WO2018098393A1 - Boîtier pour machine à commande numérique par ordinateur - Google Patents

Boîtier pour machine à commande numérique par ordinateur Download PDF

Info

Publication number
WO2018098393A1
WO2018098393A1 PCT/US2017/063187 US2017063187W WO2018098393A1 WO 2018098393 A1 WO2018098393 A1 WO 2018098393A1 US 2017063187 W US2017063187 W US 2017063187W WO 2018098393 A1 WO2018098393 A1 WO 2018098393A1
Authority
WO
WIPO (PCT)
Prior art keywords
numerically
computer
controlled machine
housing
protective material
Prior art date
Application number
PCT/US2017/063187
Other languages
English (en)
Inventor
Daniel Shapiro
Original Assignee
Glowforge Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glowforge Inc. filed Critical Glowforge Inc.
Publication of WO2018098393A1 publication Critical patent/WO2018098393A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0096Portable laser equipment, e.g. hand-held laser apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/127Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/706Protective screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/144Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers using layers with different mechanical or chemical conditions or properties, e.g. layers with different thermal shrinkage, layers under tension during bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0892Controlling the laser beam travel length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/705Beam measuring device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0288Carriages forming part of a cutting unit

Definitions

  • the subject matter described herein relates to systems and methods for providing a housing having at least side parts and/or bottom parts made substantially of plastic to encase a computer-numerically-controlled machine with an added material layer providing improved confinement of laser energy.
  • a computer-numerically-controlled (CNC) machine can operate by moving a tool over a material to be machined.
  • the tool can be a light source such as, for example, a laser and/or the like, that is configured to deliver electromagnetic energy to one or more locations along the material.
  • a computer-numerically-controlled machine includes a light source configured to deliver electromagnetic energy at a location on a material at least partially disposed within the computer-numerically-controlled machine.
  • a housing surrounds the sides and, optionally, the bottom of an interior space and the location.
  • the housing includes a structural material defining at least a portion of the interior space.
  • the housing also has a protective material protecting the plastic at least on the side parts (also referred to as sides) and/or bottom parts (also referred to as the bottom).
  • the protective material can, among other possible benefits, dissipate, absorb, and/or scatter electromagnetic energy emitted by the laser to prevent the electromagnetic energy from escaping the housing.
  • the dissipating, scattering, and/or absorbing has the effect of reducing a permeability of the housing to electromagnetic energy relative to the structural material alone (e.g. without the protective material).
  • Implementations of the current subject matter can provide one or more advantages, such as for example providing improved safety for operators of a CNC machine and/or preventing or reducing the potential for material damage due to electromagnetic energy escaping from the housing.
  • a housing as described herein provides benefits in manufacturing cost savings, resiliency, durability, and the like.
  • FIG. 1 is a perspective view of a housing of a CNC machine, consistent with some implementations of the current subject matter
  • FIG. 2 is a diagram illustrating the absorption of laser radiation by the housing, consistent with some implementations of the current subject matter
  • FIG. 3 is a diagram illustrating the specular reflection of laser radiation by the housing, consistent with some implementations of the current subject matter
  • FIG. 4 is a diagram illustrating the diffuse reflection of laser radiation by the housing, consistent with some implementations of the current subject matter
  • FIG. 5 is a diagram illustrating an expanded sectional view of the housing with an interior protective material, consistent with some implementations of the current subject matter
  • FIG. 6 is a diagram illustrating an expanded sectional view of the housing with an exterior protective material, consistent with some implementations of the current subject matter
  • FIG. 7 is a diagram illustrating an expanded sectional view of the housing with protective material between an external structural material and an internal structural material, consistent with some implementations of the current subject matter.
  • FIG. 8 is a diagram illustrating an expanded sectional view of the housing with protective material within a structural material, consistent with some implementations of the current subject matter.
  • Computer-numerically-controlled machines can direct energy at a material for the purpose of effecting a change in the material.
  • laser cutter s/engravers direct electromagnetic energy (a laser beam) to a material in order to cut or engrave it.
  • the laser energy can be absorbed by the material which discolors, ablates, burns, melts, vaporizes, etc., to form holes, cuts, engravings, and the like.
  • the laser energy can also cause the material to harden, cause a phase transition, or otherwise modify the physical characteristics of the material.
  • the laser beam can be focused so that a maximum power density is achieved at the material.
  • the laser will encounter either the material or the material on which the laser is resting.
  • This can be a metal grating, allowing the bulk of the laser energy to pass through, with some additional structure that can resist the laser underneath the grating, for example, a metal plate.
  • a grating can be used because if the material being affected rested on solid metal, the reflection of the beam could strike the back side of the material and cause unwanted effects.
  • FIG. 1 is a perspective view of a housing 100 of a CNC machine.
  • FIG. 2 is a diagram illustrating the absorption of laser radiation by a housing.
  • FIG. 3 is a diagram illustrating the specular reflection of laser radiation by the housing.
  • FIG. 4 is a diagram illustrating the diffuse reflection of laser radiation by the housing. The dashed lines indicating focusing of the laser beam are shown in an exaggerated manner for illustrative purposes.
  • Lasers are often used with housings, which can serve several purposes. First, housings can provide an aesthetic appearance to the device that is desirable. Second, housings can provide structural rigidity and support for interior components of the CNC machine. Third, housings can contain the laser radiation.
  • the CNC machine can include a housing with an interior space 110 where the laser beam 260 can operate on the material 230. Though shown as open in FIG. 1, to illustrate the interior space, the housing can also be configured to restrict the laser beam to the interior space.
  • the housing can include closable apertures, laser-opaque windows, and the like such that typically no harmful laser light can escape.
  • the housing can, for example, surround the laser, the material, and other components such as the laser head, gantry, turning optics, the support 240, and the like.
  • the housing contains the reflecting laser light 270.
  • the reflective surface can be, for example, an imperfection on the material, a result of a prior cut or engraving, a natural contour or feature of the material, a foreign object or debris, etc.
  • Laser radiation can be contained through several basic strategies, some of which are described herein.
  • the structural material of the housing can serve all three purposes, structural, aesthetic, and radiation blocking, for example by fabricating the housing entirely from heavy sheet metal.
  • the housing can advantageously be constructed of a structural material that is light, attractive, and/or inexpensive (but possibly not fully resistant to electromagnetic radiation from the laser), but which incorporates a protective material in the design that renders the housing safe against laser radiation.
  • the protective material can be more resistant to the electromagnetic energy than the housing and thus render the housing safe against laser radiation.
  • One advantage of the composite construction is a smaller amount of laser-safe protective material can be used, with the remainder of the cheaper or lighter structural material used to provide structure or support for the rest of the CNC machine.
  • the protective material can be applied to the housing at any place which could, in theory, receive laser light, for example reflections from the material being worked or from secondary reflections from other locations.
  • FIG. 5 is a diagram illustrating an expanded sectional view of a housing with an interior protective material.
  • the housing can, for example, be a single layer or composition of plastic or plastic doped with glass fiber.
  • the housing can be of a composite construction.
  • the housing can be a composite of a structural material 510 and a protective material 520.
  • the structural material can, for example, provide the primary mechanical support to the components of the CNC machine.
  • the protective material can be more resistant to electromagnetic energy (e.g., laser energy) than the structural material.
  • the protective material can be incorporated with the housing to dissipate, absorb, and/or scatter the electromagnetic energy (e.g., laser energy), thereby preventing the electromagnetic energy from escaping the housing.
  • the dissipating, scattering, and/or absorbing has the effect of reducing a permeability of the housing to electromagnetic energy relative to the structural material alone (e.g. without the protective material).
  • the housing which can include for example a top, sides, bottom, internal walls, or other structural components, can be constructed substantially of a material different than that of the protective material.
  • the housing can be substantially constructed of polymers, commonly referred to in the art as plastics.
  • the term "substantially" in the context of the construction of the housing means that the case is for the most part, but not necessarily entirely, plastic.
  • one implementation of a housing can have a plastic shell with glass windows added to the sides, ports with metal mesh to protect fans, electrical feedthroughs, or the like. While implementations and designs of the housing can vary, the housing can generally refer to any combination of structural components or structures to which are added other components of the CNC machine (e.g.
  • substantially can refer to a housing being greater than 50% plastic in terms of interior surface area, exterior surface area, total surface area, mass density, cross sectional dimension, or the like. Because the top surface and lid of the case have different material requirements, such as a desire to be able to see through the lid, they are typically made of a different material than the rest of the case (e.g. glass) and so, while it may also be fabricated using the techniques shown here, are not included in the consideration of whether the case is substantially plastic.
  • a housing constructed substantially of plastic incorporating a protective material in other implementations specific or smaller portions of the housing can incorporate the protective material, or a different type of protective material. For example, in a location where the housing is especially thin, additional protective material can be applied to obtain the desired level of resistance to laser energy. Also, in implementations where the housing does not need protective material everywhere, then protective material can be added to the portions of the housing that can benefit from it. These portions can be, for example, plastic, wood, or the like. In such implementations, the housing is not substantially made of plastic. Also, in implementations where the need for protective material depends on the use or application of the CNC machine, the protective material may be added or removed to meet situational safety requirements.
  • a CNC machine capable of processing large or over-sized materials via the use of a material pass-through slot may employ the use of a detachable and/or semi-detachable protective material to increase the safety of use of the CNC machine when the material pass- through slot is not in use.
  • FIG. 6 is a diagram illustrating an expanded sectional view of the housing with an exterior protective material.
  • the protective material can be on an external surface of the housing.
