JPH0329644A - 均一な照射のための光ファイバー拡散チップ - Google Patents

均一な照射のための光ファイバー拡散チップ

Info

Publication number
JPH0329644A
JPH0329644A JP2135173A JP13517390A JPH0329644A JP H0329644 A JPH0329644 A JP H0329644A JP 2135173 A JP2135173 A JP 2135173A JP 13517390 A JP13517390 A JP 13517390A JP H0329644 A JPH0329644 A JP H0329644A
Authority
JP
Japan
Prior art keywords
cladding
laser
core
balloon
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2135173A
Other languages
English (en)
Inventor
Glenn S Baker
グレン・エス・ベイカー
Edward L Sinofsky
エドワード・エル・シノフスキー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CR Bard Inc
Original Assignee
CR Bard Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CR Bard Inc filed Critical CR Bard Inc
Publication of JPH0329644A publication Critical patent/JPH0329644A/ja
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/24Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter
    • A61B18/245Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter for removing obstructions in blood vessels or calculi
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2244Features of optical fibre cables, e.g. claddings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2255Optical elements at the distal end of probe tips
    • A61B2018/2261Optical elements at the distal end of probe tips with scattering, diffusion or dispersion of light

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 皇五≧曵旦旦量亘 本発明は、レーザー照射の伝達及び拡散のための光ファ
イバー組立体、詳細には、処方された軸の長さにわたり
、ほぼ均一な円筒形照射パターンを発生する光ファイバ
ー拡散チップに関する.前記拡散チップは特に、冠状動
脈成形外科に使用するレーザーバルーンカテーテルに有
効であるが当該使用に限定されるものではない。
灸区二韮里 バルーン血管成形外科は長年の間、ブラークの堆積で狭
窄した冠状動脈を処置するために使用されてきた.それ
の末端部に固定された膨張可能なバルーンを有するカテ
ーテルが狭窄した領域へと冠状動脈を通って漸進する.
次にバルーンは外部供給源からの液体により膨張し、冠
状動脈の狭窄した領域を膨張させる.次にバルーンは収
縮して抜き取られる.バルーン成形外科に関する一連の
問題の30%が所謂、再狭窄であり、処置後直ちに、あ
るいは6カ月以内に発生している.直後の再狭窄は突然
の再閉塞として知られているが、ブラークのフラップ(
M状のもの)、あるいはセグメント、及びバルーン成形
外科手術の間に形成され、動脈をブロックする可能性の
ある、ブラークの乗った組織が原因である.そのような
動脈の閉塞は緊急の手術を要し、死に至る結果となるこ
とが多い.更に、外科手術チームはバルーン血管成形外
科の手術中は待機していることが要求される.後の時期
の再狭窄は全体としては知られていない原因から生ずる
.血栓の形成は重要な役割を果たしていると信じられて
いる.反復してバルーン血管成形外科又は手術が要求さ
れることが多く、その他の再狭窄の出来事が発生する可
能性がある. が角゜ しようとする課 再狭窄の問題を克服するための有望な見込みを示す技術
は、動脈のブラークで狭窄した領域に同時に熱と圧力と
をかける方法である.この技術はAa+. J.心臓学
第56−S%1985年12月1日発行、 953〜9
57頁、ジョン・F,ヒーレ・Jr他の「人体の動脈ア
テローム、プラークー欠陥壁分離のNd−YAGレーザ
ー溶融In Vltro4及び、1989年1月24日
付、リチャード・スピアに対する米国特許第4,799
,479号に説明されている.この技術によれば、それ
の末端部に膨張可能なバルーンを有するカテーテルが動
脈の狭窄した領域へ前進して、バルーン血管成形外科の
場合のようにバルーンが膨張する.しかしながら、バル
ーン血管戒形外科と異り、充分な熱がバルーンの壁を通
してかけられ、取り巻く組織を溶融し、それにより後に
なつて動脈をブロックする可能性のあるフラップの形成
を排除する.取り巻く組織を加熱する有利な手段は、カ
テーテルにより運ばれ、バルーン内部で終端する光ファ
イバーを通してレーザー照射を向けること社よる.次に
レーザー照射がバルーンの壁を通して向けられ、取り巻
く組織を加熱する. バルーンにより熱伝導式に加熱するのとは異り、取り巻
くブラーク及びプラークのかぶった組織及び動脈の壁を
貫通し、照射された熱により該傾城を加熱する熱放射を
応用することが望ましいことが判明している.さらに加
えて、20〜40ワットのパワーレベルをおよそ20秒
照射することが望ましいと判明している.比較的高いパ
ワーレベルのレーザー照射を応用するについては、バル
