WO2018096698A1 - イオン発生装置 - Google Patents

イオン発生装置 Download PDF

Info

Publication number
WO2018096698A1
WO2018096698A1 PCT/JP2017/008547 JP2017008547W WO2018096698A1 WO 2018096698 A1 WO2018096698 A1 WO 2018096698A1 JP 2017008547 W JP2017008547 W JP 2017008547W WO 2018096698 A1 WO2018096698 A1 WO 2018096698A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion generator
diode
power supply
connector
supply specification
Prior art date
Application number
PCT/JP2017/008547
Other languages
English (en)
French (fr)
Inventor
和治 伊達
幸司 堀川
与明 高土
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2018552388A priority Critical patent/JP6926114B2/ja
Priority to EP17874917.2A priority patent/EP3547804A4/en
Priority to KR1020197005199A priority patent/KR20190028799A/ko
Priority to US16/328,855 priority patent/US20190192722A1/en
Priority to CN201780051921.2A priority patent/CN109997415A/zh
Publication of WO2018096698A1 publication Critical patent/WO2018096698A1/ja
Priority to PH12019500362A priority patent/PH12019500362A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/38Particle charging or ionising stations, e.g. using electric discharge, radioactive radiation or flames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/0071Electrically conditioning the air, e.g. by ionizing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • H01T19/04Devices providing for corona discharge having pointed electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D20/00Hair drying devices; Accessories therefor
    • A45D20/04Hot-air producers
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D20/00Hair drying devices; Accessories therefor
    • A45D20/04Hot-air producers
    • A45D20/08Hot-air producers heated electrically
    • A45D20/10Hand-held drying devices, e.g. air douches
    • A45D20/12Details thereof or accessories therefor, e.g. nozzles, stands
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D2200/00Details not otherwise provided for in A45D
    • A45D2200/20Additional enhancing means
    • A45D2200/202Ionisation

