WO2018096783A1 - 弾性波装置、フロントエンド回路および通信装置 - Google Patents

弾性波装置、フロントエンド回路および通信装置 Download PDF

Info

Publication number
WO2018096783A1
WO2018096783A1 PCT/JP2017/035180 JP2017035180W WO2018096783A1 WO 2018096783 A1 WO2018096783 A1 WO 2018096783A1 JP 2017035180 W JP2017035180 W JP 2017035180W WO 2018096783 A1 WO2018096783 A1 WO 2018096783A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic wave
wave device
layer
piezoelectric
grooves
Prior art date
Application number
PCT/JP2017/035180
Other languages
English (en)
French (fr)
Inventor
諭卓 岸本
木村 哲也
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201780071709.2A priority Critical patent/CN110024286B/zh
Priority to KR1020197007422A priority patent/KR102221009B1/ko
Publication of WO2018096783A1 publication Critical patent/WO2018096783A1/ja
Priority to US16/375,871 priority patent/US10879870B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02614Treatment of substrates, e.g. curved, spherical, cylindrical substrates ensuring closed round-about circuits for the acoustical waves
    • H03H9/02622Treatment of substrates, e.g. curved, spherical, cylindrical substrates ensuring closed round-about circuits for the acoustical waves of the surface, including back surface
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02637Details concerning reflective or coupling arrays
    • H03H9/02653Grooves or arrays buried in the substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02637Details concerning reflective or coupling arrays
    • H03H9/02669Edge reflection structures, i.e. resonating structures without metallic reflectors, e.g. Bleustein-Gulyaev-Shimizu [BGS], shear horizontal [SH], shear transverse [ST], Love waves devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02637Details concerning reflective or coupling arrays
    • H03H9/02669Edge reflection structures, i.e. resonating structures without metallic reflectors, e.g. Bleustein-Gulyaev-Shimizu [BGS], shear horizontal [SH], shear transverse [ST], Love waves devices
    • H03H9/02677Edge reflection structures, i.e. resonating structures without metallic reflectors, e.g. Bleustein-Gulyaev-Shimizu [BGS], shear horizontal [SH], shear transverse [ST], Love waves devices having specially shaped edges, e.g. stepped, U-shaped edges
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02992Details of bus bars, contact pads or other electrical connections for finger electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves

Definitions

  • the present invention relates to an elastic wave device having an IDT (InterDigital Transducer) electrode, a front-end circuit having the elastic wave device, and a communication device.
  • IDT InterDigital Transducer
  • Patent Document 1 discloses an end surface reflection type elastic wave device that reflects elastic waves at a pair of end surfaces facing each other.
  • a pair of opposing end surfaces is formed by providing grooves on both outer sides of the IDT electrode in the elastic wave propagation direction.
  • the elastic wave propagating in the elastic wave propagation direction is confined in the elastic wave device by reflecting the elastic wave using the pair of end faces.
  • an object of the present invention is to provide an elastic wave device or the like that can suppress the leakage of an elastic wave propagating in a direction different from the elastic wave propagation direction to the outside.
  • An elastic wave device is an elastic wave device including a piezoelectric substrate and an IDT electrode provided on the piezoelectric substrate, and the IDT electrode includes a bus bar electrode extending in the elastic wave propagation direction, and a bus bar.
  • a plurality of electrode fingers connected to the electrodes and extending in a direction perpendicular to the elastic wave propagation direction, and the piezoelectric substrate has at least one groove formed along the elastic wave propagation direction, and at least one or more grooves These grooves are provided on the side opposite to the side on which the plurality of electrode fingers are formed when viewed from the bus bar electrode in the orthogonal direction.
  • the elastic wave device since the elastic wave device has a groove formed along the elastic wave propagation direction, the elastic wave propagating in a direction different from the elastic wave propagation direction can be reflected using the groove. . Thereby, it can suppress that an elastic wave leaks outside.
  • At least one or more grooves may be composed of a plurality of grooves, and the plurality of grooves may be opposed to each other in the orthogonal direction.
  • the elastic wave device since the elastic wave device has a plurality of grooves facing each other in the orthogonal direction, the elastic wave propagating in a direction different from the elastic wave propagation direction is reflected using the grooves, and the plurality of grooves Can be trapped in between. Thereby, it can suppress that an elastic wave leaks outside.
  • the piezoelectric substrate includes a support substrate, a piezoelectric layer positioned on the support substrate, and an intermediate layer provided between the support substrate and the piezoelectric layer, and the IDT electrode is provided on the piezoelectric layer.
  • the at least one groove may be formed from the piezoelectric layer to at least a part of the intermediate layer.
  • the elastic wave propagating through at least a part of the piezoelectric layer and the intermediate layer can be reflected using the groove. Therefore, it can suppress that the elastic wave which propagates in the direction different from an elastic wave propagation direction leaks outside.
  • the piezoelectric substrate includes a support substrate, a piezoelectric layer positioned on the support substrate, and an intermediate layer provided between the support substrate and the piezoelectric layer, and the IDT electrode is provided on the piezoelectric layer.
  • the at least one groove may not be formed in the piezoelectric layer but may be formed in at least a part of the intermediate layer.
  • the elastic wave propagating through at least a part of the intermediate layer can be reflected using the groove. Therefore, it can suppress that the elastic wave which propagates in the direction different from an elastic wave propagation direction leaks outside.
  • the intermediate layer of the acoustic wave device may have a grain boundary.
  • the elastic wave device of the present invention Therefore, the elastic wave can be reflected. Thereby, it can suppress that the elastic wave which propagates in the direction different from an elastic wave propagation direction leaks outside.
  • the intermediate layer may be in contact with the piezoelectric layer.
  • the intermediate layer has a grain boundary
  • a part of the elastic wave propagating through the intermediate layer in contact with the piezoelectric layer is scattered, and the elastic wave propagates in a direction different from the elastic wave propagation direction.
  • the elastic wave device of the present invention since the elastic wave device of the present invention has grooves facing each other in the direction orthogonal to the elastic wave propagation direction, the elastic wave can be reflected. Thereby, it can suppress that an elastic wave leaks outside.
  • the intermediate layer may include one or a plurality of SiO 2 layers.
  • the elastic wave device of the present invention Since it has the groove
  • the intermediate layer has a lower bulk wave sound velocity than the elastic wave sound velocity propagating through the piezoelectric layer
  • the support substrate has a higher bulk wave sound velocity than the elastic wave sound velocity propagated through the piezoelectric layer. There may be.
  • the elastic wave propagated from the piezoelectric layer to the intermediate layer can be reflected at the interface between the support substrate and the intermediate layer and returned to the piezoelectric layer.
  • elastic wave energy can be efficiently confined in the piezoelectric layer.
  • the intermediate layer has a low sound velocity film that propagates the bulk wave at a lower speed than the elastic wave sound velocity that propagates through the piezoelectric layer, and a bulk wave that propagates at a higher speed than the elastic wave sound velocity that propagates through the piezoelectric layer.
  • the low sound velocity film may be provided between the piezoelectric layer and the support substrate, and the high sound velocity film may be provided between the low sound velocity film and the support substrate.
  • the elastic wave propagated from the piezoelectric layer to the low sound velocity film can be reflected at the interface between the high sound velocity film and the low sound velocity film and returned to the piezoelectric layer.
  • elastic wave energy can be efficiently confined in the piezoelectric layer.
  • the intermediate layer includes at least one low acoustic impedance layer and at least one high acoustic impedance layer having an acoustic impedance higher than that of the low acoustic impedance layer, and at least one of the low acoustic impedance layers includes: It may be provided closer to the piezoelectric layer than the high acoustic impedance layer.
  • the elastic wave propagated from the piezoelectric layer to the intermediate layer can be reflected at the interface between the low acoustic impedance layer and the high acoustic impedance layer and returned to the piezoelectric layer.
  • elastic wave energy can be efficiently confined in the piezoelectric layer.
  • At least one or more grooves are formed from the piezoelectric layer through the intermediate layer to a part of the support substrate.
  • the elastic wave propagating through the piezoelectric layer and the intermediate layer can be reflected using the groove. Thereby, it can suppress that the elastic wave which propagates in the direction different from an elastic wave propagation direction leaks outside.
  • the piezoelectric substrate may be provided with input / output wirings connected to the IDT electrodes, and at least one or more grooves may be provided at positions different from the input / output wirings.
  • the elastic wave propagating in the direction different from the elastic wave propagation direction can be reflected by using the groove while suppressing the wiring loss due to the routing of the input / output wiring. Thereby, it can suppress that the elastic wave which propagates in the direction different from an elastic wave propagation direction leaks outside.
  • the input / output wiring connected to the IDT electrode may be provided on the piezoelectric substrate, and the input / output wiring may be formed around the groove.
  • the length of the groove can be increased, and the elastic wave propagating in a direction different from the elastic wave propagation direction can be reflected in a wide range. Thereby, it can suppress that the elastic wave which propagates in the direction different from an elastic wave propagation direction leaks outside.
  • the piezoelectric substrate has at least one or more grooves formed along the orthogonal direction, and the at least one or more grooves formed in the orthogonal direction are the outermost of the plurality of electrode fingers in the elastic wave propagation direction. It may be provided outside the electrode fingers located at the center.
  • the elastic wave device since the elastic wave device has the grooves formed along the orthogonal direction, the elastic wave propagating in the elastic wave propagation direction can be reflected by the side surface of the groove. Thereby, it can suppress that the elastic wave which propagates in the direction different from an elastic wave propagation direction leaks outside.
  • At least one or more grooves formed along the orthogonal direction may be composed of a plurality of grooves, and the plurality of grooves may be opposed to each other in the elastic wave propagation direction.
  • the elastic wave device since the elastic wave device has a plurality of grooves facing each other in the elastic wave propagation direction, the elastic wave propagating in the elastic wave propagation direction is reflected using the grooves, and the plurality of grooves Can be trapped in between. Thereby, it can suppress that the elastic wave which propagates in the direction different from an elastic wave propagation direction leaks outside.
  • the IDT electrode may be surrounded by a plurality of grooves formed along the elastic wave propagation direction and a plurality of grooves formed along the orthogonal direction.
  • omnidirectional elastic waves along the principal surface of the piezoelectric layer can be reflected by the grooves and confined in the region surrounded by the plurality of grooves. Thereby, it can suppress that the elastic wave which propagates in the direction different from an elastic wave propagation direction leaks outside.
  • a front end circuit includes the elastic wave device.
  • a communication device includes a signal processing circuit that processes a high-frequency signal and the front-end circuit.
  • leakage of elastic waves propagating in a direction different from the elastic wave propagation direction in an elastic wave device, a high-frequency front-end circuit, or a communication device can be suppressed.
  • FIG. 1 is a perspective view of an acoustic wave device according to Embodiment 1.
  • FIG. 2A is a plan view of the acoustic wave device according to Embodiment 1.
  • FIG. 2B is a cut front view showing a cut surface when the elastic wave device of FIG. 2A is cut along the line IIB-IIB.
  • 2C is a cut-away side view showing a cut surface when the elastic wave device of FIG. 2A is cut along the line IIC-IIC.
  • FIG. 3 is a diagram illustrating a state in which an elastic wave propagates through an intermediate layer of the elastic wave device according to the first embodiment.
  • FIG. 4 is a cut side view of the acoustic wave device according to the first modification of the first embodiment.
  • FIG. 5 is a cut side view of the elastic wave device according to the second modification of the first embodiment.
  • FIG. 6 is a plan view of the acoustic wave device according to the second embodiment.
  • FIG. 7A is a plan view of the acoustic wave device according to Embodiment 3.
  • FIG. 7B is a plan view of an acoustic wave device according to a modification of the third embodiment.
  • FIG. 8 is a cut side view of the acoustic wave device according to the fourth embodiment.
  • FIG. 9 is a cut side view of the acoustic wave device according to the fifth embodiment.
  • FIG. 10 is a circuit configuration diagram showing a front-end circuit and a communication device according to the sixth embodiment.
  • FIG. 11 is a cut side view of an elastic wave device according to another embodiment.
  • FIG. 12 is a cut side view of an elastic wave device according to another embodiment.
  • FIG. 1 is a perspective view of an acoustic wave device 1 according to Embodiment 1.
  • FIG. FIG. 2A is a plan view of the acoustic wave device 1.
  • 2B is a cut front view showing a cut surface when the elastic wave device 1 of FIG. 2A is cut along the line IIB-IIB.
  • 2C is a cut-away side view showing a cut surface when the elastic wave device 1 of FIG. 2A is cut along the line IIC-IIC.
  • the elastic wave device 1 has a pair of end faces 1a and 1b facing each other in the elastic wave propagation direction D1.
  • the acoustic wave device 1 has a pair of end faces 1c and 1d that face each other in the direction D2 orthogonal to the acoustic wave propagation direction D1.
  • the elastic wave device 1 is an end surface reflection type elastic wave device that reflects surface acoustic waves using the end surfaces 1a to 1d.
  • the acoustic wave device 1 includes a piezoelectric substrate 11 and an IDT electrode 5 having comb-like electrodes 6a, 6b, 6c, and 6d provided on the piezoelectric substrate 11.
  • the piezoelectric substrate 11 includes a support substrate 2, an intermediate layer 3 provided on the support substrate 2, and a piezoelectric layer 4 provided on the intermediate layer 3.
  • the IDT electrode 5 is provided on the piezoelectric layer 4.
  • the support substrate 2 has one main surface 2a and the other main surface 2b facing each other.
  • the support substrate 2 is formed of a material having a bulk wave sound velocity that propagates faster than the acoustic wave sound velocity that propagates through the piezoelectric layer 4.
  • Examples of the material of the support substrate 2 include a semiconductor such as Si, sapphire, LiTaO 3 (hereinafter referred to as “LT”), LiNbO 3 (hereinafter referred to as “LN”), glass, and the like. These materials may be used alone or in combination.
  • the intermediate layer 3 is provided on the one main surface 2 a of the support substrate 2.
  • the intermediate layer 3 is located immediately below the piezoelectric layer 4 described later and is in contact with the piezoelectric layer 4. Since the intermediate layer 3 is in contact with the piezoelectric layer, the energy of the elastic wave propagating through the piezoelectric layer 4 can be prevented from leaking in the thickness direction.
  • the intermediate layer 3 is made of a material whose bulk wave sound velocity is lower than the acoustic wave sound velocity propagating through the piezoelectric layer 4.
  • the intermediate layer 3 is formed of, for example, a polycrystalline, amorphous, or uniaxially oriented film, and has crystal grains G1 and grain boundaries G2 (see FIG. 3).
  • the intermediate layer 3 is formed of a SiO 2 layer.
  • silicon nitride, aluminum nitride, or the like can be used in addition to SiO 2 . These may be used alone or in combination. Further, from the viewpoint of improving the adhesion with the support substrate 2, it is desirable to use SiO 2 as a material constituting the intermediate layer 3.
  • the intermediate layer 3 may have a multilayer structure in which a plurality of layers are stacked. In that case, it is desirable that the layer located closest to the support substrate 2 in the stacking direction is made of SiO 2 . Furthermore, the intermediate layer 3 may have the intermediate layer 3 that is patterned only directly under the region where the elastic wave propagates (for example, the region where the IDT electrode 5 and the reflector exist). Further, the intermediate layer 3 may be formed outside the region where the elastic wave propagates (for example, the region outside the IDT electrode 5). That is, the intermediate layer 3 shown in FIGS. 2B and 2C may not have the same structure in the plane. In this case, the intermediate layer 3 formed immediately below the wave propagation region is preferably the appropriate material described above, and the intermediate layer 3 formed outside the elastic wave propagation region is an arbitrary material. Good.
  • the piezoelectric layer 4 is provided on the intermediate layer 3.
  • the piezoelectric layer 4 is a thin film, and the thickness of the piezoelectric layer 4 is preferably 1 ⁇ , for example, where ⁇ is the wavelength of the elastic wave. In that case, the elastic wave can be further excited.
  • the piezoelectric layer 4 has one main surface 4a and the other main surface 4b facing each other.
  • the other main surface 4b of the piezoelectric layer 4 is located on the intermediate layer 3 side.
  • the piezoelectric layer 4 is made of LT. But as a material which comprises the piezoelectric layer 4, other piezoelectric single crystals, such as LN, may be used, and piezoelectric ceramics may be used.
  • the IDT electrode 5 is provided on the one main surface 4 a of the piezoelectric layer 4.
  • the elastic wave device 1 uses a surface acoustic wave mainly composed of an SH wave as an elastic wave excited by the IDT electrode 5.
  • the most excited wave may be an elastic wave including a plate wave such as an SH wave or a Lamb wave (S0 mode, S1 mode, A1 mode, A0 mode).
  • the plate wave referred to here is a general term for various waves excited by a piezoelectric thin plate having a film thickness of about 1 ⁇ or less, where the wavelength of the excited plate wave is 1 ⁇ .
  • the following “plate wave” has the same meaning.
  • Each of the comb-like electrodes 6a and 6b has bus bar electrodes 7a and 7b extending in the elastic wave propagation direction D1, and a plurality of electrode fingers 8a and 8b extending in the orthogonal direction D2.
  • Each of the comb-like electrodes 6c and 6d has bus bar electrodes 7c and 7d extending in the elastic wave propagation direction D1, and a plurality of electrode fingers 8a and 8b extending in the orthogonal direction D2.
  • the plurality of electrode fingers 8a are connected to the bus bar electrodes 7a and 7c, and the plurality of electrode fingers 8b are connected to the bus bar electrodes 7b and 7d.
  • the plurality of electrode fingers 8a and the plurality of electrode fingers 8b are interleaved with each other.
  • the width of the electrode fingers 8a and 8b at both ends located at the outermost (outermost) side in the elastic wave propagation direction D1 is ⁇ / 8.