ーンの全長にわたり、比較的均一な円筒形の照射パター
ンを提供することが重要である.そうでないと、ホット
スポットが局部的に組織を焼損し、潜在的危険を有する
溶融しない組織のフラップを冷たいスポットに残す可能
性がある. 従来技術では、レーザー照射を光ファイバーのチップか
ら外側に向ける方法が開示されてきた.IIIIIのレ
ーザー照射処置のための、拡散媒体により取り巻かれた
テーパした光ファイバーが、1985年9月11日付、
英国特許申請第2,154,761号明細書に開示され
ている.光ファイバーのチップにおいて円筒形の光のパ
ターンを発生するための拡散媒体に取り巻かれた光ファ
イバーが、!987年4月28日付、マクガバン・Jr
.に対する米国特許第4,660,925号明細書に開
示されている。レーザーエネルギーの照射の角度を広げ
るための、光ファイバーの表面を粗くする技術が、「光
学及びレーザー技術J 1984年2月、40〜44頁
に、「粗い端面を有する光ファイバーの光拡散特性J 
、HJA井他により開示されている. 上述のスビアに対する米国特許第4,799,479号
明細書は、カテーテルを通して延び、膨張カテーテル内
部に配置された光拡散チップ内で終端する光ファイバー
を開示している.スビアは、この先拡散チップはファイ
バーチップの部分のタラッドを除去し、ファイバーのコ
ア表面を粗くすることにより提供できると説明している
.スビアは同様に、光拡散チップはレーザーエネルギー
を拡散できる不特定の材料からも製造可能であると述べ
ている. 1983年12月27日付、オルコットに対する米国特
許第4,422,719号明細書は、接着されていない
スリーブに囲まれた透明なコアを含む光照明システムを
開示している.そのコアの表面は、スリーブを通して光
を反射する切断面又は不連続面を有することが可能であ
る.その他の実施例においては、スリーブの材料の中に
埋め込まれた反射性の流により、又は粉内の気泡により
、スリーブを通して光が反射される. 1986年4月29日付、そりに対する米国特許第4,
585.298号明細書は、光ファイバーの端に連結さ
れた発光体を開示している.この発光体はそれの外側表
面に複数の冠状の発光ストリップを有する透明な先導部
材を含む。このストリップは光を伝える部分よりも高い
反射率を有し、それにより光が高い反射率のストリップ
において発光体の外側で連結される, 1980年4月
1日付、ザンジャ他に対する米国特許第4,195,9
07号明細書は、気泡を含むファイバーの使用を開示し
ている, 1984年8月21日付、ダニエルに対する
米国特許第4,486,697号明細書は、コア内に光
拡散粒子を有するファイバーを開示している.ザンジャ
他及びダニエルに対する特許は、光ファイバーのコア内
に拡散センターを設けることにより光ファイバーの側壁
から光を発生させる技術を描いている.1982年12
月14日付、ストウ他に対する米国特許第4,363,
533号明細書は、音響変換機として使用可能なファイ
バー光装置を開示している.この変換機は内側コアと外
側コアとの間に中間クラッドを有する光ファイバーを備
えてなる.この中間クラッドは内側コアよりも低い.反
射率を有する.光は内側コアから外側コアへ、クラッド
を通るエパネッセント場の貫通の結果として連結される
.コアの間の連結は装置にかかる機械的圧力に応答して
変化する.19117年7月14日付、バブラスに対す
る米国特許第4,[179,894号明細書は、次第に
エバネッセント場により隣接するファイバーの間で光が
連結されるファイバー光カブラを開示している. 従来の光拡散又は光拡大光ファイバーチップの技術はす
べて、柔軟性又はパワーを扱う能力、破壊性、不均一な
照射パターン及び製造の困難さを含めて、1つ又はそれ
以上の欠点を有する.普 を ゛するための 本発明の一般的目的は、改良された光ファイバー拡散チ
ップを提供することである.本発明のその他の目的は、
ほぼ均一な円筒形の照射パターンを有する光ファイバー
拡散チップを提供することである. 本発明のその他の目的は、改良されたレーザーバルーン
カテーテルを提供することである。
本発明の更にその他の目的は、直径が小さく高度に柔軟
な光ファイバー拡散チップを提供することである. 本発明の更にその他の目的は、高出力レーザー照射を供
給できる光ファイバー拡散チップを提供することである
. 本発明のその他の目的は、バルーンを取り巻く組織をほ
ぼ均一に加熱するレーザーバルーンカテーテルを提供す
ることである. 本発明によれば、これらその他の目的及び利点は、レー
ザー照射源に連結されるために使用される一端を有する
光ファイバー、ほぼ半径方向外側にレーザー照射を向け
るための光ファイバーの他端に連結されたチップ組立体
を備えてなるレーザー伝達及び拡敗組立体において達成
される.前記チップ組立体はコアと、前記コアの周囲の
クラッドと、前記クラッドの周囲のジャケットとを含む
.前記ジャケットは、コア及びクラッドの屈折率よりも
高い屈折率を有する.クラッドはコアよりも低い屈折率
を有し、光ファイバーを通って運ばれるレーザー照射の
部分を伝達するように選択された厚さを有し、それによ
りレーザー照射がップ組立体の長さ全体をクラッド及び
ジャケッ1って貫通する. コアよりも低い屈折率を有するクラッドは照射の入射角
がファイバーの開口数よりも低い場合は、レーザー照射
をコア内へ反射し返す.本発明のチップ組立体は、クラ
ッドの厚さがクラッドの次第にエバネッセント場の貫通
深さとほぼ同じかそれよりわずかに小さいクラッドを提
供することにより作動する.チップ組立体に沿った軸方
向の各位置において、レーザー照射の部分がコアからク
ラッドを通ってジャケットへと連結されている.その結
果、光はチップ組立体の長さに沿ってほぼ半径方向に伝
達される.クラッドを通って連結されているレーザー照
射の量は、コアの屈折率とクラッドの屈折率との間の差
、クラッドの厚さ、伝達されるレーザー照射の波長、ジ
ャケットの屈折率、及びチップ組立体の曲げの関数であ
る.好ましい実施例においては、クラッドは、波長1.
06マイクロメータに対し、およそ1マイクロメータの
厚さである.クラッドの厚さは所望の照射パターンを提
供するために、チップ組立体の長さに沿って変更可能で
ある。特に、クラッドの厚さはほぼ均一の円筒形照射パ
ターンを提供するために、チップ組立体の長さに沿って
