JP2006121228A - 弾性表面波素子、弾性表面波素子の製造方法、電子デバイスおよび電子機器 - Google Patents

弾性表面波素子、弾性表面波素子の製造方法、電子デバイスおよび電子機器 Download PDF

Info

Publication number
JP2006121228A
JP2006121228A JP2004304765A JP2004304765A JP2006121228A JP 2006121228 A JP2006121228 A JP 2006121228A JP 2004304765 A JP2004304765 A JP 2004304765A JP 2004304765 A JP2004304765 A JP 2004304765A JP 2006121228 A JP2006121228 A JP 2006121228A
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
layer
piezoelectric layer
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004304765A
Other languages
English (en)
Inventor
Hideyasu Kono
秀逸 河野
Satoru Fujii
知 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004304765A priority Critical patent/JP2006121228A/ja
Publication of JP2006121228A publication Critical patent/JP2006121228A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

【課題】電気機械結合係数の低下を防止して、挿入損失の改善を図った弾性表面波素子、かかる弾性表面波素子を製造する製造方法、かかる弾性表面波素子を備える電子デバイスおよび電子機器を提供すること。
【解決手段】本発明の弾性表面波素子1は、主として圧電材料で構成された圧電体層5と、この圧電体層5上に設けられ、バスバー(基部)62、72と、これに接続され、所定間隔で併設された複数の電極指61、71とを備える一対の櫛歯電極で構成されたIDT6、7と、バスバー62、72に接続された端子(電気接続部)91〜94と、圧電体層5のIDT6、7と反対側の面に設けられ、主として金属材料および/または半導体材料で構成された下地層3と、下地層3上に圧電体層5と接触して設けられ、下地層3の結晶系が圧電体層5の結晶系に影響を与えるのを防止または抑制するバッファ層4とを有する。
【選択図】図1