  • the width of the electrode fingers 8a and 8b at the central portion different from the electrode fingers 8a and 8b at both ends is ⁇ / 4.
  • the material constituting the IDT electrode 5 examples include an appropriate metal or alloy such as Cu, Ni, Ni—Cr alloy, Al—Cu alloy, Ti, Al, and Pt. These may be used alone or in combination. Further, the IDT electrode 5 may be constituted by a laminated metal film formed by laminating a plurality of metal films. An SiO 2 film as a temperature adjustment film may be provided on one main surface 4 a of the piezoelectric layer 4 so as to cover the IDT electrode 5.
  • the bus bar electrodes 7a to 7d may be formed thicker than the electrode fingers 8a and 8b.
  • the piezoelectric substrate 11 is provided with input / output wirings 9 a and 9 b that are connected to the IDT electrode 5 and supply power to the IDT electrode 5. Specifically, the input / output wiring 9a is connected to the bus bar electrode 7b of the comb-like electrode 6b, and the input / output wiring 9b is connected to the bus bar electrode 7c of the comb-like electrode 6c.
  • the piezoelectric substrate 11 is provided with a plurality of grooves 10A and 10B and a plurality of grooves 10C and 10D.
  • Each of the grooves 10A and 10B is formed along the orthogonal direction D2, and is opposed to the elastic wave propagation direction D1.
  • Each of the grooves 10C and 10D is formed along the elastic wave propagation direction D1, and is opposed to the orthogonal direction D2.
  • the grooves 10A to 10D are provided so as to surround the outside of the IDT electrode 5.
  • Outer groove substrate portions 11A, 11B, 11C, and 11D are formed on the outer sides of the grooves 10A to 10D, respectively.
  • Each of the grooves 10A and 10B is provided outside the electrode fingers 8a and 8b located at the outermost positions of the plurality of electrode fingers 8a and 8b in the elastic wave propagation direction D1.
  • Each of the grooves 10A and 10B is adjacent to the outermost electrode fingers 8a and 8b when the elastic wave device 1 is viewed in plan (when viewed from a direction perpendicular to the main surface 4a). .
  • the groove 10C is provided on the opposite side (minus side in the orthogonal direction D2) to the side where the plurality of electrode fingers 8a are formed when viewed from the bus bar electrodes 7a and 7c in the orthogonal direction D2.
  • the groove 10C is formed in parallel to the bus bar electrodes 7a and 7c at a predetermined distance i1 from the bus bar electrodes 7a and 7c when seen in a plan view. Further, the groove 10C is divided into two in the longitudinal direction, and is provided at a position different from the input / output wiring 9b so as to avoid the input / output wiring 9b.
  • the groove 10C may be formed longer than the total length of the bus bar electrodes 7a and 7c.
  • the groove 10D is provided in the orthogonal direction D2 on the side opposite to the side where the plurality of electrode fingers 8b are formed as viewed from the bus bar electrodes 7b, 7d (plus side in the orthogonal direction D2).
  • the groove 10D is formed in parallel to the bus bar electrodes 7b and 7d at a predetermined distance i2 from the bus bar electrodes 7b and 7d when seen in a plan view.
  • the groove 10D is divided into two in the longitudinal direction, and is provided at a position different from the input / output wiring 9a so as to avoid the input / output wiring 9a.
  • the groove 10D may be formed longer than the total length of the bus bar electrodes 7b and 7d.
  • each of the grooves 10A to 10D is formed from the piezoelectric layer 4 to a part of the intermediate layer 3. Specifically, each of the grooves 10A to 10D has both side surfaces 10a and a bottom portion 10b. The bottom portion 10b does not reach the support substrate 2, and one of the other main surface 4b of the piezoelectric layer 4 and one of the support substrates 2 is provided. It is located between the main surface 2a.
  • the side surface 10a located near the outermost electrode finger 8b among the both side surfaces 10a of the groove 10A becomes the end surface 1a, and the outermost side of the both side surfaces 10a of the groove 10B.
  • the side surface 10a located near the electrode finger 8a becomes the end surface 1b.
  • the side surface 10a located near the bus bar electrodes 7a and 7c among the both side surfaces 10a of the groove 10C becomes the end surface 1c, and the side surface 10a of the groove 10D is near the bus bar electrodes 7b and 7d.
  • the side surface 10a located at 1 is the end surface 1d.
  • the end faces 1a and 1b facing each other can reflect the elastic wave propagating in the elastic wave propagation direction D1 and confine it between the end faces 1a and 1b.
  • the end faces 1c and 1d facing each other can reflect and confine the elastic wave propagating in a direction different from the elastic wave propagation direction D1 (for example, the orthogonal direction D2) between the end faces 1c and 1d.
  • the IDT electrode 5 is surrounded by the end faces 1a to 1d, and the omnidirectional acoustic waves along the one main surface 4a of the piezoelectric layer 4 are reflected by the end faces 1a to 1d, and the end faces 1a to 1d are reflected. It can be confined in the region surrounded by 1d.
  • the angle between the one main surface 4a and the end surface 1a (the angle formed on the groove 10A side) and the angle between the one main surface 4a and the end surface 1b (the angle formed on the groove 10B side) are each 70. It is desirable that the angle is not less than 90 degrees and not more than 90 degrees.
  • the angle between the one main surface 4a and the end surface 1c (the angle formed on the groove 10C side) and the angle between the one main surface 4a and the end surface 1d (the angle formed on the groove 10D side) are 70 respectively. It is desirable that the angle is not less than 90 degrees and not more than 90 degrees.
  • the elastic wave device 1 As a manufacturing method of the elastic wave device 1, for example, it can be manufactured by the following method. First, a laminated body in which the support substrate 2, the intermediate layer 3, the piezoelectric layer 4, and the IDT electrode 5 are laminated in this order is formed. Next, a part of the piezoelectric layer 4 and the intermediate layer 3 constituting the laminate is removed by etching. By this etching, grooves 10A to 10D are formed. As the etching method, it is desirable to perform etching by ICP-RIE method. When etching by the ICP-RIE method, the grooves 10A to 10D can be manufactured with high accuracy.
  • the elastic wave device 1 includes a piezoelectric substrate 11 and an IDT electrode 5 provided on the piezoelectric substrate 11.
  • the IDT electrode 5 is connected to the bus bar electrodes 7a, 7c (or 7b, 7d) extending in the elastic wave propagation direction D1 and the bus bar electrodes 7a, 7c (or 7b, 7d) in the orthogonal direction D2 of the elastic wave propagation direction D1. It has a plurality of electrode fingers 8a (or 8b) extending.
  • the piezoelectric substrate 11 has at least one or more grooves 10C, 10D formed along the elastic wave propagation direction D1, and each of the grooves 10C (or 10D) is a bus bar electrode 7a, 7c (or 7b) in the orthogonal direction D2. 7d), it is provided on the side opposite to the side where the plurality of electrode fingers 8a (or 8b) are formed.
  • the elastic wave propagating in a direction different from the elastic wave propagation direction D1 is transmitted to the side surfaces of the grooves 10C and 10D.
  • 10a end faces 1c and 1d
  • the elastic wave apparatus 1 it can suppress that the elastic wave which propagates in the direction different from an elastic wave propagation direction leaks outside.
  • the grooves 10C and 10D are not necessarily formed in the piezoelectric substrate 11 in a plurality.
  • the elastic wave device 1 has an effect of reflecting and returning an elastic wave propagating in a direction different from the elastic wave propagation direction D1 by having at least one groove.
  • the piezoelectric substrate 11 of the acoustic wave device 1 includes a support substrate 2, a piezoelectric layer 4 positioned on the support substrate 2, and an intermediate layer 3 provided between the support substrate 2 and the piezoelectric layer 4.
  • the IDT electrode 5 is provided on the piezoelectric layer 4.
  • Each of the grooves 10 ⁇ / b> C and 10 ⁇ / b> D is formed from the piezoelectric layer 4 to at least a part of the intermediate layer 3.
  • the grooves 10C and 10D are formed in at least a part of the piezoelectric layer 4 and the intermediate layer 3, so that the piezoelectric layer 4 and the intermediate layer 3 are compared with the case where the groove is provided only in the piezoelectric layer 4. Can be reflected by the grooves 10C and 10D. Thereby, it can suppress that the elastic wave which propagates in the direction different from an elastic wave propagation direction leaks outside.
  • the grooves 10 ⁇ / b> C and 10 ⁇ / b> D are not limited to a part in the thickness direction of the intermediate layer 3, and may be formed to a depth penetrating the intermediate layer 3.
  • the elastic wave device 1 of the present embodiment has a direction different from the elastic wave propagation direction even when the intermediate layer 3 is formed by the crystal grains G1 and the grain boundaries G2. Leakage of propagating elastic waves can be suppressed. For example, even when a part of the elastic wave propagating through the intermediate layer 3 is scattered by the grain boundary G2 and the elastic wave is propagated in a direction different from the elastic wave propagation direction D1, the elastic wave device 1 is provided with the grooves 10C, Since it has 10D, the said elastic wave can be reflected using the grooves 10C and 10D, and the elastic wave energy can be confined between the grooves 10C and 10D.
  • the IDT electrode 5 of the elastic wave device 1 is surrounded by a plurality of grooves 10C and 10D formed along the elastic wave propagation direction D1 and a plurality of grooves 10A and 10B formed along the orthogonal direction D2. It is.
  • the elastic wave device 1 has a structure in which the grooves 10A to 10D do not reach the other main surface 2b of the support substrate 2 and are not divided. That is, the acoustic wave device 1 has the outer groove substrate portions 11A, 11B, 11C, and 11D on the outer sides of the grooves 10A to 10D.
  • the out-groove substrate portions 11A to 11D are in contact with the piezoelectric substrate 11 and are made of the same material as the piezoelectric substrate 11. For example, when the piezoelectric substrate 11 is used as a mounting substrate, other elements and circuit portions can be provided on the out-groove substrate portions 11A to 11D.
  • this acoustic wave device 1 it is not necessary to reconnect with other elements and circuit parts, and electrical connection can be simplified. Further, since other elements and circuit portions can be provided on the out-of-groove substrate portions 11A to 11D, the electronic component on which the acoustic wave device 1 is mounted can be reduced in size.
  • [1-3. Modification 1] 4 is a cut-away side view of an elastic wave device 1A according to Modification 1 of Embodiment 1.
  • FIG. 1 is a cut-away side view of an elastic wave device 1A according to Modification 1 of Embodiment 1.
  • the end surface 1c formed by the groove 10C is formed so as to be close to the bus bar electrodes 7a and 7c and flush with the side surfaces of the bus bar electrodes 7a and 7c.
  • the end face 1d formed by the groove 10D is formed so as to be close to the bus bar electrodes 7b and 7d and flush with the side surfaces of the bus bar electrodes 7b and 7d.
  • the acoustic wave device 1A can be reduced in size. Further, since the elastic wave propagating in a direction different from the elastic wave propagation direction D1 can be reflected at a position close to the bus bar electrodes 7a to 7d, the elastic wave can be efficiently confined.
  • FIG. 5 is a cut side view of elastic wave device 1B according to Modification 2 of Embodiment 1.
  • FIG. 5 is a cut side view of elastic wave device 1B according to Modification 2 of Embodiment 1.
  • each of the grooves 10C and 10D is formed from the piezoelectric layer 4 through the intermediate layer 3 to a part of the support substrate 2.
  • the grooves 10 ⁇ / b> C and 10 ⁇ / b> D are formed from the one main surface 4 a of the piezoelectric layer 4 to the depth between the one main surface 2 a and the other main surface 2 b of the support substrate 2.
  • the elastic wave device 1B according to the modified example 2 since the grooves 10C and 10D are formed up to a part of the support substrate 2, distortion due to temperature change can be reduced. Moreover, when the elastic wave has oozed out to the support substrate 2, the confinement efficiency of the elastic wave can be further improved by bringing the grooves 10C and 10D to a part of the support substrate 2.
  • the intermediate layer 3 may be configured by the low sonic velocity film 34, and the support substrate 2 may be configured by the high sonic velocity support substrate.
  • the low sound velocity film is a film in which the propagating bulk wave sound velocity is lower than the elastic wave sound velocity propagating through the piezoelectric layer 4.
  • the high sound velocity support substrate is a support substrate in which the propagating bulk wave sound velocity is higher than the elastic wave sound velocity propagating through the piezoelectric layer 4.
  • a low sound velocity film having a relatively low sound velocity is laminated on a high sound velocity support substrate, and a piezoelectric layer 4 is laminated on the low sound velocity film.
  • the intermediate layer 3 may be patterned with a low sound velocity film in a region in which an elastic wave propagates (for example, just below a region where the IDT electrode 5 and the reflector are present).
  • An appropriate material for example, SiO 2
  • SiO 2 may be formed outside the region where the elastic wave propagates (for example, outside the region outside the IDT electrode 5).
  • an appropriate material may be formed between the intermediate layer 3 and the high acoustic velocity support substrate.
  • the above high-sonic support substrate has a function of confining elastic wave energy in the high-sonic support substrate. That is, the elastic wave energy can be confined in a region above the upper side of the high sound velocity support substrate (region including the piezoelectric layer and the low sound velocity film).
  • the low acoustic velocity film is made of silicon oxide, glass, silicon oxynitride, tantalum oxide, a compound obtained by adding fluorine, carbon, or boron to silicon oxide, or a material mainly composed of the above materials.
  • High-speed support substrates include aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, silicon, sapphire, lithium tantalate, lithium niobate, quartz and other piezoelectric materials, alumina, zirconia, cordierite, mullite, steatite, forte It consists of any of various ceramics such as stellite, magnesia diamond, a material mainly composed of each of the above materials, and a material mainly composed of a mixture of the above materials.
  • the grooves 10A to 10D are formed from one main surface 4a of the piezoelectric layer 4 through the low acoustic velocity film to a part of the high acoustic velocity support substrate.
  • the elastic wave energy is a region above the upper side of the high sound velocity support substrate (region including the piezoelectric layer 4 and the low sound velocity film). Therefore, it is desirable that the grooves 10A to 10D are formed up to a part of the high sound velocity support substrate.
  • the piezoelectric layer 4 and the intermediate layer 3 are removed by etching.
  • a part of the support substrate 2 is removed by dicing to form the grooves 10C and 10D.
  • the grooves 10 ⁇ / b> C and 10 ⁇ / b> D extending from the piezoelectric layer 4 to a part of the support substrate 2 can be formed.
  • FIG. 6 is a plan view of the acoustic wave device 1C according to the second embodiment.
  • two IDT electrodes 5 and 5t are arranged side by side in the orthogonal direction D2. Then, grooves 10A, 10B, 10C, and 10D are formed corresponding to one IDT electrode 5, and grooves 10At, 10Bt, 10Ct, and 10Dt are formed corresponding to the other IDT electrode 5t.
  • the configuration of the other IDT electrode 5t is substantially the same as that of the IDT electrode 5 of the first embodiment, and redundant description is omitted.
  • the configuration of each of the grooves 10At, 10Bt, 10Ct, and 10Dt corresponding to the other IDT electrode 5t is substantially the same as the grooves 10A, 10B, 10C, and 10D of the first embodiment, and redundant description is omitted.
  • the IDT electrodes 5 and 5t are connected in series via the input / output wiring 9a.
  • the comb-like electrode 6b of the IDT electrode 5 and the comb-like electrode 6c of the IDT electrode 5t are connected by the input / output wiring 9a.
  • an input / output wiring 9 b is connected to the comb-like electrode 6 c of the IDT electrode 5.
  • the input / output wiring 9c is connected to the comb-like electrode 6b of the IDT electrode 5t.
  • the groove 10Ct is provided so as to avoid the input / output wiring 9a
  • the groove 10Dt is provided so as to avoid the input / output wiring 9c. That is, the grooves 10Ct and 10Dt are provided at positions different from the input / output wirings 9a and 9c.
  • the elastic wave device 1C includes a piezoelectric substrate 11, and an IDT electrode 5 and an IDT electrode 5t provided on the piezoelectric substrate 11.
  • the IDT electrodes 5 and 5t are connected to the bus bar electrodes 7a and 7c (or 7b and 7d) extending in the elastic wave propagation direction D1 and the bus bar electrodes 7a and 7c (or 7b and 7d) and are orthogonal to the elastic wave propagation direction D1. It has a plurality of electrode fingers 8a (or 8b) extending in D2.
  • the piezoelectric substrate 11 has a plurality of grooves 10C, 10D and a plurality of grooves 10Ct, 10Dt formed along the elastic wave propagation direction D1, and each of the plurality of grooves 10C (or 10D, 10Ct, 10Dt) In the orthogonal direction D2, when viewed from the bus bar electrodes 7a, 7c (or 7b, 7d), they are provided on the side opposite to the side where the plurality of electrode fingers 8a (or 8b) are formed.
  • the grooves 10C, 10D, 10Ct, and 10Dt are provided corresponding to the IDT electrodes 5 and 5t, respectively, so that they are different from the elastic wave propagation direction D1.