  • a reflected laser beam can burn through the structural material but be stopped when reaching the protective material.
  • Any implementations of the protective material described herein can be added to the exterior of the housing in such a manner.
  • an external protective material can have the effect of dissipating, scattering, and/or absorbing electromagnetic energy to thereby reduce a permeability of the plastic housing to electromagnetic energy relative to the structural material alone (e.g. without the protective material).
  • FIG. 7 is a diagram illustrating an expanded sectional view of the housing with protective material between an external structural material and an internal structural material.
  • the protective material in some implementations, can be bracketed on either side by structural material. This can be done to conceal the protective material or to provide yet another layer to aid in confinement of the laser energy.
  • the protective material can be co- molded with the structural material. That is, one side, either the interior or the exterior of the structural material can be molded. Then, the protective material can be molded to the existing structural material. Finally, another molding of structural material can be applied opposite the existing structural material such that the protective material is between the two structural materials.
  • the structural materials can be the same type of structural material or they can be different types.
  • a reflected beam 270 can strike the structural material and, for example, burn through one layer of structural material 510 before being stopped by the protective material.
  • FIG. 8 is a diagram illustrating an expanded sectional view of the housing with protective material within a structural material.
  • the protective material can be dispersed throughout at least some of the structural material.
  • the protective material can be an additive to the structural material that can, for example, be introduced during the molding of the structural material.
  • the protective material present within the structural material, can prevent the laser energy from completely penetrating the structural material.
  • Some examples of protective material that can be placed within the structural material can include, for example, metal or ceramic fibers, spheres, particles, mesh, gratings, etc.
  • the relative number density of the structural material and the protective material can vary.
  • the wall of the housing at a given location can be 90% structural material and 10%) protective material. In other implementations, there can be up to 20%, 30%>, 50%, 75%), or 95% protective material suspended in the structural material.
  • the structural material of the housing can be made of plastic while the protective material can be of generally metallic composition.
  • the protective material can be a metal or foil layer applied to a surface of the structural material.
  • the metallic protective material can be significantly thinner than the structural material.
  • Metallic protective materials can include, for example, adhesive-backed foil, metal plating, or sheet metal secured to the structural material.
  • the protective material can be adhesive-backed foil.
  • the adhesive-backed foil can be a thin metal layer, such as copper, tin, aluminum, or steel, with an adhesive backing.
  • the adhesive-backed foil can be cut or otherwise shaped to cover regions of the structural material that could possibly be penetrated by the reflected laser light.
  • Adhesive-backed foil is generally inexpensive and can have a metallic layer that is sufficient to absorb and/or scatter the reflected laser light that strikes it.
  • Adhesive backed foil can be cut or shaped to cover any desired surface or be replaced if damaged or worn.
  • the thickness of the adhesive-backed foil can vary depending on the amount of laser energy to be dissipated, scattered, absorbed, etc.
  • the adhesive-backed foil can have a metal layer of approximately, for example, 0.5, 1.0, 1.2, 1.5, 2.0, or 2.5 thousandths of an inch in thickness.
  • the thickness of the protective material whether a foil, plating, or additive can be any of these values and can vary from location to location. Also, other thicknesses can be implemented that are sufficient to absorb or reflect the laser energy without significant damage to the protective surface. In other implementations, the heat conduction or reflection of the absorbed or reflected laser light can be sufficient to maintain the temperature of the protective material below a melting point of the protective material.
  • a plate of stamped metal can be manufactured and affixed in a permanent, semi-permanent, and/or detachable manner to the housing with fasteners, for example, screws, bolts, adhesive, etc.
  • a coating of chrome and/or other metal can be plated or deposited.
  • the deposition coating can be by spraying, painting, or immersion.
  • the deposition coating can contain a substrate with metallic particulates suspended within the substrate.
  • Protective material can be introduced as an additive to the structural material during an injection-molding process used to manufacture the housing.
  • the protective material can be constructed as a grid, mesh, screen, honeycomb, or the like and incorporated either within the structural material (optionally with the structural material acting as a fill) or placed on an exposed surface of the structural material (whether on an internal or external surface).
  • Another implementation can be to include the protective material as an "in-mold decoration.”
  • the protective material can be applied to a carrier material in the mold. When the structural material is introduced to the mold, the protective material can adhere to the structural material and remain with the structural material when the housing is removed from the mold. In this way, the structural material can be chemically bonded to the structural material without the need for fasteners.
  • the protective (or structural) materials can also be of a non-metallic composition.
  • the protective material can be sheets of glass, ceramic, heat- resistant plastic, silicone, vinyl, wood, and/or the like.
  • Other examples of non-metallic protective materials can include metalloids such as carbon, boron, silicon, calcium carbonate, talc, and barium.
  • the exposed interior surface (whether of structural material as shown in FIG. 6 or protective material as in FIG. 5) can be generally reflective or glossy to allow laser energy to reflect at a lower power density (as shown in FIG. 3). In other implementations, the exposed interior surface can be matte to allow more of the laser energy to be absorbed (as shown in FIG. 2).
  • a CNC machine can include a light source and a housing.
  • the light source can be configured to deliver electromagnetic energy at a location of a plurality of locations on a material at least partially disposed within the CNC machine.
  • the housing can include at least one side part surrounding an interior space the housing and the at least one location on the material.
  • the housing can include a structural material defining at least a portion of the interior space.
  • the housing can further include a protective material protecting the side part. The protective material can reduce a permeability of the side part to the electromagnetic radiation relative to the structural material alone.
  • the housing can further include a bottom part of the CNC machine.
  • the protective material can further reduce a permeability of the bottom part to the electromagnetic radiation relative to the structural material alone.
  • the protective material can include at least one of adhesive-backed metallic foil, metallic plating, a ceramic particle layer, a metallic particle layer, and/or a plastic layer that is more resistant to electromagnetic radiation than the structural material.
  • the protective material can be disposed on an inner surface of the structural material.
  • the protective material can be disposed on an outer surface of the structural material.
  • the protective material can be disposed within the structural material.
  • the protective material can be disposed between an external structural material and an internal structural material.
  • the protective material can include a metallic layer.
  • the protective material can include a ceramic layer.
  • the structure material can include plastic.
  • the protective material can be detachable and/or semi-detachable.
  • the protective material can be more resistant to the electromagnetic energy than the structural material.
  • the light source can include a laser.
  • the laser can be capable of one or more of discoloring, ablating, and vaporize the material.
  • the CNC machine can be capable of hardening, creating a phase transition, and/or modifying the physical characteristics of the material.
  • the light source can include a carbon dioxide laser.
  • the electromagnetic energy can include infrared radiation.
  • a method for manufacturing a computer-numerically-controlled machine can include defining at least a portion of a side part with a structural material.
  • the side part can be protected with a protective material.
  • the protective material can reduce a permeability of the side part to electromagnetic radiation relative to the structural material alone.
  • the housing can be formed to include the side part, which includes the structural material and the protective material.
  • a light source can be configured to deliver the electromagnetic radiation to a material that is at least partially disposed within the housing.
  • One or more aspects or features of the subject matter described herein can be realized in digital electronic circuitry, integrated circuitry, specially designed application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) computer hardware, firmware, software, and/or combinations thereof.
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • These various aspects or features can include implementation in one or more computer programs that are executable and/or interpretable on a programmable system including at least one programmable processor, which can be special or general purpose, coupled to receive data and instructions from, and to transmit data and instructions to, a storage system, at least one input device, and at least one output device.
  • the programmable system or computing system may include clients and servers.
  • a client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other.
  • machine-readable signal refers to any signal used to provide machine instructions and/or data to a programmable processor.
  • the machine- readable medium can store such machine instructions non-transitorily, such as for example as would a non-transient solid-state memory or a magnetic hard drive or any equivalent storage medium.
  • the machine-readable medium can alternatively or additionally store such machine instructions in a transient manner, such as for example as would a processor cache or other random access memory associated with one or more physical processor cores.
  • one or more aspects or features of the subject matter described herein can be implemented on a computer having a display device, such as for example a cathode ray tube (CRT) or a liquid crystal display (LCD) or a light emitting diode (LED) monitor for displaying information to the user and a keyboard and a pointing device, such as for example a mouse or a trackball, by which the user may provide input to the computer.
  • a display device such as for example a cathode ray tube (CRT) or a liquid crystal display (LCD) or a light emitting diode (LED) monitor for displaying information to the user
  • LCD liquid crystal display
  • LED light emitting diode
  • a keyboard and a pointing device such as for example a mouse or a trackball
  • feedback provided to the user can be any form of sensory feedback, such as for example visual feedback, auditory feedback, or tactile feedback; and input from the user may be received in any form, including, but not limited to, acoustic, speech, or tactile input.
  • Other possible input devices include, but are not limited to, touch screens or other touch-sensitive devices such as single or multi -point resistive or capacitive trackpads, voice recognition hardware and software, optical scanners, optical pointers, digital image capture devices and associated interpretation software, and the like.
  • phrases “at least one of A, B, and C;” “one or more of A, B, and C;” and “A, B, and/or C” are each intended to mean “A alone, B alone, C alone, A and B together, A and C together, B and C together, or A and B and C together.”
  • Use of the term “based on,” above and in the claims is intended to mean, “based at least in part on,” such that an unrecited feature or element is also permissible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)