Description

本発明は、弾性表面波素子、弾性表面波素子の製造方法、電子デバイスおよび電子機器に関するものである。
通信分野におけるキーデバイスの一つとして、弾性表面波素子(Suface Accoustic Wave Device:SAWデバイス)がある。
SAWデバイスとは、圧電材料を利用し、高周波信号を表面弾性波に変換し、再度高周波信号に変換する過程で、特定の周波数が選び出される現象を利用した素子であり、携帯電話に代表される移動体通信機器や、その他、各種センサ、タッチパネル等の通信機器に適用される。
このSAWデバイスとして、基材上に金属膜、圧電膜、金属材料で構成されたIDT(Interdigital Tranceducer)を順次積層した構成のものが知られている(例えば、特許文献1参照。)。
かかる構成のSAWデバイスは、圧電膜を金属膜とIDTで挟持する構造をとることで、良好な電気機械結合係数が得られることがある。
SAWデバイスでは、圧電膜に弾性表面波を励起するとき、IDTを通して電気的エネルギーと機械的エネルギー(振動エネルギー)の変換を行うが、このときの変換効率をあらわしたものが電気機械結合係数である。
そして、この電気機械結合係数が大きいほど、損失の少ない良好なSAWデバイスが得られることが知られている。
また、前記構成のSAWデバイスでは、圧電膜上にIDTと外部配線とを接続するための端子(電気接続部)が設けられている。
ところが、このように金属膜上に圧電膜を形成した場合、金属膜の結晶系が圧電膜の結晶系に影響を及ぼし、圧電膜の結晶性が低下する場合がある。そして、このように圧電膜の結晶性が低下すると、電気機械結合係数の低下が生じるという問題がある。
特開平10−224172号公報
本発明の目的は、電気機械結合係数の低下を防止して、挿入損失の改善を図った弾性表面波素子、かかる弾性表面波素子を製造する製造方法、かかる弾性表面波素子を備える電子デバイスおよび電子機器を提供することにある。
このような目的は、下記の本発明により達成される。
本発明の弾性表面波素子は、主として圧電材料で構成された圧電体層と、
前記圧電体層上に設けられ、電気信号を弾性表面波に変換する機能および/または弾性表面波を電気信号に変換する機能を有する櫛歯電極とを備える弾性表面波素子であって、
前記圧電体層の前記櫛歯電極と反対側の面に設けられ、主として、金属材料および/または半導体材料で構成された下地層と、
前記下地層上に前記圧電体層と接触して設けられ、前記下地層の結晶系が前記圧電体層の結晶系に影響を与えるのを防止または抑制するバッファ層とを有することを特徴とする。
これにより、電気機械結合係数の低下を防止して、挿入損失の改善を図った弾性表面波素子が得られる。
本発明の弾性表面波素子では、前記バッファ層は、主としてアモルファス状態の物質で構成されていることが好ましい。
これにより、圧電体層を形成する際に、下地層の結晶系が圧電体層の結晶系に悪影響を及ぼすのをより確実に防止することができる。
本発明の弾性表面波素子では、前記バッファ層の平均厚さは、1000nm以下であることが好ましい。
これにより、電気機械結合係数の低下をより確実に防止して、挿入損失の改善を図ることができる。
本発明の弾性表面波素子では、前記下地層の前記バッファ層の反対側に、基板が設けられており、
前記基板は、ダイヤモンド、サファイヤ、アルミナ、シリコン、窒化シリコン、ガラス、水晶、石英、タンタル酸リチウム、ニオブ酸カリウム、チタン酸ジルコン酸鉛のうちの少なくとも1種を主材料として構成されていることが好ましい。
このような基板を用いることにより、特性に優れる弾性表面波素子を提供することができる。
本発明の弾性表面波素子では、前記圧電体層は、酸化亜鉛、窒化アルミニウム、タンタル酸リチウム、ニオブ酸リチウム、ニオブ酸カリウム、チタン酸ジルコン酸鉛のうちの少なくとも1種を主材料として構成されていることが好ましい。
このような材料で圧電体層を構成することにより、高い周波数の弾性表面波を励振させることができ、かつ、温度特性に優れた弾性表面波素子が得られる。
本発明の弾性表面波素子では、前記バッファ層は、アモルファス状態のSiOで構成されていることが好ましい。
これにより、比較的容易にバッファ層を形成することができるとともに、圧電体層を形成する際に、下地層の結晶系が圧電体層の結晶系に悪影響を及ぼすのをより確実に防止することができる。
本発明の弾性表面波素子では、前記下地層は、アルミニウム、金、白金、モリブデン、タングステン、チタン、銅、銀またはこれらを含む合金のうち少なくとも1種を主材料として構成されていることが好ましい。
このような材料で下地層を構成することにより、弾性表面波素子の電気機械結合係数を特に高いものとすることができる。
本発明の弾性表面波素子の製造方法は、本発明の弾性表面波素子を製造する弾性表面波素子の製造方法であって、
前記下地層上に前記バッファ層を形成し、
次いで、前記バッファ層と接触するように前記圧電体層を形成し、前記バッファ層の存在により、前記下地層の結晶系が前記圧電体層の結晶系に影響を与えるのを防止または抑制することを特徴とする。
これにより、電気機械結合係数の低下を防止して、挿入損失の改善を図った弾性表面波素子が得られる。
本発明の電子デバイスは、本発明の弾性表面波素子を備えることを特徴とする。
これにより、信頼性の高い電子デバイスが得られる。
本発明の電子機器は、本発明の弾性表面波素子を備えることを特徴とする。
これにより、信頼性の高い電子機器が得られる。
本発明の電子機器は、本発明の電子デバイスを備えることを特徴とする。
これにより、信頼性の高い電子機器が得られる。
以下、本発明の弾性表面波素子、弾性表面波素子の製造方法、電子デバイスおよび電子機器の好適な実施形態について説明する。
<第1実施形態>
図1は、本発明の弾性表面波素子の第1実施形態を示す平面図、図2は、図1中のA−A線断面図、図3および図4は、図1に示す弾性表面波素子の製造工程を説明するための図(縦断面図)である。なお、以下の説明では、図2中の上側を「上」、下側を「下」と言う。