  • the elastic wave propagating in the direction can be reflected by the end faces 1c and 1d of the grooves 10C and 10D or the end faces 1c and 1d of the grooves 10Ct and 10Dt, and can be confined between the grooves 10C and 10D or between the grooves 10Ct and 10Dt. Thereby, it can suppress that an elastic wave leaks outside.
  • FIG. 7A is a plan view of elastic wave device 1D according to Embodiment 3.
  • FIG. 7A is a plan view of elastic wave device 1D according to Embodiment 3.
  • the input / output wiring 9a is formed around the groove 10D.
  • the configurations of the IDT electrodes 5 and 5t in the acoustic wave device 1D are substantially the same as those in the second embodiment, and a duplicate description is omitted.
  • this acoustic wave device 1D there is one groove 10D located between one IDT electrode 5 and the other IDT electrode 5t, and the groove 10D is shared by the IDT electrode 5 and the IDT electrode 5t.
  • the comb-like electrode 6b of the IDT electrode 5 and the comb-like electrode 6c of the IDT electrode 5t are connected by an input / output wiring 9a.
  • the input / output wiring 9a is formed so as to avoid the groove 10D.
  • the elastic wave device 1D has a plurality of grooves 10C, 10D, and 10Dt formed along the elastic wave propagation direction D1, and each of the plurality of grooves 10C (or 10D, 10Dt) is orthogonal.
  • the direction D2 when viewed from the bus bar electrodes 7a, 7c (or 7b, 7d), they are provided on the side opposite to the side where the plurality of electrode fingers 8a (or 8b) are formed.
  • the two IDT electrodes 5 and 5t are provided, by providing the grooves 10C, 10D, and 10Dt corresponding to the IDT electrodes 5 and 5t, respectively, in a direction different from the elastic wave propagation direction D1.
  • the propagating elastic wave can be reflected by the end faces 1c, 1d of the grooves 10C, 10D or the end faces 1c, 1d of the grooves 10D, 10Dt and confined between the grooves 10C, 10D or between the grooves 10D, 10Dt. Thereby, it can suppress that an elastic wave leaks outside.
  • FIG. 7B is a plan view of an elastic wave device 1E according to a modification of the third embodiment.
  • the input / output wiring is led out from the bus bar electrode and formed around the grooves 10C, 10D, and 10Dt.
  • Each of the grooves 10C, 10D, and 10Dt is formed by a single groove.
  • the input / output wiring 9b is drawn out from the bus bar electrode 7a of the IDT electrode 5 so as to bypass the groove 10C.
  • the input / output wiring 9a is drawn from the bus bar electrode 7c of the IDT electrode 5t, bypasses the groove 10D, and is connected to the bus bar electrode 7d of the IDT electrode 5.
  • the input / output wiring 9c bypasses the groove 10Dt and is connected to the bus bar electrode 7b of the IDT electrode 5t.
  • the grooves 10C, 10D, and 10Dt are provided corresponding to the IDT electrodes 5 and 5t, respectively, so that the elastic wave propagating in a direction different from the elastic wave propagation direction D1 is transmitted to the grooves 10C and 10D. Can be confined between the grooves 10C and 10D or between the grooves 10D and 10Dt. Thereby, it can suppress that an elastic wave leaks outside.
  • the groove 10D between the IDT electrodes 5 and 5t as one, the dimension in the orthogonal direction D2 of the elastic wave device 1E can be reduced, and the elastic wave device 1E can be downsized.
  • FIG. 8 is a cut side view of elastic wave device 1F according to the fourth embodiment. This cut side view is a side view when the elastic wave device 1F is cut at the same position as the cut surface shown in FIG. 2C.
  • the intermediate layer 3 is constituted by a high sonic film 33 and a low sonic film 34. Specifically, a high sound velocity film 33 having a relatively high sound velocity is laminated on the support substrate 2, and a low sound velocity film 34 having a relatively low sound velocity is laminated on the high sound velocity film 33. A piezoelectric layer 4 is laminated.
  • the high sound velocity film 33 and the low sound velocity film 34 may be patterned in a region where the elastic wave propagates (for example, just below the region where the IDT electrode 5 and the reflector exist).
  • An appropriate material, for example, SiO 2 may be formed outside the region where the elastic wave propagates (for example, outside the region outside the IDT electrode 5). Further, an appropriate material may be formed between the intermediate layer 3 and the support substrate 2.
  • the high sound velocity film 33 has a function of confining the elastic wave in the portion where the piezoelectric layer 4 and the low sound velocity film 34 are laminated so that the elastic wave does not leak below the high sound velocity film 33.
  • the high acoustic velocity film 33 is made of, for example, aluminum nitride.
  • aluminum nitride aluminum oxide, silicon carbide, silicon nitride, silicon oxynitride, DLC film or diamond, a medium containing these materials as a main component, and a mixture of these materials as main components.
  • Various high sound speed materials such as a medium to be used can be used.
  • the high acoustic velocity film 33 is thicker, more than 0.1 times the wavelength ⁇ of the acoustic wave. It is desirable that it is 5 times or more.
  • the low sound velocity film 34 is made of silicon oxide.
  • the material constituting the low acoustic velocity film 34 an appropriate material having a bulk acoustic wave velocity lower than that of the bulk wave propagating through the piezoelectric layer 4 can be used.
  • a medium containing the above material as a main component such as silicon oxide, glass, silicon oxynitride, tantalum oxide, or a compound obtained by adding fluorine, carbon, or boron to silicon oxide can be used.
  • the high sound velocity film 33 refers to a film in which the acoustic velocity of the bulk wave in the high sound velocity film 33 is higher than that of the surface wave or boundary wave that propagates through the piezoelectric layer 4.
  • the low sound velocity film 34 is a film in which the sound velocity of the bulk wave in the low sound velocity film 34 is lower than the bulk wave propagating through the piezoelectric layer 4.
  • the grooves 10A to 10D are formed from one main surface 4a of the piezoelectric layer 4 through the low sound velocity film 34 to a part of the high sound velocity film 33.
  • the intermediate layer 3 has a structure in which the low sound velocity film 34 is laminated on the high sound velocity film 33 as in the present embodiment, it is desirable that the grooves 10A to 10D are formed up to a part of the high sound velocity film 33.
  • the elastic wave propagated from the piezoelectric layer 4 to the low sound velocity film 34 is converted to the high sound velocity film 33. It can be reflected at the interface with the low acoustic velocity film 34 and returned to the piezoelectric layer 4. Thereby, elastic wave energy can be efficiently confined in the piezoelectric layer 4.
  • FIG. 9 is a cut-away side view of the elastic wave device 1G according to the fifth embodiment. This cut side view is a side view when the elastic wave device 1F is cut at the same position as the cut surface shown in FIG. 2C.
  • the intermediate layer 3 is an acoustic reflection layer having a plurality of acoustic impedance layers.
  • the intermediate layer 3 includes low acoustic impedance layers 42a, 42c, 42e, and 42g, and high acoustic impedance layers 42b, 42d, and 42f.
  • the low acoustic impedance layers 42a, 42c, 42e, and 42g and the high acoustic impedance layers 42b, 42d, and 42f are patterned in the region where the elastic wave propagates (for example, just below the region where the IDT electrode 5 and the reflector exist).
  • An appropriate material for example, SiO 2 may be formed outside the region where the elastic wave propagates (for example, the region outside the IDT electrode 5). Further, an appropriate material may be formed between the intermediate layer 3 and the support substrate 2.
  • the acoustic impedance of the high acoustic impedance layers 42b, 42d, and 42f is higher than that of the low acoustic impedance layers 42a, 42c, 42e, and 42g.
  • the low acoustic impedance layer 42a is laminated on the one principal surface 2a of the support substrate 2, and the high acoustic impedance layers 42b, 42d, and 42f and the low acoustic impedance layers 42c, 42e, and 42g are formed thereon. Are alternately arranged in the stacking direction.
  • the elastic wave propagated from the piezoelectric layer 4 to the intermediate layer 3 is reflected at the interfaces of the high acoustic impedance layers 42b, 42d, and 42f, which are the upper surfaces of the low acoustic impedance layers 42a, 42c, and 42e, and returned to the piezoelectric layer 4. be able to. Thereby, elastic wave energy can be efficiently confined in the piezoelectric layer 4.
  • Low acoustic impedance layers 42a, 42c, 42e, 42 g is constituted by SiO 2.
  • the low acoustic impedance layers 42a, 42c, 42e, and 42g may be made of SiO 2 or Al. These may be used alone or in combination.
  • the high acoustic impedance layers 42b, 42d, and 42f are made of SiN. However, the high acoustic impedance layers 42b, 42d, and 42f may be made of W, Pt, LT, Al 2 O 3 , Ta 2 O 5 , LN, AlN, ZnO, or the like. These may be used alone or in combination.
  • the layer located closest to the support substrate 2 in the stacking direction is formed of SiO 2 that is the low acoustic impedance layer 42a. Therefore, in the acoustic wave device 1G, the adhesion between the intermediate layer 3 and the support substrate 2 is enhanced.
  • the acoustic wave device 1G has the grooves 10C and 10D. Therefore, an elastic wave propagating in a direction different from the elastic wave propagation direction D1 can be reflected and confined between the grooves 10C and 10D.
  • the grooves 10A to 10D are formed from one main surface 4a of the piezoelectric layer 4 to a part of the low acoustic impedance layer 42a. This is because the elastic wave propagated from the piezoelectric layer 4 to the intermediate layer 3 is reflected by the interfaces of the high acoustic impedance layers 42b, 42d, and 42f, which are the upper surfaces of the low acoustic impedance layers 42a, 42c, and 42e. This is because it is not necessary to extend the groove to the support substrate 2 because it can be returned.
  • the intermediate layer 3 has a multilayer structure as in the present embodiment, it is desirable that the grooves 10A to 10D are formed up to a part of the layer located closest to the support substrate 2 in the stacking direction.
  • the grooves 10A to 10D may be formed from one main surface 4a of the piezoelectric layer 4 to between the one main surface 2a and the other main surface 2b of the support substrate 2.
  • the intermediate layer 3, and the support substrate 2 are different from each other, distortion due to temperature change is likely to occur due to the difference in the linear expansion coefficient among the materials. By being formed, strain due to temperature change can be reduced.
  • the number of laminated low acoustic impedance layers and high acoustic impedance layers is not particularly limited. Further, the low acoustic impedance layer and the high acoustic impedance layer may not be alternately arranged in the stacking direction. However, from the viewpoint of increasing the confinement efficiency of elastic waves in the piezoelectric layer 4, at least one of the low acoustic impedance layers is provided closer to the piezoelectric layer 4 than at least one of the high acoustic impedance layers. Is desirable.
  • FIG. 10 is a circuit configuration diagram showing the front-end circuit 108 and the communication device 109 according to the sixth embodiment.
  • the first filter 111 and the second filter 112 include the elastic wave device 1 according to the first embodiment.
  • an LNA Low Noise
  • Amplifier 103 is provided in order to switch the connection state with the antenna element 102.
  • a multiport switch 105 is provided between the first filter 111 and the antenna common terminal 115 and between the second filter 112 and the antenna common terminal 115.
  • the multi-port switch 105 is a switch that can be turned ON / OFF at the same time.
  • the first filter 111 is a reception filter.
  • the present invention is not limited to this, and the first filter 111 including the elastic wave device 1 may be a transmission filter.
  • the communication device 109 capable of transmitting and receiving can be configured.
  • each filter constituting the front end circuit 108 and the communication device 109 is not limited to a surface acoustic wave filter, and may be a boundary acoustic wave filter. Also by this, the effect similar to the effect which the elastic wave apparatus 1 etc. which concern on the said embodiment has is show
  • the acoustic wave devices 1 to 1G, the front end circuit 108, and the communication device 109 according to the present invention have been described based on the embodiments and the modified examples.
  • the present invention is limited to the above-described embodiments and modified examples. It is not something.
  • Other embodiments realized by combining arbitrary components in the above-described embodiments and modifications, and various modifications conceived by those skilled in the art without departing from the gist of the present invention to the above-described embodiments. Variations obtained and various devices incorporating the acoustic wave device according to the present invention are also included in the present invention.
  • FIG. 11 is a cut side view of an elastic wave device 1H according to another embodiment. This cut side view is a side view when the elastic wave device 1H is cut at the same position as the cut surface shown in FIG. 2B.
  • each of the grooves 10A and 10B is formed only in the intermediate layer 3. Specifically, the grooves 10 ⁇ / b> A and 10 ⁇ / b> B are not formed in the piezoelectric layer 4 but are formed in a part of the intermediate layer 3.
  • grooves 10A and 10B are formed in the intermediate layer 3 of the piezoelectric substrate 11, and an elastic wave propagating in the elastic wave propagation direction D1 is reflected using the end face 1a of the groove 10A and the end face 1b of the groove 10B. The elastic wave is confined between the groove 10A and the groove 10B.
  • wiring can be easily routed, and a reflector can be installed on the piezoelectric substrate 11. Moreover, it becomes possible to arrange
  • the intermediate layer 3 can be sealed with the piezoelectric layer 4, for example, when the intermediate layer 3 is formed of SiO 2 , deterioration of the intermediate layer 3 can be suppressed.
  • the grooves 10A and 10B only need to be formed in at least a part of the intermediate layer 3.
  • FIG. 12 is a cut side view of the elastic wave device 1I according to another embodiment. This cut side view is a side view when the elastic wave device 1I is cut at the same position as the cut surface shown in FIG. 2C.
  • each of the grooves 10 ⁇ / b> C and 10 ⁇ / b> D is formed only in the intermediate layer 3. Specifically, the grooves 10 ⁇ / b> C and 10 ⁇ / b> D are not formed in the piezoelectric layer 4 but are formed in a part of the intermediate layer 3.
  • grooves 10C and 10D are formed in the intermediate layer 3 of the piezoelectric substrate 11, and the end face 1c of the groove 10C and the end face 1d of the groove 10D are used in a direction (for example, orthogonal direction) different from the acoustic wave propagation direction D1.
  • the elastic wave propagating to D2) is reflected, and the elastic wave is confined between the groove 10C and the groove 10D.
  • the intermediate layer 3 can be sealed with the piezoelectric layer 4, for example, when the intermediate layer 3 is formed of SiO 2 , deterioration of the intermediate layer 3 can be suppressed.
  • the grooves 10 ⁇ / b> C and 10 ⁇ / b> D may be formed in at least a part of the intermediate layer 3.
  • the piezoelectric substrate 11 includes the piezoelectric layer 4, the support substrate 2, and the intermediate layer 3.
  • the piezoelectric substrate 11 is not limited thereto, and the piezoelectric substrate 11 is integrally formed, for example, formed of a piezoelectric ceramic material. Also good.
  • the pair of grooves 10A and 10B are provided outside the IDT electrode 5, but the present invention is not limited to this, and a pair of reflectors may be provided in place of the grooves 10A and 10B.
  • the elastic wave device has the grooves 10C and 10D facing each other in the orthogonal direction D2, and therefore leakage of elastic waves in a direction different from the elastic wave propagation direction D1 can be suppressed.
  • the acoustic wave device having the grooves 10C and 10D can be downsized, for example, as compared to a case where a pair of reflectors are provided outside the IDT electrode 5 in the orthogonal direction D2.
  • the IDT electrodes 5 of the acoustic wave devices 1 to 1G in the present embodiment may be a longitudinally coupled type, a laterally coupled type, or a transversal type.
  • the input / output wirings 9a to 9c on the piezoelectric substrate are connected to the IDT electrodes 5 and 5t.
  • the present invention is not limited to this. Good.
  • the acoustic wave device 1 may have a configuration in which the piezoelectric thin film does not have a groove (end face) and only the intermediate layer has a groove (end face).
  • the intermediate layer refers to a layer (including a plurality of layers) from the layer immediately below the piezoelectric thin film to the support substrate. Also in this case, the elastic wave existing in the intermediate layer can be reflected by the groove (end face) of the intermediate layer, and the elastic wave confinement efficiency can be improved.
  • the elastic wave device of the present invention is widely used in various electronic devices and communication devices.
  • Examples of the electronic device include a sensor.
  • Examples of the communication device include a duplexer including the elastic wave device of the present invention, a communication module device including a PA, an LNA, and a switch, a mobile communication device including the communication module device, a healthcare communication device, and the like.
  • Examples of mobile communication devices include mobile phones, smartphones, car navigation systems, and the like.
  • Examples of health care communication devices include a weight scale and a body fat scale.
  • Health care communication devices and mobile communication devices include an antenna, an RF module, an LSI, a display, an input unit, a power source, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