Definitions

  • the present invention relates to an ion generator.
  • Patent Literature 1 discloses an air cleaner equipped with an ion generator.
  • Patent Document 2 describes a dryer equipped with a control unit including a CPU (Central Processing Unit). The control unit controls operations of a heater, an ion generator, and the like.
  • High-functional electrical equipment includes DC components such as a microcomputer, and some power supply specifications are DC. The power supply specification of the ion generator mounted on such an electric device is also DC.
  • miniaturization is also required for ion generators mounted on the electrical equipment.
  • a discharge electrode is mounted on the substrate, and particularly when positive and negative ions are generated, a discharge electrode that generates positive ions and a discharge electrode that generates negative ions are mounted. As the substrate becomes smaller, the interval between these discharge electrodes becomes narrower.
  • the distance between the two discharge electrodes is wide, so that the electronic component is disposed between the discharge electrodes on the substrate.
  • the ion generator is provided with a high-voltage rectifier diode for each discharge electrode that rectifies an alternating high voltage from the transformer and applies a positive high voltage and a negative high voltage to the two discharge electrodes, respectively. Yes. Although this diode was relatively long, two diodes could be arranged in a straight line between wide discharge electrodes.
  • the two diodes cannot be arranged linearly between the discharge electrodes. Therefore, it is necessary to dispose the diodes and arrange the diodes in parallel.
  • the voltage application wiring from the transformer is arranged near the (distal end) of the discharge electrode.
  • diodes D11 and D12 are arranged in parallel in a range between a discharge electrode 401 that generates positive ions and a discharge electrode 402 that generates negative ions.
  • the diode D11 rectifies the AC voltage from the transformer 403 and applies a positive voltage to the discharge electrode 401.
  • the diode D12 rectifies the AC voltage from the transformer 403 and applies a negative voltage to the discharge electrode 402.
  • One end of the secondary coil of the transformer 403 is connected to the anode of the diode D11 and the cathode of the diode D12 via a wiring pattern 404 formed on the substrate.
  • the other end of the secondary coil of the transformer 403 is connected to the counter electrode 405.
  • the wiring path between the wiring pattern 404 and the cathode of the diode D12 is close to the discharge electrodes 401 and 402. For this reason, the distance L401 between the wiring path and the discharge electrode 401 and the distance L402 between the wiring path and the discharge electrode 402 become shorter as the distance between the discharge electrodes 401 and 402 becomes narrower. , Ions are less likely to be generated.
  • an AC-specific ion generator and a DC-specific ion generator are arranged on the electric device manufacturing line.
  • the AC specification ion generator is incorporated into the AC specification electric device
  • the DC specification ion generation device is incorporated into the DC specification electric device.
  • the external appearance is either the AC ion generator casing or the DC ion generator. It is not possible to distinguish whether it is a housing. For this reason, there exists a possibility of incorporating an ion generator of AC specification into an electric device of DC specification, or incorporating an ion generator of DC specification into an electric device of AC specification. In such a case, when the electric device is energized in the operation test, the ion generator is damaged, so that it is understood for the first time that the ion generator having a different power supply specification is incorporated in the electric device.
  • an ion generator includes a positive electrode that generates positive ions, a negative electrode that generates negative ions, a transformer that outputs an alternating high voltage, A first diode that rectifies and applies a high voltage to the positive electrode; and a second diode that rectifies and applies the high voltage to the negative electrode; an output terminal of the transformer; the first diode; The second diode is connected by a conductor on the substrate, and the conductor is formed in a region that does not reduce the strength of the electric field formed by the positive electrode and the electric field formed by the negative electrode. Has been.
  • an ion generator includes a housing having a main body portion on which an electrode is mounted and a connector to which a power source for applying a voltage to the electrode is connected.
  • the housing includes a power supply specification identifying unit that makes it possible to identify the power supply specification of the ion generator.
  • the present invention it is possible to suppress the decrease in the amount of ion generation and to realize an ion generation amount that can be reduced in size. Moreover, according to the other aspect of this invention, there exists an effect that the misconnection of the power supply from which the specification differs to an ion generator can be prevented.
  • FIG. 1 is a perspective view showing an external configuration of an ion generator according to Embodiments 1 to 3 of the present invention.
  • FIG. It is a circuit diagram which shows the structure of the electric system of the ion generator which concerns on Embodiment 1.
  • FIG. It is a figure which shows the example of arrangement
  • (b) is a figure which shows the other example of arrangement
  • (A) is a top view which shows the housing
  • (b) is a top view which shows the other housing
  • (A) is a side view which shows the housing
  • (b) is a side view which shows the other housing
  • (A) is a top view which shows the housing
  • (b) is a top view which shows the other housing
  • (A)-(c) is a figure which shows the shape of the connector of the ion generator which concerns on Embodiment 2 of this invention.
  • FIG. 11 It is a front view which shows the structure of the ion generator which concerns on Embodiment 3 of this invention. It is a perspective view which shows the state which takes out the ion generator shown in FIG. 11 from a tray. It is a figure which shows the state which has arrange
  • FIG. 1A is a longitudinal sectional view showing the configuration of a dryer on which the ion generator of each embodiment of the present invention is mounted
  • FIG. 1B is another longitudinal sectional view showing the configuration of the dryer. .
  • the dryer 100 includes a casing 101.
  • the casing 101 includes a main body cylinder portion 102 and a handle portion 103, and a power cable 104 is drawn from the handle portion 103.
  • the main body cylinder portion 102 is provided with a suction port 102a that sucks air into one end portion and a blowout port 102b that blows air into the other end portion.
  • a blower fan 105, a motor 106, a heater unit 107, and an ion generator 10 are arranged inside the main body cylinder portion 102 from the suction port 102a to the blowout port 102b.
  • the motor 106 rotates the blower fan 105.
  • the blower fan 105 rotates to generate an air flow from the suction port 102a to the blowout port 102b, and sends the heat generated by the heater unit 107 to the blowout port 102b as hot air.
  • a heat insulating sleeve 108 is provided inside the main body cylinder portion 102 from the motor 106 to the air outlet 102b.
  • the heat insulating sleeve 108 forms a passage for wind generated by the blower fan 105, that is, an air passage.
  • the ion generator 10 is disposed between the main body cylinder portion 102 and the heat insulating sleeve 108.
  • the ion generator 10 includes a discharge electrode 1 (positive electrode) that generates positive ions and a discharge electrode 2 (negative electrode) that generates negative ions.
  • the discharge electrodes 1 and 2 are exposed to the outside of the ion generator 10 and are arranged so that the tips reach the inside of the heat insulating sleeve 108 as shown in FIG.
  • the ion generator 10 generates ions in the heat insulating sleeve 108, thereby diffusing the ions into the air flow passing through the heat insulating sleeve 108.
  • a circuit board 109 is disposed in the main body cylinder portion 102 in the vicinity of a connection portion between the main body cylinder portion 102 and the handle portion 103.
  • a motor drive circuit that drives the motor 106 is mounted on the circuit board 109.
  • the motor drive circuit controls the rotation speed of the motor 106 so as to change the air volume of the blower fan 105 in accordance with the intensity of hot air that is changed by the operation of the switch 110 described later.
  • the AC power supplied from the power cable 104 is supplied to the motor 106, the heater unit 107, and the ion generator 10 as they are.
  • the power supply specification is DC specification
  • the circuit board 109 is mounted with a motor drive circuit, an AC / DC converter, a control circuit, and the like.
  • the AC / DC converter converts AC power supplied via the power cable 104 into DC power and supplies it to the control circuit and the ion generator 10.
  • the control circuit includes a CPU and the like, and controls operations of the motor 106, the heater unit 107, and the ion generator 10.
  • the handle portion 103 is provided with a switch 110.
  • the switch 110 is provided to change the power ON / OFF and the intensity of the hot air.
  • the electrical device on which the ion generator 10 is mounted is not limited to the dryer 100 described above, and may be another electrical device.
  • Embodiment 1 One embodiment of the present invention will be described below with reference to FIGS.
  • FIG. 2 is a perspective view showing an external configuration of the ion generator 10 according to the first embodiment.
  • FIG. 3 is a circuit diagram showing the configuration of the electrical system of the ion generator 10.
  • the ion generator 10 includes a casing 11 formed of a resin material.
  • the housing 11 has a main body 20 that forms a box shape having a rectangular shape, and a connector 112.
  • a step 111 a is provided along the longitudinal direction of the side surface 111.
  • a connector 112 is provided on one of the side surfaces on the short side of the housing 11. The connector 112 is connected to a connector (not shown) connected to the power supply cable. Pins 5 and 6 are arranged in the connector 112.
  • the housing 11 includes a discharge control circuit board 12, a transformer 13, and a high voltage circuit board 14.
  • a power supply input unit 121 and a discharge control circuit 122 are mounted on the discharge control circuit board 12, and a high voltage control circuit 141 is mounted on the high voltage circuit board 14.
  • Discharge electrodes 1 and 2 and induction electrodes 3 and 4 are mounted.
  • the discharge electrodes 1 and 2 are needle-like electrodes with sharp tips formed at predetermined intervals.
  • induction electrodes 3 and 4 may not be mounted on the high voltage circuit board 14 but may be mounted on another board.
  • the power input unit 121 is a part to which the DC voltage input from the connector 112 is input to the discharge control circuit board 12 and includes terminals T1 and T2. .
  • the terminal T1 is connected to the pin 5 of the connector 112, and the terminal T2 is connected to the pin 6 of the connector 112.
  • the discharge control circuit 122 is a circuit that drives the transformer 13 by converting an input DC voltage into an AC voltage having a predetermined frequency and applying the converted AC voltage to the primary coil 13 a of the transformer 13.
  • the discharge control circuit 122 is connected to the primary side coil 13 a (low voltage side) of the transformer 13.
  • the discharge control circuit 122 includes a current limiting resistor that limits an input current, a rectifier circuit, a switching circuit, and the like.
  • the high voltage control circuit 141 includes a diode D1 (first diode) and a diode D2 (second diode), and is output from one terminal (output terminal) of the secondary coil 13b (high voltage side) of the transformer 13. This circuit rectifies an alternating high voltage, applies a positive voltage to the discharge electrode 1, and applies a negative voltage to the discharge electrode 2.
  • the diodes D1 and D2 are high-voltage rectifier diodes and have the same overall length.
  • the anode of the diode D1 and the cathode of the diode D2 are connected to one terminal of the high voltage control circuit 141.
  • the cathode of the diode D1 is connected to the discharge electrode 1, and the anode of the diode D2 is connected to the discharge electrode 2.
  • the induction electrodes 3 and 4 are both connected to the other output terminal of the transformer 13.
  • the induction electrode 3 is arranged around the discharge electrode 1, and the induction electrode 4 is arranged around the discharge electrode 2.
  • FIG. 4 is a diagram illustrating an arrangement example of the diodes D1 and D2.
  • FIG. 5A is a diagram illustrating another arrangement example of the diodes D1 and D2, and
  • FIG. 5B is a diagram illustrating still another arrangement example of the diodes D1 and D2.
  • a wiring pattern 14a and soldering patterns 14b and 14c are formed on the high voltage circuit board 14, as shown in FIG. 4, a wiring pattern 14a and soldering patterns 14b and 14c are formed.
  • the wiring pattern 14a is provided to connect the anode of the diode D1 and the cathode of the diode D2 to one terminal of the secondary coil 13b of the transformer 13.
  • the soldering pattern 14b is a point-like portion that solders the respective ends of the anode-side lead wire of the diode D1 and the cathode-side lead wire of the diode D2 to one end of the wiring pattern 14a.
  • the soldering pattern 14c is a dot-like portion that solders one terminal (lead wire) of the secondary coil 13b of the transformer 13 to the other end of the wiring pattern 14a.
  • the diodes D1, D2 are arranged so as to be inclined with respect to the straight line LN connecting the discharge electrodes 1, 2. Thus, the diodes D1 and D2 are connected and arranged so as to form a V shape.
  • the angle ⁇ formed by the diodes D1 and D2 in the soldering pattern 14b is most preferably 90 °.
  • the discharge electrodes 1 and 2 form an electric field from the tip to the periphery, the electric fields of different polarities influence each other between the discharge electrodes 1 and 2 and the electric field becomes stronger.
  • the electric field on the discharge electrode 1 side if there is an electric field between the discharge electrodes 1 and 2 that is different from the electric field between the discharge electrodes 1 and 2 (here, the electric field due to the secondary side potential of the transformer 13), the electric field on the discharge electrode 1 side.
  • the electric field on the discharge electrode 2 side is weakened instantaneously.
  • the closest conductor that is the same as the secondary side potential of the transformer 13 and connected to the diode D2 is the wiring pattern 14a. Therefore, the distance L2 can be ensured between the discharge electrode 2 and the wiring pattern 14a. Therefore, the influence on the electric field between the discharge electrodes 1 and 2 can be suppressed.
  • diodes D1, D2 may be arranged as shown in FIG. 5 (a) or (b).
  • the diodes D1 and D2 are arranged so as to be perpendicular to the straight line LN and arranged in parallel to each other.
  • the ends of the lead wire on the anode side of the diode D1 and the lead wire on the cathode side of the diode D2 are connected to both ends of the linear soldering pattern 14c.
  • the soldering pattern 14c is formed on the high voltage circuit board 14 so as to be parallel to the straight line LN, and is a portion for soldering each of the lead wires to one end of the wiring pattern 14a.
  • the diodes D1 and D2 are connected and arranged so as to form a U shape.
  • a conductor having the same potential as that of the secondary side of the transformer 13 is not disposed between the discharge electrodes 1 and 2.
  • the width of the high-voltage circuit board 14 is wider than that in the arrangement example shown in FIG.
  • the diode D1 is perpendicular to the straight line LN, and the diode D2 is arranged to be parallel to the straight line LN.
  • the ends of the lead wire on the anode side of the diode D1 and the lead wire on the cathode side of the diode D2 are connected to the soldering pattern 14d.
  • the end portion of the anode lead wire of the diode D2 is connected to the discharge electrode 2 through another wiring pattern formed on the high voltage circuit board.
  • the soldering pattern 14d is formed on the high-voltage circuit board 14, and is a dot-like portion that solders each of the lead wires to one end of the wiring pattern 14a.
  • the diodes D1 and D2 are connected and arranged so as to form an L shape. Further, a conductor having the same potential as that of the secondary side of the transformer 13 is not disposed between the discharge electrodes 1 and 2.
  • the distance L21 between the discharge electrode 1 and the soldering pattern 14d can be ensured to be substantially the same as the length of the diode D1.
  • the distance L22 between the discharge electrode 2 and the soldering pattern 14d has a straight line LN as the first side, a straight line having the same length as the entire length of the diode D1, as the second side, and the first side And the length of the third side of the right triangle having a right angle between the second side and the second side. This distance L22 is longer than the distance L21.
  • the width of the high-voltage circuit board 14 is wider than that in the arrangement example shown in FIG.
  • the distance between the wiring pattern 14a and the soldering pattern 14b according to the arrangement example shown in FIG. 4 is relative to the distance between the wiring pattern and the soldering pattern according to the conventional arrangement example shown in FIG.
  • the discharge electrodes 1 and 2 are both longer.
  • the distance between the tips of the discharge electrodes 1 and 2 and the wiring pattern 14a according to the arrangement example shown in FIG. 4 in the ion generator 10 is the same as the distance between the tips of the discharge electrodes 401 and 402 according to the conventional arrangement example shown in FIG. Both the discharge electrodes 1 and 2 are longer than the distance between the pattern 14a and the soldering pattern.
  • FIG. 6 is a longitudinal sectional view showing a configuration of an ion generator according to this modification.
  • the ion generator 10 ⁇ / b> A is formed to have a greater thickness (depth) in the direction in which the discharge electrodes 1 and 2 extend than the above-described ion generator 10.
  • the discharge control circuit board 12 is arranged at a predetermined interval from the high voltage circuit board 14 in the direction in which the discharge electrodes 1 and 2 extend.
  • An intermediate substrate 15 is connected to the discharge control circuit substrate 12 and the high voltage circuit substrate 14. The intermediate board 15 is arranged perpendicular to the high voltage circuit board 14.