各図に示す弾性表面波素子1は、トランスバーサル型構造の弾性表面波素子であり、基板2と、基板2上に順に積層された下地層3、バッファ層4および圧電体層5と、圧電体層5上に設けられた入力用のIDT6および出力用のIDT7と、各IDT6、7の上面に設けられた絶縁保護膜8とを有している。
また、圧電体層5上には、各IDT6、7の端部に接続された端子(電気接続部)91〜94が設けられている。
基板2の構成材料としては、例えば、ダイヤモンド、サファイヤ、アルミナ、シリコン、窒化シリコン、ガラス、水晶、石英、タンタル酸リチウム、ニオブ酸カリウム、チタン酸ジルコン酸鉛が挙げられ、これらのうちの少なくとも1種または2種以上を用いることができる。
基板2の平均厚さは、特に限定されないが、0.05〜1mm程度であるのが好ましく、0.1〜0.8mm程度であるのがより好ましい。
また、基板2は、複数の層の積層体で構成されたものでもよく、この場合、各層は、前述したような材料で構成することができる。
下地層3は、圧電体層5のIDT6、7と反対側の面に設けられている。この下地層3は、主として金属材料および/または半導体材料で構成されている。
下地層3を設けることにより、弾性表面波素子1は、その電気機械結合係数がより高いものとなり、挿入損失が低下(入出力効率が向上)する。
また、下地層3の構成材料を適宜設定することにより、圧電体層5において励振される(生じる)弾性表面波の特性を所望のものに設定することも可能となる。
このような下地層3の構成材料としては、例えば、アルミニウム、金、白金、モリブデン、タングステン、チタン、銅、銀またはこれらを含む合金材料等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができるが、特に、アルミニウム、金、白金、モリブデンのうち少なくとも1種をとするものがこのましい。このような材料で下地層3を構成することにより、弾性表面波素子1の電気機械結合係数を特に高いものとすることができる。
下地層3の平均厚さは、特に限定されないが、1〜1000nm程度であるのが好ましく、5〜500nm程度であるのがより好ましく、10〜30nm程度であるのがさらに好ましい。下地層3が薄過ぎると、その構成材料等によっては、弾性表面波素子1の電気機械結合係数を高める効果が十分に得られない場合があり、一方、下地層3の厚さを前記上限値を超えて厚くしても、それ以上の効果の増大が期待できない。
また、下地層3は、単層構成のもののみならず、目的とする弾性表面波の特性に応じて、複数の層の積層体で構成することもできる。
バッファ層4は、下地層3上に圧電体層5と接触して設けられている。
このバッファ層4は、下地層3の結晶系が圧電体層5の結晶系に影響を与えるのを防止または抑制する機能を有している。
ところで、後に詳述する圧電体層は、圧電特性の点から、結晶系が揃っているのが好ましい。しかし、従来の弾性表面波素子のように、下地層と接触して圧電体層を設けると、下地層内ないの結晶系のバラツキの影響により、成長した圧電体層の結晶系に、下地層と同じようなバラツキが生じる場合があった。また、下地層の結晶系が揃っている場合であっても、下地層の格子定数と、圧電体層の格子定数との違いにより、圧電体層の結晶系に歪みが生じる場合があった。その結果、圧電体層としての機能が低下してしまうといった問題があった。そして、圧電体層の機能の低下によって、電気機械結合係数の低下が生じ、下地層による電気機械結合係数を高める効果が十分に得られないという問題があった。
本発明では、下地層と圧電体層との間に、バッファ層を設けることにより、圧電体層を形成する際に、下地層の結晶系が圧電体層の結晶系に影響を及ぼすのを防止または抑制できること、言い換えると、下地層の結晶系に影響されることなく、揃った結晶系の圧電体層を形成できることがわかった。その結果、圧電体層の結晶性の低下を防止することができ、電気機械結合定数の低下を防止して、挿入損失の改善を図ることができることがわかった。
バッファ層4は、主としてアモルファス状態の物質で構成されている。
このアモルファス状態の物質としては、特に限定されないが、例えば、SiO、SiO、Al、ZrO、TiO、Yのような各種酸化物、TiN、BN、AlNのような各種窒化物、各種樹脂材料、各種ガラス材料等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
上述した中でも、アモルファス状態のSiOを用いた場合、比較的容易にバッファ層4を形成することができるとともに、圧電体層5を形成する際に、下地層3の結晶系が圧電体層の結晶系に悪影響を及ぼすのをより確実に防止することができる。
バッファ層4の平均厚さは、特に限定されないが、1000nm以下であるのが好ましく、1〜100nm程度であるのがより好ましい。バッファ層4が薄過ぎると、下地層3の結晶系を消失または緩和する機能を十分に発揮させるのが困難となる場合があり、一方、バッファ層4が厚過ぎると、電気機械結合係数の低下を招くおそれがある。
圧電体層5は、主として圧電材料で構成されている。
この圧電材料としては、例えば、酸化亜鉛、窒化アルミニウム、タンタル酸リチウム、ニオブ酸リチウム、ニオブ酸カリウム、チタン酸ジルコン酸鉛(PZT)等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができるが、特に、酸化亜鉛、窒化アルミニウム、タンタル酸リチウム、ニオブ酸リチウム、ニオブ酸カリウムのうちの少なくとも1種を主とするものが好ましい。このような材料で圧電体層5を構成することにより、高い周波数の弾性表面波を励振させることができ、かつ、温度特性に優れた弾性表面波素子1が得られる。
圧電体層5の平均厚さは、その構成材料等によっても若干異なり、特に限定されないが、圧電体層5において励振される弾性表面波の波長の2倍以下であるのが好ましく、0.01〜1倍程度であるのがより好ましい。圧電体層5の平均厚さの具体的な値は、0.01〜5μm程度であるのが好ましく、0.1〜2μm程度であるのがより好ましい。圧電体層5が薄過ぎると、圧電体層5において弾性表面波を励振させることが困難となるおそれがあり、一方、圧電体層5が厚過ぎると、下地層3を設ける効果が十分に発揮されないおそれがある。