Abstract

Cette invention concerne une machine à commande numérique par ordinateur comprenant, selon un mode de réalisation, une source de lumière et un boîtier. La source de lumière peut être configurée pour délivrer de l'énergie électromagnétique à au moins un emplacement sur un matériau au moins partiellement disposé à l'intérieur de la machine à commande numérique par ordinateur. Le boîtier peut comprendre au moins une partie latérale entourant un espace intérieur et le/les emplacement(s) sur le matériau. Le boîtier peut comprendre un matériau structural définissant au moins une partie de l'espace intérieur. Le boîtier peut en outre comprendre un matériau de protection protégeant la partie latérale. Le matériau de protection peut réduire la perméabilité de la partie latérale au rayonnement électromagnétique comparativement au seul matériau structural.
PCT/US2017/063187 2016-11-25 2017-11-24 Boîtier pour machine à commande numérique par ordinateur WO2018098393A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662426424P 2016-11-25 2016-11-25
US62/426,424 2016-11-25

Publications (1)

Publication Number Publication Date
WO2018098393A1 true WO2018098393A1 (fr) 2018-05-31

Family

ID=60703100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/063187 WO2018098393A1 (fr) 2016-11-25 2017-11-24 Boîtier pour machine à commande numérique par ordinateur

Country Status (2)

Country Link
US (1) US11433477B2 (fr)
WO (1) WO2018098393A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018098395A1 (fr) 2016-11-25 2018-05-31 Glowforge Inc. Gravure améliorée dans une machine commandée numériquement par ordinateur
WO2018098397A1 (fr) 2016-11-25 2018-05-31 Glowforge Inc. Calibrage d'une machine à commande numérique par ordinateur
WO2018098398A1 (fr) * 2016-11-25 2018-05-31 Glowforge Inc. Composants optiques prédéfinis dans une machine commandée numériquement par ordinateur
WO2018098394A1 (fr) 2016-11-25 2018-05-31 Glowforge Inc. Fabrication avec suivi d'image
WO2018098399A1 (fr) 2016-11-25 2018-05-31 Glowforge Inc. Décélération commandé de composants mobiles dans une machine à commande numérique par ordinateur
WO2018098396A1 (fr) 2016-11-25 2018-05-31 Glowforge Inc. Machine commandée numériquement par ordinateur multi-utilisateurs
USD912339S1 (en) * 2018-03-22 2021-03-02 P-Laser N.V. Laser cleaning device
US10744595B2 (en) * 2018-05-09 2020-08-18 Trumpf Inc. Transversal laser cutting machine
WO2020060981A1 (fr) * 2018-09-19 2020-03-26 Rendyr Dispositif de coupe au laser portatif
US11740608B2 (en) 2020-12-24 2023-08-29 Glowforge, Inc Computer numerically controlled fabrication using projected information
US11698622B2 (en) 2021-03-09 2023-07-11 Glowforge Inc. Previews for computer numerically controlled fabrication

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4650287A (en) * 1984-07-23 1987-03-17 Showa Denko Kabushiki Kaisha Laser-light shield and method for shielding human body from laser light
US20050115941A1 (en) * 2002-07-31 2005-06-02 Sukhman Yefim P. Laser containment structure allowing the use of plastics

