WO2018092814A1 - 内視鏡による光照射治療用光照射プローブ - Google Patents

内視鏡による光照射治療用光照射プローブ Download PDF

Info

Publication number
WO2018092814A1
WO2018092814A1 PCT/JP2017/041131 JP2017041131W WO2018092814A1 WO 2018092814 A1 WO2018092814 A1 WO 2018092814A1 JP 2017041131 W JP2017041131 W JP 2017041131W WO 2018092814 A1 WO2018092814 A1 WO 2018092814A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical fiber
irradiation
light irradiation
probe
Prior art date
Application number
PCT/JP2017/041131
Other languages
English (en)
French (fr)
Inventor
前田 浩
Original Assignee
一般財団法人バイオダイナミックス研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一般財団法人バイオダイナミックス研究所 filed Critical 一般財団法人バイオダイナミックス研究所
Priority to CA3044196A priority Critical patent/CA3044196A1/en
Priority to AU2017361183A priority patent/AU2017361183B2/en
Priority to CN201780069891.8A priority patent/CN109937071A/zh
Priority to US16/461,730 priority patent/US20190275346A1/en
Priority to EP17871533.0A priority patent/EP3542858A4/en
Priority to KR1020197013701A priority patent/KR20190086448A/ko
Publication of WO2018092814A1 publication Critical patent/WO2018092814A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • A61N5/0603Apparatus for use inside the body for treatment of body cavities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0669Endoscope light sources at proximal end of an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/31Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the rectum, e.g. proctoscopes, sigmoidoscopes, colonoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/313Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/062Photodynamic therapy, i.e. excitation of an agent
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted along at least a portion of the lateral surface of the fibre
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41BSHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
    • A41B1/00Shirts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00982Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combined with or comprising means for visual or photographic inspections inside the body, e.g. endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2205Characteristics of fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/005Catheters; Hollow probes characterised by structural features with embedded materials for reinforcement, e.g. wires, coils, braids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • A61N5/0603Apparatus for use inside the body for treatment of body cavities
    • A61N2005/0608Rectum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • A61N5/0603Apparatus for use inside the body for treatment of body cavities
    • A61N2005/061Bladder and/or urethra
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/063Radiation therapy using light comprising light transmitting means, e.g. optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0632Constructional aspects of the apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0635Radiation therapy using light characterised by the body area to be irradiated
    • A61N2005/0643Applicators, probes irradiating specific body areas in close proximity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0664Details