テーパさせることが可能である. 本発明のその他の視点によれば、末端部と基部端とを有
する細長い可撓性チューブと、それの末端部で又はそれ
の近くで前記可撓性チューブに固定された膨張可能なバ
ルーンと、前記バルーンを膨張させ収縮させる手段と、
レーザー照射を前記可撓性チューブを通って前記バルー
ンへ運ぶための光ファイバーと、前記バルーンの表面の
大部分を通って半径方向外側にレーザー照射を向けるた
めの前記バルーン内部にあって光ファイバーに連結され
ているチップ組立体手段とを備えてなるレーザーバルー
ンカテーテルが提供されている.前記チップ組立体はコ
アと、前記コアの周囲にあるクラッドと、前記クラッド
.の周囲にあるジャケットとを含む.クラッドはコアよ
りも低い屈折率を有し、コアからクラッドへ貫通するレ
ーザー照射の少なくとも一部を伝達するように選択され
た厚さを有する.前記ジャケットはコア及びクラッドの
屈折率よりも高い屈折率を有し、それにより、光ファイ
バーを通って運ばれるレーザー照射がクラッド及びジャ
ケットを通って前記チップ組立体手段の全長にわたり貫
通するようになされている. 東−4虹一伏 第1図及び第2図にレーザーバルーンカテーテルが示さ
れている.細長い可撓性チューブ10はそれの末端部に
レーザーバルーン組立体l2と、それの基部端にコネク
タ14、l8、l8及び20を有している.レーザーバ
ルーン組立体12はレーザー照射を発生する光ファイバ
ーチップ組立体24(第2図)と、ガイドワイヤを運び
、処置領域に液体を運ぶように採用された中央シャフト
(図示されていない)と、可撓性チューブlOの基部端
から膨張しかつ収縮するバルーン30とを含む.中央シ
ャフト26は、バルーン30が膨張した時に、ガイドワ
イヤ上でシャフト26が破壊されるのを防ぐための強化
スプリング28を含む.好ましい実施例においては、可
撓性チューブlOは光ファイバー、ガイドワイヤ及び膨
張液を運ぶための3本の内腔を含む.光ファイバー32
がコネクタ20から可撓性チューブlOを通って光ファ
イバーチップ組立体24内で終端している.コネクタ2
0がレーザー源の出力へ連結されている(図示されてい
ない).ガイドワイヤがカテーテル内へコネクタ16、
可撓性チューブ10、中央シャフト26を通して導入さ
れている.加圧液体源(図示されていない)がコネクタ
14を通してバルーン30の内部へ連結されている.バ
ルーンの内部のものを排出する手段もコネクタ14を通
してバルーン30の内部に連結されている。
光ファイバーチップ組立体24の目的は、所望の照射パ
ターン、通常はほぼ均一な円筒形パターンで、レーザー
エネルギーをバルーン30の壁を通して外側へ向けるこ
とである.第2図の実施例においては、光ファイバーチ
ップ組立体24は、中央シャフト26によりできる影を
避けるためにらせん形状である.レーザーバルーンカテ
ーテルの構造に関する更なる詳細は、1987年l8月
8日付、申請中の特許第106,609号明細書、及び
ここに参照のために組み込まれている上述の特許1g4
,799,479号に提供されている. 本発明による光ファイバーチップ組立体24は第3図及
び第4図に示され、これらは拡大されているが理解を容
易にするほど大きくはない.チップ組立体24は光ファ
イバー32の末端部に連結されている.光ファイバー3
2はコア44、クラッド46、及びバッファ47を含む
.チップ組立体又は拡散チップ24はコア44の延長部
、薄いクラッド48、及びジャケット50を含む.第3
図及び第4図の実施例においては、拡散チップ24は、
後述のようならせん構造を提供するための、追加の熱成
形可能なチューブ52を含んでいる.クラッド48はコ
ア44よりも低い屈折率を有する。ジャケット50はコ
ア44とクラッド48の両方よりも大きい屈折率を有す
る.後述のように、クラッド48のパラメータは、拡散
チップ24の全長にわたり円筒形又はその他の所望のパ
ターンでレーザー照射を発生するようにコア44に対し
相対的に選択される.ジャケット50はコア44とクラ
ッド48とを、クラッド48を通過するレーザー照射を
減衰することなしに損傷から保護する. 光ファイバー32は、コア44よりも高い屈折率を有す
る比較的厚いクラッド46により取り巻かれたコア44
を含む従来の多モード光ファイバーである.レーザー照
射はコア44とクラッド46との間の臨界面に臨界角よ
りも小さい角度で入射するレーザー照射は一部はクラッ
ド46へ貫通し、コア内へ反射され、従来の方式でファ
イバーを通って案内される.入射レーザー照射は′所定
の貢通深さでクラッドへ貫通する.クラッド内へ貫通す
るレーザー照射の一郎は次第に消える波又はエバネッセ
ント場として知られている.貫通深さはコアとクラッド
との間の屈折率の差、レーザー照射の波長、及びファイ
バーの曲げの関数である.貫通深さは同様にコアークラ
ッド上へのレーザー照射の入射角の関数でもある.しか
しながら、光ファイバー内では、入射角はファイバーの
形状により制限される.ファイバーゴ2のような従来の
光ファイバーにおいては、クラッド46はエバネツセン
ト場の貫通深さよりもほぼ厚く、レーザー照射はファイ
バーの側壁を貫通しない. 従来の光ファイバーの作用状態が第5八図及び5B図に
描かれている.第5^図においては、コア44とクラッ
ド46の間の界面に入射するレーザーエネルギー55は
一部がクラッド4Bに貫通し、コア44内へ反射される
.クラッド46は前記エバネッセント場の貫通深さより
も厚いので、レーザーエネルギーはクラッド46を通っ
ては伝達しない.第5八図の光ファイバーにおける半径
方向の位置の関数としてのレーザーの強さの分布は、第
5B図に示されている.この分布はほぼベル型曲線56
を措き、コアの中央で最大となる.その強さはクラッド
内でゼロに落ち、レーザーエネルギーはクラッドを通っ
ては伝達されない. 本発明による拡散チップ24は、光散布又は拡散を生ず
るエパネッセント場を利用する.クラッド48はエバネ
ッセント場の貫通深さと同じかそれよりわずかに少ない
厚さを有する.上述のように、クラッド48はコア44
よりも低い屈折率を有し、ジャケット50はコア44と
クラッド48の両方よりも大きい屈折率を有する.クラ
ッド48はコア44よりも屈折率が小さいため、レーザ
ー照射はクラッド48により反射される. 拡散チップ24の作用が第5C図に図式的に描かれてい