Family Cites Families (186)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3721811A (en) 1971-04-29 1973-03-20 Cincinnati Milacron Inc Apparatus for commanding a deceleration in numerical control systems
US3967176A (en) 1974-10-15 1976-06-29 Westinghouse Electric Corporation Process control apparatus
US4055787A (en) 1975-07-28 1977-10-25 Giddings & Lewis, Inc. Interruptable numerical contouring control system with return to path safeguards
US4138718A (en) 1977-11-14 1979-02-06 Allen-Bradley Company Numerical control system with downloading capability
DE3005520C2 (de) 1980-02-14 1983-05-05 Kayser-Threde GmbH, 8000 München Zweistrahl-Interferometer zur Fourierspektroskopie
US4518843A (en) 1982-09-01 1985-05-21 Westinghouse Electric Corp. Laser lens and light assembly
US4723219A (en) 1985-06-21 1988-02-02 Amca International Corporation Programmed path for automatic tool retraction and return responsive to degradation threshold
DE3544251A1 (de) 1985-12-14 1987-06-19 Duerkopp System Technik Gmbh Verfahren und vorrichtung zum selbsttaetigen zuschneiden von teilen aus flaechigem naehgut nach mit unterschiedlichen konturen versehenen mustervorlagen auf einer koordinaten-schneidmaschine
US4863538A (en) 1986-10-17 1989-09-05 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
US4918611A (en) 1988-07-21 1990-04-17 Industrial Technology Research Institute Method and apparatus for controlling laser cutting by image processing
US4894831A (en) 1988-09-07 1990-01-16 Spectra-Physics Longitudinally pumped laser oscillator
JP2684107B2 (ja) 1990-02-28 1997-12-03 松下電器産業株式会社 レーザ加工機用数値制御装置
JPH04237306A (ja) 1991-01-21 1992-08-25 Fanuc Ltd パンチプレス機械の運転再開方法
JPH04244347A (ja) 1991-01-29 1992-09-01 Osaka Kiko Co Ltd 加工中の寿命工具交換方法
IT1247844B (it) 1991-03-29 1995-01-02 Pirelli Cavi S P A Dir Proprie Linea di telecomunicazione a fibre ottiche con amplificatori ottici, dotata di mezzi di protezione in grado di interrompere l'emissione luminosa in tutta la linea in presenza di un'interruzione della fibra ottica e di riattivarla automaticamente al ripristino della sua continuita'
US5682319A (en) 1991-06-04 1997-10-28 Anca Pty. Ltd. Computer numerically controlled machines
DE4140211C2 (de) 1991-12-06 1999-12-09 Meurer Nonfood Product Gmbh Verfahren und Vorrichtung zum Einrichten von Stanzformen sowie zum Ausrichten von Prägeklischees zu einer Prägevorlage
JP3107628B2 (ja) 1992-01-23 2000-11-13 トヨタ自動車株式会社 光学式形状認識装置
DE4215338A1 (de) 1992-05-09 1993-11-11 Sel Alcatel Ag Optisches Nachrichtenübertragungssystem mit Überwachungsvorrichtung zur Vermeidung von Riesenimpulsen
JPH0647575A (ja) 1992-08-03 1994-02-22 Fanuc Ltd 光走査型レーザ加工機
TW245669B (fr) 1993-09-27 1995-04-21 Mitsubishi Electric Machine
JP3175463B2 (ja) 1994-02-24 2001-06-11 三菱電機株式会社 レーザ切断方法
DE19502472A1 (de) 1995-01-27 1996-08-01 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Aufnehmen eines Objektes
FR2748562B1 (fr) 1996-05-10 1998-07-03 Sofie Instr Procede et dispositif a deux cameras d'observation pour des mesures tridimensionnelles d'une structure complexe
US6128546A (en) 1996-09-30 2000-10-03 Cincinnati Incorporated Method and apparatus for a cutting system for avoiding pre-cut features
DE69737991T2 (de) 1996-11-20 2008-04-30 Ibiden Co., Ltd., Ogaki Laserbearbeitungsvorrichtung, verfahren und vorrichtung zur herstellung einer mehrschichtigen, gedruckten leiterplatte
JP3213882B2 (ja) 1997-03-21 2001-10-02 住友重機械工業株式会社 レーザ加工装置及び加工方法
US6085122A (en) 1997-05-30 2000-07-04 Dtm Corporation End-of-vector laser power control in a selective laser sintering system
US6031200A (en) 1997-08-04 2000-02-29 Data Technology, Inc. In-process kerf measurement system
US6317255B1 (en) 1998-04-28 2001-11-13 Lucent Technologies Inc. Method and apparatus for controlling optical signal power in response to faults in an optical fiber path
IT1303239B1 (it) 1998-08-07 2000-11-02 Brown & Sharpe Dea Spa Dispositivo e metodo per il posizionamento di una testa di misura inuna macchina per la misura tridimensionale senza contatto.
US6498653B1 (en) 1998-12-14 2002-12-24 Optodyne, Inc. Tool path measurement
US6392192B1 (en) 1999-09-15 2002-05-21 W. A. Whitney Co. Real time control of laser beam characteristics in a laser-equipped machine tool
US6284999B1 (en) 1999-07-23 2001-09-04 Lillbacka Jetair Oy Laser cutting system
US6420675B1 (en) 1999-10-08 2002-07-16 Nanovia, Lp Control system for ablating high-density array of vias or indentation in surface of object
DE19960834B4 (de) 1999-12-16 2006-10-26 Agie S.A., Losone Verfahren und Vorrichtung zur Störungserfassung, insbesondere zur Kollisionserfassung, im Antriebssystem einer numerisch gesteuerten Werkzeugmaschine
WO2001076250A1 (fr) 2000-04-04 2001-10-11 Learningaction, Inc. Affichage en continu d'informations multimedia
JP2001330413A (ja) 2000-05-22 2001-11-30 Disco Abrasive Syst Ltd 厚さ測定方法および厚さ測定装置
JP2002123306A (ja) 2000-10-17 2002-04-26 Toshiba Mach Co Ltd 工作機械の監視システム
US6922607B2 (en) 2000-12-06 2005-07-26 Tsunehiko Yamazaki Numerically controlled method
US6528758B2 (en) 2001-02-12 2003-03-04 Icon Laser Technologies, Inc. Method and apparatus for fading a dyed textile material
US20020129485A1 (en) 2001-03-13 2002-09-19 Milling Systems And Concepts Pte Ltd Method and apparatus for producing a prototype
US6531680B2 (en) 2001-04-06 2003-03-11 W. A. Whitney Co. Cube corner laser beam retroreflector apparatus for a laser equipped machine tool
GB0118307D0 (en) 2001-07-26 2001-09-19 Gsi Lumonics Ltd Automated energy beam positioning