Definitions

  • the present invention relates to a light irradiation probe for photodynamic therapy (PDT) using an endoscope, a manufacturing method thereof, and a light irradiation treatment apparatus using the light irradiation probe for light irradiation therapy.
  • PDT photodynamic therapy
  • Photodynamic therapy is a treatment method for proliferative diseases such as cancer using the photosensitizing action of a photosensitizer, that is, a photosensitizer (PS). It has been in the limelight as a subject of the Nobel Prize for Medicine and has been well known for over 100 years. However, although the principle of PDT therapy (light irradiation therapy) is excellent, it can be used for initial skin diseases (skin tuberculosis, etc.) or superficial cancers that have been transmitted in the last 20-30 years. However, its clinical outcome is considered to be extremely poor.
  • PDT therapy light irradiation therapy
  • PSD photosensitizers
  • a light having a relatively long wavelength range for example, a HeNe laser having a peak wavelength of 633 nm
  • a light having a relatively long wavelength range for example, a HeNe laser having a peak wavelength of 633 nm
  • a photosensitizer such as Rezaphyrin or Photoforin (registered trademark) is 400 to 460 nm, which does not match the peak wavelength of the light source.
  • the present inventor conducted a single intravenous injection (IV) when a nanoparticle-type photosensitizer (PS) containing Zn protoporphyrin (ZnPP) was used by experiment (Patent Document 1 described above). Several hours later, it was confirmed by the EPR effect (enhanced “permeability” and “retention” effect) that the photosensitizer accumulates only in the tumor site (Non-Patent Documents 1 to 4). It was confirmed that breast cancer and colon cancer in mice and rats were completely cured by irradiating an arbitrary light source including a wavelength region of 400 to 460 nm 1 to 5 times (Patent Document 1 and Non-Patent Document 1, listed above). 2).
  • PDT therapy mainly targets surface cancers (skin cancer, breast cancer, etc.) or epithelial target cancers (bronchial lung cancer, etc.).
  • a helium neon (HeNe) laser beam is irradiated to the lesion through the endoscope fiberscope.
  • the peak wavelength of helium neon laser light is 633 nm, which is different from the optimum excitation wavelength of photosensitizers such as Rezaphyrin and Photoforin (registered trademark), so that the photosensitizer absorbs light energy.
  • the fluorescent light is not emitted, and singlet oxygen that kills the lesion is not generated. Therefore, the present inventor understands that such a treatment method cannot be said to be a true light irradiation therapy (PDT therapy).
  • a general endoscope scope is composed of three parts: an operation part, an insertion part, and a connection part for connecting the two.
  • the distal end portion of the insertion portion includes an objective lens, an image pickup device such as a CCD, an optical fiber for propagating light from the light source device, an illumination lens for condensing the propagated light on the lesion, It has a forceps port that doubles as an inlet / outlet and a suction port, and a nozzle that delivers water and air.
  • the light through the endoscope scope illumination lens is irradiated in the front direction (axial direction), and the image sensor is designed to observe the lesion in the front direction through the objective lens.
  • the insertion section itself can be bent and its tip can be placed in the front direction of the lesion, but in any case, the light from the endoscope scope Is irradiated in the front direction from the distal end portion of the insertion portion.
  • a general endoscope scope is for observing a lesion portion in the front direction of the distal end portion of the insertion portion, and is not designed to be used for PDT therapy.
  • Patent Document 2 describes a laser probe used for PDT therapy, but the optical fiber used for processing is a plastic clad quartz core optical fiber or an all-quartz optical fiber in which both the core and the clad are made of quartz.
  • the region to be treated is limited to tubular organs such as the nasal cavity, pharynx, and cervix.
  • an optical fiber having a quartz core is hard and easily broken, it is extremely difficult and even dangerous to insert it into a deep part of a luminal organ such as the large intestine. Therefore, there is a strong demand to provide a flexible (flexible) light irradiation probe that can irradiate a cancer lesion existing deep in a luminal organ.
  • Non-Patent Documents 5 to 11 The present inventor has written many papers in addition to the above-mentioned Patent Document 1 and Non-Patent Documents 1 to 4 (Non-Patent Documents 5 to 11).
  • one aspect of the present invention is flexible and has a substantial length range (for example, 20 to 30 cm) so that light can be simultaneously irradiated to cancers in a plurality of locations scattered over a wide area.
  • An object of the present invention is to provide a light irradiating probe that uniformly irradiates light from all sides at all azimuth angles of 360 degrees.
  • a light irradiation probe for light irradiation treatment includes an optical fiber that extends in an axial direction and propagates light from a light source, and the optical fiber is flexible.
  • the light scattering irradiation unit 360 transmits the light propagated from the light guide unit to the entire vicinity of the lesion treatment target site having a length corresponding to the length of 1 cm or more in the axial direction of the lesion treatment site.
  • the peak wavelength of the light emitted from the light source is included in the optimum excitation wavelength range of the desired photosensitizer used in the light irradiation therapy.
  • the light scattering irradiation unit further includes a rod wound in a spiral shape.
  • the rod is a rod-shaped endoscope fiberscope.
  • the light scattering irradiation portion and the coating portion covering the rod are further provided.
  • a light irradiation treatment apparatus including a light source that emits light.
  • the light irradiation treatment apparatus propagates light from the light source and has a first cross-sectional area.
  • a first optical fiber including: a capacitor incident end face that propagates light from the first optical fiber and substantially conforms to the outgoing end face of the first optical fiber, and is smaller than the outgoing end face of the first optical fiber.
  • An optical capacitor adapter having a capacitor exit end face substantially matching the entrance end face; and an entrance end face for propagating light from the optical capacitor adapter and substantially matching a second cross-sectional area of the exit end face of the optical capacitor adapter
  • a second optical fiber, and the second optical fiber is a light guide unit provided with a thin film clad on the side surface of the flexible core, and the light transmitted to the light guide unit is flexible.
  • a light scattering irradiation section for scattering with a uniform intensity in all directions around the axial direction of A.
  • the light scattering irradiation unit 360 transmits the light propagated from the light guide unit to the entire vicinity of the lesion treatment target site having a length corresponding to the length of 1 cm or more in the axial direction of the lesion treatment site.
  • the peak wavelength of the light emitted from the light source is included in the optimum excitation wavelength range of the desired photosensitizer used in the light irradiation therapy.
  • the first and second optical fibers are flexible plastic optical fibers
  • the optical capacitor adapter has an incident end face having a first cross-sectional area and an output having a second cross-sectional area.
  • the light scattering irradiation part of the second optical fiber further includes a rod wound in a spiral shape.
  • the rod is a rod-shaped endoscopic fiberscope.
  • the light scattering irradiation portion and the coating portion covering the rod are further provided.
  • a method of manufacturing a light irradiation probe for light irradiation treatment which includes providing an optical fiber having a thin film cladding on a side surface of a flexible core; Processing the side of the tip of the optical fiber to form a light scatter irradiator so that the light propagated to the optical fiber is scattered with uniform intensity in all directions at the tip; and A step of winding around.
  • the light scattering irradiation unit has a length corresponding to a length of 1 cm or more in the axial direction of the lesion treatment target site, and the light propagated from the light guide unit to the entire vicinity of the lesion treatment site.
  • the peak wavelength of light from the light source is included in the optimum excitation wavelength range of the desired photosensitizer used in the light irradiation therapy.
  • the step of processing the side surface of the front end portion of the optical fiber to form the light scattering irradiation portion includes removing the thin film clad disposed on the side surface of the front end portion of the optical fiber and exposing the flexible A step of roughening the conductive core, a step of whitening the side surface of the thin film clad disposed on the side surface of the optical fiber tip using a solvent, or removing and exposing the thin film clad disposed on the side surface of the optical fiber tip Including any of the steps of depositing the fine powder on the side of the flexible core that has been made.
  • the method further includes a step of covering the light scattering irradiation portion and the rod with a resin material.
  • light is emitted from a light scattering irradiation unit having an axial length of 1 cm or more so that all of cancers scattered in a wide area can be irradiated simultaneously.
  • a flexible light irradiation probe that uniformly irradiates at an azimuth angle can be provided.
  • FIG. 4 is a conceptual diagram when the light irradiation probe for light irradiation treatment of FIG.
  • the 3 is inserted into the large intestine, and light is irradiated to the surface cancer tissue and the lower layer cancer tissue in the large intestine.
  • (A) is the light irradiation probe for light irradiation treatment which concerns on a modification, Comprising: The light-scattering irradiation part shows the state wound by the rod, (b) shows the light-irradiation probe and light-scattering irradiation part of (a).
  • (c) is a schematic view showing the state where the heat-shrinkable plastic sack of (b) is heated and contracted.
  • It is a conceptual diagram similar to FIG. 5 when it inserts in the light irradiation probe for light irradiation treatment which concerns on a modification in large intestine.
  • Light irradiation probe in the on state (upper stage), light scattering irradiation part in the off state inserted from the mouse anus (middle stage), light scattering irradiation part inserted from the mouse anus turned on
  • It is the schematic which shows (lower stage).
  • a light irradiation treatment apparatus 1 includes a light source device 10, a flexible fiber optics (first optical fiber) 20, a joint jig 30, and light irradiation. And a therapeutic light irradiation probe (second optical fiber) 40.
  • the light irradiation probe for light irradiation treatment 40 is not limited to this, but mainly treats a lesion site such as a cancer cell of a luminal organ (esophagus, intestine, stomach, bladder, uterus, etc.). .
  • the light irradiation treatment apparatus 1 is configured such that light emitted from the light source device 10 propagates to the fiber optics 20 and propagates to the light irradiation treatment light irradiation probe 40 via the joint jig 30.
  • the joint jig 30 includes an optical capacitor adapter 32 that increases the light intensity per unit area between the fiber optics 20 and the light irradiation probe 40 for light irradiation treatment. May be.
  • the light source device 10 may include a xenon arc lamp, a tungsten lamp, and a multicolor LED light source, and preferably emits light in a wide wavelength range from near ultraviolet light to near infrared light, and more preferably.
  • the peak wavelength includes the optimum excitation wavelength region of a photosensitive material used in photodynamic therapy (PDT), that is, a photosensitizer (PS).
  • Photoirradiation therapy (PDT) is a photosensitizing action of a photosensitizer, that is, a photosensitizer (PS). It is generated, and thereby a lesion site such as a cancer cell is treated (killed).
  • the light source device 10 is not limited to this, but may be a light source device manufactured by Olympus (EVIS ⁇ ⁇ CLV-U20D, registered trademark), for example.
  • a light source device 10 that emits excitation light having a Gaussian distribution intensity in the range of 400 nm to 460 nm by combining a blue LED or an ultraviolet LED and a phosphor may be used.
  • the LED light source device 10 according to the desired photosensitizer used in the light irradiation therapy, the light irradiation treatment device 1 that is smaller, lighter, and less expensive is realized, and the photosensitizer is used.
  • the therapeutic effect can be optimized.
  • FIG. 2 is a perspective view showing the distal end portion of the light irradiation probe 40.
  • the light irradiation probe 100 basically includes an illumination lens 102 that irradiates a lesion site, an objective lens (including a CCD element) 104, and a treatment instrument.
  • a forceps port 106 serving both as a suction port and a suction port, and a nozzle 108 for feeding out water and air.
  • the conventional light irradiation probe 100 since the conventional light irradiation probe 100 is in the illumination lens 102 that irradiates a lesion site, it only irradiates light in the longitudinal direction (forward direction) of the light irradiation probe 40, and treatment of a lesion such as a cancer lesion. It was impossible to irradiate light in the entire vicinity of the target site with an omnidirectional angle of 360 degrees, which was not appropriate for use in light irradiation therapy.