IDT(入力側電極)6は、圧電体層5に電圧を印加して、圧電体層5に弾性表面波を励振させる機能を有するものであり、一方、IDT(出力側電極)7は、圧電体層5を伝搬する弾性表面波を検出し、弾性表面波を電気信号に変換して外部に出力する機能を有するものである。
IDT6に駆動電圧が入力されると、圧電体層5において弾性表面波が励振され、例えば、フィルタリング機能による特定の周波数帯域の電気信号が、IDT7から出力される。
各IDT6、7は、それぞれ、バスバー(基部)62、72と、バスバー62、72に接続され、所定間隔で併設された複数の電極指61、71とを備える一対の櫛歯電極で構成されている。各櫛歯電極の電極指61、71の幅、間隔、厚さ等を調整することにより、弾性表面波の発振周波数等の特性を所望のものに設定することができる。
また、各IDT6、7の各バスバー62、72には、それぞれ端子91〜94が接続(電気的に接続)されている。
各IDT6、7、各端子91〜94の構成材料としては、それぞれ、例えば、Al、Cu、W、Mo、Ti、Au、Y、Pb、Sc、Crまたはこれらを含む合金等が挙げられ、これらのうちの1種または2種以上を組み合わせて(例えば積層体として)用いることができる。
絶縁保護膜8は、各IDT6、7の表面(上面)に異物が付着するのを防止し、異物を介した電極指61、71間のショートを防ぐ機能を有するものである。
この絶縁保護膜8は、各IDT6、7を覆うように設けてもよいが、好ましくは図2に示すように、各IDT(櫛歯電極)6、7の上面に、これらとほぼ等しいパターンで形成される。
弾性表面波は、材質が変化する部分において反射し易いが、前述したような構成とすることにより、弾性表面波が伝搬する経路上における材質の変化を、実質的に電極指61、71と圧電体層5との境界部のみとすることができ、弾性表面波の反射およびこの反射によるエネルギー損失を抑えることができる。その結果、弾性表面波素子1の挿入損失をより低下させる(入出力効率をより向上させる)ことができる。
特に、図示の構成のように、絶縁保護膜8が各IDT6、7とほぼ等しいサイズとされ、それらの側面に存在しないことにより、前記効果がより向上する。
また、この場合、各IDT6、7の側面に絶縁保護膜8が形成されていないが、異物による電極指61、71間のショートは、主に異物が電極指61、71の上面に付着することによって生じるので、側面に絶縁保護膜8が形成されていなくとも、各IDT6、7の上面に絶縁保護膜8が存在することにより、電極指61、71間のショートを好適に防止することができる。
この絶縁保護膜8の構成材料としては、特に限定されないが、例えば、酸化シリコン、窒化シリコン、酸化アルミニウム、五酸化タンタル、酸化モリブデン等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができるが、これらの中でも、特に、酸化シリコン、窒化シリコン、酸化アルミニウムのうちの少なくとも1種を主とするものが好ましい。かかる材料で絶縁保護膜8を構成することにより、絶縁保護膜8を容易に形成することができるとともに、絶縁保護膜8を絶縁性に優れるものとすることもできる。
このような絶縁保護膜8の平均厚さは、特に限定されないが、10〜1000nm程度であるのが好ましく、30〜300nm程度であるのがより好ましい。絶縁保護膜8の厚さを前記範囲とすることにより、質量の増大に伴う弾性表面波の発信周波数の低下を防止または抑制しつつ、十分な絶縁性が発揮される。
以上のような弾性表面波素子1は、次のようにして製造することができる。
図3および図4は、図1に示す弾性表面波素子の製造方法を説明するための図(断面図)である。
[1] 下地層形成工程
まず、基板2を用意する。
次に、図3(a)に示すように、基板2上に金属材料および/または半導体材料を主材料とする下地層3を形成する。
この下地層3の形成には、例えば、プラズマCVD、熱CVD、レーザーCVDのような化学蒸着法(CVD)、真空蒸着、スパッタリング、イオンプレーティング等の物理蒸着法(PVD)、電解メッキ、浸漬メッキ、無電解メッキ等の湿式メッキ法、溶射、シート状部材の接合等を用いることができる。
[2] バッファ層形成工程
次に、図3(b)に示すように、下地層3上にバッファ層4を形成する。
このバッファ層4の形成には、例えば、プラズマCVD、熱CVD、レーザーCVDのような化学蒸着法(CVD)、真空蒸着、スパッタリング、イオンプレーティング等の物理蒸着法(PVD)、スパッタリーフロー等により形成することができる。
[3] 圧電体層形成工程
次に、図3(c)に示すように、バッファ層4と接触するようにして、圧電体層5を形成する。バッファ層4が存在することにより、下地層3の結晶系が圧電体層5の結晶系に影響を与えるのを防止または抑制することができる。すなわち、下地層3の結晶系に影響されることなく、揃った結晶系の圧電体層5を形成することができる。
圧電体層5の形成は、前記工程[1]における下地層3の形成と同様にして行うことができる。
[4] IDTおよび絶縁保護膜形成工程
まず、図3(d)に示すように、圧電体層5上に、導電性材料層60および絶縁性材料層80を順次形成する。
導電性材料層60および絶縁性材料層80の形成は、前記工程[1]における下地層3の形成と同様にして行うことができる。
次に、絶縁性材料層80上に、各端子91〜94の形状に対応する形状の開口部を有するレジスト層を形成して、このレジスト層をマスクに用いて、図3(e)に示すように、絶縁性材料層80の不要部分を除去する。
次に、レジスト層一端除去した後、再度、各IDT6、7および各端子91〜94の形状に対応する形状のレジスト層を形成して、このレジスト層をマスクに用いて、図4(f)に示すように、導電性材料層60および絶縁性材料層80の不要部分を除去する。