WO2003022453A1 (fr) 2001-09-13 2003-03-20 Koninklijke Philips Electronics N.V. Appareil et procede pour appliquer une substance sur un substrat
EP1309108A1 (fr) 2001-10-31 2003-05-07 Agilent Technologies, Inc. (a Delaware corporation) Emetteur-récepteur optique avec un système d'arrêt automatique de puissance
US6746310B2 (en) 2002-08-06 2004-06-08 Qed Technologies, Inc. Uniform thin films produced by magnetorheological finishing
US6696667B1 (en) 2002-11-22 2004-02-24 Scimed Life Systems, Inc. Laser stent cutting
GB0303270D0 (en) 2003-02-13 2003-03-19 Renishaw Plc A machine tool control process and apparatus therefor
JP4144389B2 (ja) 2003-03-14 2008-09-03 オムロン株式会社 光学式膜計測装置
JP4055998B2 (ja) 2003-04-15 2008-03-05 本田技研工業株式会社 距離検出装置、距離検出方法、及び距離検出プログラム
US7005606B2 (en) 2003-09-09 2006-02-28 W.A. Whitney Co. Laser machine tool with image sensor for registration of workhead guidance system
US20050069682A1 (en) 2003-09-30 2005-03-31 Tan Tseng Custom 3-D Milled Object with Vacuum-Molded 2-D Printout Created from a 3-D Camera
JP2005191173A (ja) 2003-12-25 2005-07-14 Hitachi Ltd 表示装置及びその製造方法
AU2005204433B2 (en) 2004-01-16 2010-02-18 Compumedics Medical Innovation Pty Ltd Method and apparatus for ECG-derived sleep disordered breathing monitoring, detection and classification
US7469620B2 (en) 2004-02-10 2008-12-30 Matthew Fagan Method and system for eliminating external piercing in NC cutting of nested parts
JP2005230886A (ja) 2004-02-20 2005-09-02 Hitachi Via Mechanics Ltd Nc制御のレーザ加工機
DE102005032946A1 (de) 2004-07-16 2006-02-02 Carl Zeiss Meditec Ag Vorrichtung zur Bearbeitung eines Objektes mittels Laserstrahlung
US7449790B2 (en) 2004-08-26 2008-11-11 Hitachi Global Storage Technologies, Inc. Methods and systems of enhancing stepper alignment signals and metrology alignment target signals
JP2006167728A (ja) 2004-12-13 2006-06-29 Yamazaki Mazak Corp レーザ加工機における集光レンズの汚れ検出方法及び装置
CN101095033A (zh) 2004-12-30 2007-12-26 通明国际科技有限公司 基于激光的材料处理方法、系统和其中用于精确能量控制的子系统
JP2006329751A (ja) 2005-05-25 2006-12-07 Sony Corp 表面形状測定方法及び表面形状測定装置
US7930957B2 (en) 2005-06-10 2011-04-26 Prototype Productions, Inc. Closed-loop CNC machine system and method
US20070034615A1 (en) 2005-08-15 2007-02-15 Klaus Kleine Fabricating medical devices with an ytterbium tungstate laser
US8111904B2 (en) 2005-10-07 2012-02-07 Cognex Technology And Investment Corp. Methods and apparatus for practical 3D vision system
WO2007050434A1 (fr) 2005-10-21 2007-05-03 Arnold George M Images pigmentees creees sur de la pierre
US8010224B2 (en) 2005-10-27 2011-08-30 Komatsu Industries Corporation Automatic cutting device and production method for beveled product
US20070181544A1 (en) 2006-02-07 2007-08-09 Universal Laser Systems, Inc. Laser-based material processing systems and methods for using such systems
US7897895B2 (en) 2006-05-01 2011-03-01 General Electric Company System and method for controlling the power level of a laser apparatus in a laser shock peening process
DE102007018416A1 (de) 2006-10-24 2008-04-30 Messer Cutting & Welding Gmbh Verfahren und Vorrichtung zum maschinellen Schneiden eines plattenförmigen Werkstücks
US7728961B2 (en) 2006-10-31 2010-06-01 Mitutoyo Coporation Surface height and focus sensor
JP2008119718A (ja) 2006-11-10 2008-05-29 Marubun Corp レーザ加工装置
US8237084B2 (en) 2006-12-22 2012-08-07 Taylor Fresh Foods, Inc. Laser microperforated fresh produce trays for modified/controlled atmosphere packaging
US20080243299A1 (en) 2007-03-27 2008-10-02 Haas Automation, Inc. Machine tool control system
JP4972447B2 (ja) 2007-04-06 2012-07-11 オークマ株式会社 数値制御装置
SG152090A1 (en) 2007-10-23 2009-05-29 Hypertronics Pte Ltd Scan head calibration system and method
DE102007062692A1 (de) 2007-12-20 2009-07-02 Karl Hehl Verfahren zur interaktiven Steuerung einer Maschine
EP2133171B1 (fr) 2008-06-12 2012-08-08 Trumpf Sachsen GmbH Dispositif mécanique de traitement de pièces à usiner à l'aide d'un rayon laser
US8175725B2 (en) 2008-09-08 2012-05-08 National Instruments Corporation Adapting move constraints for position based moves in a trajectory generator
US8275442B2 (en) 2008-09-25 2012-09-25 Zeltiq Aesthetics, Inc. Treatment planning systems and methods for body contouring applications
TWI510320B (zh) 2008-10-10 2015-12-01 Ipg Microsystems Llc 雷射加工系統、雷射加工方法及光學頭
US8506182B2 (en) 2008-11-04 2013-08-13 James Cameron Stabilized stereographic camera system
US8698898B2 (en) 2008-12-11 2014-04-15 Lucasfilm Entertainment Company Ltd. Controlling robotic motion of camera
US9734419B1 (en) 2008-12-30 2017-08-15 Cognex Corporation System and method for validating camera calibration in a vision system
WO2010091093A1 (fr) 2009-02-03 2010-08-12 Abbott Cardiovascular Systems Inc. Procédé amélioré de coupe au laser pour former des stents
WO2010091106A1 (fr) 2009-02-03 2010-08-12 Abbott Cardiovascular Systems Inc. Système de découpe au laser amélioré
JP5500462B2 (ja) 2009-05-21 2014-05-21 株式会社ニコン 形状測定装置、観察装置および画像処理方法
TWI594828B (zh) 2009-05-28 2017-08-11 伊雷克托科學工業股份有限公司 應用於雷射處理工件中的特徵的聲光偏轉器及相關雷射處理方法
WO2010138699A2 (fr) 2009-05-29 2010-12-02 Intenzity Innovation, Inc. Dispositif de balayage optique à miroir unique
US20100326962A1 (en) 2009-06-24 2010-12-30 General Electric Company Welding control system
US20110005458A1 (en) 2009-07-13 2011-01-13 Applied Materials, Inc. Method and apparatus for improving scribe accuracy in solar cell modules
US9380292B2 (en) 2009-07-31 2016-06-28 3Dmedia Corporation Methods, systems, and computer-readable storage media for generating three-dimensional (3D) images of a scene