  • the light irradiation probe 40 (hereinafter simply referred to as “light irradiation probe”) according to the present invention will be described with reference to FIGS. 3 and 4.
  • the light irradiation probe 40 is preferably made of an arbitrary constituent material having flexibility.
  • the core member 42 is made of acrylic resin or the like, and the cladding member 44 is transparent.
  • An optical fiber cable coated with a fluororesin layer or the like (thin film clad) may be used.
  • the refractive index ( ⁇ 2 ) of the clad member 44 is designed to be smaller than the refractive index ( ⁇ 1 ) of the core member 42 ( ⁇ 1 > ⁇ 2 ), the light propagating to the core member 42 is the clad member. It is confined by total reflection at the interface with 44, and propagates toward the tip in the axial direction while repeating total reflection at the interface with the clad member 44.
  • the light irradiation probe 40 does not necessarily have flexibility depending on the application, and the core member 42 may be configured using glass or the like. Further, the light irradiation probe 40 according to the present invention is not limited to this, but a cheaper step index multimode optical fiber may be adopted.
  • the light irradiation probe 40 has a light guide portion 46 that receives light from the optical capacitor adapter 32, with a clad member 44 coated on the side surface of the core member 42 at its tip portion, A light scattering irradiation unit that scatters the light propagated to the light guiding unit with uniform intensity around all directions with respect to the axial direction of the light irradiation probe;
  • the light scattering irradiation unit 48 has a length of 1 cm or more (may be 20 to 30 cm) in the longitudinal direction from the tip of the light irradiation probe 40, and preferably corresponds to the axial length of the lesion treatment target site. It has a length, and is configured to irradiate light that has propagated from the light guide unit 46 at an omnidirectional angle of 360 degrees over the entire vicinity of a lesion treatment target site such as a cancer lesion.
  • the light irradiation probe 40 includes a light guide unit 46 and a light scattering irradiation unit 48, and the diameter is not limited to this as long as it is 0.1 mm or more. However, it may be 2 mm, 3 mm, and 5 mm as shown in FIGS. 4 (a) to 4 (c).
  • the light scattering irradiation part 48 of the light irradiation probe 40 can be manufactured using various methods. For example, using a sandpaper (for example, coarseness of # 100, fineness of # 200, fineness of # 400) or a file, the clad member 44 at the tip of the light irradiation probe 40 is randomly oriented.
  • the light-scattering irradiation part 48 may be produced by scratching or rubbing the surface.
  • the light scattering irradiation part 48 may be produced by subjecting the surface to white turbidity by natural drying. At this time, the resin constituting the clad member 44 of the light scattering irradiation unit 48 is partially removed, and the light confinement effect is reduced by a change in physical characteristics including a reduction in refractive index. The light can be scattered with uniform intensity around all directions.
  • a soluble solvent for example, acetone and chloroform
  • an acrylic resin or the like on the side surface of the core member 42 is coated with alumina, copper, silver, Iron, these alloys, or any other metal particles (including fine powder), ceramic, titanium dioxide, celite, clay powder, etc. may be suspended and dispersed at an appropriate concentration.
  • alumina, copper, silver, Iron, these alloys, or any other metal particles (including fine powder), ceramic, titanium dioxide, celite, clay powder, etc. may be suspended and dispersed at an appropriate concentration.
  • the light propagating from the core member 42 of the light scattering irradiation unit 48 is irregularly reflected by the particles (including fine powder), and the light is scattered from the entire light scattering irradiation unit 48 around the azimuth with uniform intensity. Can do.
  • FIG. 5 shows, for example, the case where the light irradiation probe 40 according to the present invention shown in FIG. 4C is inserted into the large intestine 200 and a photosensitizer (PS) is injected, and then the superficial cancer tissue 202 and lower layer cancer of the large intestine 200 are injected.
  • PS photosensitizer
  • tissue 204 is irradiated with the light containing an optimal excitation wavelength range.
  • the lower cancer tissue 204 is a tumor nodule that is difficult to identify with the naked eye, but the present inventor has not only recognized the lower cancer tissue 204 in the esophagus, stomach, bronchi, bladder, uterus, chest cavity, or other body cavities, but also in the large intestine.
  • the light irradiation probe 40 according to the present invention it is possible to accurately capture the lower layer cancer tissue in the body cavity which is difficult to confirm with the naked eye, and to kill the lower layer cancer tissue 204 more efficiently.
  • the joint jig 30 increases the light intensity per unit area between the fiber optics 20 and the light irradiation probe 40 for light irradiation treatment.
  • the optical capacitor adapter 32 may be included.
  • the optical capacitor adapter 32 is composed of a glass core made of a hard material such as glass and a clad thin film having a refractive index smaller than that of the glass core.
  • the optical capacitor adapter 32 includes a cylindrical large-diameter portion 34, a small-diameter portion 36, and a constricted portion 35 provided therebetween. It has an incident end face 37 on the left side and an exit end face 38 on the right side in the drawing.
  • the incident end face 37 of the large-diameter portion 34 of the optical capacitor adapter 32 has the same size and shape as the exit end face (not shown) of the fiber optics (first optical fiber) 20 so as to be substantially matched. While being joined (coupled), the emission end face 38 of the small diameter portion 36 of the optical capacitor adapter 32 has the same size and shape as the incident end face (not shown) of the light irradiation probe (second optical fiber) 40. Are coupled (coupled) so as to be substantially compatible.
  • the optical capacitor adapter 32 can be easily manufactured by, for example, melting Pyrex glass having a diameter of 10 mm with a burner at a portion corresponding to the constricted portion 35 and pulling the large diameter portion 34 and the small diameter portion 36 away from each other. .
  • the optical capacitor adapter 32 according to the present invention can be made by softening similarly by heating using glass, as well as a polymer resin having high transparency such as Lucite (registered trademark), polypropylene, polyethylene, polyvinyl alcohol, and polystyrene. it can.
  • the optical capacitor adapter 32 has a reduced cross-sectional area until the light propagated to the incident end surface 37 of the large diameter portion 34 reaches the small diameter portion 36 through the narrow diameter portion 35, The light intensity per unit area is increased. In this way, stronger light can be emitted from the light scattering irradiation section 48 to the entire vicinity of the lesion treatment target site such as a cancer lesion at 360 degrees in all directions.
  • the optical capacitor adapter 32 having various end face diameters and axial lengths is illustrated, but any end face may be used as long as the light intensity per unit area is increased.
  • An optical capacitor adapter 32 having a diameter and an axial length may be used.
  • a light irradiation probe 40 shown in FIG. 7 is configured by winding a light scattering irradiation portion 48 of the light irradiation probe 40 according to the above-described embodiment around a rod (or a simple rod-shaped) 60 in a spiral shape or a coil shape. is there.
  • the rod 60 is preferably harder than the light irradiation probe 40 having flexibility, and may be, for example, an endoscope fiber optics.
  • FIG. 8 shows that the light irradiation probe 40 according to the modification shown in FIG.
  • FIG. 7A is inserted into the large intestine and injected with a photosensitizer (PS), and then applied to the surface cancer tissue 202 and the lower layer cancer tissue 204 of the large intestine.
  • PS photosensitizer
  • the light scattering irradiation unit 48 is wound around the rod 60 in a coil shape, the light scattering irradiation unit 48 is guided to the entire vicinity of a lesion treatment target site such as a cancer lesion at a desired length in the longitudinal direction.
  • the light propagated from the light unit 46 can be irradiated at all azimuth angles of 360 degrees.
  • the light scattering irradiation unit 48 according to the modification shown in FIG. 7A is stronger (concentrated) than the light scattering irradiation unit 48 according to the embodiment shown in FIG. It is possible to irradiate the target site for lesion treatment with light and to expect a higher therapeutic effect.
  • the length can be easily adjusted according to the length in the longitudinal direction of the lesion treatment target site, so light should be irradiated.
  • the light scattering irradiation part 48 suitable for the length of the lesion treatment target site can be produced very simply.
  • the light scattering irradiation portion 48 is wound around the rod 60 in a coil shape
  • the light scattering irradiation portion 48 is covered with a sack (cover film) 62 made of a heat-shrinkable resin (for example, a polyvinyl resin).
  • Heat is applied by an apparatus (for example, a dryer) and the sac 62 is thermally contracted, whereby the rod 60 and the light scattering irradiation part 48 are integrally fixed by the protective film (sack) 62 as shown in FIG. May be.
  • the light scattering irradiation unit 48 shown in FIG. 7C can prevent the light scattering irradiation unit 48 from detaching from the rod 60 when inserted into a body cavity such as the large intestine, and the target lesion treatment.
  • the light scattering irradiation unit 48 can be reliably delivered to the target site.
  • the light scattering irradiation section 48 is wound around the rod 60 in a coil shape, the light scattering irradiation section 48 is immersed in a molten solution of polyvinyl alcohol resin or acrylic resin, or is immersed in a synthetic resinous paste solution and dried.
  • a protective film 62 similar to that shown in FIG. 7C can be easily produced.
  • the light at the tip is a luminal organ part (for example, oral cavity, esophagus, stomach, intestinal tract, abdominal cavity, bladder cavity, peritoneum, diaphragm, uterus, thoracic cavity, bronchi, upper and lower respiratory tract, pharynx, liver surface, etc.)
  • a luminal organ part for example, oral cavity, esophagus, stomach, intestinal tract, abdominal cavity, bladder cavity, peritoneum, diaphragm, uterus, thoracic cavity, bronchi, upper and lower respiratory tract, pharynx, liver surface, etc.
  • the light irradiation probe 40 preferably uses a linear (string-like) optical fiber having high flexibility (having flexibility).
  • the present invention is not limited to the diameter of the light irradiation probe 40, but may be thinner ( ⁇ 0.3 mm) than that illustrated in FIG. It may be 5 mm.
  • the core member 42 of the light irradiation probe 40 is made of polyethylene, polypropylene, silicon, polyvinyl chloride (PVC), Teflon, polyvinyl alcohol, polyvinyl butyral, polyimide, polyurethane, nylon, various polyesters, polyethylene naphthalate. Polyethylene phthalate or the like may be used, but is not limited thereto.
  • the light irradiation probe 40 according to the present invention is composed of a highly flexible optical fiber, it is less invasive when inserted into the body cavity of the patient, and can reduce the load applied to the patient as much as possible. By using this, shearing or bending hardly occurs, and it can be used for a long time. Further, as described above, the light irradiation probe 40 according to the present invention can be easily manufactured by roughening the tip portion or the like.
  • the light irradiation treatment apparatus uses an arbitrary bandpass filter, unlike a laser light source or a multicolor LED light source, in which an output wavelength range is limited when a xenon light source or a tungsten light source having a broad spectrum distribution is used.
  • PS photosensitizer
  • the autologous cancer of the colorectal / rectal cancer (the one closest to natural colorectal cancer) by light irradiation therapy (PDT) was used.
  • the patient was treated for colorectal and rectal cancer.
  • FIG. 9A shows a light irradiation probe 40 according to the present invention that extends from the joint jig 30.
  • the light from the xenon light source device 10 propagates from the entire side surface in the longitudinal direction of the light scattering irradiation unit 48. It shows the state of radiating at all azimuth angles of °.
  • FIG.9 (b) shows the state which inserted the light-scattering irradiation part 48 from the anus of the mouse
  • the xenon light source device 10 is not operating, and the light scattering irradiation unit 48 is not irradiating light.
  • PS photosensitizer
  • FIG. 9C shows a state in which the xenon light source device 10 is operated from the state of FIG. 9B and light is irradiated from the light scattering irradiation unit 48 to the colorectal cancer of the mouse. At this time, it is confirmed that the entire mouse abdomen is irradiated with light. As described above, when light irradiation therapy (PDT) was continued once a week for 10 to 20 minutes for colorectal cancer, it was confirmed that the colorectal cancer of the mice almost disappeared after 3 weeks.
  • PDT light irradiation therapy

