成物が合流する。それによって、熱伝導性樹脂組成物が積層された2層体を得ることができる。次に、前記の2層体を多層形成ブロックへと移送し、押出し方向に平行な方向であり、かつ積層面に垂直な複数の面に沿って2層体を複数に分割後、積層して、n層構造で、厚みDμmの積層体を作製することができる。このとき、1層当たりの厚み(D/n)は、多層形成ブロックを調整して所望の値とすることができる。
前記積層工程で得た積層体を必要に応じて所望の高さになるよう積層し、圧力を掛けて合着した後、積層方向に対して平行方向にスライスすることにより、熱伝導シートを作製する。
上記した各工程の間、又は各工程とともに、エラストマー樹脂を架橋する工程を設けてもよい。架橋は、例えば、電子線、α線、β線、γ線等の電離性放射線を照射する方法が挙げられる。しかし、エラストマー樹脂の架橋の程度が大きいと、熱伝導シートの圧縮後の残留応力が低下し難く、発熱体である電子部品等の破損が生じやすくなるため、電離性放射線の照射量を5Mrad以下に調整することが好ましく、エラストマー樹脂を架橋しないことがより好ましい。
以下の実施例及び比較例で使用した材料は以下のとおりである。
(1)エラストマー樹脂
(i)液状アクリロニトリルブタジエンゴム1 JSR株式会社製、商品名「N231L」
(ii)アクリロニトリルブタジエンゴム2
下記(A)7.2体積%と下記(B)40.8体積%との混合物
(A)アクリロニトリルブタジエンゴム JSR株式会社製、商品名「N280」
(B)液体アクリロニトリルブタジエンゴム JSR株式会社製、商品名「N231L」
(iii)アクリロニトリルブタジエンゴム3
下記(A)38体積%と下記(B)10体積%との混合物
(A)アクリロニトリルブタジエンゴム JSR株式会社製、商品名「N280」
(B)液体アクリロニトリルブタジエンゴム JSR株式会社製、商品名「N231L」
(iv)液状イソプレンゴム1 株式会社クラレ製、商品名「LIR-30」
(v)液状イソプレンゴム2 株式会社クラレ製、商品名「KL-10」
(vi)液状シリコーン 東レダウコーニング株式会社製、商品名「SE 1720CV」
(vii)液状EPDM(液状エチレン-プロピレン-ジエンゴム)三井化学株式会社製、商品名「PX-068」
(viii)アクリロニトリルブタジエンゴム4
下記(A)14.4体積%と下記(B)33.6体積%との混合物
(A)アクリロニトリルブタジエンゴム JSR株式会社製、商品名「N280」
(B)液体アクリロニトリルブタジエンゴム JSR株式会社製、商品名「N231L」
(vx)液状イソプレンゴム3
液状イソプレンゴム1(株式会社クラレ製、商品名「LIR-30」)14.4体積%と液状イソプレンゴム2(株式会社クラレ製、商品名「KL-10」)33.6体積%との混合物
(2)熱伝導性フィラー
(i)窒化ホウ素 デンカ社製、商品名「SGP」
形状;板状フィラー
長辺方向熱伝導率;250W/m・K
厚み:1μm
(ii)グラフェン ブリヂストンケービージー社製、商品名「WGNP」
形状;板状フィラー
長辺方向熱伝導率;1000W/m・K
厚み;2μm
<粘度>
エラストマー樹脂50gを、25℃で、B型粘度計(東洋産業社製)で測定した。
<熱伝導率>
25mm角の熱伝導シートをセラミックヒーターと水冷式放熱板の間に挟み、加熱した。20分経過した後、セラミックヒーターの温度T1と水冷式放熱板の温度T2を測定し、セラミックヒーターの印加電力W、熱伝導シートの厚さt、熱伝導シートの面積Sを下記式に代入して熱伝導率λを算出した。
λ=t×W/{S×(T1-T2)}
<アスカーC硬度>
(初期アスカーC硬度)
25mm角の熱伝導シートを、厚み10mm以上となるように積層し、アスカーゴム硬度計C型(高分子計器株式会社製)で測定した。
(30秒経過後のアスカーC硬度)
アスカーC硬度の測定を開始して、30秒経過した時点でのアスカーC硬度を測定した。
アスカーC硬度の測定は25℃で行った。
<圧縮強度>
JIS K6767-7.2.3(JIS2009)に準拠して測定した。ただし、サンプル寸法は、2mm×20mm×20mmで測定を行った。
<ラメラ長>
100φ深さ50mmの容器に40mmの高さまでエラストマー樹脂を入れ、60φのリングをエラストマー樹脂界面から深さ2mmまで沈め、2mm/sの速度でリングを持ち上げた。引き上げた際に形成された膜が破泡した地点と界面の距離よりラメラ長を算出した。なお、測定は温度25℃、相対湿度80%で行った。
<ゲル分率>
熱伝導シートのゲル分率を下記のとおり測定した。
熱伝導シートをAg秤量し、これを120℃のキシレン中に24時間浸漬して不溶解分を200メッシュの金網で濾過し、金網上の残渣を真空乾燥して乾燥残渣の重量を測定し(Bg)、熱伝導シートの重量とフィラー配合割合より算出した熱伝導シート内のフィラー重量より(Cg)、下記式により算出した。
ゲル分率(重量%)=((B-C)/A)×100
液状アクリロニトリルブタジエンゴム1(JSR株式会社製、N231L)48体積%と、窒化ホウ素52体積%とからなる混合物を溶融混練後、プレスすることにより厚さ0.5mm、幅80mm、奥行き80mmのシート状の樹脂層を得た。次に積層工程として、得られた樹脂層を16等分して重ねあわせて総厚さ8mm、幅20mm、奥行き20mmの16層からなる積層体を得た。次いで積層方向に平行にスライスし、厚さ2mm、幅8mm、奥行き20mmの熱伝導シートを得た。この場合、積層体を構成する樹脂層の1層の厚みは0.5mm(500μm)である。この熱伝導シートを断面方向(厚さ方向)から熱性能、硬度、圧縮強度を測定した。