  • Diodes D1 and D2 are mounted on the intermediate board 15.
  • solder patterns 15a to 15d are formed on the intermediate substrate 15.
  • the soldering pattern 15a is a dot-like part that solders the end of the anode lead wire of the diode D1 to one end of the wiring pattern 14a, and is provided on the discharge control circuit board 12 side.
  • the soldering pattern 15b is a dot-like portion that solders the end of the cathode lead of the diode D2 to one end of the wiring pattern 14a, and is provided on the discharge control circuit board 12 side.
  • the soldering pattern 15c is a dot-like portion that solders the end of the cathode lead wire of the diode D1 to a wiring pattern (not shown) on the high-voltage circuit board 14 drawn from the discharge electrode 1. It is provided on the high voltage circuit board 14 side.
  • the soldering pattern 15d is a dot-like portion that solders the end of the anode lead wire of the diode D2 to a wiring pattern (not shown) on the high-voltage circuit board 14 drawn from the discharge electrode 2. It is provided on the high voltage circuit board 14 side.
  • soldering patterns 15a and 15b are arranged below the discharge electrodes 1 and 2 in FIG.
  • the soldering patterns 15 a and 15 b having the same potential as the secondary side of the transformer 13 are further away from the discharge electrodes 1 and 2 (particularly the tip thereof).
  • the intermediate substrate 15 is arranged perpendicular to the high voltage circuit board 14 (mounting surface of the discharge electrodes 1 and 2), but may be arranged to be inclined with respect to the high voltage circuit board 14. .
  • FIG. 7A is a plan view showing a casing 11A of the ion generator 10 according to the second embodiment
  • FIG. 7B is a plan view showing another casing 11B of the ion generator 10. is there.
  • FIG. 8A is a side view showing a casing 11C of the ion generator 10 according to the second embodiment
  • FIG. 8B is a side view showing another casing 11D of the ion generator 10.
  • 9A is a plan view showing a casing 11E of the ion generator 10 according to the second embodiment
  • FIG. 9B is a plan view showing another casing 11F of the ion generator 10.
  • FIG. is there.
  • FIGS. 10A to 10C are diagrams showing the shapes of the connectors 112G to 112I of the ion generator 10 according to the second embodiment.
  • the housing 11A is a housing included in the ion generator 10 of AC specification and has a connector 112A.
  • the connector 112A is formed so as to be recessed on the inner side of the housing 11A. Pins 5 and 6 are disposed on the connector 112A.
  • a connector (hereinafter referred to as an AC connector) (not shown) of the AC power supply cable wired from the circuit board 109 of the dryer 100 has a shape that fits into the connector 112A.
  • the casing 11B is a casing included in the ion generator 10 of the DC specification and has a connector 112B.
  • the casing 11B is formed in the same shape and the same size as the casing 11A.
  • the connector 112B protrudes to the outside of the housing 11B and is formed so that the inside has a cavity. Pins 5 and 6 are arranged in the cavity.
  • a connector (hereinafter referred to as a DC connector) (not shown) of a DC power supply cable wired from the circuit board 109 of the dryer 100 has a shape that fits outside the connector 112B.
  • the AC specification casing 11A and the DC specification casing 11B have different shapes of the connectors 112A and 112B, and the shapes of the AC connector and the DC connector of the power supply cable corresponding to each of them differ.
  • the shapes of the connectors 112A and 112B make it possible to identify the power supply specifications. Accordingly, it is impossible to connect a DC power supply cable to the connector 112A, and it is not possible to connect an AC power supply cable to the connector 112B. Therefore, the power supply specification of the ion generator 10 can be easily identified. Therefore, the incorrect connection of the power supply with respect to the ion generator 10 can be prevented.
  • the casing 11C is a casing provided in the ion generator 10 of AC specification and has a connector 112C.
  • the pins 5 and 6 are arranged with an interval Lac.
  • two holes (not shown) into which the pins 5 and 6 are respectively fitted are also arranged with a distance Lac.
  • the casing 11D is a casing included in the ion generator 10 of the DC specification and has a connector 112D.
  • the casing 11D is formed in the same shape and size as the casing 11C.
  • the pins 5 and 6 are arranged with an interval Ldc.
  • two holes (not shown) into which the pins 5 and 6 are respectively fitted are also arranged with an interval Ldc.
  • the interval Lac between the pins 5 and 6 provided in the connector 112C is longer than the interval Ldc between the pins 5 and 6 provided in the connector 112D. Since the AC power supply voltage is higher than the DC power supply voltage, the interval Lac is set longer than the interval Ldc in order to ensure a breakdown voltage. As a result, a DC power supply cable cannot be connected to the connector 112C, and an AC power supply cable cannot be connected to the connector 112D. Therefore, the incorrect connection of the power supply with respect to the ion generator 10 can be prevented.
  • the mold for molding the main body of the casings 11A to 11D is made common between the AC specifications and the DC specifications, and the molds for molding the connectors 112A to 112D. Different types for AC and DC specifications. Thereby, the cost of a metal mold
  • the casing 11E is a casing included in the ion generator 10 of AC specification and has a connector 112E.
  • the connector 112E protrudes to the outside of the housing 11E and is formed so that the inside has a cavity. Pins 5 and 6 are arranged in the cavity.
  • the casing 11E is provided with a power specification specification section 7 (power specification identification section, display) in the vicinity of the connector 112E.
  • characters “AC” indicating that the power supply specification is AC are printed.
  • the casing 11F is a casing included in the ion generator 10 of the DC specification and has a connector 112F.
  • the connector 112F protrudes to the outside of the housing 11F and is formed so that the inside has a cavity. Pins 5 and 6 are arranged in the cavity.
  • the connector 112F is formed in the same shape as the connector 112E, and the interval between the pins 5 and 6 is the same as that of the connector 112E. Therefore, the DC connector connected to the connector 112F has the same shape as the AC connector connected to the connector 112E.
  • the casing 11F is provided with a power specification specification section 8 (power specification identification section, display) in the vicinity of the connector 112F. In the power supply specification clarification section 8, characters “DC” indicating that the power supply specification is DC are printed.
  • the housing 11E is provided with the power supply specification clarification unit 7 indicating that the power supply specification is AC
  • the housing 11F is provided with the power supply specification clarification unit 8 indicating that the power supply specification is DC. It has been.
  • the assembling operator confirms the notation of the power supply specification clarification parts 7 and 8 to determine whether the ion generator 10 is AC specification or DC specification. Can be identified. Therefore, the incorrect connection of the power supply with respect to the ion generator 10 can be prevented.
  • the casings 11E and 11F have the same shape and the same size including the connectors 112E and 112F, they can be molded using the same mold. Therefore, the cost required for the mold can be further reduced, and the cost of the ion generator 10 can be reduced.
  • the casing 11 of the AC specification ion generator 10 has a connector 112G as shown in FIG. 10A, and the casing 11 of the DC specification ion generator 10 is shown in FIG. A connector 112H as shown in FIG.
  • the connector 112G has a rectangular shape when viewed from the front end side of the pins 5 and 6, and a projection 9a is formed on the wall surface on one long side.
  • the AC connector that fits into the connector 112G has a recess that fits into the protrusion 9a.
  • the connector 112 ⁇ / b> H has a rectangular shape when viewed from the front end side of the pins 5 and 6, and a projection 9 b is formed between the pins 5 and 6.
  • the DC connector that fits into the connector 112H has a recess that fits into the protrusion 9b.
  • the DC specification power supply cable cannot be connected to the connector 112G, and the AC specification power supply cable cannot be connected to the connector 112H. Therefore, the incorrect connection of the power supply with respect to the ion generator 10 can be prevented.
  • the protrusions 9a and 9b may have the same shape and the same size, or may have different shapes and different sizes. Moreover, you may provide the protrusion from which a shape differs in the same position according to a power supply specification.
  • the casing 11 of the AC ion generator 10 may have a connector 112H, and the casing 11 of the DC ion generator 10 may have a connector 112G.
  • the casing 11 of the ion generator 10 of AC specification may have a connector 112I as shown in FIG.
  • the connector 112I has a trapezoidal shape when viewed from the tip side of the pins 5 and 6.
  • the AC connector that fits into the connector 112G also forms a trapezoid.
  • the DC specification ion generator 10 housing 11 may have a connector (rectangular connector) that forms a rectangle when viewed from the front end side of the pins 5 and 6, as shown in FIG. .
  • the DC connector that fits into the rectangular connector is also rectangular.
  • casing 11 of the AC specification ion generator 10 may have the rectangular connector, and the casing 11 of the DC specification ion generator 10 may have the connector 112I.
  • the above-described difference in connector shape, difference in pin spacing, and difference in display of characters, etc. may be used independently, or all or A part of them may be used in combination. By using such a combination, it is possible to prevent erroneous connection of the power supply more reliably.
  • FIG. 11 is a front view showing the configuration of the ion generator 10 according to the third embodiment, and shows a side surface opposite to the side surface on which the connector 112 shown in FIG. 2 is provided.
  • FIG. 12 is a perspective view showing a state where the ion generator 10 shown in FIG. 11 is taken out from the tray.
  • FIG. 13 is a diagram showing a state in which the ion generator 10 shown in FIG. 11 is arranged in the air passage 301 of the electric device.
  • the step 111 a is formed on the side surface 111 on the long side of the housing 11 along the longitudinal direction of the side surface 111.
  • the width of the step 111a is, for example, 0.2 mm, but may be in the range of several hundred ⁇ m.
  • a general ion generator has a simple structure, and its surface is often flat. If it is a relatively large ion generator, it can be held using the entire hand, but if the casing is further miniaturized, the ion generator is picked up with a fingertip and handled. In particular, if the surface is flat, it will be difficult to slip and pick the ion generator.
  • a discharge electrode protection portion for protecting the discharge electrode and preventing contact with the discharge electrode is provided on the side of the discharge electrode in the housing. Is provided.
  • the ion generator 10 according to the present embodiment is not provided with the discharge electrode protection part as described above. Moreover, the ion generator 10 has said level
  • a plurality of ion generators 10 are stored in a tray 200 (only a part is shown) as shown in FIG.
  • the tray 200 is provided with a plurality of recesses 201 (only one recess 201 is shown in FIG. 12).
  • the ion generator 10 is fitted and stored so as not to easily come out.
  • a finger is put into the groove part 202 of the tray 200 and both sides of the ion generator 10 are picked. At this time, the ion generator 10 can be firmly held by placing a finger on the step 111a.
  • the ion generator 10 can be easily taken out from the tray 200 without sliding the finger against the holding force of the concave portion 201 of the tray 200. Therefore, when removing from the tray 200, it is possible to easily avoid dropping the ion generator 10 by sliding a finger.
  • the ion generator 10 does not have a discharge electrode protection part, it is miniaturized. For this reason, the ion generator 10 can be easily mounted on a small electric device. For example, a hair iron or the like has a narrower air path than the dryer 100 described above. As shown in FIG. 13, since the ion generator 10 can be arranged in a narrow air passage 301, it can be mounted on a hair iron or the like.
  • the discharge electrode protection part 113 when the discharge electrode protection part 113 is provided on both sides of the housing 11, the discharge electrode protection part 113 does not fit in the air passage 301. For this reason, in order to accommodate the discharge electrode protection part 113, the air path 302 wider than the air path 301 is required. Therefore, there is a problem that the electric equipment becomes large.
  • the ion generator 10 has the step 111a, so that it can easily avoid a drop during handling and can be easily downsized.
  • the first diode and the second diode are connected by a conductor (wiring pattern 14a, soldering patterns 14b to 14d) on a substrate (high voltage circuit board 14), and the conductor is connected to the positive diode. It is formed in a region where the strength of the electric field formed by the electrode and the electric field formed by the negative electrode is not reduced.
  • the conductor having the same potential as the output end of the transformer is formed in a region where the electric field is not weakened, it is possible to suppress the electric field from being weakened by the influence of the conductor. Thereby, the reduction
  • the ion generator according to Aspect 2 of the present invention is the ion generator according to Aspect 1, wherein the first diode and the second diode are inclined with respect to a straight line connecting the positive electrode and the negative electrode. Good.
  • the conductor is moved away from the positive electrode and the negative electrode, thereby reducing the influence of the conductor on the electric field and reducing the width of the substrate on which the first diode and the second diode are mounted. Can do.
  • the ion generator according to Aspect 3 of the present invention is the ion generator according to Aspect 1, wherein at least one of the first diode and the second diode is disposed perpendicular to a straight line connecting the positive electrode and the negative electrode. May be.
  • the influence of the conductor on the electric field can be further reduced by moving the conductor away from the positive electrode and the negative electrode, as compared with the second aspect.
  • the ion generator according to Aspect 4 of the present invention is the ion generator according to Aspect 1, wherein the substrate is disposed perpendicular to the mounting surface of the positive electrode and the negative electrode or inclined with respect to the mounting surface. It may be arranged.
  • the conductor can be further away from the positive electrode and the negative electrode. Accordingly, the influence of the conductor on the electric field can be further reduced.
  • the ion generator according to Aspect 5 of the present invention is the ion generator according to any one of Aspects 1 to 4, wherein the casing 11 for mounting the positive electrode, the negative electrode, the transformer 13, the first diode, and the second diode is provided.
  • a step 111 a may be provided on two side surfaces 111 of the housing 11 that face each other.
  • An ion generator includes a casing 11 having a main body 20 on which electrodes (discharge electrodes 1 and 2) are mounted, and a connector 112 to which a power source for applying a voltage to the electrodes is connected.
  • the housing 11 has power specification identification parts (connectors 112A to 112I, power specification specification parts 7 and 8, and protrusions 9a and 9b) that make it possible to identify the power supply specifications of the ion generator.
  • the power supply specification identification part can identify the power supply specification of an ion generator. . Thereby, the incorrect connection of the power supply to an ion generator can be suppressed.
  • the power supply specification identifying unit may be the connector 112 (connectors 112A and 112B) formed in a shape corresponding to the power supply specification. .
  • the power supply specification of the ion generator can be identified by the difference in the shape of the connector. As a result, it becomes impossible to connect the connector of the power supply cable of a power supply specification different from the power supply specification of the ion generator to the connector of the ion generator, and thus it is possible to prevent erroneous connection of the power supply to the casing ion generator. it can.
  • the power supply specification identifying unit may be an interval according to the power supply specification of the two pins 5 and 6 arranged in the connector 112. .
  • the power supply specification of the ion generator can be identified by the difference in the pin interval of the connector. As a result, it becomes impossible to connect the connector of the power supply cable of a power supply specification different from the power supply specification of the ion generator to the connector of the ion generator, and thus it is possible to prevent erroneous connection of the power supply to the casing ion generator. it can.
  • the power supply specification identifying unit may display according to the power supply specification.
  • the power supply specification of the ion generator can be identified by the difference in display according to the power supply specification. Thereby, the power supply specification of an ion generator can be confirmed visually. Therefore, erroneous connection of the power supply to the casing ion generator can be suppressed.
  • the ion generator according to the tenth aspect of the present invention is the protrusion 9a satisfying at least one of the shape according to the power supply specification and the arrangement according to the power supply specification in the position according to the power supply specification. , 9b.
  • the power supply specification of the ion generator can be identified by the difference between at least one of the shape of the protrusion and the arrangement position of the protrusion. As a result, it becomes impossible to connect the connector of the power supply cable of a power supply specification different from the power supply specification of the ion generator to the connector of the ion generator, and thus it is possible to prevent erroneous connection of the power supply to the casing ion generator. it can.
  • a step 111a may be provided on two side surfaces 111 facing each other in the housing 11.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Elimination Of Static Electricity (AREA)