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Electromagnetism (AREA)
  • Otolaryngology (AREA)
  • General Physics & Mathematics (AREA)
  • Radiation-Therapy Devices (AREA)
  • Endoscopes (AREA)
  • Laser Surgery Devices (AREA)

Abstract

本発明に係る1つの態様によれば、広域に散在する複数個所の癌に対して光を同時に照射できるように光散乱照射部から360度の全方位角で均一に照射する可撓性光照射プローブを提供することができる。本発明に係る光照射治療用光照射プローブは、軸方向に延び、光源からの光を伝播させる光ファイバーを備え、光ファイバーは、可撓性コアの側面に薄膜クラッドを設けた導光部および導光部に伝播した光を可撓性コアの軸方向に対し全方位周辺に均一な強度で散乱させる光散乱照射部を有する。

Description

内視鏡による光照射治療用光照射プローブ
 本発明は、内視鏡による光照射治療(photodynamic therapy: PDT)用光照射プローブならびにその製造方法、および光照射治療用光照射プローブを用いた光照射治療装置に関する。
 光照射療法(photodynamic therapy:PDT)は、感光物質すなわち光増感剤(PS)が有する光増感作用を利用して癌などの増殖性疾患に対する治療法であり、その原理は、1903年のノーベル医学賞の対象として脚光を浴び、100年以上前からよく知られている。しかしながら、PDT療法(光照射療法)の原理は秀逸であるにもかかわらず、当初の皮膚疾患(皮膚結核など)または最近20~30年の間に喧伝された表在性の癌などに対しても、その臨床的な成果は極めて乏しいと考えられる。
 PDT療法には、主たる問題点が2点ある。1つの問題点は、PDT療法でこれまで用いられてきた光増感剤(PS)は、低分子量物質であるため、静脈注射後、病巣部および正常部を含む体全体に一様に拡散し、光照射された正常部に皮膚傷害(光過敏反応)が生じることである。たとえば、本願と共通する発明者による特許文献1を参照されたい。
 もう1つの問題点は、PDT療法に用いられる光が生体深部に到達しやすくするために、比較的に長い波長域のもの(例えば633nmのピーク波長を有するHeNeレーザ)が常用され、または近赤外域の波長光が試行されているが、レザフィリンまたはフォトフォリン(登録商標)等の光増感剤(PS)の最適励起波長が400~460nmであり、光源のピーク波長とは一致しない点である。
 本発明者は、実験により、Znプロトポルフィリン(ZnPP)を含むナノ粒子型の光増感剤(PS)を用いた場合(前掲の特許文献1)、1回の静脈注射(IV)を行って数時間後にEPR効果(enhanced permeability and retention effect)によって、その光増感剤が腫瘍部のみに集積することを確認した(非特許文献1~4)。そこに400~460nmの波長域を含む任意の光源を1~5回照射するだけで、マウスやラットの乳癌や大腸癌を完治することを確認した(前掲の特許文献1および非特許文献1,2)。
 従来のPDT療法は、主として、表層癌(皮膚癌、乳癌など)または上皮性の標的癌(気管支肺癌など)を対象としており、後者の場合、気道から病巣部(気管支肺癌)に導かれた内視鏡ファイバースコープを介して、ヘリウムネオン(HeNe)レーザ光が病巣部に照射される。しかしながら、ヘリウムネオンレーザ光のピーク波長は633nmであり、レザフィリンやフォトフォリン(登録商標)などの光増感剤の最適励起波長とは乖離しているため、光増感剤が光エネルギを吸収して蛍光発光することはなく、病巣部を死滅させる一重項酸素も生成されない。したがって、こうした治療法は、真の光照射療法(PDT療法)とは云えないものと本発明者は理解している。
 一方、一般的な内視鏡スコープは、操作部、挿入部、および両者を接続する接続部の3つの部分で構成されている。また挿入部の先端部は、図2に示すように、対物レンズならびにCCDなどの撮像素子、光源装置からの光を伝播させる光ファイバーならびに伝播した光を病巣部に集光する照明レンズ、処置具の出し入れと吸引口を兼ねた鉗子口、および水や空気を送出するノズルを備える。すなわち、内視鏡スコープの照明レンズを介した光は、正面方向(軸方向)に向けて照射され、撮像素子は対物レンズを介して、同様に正面方向にある病巣部を観察するように設計されている。また病巣部が正面方向にない場合、挿入部自身を湾曲させて、その先端部を病巣部の正面方向に配置するように動作させることができるが、いずれにせよ、内視鏡スコープからの光は、挿入部の先端部から正面方向に照射されるものである。さらに、一般的な内視鏡スコープは、挿入部の先端部の正面方向にある病巣部を観察するものであり、PDT療法に利用するように設計されたものではない。
 また特許文献2には、PDT療法に利用されるレーザプローブが記載されているが、加工に使用される光ファイバーは、プラスチッククラッド石英コア光ファイバー、またはコアならびにクラッドがともに石英からなる全石英光ファイバーであるため(段落[0030]および図5参照)、治療対象部位は、例えば鼻腔、咽頭部、子宮頸などの管状器官に限定されている。すなわち石英コアを有する光ファイバーは、硬く折れやすいため、大腸などの管腔臓器の深部に挿入することはきわめて困難であり、危険ですらある。したがって、管腔臓器の深部に存在する癌病巣に光照射することができるフレキシブルな(可撓性を有する)光照射プローブを提供することが強く求められている。
 一方、図5に示すように、例えば大腸癌または膀胱癌などの多くの癌は1カ所のみに存在せず、管腔臓器に沿って同時に広域に散在している。したがって、広域に散在する複数個所の癌に対して光を同時に照射できるように、実質的な長さ範囲の側面から光を360度の全方位角で均一に照射する光照射プローブが望ましい。しかしながら、特許文献2のレーザプローブは、ハンドピースからわずかな距離だけ前方に突出しているに過ぎず(特許文献2の図5参照)、管腔臓器に沿って広域に散在する複数個所の癌に光を同時に照射することはできない。
 なお本発明者は、前掲の特許文献1および非特許文献1~4の他、多数の論文を執筆している(非特許文献5~11)。
国際特許出願第2013/035750号パンフレット 特開2005-087531号公報
日本分子イメージング学会誌 No.9, 3-10 (2015)、「EPR効果をもつナノプローブによる革新的PDTへの大いなる期待」 (前田浩、方軍、中村秀明) Future Science OA (2015), "Photodynamic therapy based on tumor-targeted polymer-conjugated zinc protoporphyrin and irradiation with xenon light", (J. Fang, L. Liao, H. Yin, H. Nakamura, V. Subr, K. Ulbrich, H. Maeda)http://www.future-science.com/doi/pdf/10.4155/fso.15.2, published online (2015) Cancer Science 104, 779-789 (2013), "Tumor vasculature, free radicals, and drug delivery to tumors via the EPR effect", (H. Maeda) Microcirculation 23,173-182 (2016), "A retrospective 30 years after discovery of the EPR effect of solid tumors: treatment, imaging, and next-generation PDT - problems, solutions, prospects", (H. Maeda. K. Tsukigawa, J. Fang) Cancer Science 100, 2426-2430 (2009), "Enhanced delivery of macromolecular antitumor drugs to tumors by nitroglycerin application", (T. Seki J. Fang, H. Maeda) Advanced Drug Delivery Review, 65, 71-79 (2013), "The EPR effect for macromolecular drug delivery to solid tumors: improved tumor uptake, less systemic toxicity, and improved tumor imaging in vivo", (H. Maeda, H. Nakamura, J. Fang) Journal Controlled Release 165, 191-198 (2013), "Micelles of zinc protoporphyrin conjugated to N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer for imaging and light-induced antitumor effects in vivo", (H. Nakamura, L. Liao, Y. Hitaka, K. Tsukigawa, V. Subr, J. Fang, K. Ulbrich, H. Maeda) Therapeutic Delivery (Future Science) 5 (6), 627-630 (2014), "Emergence of EPR effect theory and development of clinical applications for cancer therapy", (H. Maeda) European Journal Pharmaceutical Biopharmaceutics, 81, 540-547 (2012), "HSP32 (HO-1) inhibitor, copoly(styrene-maleic acid)-zinc protoporphyrin IX, a water-soluble micelle as anticancer agent: In vitro and in vivo anticancer effect", (J. Fang, K. Greish, H. Qin, H. Nakamura, M. Takeya, and H. Maeda) Expert Opinion on Drug Delivery 12 (1), 53-64 (2015), "Development of next-generation macromolecular drugs based on the EPR effect: challenges and pitfalls", (H. Nakamura, J. Fang and H. Maeda) European Journal Pharmaceutical Biopharmaceutics, 89, 259-270 (2015), "Effect of different chemical bonds in pegylation of zinc protoporphyrin that affects drug release, intracellular uptake, and therapeutic effect in the tumor", (K. Tsukigawa, H. Nakamura, J. Fang, M. Otagiri, H. Maeda)