弾性波装置(1)は、圧電基板(11)と、圧電基板(11)に設けられたIDT電極(5)と、を備える。IDT電極(5)は、弾性波伝搬方向(D1)に延びるバスバー電極(7a、7c(あるいは7b、7d))と、バスバー電極(7a、7c(あるいは7b、7d))に接続されて弾性波伝搬方向(D1)の直交方向(D2)に延びる複数の電極指(8a(あるいは8b))とを有している。圧電基板(11)は、弾性波伝搬方向(D1)に沿って形成された溝(10C、10D)を有し、溝(10C(あるいは10D))は、直交方向(D2)においてバスバー電極(7a、7c(あるいは7b、7d))から見て、複数の電極指(8a(あるいは8b))が形成されている側と反対側に設けられている。

Description

弾性波装置、フロントエンド回路および通信装置
 本発明は、IDT(InterDigital Transducer)電極を有する弾性波装置、この弾性波装置を有するフロントエンド回路および通信装置に関する。
 従来、共振子や帯域フィルタとして弾性波装置が広く用いられている。
 この弾性波装置の一例として、特許文献1には、互いに対向する一対の端面で弾性波を反射する端面反射型の弾性波装置が開示されている。特許文献1の弾性波装置では、弾性波伝搬方向において、IDT電極の両外側に溝を設けることで、対向する一対の端面を形成している。そして、この一対の端面を用いて弾性波を反射することで、弾性波伝搬方向に伝搬する弾性波を弾性波装置内に閉じ込めている。
国際公開第2005/050836号
 しかしながら、特許文献1に示す弾性波装置では、弾性波伝搬方向に伝搬する弾性波を反射し閉じ込めることはできるが、弾性波伝搬方向と異なる方向に伝搬する弾性波を閉じ込めることができず、弾性波が弾性波装置の外部に漏洩するという問題がある。
 そこで本発明は、弾性波伝搬方向と異なる方向に伝搬する弾性波が外部に漏洩することを抑制することができる弾性波装置等を提供することを目的とする。
 本発明の一態様に係る弾性波装置は、圧電基板と、圧電基板に設けられたIDT電極と、を備える弾性波装置であって、IDT電極は、弾性波伝搬方向に延びるバスバー電極と、バスバー電極に接続されて弾性波伝搬方向の直交方向に延びる複数の電極指とを有し、圧電基板は、弾性波伝搬方向に沿って形成された、少なくとも1以上の溝を有し、少なくとも1以上の溝は、直交方向においてバスバー電極から見て、複数の電極指が形成されている側と反対側に設けられている。
 このように、弾性波装置は、弾性波伝搬方向に沿って形成された溝を有しているので、弾性波伝搬方向と異なる方向に伝搬する弾性波を、溝を用いて反射することができる。これにより、弾性波が外部に漏洩することを抑制することができる。
 また、少なくとも1以上の溝は、複数の溝で構成され、複数の溝は、直交方向に互いに対向していてもよい。
 これによれば、弾性波装置は、直交方向に互いに対向する複数の溝を有しているので、弾性波伝搬方向と異なる方向に伝搬する弾性波を、溝を用いて反射し、複数の溝の間に閉じ込めることができる。これにより、弾性波が外部に漏洩することを抑制することができる。
 また、圧電基板は、支持基板と、支持基板上に位置する圧電層と、支持基板と圧電層との間に設けられた中間層と、を有し、IDT電極は、圧電層上に設けられ、少なくとも1以上の溝は、圧電層から中間層の少なくとも一部に至るまで形成されていてもよい。
 これによれば、圧電層、および、中間層の少なくとも一部を伝搬する弾性波を、溝を用いて反射することができる。これにより、弾性波伝搬方向と異なる方向に伝搬する弾性波が外部に漏洩することを抑制することができる。
 また、圧電基板は、支持基板と、支持基板上に位置する圧電層と、支持基板と圧電層との間に設けられた中間層と、を有し、IDT電極は、圧電層上に設けられ、少なくとも1以上の溝は、圧電層には形成されず、中間層の少なくとも一部に形成されていてもよい。
 これによれば、中間層の少なくとも一部を伝搬する弾性波を、溝を用いて反射することができる。これにより、弾性波伝搬方向と異なる方向に伝搬する弾性波が外部に漏洩することを抑制することができる。
 また、弾性波装置の中間層は、粒界を有していてもよい。
 例えば、中間層を伝搬する弾性波の一部が粒界によって散乱し、弾性波伝搬方向と異なる方向に弾性波が伝搬する場合であっても、本発明の弾性波装置は、弾性波伝搬方向に沿って形成された溝を有しているので、上記弾性波を反射することができる。これにより、弾性波伝搬方向と異なる方向に伝搬する弾性波が外部に漏洩することを抑制することができる。
 また、中間層は、圧電層に接していてもよい。
 これによって、圧電層を伝搬する弾性波のエネルギーが、厚み方向に漏洩するのを防止することができる。
 また、中間層が粒界を有している場合には、圧電層に接する中間層を伝搬する弾性波の一部が散乱し、弾性波伝搬方向と異なる方向に弾性波が伝搬する場合であっても、本発明の弾性波装置は、弾性波伝搬方向の直交方向に互いに対向する溝を有しているので、上記弾性波を反射することができる。これにより、弾性波が外部に漏洩することを抑制することができる。
 また、中間層は、1または複数のSiO層を含んでいてもよい。
 例えば、SiO層を伝搬する弾性波の一部が散乱し、弾性波伝搬方向と異なる方向に弾性波が伝搬される場合であっても、本発明の弾性波装置は、弾性波伝搬方向に沿って形成された溝を有しているので、上記弾性波を反射することができる。これにより、弾性波伝搬方向と異なる方向に伝搬する弾性波が外部に漏洩することを抑制することができる。
 また、中間層は、圧電層を伝搬する弾性波音速よりも、伝搬するバルク波音速が低速であり、支持基板は、圧電層を伝搬する弾性波音速よりも、伝搬するバルク波音速が高速であってもよい。
 これによれば、圧電層から中間層に伝搬した弾性波を、支持基板と中間層との界面で反射し、圧電層に戻すことができる。これにより、弾性波エネルギーを圧電層内に効率的に閉じ込めることができる。
 また、中間層は、圧電層を伝搬する弾性波音速よりも、伝搬するバルク波音速が低速である低音速膜と、圧電層を伝搬する弾性波音速よりも、伝搬するバルク波音速が高速である高音速膜とを有し、低音速膜は、圧電層と支持基板との間に設けられ、高音速膜は、低音速膜と支持基板との間に設けられていてもよい。
 これによれば、圧電層から低音速膜に伝搬した弾性波を、高音速膜と低音速膜との界面で反射し、圧電層に戻すことができる。これにより、弾性波エネルギーを圧電層内に効率的に閉じ込めることができる。
 また、中間層は、低音響インピーダンス層、および、低音響インピーダンス層よりも音響インピーダンスが高い高音響インピーダンス層のそれぞれが、少なくとも1層以上積層されており、低音響インピーダンス層の少なくとも1層は、高音響インピーダンス層よりも圧電層側に設けられていてもよい。
 これによれば、圧電層から中間層に伝搬した弾性波を、低音響インピーダンス層と高音響インピーダンス層との界面で反射し、圧電層に戻すことができる。これにより、弾性波エネルギーを圧電層内に効率的に閉じ込めることができる。
 また、少なくとも1以上の溝は、圧電層から中間層を経て支持基板の一部に至るまで形成されている。
 このように、溝を支持基板の一部に至るまで形成することで、圧電層および中間層を伝搬する弾性波を、溝を用いて反射することができる。これにより、弾性波伝搬方向と異なる方向に伝搬する弾性波が外部に漏洩することを抑制することができる。
 また、圧電基板には、IDT電極に接続する入出力配線が設けられ、少なくとも1以上の溝は、入出力配線と異なる位置に設けられていてもよい。
 これによれば、入出力配線の引き回しによる配線ロスを抑制しつつ、弾性波伝搬方向と異なる方向に伝搬する弾性波を、溝を用いて反射することができる。これにより、弾性波伝搬方向と異なる方向に伝搬する弾性波が外部に漏洩することを抑制することができる。
 また、圧電基板には、IDT電極に接続する入出力配線が設けられ、入出力配線は、溝を迂回して形成されていてもよい。
 これによれば、溝の長さを長くすることができ、弾性波伝搬方向と異なる方向に伝搬する弾性波を、広い範囲で反射することができる。これにより、弾性波伝搬方向と異なる方向に伝搬する弾性波が外部に漏洩することを抑制することができる。
 さらに、圧電基板は、直交方向に沿って形成された、少なくとも1以上の溝を有し、直交方向に形成された少なくとも1以上の溝は、弾性波伝搬方向において、複数の電極指の最外に位置する電極指よりも外側に設けられていてもよい。
 このように、弾性波装置は、直交方向に沿って形成された溝を有しているので、弾性波伝搬方向に伝搬する弾性波を、溝の側面で反射することができる。これにより、弾性波伝搬方向と異なる方向に伝搬する弾性波が外部に漏洩することを抑制することができる。
 また、直交方向に沿って形成された少なくとも1以上の溝は、複数の溝で構成され、当該複数の溝は、弾性波伝搬方向に互いに対向していてもよい。
 これによれば、弾性波装置は、弾性波伝搬方向に互いに対向する複数の溝を有しているので、弾性波伝搬方向に伝搬する弾性波を、溝を用いて反射し、複数の溝の間に閉じ込めることができる。これにより、弾性波伝搬方向と異なる方向に伝搬する弾性波が外部に漏洩することを抑制することができる。
 また、IDT電極は、弾性波伝搬方向に沿って形成された複数の溝と、直交方向に沿って形成された複数の溝と、によって囲まれていてもよい。
 これにより、圧電層の主面に沿う全方位の弾性波を、溝を用いて反射し、複数の溝で囲まれた領域内に閉じ込めることができる。これにより、弾性波伝搬方向と異なる方向に伝搬する弾性波が外部に漏洩することを抑制することができる。
 また、本発明の一態様に係るフロントエンド回路は、上記弾性波装置を備える。
 これにより、弾性波の漏洩が抑制されたフロントエンド回路を提供することができる。
 また、本発明の一態様に係る通信装置は、高周波信号を処理する信号処理回路と、上記フロントエンド回路と、を備える。
 これにより、弾性波伝搬方向と異なる方向に伝搬する弾性波の漏洩が抑制された通信装置を提供することができる。
 本発明によれば、弾性波装置、高周波フロントエンド回路、または通信装置における弾性波伝搬方向と異なる方向に伝搬する弾性波の外部への漏洩を抑制することができる。
図1は、実施の形態1に係る弾性波装置の斜視図である。 図2A、実施の形態1に係る弾性波装置の平面図である。 図2Bは、図2Aの弾性波装置をIIB-IIB線で切断した場合の切断面を示す切断正面図である。 図2Cは、図2Aの弾性波装置をIIC-IIC線で切断した場合の切断面を示す切断側面図である。 図3は、実施の形態1に係る弾性波装置の中間層を弾性波が伝搬する様子を示す図である。 図4は、実施の形態1の変形例1に係る弾性波装置の切断側面図である。 図5は、実施の形態1の変形例2に係る弾性波装置の切断側面図である。 図6は、実施の形態2に係る弾性波装置の平面図である。 図7Aは、実施の形態3に係る弾性波装置の平面図である。 図7Bは、実施の形態3の変形例に係る弾性波装置の平面図である。 図8は、実施の形態4に係る弾性波装置の切断側面図である。 図9は、実施の形態5に係る弾性波装置の切断側面図である。 図10は、実施の形態6に係るフロントエンド回路および通信装置を示す回路構成図である。 図11は、その他の形態における弾性波装置の切断側面図である。 図12は、その他の形態における弾性波装置の切断側面図である。
 以下、本発明の実施の形態について、実施の形態および図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさまたは大きさの比は、必ずしも厳密ではない。
 (実施の形態1)
 [1-1.弾性波装置の構成]
 図1は、実施の形態1に係る弾性波装置1の斜視図である。図2Aは、弾性波装置1の平面図である。図2Bは、図2Aの弾性波装置1をIIB-IIB線で切断した場合の切断面を示す切断正面図である。図2Cは、図2Aの弾性波装置1をIIC-IIC線で切断した場合の切断面を示す切断側面図である。
 弾性波装置1は、図1、図2Aおよび図2Bに示すように、弾性波伝搬方向D1に互いに対向する一対の端面1a、1bを有する。また、弾性波装置1は、図1、図2Aおよび図2Cに示すように、弾性波伝搬方向D1の直交方向D2に互いに対向する一対の端面1c、1dを有する。弾性波装置1は、端面1a~1dを用いて弾性表面波を反射させる端面反射型の弾性波装置である。
 弾性波装置1は、圧電基板11と、圧電基板11に設けられた櫛歯状電極6a、6b、6c、6dを有するIDT電極5とを備える。圧電基板11は、支持基板2と、支持基板2上に設けられた中間層3と、中間層3上に設けられた圧電層4とによって構成される。IDT電極5は、圧電層4上に設けられている。
 支持基板2は、図2Bおよび図2Cに示すように、互いに対向する一方主面2aおよび他方主面2bを有する。支持基板2は、圧電層4を伝搬する弾性波音速よりも、伝搬するバルク波音速が高速となる材料によって形成される。支持基板2の材料としては、例えば、Siなどの半導体、サファイア、LiTaO(以下、「LT」と称する)、LiNbO(以下、「LN」と称する)、ガラスなどが挙げられる。これらの材料は、単独で用いてもよく、複数を併用してもよい。
 中間層3は、支持基板2の一方主面2a上に設けられている。また、中間層3は、後述する圧電層4の直下に位置し、圧電層4に接している。中間層3が圧電層に接していることで、圧電層4を伝搬する弾性波のエネルギーが、厚み方向に漏洩するのを防止することができる。
 中間層3は、圧電層4を伝搬する弾性波音速よりも、伝搬するバルク波音速が低速となる材料によって形成される。中間層3は、例えば、多結晶、アモルファスまたは一軸配向された膜により形成され、結晶粒子G1および粒界G2を有している(図3参照)。
 具体的には、中間層3はSiO層により形成されている。もっとも、中間層3を形成する材料としては、SiOの他に、窒化ケイ素、窒化アルミニウムなどを用いることができる。これらは、単独で用いてもよく、複数を併用してもよい。また、支持基板2との密着性を高める観点からは、中間層3を構成する材料として、SiOを用いることが望ましい。
 なお、中間層3は、複数の層が積層された多層構造を有していてもよい。その場合には、積層方向において、最も支持基板2側に位置する層が、SiOにより構成されることが望ましい。さらに、中間層3は弾性波が伝搬する領域(例えば、IDT電極5や反射器が存在する領域)の直下のみにパターニングされた中間層3があってもよい。そして、弾性波の伝搬する領域外(例えば、IDT電極5の外側の領域)に形成された中間層3からなるものであってもよい。すなわち図2B、2Cに示す中間層3は面内で同一の構造を取っていなくても良い。この場合、波を伝搬する領域直下に形成された中間層3は上に述べた適宜の材料であることが好ましく、弾性波を伝搬する領域外に形成された中間層3は任意の材料であって良い。
 圧電層4は、中間層3上に設けられている。圧電層4は薄膜状であり、圧電層4の厚みは、弾性波の波長をλとした場合に、例えば、厚み1λであることが望ましい。その場合、弾性波をより励振させることができる。
 圧電層4は、互いに対向する一方主面4aおよび他方主面4bを有している。圧電層4の他方主面4bは、中間層3側に位置している。圧電層4は、LTにより構成されている。もっとも、圧電層4を構成する材料としては、LNなどの他の圧電単結晶を用いてもよいし、圧電セラミックスを用いてもよい。
 IDT電極5は、圧電層4の一方主面4a上に設けられている。弾性波装置1は、IDT電極5により励振される弾性波として、SH波を主成分とする弾性表面波を利用している。もっとも励振される波は、SH波またはラム波(S0モード、S1モード、A1モード、A0モード)などの板波を含む弾性波であれば良い。ここで言う板波とは、励振される板波の波長を1λとした場合に、膜厚1λ程度以下の圧電薄板に励振される種々の波を総称している。以下の「板波」も同様の意味である。
 図1および図2Aに示すように、IDT電極5の一部である一対の櫛歯状電極6a、6bは互いに対向している。また、IDT電極5の一部である一対の櫛歯状電極6c、6dは互いに対向している。櫛歯状電極6a、6bのそれぞれは、弾性波伝搬方向D1に延びるバスバー電極7a、7bと、直交方向D2に延びる複数の電極指8a、8bとを有している。櫛歯状電極6c、6dのそれぞれは、弾性波伝搬方向D1に延びるバスバー電極7c、7dと、直交方向D2に延びる複数の電極指8a、8bとを有している。複数の電極指8aは、バスバー電極7a、7cに接続されており、複数の電極指8bは、バスバー電極7b、7dに接続されている。複数の電極指8aと複数の電極指8bとは、互いに間挿し合っている。複数の電極指8a、8bのうち、弾性波伝搬方向D1の最外(最も外側)に位置する両端部の電極指8a、8bの幅は、λ/8である。両端部の電極指8a、8bと異なる中央部の電極指8a、8bの幅は、λ/4である。