導電性材料層60および絶縁性材料層80の除去には、例えば、リアクティブイオンエッチング(RIE)、プラズマエッチング、ビームエッチング、光アシストエッチングのようなドライエッチング、ウェットエッチング等を用いることができる。
これにより、図1および図2に示すような形状のIDT6、7および絶縁保護膜8が形成され、本発明の弾性表面波素子1が得られる。
<第2実施形態>
次に、本発明の弾性表面波素子の第2実施形態について説明する。
図5は、本発明の弾性表面波素子の第2実施形態を示す平面図、図6は、図5中のB−B線断面図である。なお、以下の説明では、図6中の上側を「上」、下側を「下」と言う。
以下、第2実施形態の弾性表面波素子について説明するが、前記第1実施形態の弾性表面波素子との相違点を中心に説明し、同様の事項については、その説明を省略する。
第2実施形態では、下地層、バッファ層および圧電体層の構成が異なり、それ以外は、前記第1実施形態と同様である。
すなわち、図5および図6に示す弾性表面波素子1は、各端子91〜94に対応する領域の下地層3、バッファ層4および圧電体層5がそれぞれ省略され、各端子91〜94が基板2上に直接設けられている。
このような構成により、弾性表面波の励振(発生)に要する実効容量に、不要な容量(静電容量)が影響を与えるのをより確実に防止することができる。これにより、弾性表面波素子1の電気機械結合の低下をより確実に防止して、挿入損失のさらなる改善を図ることができる。
<第3実施形態>
次に、本発明の弾性表面波素子の第3実施形態について説明する。
図7は、本発明の弾性表面波素子の第3実施形態を示す平面図、図8は、図7中のC−C線断面図である。なお、以下の説明では、図8中の上側を「上」、下側を「下」と言う。
以下、第3実施形態の弾性表面波素子について説明するが、前記第1および第2実施形態の弾性表面波素子との相違点を中心に説明し、同様の事項については、その説明を省略する。
第3実施形態では、下地層、バッファ層および圧電体層の構成が異なり、それ以外は、前記第2実施形態と同様である。
本実施形態の弾性表面波素子1では、IDT6とIDT7との間に対応する領域の下地層3、バッファ層4および圧電体層5がそれぞれ省略され、基板2がIDT6、7側において露出している。
このような構成の弾性表面波素子1において、IDT6により発振された弾性表面波は、基板2の表面を伝搬され、IDT7において検出される。
また、基板2として、光透過性を有する基板、すなわち、透明(無色透明、着色透明)または半透明の基板を用いることにより、図9に示すようなタッチパネル(本発明の電子デバイス)を構築することができる。
図9は、本発明の電子デバイスをタッチパネルに適用した場合の実施形態を示す平面図である。
図9に示すタッチパネル10は、光透過性を有する基板2の表面に、弾性表面波素子1(一対のIDT6、7)が図9中上下方向および左右方向に沿って複数併設されている。
このようなタッチパネル10は、基板2の表面が指等で触れられると、触れられた部分に対応する位置に設けられた弾性表面波素子1のIDT6で検出される弾性表面波が減衰する。この減衰を、基板2の上下方向および左右方向に設けられた弾性表面波素子1で検出することにより、基板2の触れられた位置が特定される。
さて、上述したような弾性表面波素子1は、各種の電子機器に適用することができ、得られる電子機器は、信頼性の高いものとなる。
以下、本発明の弾性表面波素子を備える電子機器について、図10〜図12に示す実施形態に基づき、詳細に説明する。
図10は、本発明の弾性表面波素子を備える電子機器を適用したモバイル型(またはノート型)のパーソナルコンピュータの構成を示す斜視図である。
この図において、パーソナルコンピュータ1100は、アンテナ1101やキーボード1102を備えた本体部1104と、表示ユニット1106とにより構成され、表示ユニット1106は、本体部1104に対しヒンジ構造部を介して回動可能に支持されている。
このようなパーソナルコンピュータ1100には、フィルター、共振器、基準クロック等として機能する弾性表面波素子1が内蔵されている。
また、表示ユニット1106の表示部に、上述したようなタッチパネル10を適用することができる。
図11は、本発明の弾性表面波素子を備える電子機器を適用した携帯電話機(PHSも含む)の構成を示す斜視図である。
この図において、携帯電話機1200は、アンテナ1201、複数の操作ボタン1202、受話口1204および送話口1206を備え、操作ボタン1202と受話口1204との間には、表示部が配置されている。
このような携帯電話機1200には、フィルター、共振器等として機能する弾性表面波素子1が内蔵されている。
また、表示部に、上述したようなタッチパネル10を適用することができる。
図12は、本発明の弾性表面波素子を備える電子機器を適用したディジタルスチルカメラの構成を示す斜視図である。なお、この図には、外部機器との接続についても簡易的に示されている。
ここで、通常のカメラは、被写体の光像により銀塩写真フィルムを感光するのに対し、ディジタルスチルカメラ1300は、被写体の光像をCCD(Charge Coupled Device)などの撮像素子により光電変換して撮像信号(画像信号)を生成する。
ディジタルスチルカメラ1300におけるケース(ボディー)1302の背面には、表示部が設けられ、CCDによる撮像信号に基づいて表示を行う構成になっており、表示部は、被写体を電子画像として表示するファインダとして機能する。
また、ケース1302の正面側(図中裏面側)には、光学レンズ(撮像光学系)やCCDなどを含む受光ユニット1304が設けられている。
撮影者が表示部に表示された被写体像を確認し、シャッタボタン1306を押下すると、その時点におけるCCDの撮像信号が、メモリ1308に転送・格納される。
また、このディジタルスチルカメラ1300においては、ケース1302の側面に、ビデオ信号出力端子1312と、データ通信用の入出力端子1314とが設けられている。そして、図示されるように、ビデオ信号出力端子1312にはテレビモニタ1430が、デ−タ通信用の入出力端子1314にはパーソナルコンピュータ1440が、それぞれ必要に応じて接続される。さらに、所定の操作により、メモリ1308に格納された撮像信号が、テレビモニタ1430や、パーソナルコンピュータ1440に出力される構成になっている。