 本発明に係る1つの態様は、上記問題点に鑑み、フレキシブルで、広域に散在する複数個所の癌に対して光を同時に照射できるように、実質的な長さ範囲(たとえば20cm~30cm)の側面から光を360度の全方位角で均一に照射する光照射プローブを提供することを目的とする。
 本発明に係る1つの態様によれば、光照射治療用光照射プローブが提供され、この光照射プローブは、軸方向に延び、光源からの光を伝播させる光ファイバーを備え、光ファイバーは、可撓性コアの側面に薄膜クラッドを設けた導光部および導光部に伝播した光を可撓性コアの軸方向に対し全方位周辺に均一な強度で散乱させる光散乱照射部を有する。
 1つの実施形態によれば、光散乱照射部は、病巣治療対象部位の軸方向の1cm以上の長さに対応する長さを有する病巣治療対象部位近傍全体に導光部から伝播した光を360度の全方位角で照射し、光源からの光のピーク波長は、光照射療法で用いられる所望の光増感剤の最適励起波長域に含まれる。
 別の実施形態によれば、光散乱照射部が渦巻き状に巻かれたロッドをさらに備える。
 好適には、ロッドは、ロッド状の内視鏡ファイバースコープである。
 さらに別の実施形態によれば、光散乱照射部およびロッドを覆う被膜部をさらに備える。
 本発明に係る別の態様によれば、光を放射する光源を含む光照射治療装置が提供され、この光照射治療装置は、光源からの光を伝播させ、第1の断面積を有する出射端面を含む第1の光ファイバーと、第1の光ファイバーからの光を伝播させ、第1の光ファイバーの出射端面に実質的に適合するコンデンサ入射端面および第1の光ファイバーの出射端面より小さく第2の光ファイバーの入射端面に実質的に適合するコンデンサ出射端面を有する光コンデンサアダプタと、光コンデンサアダプタからの光を伝播させ、光コンデンサアダプタの出射端面の第2の断面積と実質的に適合する入射端面を含む第2の光ファイバーとを備え、第2の光ファイバーは、可撓性コアの側面に薄膜クラッドを設けた導光部および導光部に伝播した光を可撓性コアの軸方向に対し全方位周辺に均一な強度で散乱させる光散乱照射部とを有する。
 1つの実施形態によれば、光散乱照射部は、病巣治療対象部位の軸方向の1cm以上の長さに対応する長さを有する病巣治療対象部位近傍全体に導光部から伝播した光を360度の全方位角で照射し、光源からの光のピーク波長は、光照射療法で用いられる所望の光増感剤の最適励起波長域に含まれる。
 別の実施形態によれば、第1および第2の光ファイバーは、可撓性を有するプラスチック光ファイバーであり、光コンデンサアダプタは、第1の断面積を有する入射端面と第2の断面積を有する出射端面との間において連続的に減少する断面積を有するガラスコアおよびその側面に設けた薄膜クラッドとを有する。
 好適には、第2の光ファイバーの光散乱照射部が渦巻き状に巻かれたロッドをさらに備える。
 さらに別の実施形態によれば、ロッドは、ロッド状の内視鏡ファイバースコープである。
 さらに別の実施形態によれば、光散乱照射部およびロッドを覆う被膜部をさらに備える。
 本発明に係るさらに別の態様によれば、光照射治療用光照射プローブの製造方法が提供され、この製造方法は、可撓性コアの側面に薄膜クラッドを設けた光ファイバーを提供するステップと、光ファイバーに伝播した光を、その先端部において全方位に均一した強度で散乱させるように、光ファイバーの先端部の側面を処理して光散乱照射部を形成するステップと、光散乱照射部をロッドの周りに巻くステップとを有する。
 1つの実施形態によれば、光散乱照射部は、病巣治療対象部位の軸方向の1cm以上の長さに対応する長さを有し、病巣治療対象部位近傍全体に導光部から伝播した光を360度の全方位角で照射し、光源からの光のピーク波長は、光照射療法で用いられる所望の光増感剤の最適励起波長域に含まれる。
 別の実施形態によれば、光ファイバーの先端部の側面を処理して光散乱照射部を形成する前記ステップは、光ファイバーの先端部の側面に配置された薄膜クラッドを除去して露出させた可撓性コアを粗面化するステップ、光ファイバーの先端部の側面に配置された薄膜クラッドの側面を溶媒を用いて白濁させるステップ、または光ファイバーの先端部の側面に配置された薄膜クラッドを除去して露出させた可撓性コアの側面に微粉末を付着させるステップのうちのいずれかを含む。
 さらに別の実施形態によれば、光散乱照射部およびロッドを樹脂材料で覆うステップをさらに有する。
 本発明に係る1つの態様によれば、広域に散在する複数個所の癌に対して光を同時に照射できるように、1cm以上の軸方向の長さの光散乱照射部から光を360度の全方位角で均一に照射する可撓性光照射プローブを提供することができる。
本発明に係る1つの実施形態による光照射治療用光照射プローブを用いた光照射治療装置の概略図である。 従来技術に係る光照射プローブの先端部を示す概略図である。 本発明に係る1つの実施形態による光照射治療用光照射プローブの断面図である。 図3の光照射治療用光照射プローブの光散乱照射部を示す概略図である。 図3の光照射治療用光照射プローブが大腸内に挿入され、大腸内の表層癌組織および下層癌組織に光を照射しているときの概念図である。 第1および第2の光ファイバーを接続して、光を絞り込む光コンデンサアダプタの概略図である。 (a)は変形例に係る光照射治療用光照射プローブであって、光散乱照射部がロッドに巻かれた状態を示し、(b)は(a)の光照射プローブおよび光散乱照射部が熱収縮性プラスチックサックでカバーされた状態を示し、(c)は(b)の熱収縮性プラスチックサックを加熱して収縮させた状態を示す概略図である。 変形例に係る光照射治療用光照射プローブ大腸内に挿入されたときの図5と同様の概念図である。 オン状態にある光照射プローブ(上段)、オフ状態にある光散乱照射部をマウスの肛門から挿入した状態(中段)、マウスの肛門から挿入された光散乱照射部をオン状態にしたときの状態(下段)を示す概略図である。
 添付図面を参照しながら、本発明に係る1つの実施形態による光照射治療用光照射プローブを用いた光照射治療装置について以下詳細に説明する。本発明に係る光照射治療装置1は、概略、図1に示すように、光源装置10と、可撓性を有するファイバーオプティックス(第1の光ファイバー)20と、ジョイント治具30と、光照射治療用光照射プローブ(第2の光ファイバー)40とを備える。この光照射治療用光照射プローブ40は、これに限定するものではないが、主として管腔臓器(食道、腸管、胃、膀胱、または子宮等)の癌細胞等の病巣部位を治療するものである。
 本発明に係る光照射治療装置1は、光源装置10から発せられた光がファイバーオプティックス20に伝播し、ジョイント治具30を介して、光照射治療用光照射プローブ40に伝播するように構成されている。任意ではあるが、詳細後述するように、ジョイント治具30は、ファイバーオプティックス20と光照射治療用光照射プローブ40との間に、単位面積当たりの光強度を増大させる光コンデンサアダプタ32を有してもよい。
 光源装置10は、キセノンアークランプ、タングステンランプ、多色LED光源を有するものであってもよく、好適には、近紫外光から近赤外光までの幅広い波長域の光を発し、より好適には、そのピーク波長が光照射療法(photodynamic therapy:PDT)で用いられる感光物質すなわち光増感剤(PS)の最適励起波長域を含まれるものである。光照射療法(PDT)とは、感光物質すなわち光増感剤(PS)が有する光増感作用を利用して、光増感剤に最適励起波長域の光を照射して、一重項酸素を生成させ、これにより癌細胞等の病巣部位を治療する(死滅させる)ものである。このように、光照射療法で用いられる所望の光増感剤(たとえばレザフィリンおよびフォトフォリン)の最適励起波長域である400nm~460nmを含む幅広い波長域の光を発する光源を用いることにより、光増感剤(PS)に一重項酸素を効率よく生成させ、癌細胞等の病巣部位を効果的に治療することができる。なお光源装置10は、これに限定するものではないが、たとえばオリンパス社製の光源装置(EVIS CLV-U20D、登録商標)であってもよい。
 択一的には、青色LEDまたは紫外LEDと蛍光体を組み合わせて、400nm~460nmの範囲でガウス分布強度を有するような励起光を発する光源装置10を用いてもよい。このように、光照射療法で用いられる所望の光増感剤に合わせてLED光源装置10を選択することにより、より小型、軽量で安価な光照射治療装置1を実現するとともに、光増感剤の治療効果を最適化することができる。
 ここで従来の光照射プローブ100について図2を参照して説明する。図2は、光照射プローブ40の先端部を示す斜視図であり、光照射プローブ100は、基本的には、病巣部位を照射する照明レンズ102、対物レンズ(CCD素子を含む)104、処置具の出し入れと吸引口を兼ねた鉗子口106、および水や空気を送り出すノズル108を有する。すなわち、従来の光照射プローブ100は、病巣部位を照射する照明レンズ102にあることから、光照射プローブ40の長手方向(前方方向)のみに光を照射するのみであり、癌病巣等の病巣治療対象部位の近傍全体に光を360度の全方位角で照射することはできず、光照射療法で利用するには適当なものではなかった。
 次に、図3および図4を参照して、本発明に係る光照射プローブ40(以下、単に「光照射プローブ」という。)について説明する。一般に、光照射プローブ40は、可撓性を有する任意の構成材料を用いることが好ましく、図3の断面図に示すように、たとえばコア部材42としてアクリル樹脂等で構成し、クラッド部材44として透明フッ素樹脂層等(薄膜クラッド)を被膜した光ファイバーケーブルを利用してもよい。クラッド部材44の屈折率(η)がコア部材42の屈折率(η)より小さくなるように設計されているため(η>η)、コア部材42に伝播する光は、クラッド部材44との境界面で全反射することにより閉じ込められ、クラッド部材44との境界面で全反射を繰り返しながら、軸方向の先端部に向かって伝播する。ただし光照射プローブ40は、用途に応じて可撓性を有することは必ずしも必要ではなく、ガラス等を用いてコア部材42を構成してもよい。また本発明に係る光照射プローブ40は、これに限定するものではないが、より安価なステップインデックス・マルチモード光ファイバーを採用してもよい。
 本発明に係る光照射プローブ40は、図4に示すように、その先端部において、コア部材42の側面にクラッド部材44が被膜され、光コンデンサアダプタ32からの光を受ける導光部46と、導光部46に伝播した光を光照射プローブ40の軸方向に対し全方位周辺に均一な強度で散乱させる光散乱照射部48とを有する。光散乱照射部48は、光照射プローブ40の先端部から長手方向に1cm以上(20cm~30cmでもよい)の長さを有し、好適には病巣治療対象部位の軸方向の長さに対応する長さを有し、癌病巣等の病巣治療対象部位の近傍全体に導光部46から伝播した光を360度の全方位角で照射するように構成されている。
 より具体的には、本発明に係る光照射プローブ40は、導光部46と光散乱照射部48とを有し、その直径は0.1mm以上であればよく、これに限定するものではないが、図4(a)~図4(c)に示すように2mm、3mm、および5mmであってもよい。