US20110080476A1 (en) 2009-10-02 2011-04-07 Lasx Industries, Inc. High Performance Vision System for Part Registration
IT1395814B1 (it) 2009-10-12 2012-10-26 Gallucci Apparato per il taglio e/o l'incisione di articoli comprendenti una superficie piana su cui sono riprodotti disegni e/o scritte e metodo per attuare l'apparato
WO2011059621A1 (fr) 2009-11-13 2011-05-19 Sciaky, Inc. Fabrication de couche de faisceau d'électrons à l'aide d'une commande en boucle fermée contrôlée d'électrons de balayage
US8118227B2 (en) 2009-11-30 2012-02-21 Symbol Technologies, Inc. Multiple camera imaging-based bar code reader with optimized imaging field
US8798388B2 (en) 2009-12-03 2014-08-05 Qualcomm Incorporated Digital image combining to produce optical effects
CN101733558B (zh) 2010-01-19 2012-05-23 广东大族粤铭激光科技股份有限公司 主从式相机配置的智能激光切割系统及其切割方法
US9333036B2 (en) 2010-01-22 2016-05-10 Board Of Regents, The University Of Texas System Systems, devices and methods for imaging and surgery
CN101837517A (zh) 2010-03-31 2010-09-22 龙岩理尚精密机械有限公司 自动调焦数控激光切割器
US20130200053A1 (en) 2010-04-13 2013-08-08 National Research Council Of Canada Laser processing control method
US8134717B2 (en) 2010-05-21 2012-03-13 LTS Scale Company Dimensional detection system and associated method
US20110316977A1 (en) * 2010-06-24 2011-12-29 Pienaar Marius G Method of cnc profile cutting program manipulation
US8833921B2 (en) 2010-07-30 2014-09-16 Ricoh Company, Limited Thin-film forming apparatus, thin-film forming method, piezoelectric-element forming method, droplet discharging head, and ink-jet recording apparatus
JP5091287B2 (ja) 2010-08-06 2012-12-05 ファナック株式会社 加工点にエネルギー又は物質を供給する加工機における加工情報取得装置
TWI469849B (zh) 2010-11-12 2015-01-21 Ind Tech Res Inst 工具機之加工法
PL216793B1 (pl) 2010-12-13 2014-05-30 Tadeusz Eckert Przecinarka
EP2694241B1 (fr) 2011-04-07 2021-10-13 Tomologic AB Procédé, système et programme d'ordinateur pour une machine qui découpe plusieurs morceaux dans une pièce de matière en utilisant des règles de commande et des variables pour le découpage
JP5343106B2 (ja) 2011-05-20 2013-11-13 シャープ株式会社 指示受付システム、情報処理装置、指示装置、指示受付方法、コンピュータプログラム及び記録媒体
JP5855358B2 (ja) 2011-05-27 2016-02-09 オリンパス株式会社 内視鏡装置及び内視鏡装置の作動方法
US8921734B2 (en) 2011-11-10 2014-12-30 Mitsubishi Electric Research Laboratories, Inc. Laser cutting machine
US20130158957A1 (en) 2011-12-16 2013-06-20 Lie-Quan Lee Library generation with derivatives in optical metrology
US9414501B2 (en) 2012-01-04 2016-08-09 Board Of Regents, The University Of Texas System Method for connecting inter-layer conductors and components in 3D structures
US8938317B2 (en) 2012-01-10 2015-01-20 Mitsubishi Electronic Research Laboratories, Inc. System and method for calibrating laser cutting machines
US9261872B2 (en) 2012-01-19 2016-02-16 Mitsubishi Electric Research Laboratories, Inc. System and method for controlling redundant actuators of a machine
KR20130086773A (ko) 2012-01-26 2013-08-05 두산인프라코어 주식회사 비전 기반 공작물 셋업 방법
US9388766B2 (en) 2012-03-23 2016-07-12 Concentric Power, Inc. Networks of cogeneration systems
US8794724B2 (en) 2012-03-28 2014-08-05 Masonite Corporation Surface marked articles, related methods and systems
DE102012207916B3 (de) 2012-05-11 2013-09-19 Artis Gmbh Verfahren und Vorrichtung zur automatisierten Konfiguration einer Überwachungsfunktion einer Werkzeugmaschine
US9104192B2 (en) 2012-06-27 2015-08-11 Mitsubishi Electric Research Laboratories, Inc. System and method for controlling machines according to pattern of contours
US9678499B2 (en) 2012-06-27 2017-06-13 Mitsubishi Electric Research Laboratories, Inc. Method for controlling redundantly actuated machines for cutting a pattern of disconnected contours
DE102012106156B4 (de) 2012-07-09 2019-09-12 Acsys Lasertechnik Gmbh Verfahren zur Steuerung eines Werkzeuges
US20140018779A1 (en) 2012-07-12 2014-01-16 Worrell, Inc. Telemedicine care system
US20170057008A1 (en) 2012-07-13 2017-03-02 Full Spectrum Laser Llc Infinite thickness laser processing system
FR2994734B1 (fr) 2012-08-21 2017-08-25 Fogale Nanotech Dispositif et procede pour faire des mesures dimensionnelles sur des objets multi-couches tels que des wafers.
US9511543B2 (en) 2012-08-29 2016-12-06 Cc3D Llc Method and apparatus for continuous composite three-dimensional printing
EP2893479B1 (fr) 2012-09-05 2018-10-24 Sizer Technologies Ltd Système et procédé permettant de déduire d'une séquence d'images en 2d des mesures précises des dimensions corporelles
US9578224B2 (en) 2012-09-10 2017-02-21 Nvidia Corporation System and method for enhanced monoimaging
US8687249B1 (en) 2012-09-11 2014-04-01 Foxlink Image Technology Co., Ltd. Portable scanner
JP5923026B2 (ja) 2012-10-31 2016-05-24 浜松ホトニクス株式会社 画像取得装置及び画像取得方法
FR3001906B1 (fr) 2013-02-11 2016-01-01 Dimeco Alipresse Procede de decoupage de pieces dans une bande de matiere et machine de decoupage mettant en oeuvre ledit procede
JP5414948B1 (ja) 2013-03-29 2014-02-12 三菱電機株式会社 数値制御装置
JP6138556B2 (ja) 2013-04-05 2017-05-31 株式会社ディスコ レーザー加工装置
US9626708B2 (en) 2013-04-15 2017-04-18 Thirty-One Gifts Llc Photographic mementos
US10201929B2 (en) 2013-06-12 2019-02-12 Makerbot Industries, Llc Raft techniques in three-dimensional printing
US9618926B1 (en) 2013-09-13 2017-04-11 D. P. Technology, Corp. Intelligent engine for managing operations for a computer numerical control (CNC) machine in a computer-aided manufacturing (CAM) system
US10983506B2 (en) 2013-10-16 2021-04-20 Proto Labs, Inc. Methods and software for manufacturing a discrete object from an additively manufactured body of material including a precursor to a discrete object and a reference feature(s)