Abstract

イオン発生量の減少を抑え、かつ小型化が可能なイオン発生量を実現する。イオン発生装置は、正イオンを発生する放電電極(1)と、負イオンを発生する放電電極(2)と、交流の高電圧を出力するトランス(13)と、高電圧を整流して放電電極(1)に印加するダイオード(D1)と、高電圧を整流して放電電極(2)に印加するダイオード(2)とを備えている。トランス(13)の出力端と、ダイオード(D1)およびダイオード(D2)とは、高電圧回路基板(14)上で、配線パターン(14a)、半田付けパターン(14b)、などの導電体によって接続されている。導電体は、放電電極(1)によって形成される電界と、放電電極(2)によって形成される電界との強度を低下させない領域に形成されている。

Description

イオン発生装置
 本発明は、イオン発生装置に関する。
 イオン発生装置は、その発生するイオンによる多様な効果から、各種の電気機器に搭載されている。例えば、特許文献1には、イオン発生装置が搭載された空気清浄機が開示されている。
 また、近年、電気機器は高機能化しており、マイクロコンピュータなどによる電子制御を導入した電気機器が普及してきている。例えば、特許文献2には、CPU(Central Processing Unit)を含む制御部を搭載したドライヤが記載されている。制御部は、ヒータ、イオン発生装置などの動作を制御する。高機能の電気機器は、マイクロコンピュータなどの直流部品を含んでいるため、電源仕様が直流であるものもある。このような電気機器に搭載されるイオン発生装置の電源仕様も直流となる。
 一方、普及型の低機能の電気機器は、必要最小限の機能を備えるために簡素に構成されており、交流部品のみで構成される。したがって、このような電気機器に搭載されるイオン発生装置の電源仕様も交流となる。
国際公開公報「WO2015/049933A1号(2015年4月9日公開)」 日本国公開特許公報「特開2013-111226号(2013年6月10日公開)」
 電気機器の小型化に応じて、当該電気機器に搭載されるイオン発生装置にも小型化が要求される。イオン発生装置を小型化するためには、外形を構成する筐体だけでなく、筐体に内蔵される基板なども小型化する必要がある。基板には、放電電極が実装されており、特に正負のイオンを発生する場合、正イオンを発生する放電電極と、負イオンを発生する放電電極とが実装される。基板の小型化に伴って、これらの放電電極間の間隔が狭くなる。
 小型化が考慮されていないイオン発生装置では、2つの放電電極の間隔が広いので、電子部品は基板上で放電電極間に配置されていた。イオン発生装置には、トランスからの交流の高電圧を整流して、2つの放電電極にそれぞれ正の高電圧と負の高電圧とを印加する高圧整流型のダイオードが放電電極ごとに設けられている。このダイオードは、比較的長いが、広い放電電極間に2つ直線状に配置できていた。
 しかしながら、イオン発生装置の小型化に伴って放電電極間の間隔が狭くなると、2つのダイオードを放電電極間に直線状に配置することができない。このため、ダイオードをずらして配置したり、ダイオードを平行に配置したりする必要がある。このような配置では、トランスからの電圧印加配線が放電電極(の先端)の近くに配置される。ダイオードによって整流された正の電圧と負の電圧とが放電電極のそれぞれに印加されると、各放電電極に印加される電圧と電圧印加経路の電圧とが同相であることにより、電界が弱まってしまう。この結果、イオンが発生しにくくなる。
 例えば、図14に示すように、正のイオンを発生する放電電極401と、負のイオンを発生する放電電極402との間の範囲に、ダイオードD11,D12が平行に配置されている。ダイオードD11は、トランス403からの交流電圧を整流して、正の電圧を放電電極401に印加する。ダイオードD12は、トランス403からの交流電圧を整流して、負の電圧を放電電極402に印加する。トランス403の2次コイルの一端は、基板上に形成された配線パターン404を介してダイオードD11のアノードと、ダイオードD12のカソードとに接続されている。トランス403の2次コイルの他端は、対向電極405に接続されている。
 上記のようなダイオードD11,D12の配置構成では、配線パターン404とダイオードD12のカソードとの間の配線経路が放電電極401,402に近くなる。このため、放電電極401,402の間隔が狭くなるのに応じて、上記配線経路と放電電極401との間の距離L401と、上記配線経路と放電電極402との間の距離L402とが短くなり、よりイオンが発生しにくくなる。
 また、上述のような高機能の電気機器と普及型の電気機器とを同じ製造ラインで製造する場合、電気機器の製造ラインにAC仕様のイオン発生装置とDC仕様のイオン発生装置とを配置しておき、AC仕様の電気機器にAC仕様のイオン発生装置を組み込む一方、DC仕様の電気機器にDC仕様のイオン発生装置を組み込む。
 部品の共通化のため、AC仕様のイオン発生装置とDC仕様のイオン発生装置とで同じ筐体を用いると、外観上、AC仕様のイオン発生装置の筐体であるかDC仕様のイオン発生装置の筐体であるかを区別ができない。このため、DC仕様の電気機器にAC仕様のイオン発生装置を組み込んだり、AC仕様の電気機器にDC仕様のイオン発生装置を組み込んだりする虞がある。このような場合、動作検査で電気機器に通電すると、イオン発生装置が損傷してしまうことで、異なる電源仕様のイオン発生装置が電気機器に組み込まれたことが初めてわかる。
 本発明の一態様は、イオン発生量の減少を抑え、かつ小型化が可能なイオン発生量を実現することを目的とする。また、本発明の他の態様は、イオン発生装置への仕様の異なる電源の誤接続を防止することを目的とする。
 上記の課題を解決するために、本発明の一態様に係るイオン発生装置は、正イオンを発生する正電極と、負イオンを発生する負電極と、交流の高電圧を出力するトランスと、前記高電圧を整流して前記正電極に印加する第1ダイオードと、前記高電圧を整流して前記負電極に印加する第2ダイオードとを備え、前記トランスの出力端と、前記第1ダイオードおよび前記第2ダイオードとは、基板の上で導電体によって接続されており、前記導電体は、前記正電極によって形成される電界と、前記負電極によって形成される電界との強度を低下させない領域に形成されている。
 上記の課題を解決するために、本発明の他の態様に係るイオン発生装置は、電極を実装する本体部と、前記電極に電圧を印加するための電源が接続されるコネクタとを有する筐体を備え、前記筐体は、イオン発生装置の電源仕様を識別可能にする電源仕様識別部を有している。
 本発明の一態様によれば、イオン発生量の減少を抑え、かつ小型化が可能なイオン発生量を実現することができるという効果を奏する。また、本発明の他の態様によれば、イオン発生装置への仕様の異なる電源の誤接続を防止することができるという効果を奏する。
(a)は本発明の各実施形態のイオン発生装置が搭載されるドライヤの構成を示す縦断面図であり、(b)は上記ドライヤの構成を示す他の縦断面図である。 本発明の実施形態1~3に係るイオン発生装置の外観の構成を示す斜視図である。 実施形態1に係るイオン発生装置の電気系統の構成を示す回路図である。 図3に示すイオン発生装置におけるダイオードの配置例を示す図である。 (a)は図3に示すイオン発生装置におけるダイオードの他の配置例を示す図であり、(b)は図3に示すイオン発生装置におけるダイオードのさらに他の配置例を示す図である。 実施形態1の変形例に係るイオン発生装置の構成を示す縦断面図である。 (a)は本発明の実施形態2に係るイオン発生装置の筐体を示す平面図であり、(b)は本発明の実施形態2に係るイオン発生装置の他の筐体を示す平面図である。 (a)は本発明の実施形態2に係るイオン発生装置の筐体を示す側面図であり、(b)は本発明の実施形態2に係るイオン発生装置の他の筐体を示す側面図である。 (a)は本発明の実施形態2に係るイオン発生装置の筐体を示す平面図であり、(b)は本発明の実施形態2に係るイオン発生装置の他の筐体を示す平面図である。 (a)~(c)は本発明の実施形態2に係るイオン発生装置のコネクタの形状を示す図である。 本発明の実施形態3に係るイオン発生装置の構成を示す正面図である。 図11に示すイオン発生装置をトレーから取り出す状態を示す斜視図である。 図11に示すイオン発生装置を電気機器の風路に配置した状態を示す図である。 従来のイオン発生装置におけるダイオードの配置を示す図である。
 〔ドライヤ〕
 本発明の実施形態1~3に係るイオン発生装置10(10A)が組み込まれるドライヤについて、図1に基づいて説明する。図1の(a)は、本発明の各実施形態のイオン発生装置が搭載されるドライヤの構成を示す縦断面図であり、(b)は上記ドライヤの構成を示す他の縦断面図である。
 図1の(a)および(b)に示すように、ドライヤ100は、ケーシング101を備えている。ケーシング101は、本体筒部102と、ハンドル部103とによって構成されており、ハンドル部103から、電源ケーブル104が引き出されている。
 本体筒部102には、一方の端部に空気を吸い込む吸込口102aと、他方の端部に空気を吹き出す吹出口102bとが設けられている。本体筒部102の内部には、吸込口102aから吹出口102bにかけて、送風ファン105と、モータ106と、ヒータユニット107と、イオン発生装置10とが配置されている。モータ106は、送風ファン105を回転させる。送風ファン105は、回転することにより、吸込口102aから吹き出し口102bへの空気の流れを発生して、ヒータユニット107が発生した熱を熱風として吹出口102bに送り出す。
 また、本体筒部102の内部には、モータ106から吹出口102bにかけて断熱スリーブ108が設けられている。断熱スリーブ108は、送風ファン105で発生する風の通路すなわち風路を形成している。
 吹出口102b付近において、本体筒部102と断熱スリーブ108との間には、イオン発生装置10が配置されている。イオン発生装置10は、正イオンを発生する放電電極1(正電極)と、負イオンを発生する放電電極2(負電極)とを備えている。放電電極1,2は、イオン発生装置10の外部に露出しており、図1の(b)に示すように、先端が断熱スリーブ108の内側に達するように配置されている。イオン発生装置10は、断熱スリーブ108内でイオンを発生することにより、断熱スリーブ108内を通過する空気の流れにイオンを拡散させる。
 また、本体筒部102の内部には、本体筒部102とハンドル部103との接続部分の付近に、回路基板109が配置されている。ドライヤ100が普及型のドライヤである場合、回路基板109には、モータ106を駆動するモータ駆動回路が実装されている。モータ駆動回路は、後述するスイッチ110の操作によって変更される温風の強度に応じて、送風ファン105の風量を変更するように、モータ106の回転速度を制御する。モータ106、ヒータユニット107およびイオン発生装置10には、電源ケーブル104から供給される交流電力がそのまま供給される。一方、ドライヤ100が高機能型のドライヤである場合、電源仕様がDC仕様であるため、回路基板109は、モータ駆動回路、AC/DCコンバータ、制御回路などが実装されている。AC/DCコンバータは、電源ケーブル104を介して供給される交流電力を直流電力に変換して、制御回路およびイオン発生装置10に供給する。制御回路は、CPUなどを含んでおり、モータ106、ヒータユニット107およびイオン発生装置10の動作を制御する。