このようなディジタルスチルカメラ1300には、フィルター、共振器等として機能する弾性表面波素子1が内蔵されている。
また、表示部に、上述したようなタッチパネル10を適用することができる。
なお、本発明の弾性表面波素子や電子デバイスを備える電子機器は、図10のパーソナルコンピュータ(モバイル型パーソナルコンピュータ)、図11の携帯電話機、図12のディジタルスチルカメラの他にも、例えば、インクジェット式吐出装置(例えばインクジェットプリンタ)、ラップトップ型パーソナルコンピュータ、テレビ、ビデオカメラ、ビデオテープレコーダ、カーナビゲーション装置、ページャ、電子手帳(通信機能付も含む)、電子辞書、電卓、電子ゲーム機器、ワードプロセッサ、ワークステーション、テレビ電話、防犯用テレビモニタ、電子双眼鏡、POS端末、医療機器(例えば電子体温計、血圧計、血糖計、心電図計測装置、超音波診断装置、電子内視鏡)、魚群探知機、各種測定機器、計器類(例えば、車両、航空機、船舶の計器類)、フライトシュミレータ等に適用することができる。
以上、本発明の弾性表面波素子、弾性表面波素子の製造方法、電子デバイスおよび電子機器について、図示の実施形態に基づいて説明したが、本発明は、これらに限定されるものではない。
例えば、本発明の弾性表面波素子では、前記第1〜第3実施形態の構成のうちの任意の2以上を組み合わせることもできる。
また、本発明の弾性表面波素子には、反射器を設けるようにしてもよい。
また、本発明の弾性表面波素子には、温度特性を改善させる機能を有する温度補償膜が設けられていてもよい。
また、本発明の弾性表面波素子には、各種機能を有する半導体素子が複合化されていてもよい。
次に、本発明の具体的実施例について説明する。
(実施例)
まず、シリコン層(平均厚さ:400μm)と、多結晶ダイヤモンド層(平均厚さ:10nm)とで構成された基板を用意した。
次に、基板上に、DCスパッタリングによりアルミニウムを被着させ、下地層(平均厚さ:50nm)を形成した。
次に、この下地層上に、RFスパッタリング法によりSiOを被着させ、バッファ層(平均厚さ:10nm)を形成した。
次に、このバッファ層上に、RFスパッタリング法により酸化亜鉛を被着させ、圧電体層(平均厚さ:400nm)を形成した。
次に、この圧電体層上に、DCスパッタリング法によりアルミニウムを被着させ、導電性材料層(平均厚さ:100nm)を形成した。
次に、この導電性材料層上に、RFスパッタリング法によりSiOを被着させ、絶縁性材料層(平均厚さ:40nm)を形成した。
次に、絶縁性材料層上に、フォトリソグラフィ法により、図1に示す各端子の形状に対応する形状の開口部を有するレジスト層を形成した。このレジスト層をマスクに用いて、RIEによりエッチングを施し、縁性材料層の不要部分を除去した。
次に、レジスト層一端除去した後、再度、図1に示す各IDTおよび各端子の形状に対応する形状のレジスト層を形成した。このレジスト層をマスクに用いて、RIEによりエッチングを施し、導電性材料層および絶縁性材料層の不要部分を除去する。これにより、IDTおよび絶縁保護膜を一括して形成し、図1に示す弾性表面波素子を得た。
なお、RIEによるエッチングに際して、反応性ガスは、導電性材料層に対してはBClおよびClを主成分とするものを用い、絶縁性材料層に対してはCFを主成分とするものを用いた。
(比較例)
下地層上に、バッファ層を設けず、下地層と接触して圧電体層を形成した以外は、前記実施例と同様にして弾性表面波素子を製造した。
[評価]
実施例および比較例で作製した弾性表面波素子について、それぞれ、挿入損失(エネルギー損失)を調べた。
その結果を、図13に示す。なお、図13中、横軸は、弾性表面波の波長、縦軸は、挿入損失である。
図13に示すように、実施例の弾性表面波素子(本発明の弾性表面波素子)は、比較例の弾性表面波素子に比べて、挿入損失の改善が図られた。これは、本発明の弾性表面波素子において、電気機械結合係数の低下が防止されたことによるものと考えられる。
本発明の弾性表面波素子の第1実施形態を示す平面図である。 図1中のA−A線断面図である。 図1に示す弾性表面波素子の製造工程を説明するための図(縦断面図)である。 図1に示す弾性表面波素子の製造工程を説明するための図(縦断面図)である。 本発明の弾性表面波素子の第2実施形態を示す平面図である。 図5中のB−B線断面図である。 本発明の弾性表面波素子の第3実施形態を示す平面図である。 図7中のC−C線断面図である。 本発明の電子デバイスをタッチパネルに適用した場合の実施形態を示す平面図である。 本発明の弾性表面波素子を備える電子機器(ノート型パーソナルコンピュータ)である。 本発明の弾性表面波素子を備える電子機器(携帯電話機)である。 本発明の弾性表面波素子を備える電子機器(ディジタルスチルカメラ)である。 実施例および比較例で作製した弾性表面波素子の挿入損失を示すグラフである。
符号の説明
1……弾性表面波素子 2……基板 3……下地層 4……バッファ層 5……圧電体層 6、7……IDT 61、71……電極指 62、72……バスバー 8……絶縁保護膜 91〜94……端子 10……タッチパネル 60……導電性材料層 80……絶縁性材料層 1100……パーソナルコンピュータ 1101……アンテナ 1102……キーボード 1104……本体部 1106……表示ユニット 1200……携帯電話機 1201……アンテナ 1202……操作ボタン 1204……受話口 1206……送話口 1300……ディジタルスチルカメラ 1302……ケース(ボディー) 1304……受光ユニット 1306……シャッタボタン 1308……メモリ 1312……ビデオ信号出力端子 1314……データ通信用の入出力端子 1430……テレビモニタ 1440……パーソナルコンピュータ