 IDT電極5を構成する材料としては、例えば、Cu、Ni、Ni-Cr合金、Al-Cu合金、Ti、Al、Ptなどの適宜の金属または合金が挙げられる。これらは、単独で用いてもよく、複数を併用してもよい。また、IDT電極5は、複数の金属膜を積層してなる積層金属膜により構成されていてもよい。なお、圧電層4の一方主面4a上に、IDT電極5を覆うように温度調整膜としてのSiO膜が設けられてもよい。バスバー電極7a~7dの厚みは、電極指8a、8bの厚みよりも厚く形成されていてもよい。
 圧電基板11には、IDT電極5に接続され、IDT電極5に電力を供給する入出力配線9a、9bが設けられている。具体的には、入出力配線9aは櫛歯状電極6bのバスバー電極7bに接続され、入出力配線9bは櫛歯状電極6cのバスバー電極7cに接続されている。
 本実施の形態の弾性波装置1では、図1および図2Aに示すように、圧電基板11に複数の溝10A、10B、および、複数の溝10C、10Dが設けられている。
 溝10A、10Bのそれぞれは、直交方向D2に沿って形成され、弾性波伝搬方向D1に互いに対向している。溝10C、10Dのそれぞれは、弾性波伝搬方向D1に沿って形成され、直交方向D2に互いに対向している。溝10A~10Dは、IDT電極5の外側を囲むように設けられている。溝10A~10Dのそれぞれの外側には、溝外基板部11A、11B、11C、11Dが形成されている。
 溝10A、10Bのそれぞれは、弾性波伝搬方向D1において、複数の電極指8a、8bの最外に位置する電極指8a、8bよりも外側に設けられている。また、溝10A、10Bのそれぞれは、弾性波装置1を平面視した場合(一方主面4aに垂直な方向から見た場合)に、最外に位置する電極指8a、8bと隣接している。
 溝10Cは、直交方向D2においてバスバー電極7a、7cから見て、複数の電極指8aが形成されている側と反対側(直交方向D2のマイナス側)に設けられている。溝10Cは、平面視した場合に、バスバー電極7a、7cから所定距離i1離れ、バスバー電極7a、7cに平行に形成されている。また、溝10Cは、長手方向に2つに分けられ、入出力配線9bを避けるように入出力配線9bと異なる位置に設けられている。溝10Cは、バスバー電極7a、7cの合計の長さよりも長く形成されていてもよい。
 溝10Dは、直交方向D2において、バスバー電極7b、7dから見て、複数の電極指8bが形成されている側と反対側(直交方向D2のプラス側)に設けられている。溝10Dは、平面視した場合に、バスバー電極7b、7dから所定距離i2離れ、バスバー電極7b、7dに平行に形成されている。所定距離i1およびi2は等しく、例えばi1=i2=λ/8である。また、溝10Dは、長手方向に2つに分けられ、入出力配線9aを避けるように入出力配線9aと異なる位置に設けられている。溝10Dは、バスバー電極7b、7dの合計の長さよりも長く形成されていてもよい。
 また、図2Bおよび図2Cに示すように、溝10A~10Dのそれぞれは、圧電層4から中間層3の一部に至るまで形成されている。具体的には、溝10A~10Dのそれぞれは、両側面10aおよび底部10bを有し、底部10bは支持基板2に到達しておらず、圧電層4の他方主面4bと支持基板2の一方主面2aとの間に位置している。
 本実施の形態の弾性波装置1では、溝10Aの両側面10aのうち、最外の電極指8bの近くに位置する側面10aが端面1aとなり、溝10Bの両側面10aのうち、最外の電極指8aの近くに位置する側面10aが端面1bとなる。また、弾性波装置1では、溝10Cの両側面10aのうち、バスバー電極7a、7cの近くに位置する側面10aが端面1cとなり、溝10Dの両側面10aのうち、バスバー電極7b、7dの近くに位置する側面10aが端面1dとなる。互いに対向する端面1a、1bは、弾性波伝搬方向D1に伝搬する弾性波を反射して端面1a、1b間に閉じ込めることができる。互いに対向する端面1c、1dは、弾性波伝搬方向D1と異なる方向(例えば直交方向D2)に伝搬する弾性波を反射して端面1c、1d間に閉じ込めることができる。また、弾性波装置1では、IDT電極5が端面1a~1dによって囲まれており、圧電層4の一方主面4aに沿う全方位の弾性波を、端面1a~1dで反射し、端面1a~1dにて囲まれる領域内に閉じ込めることができる。
 なお、一方主面4aと端面1aとの角度(溝10A側に形成される角度)、および、一方主面4aと端面1bとの角度(溝10B側に形成される角度)は、それぞれ、70度以上90度以下であることが望ましい。また、一方主面4aと端面1cとの角度(溝10C側に形成される角度)、および、一方主面4aと端面1dとの角度(溝10D側に形成される角度)は、それぞれ、70度以上90度以下であることが望ましい。この構造により、端面1a~1dで囲まれる領域内に、弾性波を効果的に閉じ込めることができる。
 弾性波装置1の製造方法としては、例えば、以下に示す方法により製造することができる。まず、支持基板2、中間層3、圧電層4およびIDT電極5がこの順に積層された積層体を形成する。次に、上記積層体を構成する圧電層4および中間層3の一部をエッチングで除去する。このエッチングによって、溝10A~10Dを形成する。上記エッチングの手法としては、ICP-RIE法によりエッチングすることが望ましい。ICP-RIE法によりエッチングする場合、溝10A~10Dを高精度に作製することができる。
 [1-2.効果等]
 本実施の形態に係る弾性波装置1は、圧電基板11と、圧電基板11に設けられたIDT電極5と、を備える。IDT電極5は、弾性波伝搬方向D1に延びるバスバー電極7a、7c(あるいは7b、7d)と、バスバー電極7a、7c(あるいは7b、7d)に接続されて弾性波伝搬方向D1の直交方向D2に延びる複数の電極指8a(あるいは8b)とを有している。圧電基板11は、弾性波伝搬方向D1に沿って形成された少なくとも1以上の溝10C、10Dを有し、溝10C(あるいは10D)のそれぞれは、直交方向D2においてバスバー電極7a、7c(あるいは7b、7d)から見て、複数の電極指8a(あるいは8b)が形成されている側と反対側に設けられている。
 このように、圧電基板11に、弾性波伝搬方向D1に沿って形成された溝10C、10Dを設けることで、弾性波伝搬方向D1と異なる方向に伝搬する弾性波を、溝10C、10Dの側面10a(端面1c、1d)で反射させ、溝10C、10D間に閉じ込めることができる。これにより、弾性波装置1において、弾性波伝搬方向と異なる方向に伝搬する弾性波が外部に漏洩することを抑制することができる。
 なお、溝10C、10Dは、圧電基板11に必ずしも複数形成されている必要はない。弾性波装置1は、少なくとも1つ以上の溝を有することで、弾性波伝搬方向D1と異なる方向に伝搬する弾性波を反射して戻す効果を有する。
 また、弾性波装置1の圧電基板11は、支持基板2と、支持基板2上に位置する圧電層4と、支持基板2と圧電層4との間に設けられた中間層3と、を有しており、IDT電極5は、圧電層4上に設けられている。そして、溝10C、10Dのそれぞれは、圧電層4から中間層3の少なくとも一部に至るまで形成されている。
 このように、溝10C、10Dを、圧電層4、および、中間層3の少なくとも1部に形成することで、圧電層4のみに溝を設けた場合に比べて、圧電層4および中間層3を伝搬する弾性波を溝10C、10Dで反射することができる。これにより、弾性波伝搬方向と異なる方向に伝搬する弾性波が外部に漏洩することを抑制することができる。なお、溝10C、10Dは、中間層3の厚み方向の一部に限られず、中間層3を貫通する深さまで形成されていてもよい。
 また、本実施の形態の弾性波装置1は、図3に示すように、中間層3が結晶粒子G1および粒界G2によって形成されている場合であっても、弾性波伝搬方向と異なる方向に伝搬する弾性波の漏洩を抑制することができる。例えば、中間層3を伝搬する弾性波の一部が粒界G2によって散乱し、弾性波伝搬方向D1と異なる方向に弾性波が伝搬される場合であっても、弾性波装置1は溝10C、10Dを有しているので、溝10C、10Dを用いて上記弾性波を反射し、溝10C、10D間に弾性波エネルギーを閉じ込めることができる。
 また、弾性波装置1のIDT電極5は、弾性波伝搬方向D1に沿って形成された複数の溝10C、10Dと、直交方向D2に沿って形成された複数の溝10A、10Bと、によって囲まれている。
 これにより、圧電層4の一方主面4aに沿う全方位の弾性波が、溝10A~10Dの側面で反射され、弾性波の漏洩を抑制することができる。
 また、弾性波装置1は、溝10A~10Dが支持基板2の他方主面2bまで到達せず、分断されていない構造となっている。すなわち、弾性波装置1は、溝10A~10Dのそれぞれの外側に、溝外基板部11A、11B、11C、11Dを有している。溝外基板部11A~11Dは、圧電基板11に接し、圧電基板11と同じ材料により構成されている。例えば、圧電基板11が実装基板として用いられる場合、溝外基板部11A~11D上に他の素子や、回路部分を設けることができる。そのため、この弾性波装置1では、他の素子や回路部分と再接続をする必要がなく、電気的接続を簡略化することができる。また、溝外基板部11A~11D上に、他の素子や、回路部分を設けることができるため、弾性波装置1が搭載される電子部品を小型化することができる。
 [1-3.変形例1]
 図4は、実施の形態1の変形例1に係る弾性波装置1Aの切断側面図である。
 変形例1の弾性波装置1Aでは、溝10Cによって形成される端面1cが、バスバー電極7a、7cに近接し、バスバー電極7a、7cの側面と面一となるように形成されている。また、溝10Dによって形成される端面1dが、バスバー電極7b、7dに近接し、バスバー電極7b、7dの側面と面一となるように形成されている。
 このように、溝10C、10Dをバスバー電極7a~7dに近接して設けることで、弾性波装置1Aを小型化することができる。また、弾性波伝搬方向D1と異なる方向に伝搬する弾性波をバスバー電極7a~7dに近い位置で反射することができるので、弾性波を効率よく閉じ込めることができる。
 [1-4.変形例2]
 図5は、実施の形態1の変形例2に係る弾性波装置1Bの切断側面図である。
 変形例2の弾性波装置1Bでは、溝10C、10Dのそれぞれが、圧電層4から中間層3を経て支持基板2の一部に至るまで形成されている。具体的には、溝10C、10Dが、圧電層4の一方主面4aから、支持基板2の一方主面2aと他方主面2bの間に至る深さまで形成されている。
 例えば、圧電層4、中間層3および支持基板2の材質がそれぞれ異なる場合、各材質の線膨張係数の違いにより、温度変化によるひずみが生じやすくなる。それに対し、変形例2の弾性波装置1Bでは、支持基板2の一部に至るまで溝10C、10Dが形成されているので、温度変化によるひずみを小さくすることができる。また、弾性波が支持基板2にしみ出している場合は、溝10C、10Dを支持基板2の一部に至らせることで、より弾性波の閉じ込め効率を向上することができる。
 なお、弾性波装置1Bでは、中間層3が低音速膜34によって構成され、支持基板2が高音速支持基板で構成されていてもよい。
 低音速膜とは、圧電層4を伝搬する弾性波音速よりも、伝搬するバルク波音速が低速でいる膜である。高音速支持基板とは、圧電層4を伝搬する弾性波音速よりも、伝搬するバルク波音速が高速である支持基板である。
 具体的には、高音速支持基板上に音速が相対的に低い低音速膜が積層され、この低音速膜上に圧電層4が積層されている。中間層3は、弾性波が伝搬する領域(例えばIDT電極5や反射器が存在する領域直下のみ)に低音速膜がパターニングされていてもよい。そして、弾性波が伝搬する領域外(例えばIDT電極5の外側の領域外)には、適宜の材料(例えばSiO)が形成されているものであってもよい。また、中間層3と高音速支持基板の間に適宜の材料が形成されていても良い。
 上記の高音速支持基板は、弾性波エネルギーを高音速支持基板中に閉じ込める機能を有している。つまり、弾性波エネルギーは、高音速支持基板の上方よりも上側の領域(圧電層及び低音速膜まで含む領域)に閉じ込めることが可能となる。
 低音速膜としては、酸化ケイ素、ガラス、酸窒化ケイ素、酸化タンタル、酸化ケイ素にフッ素または炭素またはホウ素を加えた化合物、または、上記各材料を主成分とする材料のいずれかからなる。
 高音速支持基板としては、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、シリコン、サファイア、リチウムタンタレート、リチュウムニオベイト、水晶等の圧電体、アルミナ、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライト等の各種セラミック、マグネシアダイヤモンド、または、上記各材料を主成分とする材料、上記各材料の混合物を主成分とする材料のいずれかからなる。
 弾性波装置1Bにおいて、溝10A~10Dは、圧電層4の一方主面4aから低音速膜を経て、高音速支持基板の一部に至るまで形成されている。本実施の形態のように中間層3が低音速膜で構成された構造である場合、弾性波エネルギーは高音速支持基板の上方よりも上側の領域(圧電層4および低音速膜まで含む領域)に閉じ込められているので、溝10A~10Dは高音速支持基板の一部にまで形成されることが望ましい。
 なお、弾性波装置1Bにおける溝10C、10Dの形成方法としては、まず、エッチングにより圧電層4および中間層3を除去する。次に、ダイシングにより支持基板2の一部を除去し、溝10C、10Dを形成する。これにより、圧電層4から支持基板2の一部までに至る溝10C、10Dを形成することができる。
 (実施の形態2)
 図6は、実施の形態2に係る弾性波装置1Cの平面図である。
 弾性波装置1Cは、IDT電極5、5tが直交方向D2に2つ並んで配置されている。そして、一方のIDT電極5に対応して溝10A、10B、10C、10Dが形成され、もう一方のIDT電極5tに対応して溝10At、10Bt、10Ct、10Dtが形成されている。
 もう一方のIDT電極5tの構成は、実施の形態1のIDT電極5とほぼ同じ構成であり、重複する説明を省略する。また、もう一方のIDT電極5tに対応する溝10At、10Bt、10Ct、10Dtのそれぞれの構成は、実施の形態1の溝10A、10B、10C、10Dとほぼ同じであり、重複する説明を省略する。
 この弾性波装置1Cでは、IDT電極5、5tが入出力配線9aを介して直列に接続されている。具体的には、IDT電極5の櫛歯状電極6bと、IDT電極5tの櫛歯状電極6cとが、入出力配線9aによって接続されている。また、IDT電極5の櫛歯状電極6cに入出力配線9bが接続されている。IDT電極5tの櫛歯状電極6bに入出力配線9cが接続されている。溝10Ctは入出力配線9aを避けるように、溝10Dtは入出力配線9cを避けるように設けられている。すなわち、溝10Ct、10Dtのそれぞれは、入出力配線9a、9cと異なる位置に設けられている。
 本実施の形態に係る弾性波装置1Cは、圧電基板11と、圧電基板11に設けられたIDT電極5およびIDT電極5tと、を備える。IDT電極5、5tは、弾性波伝搬方向D1に延びるバスバー電極7a、7c(あるいは7b、7d)と、バスバー電極7a、7c(あるいは7b、7d)に接続されて弾性波伝搬方向D1の直交方向D2に延びる複数の電極指8a(あるいは8b)とを有している。圧電基板11は、弾性波伝搬方向D1に沿って形成された複数の溝10C、10D、および、複数の溝10Ct、10Dtを有し、複数の溝10C(あるいは10D、10Ct、10Dt)のそれぞれは、直交方向D2においてバスバー電極7a、7c(あるいは7b、7d)から見て、複数の電極指8a(あるいは8b)が形成されている側と反対側に設けられている。
 このように、2つのIDT電極5、5tを有する場合であっても、IDT電極5、5tのそれぞれに対応して溝10C、10D、10Ct、10Dtを設けることで、弾性波伝搬方向D1と異なる方向に伝搬する弾性波を、溝10C、10Dの端面1c、1d、または、溝10Ct、10Dtの端面1c、1dで反射し、溝10C、10D間または溝10Ct、10Dt間に閉じ込めることができる。これにより、弾性波が外部に漏洩することを抑制することができる。
 (実施の形態3)
 図7Aは、実施の形態3に係る弾性波装置1Dの平面図である。
 弾性波装置1Dでは、入出力配線9aが溝10Dを迂回して形成されている。弾性波装置1DにおけるIDT電極5、5tの構成は、実施の形態2とほぼ同じであり、重複する説明を省略する。
 この弾性波装置1Dでは、一方のIDT電極5ともう一方のIDT電極5tの間に位置する溝10Dが1本であり、溝10DがIDT電極5とIDT電極5tとで兼用されている。そして、IDT電極5の櫛歯状電極6bと、IDT電極5tの櫛歯状電極6cとが、入出力配線9aによって接続されている。入出力配線9aは、溝10Dを避けるように形成されている。
 本実施の形態に係る弾性波装置1Dは、弾性波伝搬方向D1に沿って形成された複数の溝10C、10D、10Dtを有し、複数の溝10C(あるいは10D、10Dt)のそれぞれは、直交方向D2においてバスバー電極7a、7c(あるいは7b、7d)から見て、複数の電極指8a(あるいは8b)が形成されている側と反対側に設けられている。