る.クラッド48は、エバネツセント場の貫通深さと同
じかわずかに小さい厚さを有するため、レーザー照射の
部分57は反射されないでクラッド48及びジャケット
50を通って伝達される.クラッド48を通って伝達さ
れないレーザー照射の部分58はコア44内へ反射され
、拡散チツブ24をそれの末端部へ向かって下降し続け
る(continues down),拡散チップ24
に沿った各場所で、レーザー照射の部分57はクラッド
48を通って伝達され、部分58は反射される.その結
果、レーザー照射は拡散チツプ24の全長にわたり伝達
される.所定のレーザー照射の波長に対し、クラッド4
8の厚さと屈折率とは、円筒形又はその他の所望の照射
パターンを発生するように選択可能である.拡散チップ
24内の半径方向の位置の関数としてのレーザーの強さ
の分布は第5D図に曲線59として描かれている.クラ
ッドの半径方向外側曲線59の部分は拡散チップから伝
達される. 好ましい実施例においては、拡散チップ24のコア44
とクラッド48とは光ファイバー32の一体化した延長
部である.クラッド48の所望の厚さは、フッ化水素酸
をエッチング手段として使用して光ファイバー32のチ
ップをエッチングすることにより得られる.コア44と
クラッド48とは、通常は要求された屈折率を有する溶
融シリカである.ジャケット50はクラッド48に接着
し、要求された屈折率を有する任意の材料である.好ま
しいジャケットの材料は光学的に透明なエポキシである
.薄いクラッド48を製造するためにその他の技術が使
用可能である.従来のクラッドはチップ領域のて光ファ
イバーから完全に除去可能であり、コアは適当な低い屈
折率の材料内に浸潤可能である.その他のアプローチで
は、ファイバーは加熱され、所望のクラッドの厚さを提
供するように弓かれる,なおその他のアプローチにおい
ては、クランド48は蒸着又はイオン撃ち込みにより形
成可能である, 上述のように、コア44を取り巻くクラッドのエバネッ
セント場の貫通深さは、レーザーの波長、コア及びクラ
ッドの屈折率、及び対象となっている拡散チップ24の
曲げの関数である.貫通深さはグース・ヘンヘン・シフ
トとしても知られているが、以下のように表現可能であ
る. d−λ/ [ 2 yr ( n .2sin2θ−n
,2) I/2 ]ここで d寓貫通深さ λ−レーザー照射の波長 n,−コアの屈折率 n2エクラッドの屈折率 θ麿入射角 殆どの場合において、拡散チップ24のほぼ全長にわた
りかつ周縁で均一な円筒形照射パターンが望ましい.ク
ラッド48が拡散チップ24の全長に沿って厚さが均一
な場合、レーザー強度はいくらか拡散チップ24の全長
にわたり不均一であることが判明している.より良い均
一性を提供するために、クラッド48の厚さは拡散チッ
プ24の全長にわたり変更可能である.特に、クラッド
は光ファイバー32に連結する拡敢チップ24の、より
厚い基郎端24aからテーパして、それの末端部へと薄
くなっている.クラッド48の厚さが次第に減少するこ
とにより、より均一なパターンを生ずる.他の場合では
、拡散チップ24の全長にわたり不均一な照射パターン
を生ずることが望ましい場合がある.この場合には、ク
ラッド48の厚さは所望の照射パターンを生ずるように
flJm可能である.厚さの異るクラッド411は、ク
ラッドの異る部分が異る時間エッチング溶液に浸される
ように制御された割り合いでエッチング溶液から拡散チ
ップを取り出すことにより達成可能である. 一定の厚さのクラッド48に対しては、固定されたパー
セントのレーザーエネルギーが単位長さごとにコアの外
から連結される.レーザーエネルギーは次第にファイバ
ーの外から連結されるために、固定されたバーセントの
連結により該拡散チップの全長にわたり伝達される強さ
の減少が生ずる.JL位長さごとに一定の強さを得るた
めに、可変連結バーセントが使用される.可変連結バー
セントはクラッドの厚さをテーパすることにより実行さ
れる.可変連結バーセントは又、ファイバーの曲げを可
変にすることによっても実行可能である.拡散チップ2
4がらせん形状である第1図及び第2図においては、ら
せんのピッチを可変とすることが可能である. 好ましい実施例においては、拡散チップ24は1.06
マイクロメータの波長に使用され、およそ2〜3cmの
長さを有する.好ましい実施例においては、コア44は
直径105マイクロメータ、屈折率1.45、純粋な溶
融シリカから製造される.クラッド48は厚さおよそl
マイクロメータ(外径は107マイクロメータとなる)
、圧折率1,43、フッ化物浸潤溶融シリカから製造さ
れる.好ましい実施例においては、クラッド48はその
厚さが拡散チップ24の基部端2 4 aにおいて1マ
イクロメータからそれの末端部24bで殆どゼロまでテ
ーパしている。
これは基郎靖における外径107マイクロメータと、末
端部の外径105マイクロメータとに対応している.好
ましい実施例においては、拡散チップ24のコア44は
光ファイバー32の延長部と一体であり、クラッド48
は光ファイバークラッド46の延長部と一体である.ク
ラッド46は外径125マイクロメータであり、クラッ
ド46とクラッド48の間のテーパした推移部54が軸
方向におよそ4分の10の距離を有する.ジャケット5
0はマスターポンドから入手可能な透明なエポキシであ
り、その屈折率は1.5より大きい.ジャケット5oは
、ファイバーの表面を保謹し、強度を保つために薄い被
覆を形成するためのエポキシに該ファイバーを浸潤する
ことにより形成される. 第1図ないし第4図の好ましい実施例においては、拡散
チップ24は、らせん構造を提供するために、加熱成厄
可能なチューブ52内で使用可能である.好ましい実施
例においては、チューブ52は、外径0.014インチ
(約0.356 +gl) %内径0.008 −1’
ンチ(約0.203 am)のポリエチレンテレフタレ
ート(PET)である.エポキシのジャケット5oはク
ラッド48とチューブ52との間の空間を埋める.PE
Tチェーブは事前にマンドレルの周囲に4!きつけ、加
熱処理することにより所望のら番ん構造に形成する.該
マンドレルは外径0.026インチ(約0.66v++
)であり、20■−の長さにわたり2回転巻いている.
次にコア44とクラッド48が、上述の薄いエポキシの
被膜に守られて、チューブ52内へ挿入され、エポキシ
がそれらの間に注入される.エポキシを硬化することじ