Claims (11)

  1. 主として圧電材料で構成された圧電体層と、
    前記圧電体層上に設けられ、電気信号を弾性表面波に変換する機能および/または弾性表面波を電気信号に変換する機能を有する櫛歯電極とを備える弾性表面波素子であって、
    前記圧電体層の前記櫛歯電極と反対側の面に設けられ、主として、金属材料および/または半導体材料で構成された下地層と、
    前記下地層上に前記圧電体層と接触して設けられ、前記下地層の結晶系が前記圧電体層の結晶系に影響を与えるのを防止または抑制するバッファ層とを有することを特徴とする弾性表面波素子。
  2. 前記バッファ層は、主としてアモルファス状態の物質で構成されている請求項1に記載の弾性表面波素子。
  3. 前記バッファ層の平均厚さは、1000nm以下である請求項1または2に記載の弾性表面波素子。
  4. 前記下地層の前記バッファ層の反対側に、基板が設けられており、
    前記基板は、ダイヤモンド、サファイヤ、アルミナ、シリコン、窒化シリコン、ガラス、水晶、石英、タンタル酸リチウム、ニオブ酸カリウム、チタン酸ジルコン酸鉛のうちの少なくとも1種を主材料として構成されている請求項1ないし3のいずれかに記載の弾性表面波素子。
  5. 前記圧電体層は、酸化亜鉛、窒化アルミニウム、タンタル酸リチウム、ニオブ酸リチウム、ニオブ酸カリウム、チタン酸ジルコン酸鉛のうちの少なくとも1種を主材料として構成されている請求項1ないし4のいずれかに記載の弾性表面波素子。
  6. 前記バッファ層は、アモルファス状態のSiOで構成されている請求項1ないし5のいずれかに記載の弾性表面波素子。
  7. 前記下地層は、アルミニウム、金、白金、モリブデン、タングステン、チタン、銅、銀またはこれらを含む合金のうち少なくとも1種を主材料として構成されている請求項1ないし6のいずれかに記載の弾性表面波素子。
  8. 請求項1ないし7のいずれかに記載の弾性表面波素子を製造する弾性表面波素子の製造方法であって、
    前記下地層上に前記バッファ層を形成し、
    次いで、前記バッファ層と接触するように前記圧電体層を形成し、前記バッファ層の存在により、前記下地層の結晶系が前記圧電体層の結晶系に影響を与えるのを防止または抑制することを特徴とする弾性表面波素子の製造方法。
  9. 請求項1ないし7のいずれかに記載の弾性表面波素子を備えることを特徴とする電子デバイス。
  10. 請求項1ないし7のいずれかに記載の弾性表面波素子を備えることを特徴とする電子機器。
  11. 請求項9に記載の電子デバイスを備えることを特徴とする電子機器。
JP2004304765A 2004-10-19 2004-10-19 弾性表面波素子、弾性表面波素子の製造方法、電子デバイスおよび電子機器 Pending JP2006121228A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004304765A JP2006121228A (ja) 2004-10-19 2004-10-19 弾性表面波素子、弾性表面波素子の製造方法、電子デバイスおよび電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004304765A JP2006121228A (ja) 2004-10-19 2004-10-19 弾性表面波素子、弾性表面波素子の製造方法、電子デバイスおよび電子機器