CN104551865A (zh) 2013-10-17 2015-04-29 鸿富锦精密工业(深圳)有限公司 影像量测系统及方法
US11235409B2 (en) 2013-10-18 2022-02-01 +Mfg, LLC Method and apparatus for fabrication of articles by molten and semi-molten deposition
US9635908B2 (en) 2013-10-21 2017-05-02 Nike, Inc. Automated trimming of pliable items
US9182583B2 (en) 2013-11-15 2015-11-10 Mitutoyo Corporation Structured illumination microscopy optical arrangement including projection artifact supression element
US10307863B2 (en) 2013-12-06 2019-06-04 Mitsubishi Electric Research Laboratories, Inc. Control of redundant laser processing machines
JP6206150B2 (ja) 2013-12-11 2017-10-04 富士ゼロックス株式会社 液滴乾燥装置、液滴乾燥プログラム、及び画像形成装置
US20150169853A1 (en) 2013-12-16 2015-06-18 Avinash Vijai Singh System and Process for Controlling A Portable Device
EP2886242B1 (fr) * 2013-12-20 2016-09-14 TRUMPF Werkzeugmaschinen GmbH + Co. KG Dispositif de machines d'usinage au laser, notamment avec un accès sans barrière
US10046521B2 (en) 2014-01-16 2018-08-14 Jabil Inc. Remotely-accessible additive manufacturing systems and methods
EP3094967A4 (fr) 2014-01-17 2017-01-25 United Technologies Corporation Système de fabrication additive avec inspection à ultrasons et procédé de fonctionnement
KR101888287B1 (ko) 2014-01-27 2018-08-13 도쿄엘렉트론가부시키가이샤 패터닝된 필름의 임계 치수를 시프팅하기 위한 시스템 및 방법
JP6290637B2 (ja) 2014-01-30 2018-03-07 浜松ホトニクス株式会社 膜厚計測方法及び膜厚計測装置
US20170008127A1 (en) 2014-02-20 2017-01-12 Dmg Mori Advanced Solutions Development Machine Tool System and Method for Additive Manufacturing
JP6435099B2 (ja) 2014-02-26 2018-12-05 Juki株式会社 電子部品実装装置及び電子部品実装方法
JP5743123B1 (ja) 2014-03-14 2015-07-01 株式会社東京精密 レーザーダイシング装置及びダイシング方法
US20150378348A1 (en) 2014-06-27 2015-12-31 Hcl Technologies Ltd. Integrated platform for 3d printing ecosystem interfaces and services
DE102014214058A1 (de) 2014-07-18 2016-01-21 Robert Bosch Gmbh Vorrichtung zur Herstellung eines dreidimensionalen Objekts und Verfahren zum Betreiben einer solchen Vorrichtung
CN107076964B (zh) 2014-08-06 2020-01-03 赛洛米克斯股份有限公司 基于图像的激光自动聚焦系统
CN105373072A (zh) 2014-09-01 2016-03-02 富泰华工业(深圳)有限公司 高精度平面加工系统及方法
JP2016060610A (ja) 2014-09-19 2016-04-25 株式会社東芝 エレベータ昇降路内寸法測定装置、エレベータ昇降路内寸法測定制御装置、およびエレベータ昇降路内寸法測定方法
US9508610B2 (en) 2014-09-27 2016-11-29 Intel Corporation Inline measurement of molding material thickness using terahertz reflectance
EP3220099B1 (fr) 2014-11-13 2019-11-06 Olympus Corporation Dispositif d'étalonnage, procédé d'étalonnage, dispositif optique, dispositif d'imagerie, dispositif de projection, système de mesure, et procédé de mesure
JP6140130B2 (ja) 2014-11-21 2017-05-31 ファナック株式会社 工具及び被加工物を保護する数値制御装置
KR102299764B1 (ko) 2014-11-28 2021-09-09 삼성전자주식회사 전자장치, 서버 및 음성출력 방법
EP3229996A4 (fr) 2014-12-12 2018-09-05 Velo3d Inc. Systèmes d'asservissement pour l'impression en trois dimensions
CN107111302A (zh) 2014-12-17 2017-08-29 沙特基础工业全球技术有限公司 鉴别用于增材制造的材料的特性
JP6217624B2 (ja) 2014-12-26 2017-10-25 ブラザー工業株式会社 レーザ加工装置及びレーザ加工方法
US10589385B2 (en) 2015-01-08 2020-03-17 General Electric Company Method and system for confined laser drilling
WO2016115095A1 (fr) 2015-01-13 2016-07-21 Solid Innovations, Llc Systèmes et procédés de vérification et de réglage pour la fabrication additive
US9846427B2 (en) 2015-01-21 2017-12-19 University Of North Dakota Characterizing 3-D printed objects for 3-D printing
US10509390B2 (en) 2015-02-12 2019-12-17 Glowforge Inc. Safety and reliability guarantees for laser fabrication
EP3256916B1 (fr) 2015-02-12 2023-10-11 Glowforge Inc. Matériau en mouvement pendant la fabrication laser
CN104808592B (zh) 2015-03-13 2016-06-01 华中科技大学 一种基于虚拟上位机的数控系统
EP3078443B1 (fr) 2015-03-20 2019-10-16 Matthew Fagan Procédé et système de commande numérique améliorée du découpage au plasma de pièces à partir d'une pièce à usiner
US9994042B2 (en) 2015-04-16 2018-06-12 Victor Manuel Sud Arce Substrates and method for print engravings
EP3104118B1 (fr) 2015-06-12 2019-02-27 Hexagon Technology Center GmbH Procédé permettant de commander un mécanisme d'entraînement d'une machine automatique comportant une caméra
JP6526544B2 (ja) 2015-10-30 2019-06-05 株式会社沖データ 画像処理装置および画像処理調整方法
CN106670656A (zh) 2015-11-06 2017-05-17 奔腾激光(温州)有限公司 一种光纤激光切割机用自动调焦切割头及控制方法
US9782906B1 (en) 2015-12-16 2017-10-10 Amazon Technologies, Inc. On demand apparel panel cutting
US10928800B2 (en) 2016-03-04 2021-02-23 Lincoln Electric Company Of Canada Lp Direct client initiated CNC tool setting
US10642251B2 (en) 2016-04-14 2020-05-05 David E Platts Subtractive machining work center
GB2549952A (en) 2016-05-03 2017-11-08 Univ Oxford Innovation Ltd Reflector
US10848743B2 (en) 2016-06-10 2020-11-24 Lucid VR, Inc. 3D Camera calibration for adjustable camera settings
WO2018098396A1 (fr) 2016-11-25 2018-05-31 Glowforge Inc. Machine commandée numériquement par ordinateur multi-utilisateurs
WO2018098397A1 (fr) 2016-11-25 2018-05-31 Glowforge Inc. Calibrage d'une machine à commande numérique par ordinateur
WO2018098394A1 (fr) 2016-11-25 2018-05-31 Glowforge Inc. Fabrication avec suivi d'image
WO2018098395A1 (fr) 2016-11-25 2018-05-31 Glowforge Inc. Gravure améliorée dans une machine commandée numériquement par ordinateur
WO2018098398A1 (fr) 2016-11-25 2018-05-31 Glowforge Inc. Composants optiques prédéfinis dans une machine commandée numériquement par ordinateur
WO2018098399A1 (fr) 2016-11-25 2018-05-31 Glowforge Inc. Décélération commandé de composants mobiles dans une machine à commande numérique par ordinateur