配合を表1に記載のとおり変更したこと以外は、実施例1と同様にして樹脂発泡シートを得た。評価結果を表1に示す。
これに対して、比較例1は、粘度が本発明で規定する値より高いエラストマー樹脂を用いた例であるが、初期のアスカーC硬度が高く、柔軟性に劣ることが分かった。比較例2は、ラメラ長が本発明で規定する値より低いエラストマー樹脂を用いた例であるが、初期のアスカーC硬度は低かったが、30秒経過後のアスカーC硬度が初期とあまり変化しておらず、残留応力が低減されないことが分かった。
2 樹脂層
3 発熱体
4 放熱体
5 シート面
6 熱伝導性板状フィラー
7 熱伝導性樹脂層
8 エラストマー樹脂
Claims (9)
- 体積割合が30~70%のエラストマー樹脂と、体積割合が30~70%の熱伝導性フィラーとを含む熱伝導シートであって、前記エラストマー樹脂の25℃での粘度が3000Pa・s以下で、かつ前記エラストマー樹脂のラメラ長が20mm以上である、初期のアスカーC硬度が50以下の熱伝導シート。
- 熱伝導率が5W/m・K以上である、請求項1に記載の熱伝導シート。
- 測定開始から30秒経過時のアスカーC硬度が、前記初期のアスカーC硬度の半分以下である、請求項1又は2に記載の熱伝導シート。
- 25%圧縮強度が200kPa以下である、請求項1~3のいずれかに記載の熱伝導シート。
- 50%圧縮強度が1000kPa以下である、請求項1~4のいずれかに記載の熱伝導シート。
- ゲル分率が20%以下である、請求項1~5のいずれかに記載の熱伝導シート。
- 前記熱伝導性フィラーが、酸化アルミニウム、酸化マグネシウム、窒化ホウ素、タルク、窒化アルミニウム、グラフェン、窒化ホウ素ナノチューブ、カーボンナノチューブ、及びダイヤモンドからなる群から選択される少なくとも1種である、請求項1~6のいずれかに記載の熱伝導シート。
- 前記熱伝導性フィラーの平均粒径が200μm以下であり、熱伝導率が8W/m・K以上である、請求項1~7のいずれかに記載の熱伝導シート。
- 前記エラストマー樹脂と、熱伝導性フィラーとを含有する樹脂層が面方向に積層された積層体であり、積層された樹脂層の1層の厚みが1000μm以下である、請求項1~8のいずれかに記載の熱伝導シート。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780063318.6A CN109843991B (zh) | 2016-11-30 | 2017-11-30 | 热传导片 |
JP2017566041A JP6505874B2 (ja) | 2016-11-30 | 2017-11-30 | 熱伝導シート |
EP17876675.4A EP3549974B1 (en) | 2016-11-30 | 2017-11-30 | Thermally conductive sheet |
US16/341,976 US11136484B2 (en) | 2016-11-30 | 2017-11-30 | Thermally conductive sheet |
KR1020197014422A KR102455995B1 (ko) | 2016-11-30 | 2017-11-30 | 열전도 시트 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-233140 | 2016-11-30 | ||
JP2016233140 | 2016-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018101445A1 true WO2018101445A1 (ja) | 2018-06-07 |
Family
ID=62241694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/043186 WO2018101445A1 (ja) | 2016-11-30 | 2017-11-30 | 熱伝導シート |
Country Status (6)
Country | Link |
---|---|
US (1) | US11136484B2 (ja) |
EP (1) | EP3549974B1 (ja) |
JP (1) | JP6505874B2 (ja) |
KR (1) | KR102455995B1 (ja) |
CN (1) | CN109843991B (ja) |
WO (1) | WO2018101445A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020153377A1 (ja) * | 2019-01-22 | 2020-07-30 | 積水化学工業株式会社 | 熱伝導性樹脂シート |
WO2021065899A1 (ja) * | 2019-09-30 | 2021-04-08 | 積水化学工業株式会社 | 熱伝導性樹脂シート |
JP2021054968A (ja) * | 2019-09-30 | 2021-04-08 | 積水化学工業株式会社 | 熱伝導性樹脂シート |
JP2021123661A (ja) * | 2020-02-06 | 2021-08-30 | 積水化学工業株式会社 | 熱伝導性樹脂シート |
US11456229B2 (en) * | 2017-07-24 | 2022-09-27 | Sekisui Chemical Co., Ltd. | Thermally conductive sheet |