より、一体化した拡散チップ組立体が製造される.らせ
ん構造の製造に関するそれ以上の詳細は上述の特許申請
第106,609号明細書に記載されている. らせん拡散チップの曲げがそれの作用を補助する.レー
ザーエネルギーが、低いオーダーモードでも励起するた
めに、低い開口数(0.1〜0.15)でファイバー3
2内に送り出され、それにより、良好な伝達率と低に曲
げ損失を有するカテーテルを提供する.拡散チップ24
においては、ファイバーの曲げは高いオーダーモードに
連結されるべきところを低いオーダーモードの原因とな
る.オーダーモードが高いと損失が大きくなり、クラッ
ドへ更に接近して移動する.エパネッセント場連結を生
ずるために、レーザーエネルギーはクラッドへ接近して
移動しなければならない.高いオーダーモードに連結し
ない低いオーダーモードはファイバーの末端部へ伝達す
る. その他の実施例においては、拡散チップは中央シャフト
2Bの外側表面にチューブ52なしでらせん又は直練形
状Cエポキシ付けすることができる.チューブ52は拡
散チップを事前に形成するために使い捨て(one w
ay) t”使用され、事前成形が必要でない場合は省
略される.直線形状においては、特許申請第106.1
109号明細書に示され、説明されているように、均一
な先の分布が、拡散チップ及び中央シャフト26の両方
を取り巻く逆方向の導波管の使用により達成可能である
.本発明においてバルーン組立体への拡散チップの取り
付けは選択の問題である.しかしながら、コア44及び
クラッド48の曲げはクラッド48の厚さを決定するた
めに計算に入れなければならない、なぜなら、例えば拡
散チップ24がらせん形状に曲げられた場合、エバネッ
セント場がより深くクラッドへ賞通するからである. 様々な拡散チップの形状に対する通常の照射パターンは
第6八図ないし第60図に示されている.各場合におい
て、拡散チップにより放射されるレーザーの相対的強さ
は拡散チップに沿った軸方向の位置の関数としてプロッ
トされる.同様に各場合において、拡散チップの基部端
は番号60により指定され、末端部は番号62により指
定されている.更に各場合において、上述のようならせ
ん構造を有し、直径105マイクロメータのコアを有す
る光ファイバーが使用される. 第6A図においては、クラッド48は拡散チップの全長
にわたり均一な厚さであり、外径109マイクロメータ
であった(厚さ2マイクロメータ).曲線66により示
されているように、レーザー照射の殆どは拡散チップの
末端部で放射している.第6B図においては、クラッド
48は拡散チップの全長にわたり均一な厚さであり、外
径107マイクロメータであった(厚さ1マイクロメー
タ).曲線88で示されるレーザー照射パターンは、第
6^図に示されたパターンよりもかなり均一である.し
かしながら、ビーク64が末端部に現れている.第6C
図においては、クラッドは拡散チップから除去され、外
径105マイクロメータとなっている.曲Jl70によ
り示されているように、レーザー照射は拡散チップの基
部端に近いところで放射している. 第6D図においては、クラッド48は拡散チップの基郎
端の外径107マイクロメータ(圧さ1マイクロメータ
)から拡散チップの末端部の外径tOSマイクロメータ
(厚さゼロ)までテーパしている.曲線72により示さ
れているように、パターンはかなり均一で、末端部の近
くのピークは除去されている.拡散チップ24は選択さ
れた波長で所望の照射パターン用に設計される.本発明
の事例においては、設計波長は1.05マイクロメ・一
夕である.設計波長よりも短い波長を有する光はすべて
拡散チップの末端部へ案内され、こうして第6A図に近
い分布を生ずる.設計波長よりも長い波長を有する光は
すべて拡散チップの基部端へ案内され、こうして第6C
図に近い分布を生ずる.更に加えて、拡散チップの半径
方向の集光効率は波長に依存する.半径方向の集光効率
は光ファイバー32を通る逆方向に光エネルギーを向け
る能力を測定する.設計波長よりも短い波長を有する光
はすべて拡散チップの全長にわたり集光可能である.設
計波長よりも長い波長を有する光はすべて拡散チップの
長さの部分に集光される. 本発明の拡散チップは直径が小さく柔軟である.それに
加えて、骸拡散チップは破壊に強い.照射パターンはク
ラッドの厚さ及びテーパを適当に選択することにより制
御可能である.ここで本発明の好ましい実施例と考察さ
れたものが示され説明されたが、それの改良及び変更は
、申請の請求により定義された本発明の範囲から逸脱す
ることなく、可能であることは当業者には明白である.
【図面の簡単な説明】
本発明のその他の目的、利点及び可能性とともに本発明
をより良く理解するために、ここに添附された図面が参
照される. 第1図は、本発明による光ファイバー拡散チップを組み
込んだレーザーバルーンカテーテルの分解見取図、 ′s2図は、第1図の2−2の線C沿ったレーザーバル
ーンカテーテルの末端部の拡大断面図、第3図は、本発
明による光ファイバー拡散チップの拡大断面図、 第4図は、第3図の4−4の線に沿った光ファイバー拡
散チップの拡大断面図、 第5A図は、クラッド内へのレーザー照射の貫通を示す
従来の光ファイバーの拡大部分断面図、第5B図は、第
5^図図の従来の光ファイバーにおける半径方向の位置
の関数としてのレーザーの強さを示すグラフ、 第5C図は、クラッドを通るレーザー照射の貫通を示す
本発明の拡散チップの拡大部分断面図、第50図は、第
5C図の拡散チップにおける半径方向の位置の関数とし
てのレーザーの強さを示すグラフ、 第6^−6D図は、異るクラッド構造に対する拡散チッ
プに沿った軸方向の位置の関数としての相対的レーザー
の強さを示すグラフ. lO・・・可撓性チューブ, 12・・・レーザーバル
ーン組立体、14、1G、l8、20・・・コネクタ、
24・・・光ファイバーチップ組立体、2訃・・中央シ
ャフト、28・・・強化スプリング、30・・・バルー
ン、32・・・光ファイバー44・・・コア、46・・
・クラッド、47・・・バッファ、48・・・クラッド
、50・・・ジャケット、52・・・加熱成形チューブ
、54・・・テーパした推移部、60・・・基部端、6
2・・・末端部、68、70、72・・・曲線. Fig. 6A 卸芦的の伜I Fig 6C 坪由方1−744九1L Fig6B 郵オ山の偉置 Fig. 60