 ハンドル部103には、スイッチ110が設けられている。スイッチ110は、電源のON・OFFおよび温風の強度を変化させるために設けられている。
 なお、イオン発生装置10が搭載される電気機器としては、上記のドライヤ100に限らず、他の電気機器であってもよい。
 〔実施形態1〕
 本発明の一実施の形態について図2~図6に基づいて説明すれば、以下の通りである。
 図2は、実施形態1に係るイオン発生装置10の外観の構成を示す斜視図である。図3は、イオン発生装置10の電気系統の構成を示す回路図である。
 図2に示すように、イオン発生装置10は、樹脂材料によって形成された筐体11を備えている。筐体11は、全体が長方形の箱型を成す本体部20と、コネクタ112とを有している。本体部20の長辺側の互いに対向する2つの側面111には、当該側面111の長手方向に沿って段差111aが設けられている。また、筐体11の短辺側の側面の一方には、コネクタ112が設けられている。コネクタ112は、電力供給ケーブルに接続されたコネクタ(図示せず)と接続される。コネクタ112内には、ピン5,6が配置されている。
 筐体11には、放電制御回路基板12と、トランス13と、高電圧回路基板14とが内蔵されている。図3に示すように、イオン発生装置10において、放電制御回路基板12には、電源入力部121と、放電制御回路122とが実装され、高電圧回路基板14には、高圧制御回路141と、放電電極1,2と、誘導電極3,4とが実装されている。図2に示すように、放電電極1,2は、その先端が先鋭に形成された針状の電極であり、所定の間隔をおいて配置されている。
 なお、誘導電極3,4は、高電圧回路基板14に実装されなくてもよく、別の基板に実装されてもよい。
 イオン発生装置10の電源仕様がDC仕様である場合、電源入力部121は、コネクタ112から入力される直流電圧が放電制御回路基板12に入力される部分であり、端子T1,T2を含んでいる。端子T1は、コネクタ112のピン5と接続され、端子T2は、コネクタ112のピン6と接続されている。
 放電制御回路122は、入力された直流電圧を所定の周波数の交流電圧に変換し、変換した交流電圧をトランス13の1次側コイル13aに印加することにより、トランス13を駆動する回路である。放電制御回路122は、トランス13の1次側コイル13a(低圧側)に接続されている。
 なお、イオン発生装置10の電源仕様がAC仕様である場合、コネクタ112(電源入力部121)には交流電圧が入力されてもよい。交流電圧が入力される場合、放電制御回路122は、入力電流を制限する電流制限抵抗、整流回路、スイッチング回路などを有する。
 高圧制御回路141は、ダイオードD1(第1ダイオード)およびダイオードD2(第2ダイオード)を含んでおり、トランス13の2次側コイル13b(高圧側)の一方の端子(出力端)から出力される交流の高電圧を整流して、正の電圧を放電電極1に印加し、負の電圧を放電電極2に印加する回路である。ダイオードD1,D2は、高圧整流型ダイオードであり、同じ全長を有している。
 高圧制御回路141の一方の端子には、ダイオードD1のアノードと、ダイオードD2のカソードとが接続されている。また、ダイオードD1のカソードは放電電極1に接続され、ダイオードD2のアノードは放電電極2に接続されている。誘導電極3,4は、ともにトランス13の他方の出力端子に接続されている。誘導電極3は放電電極1の周囲に配置され、誘導電極4は、放電電極2の周囲に配置される。
 続いて、高電圧回路基板14上におけるダイオードD1,D2の配置について説明する。図4は、そのダイオードD1,D2の配置例を示す図である。図5の(a)はダイオードD1,D2の他の配置例を示す図であり、図5の(b)はダイオードD1,D2のさらに他の配置例を示す図である。
 高電圧回路基板14上には、図4に示すように、配線パターン14aと、半田付けパターン14b,14cとが形成されている。配線パターン14aは、ダイオードD1のアノードおよびダイオードD2のカソードと、トランス13の2次側コイル13bの一方の端子とを接続するために設けられている。半田付けパターン14bは、ダイオードD1のアノード側のリード線およびダイオードD2のカソード側のリード線のそれぞれの端部を配線パターン14aの一端に半田付けする点状の部分である。半田付けパターン14cは、トランス13の2次側コイル13bの一方の端子(リード線)を配線パターン14aの他端に半田付けする点状の部分である。
 ダイオードD1,D2は、放電電極1,2を結ぶ直線LNに対して傾斜するように配置されている。これにより、ダイオードD1,D2は、V字形状を成すように接続かつ配置されている。また、半田付けパターン14bにおけるダイオードD1,D2の成す角度θは、最も好ましくは90°である。
 放電電極1,2は、それぞれの先端から周囲に電界を形成するので、放電電極1,2の間では異極の電界が影響し合って電界が強まる。これに対し、放電電極1,2の間に、放電電極1,2の間の電界とは異なった電界(ここではトランス13の2次側電位による電界)があると、放電電極1側の電界または放電電極2側の電界が瞬間的に弱まる。
 これに対し、図4に示す配置例では、放電電極1,2の間の電界を弱める領域に、トランス13の2次側と同電位の導電体が存在しないので、放電電極1,2の間の電界が弱まることはない。また、この配置例のように、ダイオードD1,D2が直線LNに対して傾斜している。これにより、トランス13の2次側電位と同じ電位であって、ダイオードD1と接続される最も近い導電体は、半田付けパターン14bとなる。それゆえ、放電電極1と半田付けパターン14bとの間の距離L1をダイオードD1の長さとほぼ同じに確保することができる。また、トランス13の2次側電位と同じ電位であって、ダイオードD2と接続される最も近い導電体は、配線パターン14aとなる。それゆえ、放電電極2と当該配線パターン14aとの間を距離L2に確保することができる。したがって、放電電極1,2間の電界に及ぼす影響を抑制することができる。
 この結果、放電電極1,2によって形成される電界の強度の低下を抑制して、放電電極1,2によるイオンの発生量の減少を抑制することができる。しかも、直線LNと半田付けパターン14bとの間の距離も短くすることができる。よって、高電圧回路基板14の拡幅化を抑制することができる。
 また、ダイオードD1,D2は、図5の(a)または(b)に示すように配置されてもよい。
 図5の(a)に示すように、ダイオードD1,D2は、直線LNに対して垂直であり、かつ互いに平行に並ぶように配置されている。ダイオードD1のアノード側のリード線およびダイオードD2のカソード側のリード線のそれぞれの端部は、直線状の半田付けパターン14cの両端に接続されている。半田付けパターン14cは、高電圧回路基板14上に直線LNと平行になるように形成されており、上記の各リード線を配線パターン14aの一端に半田付けする部分である。これにより、ダイオードD1,D2はU字形状を成すように接続かつ配置されている。また、放電電極1,2の間には、トランス13の2次側と同電位の導電体が配置されていない。
 この配置例では、図4に示す配置例と同じく、放電電極1,2の間に、トランス13の2次側と同電位の導電体が存在しないので、電界が弱まることはない。また、この配置例では、ダイオードD1,D2は、直線LNに対して垂直に配置されるので、トランス13の2次側電位と同じ電位であって、ダイオードD1と接続される最も近い導電体は、半田付けパターン14cとなり、放電電極1と半田付けパターン14cとの間の距離L11と、放電電極2と半田付けパターン14cとの間の距離L11とをダイオードD1,D2の長さとほぼ同じに確保することができる。これにより、電界に及ぼす影響を、図4に示す配置例よりも抑制することができる。したがって、放電電極1,2によって形成される電界の強度の低下を抑制して、放電電極1,2によるイオンの発生量の減少を抑制することができる。
 なお、この配置例では、ダイオードD1,D2が直線LNに対して垂直に配置されているので、図4に示す配置例と比べて、高電圧回路基板14の幅が広くなる。
 図5の(b)に示すように、ダイオードD1は、直線LNに対して垂直であり、ダイオードD2は、直線LNに対して平行となるように配置されている。ダイオードD1のアノード側のリード線およびダイオードD2のカソード側のリード線のそれぞれの端部は、半田付けパターン14dに接続されている。ダイオードD2のアノードのリード線の端部は、高電圧回路基板14上に形成された他の配線パターンを介して放電電極2と接続されている。半田付けパターン14dは、高電圧回路基板14上に形成されており、上記の各リード線を配線パターン14aの一端に半田付けする点状の部分である。これにより、ダイオードD1,D2はL字形状を成すように接続かつ配置されている。また、放電電極1,2の間には、トランス13の2次側と同電位の導電体が配置されていない。
 この構成では、ダイオードD1は、直線LNに対して垂直に配置されるので、トランス13の2次側電位と同じ電位であって、ダイオードD1と接続される最も近い導電体は、半田付けパターン14dとなる。それゆえ、放電電極1と半田付けパターン14dとの間の距離L21をダイオードD1の長さとほぼ同じに確保することができる。また、放電電極2と半田付けパターン14dとの間の距離L22を、直線LNを第1辺として有し、ダイオードD1の全長と同じ長さを有する直線を第2辺として有し、第1辺と第2辺との間が直角である直角三角形の第3辺の長さに確保することができる。この距離L22は距離L21よりも長い。
 この配置例では、図4に示す配置例と同じく、放電電極1,2の間に、トランス13の2次側と同電位の導電体が存在しないので、電界が弱まることはない。また、図5の(b)に示す配置例と同じく、トランス13の2次側と同電位である導電体と放電電極1,2との間の距離を長くすることができる。これにより、電界に及ぼす影響を抑制することができる。したがって、放電電極1,2によって形成される電界の強度の低下を抑制して、放電電極1,2によるイオンの発生量の減少を抑制することができる。
 なお、この配置例でも、ダイオードD1が直線LNに対して垂直に配置されているので、図4に示す配置例と比べて、高電圧回路基板14の幅が広くなる。
 ここで、図4に示す配線パターン14aと半田付けパターン14bとの間の距離、および放電電極1,2と配線パターン14aとの間の距離について説明する。
 イオン発生装置10における図4に示す配置例による配線パターン14aと半田付けパターン14bとの間の距離は、図14に示す従来の配置例による配線パターンと半田付けパターンとの間の距離に対して、放電電極1,2側でいずれも長くなっている。また、イオン発生装置10における図4に示す配置例による放電電極1,2の先端と配線パターン14aとの間の距離は、図14に示す従来の配置例による放電電極401,402の先端と配線パターン14aと半田付けパターンとの間の距離に対して、放電電極1,2側でいずれも長くなっている。
 〈変形例〉
 続いて、本実施形態の変形例について説明する。図6は、本変形例に係るイオン発生装置の構成を示す縦断面図である。
 図6に示すように、本実施形態に係るイオン発生装置10Aは、上述のイオン発生装置10と比べて放電電極1,2の伸びる方向の厚さ(深さ)が厚く形成されている。また、放電制御回路基板12は、放電電極1,2の伸びる方向に高電圧回路基板14と所定の間隔おいて配置されている。また、放電制御回路基板12および高電圧回路基板14には、中間基板15が接続されている。中間基板15は、高電圧回路基板14に対して垂直に配置されている。