Publications (1)

Publication Number Publication Date
JP2006121228A true JP2006121228A (ja) 2006-05-11

Family

ID=36538728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004304765A Pending JP2006121228A (ja) 2004-10-19 2004-10-19 弾性表面波素子、弾性表面波素子の製造方法、電子デバイスおよび電子機器

Country Status (1)

Country Link
JP (1) JP2006121228A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045752A (ja) * 2008-08-12 2010-02-25 Tatung Univ 高周波表面音響波デバイスおよびその基板
WO2018096783A1 (ja) * 2016-11-22 2018-05-31 株式会社村田製作所 弾性波装置、フロントエンド回路および通信装置
CN110462860A (zh) * 2017-03-29 2019-11-15 日东电工株式会社 压电装置、以及压电装置的制造方法
CN114744976A (zh) * 2022-04-19 2022-07-12 四川大学 一种有效提高叉指换能器激发效率的方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010045752A (ja) * 2008-08-12 2010-02-25 Tatung Univ 高周波表面音響波デバイスおよびその基板
WO2018096783A1 (ja) * 2016-11-22 2018-05-31 株式会社村田製作所 弾性波装置、フロントエンド回路および通信装置
KR20190039773A (ko) * 2016-11-22 2019-04-15 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치, 프론트 엔드 회로 및 통신 장치
US10879870B2 (en) 2016-11-22 2020-12-29 Murata Manufacturing Co., Ltd. Elastic wave device, front-end circuit, and communication device
KR102221009B1 (ko) * 2016-11-22 2021-02-26 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치, 프론트 엔드 회로 및 통신 장치
CN110462860A (zh) * 2017-03-29 2019-11-15 日东电工株式会社 压电装置、以及压电装置的制造方法
EP3605627A4 (en) * 2017-03-29 2020-12-30 Nitto Denko Corporation PIEZOELECTRIC DEVICE AND METHOD OF MANUFACTURING THE PIEZOELECTRIC DEVICE
US11696506B2 (en) 2017-03-29 2023-07-04 Nitto Denko Corporation Piezoelectric device with orientation control layer formed of sazo and manufacturing method thereof
CN110462860B (zh) * 2017-03-29 2023-09-01 日东电工株式会社 压电装置、以及压电装置的制造方法
CN114744976A (zh) * 2022-04-19 2022-07-12 四川大学 一种有效提高叉指换能器激发效率的方法

Similar Documents

Publication Publication Date Title
KR100678797B1 (ko) 표면 탄성파 소자 및 이를 포함한 전자 기기
JP5581931B2 (ja) 振動片、振動片の製造方法、振動子、振動デバイスおよび電子機器
US9748921B2 (en) Electronic device, electronic apparatus, and moving object
JP2018007117A (ja) 弾性波デバイス
JP5552878B2 (ja) 振動片、振動デバイスおよび電子機器
JP2011259120A (ja) 振動片、周波数調整方法、振動子、振動デバイス、および電子機器
JPH0218614B2 (ja)
JP2008244523A (ja) 弾性表面波素子および電子機器
JP2007142794A (ja) 弾性表面波素子片および弾性表面波デバイス
JP2005065050A (ja) 弾性表面波素子、弾性表面波素子の製造方法および電子機器
JP2017079388A (ja) 圧電振動子、電子機器及び移動体
JP2006237750A (ja) 弾性表面波素子および電子機器
JP2006121228A (ja) 弾性表面波素子、弾性表面波素子の製造方法、電子デバイスおよび電子機器
JP2006121356A (ja) 弾性表面波素子、電子デバイスおよび電子機器
JP5549340B2 (ja) 振動片、振動片の製造方法、振動デバイスおよび電子機器
JP2010177819A (ja) 弾性表面波素子
JP6528878B2 (ja) 電子デバイス、電子機器および移動体
EP1528672A2 (en) Surface acoustic wave element and electronic equipment
JP2005102182A (ja) 弾性表面波素子および電子機器
JP2011223371A (ja) 振動片、振動デバイスおよび電子機器
US20120056686A1 (en) Vibrator element, vibrator, vibration device, and electronic device
JP2004312198A (ja) 弾性表面波素子およびその製造方法
JP2004312309A (ja) 半導体振動子複合装置、電子デバイスおよび電子機器
JP2014192797A (ja) 振動片、振動素子、振動子、電子機器、および移動体
JP2008311853A (ja) 弾性表面波素子および電子機器