 光照射プローブ40の光散乱照射部48は、さまざまな手法を用いて作製することができる。たとえばサンドペーパー(目の粗さは、たとえば#100の粗目、#200の中目、#400の細目)またはやすり等を用いて、光照射プローブ40の先端部にあるクラッド部材44をランダムな方向に研磨または擦ることにより傷をつけて光散乱照射部48を作製してもよい。
 追加的または択一的には、光照射プローブ40の先端部にあるクラッド部材44を構成する樹脂を溶解する可溶性溶媒(たとえばアセトンおよびクロロフォルム等)に浸漬させた後、不溶性溶媒に短時間浸漬させて自然乾燥させることにより、表面を白濁加工して光散乱照射部48を作製してもよい。このとき光散乱照射部48のクラッド部材44を構成する樹脂が部分的に除去され、屈折率低減を含む物理的特性の変化により、光の閉じ込め効果が小さくなるので、光散乱照射部48の全体から光が全方位周辺に均一な強度で散乱させることができる。
 さらに追加的または択一的には、光照射プローブ40の先端部にあるクラッド部材44を完全または部分的に除去した後、コア部材42の側面にあるアクリル樹脂等に、アルミナ、銅、銀、鉄、これらの合金、もしくはその他の任意の金属の粒子(微粉末を含む)、またはセラミック、二酸化チタン、セライト、白土粉末等を適当な濃度で懸濁・分散させてもよい。こうして光散乱照射部48のコア部材42から伝播する光が、上記粒子(微粉末を含む)で乱反射して、光散乱照射部48の全体から光が全方位周辺に均一な強度で散乱させることができる。
 図5は、たとえば図4(c)に示す本発明に係る光照射プローブ40を大腸200内に挿入し、光増感剤(PS)を注入した上で大腸200の表層癌組織202および下層癌組織204に最適励起波長域を含む光を照射したときの様子を示す概略図である。一般に、下層癌組織204は肉眼では確認しにくい腫瘍結節であるが、本発明者は、大腸だけでなく、食道、胃、気管支、膀胱、子宮、胸腔、またはその他の体腔内における下層癌組織204も、光増感剤のEPR効果により蛍光検出が可能であることを確認した。したがって、本発明に係る光照射プローブ40によれば、肉眼では確認しにくい体腔内の下層癌組織を的確に捕捉し、より効率的に下層癌組織204を死滅させることができる。
 ところで本発明に係る実施形態によれば、上述のように、ジョイント治具30は、ファイバーオプティックス20と光照射治療用光照射プローブ40との間に、単位面積当たりの光強度を増大させるための光コンデンサアダプタ32を有してもよい。光コンデンサアダプタ32は、たとえばガラス等の硬質材料を用いて構成されたガラスコア、およびガラスコアより小さい屈折率を有するクラッド薄膜で構成されている。また光コンデンサアダプタ32は、図6(a)~(d)に示すように、円筒状の大径部34と、小径部36と、これらの間に設けた狭窄部35とを含み、図中左側にある入射端面37および図中右側にある出射端面38を有する。光コンデンサアダプタ32の大径部34の入射端面37は、ファイバーオプティックス(第1の光ファイバー)20の出射端面(図示せず)と同一の寸法および形状を有して実質的に適合するように接合(カップリング)される一方、光コンデンサアダプタ32の小径部36の出射端面38は、光照射プローブ(第2の光ファイバー)40の入射端面(図示せず)と同一の寸法および形状を有して実質的に適合するように接合(カップリング)される。
 光コンデンサアダプタ32は、たとえば10mm径のパイレックスガラスを狭窄部35に相当する部分をバーナーで溶融させ、大径部34および小径部36を互いに引き離する方向に引っ張ることにより容易に作製することができる。本発明に係る光コンデンサアダプタ32は、ガラスの他、ルーサイト(登録商標)、ポリプロピレン、ポリエチレン、ポリビニルアルコール、ポリスチレン等の透明度の高いポリマー樹脂を用いて同様に加熱により軟化させて作製することができる。
 したがって光コンデンサアダプタ32は、大径部34の入射端面37に伝播された光が大径部34から狭窄部35を介して小径部36に至るまでに、その断面積が縮小することに伴い、単位面積当たりの光強度が増大されるように構成されている。こうして光散乱照射部48から癌病巣等の病巣治療対象部位の近傍全体に対して、より強い光を360度の全方位角で照射することができる。なお図4では、さまざまな端面の径および軸方向の長さを有する光コンデンサアダプタ32を図示したが、単位面積当たりの光強度が増大されるように構成されたものであれば、任意の端面径および軸方向長さを有する光コンデンサアダプタ32を用いてもよい。
 図7~図8を参照しながら、上記実施形態の変形例について説明する。図7に示す光照射プローブ40は、上記実施形態に係る光照射プローブ40の光散乱照射部48をロッド(または単なる棒状のもの)60に螺旋状もしくはコイル状に巻くことにより構成されたものである。ロッド60は、可撓性を有する光照射プローブ40より比較的に硬いものであることが好ましく、たとえば内視鏡ファイバーオプティックスであってもよい。図8は、図7(a)に示す変形例に係る光照射プローブ40を大腸内に挿入し、光増感剤(PS)を注入した上で大腸の表層癌組織202および下層癌組織204に最適励起波長域を含む光を照射したときの様子を示す概略図である。
 図7(a)に示すように、光散乱照射部48は、ロッド60にコイル状に巻かれているため、所望の長手方向の長さにおいて癌病巣等の病巣治療対象部位の近傍全体に導光部46から伝播した光を360度の全方位角で照射することができる。また図7(a)に示す変形例に係る光散乱照射部48は、巻回密度にも依存するが、図5に示す上記実施形態に係る光散乱照射部48に比べて、より強い(集中した)光を病巣治療対象部位に照射でき、より高い治療効果を期待することができる。さらに上記実施形態に係るロッド60にコイル状に巻くことにより構成されているので、病巣治療対象部位の長手方向の長さに応じて、その長さを容易に調整できるので、光を照射すべき病巣治療対象部位の長さに適当な光散乱照射部48をきわめて簡便に作製することができる。
 また図7(b)に示すように、光散乱照射部48をロッド60にコイル状に巻いた後、熱収縮性樹脂製(たとえばポリビニール系樹脂)のサック(カバーフィルム)62で覆い、熱風装置(たとえばドライヤー等)で熱を与え、サック62を熱収縮させることにより、図7(c)に示すように、ロッド60および光散乱照射部48を保護膜(サック)62で一体に固着させてもよい。このとき、ロッド60ならびに光散乱照射部48の外側表面またはサック62の内側表面に予め被膜接着剤を塗布し、両者を確実に密着させることが好ましい。こうして、図7(c)に示す光散乱照射部48は、大腸等の体腔内に挿入したとき、光散乱照射部48がロッド60から離脱することを防止することができ、標的となる病巣治療対象部位に確実に光散乱照射部48を送達することができる。
 さらに光散乱照射部48は、ロッド60にコイル状に巻いた後、ポリビニルアルコール系樹脂またはアクリル系樹脂の溶融溶液に浸漬させて、あるいは合成樹脂性の糊溶液に浸漬させて、乾燥させることにより、図7(c)と同様の保護膜62を容易に作製することができる。
 以上説明したように、本発明によれば、いくつかの利点が得られる。
 一般の光ファイバーは光を前方へロスなく送ることが重要である。一方、本発明においては、先端部の光が管腔臓器部(たとえば口腔、食道、胃、腸管、腹腔、膀胱腔、腹膜、横隔膜、子宮、胸腔、気管支、上下気道、咽頭、肝表面など)において360°の周辺部を光により照射し、EPR効果によりその局所の癌組織に選択的に集積しているナノサイズの光増感剤(PS)分子を励起し、蛍光発光させることにより、肉眼では確認しにくい下層癌組織204の位置を容易に特定するとともに、光増感剤(PS)分子から活性酸素の1つである一重項酸素を生じさせることにより抗癌作用を発揮することができる。
 したがって、光照射療法(PDT)においては、光は、病変部付近で直進させるより、病変部の後方周辺部の管壁(腸管、腹・胸、壁)に360°の全方位角度で放射させることが必要である。そのため、本発明に係る光照射プローブ40は、柔軟性の高い(可撓性を有する)線状(紐状)の光ファイバーを用いることが好ましい。本発明は、光照射プローブ40の径に限定されるものではないが、図4(a)で図示したものよりさらに細いもの(φ0.3mm)であってもよく、実質的に0.3mm~5mmであってもよい。また光照射プローブ40のコア部材42は、上述のアクリル樹脂のほか、ポリエチレン、ポリプロピレン、シリコン、ポリビニルクロリド(PVC)、テフロン、ポリビニルアルコール、ポリビニルブチラール、ポリイミド、ポリウレタン、ナイロン、各種ポリエステル、ポリエチレンナフタレート、ポリエチレンフタレート等を用いてもよく、これらに限定されるものではない。
 また本発明に係る光照射プローブ40は、柔軟性の高い光ファイバーで構成されているので、患者の体腔内に挿入するときの侵襲性が低く、患者に与える負荷を極力抑えることができ、複数回の使用で、せん断または曲折等が生じにくく、長期にわたって使用することができる。さらに、本発明に係る光照射プローブ40は、上記説明したように、先端部の粗面化等により容易に作製できる。
 また本発明に係る光照射治療装置は、ブロードなスペクトル分布を有するキセノン光源またはタングステン光源を用いたとき、出力波長域が限定されるレーザー光源または多色LED光源とは異なり、任意のバンドパスフィルタを用いることにより、光増感剤(PS)の任意の最適励起波長域をピークに含む波長域を含む光を選択的に出力させることができ、すなわち光増感剤(PS)に応じた光を出力させることができる。よって、前掲の特許文献1に記載のPS分子プローブに適用することができる。
 本発明に係る光照射プローブ40を有する光照射治療装置1を用いて、光照射療法(PDT)により、大腸・直腸がんの自家発癌させた(自然の大腸がんに最も近いもの)マウスの大腸・直腸癌の治療を行った。
 図9(a)は、ジョイント治具30から延びる本発明に係る光照射プローブ40であり、キセノン光源装置10からの光が伝播して、光散乱照射部48の長手方向の全体の側面から360°の全方位角度で放射している状態を示す。図9(b)は、あらかじめ光増感剤(PS)を静脈注射したマウスの肛門から光散乱照射部48を挿入した状態を示す。このとき、キセノン光源装置10は動作しておらず、光散乱照射部48は光を照射していない。図9(c)は、図9(b)の状態から、キセノン光源装置10を動作させ、光散乱照射部48からマウスの大腸・直腸癌に対して光を照射した状態を示す。このときマウスの腹部全体に光照射されていることが確認される。
 このように、大腸・直腸がんに対して光照射療法(PDT)を週1回、10~20分間続けると、マウスの大腸・直腸癌が3週間後にほぼ消失したことが確認された。
10…光源装置、
20…可撓性ファイバーオプティックス(第1の光ファイバー)、
30…ジョイント治具、32…光コンデンサアダプタ、34…大径部、35…狭窄部、36…小径部、37…入射端面、38…出射端面、
40…光照射治療用光照射プローブ(第2の光ファイバー)、42…コア部材、44…クラッド部材、46…導光部、48…光散乱照射部、
60…ロッド、62…サック(カバーフィルム)、
100…従来の光照射プローブ、102…照明レンズ、104…対物レンズ(CCD素子を含む)、106…鉗子口、108…ノズル、
200…大腸、202…表層癌組織、204…下層癌組織。