 中間基板15には、ダイオードD1,D2が実装されている。また、中間基板15には、半田付けパターン15a~15dが形成されている。半田付けパターン15aは、ダイオードD1のアノードのリード線における端部を、上述の配線パターン14aの一端に半田付けする点状の部分であり、放電制御回路基板12側に設けられている。半田付けパターン15bは、ダイオードD2のカソードのリード線における端部を、上述の配線パターン14aの一端に半田付けする点状の部分であり、放電制御回路基板12側に設けられている。半田付けパターン15cは、ダイオードD1のカソードのリード線における端部を、放電電極1から引き出された高電圧回路基板14上の配線パターン(図示せず)に半田付けする点状の部分であり、高電圧回路基板14側に設けられている。半田付けパターン15dは、ダイオードD2のアノードのリード線における端部を、放電電極2から引き出された高電圧回路基板14上の配線パターン(図示せず)に半田付けする点状の部分であり、高電圧回路基板14側に設けられている。
 上記のように構成されるイオン発生装置10でも、放電電極1,2の間には、トランス13の2次側と同電位の導電体が存在しない。また、イオン発生装置10では、ダイオードD1,D2が中間基板15に実装され、半田付けパターン15a,15bが放電電極1,2よりも図6における下方に配置されている。これにより、図4および図5に示す配置例と比べて、トランス13の2次側と同電位である半田付けパターン15a,15bが放電電極1,2(特にその先端)から、より遠ざかる。
 したがって、図4および図5に示す配置例と比べて、放電電極1,2によるイオンの発生量の減少をより一層抑制することができる。また、ダイオードD1,D2が高電圧回路基板14に実装されないので、高電圧回路基板14の幅を狭くすることができる。
 なお、中間基板15は、高電圧回路基板14(放電電極1,2の実装面)に対して垂直に配置されているが、高電圧回路基板14に対して傾斜して配置されていてもよい。
 〔実施形態2〕
 本発明の他の実施形態について、図7~図10に基づいて説明すれば、以下の通りである。なお、説明の便宜上、実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図7の(a)は、実施形態2に係るイオン発生装置10の筐体11Aを示す平面図であり、図7の(b)はイオン発生装置10の他の筐体11Bを示す平面図である。図8の(a)は、実施形態2に係るイオン発生装置10の筐体11Cを示す側面図であり、図8の(b)はイオン発生装置10の他の筐体11Dを示す側面図である。図9の(a)は、実施形態2に係るイオン発生装置10の筐体11Eを示す平面図であり、図9の(b)はイオン発生装置10の他の筐体11Fを示す平面図である。図10の(a)~(c)は、実施形態2に係るイオン発生装置10のコネクタ112G~112Iの形状を示す図である。
 図7の(a)に示すように、筐体11Aは、AC仕様のイオン発生装置10が備える筐体であり、コネクタ112Aを有している。コネクタ112Aは、筐体11Aの内部側に凹むように形成されている。コネクタ112Aには、ピン5,6が配置されている。前述のドライヤ100の回路基板109から配線されるAC仕様の電力供給ケーブルの図示しないコネクタ(以降、ACコネクタと称する)は、コネクタ112A内に嵌まり込む形状を成している。
 一方、図7の(b)に示すように、筐体11Bは、DC仕様のイオン発生装置10が備える筐体であり、コネクタ112Bを有している。また、筐体11Bは、筐体11Aと同一の形状および同一の大きさに形成されている。コネクタ112Bは、筐体11Bの外部側に突出するとともに、内側が空洞を有するように形成されている。当該空洞内には、ピン5,6が配置されている。前述のドライヤ100の回路基板109から配線されるDC仕様の電力供給ケーブルの図示しないコネクタ(以降、DCコネクタと称する)は、コネクタ112B外に嵌まり込む形状を成している。
 このように、AC仕様の筐体11AとDC仕様の筐体11Bとでは、それぞれのコネクタ112A,112Bの形状が異なり、それぞれに応じた電力供給ケーブルのACコネクタおよびDCコネクタの形状も異なる。そして、上記のコネクタ112A,112Bの形状は、電源仕様を識別可能にしている。これにより、コネクタ112AにDC仕様の電力供給ケーブルを接続することはできないし、コネクタ112BにAC仕様の電力供給ケーブルを接続することはできない。それゆえ、イオン発生装置10の電源仕様を容易に識別することができる。したがって、イオン発生装置10に対する電源の誤接続を防止することができる。
 また、図8の(a)に示すように、筐体11Cは、AC仕様のイオン発生装置10が備える筐体であり、コネクタ112Cを有している。コネクタ112Cにおいて、ピン5,6は間隔Lacをおいて配置されている。これに対し、ACコネクタにおいて、ピン5,6がそれぞれ嵌まり込む2つの穴(図示せず)も間隔Lacをおいて配置されている。
 一方、筐体11Dは、DC仕様のイオン発生装置10が備える筐体であり、コネクタ112Dを有している。また、筐体11Dは、筐体11Cと同一の形状および同一の大きさに形成されている。コネクタ112Dにおいて、ピン5,6は間隔Ldcをおいて配置されている。これに対し、DCコネクタにおいて、ピン5,6がそれぞれ嵌まり込む2つの穴(図示せず)も間隔Ldcをおいて配置されている。
 コネクタ112Cに設けられるピン5,6の間の間隔Lacは、コネクタ112Dに設けられるピン5,6の間の間隔Ldcよりも長い。交流電源電圧が直流電源電圧よりも高いことから、耐圧を確保するために間隔Lacを間隔Ldcよりも長くしている。これにより、コネクタ112CにDC仕様の電力供給ケーブルを接続することはできないし、コネクタ112DにAC仕様の電力供給ケーブルを接続することはできない。したがって、イオン発生装置10に対する電源の誤接続を防止することができる。
 図7および図8に示す例では、筐体11A~11Dの成型において、筐体11A~11Dの本体を成型する金型をAC仕様とDC仕様とで共通化し、コネクタ112A~112Dを成型する金型をAC仕様とDC仕様とで異ならせる。これにより、金型のコストを抑えることができる。したがって、イオン発生装置10のコストを低減することができる。
 また、図9の(a)に示すように、筐体11Eは、AC仕様のイオン発生装置10が備える筐体であり、コネクタ112Eを有している。コネクタ112Eは、筐体11Eの外部側に突出するとともに、内側が空洞を有するように形成されている。当該空洞内には、ピン5,6が配置されている。筐体11Eには、コネクタ112Eの付近に電源仕様明示部7(電源仕様識別部,表示)が設けられている。電源仕様明示部7には、電源仕様がACであることを示す「AC」という文字が印刷されている。
 一方、図9の(b)に示すように、筐体11Fは、DC仕様のイオン発生装置10が備える筐体であり、コネクタ112Fを有している。コネクタ112Fは、筐体11Fの外部側に突出するとともに、内側が空洞を有するように形成されている。当該空洞内には、ピン5,6が配置されている。コネクタ112Fは、コネクタ112Eと同一の形状に形成されており、ピン5,6の間隔もコネクタ112Eと同じである。したがって、コネクタ112Fに接続されるDCコネクタも、コネクタ112Eに接続されるACコネクタと同じ形状を成している。これに対し、筐体11Fには、コネクタ112Fの付近に電源仕様明示部8(電源仕様識別部,表示)が設けられている。電源仕様明示部8には、電源仕様がDCであることを示す「DC」という文字が印刷されている。
 このように、筐体11Eには、電源仕様がACであることを示す電源仕様明示部7が設けられ、筐体11Fには、電源仕様がDCであることを示す電源仕様明示部8が設けられている。これにより、イオン発生装置10をドライヤ100に組み込む際に、組み立て作業者は、電源仕様明示部7,8の表記を確認することにより、イオン発生装置10がAC仕様であるかDC仕様であるかを識別することができる。したがって、イオン発生装置10に対する電源の誤接続を防止することができる。また、筐体11E,11Fは、コネクタ112E,112Fを含めて同じ形状かつ同じ大きさであるので、同一の金型を用いて成型することができる。したがって、金型に要するコストをより削減して、イオン発生装置10のコストを低減させることができる。
 なお、電源仕様明示部7,8においては、文字に限らず、AC仕様とDC仕様とを区別できるような記号、模様などが記載されていてもよい。また、電源仕様明示部7,8においては、文字などを印刷する以外に、文字などを刻印してもよい。
 また、AC仕様のイオン発生装置10の筐体11は、図10の(a)に示すようなコネクタ112Gを有し、DC仕様のイオン発生装置10の筐体11は、図10の(b)に示すようなコネクタ112Hを有していてもよい。コネクタ112Gは、ピン5,6の先端側から見て長方形を成しており、一方の長辺側の壁面に、突起9aが形成されている。コネクタ112Gに嵌まり込むACコネクタには、突起9aに嵌まり込む凹部が形成されている。一方、コネクタ112Hは、ピン5,6の先端側から見て長方形を成しており、ピン5,6の間に、突起9bが形成されている。コネクタ112Hに嵌まり込むDCコネクタには、突起9bに嵌まり込む凹部が形成されている。
 このような突起9a,9bの異なる配置により、コネクタ112GにDC仕様の電力供給ケーブルを接続することはできないし、コネクタ112HにAC仕様の電力供給ケーブルを接続することはできない。したがって、イオン発生装置10に対する電源の誤接続を防止することができる。
 なお、突起9a,9bは同じ形状かつ同じ大きさであってもよいし、異なる形状かつ異なる大きさであってもよい。また、電源仕様に応じて同じ位置で形状の異なる突起を設けてもよい。
 また、AC仕様のイオン発生装置10の筐体11がコネクタ112Hを有し、DC仕様のイオン発生装置10の筐体11がコネクタ112Gを有していてもよい。
 また、AC仕様のイオン発生装置10の筐体11は、図10の(c)に示すようなコネクタ112Iを有していてもよい。コネクタ112Iは、ピン5,6の先端側から見て台形を成している。コネクタ112Gに嵌まり込むACコネクタも、台形を成している。
 一方、DC仕様のイオン発生装置10筐体11は、図8の(a)に示すように、ピン5,6の先端側から見て長方形を成すコネクタ(長方形コネクタ)を有していてもよい。当該長方形コネクタに嵌まり込むDCコネクタも、長方形を成している。
 このように、コネクタ112Iと、上記長方形コネクタとの外形構造が異なることにより、コネクタ112IにDC仕様の電力供給ケーブルを接続することはできないし、上記長方形コネクタにAC仕様の電力供給ケーブルを接続することはできない。したがって、イオン発生装置10に対する電源の誤接続を防止することができる。
 なお、AC仕様のイオン発生装置10の筐体11が上記長方形コネクタを有し、DC仕様のイオン発生装置10の筐体11がコネクタ112Iを有していてもよい。
 また、AC仕様とDC仕様とを区別するために、上述した、コネクタ形状の相違と、ピン間隔の相違と、文字などの表示の相違とをそれぞれ単独で用いてもよいし、これらの全てまたは一部を組み合わせて用いてもよい。このような組み合わせを用いることで、より確実に電源の誤接続を防止することができる。