US20220306863A1 (en) * | 2019-09-05 | 2022-09-29 | Panasonic Intellectual Property Management Co., Ltd. | Thermally conductive silicone composition and thermally conductive silicone material |
US20220363836A1 (en) * | 2019-11-08 | 2022-11-17 | Panasonic Intellectual Property Management Co., Ltd. | Thermally conductive silicone composition and thermally conductive silicone material |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112519337B (zh) * | 2020-11-04 | 2023-05-30 | 上海阿莱德实业股份有限公司 | 沿厚度方向具有超高导热系数的导热性片材 |
CN114381052A (zh) * | 2021-12-14 | 2022-04-22 | 苏州泰吉诺新材料科技有限公司 | 一种无硅导热垫片及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003200437A (ja) * | 2002-01-09 | 2003-07-15 | Polymatech Co Ltd | 熱伝導性シートの製造方法 |
WO2014083890A1 (ja) * | 2012-11-27 | 2014-06-05 | 積水化学工業株式会社 | 電子機器用熱伝導性発泡体シート及び電子機器用熱伝導性積層体 |
JP2014209537A (ja) * | 2013-03-29 | 2014-11-06 | 積水化学工業株式会社 | 電子機器用熱伝導性発泡体シート |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3654743B2 (ja) | 1997-07-01 | 2005-06-02 | 電気化学工業株式会社 | 放熱スペーサー |
JP3543663B2 (ja) * | 1999-03-11 | 2004-07-14 | 信越化学工業株式会社 | 熱伝導性シリコーンゴム組成物及びその製造方法 |
JP3807995B2 (ja) * | 2002-03-05 | 2006-08-09 | ポリマテック株式会社 | 熱伝導性シート |
KR100780055B1 (ko) * | 2004-12-28 | 2007-11-29 | 제일모직주식회사 | 열전도성 다층 수지 시트 |
US20140248504A1 (en) | 2011-09-08 | 2014-09-04 | Hitachi Chemical Company, Ltd. | Resin composition, resin sheet, cured resin sheet, resin-adhered metal foil and heat dissipation device |
JP6261287B2 (ja) | 2013-11-05 | 2018-01-17 | 東京エレクトロン株式会社 | プラズマ処理装置 |
CN107408543B (zh) | 2015-02-10 | 2021-02-05 | 日本瑞翁株式会社 | 导热片及其制造方法 |
CN107428986A (zh) | 2015-03-23 | 2017-12-01 | 积水化学工业株式会社 | 丙烯酸系树脂放热发泡体片 |
-
2017
- 2017-11-30 JP JP2017566041A patent/JP6505874B2/ja active Active
- 2017-11-30 KR KR1020197014422A patent/KR102455995B1/ko active IP Right Grant
- 2017-11-30 EP EP17876675.4A patent/EP3549974B1/en active Active
- 2017-11-30 US US16/341,976 patent/US11136484B2/en active Active
- 2017-11-30 CN CN201780063318.6A patent/CN109843991B/zh active Active
- 2017-11-30 WO PCT/JP2017/043186 patent/WO2018101445A1/ja unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003200437A (ja) * | 2002-01-09 | 2003-07-15 | Polymatech Co Ltd | 熱伝導性シートの製造方法 |
WO2014083890A1 (ja) * | 2012-11-27 | 2014-06-05 | 積水化学工業株式会社 | 電子機器用熱伝導性発泡体シート及び電子機器用熱伝導性積層体 |
JP2014209537A (ja) * | 2013-03-29 | 2014-11-06 | 積水化学工業株式会社 | 電子機器用熱伝導性発泡体シート |