Claims (15)

  1.  光照射治療用光照射プローブにおいて、軸方向に延び、光源からの光を伝播させる光ファイバーを備え、光ファイバーは、可撓性コアの側面に薄膜クラッドを設けた導光部および導光部に伝播した光を可撓性コアの軸方向に対し全方位周辺に均一な強度で散乱させる光散乱照射部を有することを特徴とする光照射治療用光照射プローブ。
  2.  光散乱照射部は、病巣治療対象部位の軸方向の1cm以上の長さに対応する長さを有する病巣治療対象部位近傍全体に導光部から伝播した光を360度の全方位角で照射し、光源からの光のピーク波長は、光照射療法で用いられる所望の光増感剤の最適励起波長域に含まれることを特徴とする請求項1に記載の光照射治療用光照射プローブ。
  3.  光散乱照射部が渦巻き状に巻かれたロッドをさらに備えたことを特徴とする請求項1または2に記載の光照射治療用光照射プローブ。
  4.  ロッドは、ロッド状の内視鏡ファイバースコープであることを特徴とする請求項3に記載の光照射治療用光照射プローブ。
  5.  光散乱照射部およびロッドを覆う被膜部をさらに備えたことを特徴とする請求項3または4に記載の光照射治療用光照射プローブ。
  6.  光を放射する光源を含む光照射治療装置において、光源からの光を伝播させ、第1の断面積を有する出射端面を含む第1の光ファイバーと、第1の光ファイバーからの光を伝播させ、第1の光ファイバーの出射端面に実質的に適合するコンデンサ入射端面および第1の光ファイバーの出射端面より小さく第2の光ファイバーの入射端面に実質的に適合するコンデンサ出射端面を有する光コンデンサアダプタと、光コンデンサアダプタからの光を伝播させ、光コンデンサアダプタの出射端面の第2の断面積と実質的に適合する入射端面を含む第2の光ファイバーとを備え、第2の光ファイバーは、可撓性コアの側面に薄膜クラッドを設けた導光部および導光部に伝播した光を可撓性コアの軸方向に対し全方位周辺に均一な強度で散乱させる光散乱照射部とを有することを特徴とする光照射治療用装置。
  7.  光散乱照射部は、病巣治療対象部位の軸方向の1cm以上の長さに対応する長さを有する病巣治療対象部位近傍全体に導光部から伝播した光を360度の全方位角で照射し、光源からの光のピーク波長は、光照射療法で用いられる所望の光増感剤の最適励起波長域に含まれることを特徴とする請求項6に記載の光照射治療用装置。
  8.  第1および第2の光ファイバーは、可撓性を有するプラスチック光ファイバーであり、光コンデンサアダプタは、第1の断面積を有する入射端面と第2の断面積を有する出射端面との間において連続的に減少する断面積を有するガラスコアおよびその側面に設けた薄膜クラッドとを有することを特徴とする請求項6または7に記載の光照射治療用装置。
  9.  第2の光ファイバーの光散乱照射部が渦巻き状に巻かれたロッドをさらに備えたことを特徴とする請求項6~8のいずれか1に記載の光照射治療用装置。
  10.  ロッドは、ロッド状の内視鏡ファイバースコープであることを特徴とする請求項3に記載の光照射治療用光照射プローブ。
  11.  光散乱照射部およびロッドを覆う被膜部をさらに備えたことを特徴とする請求項9または10に記載の光照射治療用装置。
  12.  光照射治療用光照射プローブの製造方法において、可撓性コアの側面に薄膜クラッドを設けた光ファイバーを提供するステップと、光ファイバーに伝播した光を、その先端部において全方位に均一した強度で散乱させるように、光ファイバーの先端部の側面を処理して光散乱照射部を形成するステップと、光散乱照射部をロッドの周りに巻くステップとを有することを特徴とする製造方法。
  13.  光散乱照射部は、病巣治療対象部位の軸方向の1cm以上の長さに対応する長さを有し、病巣治療対象部位近傍全体に導光部から伝播した光を360度の全方位角で照射し、光源からの光のピーク波長は、光照射療法で用いられる所望の光増感剤の最適励起波長域に含まれることを特徴とする請求項12に記載の製造方法。
  14.  光ファイバーの先端部の側面を処理して光散乱照射部を形成する前記ステップは、光ファイバーの先端部の側面に配置された薄膜クラッドを除去して露出させた可撓性コアを粗面化するステップ、光ファイバーの先端部の側面に配置された薄膜クラッドの側面を溶媒を用いて白濁させるステップ、または光ファイバーの先端部の側面に配置された薄膜クラッドを除去して露出させた可撓性コアの側面に微粉末を付着させるステップのうちのいずれかを含むことを特徴とする請求項12に記載の製造方法。
  15.  光散乱照射部およびロッドを樹脂材料で覆うステップをさらに有することを特徴とする請求項12~14のいずれか1に記載の製造方法。
PCT/JP2017/041131 2016-11-17 2017-11-15 内視鏡による光照射治療用光照射プローブ WO2018092814A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3044196A CA3044196A1 (en) 2016-11-17 2017-11-15 Light radiating probe for photodynamic therapy employing endoscope
AU2017361183A AU2017361183B2 (en) 2016-11-17 2017-11-15 Light radiating probe for photodynamic therapy employing endoscope
CN201780069891.8A CN109937071A (zh) 2016-11-17 2017-11-15 基于内窥镜的光照射治疗用光照射探针
US16/461,730 US20190275346A1 (en) 2016-11-17 2017-11-15 Light radiating probe for photodynamic therapy employing endoscope
EP17871533.0A EP3542858A4 (en) 2016-11-17 2017-11-15 LIGHT RADIATION PROBE FOR PHOTO-DYNAMIC THERAPY USING AN ENDOSCOPE
KR1020197013701A KR20190086448A (ko) 2016-11-17 2017-11-15 내시경에 의한 광조사 치료용 광조사 프로브

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-223999 2016-11-17
JP2016223999A JP6498654B2 (ja) 2016-11-17 2016-11-17 内視鏡による光照射治療用光照射プローブ

Publications (1)

Publication Number Publication Date
WO2018092814A1 true WO2018092814A1 (ja) 2018-05-24

Family

ID=62145162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041131 WO2018092814A1 (ja) 2016-11-17 2017-11-15 内視鏡による光照射治療用光照射プローブ

Country Status (8)

Country Link
US (1) US20190275346A1 (ja)
EP (1) EP3542858A4 (ja)
JP (1) JP6498654B2 (ja)
KR (1) KR20190086448A (ja)
CN (1) CN109937071A (ja)
AU (1) AU2017361183B2 (ja)
CA (1) CA3044196A1 (ja)
WO (1) WO2018092814A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020250753A1 (ja) * 2019-06-12 2020-12-17 株式会社カネカ 光治療診断装置およびその作動方法
CN110339489B (zh) * 2019-08-09 2020-07-21 尚华 一种新型的血管光纤导丝
EP4019075A4 (en) * 2019-08-20 2023-08-16 Kaneka Corporation MEDICAL LIGHT RADIATION DEVICE
US20210196974A1 (en) * 2019-12-31 2021-07-01 Gyrus Acmi, Inc. D/B/A Olympus Surgical Technologies America Surgical devices for treating body tissue and diagnosing patients
CN111110346B (zh) * 2019-12-31 2021-03-09 华科精准(北京)医疗科技有限公司 用于激光间质热疗系统的装置
CN111420293A (zh) * 2020-04-15 2020-07-17 西安蓝极医疗电子科技有限公司 基于半导体激光外照射技术治疗脑部疾病的装置
EP4169572A1 (en) * 2020-06-23 2023-04-26 Amos Pharm Co., Ltd. Photo-dynamic therapy apparatus for local target in cancer treatment, and control method therefor
JP2022158714A (ja) 2021-04-02 2022-10-17 日立金属株式会社 周面発光線状導光体及びその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4660925A (en) * 1985-04-29 1987-04-28 Laser Therapeutics, Inc. Apparatus for producing a cylindrical pattern of light and method of manufacture
JPH0329644A (ja) * 1989-05-26 1991-02-07 C R Bard Inc 均一な照射のための光ファイバー拡散チップ
JP2001502438A (ja) * 1996-09-16 2001-02-20 フォーカル・インコーポレーテッド 光ファイバの光散乱体及びその製造方法
JP2005087531A (ja) 2003-09-18 2005-04-07 Seikoh Giken Co Ltd レーザプローブ
WO2013035750A1 (ja) 2011-09-05 2013-03-14 Maeda Hiroshi 高分子型蛍光分子プローブ