Claims (1)

  1. 【特許請求の範囲】 1、レーザーバルーンカテーテルであって、末端と基部
    端とを有する細長い可撓性チューブと、 前記可撓性チューブの末端かそれに近い場所に固定され
    た膨張可能なバルーンと、 前記バルーンを膨張、収縮させる手段と、 前記可撓性チューブを通つて前記バルーン内へレーザー
    照射を運ぶ光ファイバーとを備え、チップ組立体が前記
    バルーン内部に配置され、このチップ組立体は前記バル
    ーン表面の大部分を通って外側へレーザー照射を向ける
    ように前記光ファイバーに連結され、前記チップ組立体
    手段がコアと、該コアの周囲を取り巻くクラッドと、該
    クラッドを取り巻くジャケットとを含み、前記クラッド
    がコアよりも屈折率が低く、前記光ファイバーを通って
    運ばれるレーザー照射の少なくとも一部を伝達するため
    に選択された厚さを有する、レーザーバルーンカテーテ
    ル。 2、請求項1に記載のレーザーバルーンカテーテルにお
    いて、前記クラッドの厚さが、前記チップ組立体手段の
    全長にわたりほぼ均一な軸方向のレーザー照射の分布を
    提供するように選択されることを特徴とするレーザーバ
    ルーンカテーテル。 3、請求項1に記載のレーザーバルーンカテーテルにお
    いて、所望の軸方向の分布パターンを提供するために、
    前記チップ組立体手段の全長にわたり前記クラッドの厚
    さが変化していることを特徴とするレーザーバルーンカ
    テーテル。 4、請求項1に記載のレーザーバルーンカテーテルにお
    いて、前記クラッドが厚い基部端から、薄い末端へとテ
    ーパしていることを特徴とするレーザーバルーンカテー
    テル。 5、前記クラッドが、およそ1.06マイクロメータの
    レーザーの波長に対しておよそ1マイクロメータの厚さ
    であることを特徴とするレーザーバルーンカテーテル。 6、請求項1に記載のレーザーバルーンカテーテルにお
    いて、前記コア及び前記クラッドが溶融シリカからなり
    前記ジャケットがエポキシからなることを特徴とするレ
    ーザーバルーンカテーテル。 7、請求項1に記載のレーザーバルーンカテーテルにお
    いて、前記チップ組立体手段の前記コアが前記光ファイ
    バーのコアと一体であることを特徴とするレーザーバル
    ーンカテーテル。 8、請求項1に記載のレーザーバルーンカテーテルにお
    いて、ほぼ均一の軸方向の分布パターンを提供するため
    に、前記チップ組立体手段の全長にわたり前記クラッド
    がその厚さを変えていることを特徴とするレーザーバル
    ーンカテーテル。 9、請求項1に記載のレーザーバルーンカテーテルにお
    いて、前記チップ組立体手段が、前記チップ組立体手段
    を所望の形状に形成するために、前記ジャケットの周囲
    に加熱成形チューブを更に含むことを特徴とするレーザ
    ーバルーンカテーテル。 10、請求項9に記載のレーザーバルーンカテーテルに
    おいて、前記バルーン内部に中央シャフト手段を更に含
    み、前記チップ組立体手段が前記中央シャフト手段と前
    記バルーン表面との間に配置されていることを特徴とす
    るレーザーバルーンカテーテル。 11、請求項1に記載のレーザーバルーンカテーテルに
    おいて、前記コアと、前記クラッドと、前記ジャケット
    とが前記クラッドを通つてレーザー照射の伝達を生ずる
    ような所定の曲げを有することを特徴とするレーザーバ
    ルーンカテーテル。 12、レーザーバルーンカテーテルであって、末端と基
    部端とを有する細長い可撓性チューブと、 前記可撓性チューブの末端かそれに近い場所に固定され
    た膨張可能なバルーンと、 前記バルーンを膨張、収縮させる手段と、 前記可撓性チューブを通って前記バルーン内へレーザー
    照射を運ぶ光ファイバーとを備え、チップ組立体が前記
    バルーン内部に配置され、前記バルーン表面の大部分を
    通つて外側へレーザー照射を向けるように前記光ファイ
    バーに連結され、前記チップ組立体手段がコアと、該コ
    アの周囲を取り巻くクラッドと、該クラッドを取り巻く
    ジャケットとを含み、前記クラッドがコアよりも屈折率
    が低く、前記光ファイバーを通って運ばれるレーザー照
    射の少なくとも一部を放射するために、選択された厚さ
    を有し、前記レーザー照射が前記コアから前記クラッド
    へと貫通し、前記ジャケットの屈折率が前記コア及び前
    記クラッドの屈折率よりも高く、それにより前記光ファ
    イバーを通って運ばれたレーザー照射が、前記チップ組
    立体手段の全長にわたり前記クラッド及び前記ジャケッ
    トを通って貫通することを特徴とするレーザーバルーン
    カテーテル。 13、レーザーバルーンカテーテルであって、末端と基
    部端とを有する細長い可撓性チューブ前記可撓性チュー
    ブの末端かそれに近い場所に固定された膨張可能なバル
    ーンと、 前記バルーンを膨張、収縮させる手段と、 前記可撓性チューブを通って前記バルーン内へレーザー
    照射を運ぶ光ファイバーとを備え、チップ組立体が前記
    バルーン内部に配置され、前記バルーン表面の大部分を
    通って外側へレーザー照射を向けるように前記光ファイ
    バーに連結され、前記チップ組立体手段がコアと、該コ
    アの周囲を取り巻くクラッドと、該クラッドを取り巻く
    ジャケットとを含み、前記クラッドが前記光ファイバー
    を通して運ばれた前記レーザー照射の第1部分を伝達し
    、前記レーザー照射の第2部分を反射するように選択さ
    れた厚さを有し、それによりレーザー照射が前記チップ
    組立体手段の全長にわたり前記クラッドを通つて貫通す
    るレーザーバルーンカテーテル。 14、レーザー伝達及び拡散組立体であって、レーザー
    照射源に連結するための一端を有する光ファイバーを備
    え、 レーザー照射を外側へ向けるための前記光ファイバーの
    他端に連結されるチップ組立体を備え、前記チップ組立
    体がコアと、前記コアを取り巻くクラッドと、前記クラ
    ッドを取り巻くジャケットとを含み、前記クラッドが前
    記コアよりも屈折率が低く、かつ前記光ファイバーを通
    って運ばれる前記レーザー照射の一部を伝達するために
    選択された厚さを有し、それによりレーザー照射が前記
    チップ組立体の全長にわたり、前記クラッド及び前記ジ
    ャケットを通して貫通するレーザー伝達及び拡散組立体
    。 15、請求項14に記載のレーザー伝達及び拡散組立体
    において、前記クラッドの厚さが、前記チップ組立体の
    全長にわたりほぼ均一な軸方向の分布を提供するように
    選択されることを特徴とするレーザー伝達及び拡散組立
    体。 16、請求項14に記載のレーザー伝達及び拡散組立体
    において、前記クラッドの厚さが前記チップ組立体の全
    長にわたり、所望の軸方向の分布パターンを提供するよ
    うに、変更可能なことを特徴とするレーザー伝達及び拡
    散組立体。 17、請求項14に記載のレーザー伝達及び拡散組立体
    において、前記クラッドがその厚い基部端から薄い末端
    へ向かってテーパしていることを特徴とするレーザー伝
    達及び拡散組立体。 18、請求項14に記載のレーザー伝達及び拡散組立体
    において、前記コア及び前記クラッドが溶融シリカから
    なり、前記ジャケットがエポキシからなることを特徴と
    するレーザー伝達及び拡散組立体。 19、請求項14に記載のレーザー伝達及び拡散組立体
    において、ほぼ均一の軸方向の分布パターンを提供する
    ために、前記チップ組立体の全長にわたり前記クラッド
    がその厚さを変えていることを特徴とするレーザー伝達
    及び拡散組立体。 20、請求項14に記載のレーザー伝達及び拡散組立体
    において、前記光ファイバーがコアを含み、前記チップ
    組立体のコアが前記光ファイバーの前記コアと一体であ
    ることを特徴とするレーザー伝達及び拡散組立体。 21、請求項20に記載のレーザー伝達及び拡散組立体
    において、前記光ファイバーがクラッドを含み、前記チ
    ップ組立体の前記クラッドが前記光ファイバーの前記ク
    ラッドと一体であることを特徴とするレーザー伝達及び
    拡散組立体。 22、請求項14に記載のレーザー伝達及び拡散組立体
    において、前記コアと前記クラッドと前記ジャケットと
    が、前記クラッドを通してレーザー照射を伝達するよう
    な所定の曲げを有していることを特徴とするレーザー伝
    達及び拡散組立体。
JP2135173A 1989-05-26 1990-05-24 均一な照射のための光ファイバー拡散チップ Pending JPH0329644A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US358443 1989-05-26
US07/358,443 US5042980A (en) 1989-05-26 1989-05-26 Optical fiber diffusion tip for uniform illumination