 〔実施形態3〕
 本発明のさらに他の実施形態について、図2、図11~図13に基づいて説明すれば、以下の通りである。なお、説明の便宜上、実施形態1および2にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図11は、実施形態3に係るイオン発生装置10の構成を示す正面図であり、図2に示すコネクタ112が設けられた側面と反対側の側面を示している。図12は、図11に示すイオン発生装置10をトレーから取り出す状態を示す斜視図である。図13は、図11に示すイオン発生装置10を電気機器の風路301に配置した状態を示す図である。
 図2および図11に示すように、段差111aは、筐体11の長辺側の側面111に、当該側面111の長手方向に沿って形成されている。段差111aの幅は、例えば0.2mmであるが、数百μmの範囲であればよい。
 一般のイオン発生装置の筺体は単純な構造であり、その表面が平坦であることが多い。比較的大きなイオン発生装置であれば、手全体を使って持つことができるが、筐体がより小型化されると、イオン発生装置を指先で摘んで取り扱うようになる。特に、表面が平坦であると、滑ってイオン発生装置を摘みにくくなる。
 また、放電を用いたイオン発生装置には、放電電極が筐体から突出するように設けられており、放電電極は先鋭であることが多く、破損しやすい。そこで、従来のイオン発生装置では、例えば特許文献1に開示されているように、放電電極の保護および放電電極への接触防止のための放電電極保護部が、筐体における放電電極の側方に設けられている。
 しかしながら、このような放電電極保護部は、筐体の側部に設けられるので、イオン発生装置の小型化を妨げるものであった。また、放電電極保護部は、筐体の構造が複雑化するだけでなく、放電の妨げにもなる。
 これに対し、本実施形態に係るイオン発生装置10は、上記のような放電電極保護部が設けられていない。また、イオン発生装置10は、上記の段差111aを有している。段差111aに指がかかりやすくなるので、イオン発生装置10を指で摘んでも、イオン発生装置10を落としにくくすることができる。
 例えば、イオン発生装置10を運搬する際には、図12に示すように、複数のイオン発生装置10をトレー200(一部のみを示す)に収納しておく。トレー200には、複数の凹部201が設けられている(図12では1つの凹部201のみを示す)。各凹部201には、イオン発生装置10が容易に抜け出ないように嵌め込まれて収納される。トレー200からイオン発生装置10を取り出す際、トレー200の溝部202に指を入れてイオン発生装置10の両側を摘む。このとき、指を段差111aに掛けることで、イオン発生装置10をしっかりと持つことができる。これにより、トレー200の凹部201による保持力に対しても指を滑らすことなく、容易にイオン発生装置10をトレー200から取り出すことができる。したがって、トレー200から取り出すときに、指を滑らせてイオン発生装置10を落とすことを容易に回避できる。
 また、イオン発生装置10は、放電電極保護部を有していないので、小型化されている。このため、イオン発生装置10を小型の電気機器にも容易に搭載することができる。例えば、ヘアアイロンなどでは、前述のドライヤ100よりも狭い風路を有している。図13に示すように、イオン発生装置10は、狭い風路301に配置できるので、ヘアアイロンなどにも搭載が可能である。
 これに対し、同図に示すように、筐体11の両側部に放電電極保護部113が設けられた場合、放電電極保護部113が風路301内に収まりきらない。このため、放電電極保護部113を収めるには、風路301よりも広い風路302が必要となる。したがって、電気機器が大型になるという不具合がある。
 以上のように、本実施形態に係るイオン発生装置10は、段差111aを有することにより、取り扱い時の落下を容易に回避することができるとともに、小型化を容易に図ることができる。
 〔まとめ〕
 本発明の態様1に係る正イオンを発生する正電極(放電電極1)と、負イオンを発生する負電極(放電電極2)と、交流の高電圧を出力するトランス13と、前記高電圧を整流して前記正電極に印加する第1ダイオード(ダイオードD1)と、前記高電圧を整流して前記負電極に印加する第2ダイオード(ダイオードD2)とを備え、前記トランス13の出力端と、前記第1ダイオードおよび前記第2ダイオードとは、基板(高電圧回路基板14)の上で導電体(配線パターン14a,半田付けパターン14b~14d)によって接続されており、前記導電体は、前記正電極によって形成される電界と、前記負電極によって形成される電界との強度を低下させない領域に形成されている。
 上記の構成によれば、トランスの出力端と同電位となる導電体が、電界を弱めない領域に形成されているので、導電体の影響によって電界が弱まることを抑制することができる。これにより、正電極および負電極によるイオン発生量の減少を抑えることができる。また、導電体の位置に応じて第1ダイオードおよび第2ダイオードを適宜配置することにより、イオン発生装置の小型化を可能にすることができる。
 本発明の態様2に係るイオン発生装置は、上記態様1において、前記第1ダイオードおよび前記第2ダイオードが、前記正電極と前記負電極とを結ぶ直線に対して傾斜して配置されていてもよい。
 上記の構成によれば、導電体を正電極および負電極から遠ざけることで、導電体が電界に及ぼす影響を低減するとともに、第1ダイオードおよび第2ダイオードが実装される基板の幅を狭くすることができる。
 本発明の態様3に係るイオン発生装置は、上記態様1において、前記第1ダイオードおよび前記第2ダイオードの少なくともいずれか一方が、前記正電極と前記負電極とを結ぶ直線に対して垂直に配置されていてもよい。
 上記の構成によれば、態様2よりも、導電体を正電極および負電極から遠ざけることで、導電体が電界に及ぼす影響を一層低減することができる。
 本発明の態様4に係るイオン発生装置は、上記態様1において、前記基板が、前記正電極および負電極の実装面に対して垂直に配置されるか、または前記実装面に対して傾斜して配置されていてもよい。
 上記の構成によれば、導電体を正電極および負電極からより遠ざけることができる。したがって、導電体が電界に及ぼす影響をより一層低減することができる。
 本発明の態様5に係るイオン発生装置は、上記態様1から4のいずれかにおいて、前記正電極、前記負電極、前記トランス13、前記第1ダイオードおよび前記第2ダイオードを実装する筐体11をさらに備え、前記筐体11において互いに対向する2つの側面111には段差111aが設けられていてもよい。
 上記の構成によれば、イオン発生装置の小型化に伴って筐体が小型に形成されても、指がかかりやすくなるので、イオン発生装置を指で摘んでも、イオン発生装置を落としにくくすることができる。また、イオン発生装置を落としにくくできることで、イオン発生装置の落下による、正電極および負電極の破損を回避できることから、正電極および負電極を保護する構造をイオン発生装置に設ける必要がなくなる。これにより、イオン発生装置の小型化を容易に図ることができる。
 本発明の態様6に係るイオン発生装置は、電極(放電電極1,2)を実装する本体部20と、前記電極に電圧を印加するための電源が接続されるコネクタ112とを有する筐体11を備え、前記筐体11は、イオン発生装置の電源仕様を識別可能にする電源仕様識別部(コネクタ112A~112I、電源仕様明示部7,8、突起9a,9b)を有している。
 上記の構成によれば、筐体がイオン発生装置の電源仕様に関わらず同一の形状および同一の大きさに形成されても、電源仕様識別部によってイオン発生装置の電源仕様を識別することができる。これにより、イオン発生装置への電源の誤接続を抑制することができる。
 本発明の態様7に係るイオン発生装置は、上記態様6において、前記電源仕様識別部が、前記電源仕様に応じた形状に形成されている前記コネクタ112(コネクタ112A,112B)であってもよい。
 上記の構成によれば、コネクタの形状の相違によってイオン発生装置の電源仕様を識別することができる。これにより、イオン発生装置の電源仕様と異なる電源仕様の電力供給ケーブルのコネクタをイオン発生装置のコネクタに接続することができなくなるので、筐体イオン発生装置への電源の誤接続を防止することができる。
 本発明の態様8に係るイオン発生装置は、上記態様6において、前記電源仕様識別部が、前記コネクタ112に配置された2つのピン5,6の前記電源仕様に応じた間隔であってもよい。
 上記の構成によれば、コネクタのピンの間隔の相違によってイオン発生装置の電源仕様を識別することができる。これにより、イオン発生装置の電源仕様と異なる電源仕様の電力供給ケーブルのコネクタをイオン発生装置のコネクタに接続することができなくなるので、筐体イオン発生装置への電源の誤接続を防止することができる。
 本発明の態様9に係るイオン発生装置は、上記態様6において、前記電源仕様識別部が、前記電源仕様に応じた表示であってもよい。
 上記の構成によれば、電源仕様に応じた表示の相違によってイオン発生装置の電源仕様を識別することができる。これにより、イオン発生装置の電源仕様を目視によって確認することができる。したがって、筐体イオン発生装置への電源の誤接続を抑制することができる。
 本発明の態様10に係るイオン発生装置は、上記態様6において、前記電源仕様に応じた形状を有すること、および前記電源仕様に応じた位置に配置されることの少なくともいずれか一方を満たす突起9a,9bであってもよい。
 上記の構成によれば、突起の形状および突起の配置位置の少なくともいずれか一方の相違によってイオン発生装置の電源仕様を識別することができる。これにより、イオン発生装置の電源仕様と異なる電源仕様の電力供給ケーブルのコネクタをイオン発生装置のコネクタに接続することができなくなるので、筐体イオン発生装置への電源の誤接続を防止することができる。
 本発明の態様11に係るイオン発生装置は、上記態様6から9のいずれかにおいて、前記筐体11において互いに対向する2つの側面111には段差111aが設けられていてもよい。
 上記の構成によれば、イオン発生装置の小型化に伴って筐体が小型に形成されても、指がかかりやすくなるので、イオン発生装置を指で摘んでも、イオン発生装置を落としにくくすることができる。また、イオン発生装置を落としにくくできることで、イオン発生装置の落下による、正電極および負電極の破損を回避できることから、正電極および負電極を保護する構造をイオン発生装置に設ける必要がなくなる。これにより、イオン発生装置の小型化を容易に図ることができる。
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
  1 放電電極(正電極)
  2 放電電極(負電極)
  7,8 電源仕様明示部(電源仕様識別部,表示)
  9a,9b 突起(電源仕様識別部)
 10,10A イオン発生装置
 11,11A~11F 筐体
 13 トランス
 14 高電圧回路基板(基板)
 14a 配線パターン(導電体)
 14b~14d 半田付けパターン(導電体)
 15 中間基板(基板)
 20 本体部
111 側面
111a 段差
112A~112I コネクタ(電源仕様識別部)
D1 ダイオード(第1ダイオード)
D2 ダイオード(第2ダイオード)
LN 直線