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990925A (en) * 1984-05-07 1991-02-05 Hughes Aircraft Company Interferometric radiometer
EP0437183B1 (de) * 1990-01-09 1994-07-27 Ciba-Geigy Ag Lichtdiffusor für eine photodynamische Therapie von Tumoren im Oesophagus eines Patienten
JPH05255996A (ja) * 1992-03-12 1993-10-05 Okumura Corp 繊維強化構造用棒状体の加工方法
JP3675482B2 (ja) * 1994-09-09 2005-07-27 カーディオフォーカス・インコーポレイテッド 光線治療装置
AU695977B2 (en) * 1994-12-08 1998-08-27 S.L.T. Japan Co., Ltd. Laser balloon catheter apparatus
US6324326B1 (en) * 1999-08-20 2001-11-27 Corning Incorporated Tapered fiber laser
US8038602B2 (en) * 2001-10-19 2011-10-18 Visionscope Llc Portable imaging system employing a miniature endoscope
US20060282132A1 (en) * 2003-06-20 2006-12-14 Keio University Photodynamic therapy equipment, method for controlling photodynamic therapy equipment and method of photodynamic method
JP2005037570A (ja) * 2003-07-18 2005-02-10 Sumiden High Precision Co Ltd 光ファイバ接続用アダプタ及びその製造方法
DE10336654B4 (de) * 2003-08-09 2013-07-25 Günther Nath Beleuchtungsanordnung mit Lichtleiter und Strahlendiffusor
JP5106218B2 (ja) * 2008-04-07 2012-12-26 学校法人慶應義塾 生体組織に光線を照射するためのコイル状光拡散体及びそれを含む光拡散デバイス
ES2615826T3 (es) * 2008-11-11 2017-06-08 Shifamed Holdings, Llc Conjunto de electrodos de perfil bajo
CN102478442A (zh) * 2010-11-24 2012-05-30 西安金和光学科技有限公司 用于机动车助力转向系统中的光纤扭矩传感装置
KR101350613B1 (ko) 2011-09-30 2014-01-23 장순배 초음파 세척장치
US9107682B2 (en) * 2011-11-03 2015-08-18 Katalyst Surgical, Llc Steerable laser probe
CN102553084B (zh) * 2012-03-02 2014-12-10 中山大学 一种光治疗装置
JP2015097664A (ja) * 2013-11-19 2015-05-28 株式会社アライ・メッドフォトン研究所 医療用具及び光線治療装置
CN204520943U (zh) * 2015-02-11 2015-08-05 四川航天世都制导有限公司 可更换式激光治疗操作手柄

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4660925A (en) * 1985-04-29 1987-04-28 Laser Therapeutics, Inc. Apparatus for producing a cylindrical pattern of light and method of manufacture
JPH0329644A (ja) * 1989-05-26 1991-02-07 C R Bard Inc 均一な照射のための光ファイバー拡散チップ
JP2001502438A (ja) * 1996-09-16 2001-02-20 フォーカル・インコーポレーテッド 光ファイバの光散乱体及びその製造方法
JP2005087531A (ja) 2003-09-18 2005-04-07 Seikoh Giken Co Ltd レーザプローブ
WO2013035750A1 (ja) 2011-09-05 2013-03-14 Maeda Hiroshi 高分子型蛍光分子プローブ

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
H. MAEDA.K. TSUKIGAWAJ. FANG: "A retrospective 30 years after discovery of the EPR effect of solid tumors: treatment, imaging, and next-generation PDT - problems, solutions, prospects", MICROCIRCULATION, vol. 23, 2016, pages 173 - 182
H. MAEDA: "Emergence of EPR effect theory and development of clinical applications for cancer therapy", THERAPEUTIC DELIVERY (FUTURE SCIENCE, vol. 5, no. 6, 2014, pages 627 - 630
H. MAEDA: "Tumor vasculature, free radicals, and drug delivery to tumors via the EPR effect", CANCER SCIENCE, vol. 104, 2013, pages 779 - 789
H. MAEDAH. NAKAMURAJ. FANG: "The EPR effect for macromolecular drug delivery to solid tumors: improved tumor uptake, less systemic toxicity, and improved tumor imaging in vivo", ADVANCED DRUG DELIVERY REVIEW, vol. 65, 2013, pages 71 - 79
H. NAKAMURAJ. FANGH. MAEDA: "Development of next-generation macromolecular drugs based on the EPR effect: challenges and pitfalls", EXPERT OPINION ON DRUG DELIVERY, vol. 12, no. 1, 2015, pages 53 - 64
H. NAKAMURAL. LIAOY. HITAKAK. TSUKIGAWAV. SUBRJ. FANGK. ULBRICHH. MAEDA: "Micelles of zinc protoporphyrin conjugated to N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer for imaging and light-induced antitumor effects in vivo", JOURNAL CONTROLLED RELEASE, vol. 165, 2013, pages 191 - 198, XP055438919, DOI: doi:10.1016/j.jconrel.2012.11.017
HIROSHI MAEDAJ FANGHIDEAKI NAKAMURA: "Large expectation on innovative PDT by a nano probe having an EPR effect", JOURNAL OF JAPANESE SOCIETY FOR MOLECULAR IMAGING, 2015, pages 3 - 10
J. FANGK. GREISHH. QINH. NAKAMURAM. TAKEYAH. MAEDA: "HSP32 (HO-1) inhibitor, copoly (styrene-maleic acid)-zinc protoporphyrin IX, a water-soluble micelle as anticancer agent: In vitro and in vivo anticancer effect", EUROPEAN JOURNAL PHARMACEUTICAL BIOPHARMACEUTICS, vol. 81, 2012, pages 540 - 547, XP028405160, DOI: doi:10.1016/j.ejpb.2012.04.016
J. FANGL. LIAOH. YINH. NAKAMURAV. SUBRK. ULBRICHH. MAEDA: "Photodynamic therapy based on tumor-targeted polymer-conjugated zinc protoporphyrin and irradiation with xenon light", FUTURE SCIENCE OA, 2015, Retrieved from the Internet <URL:http://www.future-science.com/doi/pdf/10.4155/fso.15.2>
K. TSUKIGAWAH. NAKAMURAJ. FANGM. OTAGIRIH. MAEDA: "Effect of different chemical bonds in pegylation of zinc protoporphyrin that affects drug release, intracellular uptake, and therapeutic effect in the tumor", EUROPEAN JOURNAL PHARMACEUTICAL BIOPHARMACEUTICS, vol. 89, 2015, pages 259 - 270
See also references of EP3542858A4
T. SEKI J. FANGH. MAEDA: "Enhanced delivery of macromolecular antitumor drugs to tumors by nitroglycerin application", CANCER SCIENCE, vol. 100, 2009, pages 2426 - 2430

Also Published As

Publication number Publication date
JP6498654B2 (ja) 2019-04-10
US20190275346A1 (en) 2019-09-12
EP3542858A1 (en) 2019-09-25
AU2017361183A1 (en) 2019-06-06
JP2018079136A (ja) 2018-05-24
EP3542858A4 (en) 2020-04-22
CN109937071A (zh) 2019-06-25
KR20190086448A (ko) 2019-07-22
AU2017361183B2 (en) 2020-07-30
CA3044196A1 (en) 2018-05-24

Similar Documents

Publication Publication Date Title
JP6498654B2 (ja) 内視鏡による光照射治療用光照射プローブ
Yang et al. Enhancement of photodynamic cancer therapy by physical and chemical factors
JP2005531336A (ja) 体内の微生物を弱化および/または死滅させるために可視光を用いる装置および方法
Punjabi et al. Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy
Nagaya et al. Endoscopic near infrared photoimmunotherapy using a fiber optic diffuser for peritoneal dissemination of gastric cancer
M Scherer et al. New approaches to photodynamic therapy from types I, II and III to type IV using one or more photons
US20100049182A1 (en) Fluid media for bio-sensitive applications
WO2011027282A1 (en) Fibre optic light delivery device with a glass fibre and a plastic fibre at its distal part
JP2001525687A (ja) カラム状環境を照射する改良された光線療法および装置
JP2018000867A (ja) カテーテルチューブ
US20150038837A1 (en) Device for determining metastasis of cancer to sentinel lymph node
Protti et al. Targeting photochemical scalpels or lancets in the photodynamic therapy field—the photochemist's role
Kinoshita et al. A novel laser fiberscope for simultaneous imaging and phototherapy of peripheral lung cancer
JP2023524078A (ja) 遠隔病原菌除菌
JP7326021B2 (ja) 光照射デバイス、及び、光照射システム
JP2016214376A (ja) 内視鏡用光線力学的治療装置
Romano et al. Innovative light sources for phototherapy
US20150073513A1 (en) Systems and methods for facilitating optical processes in a biological tissue
Moriyama et al. A ratiometric fluorescence imaging system for surgical guidance
Stepp Principles of clinical photodynamic therapy
Svanberg Optical tissue diagnostics: Fluorescence and transillumination imaging
JP7336119B1 (ja) 光照射デバイスおよび光照射システム
van den Bergh et al. Light distributors for photodynamic therapy
Simelane Photodiagnosis and targeted photodynamic therapy treatment of colon cancer
CN115335118A (zh) 治疗装置及治疗方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871533

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197013701

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3044196

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017361183

Country of ref document: AU

Date of ref document: 20171115

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017871533

Country of ref document: EP

Effective date: 20190617