Publications (1)

Publication Number Publication Date
JPH0329644A true JPH0329644A (ja) 1991-02-07

Family

ID=23409676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2135173A Pending JPH0329644A (ja) 1989-05-26 1990-05-24 均一な照射のための光ファイバー拡散チップ

Country Status (4)

Country Link
US (1) US5042980A (ja)
EP (1) EP0400802A3 (ja)
JP (1) JPH0329644A (ja)
CA (1) CA2015554A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445888B1 (ko) * 2001-04-23 2004-08-25 다키겐 세이조 가부시키가이샤 인출회전조작형 문짝용 로크핸들장치
WO2009125767A1 (ja) * 2008-04-07 2009-10-15 学校法人慶應義塾 生体組織に光線を照射するためのコイル状光拡散体及びそれを含む光拡散デバイス
JP2018079136A (ja) * 2016-11-17 2018-05-24 一般財団法人バイオダイナミックス研究所 内視鏡による光照射治療用光照射プローブ

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108407A (en) * 1990-06-08 1992-04-28 Rush-Presbyterian St. Luke's Medical Center Method and apparatus for placement of an embolic coil
US5205836A (en) * 1990-12-13 1993-04-27 Burlington Industries, Inc. Formaldehyde-free textile finish
US6690966B1 (en) * 1991-02-26 2004-02-10 Massachusetts Institute Of Technology Methods of molecular spectroscopy to provide for the diagnosis of tissue
CA2158739C (en) * 1992-03-20 2004-09-21 R. Rox Anderson Laser illuminator
US5354774A (en) * 1992-12-24 1994-10-11 Yale University Inhibition of smooth muscle cell proliferation by 8-methoxypsoralen photoactivated by visible light
US5456245A (en) * 1993-09-20 1995-10-10 Sofamor Danek Properties, Inc. Flexible endoscope probe and method of manufacture
WO1995017924A1 (en) * 1993-12-30 1995-07-06 The General Hospital Corporation Apparatus and methods for laser-induced superficial alteration of a substrate
US5411016A (en) 1994-02-22 1995-05-02 Scimed Life Systems, Inc. Intravascular balloon catheter for use in combination with an angioscope
US5495541A (en) * 1994-04-19 1996-02-27 Murray; Steven C. Optical delivery device with high numerical aperture curved waveguide
US5431647A (en) * 1994-07-13 1995-07-11 Pioneer Optics Company Fiberoptic cylindrical diffuser
US5693049A (en) * 1995-03-03 1997-12-02 Point Source, Inc. Method and apparatus for in vivo blood irradiation
AU718841B2 (en) * 1995-10-31 2000-04-20 Indigo Medical, Incorporated Light-diffusing device for an optical fiber, methods of producing and using same, and apparatus for diffusing light from an optical fiber
US5876426A (en) * 1996-06-13 1999-03-02 Scimed Life Systems, Inc. System and method of providing a blood-free interface for intravascular light delivery
US6004315A (en) * 1996-09-16 1999-12-21 Focal, Inc. Optical fiber diffuser and method of making
ATE236577T1 (de) * 1997-09-26 2003-04-15 Univ Duke Katheter zur perfusion und okklusion
IL123646A (en) 1998-03-11 2010-05-31 Refael Beyar Remote control catheterization
US6113588A (en) * 1998-03-13 2000-09-05 Corvascular, Inc. Transillumination catheter and method
US6126655A (en) 1998-08-11 2000-10-03 The General Hospital Corporation Apparatus and method for selective laser-induced heating of biological tissue
WO2001008576A2 (en) 1999-07-30 2001-02-08 Cardiofocus, Inc. Laser method and apparatus for treatment of tissue
US6366719B1 (en) 2000-08-17 2002-04-02 Miravant Systems, Inc. Photodynamic therapy light diffuser
US6529543B1 (en) 2000-11-21 2003-03-04 The General Hospital Corporation Apparatus for controlling laser penetration depth
US9440046B2 (en) 2002-04-04 2016-09-13 Angiodynamics, Inc. Venous insufficiency treatment method
WO2008124790A2 (en) 2002-07-10 2008-10-16 Angiodynamics, Inc. Device and method for endovascular treatment for causing closure of a blood vessel
US20050027309A1 (en) * 2003-06-17 2005-02-03 Samuel Shiber Guidewire system
US7270656B2 (en) 2003-11-07 2007-09-18 Visualase, Inc. Cooled laser fiber for improved thermal therapy
US7274847B2 (en) * 2004-11-16 2007-09-25 Biotex, Inc. Light diffusing tip
US9403029B2 (en) * 2007-07-18 2016-08-02 Visualase, Inc. Systems and methods for thermal therapy
US9289262B2 (en) 2008-05-19 2016-03-22 Boston Scientific Scimed, Inc. Dielectric coatings for laser fiber and related methods
US20090287200A1 (en) 2008-05-19 2009-11-19 Brian Hanley Side-firing laser fiber with glass fused reflector and capillary and related methods
DE102008058148B4 (de) * 2008-11-20 2010-07-08 Vimecon Gmbh Laserapplikator
WO2011057137A1 (en) 2009-11-05 2011-05-12 Neuronexus Technologies Waveguide neural interface device
US20120303011A1 (en) * 2010-11-27 2012-11-29 Cook Medical Technologies Llc Catheters and Methods for Identification and Treatment of Bodily Passages
AU2012221758B2 (en) 2011-02-24 2017-05-04 Eximo Medical Ltd. Hybrid catheter for tissue resection
US8992513B2 (en) 2011-06-30 2015-03-31 Angiodynamics, Inc Endovascular plasma treatment device and method of use
DE102011085635A1 (de) * 2011-11-02 2013-05-02 Trumpf Laser Gmbh + Co. Kg Optische Transportfaser und Verfahren zu deren Herstellung
WO2014043697A2 (en) * 2012-09-17 2014-03-20 Omniguide, Inc. Devices and methods for laser surgery
EP3152539A4 (en) 2013-06-08 2018-02-21 Université Laval Fiber-optic thermometer
US11172821B2 (en) 2016-04-28 2021-11-16 Medtronic Navigation, Inc. Navigation and local thermometry
CN109414292A (zh) 2016-05-05 2019-03-01 爱克斯莫医疗有限公司 用于切除和/或消融不需要的组织的装置和方法
IT201600113597A1 (it) * 2016-11-10 2018-05-10 Elesta S R L Dispositivo per termoablazione laser con un diffusore elicoidale e apparecchiatura comprendente detto dispositivo
IT201600113583A1 (it) * 2016-11-10 2018-05-10 Elesta S R L Dispositivo per termoablazione laser con un catetere diffondente e apparecchiatura comprendente detto dispositivo
CN110339489B (zh) * 2019-08-09 2020-07-21 尚华 一种新型的血管光纤导丝
WO2022056397A1 (en) * 2020-09-11 2022-03-17 Brian Faircloth Photonic treatment and diagnostic systems and methods

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3641332A (en) * 1969-10-30 1972-02-08 Ebert Michael Fiber optics illumination system
DE7706786U1 (de) * 1977-03-05 1977-06-08 Jenaer Glaswerk Schott & Gen., 6500 Mainz Lichtleitfaser mit querlicht
US4203326A (en) * 1979-01-26 1980-05-20 Electric Power Research Institute, Inc. Method and means for improved optical temperature sensor
US4363533A (en) * 1979-12-26 1982-12-14 Gould Inc. Concentric fiber optical transducer
US4360247A (en) * 1981-01-19 1982-11-23 Gould Inc. Evanescent fiber optic pressure sensor apparatus
US4387954A (en) * 1981-01-19 1983-06-14 Gould Inc. Method for fabricating an optical waveguide evanescent wave coupler having an interleaved film
US4403826A (en) * 1981-03-23 1983-09-13 Bell Telephone Laboratories, Incorporated Ultraviolet radiation detector
US4422719A (en) * 1981-05-07 1983-12-27 Space-Lyte International, Inc. Optical distribution system including light guide
US4466697A (en) * 1981-11-12 1984-08-21 Maurice Daniel Light dispersive optical lightpipes and method of making the same
US4470407A (en) * 1982-03-11 1984-09-11 Laserscope, Inc. Endoscopic device
NZ205144A (en) * 1982-08-26 1987-03-06 Kei Mori Light guide with diffusing strip
US4512762A (en) * 1982-11-23 1985-04-23 The Beth Israel Hospital Association Method of treatment of atherosclerosis and a balloon catheter for same
US4575181A (en) * 1983-04-26 1986-03-11 Tokyo Shibaura Denki Kabushiki Kaisha Optical fiber assembly with cladding light scattering means
GB2154761A (en) * 1984-02-21 1985-09-11 Quentron Optics Pty Ltd Diffusive optical fibre termination
US4693244A (en) * 1984-05-22 1987-09-15 Surgical Laser Technologies, Inc. Medical and surgical laser probe I
JPS6131142A (ja) * 1984-07-25 1986-02-13 富士写真光機株式会社 血管吻合用レ−ザ−プロ−ブ
US4679894A (en) * 1984-08-20 1987-07-14 Litton Systems, Inc. Electrically switched fiber optic directional coupler
JPH0741082B2 (ja) * 1984-09-14 1995-05-10 オリンパス光学工業株式会社 レ−ザプロ−ブ
US4799479A (en) * 1984-10-24 1989-01-24 The Beth Israel Hospital Association Method and apparatus for angioplasty
US4660925A (en) * 1985-04-29 1987-04-28 Laser Therapeutics, Inc. Apparatus for producing a cylindrical pattern of light and method of manufacture
US4693556A (en) * 1985-06-04 1987-09-15 Laser Therapeutics, Inc. Apparatus for producing a spherical pattern of light and method of manufacture
JPH059688Y2 (ja) * 1985-09-02 1993-03-10
US4784133A (en) * 1987-01-28 1988-11-15 Mackin Robert A Working well balloon angioscope and method
US4770653A (en) * 1987-06-25 1988-09-13 Medilase, Inc. Laser angioplasty
JPH0725725B2 (ja) * 1987-07-23 1995-03-22 保土谷化学工業株式会社 ベンズアミド誘導体
US4878492A (en) * 1987-10-08 1989-11-07 C. R. Bard, Inc. Laser balloon catheter
EP0355996A3 (en) * 1988-07-21 1990-05-02 Advanced Interventional Systems, Inc. Guidance and delivery system for high-energy pulsed laser light and endoscope

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445888B1 (ko) * 2001-04-23 2004-08-25 다키겐 세이조 가부시키가이샤 인출회전조작형 문짝용 로크핸들장치
WO2009125767A1 (ja) * 2008-04-07 2009-10-15 学校法人慶應義塾 生体組織に光線を照射するためのコイル状光拡散体及びそれを含む光拡散デバイス
JP2009247629A (ja) * 2008-04-07 2009-10-29 Keio Gijuku 生体組織に光線を照射するためのコイル状光拡散体及びそれを含む光拡散デバイス
JP2018079136A (ja) * 2016-11-17 2018-05-24 一般財団法人バイオダイナミックス研究所 内視鏡による光照射治療用光照射プローブ
WO2018092814A1 (ja) * 2016-11-17 2018-05-24 一般財団法人バイオダイナミックス研究所 内視鏡による光照射治療用光照射プローブ
AU2017361183B2 (en) * 2016-11-17 2020-07-30 Biodynamic Research Foundation Light radiating probe for photodynamic therapy employing endoscope

Also Published As

Publication number Publication date
EP0400802A2 (en) 1990-12-05
US5042980A (en) 1991-08-27
CA2015554A1 (en) 1990-11-26
EP0400802A3 (en) 1991-04-10

Similar Documents

Publication Publication Date Title
JPH0329644A (ja) 均一な照射のための光ファイバー拡散チップ
US5207669A (en) Optical fiber diffusion tip for uniform illumination
US4878492A (en) Laser balloon catheter
US8647335B2 (en) Laser applicator
ES2254609T3 (es) Fibra optica que incluye una parte difusora y un manguito continuo para la transmision de la luz.
US5133709A (en) Optical fiber with atraumatic rounded end for use in laser angioplasty
EP0566873B1 (en) Two-piece tip for fiber optic catheter
US4773413A (en) Localized heat applying medical device
US5537499A (en) Side-firing laser optical fiber probe and method of making same
US6418252B1 (en) Light diffusing fiber optic chamber
US20070179488A1 (en) Diffuser assembly for controlling a light intensity profile
EP0325836A2 (en) Laser tipped catheter
WO1994025098A1 (en) A balloon catheter system with diffusing tip
JPH06343651A (ja) 柔軟組織のレーザ手術のためのファイバーオプティック・プローブ
JP2005205197A (ja) 改良された先端ディフューザーを有するレーザー装置用の光ファイバー及びその製造方法
JP2005237949A (ja) 改良されたディフューザースラグを有するレーザー装置用の光ファイバー及びその製造方法
JP2005227272A (ja) 改良された先端ディフューザーを有するレーザー装置用の光ファイバー及びその製造方法
US11690673B2 (en) Device for treatment of body tissue
JPH0363377B2 (ja)
GB2210560A (en) Laser surgical instruments
JP2022138015A (ja) 医療用光ファイバプローブ
JPH0578801B2 (ja)
JPH04166168A (ja) アテローム除去装置