 このように、2つのIDT電極5、5tを有する場合であっても、IDT電極5、5tのそれぞれに対応して溝10C、10D、10Dtを設けることで、弾性波伝搬方向D1と異なる方向に伝搬する弾性波を、溝10C、10Dの端面1c、1d、または、溝10D、10Dtの端面1c、1dで反射し、溝10C、10D間または溝10D、10Dt間に閉じ込めることができる。これにより、弾性波が外部に漏洩することを抑制することができる。
 図7Bは、実施の形態3の変形例に係る弾性波装置1Eの平面図である。
 変形例の弾性波装置1Eでは、入出力配線がバスバー電極から引き出され、溝10C、10D、10Dtを迂回して形成されている。溝10C、10D、10Dtのそれぞれは、一本の溝により形成されている。
 具体的には、入出力配線9bは、IDT電極5のバスバー電極7aから引き出され、溝10Cを迂回するように形成されている。入出力配線9aは、IDT電極5tのバスバー電極7cから引き出され、溝10Dを迂回し、IDT電極5のバスバー電極7dに接続されている。入出力配線9cは、溝10Dtを迂回し、IDT電極5tのバスバー電極7bに接続されている。
 変形例の弾性波装置1Eでは、IDT電極5、5tのそれぞれに対応して溝10C、10D、10Dtを設けることで、弾性波伝搬方向D1と異なる方向に伝搬する弾性波を、溝10C、10Dのそれぞれの端面1c、1d、または、溝10D、10Dtのそれぞれの端面1c、1dで反射し、溝10C、10D間または溝10D、10Dt間に閉じ込めることができる。これにより、弾性波が外部に漏洩することを抑制することができる。
 また、IDT電極5、5t間の溝10Dを兼用して1本とすることで、弾性波装置1Eの直交方向D2の寸法を小さくすることができ、弾性波装置1Eを小型化することができる。
 (実施の形態4)
 図8は、実施の形態4に係る弾性波装置1Fの切断側面図である。この切断側面図は、図2Cで示す切断面と同じ位置で弾性波装置1Fを切断した場合の側面図である。
 図8に示すように、弾性波装置1Fでは、中間層3が、高音速膜33および低音速膜34によって構成されている。具体的には、支持基板2上に音速が相対的に高い高音速膜33が積層され、高音速膜33上に音速が相対的に低い低音速膜34が積層され、低音速膜34上に圧電層4が積層されている。中間層3は、弾性波が伝搬する領域(例えばIDT電極5や反射器が存在する領域直下のみ)に高音速膜33と低音速膜34がパターニングされていてもよい。そして、弾性波が伝搬する領域外(例えばIDT電極5の外側の領域外)には、適宜の材料、例えばSiOが形成されているものであってもよい。また、中間層3と支持基板2の間に適宜の材料が形成されていても良い。
 高音速膜33は、弾性波が高音速膜33より下側に漏れないように、弾性波を圧電層4および低音速膜34が積層されている部分に閉じ込める機能を有している。高音速膜33は、例えば窒化アルミニウムからなる。もっとも、上記弾性波を閉じ込め得る限り、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、酸窒化ケイ素、DLC膜またはダイヤモンド、これらの材料を主成分とする媒質、これらの材料の混合物を主成分とする媒質等のさまざまな高音速材料を用いることができる。弾性波を圧電層4および低音速膜34が積層されている部分に閉じ込めるには、高音速膜33の膜厚は厚いほど望ましく、弾性波の波長λの0.1倍以上、さらには1.5倍以上であることが望ましい。
 低音速膜34は酸化ケイ素からなる。もっとも、低音速膜34を構成する材料としては圧電層4を伝搬するバルク波よりも低音速のバルク波音速を有する適宜の材料を用いることができる。このような材料としては、酸化ケイ素、ガラス、酸窒化ケイ素、酸化タンタル、また、酸化ケイ素にフッ素や炭素やホウ素を加えた化合物など、上記材料を主成分とした媒質を用いることができる。
 なお、高音速膜33とは、圧電層4を伝搬する表面波や境界波の弾性波よりも、高音速膜33中のバルク波の音速が高速となる膜をいうものとする。また、低音速膜34とは、圧電層4を伝搬するバルク波よりも、低音速膜34中のバルク波の音速が低速となる膜をいうものとする。
 弾性波装置1Fにおいて、溝10A~10Dは、圧電層4の一方主面4aから低音速膜34を経て、高音速膜33の一部に至るまで形成されている。本実施の形態のように中間層3が高音速膜33に低音速膜34を積層した構造である場合、溝10A~10Dは高音速膜33の一部にまで形成されることが望ましい。
 このように、圧電基板11を、圧電層4、低音速膜34、および、高音速膜33で形成することで、圧電層4から低音速膜34に伝搬した弾性波を、高音速膜33と低音速膜34との界面で反射し、圧電層4に戻すことができる。これにより、弾性波エネルギーを圧電層4内に効率的に閉じ込めることができる。
 (実施の形態5)
 図9は、実施の形態5に係る弾性波装置1Gの切断側面図である。この切断側面図は、図2Cで示す切断面と同じ位置で弾性波装置1Fを切断した場合の側面図である。
 図9に示すように、弾性波装置1Gでは、中間層3が複数の音響インピーダンス層を有する音響反射層となっている。具体的には、中間層3は、低音響インピーダンス層42a、42c、42e、42gと、高音響インピーダンス層42b、42d、42fとを有する。中間層3は、弾性波が伝搬する領域(例えばIDT電極5や反射器が存在する領域直下のみ)に低音響インピーダンス層42a、42c、42e、42gと高音響インピーダンス層42b、42d、42fがパターニングされている。そして、弾性波が伝搬する領域外(例えば、IDT電極5の外側の領域)には適宜の材料、例えばSiOが形成されているものであってもよい。また、中間層3と支持基板2の間に適宜の材料が形成されていても良い。
 高音響インピーダンス層42b、42d、42fの音響インピーダンスは、低音響インピーダンス層42a、42c、42e、42gの音響インピーダンスよりも高い。弾性波装置1Gでは、支持基板2の一方主面2a上に、低音響インピーダンス層42aが積層され、その上に、高音響インピーダンス層42b、42d、42fと、低音響インピーダンス層42c、42e、42gとが、積層方向において交互に配置されている。
 そのため、圧電層4から中間層3に伝搬した弾性波を、低音響インピーダンス層42a、42c、42eの上方表面である高音響インピーダンス層42b、42d、42fの界面で反射させ、圧電層4に戻すことができる。これにより、弾性波エネルギーを圧電層4内に効率的に閉じ込めることができる。
 低音響インピーダンス層42a、42c、42e、42gは、SiOにより構成されている。もっとも、低音響インピーダンス層42a、42c、42e、42gは、SiOやAlなどにより構成されていてもよい。これらは、単独で用いてもよく、複数を併用してもよい。
 高音響インピーダンス層42b、42d、42fは、SiNにより構成されている。もっとも、高音響インピーダンス層42b、42d、42fは、W、Pt、LT、Al、Ta、LN、AlNまたはZnOなどにより構成されていてもよい。これらは、単独で用いてもよく、複数を併用してもよい。
 弾性波装置1Gにおいて、積層方向において最も支持基板2側に位置する層は、低音響インピーダンス層42aであるSiOによって形成されている。そのため、弾性波装置1Gでは、中間層3と、支持基板2との密着性が高められている。
 また、例えば、最も支持基板2側に位置する低音響インピーダンス層42aが、結晶粒子G1および粒界G2を有するSiOで形成されている場合であっても、弾性波装置1Gは溝10C、10Dを有しているので、弾性波伝搬方向D1と異なる方向に伝搬する弾性波を反射し、溝10C、10D間に閉じ込めることができる。
 また、弾性波装置1Gでは、溝10A~10Dは、圧電層4の一方主面4aから、低音響インピーダンス層42aの一部に至るまで形成されている。なぜならば、圧電層4から中間層3に伝搬した弾性波を、低音響インピーダンス層42a、42c、42eの上方表面である高音響インピーダンス層42b、42d、42fの界面で反射させ、圧電層4に戻すことができるので、支持基板2まで溝を至らせる必要はないからである。
 本実施の形態のように中間層3が多層構造である場合、積層方向の最も支持基板2側に位置する層の一部にまで溝10A~10Dが形成されることが望ましい。
 なお、弾性波装置1Gでは、溝10A~10Dが、圧電層4の一方主面4aから、支持基板2の一方主面2aと他方主面2bとの間に至るまで形成されていてもよい。圧電層4、中間層3および支持基板2の材質がそれぞれ異なる場合、各材質における線膨張係数の違いによって、温度変化によるひずみが生じやすくなるが、支持基板2の一部まで溝10A~10Dが形成されることで、温度変化によるひずみを小さくすることができる。
 なお、本実施の形態においては、低音響インピーダンス層および高音響インピーダンス層の積層数は特に限定されない。また、低音響インピーダンス層と、高音響インピーダンス層とが、積層方向において交互に配置されていなくてもよい。もっとも、圧電層4内における弾性波の閉じ込め効率を高める観点からは、低音響インピーダンス層のうち少なくとも1層が、高音響インピーダンス層のうち少なくとも1層より、圧電層4側に設けられていることが望ましい。
 (実施の形態6)
 図10は、実施の形態6に係るフロントエンド回路108および通信装置109を示す回路構成図である。
 このフロントエンド回路108および通信装置109では、第1フィルタ111および第2フィルタ112に、実施の形態1に係る弾性波装置1が含まれている。
 図10に示すフロントエンド回路108および通信装置109では、入力された信号を増幅するため、第1端子116とRFIC104との間、および、第2端子117とRFIC104との間にそれぞれLNA(Low Noise Amplifier)103が設けられている。また、アンテナ素子102との接続状態を切り替えるため、第1フィルタ111とアンテナ共通端子115との間、および、第2フィルタ112とアンテナ共通端子115との間にマルチポートスイッチ105が設けられている。マルチポートスイッチ105は、同時にON/OFFすることができるスイッチであり、第1フィルタ111がアンテナ共通端子115に接続されているとき、すなわち、第1フィルタ111が信号処理をしている場合に、第2フィルタ112もアンテナ共通端子115に接続されるようにすることができる。
 このような回路構成を有するフロントエンド回路108および通信装置109においても上記実施の形態と同様に、弾性波の漏洩を抑制することができる。
 また、上記実施の形態では、第1フィルタ111を受信フィルタとしているが、それに限られず、弾性波装置1を含む第1フィルタ111を送信フィルタとしてもよい。例えば、送信フィルタである第1フィルタ111とRFIC104との間に位置するLNA103をPA(Power Amplifier)に置き換えることで、送受信可能な通信装置109を構成することができる。
 また、フロントエンド回路108および通信装置109を構成する各フィルタは、弾性表面波フィルタに限られず、弾性境界波フィルタであってもよい。これによっても、上記実施の形態に係る弾性波装置1等が有する効果と同様の効果が奏される。
 (その他の形態)
 以上、本発明に係る弾性波装置1~1G、フロントエンド回路108および通信装置109について、実施の形態および変形例に基づいて説明したが、本発明は、上記実施の形態および変形例に限定されるものではない。上記実施の形態および変形例における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係る弾性波装置を内蔵した各種機器も本発明に含まれる。
 図11は、その他の形態に係る弾性波装置1Hの切断側面図である。この切断側面図は、図2Bで示す切断面と同じ位置で弾性波装置1Hを切断した場合の側面図である。
 弾性波装置1Hでは、溝10A、10Bのそれぞれが、中間層3のみに形成されている。具体的には、溝10A、10Bが、圧電層4には形成されず、中間層3の一部に形成されている。この弾性波装置1Hでは、圧電基板11の中間層3に溝10A、10Bが形成され、溝10Aの端面1aおよび溝10Bの端面1bを用いて、弾性波伝搬方向D1に伝搬する弾性波を反射し、弾性波を溝10Aと溝10Bとの間に閉じ込めている。
 この構造によれば、配線の引き回しが容易になり、また、圧電基板11上に反射器を設置することが可能となる。また、IDT電極5の内側に溝10A、10Bを配置することが可能となり、閉じ込め効率を向上させることができる。また、圧電層4で中間層3を封止できるので、例えば、中間層3がSiOで形成されている場合、中間層3の劣化を抑制することができる。なお、溝10A、10Bは、中間層3の少なくとも一部に形成されていればよい。
 図12は、その他の形態に係る弾性波装置1Iの切断側面図である。この切断側面図は、図2Cで示す切断面と同じ位置で弾性波装置1Iを切断した場合の側面図である。
 弾性波装置1Iでは、溝10C、10Dのそれぞれが、中間層3のみに形成されている。具体的には、溝10C、10Dが、圧電層4には形成されず、中間層3の一部に形成されている。この弾性波装置1Iでは、圧電基板11の中間層3に溝10C、10Dが形成され、溝10Cの端面1cおよび溝10Dの端面1dを用いて、弾性波伝搬方向D1と異なる方向(例えば直交方向D2)に伝搬する弾性波を反射し、弾性波を溝10Cと溝10Dとの間に閉じ込めている。
 この構造によれば、配線の引き回しが容易になり、また、圧電基板11上に反射器を設置することが可能となる。また、IDT電極5の内側に溝10C、10Cを配置することが可能となり、閉じ込め効率を向上させることができる。また、圧電層4で中間層3を封止できるので、例えば、中間層3がSiOで形成されている場合、中間層3の劣化を抑制することができる。なお、溝10C、10Dは、中間層3の少なくとも一部に形成されていればよい。
 また、実施の形態1では、圧電基板11を圧電層4、支持基板2および中間層3で構成しているが、それに限られず、圧電基板11を一体物とし、例えば圧電セラミック材料で形成してもよい。
 また、実施の形態1では、一対の溝10A、10Bを、IDT電極5の外側に設けているが、それに限られず、溝10A,10Bに置き換えて一対の反射器を設けてもよい。その場合であっても、弾性波装置は、直交方向D2に互いに対向する溝10C、10Dを有しているので、弾性波伝搬方向D1と異なる方向の弾性波の漏洩を抑制することができる。また、溝10C、10Dを有する弾性波装置は、例えば直交方向D2においてIDT電極5の外側に一対の反射器を設けた場合に比べて、弾性波装置を小型化することが可能である。
 本実施の形態における弾性波装置1~1GのIDT電極5は、縦結合型でもよいし、横結合型でもよいし、トランスバーサル型でもよい。
 本実施の形態では、圧電基板上の入出力配線9a~9cをIDT電極5、5tに接続しているが、それに限られず、ボンディングワイヤを入出力配線としてIDT電極5、5tに接続してもよい。
 また、本実施の形態の弾性波装置1は、圧電薄膜に溝(端面)が無く、中間層だけに溝(端面)を有する形態であっても良い。中間層とは圧電薄膜直下の層から支持基板に至るまでの層(複数層含む)を指す。この場合も、中間層に存在する弾性波を、中間層の溝(端面)で反射させることができ、弾性波閉じ込め効率を向上することができる。
 本発明の弾性波装置は、さまざまな電子機器や通信機器に広く用いられる。電子機器としては、例えば、センサーがある。通信機器としては、例えば、本発明の弾性波装置を含むデュプレクサ、PA、LNA、スイッチを含む通信モジュール機器、その通信モジュール機器を含む移動体通信機器やヘルスケア通信機器等がある。移動体通信機器としては、携帯電話、スマートフォン、カーナビ等がある。ヘルスケア通信機器としては、体重計や体脂肪計等がある。ヘルスケア通信機器や移動体通信機器は、アンテナ、RFモジュール、LSI、ディスプレイ、入力部、電源等を備えている。
 1、1A、1B、1C、1D、1E、1F、1G、1H、1I 弾性波装置
 1a、1b、1c、1d 端面
 2   支持基板
 2a  支持基板の一方主面
 2b  支持基板の他方主面
 3   中間層
 4   圧電層
 4a  圧電層の一方主面
 4b  圧電層の他方主面
 5、5t IDT電極
 6a、6b、6c、6d 櫛歯状電極
 7a、7b、7c、7d バスバー電極
 8a、8b 電極指
 9a、9b、9c 入出力配線
 10A、10B、10C、10D、10At、10Bt、10Ct、10Dt 溝
 10a  溝の側面
 10b  溝の底部
 11   圧電基板
 11A、11B、11C、11D 溝外基板部
 33 高音速膜
 34 低音速膜
 42a、42c、42e、42g 低音響インピーダンス層
 42b、42d、42f 高音響インピーダンス層
 102 アンテナ素子
 103 LNA
 104 RFIC
 105 スイッチ
 108 フロントエンド回路
 109 通信装置
 111、112 フィルタ
 115、116、117 端子
 D1  弾性波伝搬方向
 D2  直交方向
 G1  結晶粒子
 G2  粒界
 i1、i2 所定距離