Claims (11)

  1.  正イオンを発生する正電極と、
     負イオンを発生する負電極と、
     交流の高電圧を出力するトランスと、
     前記高電圧を整流して前記正電極に印加する第1ダイオードと、
     前記高電圧を整流して前記負電極に印加する第2ダイオードとを備え、
     前記トランスの出力端と、前記第1ダイオードおよび前記第2ダイオードとは、基板の上で導電体によって接続されており、
     前記導電体は、前記正電極によって形成される電界と、前記負電極によって形成される電界との強度を低下させない領域に形成されていることを特徴とするイオン発生装置。
  2.  前記第1ダイオードおよび前記第2ダイオードは、前記正電極と前記負電極とを結ぶ直線に対して傾斜して配置されていることを特徴とする請求項1に記載のイオン発生装置。
  3.  前記第1ダイオードおよび前記第2ダイオードの少なくともいずれか一方は、前記正電極と前記負電極とを結ぶ直線に対して垂直に配置されていることを特徴とする請求項1に記載のイオン発生装置。
  4.  前記基板は、前記正電極および負電極の実装面に対して垂直に配置されるか、または前記実装面に対して傾斜して配置されていることを特徴とする請求項1に記載のイオン発生装置。
  5.  前記正電極、前記負電極、前記トランス、前記第1ダイオードおよび前記第2ダイオードを実装する筐体をさらに備え、
     前記筐体において互いに対向する2つの側面には段差が設けられていることを特徴とする請求項1から4のいずれか1項に記載のイオン発生装置。
  6.  電極が実装される本体部と、前記電極に電圧を印加するための電源が接続されるコネクタとを有する筐体を備え、
     前記筐体は、イオン発生装置の電源仕様を識別可能にする電源仕様識別部を有していることを特徴とするイオン発生装置。
  7.  前記電源仕様識別部は、前記電源仕様に応じた形状に形成されている前記コネクタであることを特徴とする請求項6に記載のイオン発生装置。
  8.  前記電源仕様識別部は、前記コネクタに配置された2つのピンの前記電源仕様に応じた間隔であることを特徴とする請求項6に記載のイオン発生装置。
  9.  前記電源仕様識別部は、前記電源仕様に応じた表示であることを特徴とする請求項6に記載のイオン発生装置。
  10.  前記電源仕様識別部は、前記電源仕様に応じた形状を有すること、および前記電源仕様に応じた位置に配置されることの少なくともいずれか一方を満たす突起であることを特徴とする請求項6に記載のイオン発生装置。
  11.  前記筐体において互いに対向する2つの側面には段差が設けられていることを特徴とする請求項6から10のいずれか1項に記載のイオン発生装置。
PCT/JP2017/008547 2016-11-28 2017-03-03 イオン発生装置 WO2018096698A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018552388A JP6926114B2 (ja) 2016-11-28 2017-03-03 イオン発生装置
EP17874917.2A EP3547804A4 (en) 2016-11-28 2017-03-03 ION GENERATOR
KR1020197005199A KR20190028799A (ko) 2016-11-28 2017-03-03 이온 발생 장치
US16/328,855 US20190192722A1 (en) 2016-11-28 2017-03-03 Ion generation device
CN201780051921.2A CN109997415A (zh) 2016-11-28 2017-03-03 离子产生装置
PH12019500362A PH12019500362A1 (en) 2016-11-28 2019-02-20 Ion generation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016230629 2016-11-28
JP2016-230629 2016-11-28

Publications (1)

Publication Number Publication Date
WO2018096698A1 true WO2018096698A1 (ja) 2018-05-31

Family

ID=62195683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008547 WO2018096698A1 (ja) 2016-11-28 2017-03-03 イオン発生装置

Country Status (8)

Country Link
US (1) US20190192722A1 (ja)
EP (1) EP3547804A4 (ja)
JP (1) JP6926114B2 (ja)
KR (1) KR20190028799A (ja)
CN (1) CN109997415A (ja)
PH (1) PH12019500362A1 (ja)
TW (1) TWI656889B (ja)
WO (1) WO2018096698A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7339035B2 (ja) * 2019-07-09 2023-09-05 シャープ株式会社 放電装置および電気機器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152911U (ja) * 1983-03-31 1984-10-13 松下電工株式会社 制御盤
JPH0276876U (ja) * 1988-12-02 1990-06-13
JP2013032974A (ja) * 2011-08-02 2013-02-14 Hioki Ee Corp コンセント測定プローブ及び電圧測定器
JP2013111226A (ja) 2011-11-29 2013-06-10 Sharp Corp ドライヤ
JP2013125643A (ja) * 2011-12-14 2013-06-24 Toshiba Lighting & Technology Corp 直流コンセント
JP2013218807A (ja) * 2012-04-05 2013-10-24 Sharp Corp イオン発生装置
WO2015049933A1 (ja) 2013-10-02 2015-04-09 シャープ株式会社 イオン発生装置および電気機器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152911A (ja) * 1983-02-18 1984-08-31 Asahi Glass Co Ltd ポリマ−ポリオ−ルおよびポリウレタン系合成樹脂の製造方法
JP5110472B2 (ja) * 2008-04-22 2012-12-26 Smc株式会社 イオナイザ
CN101583232B (zh) * 2008-05-14 2011-12-28 英业达股份有限公司 电源放电控制系统
KR101325843B1 (ko) * 2009-06-05 2013-11-05 샤프 가부시키가이샤 이온 발생 장치 및 전기 기기
JP2011086533A (ja) * 2009-10-16 2011-04-28 Sharp Corp イオン発生装置及びそれを用いた電気機器
JP2011096555A (ja) * 2009-10-30 2011-05-12 Sharp Corp イオン発生装置
JP2012133999A (ja) * 2010-12-21 2012-07-12 Sharp Corp イオン発生装置
JP5968731B2 (ja) * 2012-09-03 2016-08-10 シャープ株式会社 イオン発生器およびそれを備えたイオン発生装置
JP5886165B2 (ja) * 2012-09-05 2016-03-16 シャープ株式会社 イオン発生素子、イオン発生器およびイオン発生装置
JP2014107202A (ja) * 2012-11-29 2014-06-09 Sharp Corp イオン発生装置及び電気機器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152911U (ja) * 1983-03-31 1984-10-13 松下電工株式会社 制御盤
JPH0276876U (ja) * 1988-12-02 1990-06-13
JP2013032974A (ja) * 2011-08-02 2013-02-14 Hioki Ee Corp コンセント測定プローブ及び電圧測定器
JP2013111226A (ja) 2011-11-29 2013-06-10 Sharp Corp ドライヤ
JP2013125643A (ja) * 2011-12-14 2013-06-24 Toshiba Lighting & Technology Corp 直流コンセント
JP2013218807A (ja) * 2012-04-05 2013-10-24 Sharp Corp イオン発生装置
WO2015049933A1 (ja) 2013-10-02 2015-04-09 シャープ株式会社 イオン発生装置および電気機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3547804A4 *

Also Published As

Publication number Publication date
JP6926114B2 (ja) 2021-08-25
EP3547804A1 (en) 2019-10-02
TW201818978A (zh) 2018-06-01
TWI656889B (zh) 2019-04-21
JPWO2018096698A1 (ja) 2019-10-17
CN109997415A (zh) 2019-07-09
PH12019500362A1 (en) 2019-11-11
KR20190028799A (ko) 2019-03-19
US20190192722A1 (en) 2019-06-27
EP3547804A4 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
JP6149753B2 (ja) コネクタ
JP6570811B2 (ja) コネクタ
JP2009300123A (ja) 電流センサ
WO2018096698A1 (ja) イオン発生装置
US9142378B2 (en) Ion generating device and electrical apparatus which can easily be reduced in size and thickness
JP6269272B2 (ja) コネクタ装置
CN110739558B (zh) 电子设备
WO2018055787A1 (ja) 放電装置および電気機器
JP2011014318A (ja) 除電装置
JP2011014319A (ja) 除電装置
WO2018150560A1 (ja) 電子装置
JP6629399B2 (ja) 電源装置
JP7271307B2 (ja) イオン発生装置および電気機器
JP2021064562A (ja) イオン発生装置および電気機器
JP5364473B2 (ja) 除電装置
JP2019054017A (ja) 電子部品
JP6872467B2 (ja) 回路基板モジュール及びこれを備えた電源装置
ATE283555T1 (de) Elektrische verbindereinheit und steckverbinder hieraus
JPH0729647A (ja) フレキシブルプリント板装置
JP2004313281A (ja) 遊技機の過電流防止装置
JP4327066B2 (ja) トランス付制御機器
JP2005101194A (ja) プリント配線基板、点灯装置、及び照明器具
KR920009016Y1 (ko) 음이온 발생기
JP2019129669A (ja) モータ
JP2006216633A (ja) 電源装置及びそれに用いられるフェライトコア

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874917

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018552388

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197005199

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017874917

Country of ref document: EP