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4650287A (en) * 1984-07-23 1987-03-17 Showa Denko Kabushiki Kaisha Laser-light shield and method for shielding human body from laser light
US20050115941A1 (en) * 2002-07-31 2005-06-02 Sukhman Yefim P. Laser containment structure allowing the use of plastics

Also Published As

Publication number Publication date
US20180147657A1 (en) 2018-05-31
US11433477B2 (en) 2022-09-06

Similar Documents

Publication Publication Date Title
US11433477B2 (en) Housing for computer-numerically-controlled machine
AU718424B2 (en) Wall element for a protective device surrounding an operating or working area and protecting against laser beams from a laser source
US3626143A (en) Scoring of materials with laser energy
JP2005526992A5 (fr)
JP2015030253A (ja) 透明不燃シート、その製造方法、および、防煙垂壁
US11747193B2 (en) Laser fabrication with beam detection
Metzner et al. Investigations of qualitative aspects with burst mode ablation of silicon and cemented tungsten carbide
JP2010066750A (ja) スクリーンの製造方法及びスクリーン
CN113235046B (zh) 壳体的加工方法、壳体和电子设备
CN107249863A (zh) 脱模的方法和系统
EP4126506B1 (fr) Méthode de production et objet imprimé en 3d recouvert d'une gaine thermorétractable
US20240077847A1 (en) Design previews for computer numerically controlled fabrication
KR19980081688A (ko) 적층 조형에 사용되는 마스크, 이 마스크의 제조방법 및 마스크의 사용방법
ID28255A (id) Metode pembuatan suatu persediaan pendukung dengan pelindung terhadap interfrensi radiasi dan bahan pelindung
FR2833402B1 (fr) Materiau de blindage neutronique et de maintien de la sous- criticite a base de resine vinylester
JP6412991B2 (ja) 透明不燃シート、その製造方法、および、防煙垂壁
Wolff Laser-Matter Interactions in Directed Energy Deposition
JP2013215998A (ja) 加飾パネル及びその製造方法
CN105817765A (zh) 构图方法及构图加工物品
Akhtar et al. Simulations and experiments on excimer laser micromachining of metal and polymer
Stępak et al. Optimization of femtosecond laser micromachining of polylactide and PLLA/HAp composite
Staehr et al. Thermal process control for laser micro-drilling of thin CFRP-laminates
Jivraj et al. Development of a low cost, 3-DOF desktop laser cutter using 3D printer hardware
JPH0228616A (ja) レーザー光用保護眼鏡の眼鏡枠
JP6806323B2 (ja) 遮熱シート、遮熱シートの製造方法及び遮熱シートの取り付け方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17817475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17817475

Country of ref document: EP

Kind code of ref document: A1