Non-Patent Citations (1)
Title |
---|
See also references of EP3549974A4 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11456229B2 (en) * | 2017-07-24 | 2022-09-27 | Sekisui Chemical Co., Ltd. | Thermally conductive sheet |
WO2020153377A1 (ja) * | 2019-01-22 | 2020-07-30 | 積水化学工業株式会社 | 熱伝導性樹脂シート |
JPWO2020153377A1 (ja) * | 2019-01-22 | 2021-12-02 | 積水化学工業株式会社 | 熱伝導性樹脂シート |
EP3916774A4 (en) * | 2019-01-22 | 2022-10-19 | Sekisui Chemical Co., Ltd. | THERMALLY CONDUCTIVE RESIN FILM |
US20220306863A1 (en) * | 2019-09-05 | 2022-09-29 | Panasonic Intellectual Property Management Co., Ltd. | Thermally conductive silicone composition and thermally conductive silicone material |
WO2021065899A1 (ja) * | 2019-09-30 | 2021-04-08 | 積水化学工業株式会社 | 熱伝導性樹脂シート |
JP2021054968A (ja) * | 2019-09-30 | 2021-04-08 | 積水化学工業株式会社 | 熱伝導性樹脂シート |
JP7235633B2 (ja) | 2019-09-30 | 2023-03-08 | 積水化学工業株式会社 | 熱伝導性樹脂シート |
US20220363836A1 (en) * | 2019-11-08 | 2022-11-17 | Panasonic Intellectual Property Management Co., Ltd. | Thermally conductive silicone composition and thermally conductive silicone material |
JP2021123661A (ja) * | 2020-02-06 | 2021-08-30 | 積水化学工業株式会社 | 熱伝導性樹脂シート |
JP7542317B2 (ja) | 2020-02-06 | 2024-08-30 | 積水化学工業株式会社 | 熱伝導性樹脂シート |
Also Published As
Publication number | Publication date |
---|---|
KR20190087431A (ko) | 2019-07-24 |
JPWO2018101445A1 (ja) | 2019-01-31 |
CN109843991B (zh) | 2022-03-29 |
KR102455995B1 (ko) | 2022-10-19 |
CN109843991A (zh) | 2019-06-04 |
EP3549974A4 (en) | 2020-07-08 |
EP3549974B1 (en) | 2021-09-08 |
US11136484B2 (en) | 2021-10-05 |
US20190241786A1 (en) | 2019-08-08 |
EP3549974A1 (en) | 2019-10-09 |
JP6505874B2 (ja) | 2019-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018101445A1 (ja) | 熱伝導シート | |
JP6746540B2 (ja) | 熱伝導シート | |
JP7168617B2 (ja) | 熱伝導シート及びその製造方法 | |
WO2020153377A1 (ja) | 熱伝導性樹脂シート | |
KR20150035783A (ko) | 열전도성 시트 | |
JP2023104942A (ja) | 熱伝導シート | |
JP6978639B1 (ja) | 熱伝導性樹脂シート | |
WO2021065899A1 (ja) | 熱伝導性樹脂シート | |
JP7488636B2 (ja) | 熱伝導性樹脂シート | |
JP7235633B2 (ja) | 熱伝導性樹脂シート | |
JP7542317B2 (ja) | 熱伝導性樹脂シート | |
WO2023063406A1 (ja) | 熱伝導性樹脂シート |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017566041 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17876675 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197014422 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017876675 Country of ref document: EP Effective date: 20190701 |