Claims (18)

  1.  圧電基板と、前記圧電基板に設けられたIDT電極と、を備える弾性波装置であって、
     前記IDT電極は、弾性波伝搬方向に延びるバスバー電極と、前記バスバー電極に接続されて前記弾性波伝搬方向の直交方向に延びる複数の電極指とを有し、
     前記圧電基板は、前記弾性波伝搬方向に沿って形成された、少なくとも1以上の溝を有し、
     前記少なくとも1以上の溝は、前記直交方向において前記バスバー電極から見て、前記複数の電極指が形成されている側と反対側に設けられている、
     弾性波装置。
  2.  前記少なくとも1以上の溝は、複数の溝で構成され、
     前記複数の溝は、前記直交方向に互いに対向している、
     請求項1に記載の弾性波装置。
  3.  前記圧電基板は、支持基板と、前記支持基板上に位置する圧電層と、前記支持基板と前記圧電層との間に設けられた中間層と、を有し、
     前記IDT電極は、前記圧電層上に設けられ、
     前記少なくとも1以上の溝は、前記圧電層から前記中間層の少なくとも一部に至るまで形成されている、
     請求項1または2に記載の弾性波装置。
  4.  前記圧電基板は、支持基板と、前記支持基板上に位置する圧電層と、前記支持基板と前記圧電層との間に設けられた中間層と、を有し、
     前記IDT電極は、前記圧電層上に設けられ、
     前記少なくとも1以上の溝は、前記圧電層には形成されず、前記中間層の少なくとも一部に形成されている、
     請求項1または2に記載の弾性波装置。
  5.  前記中間層は、粒界を有している、
     請求項3または4に記載の弾性波装置。
  6.  前記中間層は、前記圧電層に接している、
     請求項3~5のいずれか1項に記載の弾性波装置。
  7.  前記中間層は、1または複数のSiO層を含む、
     請求項3~6のいずれか1項に記載の弾性波装置。
  8.  前記中間層は、前記圧電層を伝搬する弾性波音速よりも、伝搬するバルク波音速が低速であり、
     前記支持基板は、前記圧電層を伝搬する弾性波音速よりも、伝搬するバルク波音速が高速である、
     請求項3~6のいずれか1項に記載の弾性波装置。
  9.  前記中間層は、前記圧電層を伝搬する弾性波音速よりも、伝搬するバルク波音速が低速である低音速膜と、前記圧電層を伝搬する弾性波音速よりも、伝搬するバルク波音速が高速である高音速膜とを有し、
     前記低音速膜は、前記圧電層と前記支持基板との間に設けられ、
     前記高音速膜は、前記低音速膜と前記支持基板との間に設けられている、
     請求項3~6のいずれか1項に記載の弾性波装置。
  10.  前記中間層は、低音響インピーダンス層、および、前記低音響インピーダンス層よりも音響インピーダンスが高い高音響インピーダンス層のそれぞれが、少なくとも1層以上積層されており、
     前記低音響インピーダンス層の少なくとも1層は、前記高音響インピーダンス層よりも前記圧電層側に設けられている、
     請求項3~6のいずれか1項に記載の弾性波装置。
  11.  前記少なくとも1以上の溝は、前記圧電層から前記中間層を経て前記支持基板の一部に至るまで形成されている、
     請求項8~10のいずれか1項に記載の弾性波装置。
  12.  前記圧電基板には、前記IDT電極に接続する入出力配線が設けられ、
     前記少なくとも1以上の溝は、前記入出力配線と異なる位置に設けられている、
     請求項1~11のいずれか1項に記載の弾性波装置。
  13.  前記圧電基板には、前記IDT電極に接続する入出力配線が設けられ、
     前記入出力配線は、前記溝を迂回して形成されている、
     請求項1~11のいずれか1項に記載の弾性波装置。
  14.  さらに、
     前記圧電基板は、前記直交方向に沿って形成された、少なくとも1以上の溝を有し、
     前記直交方向に形成された少なくとも1以上の溝は、前記弾性波伝搬方向において、前記複数の電極指の最外に位置する電極指よりも外側に設けられている、
     請求項1~13のいずれか1項に記載の弾性波装置。
  15.  前記直交方向に沿って形成された少なくとも1以上の溝は、複数の溝で構成され、
     当該複数の溝は、前記弾性波伝搬方向に互いに対向している、
     請求項14に記載の弾性波装置。
  16.  前記IDT電極は、前記弾性波伝搬方向に沿って形成された複数の前記溝と、前記直交方向に沿って形成された複数の前記溝と、によって囲まれている、
     請求項15に記載の弾性波装置。
  17.  請求項1~16のいずれか1項に記載の弾性波装置を備える、
     フロントエンド回路。
  18.  請求項17に記載のフロントエンド回路と、
     高周波信号を処理する信号処理回路と、
     を備える通信装置。
PCT/JP2017/035180 2016-11-22 2017-09-28 弾性波装置、フロントエンド回路および通信装置 WO2018096783A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780071709.2A CN110024286B (zh) 2016-11-22 2017-09-28 弹性波装置、前端电路以及通信装置
KR1020197007422A KR102221009B1 (ko) 2016-11-22 2017-09-28 탄성파 장치, 프론트 엔드 회로 및 통신 장치
US16/375,871 US10879870B2 (en) 2016-11-22 2019-04-05 Elastic wave device, front-end circuit, and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016227322 2016-11-22
JP2016-227322 2016-11-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/375,871 Continuation US10879870B2 (en) 2016-11-22 2019-04-05 Elastic wave device, front-end circuit, and communication device

Publications (1)

Publication Number Publication Date
WO2018096783A1 true WO2018096783A1 (ja) 2018-05-31

Family

ID=62194884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035180 WO2018096783A1 (ja) 2016-11-22 2017-09-28 弾性波装置、フロントエンド回路および通信装置

Country Status (4)

Country Link
US (1) US10879870B2 (ja)
KR (1) KR102221009B1 (ja)
CN (1) CN110024286B (ja)
WO (1) WO2018096783A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020009121A1 (ja) * 2018-07-03 2020-01-09 株式会社村田製作所 弾性波装置
WO2020021029A3 (en) * 2018-07-27 2020-03-12 Frec'n'sys Resonant cavity surface acoustic wave (saw) filters
WO2021149469A1 (ja) * 2020-01-20 2021-07-29 株式会社村田製作所 弾性波装置
WO2022014440A1 (ja) * 2020-07-15 2022-01-20 株式会社村田製作所 弾性波装置
WO2022107606A1 (ja) * 2020-11-20 2022-05-27 株式会社村田製作所 弾性波装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098526A1 (ja) * 2014-12-18 2016-06-23 株式会社村田製作所 弾性波装置及びその製造方法
US11463069B2 (en) 2019-03-25 2022-10-04 Skyworks Solutions, Inc. Acoustic wave filters with isolation
DE102019109022A1 (de) * 2019-04-05 2020-10-08 RF360 Europe GmbH Akustische-Oberflächenwellen-Resonatoranordnung
KR20210033174A (ko) 2019-09-18 2021-03-26 삼성전자주식회사 표면 탄성파 필터를 포함하는 전자 장치
US20210184653A1 (en) * 2019-12-12 2021-06-17 University Of Florida Research Foundation, Incorporated Acoustically coupled radio frequency (rf) filter
US11606080B2 (en) * 2020-04-26 2023-03-14 Shenzhen Sunway Communication Co., Ltd. Filter device, RF front-end device and wireless communication device
CN112332797B (zh) * 2020-10-29 2024-02-02 广东广纳芯科技有限公司 兰姆波谐振器及其制造方法
WO2022115392A1 (en) * 2020-11-30 2022-06-02 President And Fellows Of Harvard College Electrical control of on-chip traveling acoustic waves
KR20220095695A (ko) * 2020-12-30 2022-07-07 (주) 와이팜 표면탄성파 공진기 및 표면탄성파 필터
US20230006125A1 (en) * 2021-06-30 2023-01-05 Skyworks Solutions, Inc. Acoustic wave device with reduced acoustic coupling
CN118694338A (zh) * 2023-03-24 2024-09-24 华为技术有限公司 具有声波反射孔的谐振器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465910A (ja) * 1990-07-02 1992-03-02 Seiko Epson Corp 弾性表面波素子の振動漏れ防止構造
WO2005050836A1 (ja) * 2003-11-19 2005-06-02 Murata Manufacturing Co., Ltd. 端面反射型弾性表面波装置及びその製造方法
JP2006121228A (ja) * 2004-10-19 2006-05-11 Seiko Epson Corp 弾性表面波素子、弾性表面波素子の製造方法、電子デバイスおよび電子機器
WO2011046117A1 (ja) * 2009-10-13 2011-04-21 株式会社村田製作所 弾性表面波装置
WO2012086441A1 (ja) * 2010-12-24 2012-06-28 株式会社村田製作所 弾性波装置及びその製造方法
WO2012086639A1 (ja) * 2010-12-24 2012-06-28 株式会社村田製作所 弾性波装置及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003289234A (ja) * 2002-01-28 2003-10-10 Murata Mfg Co Ltd 弾性表面波装置、通信装置
US10153748B2 (en) * 2013-10-31 2018-12-11 Kyocera Corporation Acoustic wave element, filter element, and communication device
DE112015000642B4 (de) * 2014-02-04 2019-10-02 Murata Manufacturing Co., Ltd. Vorrichtung für elastische Wellen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465910A (ja) * 1990-07-02 1992-03-02 Seiko Epson Corp 弾性表面波素子の振動漏れ防止構造
WO2005050836A1 (ja) * 2003-11-19 2005-06-02 Murata Manufacturing Co., Ltd. 端面反射型弾性表面波装置及びその製造方法
JP2006121228A (ja) * 2004-10-19 2006-05-11 Seiko Epson Corp 弾性表面波素子、弾性表面波素子の製造方法、電子デバイスおよび電子機器
WO2011046117A1 (ja) * 2009-10-13 2011-04-21 株式会社村田製作所 弾性表面波装置
WO2012086441A1 (ja) * 2010-12-24 2012-06-28 株式会社村田製作所 弾性波装置及びその製造方法
WO2012086639A1 (ja) * 2010-12-24 2012-06-28 株式会社村田製作所 弾性波装置及びその製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020009121A1 (ja) * 2018-07-03 2020-01-09 株式会社村田製作所 弾性波装置
US12081190B2 (en) 2018-07-03 2024-09-03 Murata Manufacturing Co., Ltd. Acoustic wave device
WO2020021029A3 (en) * 2018-07-27 2020-03-12 Frec'n'sys Resonant cavity surface acoustic wave (saw) filters
US11848663B2 (en) 2018-07-27 2023-12-19 Frec'n'sys Resonant cavity surface acoustic wave (SAW) filters
US12095449B2 (en) 2018-07-27 2024-09-17 Soitec Resonant cavity surface acoustic wave (SAW) filters
WO2021149469A1 (ja) * 2020-01-20 2021-07-29 株式会社村田製作所 弾性波装置
JPWO2021149469A1 (ja) * 2020-01-20 2021-07-29
JP7318746B2 (ja) 2020-01-20 2023-08-01 株式会社村田製作所 弾性波装置
WO2022014440A1 (ja) * 2020-07-15 2022-01-20 株式会社村田製作所 弾性波装置
WO2022107606A1 (ja) * 2020-11-20 2022-05-27 株式会社村田製作所 弾性波装置

Also Published As

Publication number Publication date
KR20190039773A (ko) 2019-04-15
CN110024286A (zh) 2019-07-16
KR102221009B1 (ko) 2021-02-26
CN110024286B (zh) 2024-02-06
US20190238114A1 (en) 2019-08-01
US10879870B2 (en) 2020-12-29

Similar Documents

Publication Publication Date Title
WO2018096783A1 (ja) 弾性波装置、フロントエンド回路および通信装置
KR102280166B1 (ko) 탄성파 장치, 고주파 프론트엔드 회로 및 통신 장치
KR102140089B1 (ko) 탄성파 공진기, 필터 및 멀티플렉서
JP5392258B2 (ja) 板波素子と、これを用いた電子機器
US10910546B2 (en) Surface acoustic wave device and method of manufacturing the same
KR20200051541A (ko) 멀티플렉서
JP2020188408A (ja) 弾性表面波素子、フィルタ回路及び電子部品
US11764880B2 (en) Acoustic wave device, multiplexer, high-frequency front end circuit, and communication device
CN109560788B (zh) 弹性波装置、高频前端电路以及通信装置
KR20180040688A (ko) 탄성파 장치
WO2018235605A1 (ja) 弾性波装置、高周波フロントエンド回路および通信装置
CN111446942B (zh) 弹性波装置
WO2017068828A1 (ja) 弾性波装置
WO2017115870A1 (ja) 弾性波フィルタ装置およびデュプレクサ
JP2007228225A (ja) 弾性表面波デバイス
US11855605B2 (en) Acoustic wave filter device and multiplexer
JP2017195580A (ja) 弾性波フィルタ装置
KR102629355B1 (ko) 탄성파 장치
WO2023074373A1 (ja) 弾性波共振子、弾性波フィルタ装置およびマルチプレクサ
JP2005260484A (ja) 圧電共振器およびそれを備えた電子部品
JP2022176790A (ja) 弾性波デバイス、ウエハ、フィルタおよびマルチプレクサ
JP6784331B2 (ja) 弾性波装置、高周波フロントエンド回路および通信装置
JP2021027401A (ja) 弾性波デバイス、フィルタおよびマルチプレクサ
JP7421557B2 (ja) 弾性波装置及び通信装置
WO2023085210A1 (ja) 弾性波装置、フィルタ、分波器及び通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874514

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197007422

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP