WO2018092556A1 - ガラス基板の製造方法 - Google Patents

ガラス基板の製造方法 Download PDF

Info

Publication number
WO2018092556A1
WO2018092556A1 PCT/JP2017/039032 JP2017039032W WO2018092556A1 WO 2018092556 A1 WO2018092556 A1 WO 2018092556A1 JP 2017039032 W JP2017039032 W JP 2017039032W WO 2018092556 A1 WO2018092556 A1 WO 2018092556A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
purge gas
processing space
gas
processing
Prior art date
Application number
PCT/JP2017/039032
Other languages
English (en)
French (fr)
Inventor
弘樹 中塚
好晴 山本
大野 和宏
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to KR1020197007165A priority Critical patent/KR102373650B1/ko
Priority to JP2018551555A priority patent/JP6905672B2/ja
Priority to CN201780059814.4A priority patent/CN109790064B/zh
Publication of WO2018092556A1 publication Critical patent/WO2018092556A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/063Transporting devices for sheet glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Definitions

  • the present invention relates to a method for manufacturing a glass substrate including a step of etching the lower surface of the glass substrate with a processing gas such as hydrogen fluoride while transporting the glass substrate in a flat position.
  • a processing gas such as hydrogen fluoride
  • glass substrates are used in a wide variety of electronic devices, including flat panel displays such as liquid crystal displays, plasma displays, organic EL displays, field emission displays, and mobile terminals such as smartphones and tablet PCs. Has been adopted.
  • problems caused by static electricity may occur.
  • the glass substrate when the glass substrate is placed on a support base so as to perform a predetermined process, the glass substrate may stick to the support base due to static electricity. In such a case, the glass substrate may be damaged when the processed glass substrate is lifted from the support base.
  • Patent Document 1 discloses an example of a technique for performing an etching process on the surface of a glass substrate.
  • a processing gas (reactive gas in this document) is supplied by a processing device (surface processing device in this document) disposed on the transport path while transporting a glass substrate in a flat position. ), Only the lower surface of the upper and lower surfaces of the glass substrate is etched.
  • the processing device used in this method includes an upper structure (top plate in the same document) and a lower structure (bottom structure in the same document) that are opposed to each other with the conveyance path of the glass substrate interposed therebetween.
  • a processing space (reaction chamber in this document) for performing an etching process between the structures is formed.
  • the lower structure includes an air supply port for supplying a processing gas to the processing space and an exhaust port for exhausting the processing gas from the processing space.
  • the processing gas is supplied from the supply port to the processing space, and the processing gas is exhausted from the processing space by the exhaust port, and the etching process is performed on the lower surface of the glass substrate that passes through the processing space along with the conveyance.
  • a purge gas in this document, a replacement gas
  • a replacement gas is injected in order to prevent the processing gas that should roughen only the lower surface of the glass substrate from roughening the upper surface.
  • the purge gas is injected toward the downstream side in the conveyance direction of the glass substrate, and flows along the conveyance direction in a gap formed between the portion of the glass substrate that has entered the processing space and the upper structure. Is forming. Then, the pressure of the purge gas flowing through the gap prevents the processing gas from entering the gap from the front side of the glass substrate, thereby preventing the upper surface from being roughened.
  • the purge gas is injected even after the last part of the glass substrate enters the processing space.
  • the processing gas blown by the pressure of the purge gas flows into the gap from the rear side of the last part that has entered the processing space, and unduly roughens the upper surface of the last part, so that the glass substrate There was a problem that quality deteriorated.
  • the present invention made in view of the above circumstances is technical to prevent deterioration of the quality of the glass substrate when the lower surface of the glass substrate is etched with the processing gas while the glass substrate is transported in a flat position. Let it be an issue.
  • the present invention transports a glass substrate in a flat position so as to pass through a processing space formed between an upper structure and a lower structure that are arranged to face each other.
  • the etching process is performed on the lower surface of the glass substrate with the processing gas supplied to the processing space from the air supply port provided in the lower structure while being conveyed in the direction, the portion of the glass substrate that has entered the processing space and the upper structure
  • a method for manufacturing a glass substrate wherein a first purge gas is jetted toward a downstream side in a transport direction so that a flow of a first purge gas along a transport direction is formed in a gap formed between the body and the body. The first purge gas is stopped before the last part of the glass substrate enters the processing space.
  • the injection of the first purge gas is stopped before the last part of the glass substrate enters the processing space.
  • the processing gas blown by the pressure of the first purge gas is separated from the rear side of the last part by a gap (a part of the glass substrate that has entered the processing space and the upper structure).
  • the occurrence of a situation that flows into the upper gap) is inevitably prevented.
  • the upper surface of the rearmost part is not unduly roughened, and it becomes possible to prevent the quality of the glass substrate from being deteriorated.
  • the first purge gas flow can already be formed in the upper gap immediately after the top of the glass substrate enters the processing space. As a result, it is possible to reliably avoid the occurrence of a situation in which the top surface of the leading portion is unduly roughened. Therefore, it is further advantageous in preventing deterioration of the quality of the glass substrate.
  • the injection of the first purge gas is stopped after the leading portion of the glass substrate escapes from the processing space. It is preferable.
  • the processing space It is placed in a state where the entire length is divided up and down by a glass substrate. And since the flow of the 1st purge gas is formed in the upper side of the divided processing space, that is, the upper gap, there is no processing gas in the upper gap. In addition to this, the processing gas hardly flows from the lower side to the upper side (upper gap) of the divided processing space. From the above, it is possible to avoid roughening of the upper surface after the first portion escape time even if the first purge gas is not injected. Manufacturing cost can be suppressed.
  • the second purge gas flow along the direction opposite to the transport direction is formed in the upper gap between the time when the last part of the glass substrate enters the processing space and the time when it exits. It is preferable to inject the second purge gas toward the upstream side in the transport direction.
  • the process gas is moved from the rear side of the last part to the upper gap by the flow of the second purge gas formed in the upper gap until the last part of the glass substrate enters the process space and then escapes. Occurrence of an inflow situation can be prevented more reliably. As a result, it is possible to more suitably prevent deterioration of the quality of the glass substrate.
  • the present invention it is possible to prevent deterioration of the quality of the glass substrate when the lower surface of the glass substrate is etched with the processing gas while the glass substrate is transported in a flat position.
  • the transport direction of the glass substrate (the direction from right to left in FIG. 1) is referred to as “transport direction”.
  • the width direction of the glass substrate perpendicular to the transport direction (in FIG. 1, the direction perpendicular to the paper surface) is expressed as “width direction”, and the length along the “width direction” is expressed as “full width” or “width”. It is written as “Dimension”.
  • a direction perpendicular to the upper and lower surfaces of the glass substrate is denoted as “vertical direction”.
  • a glass substrate manufacturing apparatus 1 includes a conveying means 3 for horizontally conveying a glass substrate 2 in a flat position, and a processing gas 4 (with respect to a lower surface 2a of the glass substrate 2 being conveyed.
  • a processing device 5 for performing an etching process using hydrogen fluoride), and a first purge gas 6 and a second purge gas 23 (see FIG. 6) for preventing the etching process on the upper surface 2b of the glass substrate 2 are provided.
  • Each has a first purge gas injection nozzle 7 and a second purge gas injection nozzle 24 for injecting, a carry-in port 8aa and a carry-out port 8ab of the glass substrate 2, and the processing gas 4 leaks to the outside from the space 9 formed inside itself.
  • a first dummy processor 10 disposed between the processing unit 5 and the outlet 8ab on the conveyance path of the glass substrate 2; The product generated by the reaction between the second dummy processor 11 disposed between the processor 5 and the carry-in port 8aa, the process gas 4 and the lower surface 2a of the glass substrate 2 is sucked out of the chamber 8.
  • a suction nozzle 12 for discharging is provided as a main component.
  • the transport means 3 is composed of a plurality of rollers 3 a arranged on the transport path of the glass substrate 2. With the plurality of rollers 3a, the glass substrate 2 can be transported along a transport path extending in a straight line. Between the rollers 3a adjacent to each other along the transport direction, the entire width of the lower surface 2a of the glass substrate 2 is exposed. The exposed lower surface 2a reacts with the processing gas 4, whereby an etching process is performed to roughen the entire width of the lower surface 2a.
  • a conveyance means 3 you may use things other than the some roller 3a, and if it can expose the full width of the lower surface 2a of the glass substrate 2 during conveyance, other things will be used. Also good.
  • the processor 5 prevents the main body part 5a as a lower structural body facing the transport path of the glass substrate 2 from above and below, the top plate part 5b as an upper structural body, and bending due to the weight of the top plate part 5b. H steel 5c as a reinforcing member for this purpose.
  • a processing space 13 for performing an etching process on the glass substrate 2 passing therethrough is formed between the main body 5a and the top plate 5b. This processing space 13 is formed as a flat space.
  • the width dimension W1 (refer to FIG. 2) of the processing space 13 and the thickness dimension T1 along the vertical direction are larger than the total width W2 (refer to FIG. 2) of the glass substrate 2 and the thickness T2 of the glass substrate 2, respectively. It is getting bigger.
  • the length L1 of the processing space 13 along the conveyance direction is preferably in the range of 300 mm to 2000 mm, and more preferably in the range of 600 mm to 1000 mm.
  • the length dimension L ⁇ b> 1 is preferably longer than the length along the conveyance direction of the glass substrate 2, unlike the embodiment in the present embodiment.
  • the thickness T1 of the processing space 13 is preferably in the range of 4 mm to 30 mm. Further, the ratio of the length dimension L1 to the thickness dimension T1 (length dimension L1 / thickness dimension T1) is preferably in the range of 10 to 250.
  • the main body 5a has a rectangular parallelepiped outer shape.
  • the main body 5a includes an air supply port 14 for injecting and supplying the processing gas 4 to the processing space 13, an exhaust port 15 for sucking and exhausting the processing gas 4 from the processing space 13, and a processing space. 13 is provided with heating means (not shown) such as a heater for heating the processing gas 4 supplied to 13 and preventing condensation due to the processing gas 4.
  • the exhaust port 15 is disposed at each of an upstream end and a downstream end of the main body 5a in the transport direction.
  • a plurality (three in the present embodiment) of the air supply ports 14 are arranged along the transport direction between the exhaust port 15 at the upstream end and the exhaust port 15 at the downstream end. Yes.
  • the most downstream air supply port 14 in the transport direction has the highest flow rate of the processing gas 4 supplied to the processing space 13.
  • other air supply ports The processing gas 4 having a flow rate twice that of the port 14 is supplied.
  • the concentration of the process gas 4 to be supplied is the same between the plurality of supply ports 14.
  • Each air supply port 14 is connected to the processing space 13 between the rollers 3a adjacent to each other along the transport direction. Further, the flow rate of the processing gas 4 supplied from each air supply port 14 is constant per unit time.
  • the distance L2 from the most upstream side air supply port 14 to the central air supply port 14 and the distance from the central air supply port 14 to the most downstream side air supply port 14 It is equal to L3.
  • three air inlets 14 are arranged, but the present invention is not limited to this, and two may be arranged, or four or more may be arranged.
  • Each of the exhaust port 15 at the upstream end and the exhaust port 15 at the downstream end can send the processing gas 4 sucked from the processing space 13 into the space 16 formed inside the main body 5a.
  • the space 16 is connected to an exhaust pipe 17 connected to a cleaning dust collector (not shown) disposed outside the chamber 8.
  • a cleaning dust collector not shown
  • the exhaust pipe 17 is connected to the downstream end of the space 16 in the transport direction.
  • the exhaust port 15 at the upstream end and the exhaust port 15 at the downstream end have a gas to be exhausted ("gas" is not only the process gas 4 but also drawn into the process space 13 from the outside, A mechanism for individually adjusting the flow rate of air (including air sucked into the exhaust port 15) may be provided.
  • the exhaust port 15 is omitted by closing the opening connected to the processing space 13 of the exhaust port 15, removing the portion constituting the exhaust port 15 from the main body 5 a, and closing the hole communicating with the space 16. It is also possible to do.
  • the flow rate of the gas exhausted from the processing space 13 by each exhaust port 15 is larger than the flow rate of the processing gas 4 supplied from the respective supply ports 14 to the processing space 13.
  • the flow rate of the gas exhausted from each exhaust port 15 is constant per unit time.
  • the downstream end exhaust port 15 and the most downstream side exhaust distance 15 between the upstream end exhaust port 15 and the most upstream air supply port 14 are compared with each other.
  • the distance D2 between the air supply port 14 is longer.
  • the length of the mutual distance D2 is preferably 1.2 times or more of the length of the mutual distance D1, more preferably 1.5 times or more, and most preferably 2 times or more.
  • both the air supply port 14 and the exhaust port 15 are formed in a slit shape that is long in the width direction.
  • the width dimension of the air supply port 14 may be slightly shorter than the entire width of the glass substrate 2 or, unlike the figure, slightly longer than the entire width of the glass substrate 2. It may be.
  • the width dimension of the exhaust port 15 is slightly longer than the entire width of the glass substrate 2.
  • the opening length S1 along the transport direction of the air supply port 14 is preferably within a range of 0.5 mm to 5 mm. .
  • the opening length along the conveyance direction of the exhaust port 15 is longer than the opening length S1 along the conveyance direction of the air supply port 14. Furthermore, in order to avoid that the suction of gas through the exhaust port 15 hinders the execution of the smooth etching process, a distance L4 from the upstream end edge 5aa of the main body 5a to the exhaust port 15 at the upstream end, The distance L4 from the downstream edge 5ab to the exhaust port 15 at the downstream end is preferably in the range of 1 mm to 20 mm in common.
  • a top portion of the main body portion 5 a that faces the lower surface 2 a of the glass substrate 2 that is passing through the processing space 13 is a plurality of units (in this embodiment, arranged in a gap along the transport direction). And includes an air supply unit 18 and a connection unit 19 described later).
  • the plurality of units constitute the top of the main body 5a and the ceiling of the space 16 described above.
  • the plurality of units include an air supply unit 18 in which the air supply port 14 is formed and a connection unit 19 in which the air supply port 14 is not formed (in FIG. 2, the connection to the air supply unit 18 is made) Each unit 19 is surrounded by a thick line).
  • the air supply units 18 are arranged at the second, fourth, and sixth positions from the upstream side in the transport direction.
  • the connection units 19 are arranged at the first, third, fifth, seventh, and eighth positions from the upstream side in the transport direction.
  • the air supply unit 18 includes an air supply nozzle 18 a connected to the air supply port 14, and the air supply nozzle 18 a is connected to a generator (not shown) of the processing gas 4 disposed outside the chamber 8. Yes.
  • the connection unit 19 connects between the adjacent air supply units 18 and between the air supply unit 18 and the exhaust port 15.
  • connection unit 19 (19x) existing at the first position (the position on the most upstream side) from the upstream side in the transport direction is fixedly disposed at the position.
  • connection unit 19 located at the third, fifth, seventh, and eighth positions from the upstream side is described later in which an exhaust port 20a is formed instead of the air supply unit 18 or the air supply port 14.
  • the exhaust unit 20 in FIG. 1, the exhaust unit 20 is not used
  • the air supply unit 18 located at the second, fourth, and sixth positions from the upstream side can be replaced with the connection unit 19 or the exhaust unit 20 described later.
  • the process gas 4 can be exhausted from other than the exhaust ports 15 and 15 at the upstream end and the downstream end.
  • replacement of these units will be described with reference to FIGS. 3a to 3d.
  • the air supply unit 18, the connection unit 19, and the exhaust unit 20, which are surrounded by a thick line, have the same length along the transport direction.
  • the newly placed unit is connected to both adjacent units (in FIG. 3a to FIG. 3c, both adjacent units are connected to each other).
  • the unit 19 can be arranged with no gap.
  • the newly arranged units can be arranged with no step in the vertical direction with both adjacent units.
  • the peripheral region 14a of the air supply port 14 in the air supply unit 18 is positioned higher in the vertical direction than the other regions.
  • the distance from the lower surface 2a of the glass substrate 2 that is passing through the processing space 13 is shorter than in other regions.
  • the separation distance from the lower surface 2a of the glass substrate 2 in the peripheral region 14a of the air supply port 14 is half of the separation distance from the lower surface 2a of the glass substrate 2 in other regions. ing.
  • the tip of the air supply port 14 (outflow port of the processing gas 4) is close to the lower surface 2 a of the glass substrate 2 because the separation distance is shortened. Further, as shown in FIG.
  • the exhaust port 20 a formed in the exhaust unit 20 is connected to the space 16.
  • the processing gas 4 sent from the processing space 13 to the space 16 through the exhaust port 20a is then exhausted from the space 16 to the cleaning dust collector through the exhaust pipe 17.
  • the exhaust port 20a is formed in a slit shape that is long in the width direction, like the exhaust port 15 at the upstream end and the exhaust port 15 at the downstream end.
  • the peripheral region 14a of the air supply port 14 in the air supply unit 18 may have the same height as other regions.
  • the top plate portion 5 b is a single plate (rectangular plate in plan view), and has a flat surface facing the upper surface 2 b of the glass substrate 2 passing through the processing space 13.
  • the top plate part 5b incorporates heating means (not shown) such as a heater for preventing condensation due to the processing gas 4.
  • the H steel 5c is installed so as to extend in the width direction on the top plate portion 5b. Further, a plurality of H steels 5c (three in this embodiment) are installed, and the plurality of H steels 5c are arranged at equal intervals in the transport direction.
  • the first purge gas injection nozzle 7 is disposed upstream of the processing unit 5 in the transport direction and above the transport path of the glass substrate 2.
  • the flow of the first purge gas 6 along the transport direction is formed in a gap 13a formed between a portion of the glass substrate 2 that has entered the processing space 13 and the top plate portion 5b.
  • the first purge gas 6 can be injected toward the downstream side in the transport direction.
  • the flow of the first purge gas 6 can be formed over the entire width of the gap 13a.
  • the first purge gas 6 is injected so that the flow velocity along the transport direction is faster than the transport speed of the glass substrate 2 by the transport means 3.
  • the processing gas 4 that is about to flow into the gap 13 a from the top portion 2 f side is moved in the transport direction by the pressure of the first purge gas 6. It is possible to drive downstream and prevent inflow into the gap 13a. And the roughening of the upper surface 2b of the glass substrate 2 is avoided.
  • clean dry air (CDA) is used as the first purge gas 6.
  • the timing for starting and stopping the injection of the first purge gas 6 is determined as follows. First, detection means (not shown) such as a sensor that can detect the passage of the front portion 2f and the rearmost portion 2e of the glass substrate 2 is arranged upstream of the first purge gas injection nozzle 7 in the transport direction. Yes.
  • the first purge gas 6 is detected based on the conveying speed of the glass substrate 2 and the distance along the conveying path from the leading portion 2f to the processing space 13.
  • the timing for starting the injection is determined.
  • the detection means detects the passage of the last part 2e the timing for stopping the injection is determined based on the transport speed and the distance from the last part 2e to the processing space 13.
  • the first purge gas injection nozzle 7 includes a cylindrical pipe 7a extending in the width direction.
  • a plurality of tubes 7b are inserted into the pipe 7a at intervals in the width direction.
  • the first purge gas 6 can be supplied from each tube 7b into the pipe 7a.
  • a plate body 7c that is long in the width direction is attached to the inside of the pipe 7a, and the first purge gas 6 that flows into the pipe 7a from each tube 7b wraps around the plate body 7c. Thereafter, the fuel is injected from an injection portion 7d connected to the pipe 7a.
  • the injection port of the first purge gas 6 formed in the injection unit 7d is formed in a slit shape that is long in the width direction.
  • the injection angle ⁇ of the first purge gas 6 by the injection unit 7d (the angle at which the injection unit 7d is directed with respect to the upper surface 2b of the glass substrate 2) can be changed within a range of 25 ° to 70 °. It has become. Further, the posture of the first purge gas injection nozzle 7 can be adjusted so that the injection portion 7d is directed in the processing space 13 as shown by a solid line in FIG. As shown, it is possible to adjust the injection unit 7d so that it is directed outside the processing space 13.
  • the second purge gas injection nozzle 24 is disposed downstream of the processing unit 5 in the transport direction and above the transport path of the glass substrate 2.
  • the second purge gas injection nozzle 24 injects the second purge gas 23 toward the upstream side in the transport direction so that the flow of the second purge gas 23 along the direction opposite to the transport direction is formed in the gap 13a. It is possible.
  • the flow of the second purge gas 23 can be formed over the entire width of the gap 13a.
  • clean dry air is used as the second purge gas 23 in the same manner as the first purge gas 6.
  • the second purge gas 23 After the injection of the first purge gas 6 is stopped, the second purge gas 23 starts to be injected immediately before the last part 2e of the glass substrate 2 being transferred enters the processing space 13. Further, as shown in FIG. 7, the second purge gas 23 is stopped from being injected immediately after the last part 2 e of the glass substrate 2 being transferred escapes from the processing space 13.
  • the timing for starting and stopping the injection of the second purge gas 23 is determined by the above detection means or new detection means (not shown) such as a sensor disposed downstream of the second purge gas injection nozzle 24 in the transport direction. ) And the like may be determined by detecting the passage of the rearmost part 2e of the glass substrate 2.
  • the second purge gas injection nozzle 24 can be a nozzle having the same structure as the first purge gas injection nozzle 7 except for the arrangement and orientation of the first purge gas injection nozzle 7. Therefore, the description of the structure of the second purge gas injection nozzle 24 is omitted.
  • the chamber 8 has a rectangular parallelepiped outer shape.
  • the chamber 8 includes a main body 8a in which a ceiling hole 8ac is formed, and a lid body 8b for closing the ceiling hole 8ac in addition to the carry-in port 8aa and the carry-out port 8ab.
  • the carry-in port 8aa and the carry-out port 8ab are formed in the side wall 8ad of the main body 8a and are formed as flat openings that are elongated along the width direction.
  • a plurality of ceiling holes 8ac (three in the present embodiment) are formed in the ceiling portion 8ae of the main body 8a.
  • the lid 8b can block the entire opening of the ceiling hole 8ac, and can be attached to the main body 8a and removed from the main body 8a. Thereby, by removing the lid 8b from the main body 8a and opening the ceiling hole 8ac, it is possible to perform operations such as adjustment, maintenance, and inspection of the processor 5 through the ceiling hole 8ac.
  • the first dummy processor 10 includes a rectangular parallelepiped box 10a disposed below the transport path of the glass substrate 2, a top plate 10b disposed above the transport path so as to face the box 10a, H steel 10c as a reinforcing member for preventing bending due to its own weight of the plate 10b is provided. A gap 21 for passing the glass substrate 2 is formed between the box 10a and the top plate 10b.
  • the first dummy processor 10 functions as a windproof member for avoiding that the airflow flowing into the chamber 8 from the carry-out port 8ab reaches the processing space 13 and adversely affects the etching process.
  • the length of the first dummy processor 10 along the transport direction is preferably 50 mm or more, and more preferably 100 mm or more.
  • a rectangular opening 10aa elongated in the width direction is formed at the upper end of the box 10a.
  • an exhaust pipe 22 connected to a cleaning dust collector (not shown) arranged outside the chamber 8 is connected to the bottom of the box 10a.
  • the first dummy processor 10 draws the processing gas 4 from the processing space 13 to the downstream side in the transport direction by being dragged to the lower surface 2a of the glass substrate 2 through the opening 10aa. It is possible to exhaust to the cleaning dust collector after suction.
  • the top plate 10 b is a single plate (a rectangular plate in plan view) and has a flat surface facing the upper surface 2 b of the glass substrate 2 that is passing through the gap 21.
  • the H steel 10c is installed so as to extend in the width direction on the top plate 10b.
  • the first dummy processor 10 has the same outer shape as the processor 5 when viewed from the direction along the transport direction, and is arranged so as to be seen overlapping the processor 5. In other words, the width dimension and the dimension along the vertical direction are the same between the main body 5a of the processor 5 and the box 10a of the first dummy processor 10. Similarly, (A) the top plate portion 5b of the processor 5 and the top plate 10b of the first dummy processor 10, (B) the H steel 5c of the processor 5 and the H steel 10c of the first dummy processor 10, ( C) The gap 21 between the processing space 13 of the processor 5 and the first dummy processor 10, and the width dimension and the dimension along the vertical direction are the same among the combinations of these (A) to (C). Has been.
  • the second dummy processor 11 has the same configuration as the first dummy processor 10 except for the following two points (1) and (2). For this reason, the same code
  • the arrangement differs from the first dummy processor 10. (2) It functions as a windproof member for avoiding that the airflow that has flowed into the chamber 8 from the carry-in port 8aa instead of the carry-out port 8ab reaches the processing space 13 and adversely affects the etching process.
  • the second dummy processor 11 has the same external shape as the processor 5 when viewed from the direction along the transport direction in the same manner as the first dummy processor 10, and overlaps the processor 5 when viewed. It is arranged so that
  • the suction nozzle 12 is attached to the ceiling 8 ae of the chamber 8, and the suction port 12 a is connected to the space 9.
  • the suction port 12a is disposed downstream of the first dummy processor 10 in the transport direction, and is disposed at the downstream end of the space 9 in the transport direction.
  • the suction nozzle 12 is connected to a cleaning dust collecting device (not shown) disposed outside the chamber 8, and the sucked product can be discharged to the cleaning dust collecting device.
  • the suction port 12a is not limited to the same arrangement as in the present embodiment, and may be arranged above the conveyance path of the glass substrate 2.
  • the suction port 12 a is arranged in the transport direction from the processor 5 even when the suction port 12 a is arranged differently from the present embodiment. Also, it is preferable to arrange them on the downstream side.
  • the glass substrate 2 is carried by the carrying means 3, thereby carrying the glass substrate 2 into the chamber 8 from the carry-in port 8aa.
  • the glass substrate 2 having a longer overall length along the transport path than the distance is set as a target for the etching process with reference to the distance along the transport path from the carry-in port 8aa to the carry-out port 8ab.
  • the glass substrate 2 is transported at a constant transport speed.
  • the gap 21 of the second dummy processor 11 disposed between the inlet 8aa and the processor 5 is passed through the glass substrate 2 after the introduction.
  • the gas that flows into the chamber 8 from the carry-in port 8aa and flows downstream along the lower surface 2a of the glass substrate 2 in the carrying direction is an exhaust gas that continues to the bottom of the box 10a of the second dummy processor 11. Aspirate with tube 22.
  • the second dummy processor 11 to function as a windproof member, the gas flowing into the chamber 8 from the carry-in port 8aa is prevented from reaching the processing space 13 of the processor 5.
  • the processing space 13 of the processor 5 is passed through the glass substrate 2 after passing through the gap 21 of the second dummy processor 11.
  • the injection of the first purge gas 6 is started immediately before the leading portion 2 f of the glass substrate 2 enters the processing space 13.
  • the processing gas 4 supplied by each air supply port 14, the upstream end portion and the downstream end portion The processing gas 4 is exhausted from the processing space 13 through each exhaust port 15.
  • the injection of the first purge gas 6 is stopped immediately before the last portion 2e of the glass substrate 2 enters the processing space 13, but the present invention is not limited to this. . If the top portion 2 f of the glass substrate 2 has escaped from the processing space 13, the injection of the first purge gas 6 is stopped before immediately before the last portion 2 e of the glass substrate 2 enters the processing space 13. Alternatively, the injection of the first purge gas 6 may be stopped immediately after the leading portion 2f of the glass substrate 2 escapes from the processing space 13.
  • the injection of the second purge gas 23 is started instead of the first purge gas 6. Accordingly, on the upper surface 2 b side of the glass substrate 2 passing through the processing space 13, the second purge gas 23 formed in the gap 13 a tries to flow into the gap 13 a from the rearmost part 2 e side of the glass substrate 2. The etching process on the upper surface 2b by the processing gas 4 is prevented. On the other hand, on the lower surface 2 a side of the glass substrate 2 passing through the processing space 13, the upstream end portion and the downstream end portion are continuously etched while the lower surface 2 a is subjected to the etching process by the processing gas 4 supplied from each air supply port 14. The processing gas 4 is exhausted from the processing space 13 through the respective exhaust ports 15. The second purge gas 23 stops spraying immediately after the last part 2e of the glass substrate 2 escapes from the processing space 13.
  • the second purge gas 23 is started to be injected immediately before the last part 2e of the glass substrate 2 enters the processing space 13, and stopped immediately after it escapes.
  • the second purge gas 23 may be jetted at least from the time when the last portion 2e of the glass substrate 2 enters the processing space 13 until the time when it escapes.
  • the injection of the second purge gas 23 is started immediately after the injection of the first purge gas 6 is stopped, but the present invention is not limited to this.
  • the injection of the second purge gas 23 may be started after a predetermined time has elapsed after stopping the injection of the first purge gas 6. Thereby, it is possible to prevent the first purge gas 6 and the second purge gas 23 from colliding in the processing space 13 and disturbing the airflow in the processing space 13. Moreover, the usage-amount of the 1st purge gas 6 and the 2nd purge gas 23 can also be saved.
  • the first purge gas 6 and the second purge gas 23 travel around the upper surface 2b side of the processing gas 4 from the lower surface 2a side of the glass substrate 2 via the side surface in the transport direction (through the end in the width direction of the glass substrate 2). It is thought that there is also an effect of preventing intrusion. From these points of view, the predetermined time from the stop of the injection of the first purge gas 6 to the start of the injection of the second purge gas 23 prevents the above-described wraparound while preventing the collision of the gases in the processing space 13. Is preferably as short as possible, preferably 0.5 seconds to 2 seconds, and more preferably 0.5 seconds to 1 second.
  • the above-mentioned predetermined time is preferably as long as possible, and immediately after the top portion 2f of the glass substrate 2 escapes from the processing space 13. It is preferable to secure the predetermined time so that the injection of the first purge gas 6 is stopped and the injection of the second purge gas 23 is started immediately before the last portion 2 e of the glass substrate 2 enters the processing space 13.
  • the injection of the first purge gas 6 is stopped immediately before the last portion 2e of the glass substrate 2 enters the processing space 13, and the injection time of the first purge gas 6 is longer.
  • the mode is longer than the injection time of the second purge gas 23, but is not limited thereto.
  • the injection of the first purge gas 6 is stopped, and immediately after that, the injection of the second purge gas 23 is started.
  • the injection time of the second purge gas 23 may be lengthened.
  • the injection time of the first purge gas 6 and the injection time of the second purge gas 23 may be the same time.
  • the injection time of the first purge gas 6 may be longer than the injection time of the second purge glass 23 while conversely securing the predetermined time described above, and conversely may be shortened.
  • the gap 21 of the first dummy processor 10 disposed between the processor 5 and the carry-out port 8ab is passed through the glass substrate 2 after the etching process that has passed through the processing space 13 of the processor 5.
  • the gas flowing into the chamber 8 from the carry-out port 8ab and flowing upstream along the lower surface 2a of the glass substrate 2 in the conveyance direction is exhaust gas connected to the bottom of the box 10a of the first dummy processor 10. Aspirate with tube 22.
  • the exhaust pipe 22 draws the processing gas 4 dragged to the lower surface 2 a of the glass substrate 2 and flows out of the processing space 13 to the downstream side in the transport direction, and exhausts it outside the chamber 8.
  • the glass substrate 2 after passing through the gap 21 of the first dummy processor 10 is carried out of the chamber 8 from the carry-out port 8ab. And the glass substrate 2 by which the etching process was performed to the lower surface 2a is obtained.
  • the glass substrate manufacturing method according to the embodiment of the present invention is thus completed.
  • the injection of the first purge gas 6 is stopped before the rearmost part 2e of the glass substrate 2 enters the processing space 13.
  • the processing gas 4 burned by the pressure of the first purge gas 6 flows into the gap 13a from the rear side of the last part 2e. Is prevented.
  • the upper surface 2b of the rearmost part 2e is not unduly roughened, and the quality of the glass substrate 2 can be prevented from deteriorating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Surface Treatment Of Glass (AREA)
  • Cleaning In General (AREA)
  • Liquid Crystal (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

対向させて配置した本体部5aと天板部5bとの相互間に形成される処理空間13を通過するようにガラス基板2を平置き姿勢で搬送方向に搬送しつつ、本体部5aに備わった給気口14から処理空間13に給気した処理ガス4でガラス基板2の下面2aにエッチング処理を施すに際し、ガラス基板2のうちの処理空間13に進入した部位と天板部5bとの間に形成される隙間13aに、搬送方向に沿った第一パージガス6の流れが形成されるように、搬送方向の下流側に向けて第一パージガス6を噴射するガラス基板2の製造方法であって、ガラス基板2の最後部2eが処理空間13に進入する前に、第一パージガス6の噴射を停止するようにした。

Description

ガラス基板の製造方法
 本発明は、ガラス基板を平置き姿勢で搬送しつつ、フッ化水素等の処理ガスによりガラス基板の下面にエッチング処理を施す工程を含んだガラス基板の製造方法に関する。
 周知のように、ガラス基板は、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、フィールドエミッションディスプレイ等に代表されるフラットパネルディスプレイや、スマートフォン、タブレット型PC等のモバイル端末をはじめとして、多種多様な電子デバイスに採用されている。
 このガラス基板の製造工程では、静電気に起因した問題が生じることがある。一例を挙げると、ガラス基板に所定の処理を施すべく支持台の上に載置した際に、静電気によりガラス基板が支持台に貼り付いてしまう場合がある。このような場合、処理を終えたガラス基板を支持台から持ち上げる際に、ガラス基板が破損してしまうことがある。
 そこで、このような問題への対策として、所定の処理を施す前に、フッ化水素等の処理ガスによりガラス基板の表面にエッチング処理を施し、表面を粗化させることで、静電気に起因した問題の発生を回避する手法が知られている。そして、特許文献1には、ガラス基板の表面にエッチング処理を施すための手法の一例が開示されている。
 同文献に開示された手法では、ガラス基板を平置き姿勢で搬送しつつ、その搬送経路上に配置した処理器(同文献では、表面処理装置)が供給する処理ガス(同文献では、反応ガス)により、ガラス基板の上下面のうち、下面のみにエッチング処理を施している。
 同手法に用いられる処理器は、ガラス基板の搬送経路を上下に挟んで対向する上部構成体(同文献では、天板)と下部構成体(同文献では、底部構造体)とを備え、両構成体の相互間にエッチング処理を施すための処理空間(同文献では、反応室)が形成される。下部構成体は、処理空間に処理ガスを給気するための給気口と、処理空間から処理ガスを排気するための排気口とを備えている。
 そして、同手法では、給気口から処理空間に処理ガスを給気すると共に、排気口により処理空間から処理ガスを排気しながら、搬送に伴って処理空間を通過するガラス基板の下面にエッチング処理を施すことにより、下面を粗化させる。また、同手法では、ガラス基板の下面のみを粗化させるべき処理ガスが、上面をも粗化させてしまうことを防止するため、パージガス(同文献では、置換ガス)を噴射している。
 パージガスは、ガラス基板の搬送方向の下流側に向けて噴射されており、ガラス基板のうちの処理空間に進入した部位と上部構成体との間に形成される隙間において、搬送方向に沿った流れを形成している。そして、隙間を流れるパージガスの圧力により、ガラス基板の先頭部側から隙間に処理ガスが入り込むことを回避することで、上面の粗化を阻止しようとしている。
特開2012-191001号公報
 しかしながら、上記の手法を採用した場合には、下記のような解決すべき問題が発生していた。
 すなわち、上記の手法では、ガラス基板の最後部が処理空間に進入した後でも、パージガスが噴射されている。これにより、パージガスの圧力で煽られた処理ガスが、処理空間に進入した最後部の後方側から上記の隙間に流入し、最後部の上面を不当に粗化させてしまうことで、ガラス基板の品質を低下させてしまうという問題があった。
 上記の事情に鑑みなされた本発明は、ガラス基板を平置き姿勢で搬送しつつ、処理ガスによりガラス基板の下面にエッチング処理を施すに際し、ガラス基板の品質の低下を防止することを技術的な課題とする。
 上記の課題を解決するために創案された本発明は、対向させて配置した上部構成体と下部構成体との相互間に形成される処理空間を通過するようにガラス基板を平置き姿勢で搬送方向に搬送しつつ、下部構成体に備わった給気口から処理空間に給気した処理ガスでガラス基板の下面にエッチング処理を施すに際し、ガラス基板のうちの処理空間に進入した部位と上部構成体との間に形成される隙間に、搬送方向に沿った第一パージガスの流れが形成されるように、搬送方向の下流側に向けて第一パージガスを噴射するガラス基板の製造方法であって、ガラス基板の最後部が処理空間に進入する前に、第一パージガスの噴射を停止することに特徴付けられる。
 この方法では、ガラス基板の最後部が処理空間に進入する前に、第一パージガスの噴射を停止している。これにより、最後部が処理空間に進入した後において、第一パージガスの圧力で煽られた処理ガスが、最後部の後方側から隙間(ガラス基板のうちの処理空間に進入した部位と上部構成体との間に形成される隙間であり、以下、上側隙間と表記)に流入するような事態の発生が必然的に防止される。その結果、最後部の上面が不当に粗化されるようなことがなくなり、ガラス基板の品質の低下を防止することが可能となる。
 上記の方法において、ガラス基板の先頭部が処理空間に進入する前に、第一パージガスの噴射を開始することが好ましい。
 このようにすれば、ガラス基板の先頭部が処理空間に進入した直後の時点において、既に上側隙間に第一パージガスの流れが形成された状態とすることができる。これにより、先頭部の上面が不当に粗化されてしまうような事態の発生を確実に回避することが可能となる。従って、ガラス基板の品質の低下を防止する上で更に有利となる。
 上記の方法において、搬送方向に沿った長さが処理空間よりも長いガラス基板の下面にエッチング処理を施すに際し、ガラス基板の先頭部が処理空間から脱出した後、第一パージガスの噴射を停止することが好ましい。
 搬送方向に沿った長さについて、処理空間よりもガラス基板の方が長い場合、ガラス基板の先頭部が処理空間から脱出する時点(以下、先頭部脱出時点と表記)において、処理空間は、その全長がガラス基板によって上下に分断された状態に置かれている。そして、分断された処理空間のうちの上側、つまり、上側隙間には第一パージガスの流れが形成されているので、上側隙間には処理ガスが存在しない状態となっている。このことに加えて、分断された処理空間のうちの下側から上側(上側隙間)には、処理ガスが極めて回り込みにくい。以上のことから、先頭部脱出時点よりも後では、第一パージガスを噴射していなくとも、上面の粗化を回避することが可能であるので、噴射を停止すれば、その分だけガラス基板の製造コストを抑制することができる。
 上記の方法において、ガラス基板の最後部が処理空間に進入した時点から脱出する時点までの間、上側隙間に、搬送方向とは逆方向に沿った第二パージガスの流れが形成されるように、搬送方向の上流側に向けて第二パージガスを噴射することが好ましい。
 このようにすれば、ガラス基板の最後部が処理空間に進入してから脱出するまでの間、上側隙間に形成された第二パージガスの流れにより、処理ガスが最後部の後方側から上側隙間に流入するような事態の発生をより確実に防止できる。その結果、ガラス基板の品質の低下を更に好適に防止することが可能となる。
 上記の方法において、第一及び第二パージガスとして、クリーンドライエアーを用いることが好ましい。
 このようにすれば、第一及び第二パージガスとして、安価なクリーンドライエアーを用いるので、第一及び第二パージガスの噴射に伴うコストを抑制できる。その結果、ガラス基板の製造コストを抑制することが可能となる。また、クリーンドライエアーを用いることで、第一及び第二パージガスの噴射に起因してガラス基板が汚染されるような事態の発生を確実に回避できる。
 本発明によれば、ガラス基板を平置き姿勢で搬送しつつ、処理ガスによりガラス基板の下面にエッチング処理を施すに際し、ガラス基板の品質の低下を防止できる。
ガラス基板の製造装置の概略を示す縦断側面図である。 ガラス基板の製造装置が備える処理器の本体部を上方から視た平面図である。 ガラス基板の製造装置が備える処理器の一部分を拡大して示す縦断側面図である。 ガラス基板の製造装置が備える処理器の一部分を拡大して示す縦断側面図である。 ガラス基板の製造装置が備える処理器の一部分を拡大して示す縦断側面図である。 ガラス基板の製造装置が備える処理器の一部分を拡大して示す縦断側面図である。 ガラス基板の製造装置が備える第一パージガス噴射ノズルの近傍を拡大して示す縦断側面図である。 ガラス基板の製造装置が備える第一パージガス噴射ノズルの近傍を拡大して示す縦断側面図である。 ガラス基板の製造装置が備える第一パージガス噴射ノズルの近傍を拡大して示す縦断側面図である。 ガラス基板の製造装置における処理空間の近傍を示す縦断側面図である。 ガラス基板の製造装置における処理空間の近傍を示す縦断側面図である。
 以下、本発明の実施形態に係るガラス基板の製造方法について、添付の図面を参照して説明する。はじめに、ガラス基板の製造方法に用いるガラス基板の製造装置について説明する。
 ここで、以下の説明においては、ガラス基板の搬送方向(図1では右から左に向かう方向)を「搬送方向」と表記する。また、搬送方向に直交するガラス基板の幅方向(図1では紙面に対して鉛直な方向)を「幅方向」と表記すると共に、「幅方向」に沿った長さを「全幅」や「幅寸法」と表記する。加えて、ガラス基板の上下面に対して鉛直な方向を「上下方向」と表記する。
 図1に示すように、ガラス基板の製造装置1は、ガラス基板2を平置き姿勢で水平に搬送するための搬送手段3と、搬送中のガラス基板2の下面2aに対して処理ガス4(本実施形態ではフッ化水素)によりエッチング処理を施すための処理器5と、ガラス基板2の上面2bに対するエッチング処理を防止するための第一パージガス6及び第二パージガス23(図6を参照)をそれぞれ噴射する第一パージガス噴射ノズル7及び第二パージガス噴射ノズル24と、ガラス基板2の搬入口8aaおよび搬出口8abを有すると共に、自身の内部に形成された空間9から処理ガス4が外部に漏れ出すことを防止するためのチャンバー8と、ガラス基板2の搬送経路上において処理器5と搬出口8abとの間に配置された第一ダミー処理器10、及び、処理器5と搬入口8aaとの間に配置された第二ダミー処理器11と、処理ガス4とガラス基板2の下面2aとの反応で発生した生成物を吸引してチャンバー8外に排出するための吸引ノズル12とを主たる構成要素として備えている。
 搬送手段3は、ガラス基板2の搬送経路上に並べられた複数のローラー3aでなる。この複数のローラー3aにより、直線上に延びた搬送経路に沿ってガラス基板2を搬送することが可能となっている。搬送方向に沿って隣り合うローラー3aの相互間では、ガラス基板2の下面2aの全幅が露出した状態となる。この露出した下面2aと処理ガス4とが反応することで、エッチング処理が施されて下面2aの全幅が粗化される。なお、搬送手段3としては、複数のローラー3a以外のものを用いてもよく、搬送中にガラス基板2の下面2aの全幅を露出させることが可能なものであれば、他のものを用いてもよい。
 処理器5は、ガラス基板2の搬送経路を上下に挟んで対向する下部構成体としての本体部5aと、上部構成体としての天板部5bと、天板部5bの自重による撓みを防止するための補強部材としてのH鋼5cとを備えている。本体部5aと天板部5bとの相互間には、ここを通過するガラス基板2にエッチング処理を施すための処理空間13が形成されている。この処理空間13は扁平な空間として形成されている。処理空間13の幅寸法W1(図2を参照)、及び、上下方向に沿った厚み寸法T1は、それぞれガラス基板2の全幅W2(図2を参照)、及び、ガラス基板2の厚みT2よりも大きくなっている。
 ここで、ガラス基板2が処理空間13の外から内に進入してきた際に、これに付随してガラス基板2の周囲に存する空気等のガスが処理空間13に流入することを防止するため、搬送方向に沿った処理空間13の長さ寸法L1は、300mm~2000mmの範囲内とすることが好ましく、600mm~1000mmの範囲内とすることがより好ましい。なお、第一パージガス6を好適に噴射させる観点からは、上記の長さ寸法L1は、本実施形態での態様とは異なり、ガラス基板2の搬送方向に沿った長さよりも長いことが好ましい。また、処理空間13の厚み寸法T1は、4mm~30mmの範囲内とすることが好ましい。さらに、上記の長さ寸法L1と厚み寸法T1との比率(長さ寸法L1/厚み寸法T1)の値は、10~250の範囲内とすることが好ましい。
 本体部5aは、直方体状の外形を有する。この本体部5aは、処理空間13に処理ガス4を噴射して給気するための給気口14と、処理空間13から処理ガス4を吸引して排気するための排気口15と、処理空間13に給気される処理ガス4の加熱、及び、処理ガス4による結露の防止のためのヒーター等の加熱手段(図示省略)とを備えている。排気口15は、本体部5aにおける搬送方向の上流側端部と下流側端部との各々に配置されている。これに対し、給気口14は、上流側端部の排気口15と下流側端部の排気口15との間に、搬送方向に沿って複数(本実施形態では三つ)が配置されている。
 複数の給気口14のうち、搬送方向の最下流側の給気口14は、処理空間13に給気する処理ガス4の流量が最も多くなっており、本実施形態では、他の給気口14と比較して二倍の流量の処理ガス4を給気している。一方、複数の給気口14の相互間において、給気する処理ガス4の濃度は同一となっている。各給気口14は、搬送方向に沿って隣り合うローラー3aの相互間で処理空間13と接続されている。さらに、各給気口14が給気する処理ガス4の流量は、それぞれ単位時間あたりで一定となっている。ここで、搬送方向に沿った距離について、最上流側の給気口14から中央の給気口14までの距離L2と、中央の給気口14から最下流側の給気口14までの距離L3とは等しくなっている。なお、本実施形態では、給気口14が三つ配置されているが、これに限定されるものではなく、二つを配置してもよいし、四つ以上を配置してもよい。
 上流側端部の排気口15および下流側端部の排気口15の各々は、処理空間13から吸引した処理ガス4を本体部5aの内部に形成された空間16に送り込むことが可能である。空間16は、チャンバー8外に配置された洗浄集塵装置(図示省略)と接続された排気管17と連なっている。これにより、排気口15を通じて処理空間13から空間16に送り込まれた処理ガス4は、その後、排気管17を通じて空間16から洗浄集塵装置に排気される。なお、排気管17は、空間16における搬送方向の下流側端部に接続されている。上流側端部の排気口15および下流側端部の排気口15には、排気するガス(「ガス」には、処理ガス4のみでなく、処理空間13の外から内に引き込まれた後、排気口15に吸引される空気等も含まれる)の流量を個別に調節する機構を設けてよい。一方、排気口15の処理空間13と接続した開口部を塞いだり、排気口15を構成する部位を本体部5aから取り外し、空間16と連通する孔を塞いだりすることで、排気口15を省略することも可能である。
 ここで、各給気口14が処理空間13に給気する処理ガス4の流量と比較して、各排気口15が処理空間13から排気するガスの流量の方が、多くなっている。なお、各排気口15が排気するガスの流量は、単位時間あたりで一定となっている。また、搬送方向に沿った距離について、上流側端部の排気口15と最上流側の給気口14との相互間距離D1に比べて、下流側端部の排気口15と最下流側の給気口14との相互間距離D2が長くなっている。相互間距離D2の長さは、相互間距離D1の長さの1.2倍以上であることが好ましく、1.5倍以上であることがより好ましく、2倍以上であることが最も好ましい。
 図2に示すように、給気口14および排気口15の両者は、幅方向に長尺なスリット状に形成されている。給気口14の幅寸法は、同図に示すように、ガラス基板2の全幅よりも僅かに短くなっていてもよいし、同図とは異なり、ガラス基板2の全幅よりも僅かに長くなっていてもよい。一方、排気口15の幅寸法は、ガラス基板2の全幅よりも僅かに長くなっている。ここで、処理ガス4を幅方向に沿って均等に給気しやすくするため、給気口14の搬送方向に沿った開口長さS1は、0.5mm~5mmの範囲内とすることが好ましい。なお、排気口15の搬送方向に沿った開口長さは、給気口14の搬送方向に沿った開口長さS1よりも長くなっている。さらに、排気口15によるガスの吸引が円滑なエッチング処理の実行の妨げとなることを回避するため、本体部5aの上流側端縁5aaから上流側端部の排気口15までの距離L4と、下流側端縁5abから下流側端部の排気口15までの距離L4とは、共通して1mm~20mmの範囲内とすることが好ましい。
 図1に示すように、本体部5aのうち、処理空間13を通過中のガラス基板2の下面2aと対向する頂部は、搬送方向に沿って隙間なく並べられた複数のユニット(本実施形態では八つでなり、後述する給気ユニット18と接続ユニット19とを含む)でなる。これら複数のユニットは、本体部5aの頂部を構成すると共に、上記の空間16の天井部を構成している。
 複数のユニットの中には、給気口14が形成された給気ユニット18と、給気口14が非形成の接続ユニット19とが含まれている(図2では、給気ユニット18と接続ユニット19とをそれぞれ太線で囲っている)。本実施形態では、複数のユニットの並びのうち、給気ユニット18は、搬送方向の上流側から二番目、四番目、及び、六番目の位置に並べられている。一方、接続ユニット19は、搬送方向の上流側から一番目、三番目、五番目、七番目、及び、八番目の位置に並べられている。給気ユニット18は、給気口14と連結された給気ノズル18aを備えており、この給気ノズル18aは、チャンバー8外に配置された処理ガス4のジェネレーター(図示省略)と接続されている。接続ユニット19は、隣り合う給気ユニット18の相互間、及び、給気ユニット18と排気口15との間を接続している。
 ここで、搬送方向の上流側から一番目の位置(最上流側の位置)に存する接続ユニット19(19x)は、当該位置に固定して配置される。一方、上流側から三番目、五番目、七番目、及び、八番目の位置に存する接続ユニット19は、給気ユニット18、或いは、給気口14の代わりに排気口20aが形成された後述の排気ユニット20(図1では、排気ユニット20は未使用)に置き換えることが可能である。また、上流側から二番目、四番目、及び、六番目の位置に存する給気ユニット18についても、接続ユニット19、或いは、後述の排気ユニット20に置き換えることが可能である。これにより、給気口14の数や、搬送方向における給気口14の位置に変更を加えることが可能となっている。さらに、仮に排気ユニット20を配置した場合には、上流側端部および下流側端部の両排気口15,15以外からも処理ガス4の排気を行うことが可能となる。以下、これらのユニットの置き換えについて、図3a~図3dを参照して説明する。
 図3a~図3cの各々において、太線で囲って示す給気ユニット18、接続ユニット19、及び、排気ユニット20は、搬送方向に沿った長さが相互に同一とされている。これにより、これらのユニットの置き換えを行った場合に、置き換えに伴って新たに配置されたユニットは、これに隣接する両ユニット(図3a~図3cの各々では、隣接する両ユニットがいずれも接続ユニット19である場合を図示)と隙間なく並べることが可能となっている。さらに、新たに配置されたユニットは、隣接する両ユニットと上下方向において段差なく並べることが可能となっている。
 ここで、図3aに示すように、給気ユニット18における給気口14の周辺領域14aは、他の領域に比べて上下方向において高位に位置している。これにより、給気口14の周辺領域14aでは、他の領域と比較して処理空間13を通過中のガラス基板2の下面2aとの離間距離が短くなる。本実施形態においては、給気口14の周辺領域14aにおけるガラス基板2の下面2aとの離間距離は、他の領域におけるガラス基板2の下面2aとの離間距離と比較して半分の距離となっている。そして、離間距離が短くなった分、給気口14の先端(処理ガス4の流出口)がガラス基板2の下面2aに近接した状態となる。また、図3cに示すように、仮に排気ユニット20を配置した場合には、当該排気ユニット20に形成された排気口20aが上記の空間16と連なった状態となる。これにより、排気口20aを通じて処理空間13から空間16に送り込まれた処理ガス4は、その後、排気管17を通じて空間16から洗浄集塵装置に排気される。なお、排気口20aは、上流側端部の排気口15および下流側端部の排気口15と同様に、幅方向に長尺なスリット状に形成されている。ここで、図3dに示すとおり、給気ユニット18における給気口14の周辺領域14aは、他の領域と同一の高さとしてもよい。
 図1に示すように、天板部5bは、単一の板体(平面視で矩形状の板体)でなり、処理空間13を通過中のガラス基板2の上面2bと対向する平坦面を有する。また、天板部5bは、処理ガス4による結露を防止するためのヒーター等の加熱手段(図示省略)を内蔵している。H鋼5cは、天板部5b上で幅方向に延びるように設置されている。さらに、H鋼5cは、複数(本実施形態では三つ)が設置されており、これら複数のH鋼5cは、搬送方向において等間隔に配置されている。
 第一パージガス噴射ノズル7は、搬送方向において処理器5よりも上流側で、且つ、ガラス基板2の搬送経路よりも上方に配置されている。この第一パージガス噴射ノズル7は、ガラス基板2における処理空間13に進入した部位と天板部5bとの間に形成される隙間13aに、搬送方向に沿った第一パージガス6の流れが形成されるように、搬送方向の下流側に向けて第一パージガス6を噴射することが可能となっている。第一パージガス6の流れは、隙間13aの全幅に亘って形成することが可能である。さらに、第一パージガス6は、搬送手段3によるガラス基板2の搬送速度と比較して、搬送方向に沿った流速が速くなるように噴射される。これにより、ガラス基板2の先頭部2fが処理空間13内を搬送されていく際に、先頭部2f側から隙間13aに流入しようとする処理ガス4を、第一パージガス6の圧力で搬送方向の下流側に追いやり、隙間13aへの流入を阻止できる。そして、ガラス基板2の上面2bの粗化が回避される。なお、本実施形態においては、第一パージガス6としてクリーンドライエアー(CDA)を使用している。
 図4aに示すように、第一パージガス6は、搬送中のガラス基板2の先頭部2fが処理空間13に進入する直前に噴射が開始される。さらに、図4bに示すように、第一パージガス6は、搬送中のガラス基板2の最後部2eが処理空間13に進入する直前に噴射が停止される。ここで、本実施形態では、第一パージガス6の噴射の開始および停止を行うタイミングは、以下のように決定している。まず、搬送方向において第一パージガス噴射ノズル7よりも上流側に、ガラス基板2の先頭部2fおよび最後部2eの通過を検知することが可能なセンサー等の検知手段(図示省略)が配置されている。この検知手段がガラス基板2の先頭部2fの通過を検知すると、ガラス基板2の搬送速度と、先頭部2fから処理空間13までの搬送経路に沿った距離とに基づいて、第一パージガス6の噴射を開始するタイミングが決定される。同様にして、検知手段が最後部2eの通過を検知すると、搬送速度と、最後部2eから処理空間13までの距離とに基づいて、噴射を停止するタイミングが決定される。
 図5に示すように、第一パージガス噴射ノズル7は、幅方向に延びた円筒状のパイプ7aを備えている。このパイプ7aに対しては幅方向に間隔を空けて複数のチューブ7bが挿し込まれている。各チューブ7bからはパイプ7a内に第一パージガス6を供給することが可能となっている。また、パイプ7aの内部には、幅方向に長尺な板体7cが取り付けられており、各チューブ7bからパイプ7a内に流入した第一パージガス6は、板体7cを迂回するように回り込んだ後、パイプ7aと連結された噴射部7dから噴射されるようになっている。噴射部7dに形成された第一パージガス6の噴射口は、幅方向に長尺なスリット状に形成されている。噴射部7dによる第一パージガス6の噴射角度θ(ガラス基板2の上面2bに対して噴射部7dの指向する方向が傾いた角度)は、25°~70°の範囲内で変更することが可能となっている。また、第一パージガス噴射ノズル7の姿勢は、図5に実線で示すように、噴射部7dに処理空間13内を指向させるように調節することも可能であるし、同図に二点鎖線で示すように、噴射部7dに処理空間13外を指向させるように調節することも可能である。
 図6に示すように、第二パージガス噴射ノズル24は、搬送方向において処理器5よりも下流側で、且つ、ガラス基板2の搬送経路よりも上方に配置されている。この第二パージガス噴射ノズル24は、隙間13aに、搬送方向とは逆向きに沿った第二パージガス23の流れが形成されるように、搬送方向の上流側に向けて第二パージガス23を噴射することが可能となっている。第二パージガス23の流れは、隙間13aの全幅に亘って形成することが可能である。この第二パージガス23により、ガラス基板2の最後部2eが処理空間13内を搬送されていく際に、最後部2e側から隙間13aに流入しようとする処理ガス4を、第二パージガス23の圧力で搬送方向の上流側に追いやり、隙間13aへの流入を阻止できる。そして、ガラス基板2の上面2bの粗化が回避される。なお、本実施形態においては、第一パージガス6と同様に、第二パージガス23としてクリーンドライエアーを使用している。
 第二パージガス23は、第一パージガス6の噴射を停止した後、搬送中のガラス基板2の最後部2eが処理空間13に進入する直前に噴射が開始される。さらに、図7に示すように、第二パージガス23は、搬送中のガラス基板2の最後部2eが処理空間13から脱出した直後に噴射が停止される。ここで、第二パージガス23の噴射の開始および停止を行うタイミングは、上記の検知手段や、搬送方向において第二パージガス噴射ノズル24よりも下流側に配置したセンサー等の新たな検知手段(図示省略)を利用する等して、ガラス基板2の最後部2eの通過を検知することで決定すればよい。
 第二パージガス噴射ノズル24は、上記の第一パージガス噴射ノズル7とは配置や姿勢が異なるのみで、第一パージガス噴射ノズル7と同一の構造を有するノズルを用いることが可能である。そのため、第二パージガス噴射ノズル24の構造については、重複する説明を省略する。
 図1に示すように、チャンバー8は、直方体状の外形をなす。このチャンバー8は、上記の搬入口8aaおよび搬出口8abに加え、天井孔8acが形成された本体8aと、天井孔8acを塞ぐための蓋体8bとを備えている。
 搬入口8aaおよび搬出口8abは、本体8aの側壁部8adに形成されると共に、幅方向に沿って長尺となる扁平な開口として形成されている。天井孔8acは、本体8aの天井部8aeに複数(本実施形態では三つ)が形成されている。蓋体8bは、天井孔8acの開口全体を塞ぐことが可能であると共に、本体8aへの取り付け、及び、本体8aからの取り外しが可能である。これにより、蓋体8bを本体8aから取り外して天井孔8acを開放することで、当該天井孔8acを介して処理器5の調節、保守、点検等の作業を行うことが可能となっている。
 第一ダミー処理器10は、ガラス基板2の搬送経路の下方に配置された直方体状の箱体10aと、箱体10aと対向するように搬送経路の上方に配置された天板10bと、天板10bの自重による撓みを防止するための補強部材としてのH鋼10cとを備えている。箱体10aと天板10bとの相互間には、ガラス基板2を通過させるための隙間21が形成されている。第一ダミー処理器10は、搬出口8abからチャンバー8内に流入した気流が処理空間13まで到達し、エッチング処理に悪影響を及ぼすことを回避するための防風部材として機能する。ここで、防風部材として有効に機能させるため、搬送方向に沿った第一ダミー処理器10の長さは、50mm以上とすることが好ましく、100mm以上とすることがより好ましい。
 箱体10aの上端には、幅方向に長尺な矩形状の開口10aaが形成されている。一方、箱体10aの底部には、チャンバー8外に配置された洗浄集塵装置(図示省略)と接続された排気管22が連なっている。これにより、第一ダミー処理器10は、ガラス基板2の下面2aに引きずられて処理空間13内から搬送方向の下流側に流出した処理ガス4について、当該処理ガス4を開口10aaを通じて排気管22で吸引した後、洗浄集塵装置に排気することが可能である。天板10bは、単一の板体(平面視で矩形状の板体)でなり、隙間21を通過中のガラス基板2の上面2bと対向する平坦面を有する。H鋼10cは、天板10b上で幅方向に延びるように設置されている。
 第一ダミー処理器10は、搬送方向に沿った方向から視た場合、処理器5と同一な外形を有すると共に、処理器5と重なって視えるように配置されている。つまり、処理器5の本体部5aと第一ダミー処理器10の箱体10aとの相互間では、幅寸法、及び、上下方向に沿った寸法が同一とされている。同様にして、(A)処理器5の天板部5bと第一ダミー処理器10の天板10b、(B)処理器5のH鋼5cと第一ダミー処理器10のH鋼10c、(C)処理器5の処理空間13と第一ダミー処理器10の隙間21、これら(A)~(C)の各組み合わせの相互間でも、幅寸法、及び、上下方向に沿った寸法が同一とされている。
 第二ダミー処理器11は、以下に示す(1),(2)の二点を除き、上記の第一ダミー処理器10と同一な構成を備えている。このため、図1において第一ダミー処理器10に付したものと同一の符号を第二ダミー処理器11にも付すことで、両処理器10,11の間で重複する説明を省略する。(1)第一ダミー処理器10とは配置が異なっている点。(2)搬出口8abからではなく、搬入口8aaからチャンバー8内に流入した気流が処理空間13まで到達し、エッチング処理に悪影響を及ぼすことを回避するための防風部材として機能する点。なお、第二ダミー処理器11は、第一ダミー処理器10と同様にして、搬送方向に沿った方向から視た場合、処理器5と同一な外形を有すると共に、処理器5と重なって視えるように配置されている。
 吸引ノズル12は、チャンバー8の天井部8aeに取り付けられており、その吸引口12aが空間9と連なっている。この吸引口12aは、搬送方向において第一ダミー処理器10よりも下流側に配置されており、空間9における搬送方向の下流側端部に配置されている。吸引ノズル12は、チャンバー8外に配置された洗浄集塵装置(図示省略)と接続されており、吸引した生成物を洗浄集塵装置に排出することが可能となっている。なお、吸引口12aは、本実施形態と同様の配置に限らず、ガラス基板2の搬送経路よりも上方に配置されていればよい。しかしながら、エッチング処理で発生した生成物を吸引してチャンバー8外に排出する役割を有することから、吸引口12aは、本実施形態とは異なった配置とする場合でも、搬送方向において処理器5よりも下流側に配置することが好ましい。
 以下、上記のガラス基板の製造装置1を使用した本発明の実施形態に係るガラス基板の製造方法について説明する。
 まず、搬送手段3によりガラス基板2を搬送することで、搬入口8aaからチャンバー8内にガラス基板2を搬入する。なお、本実施形態においては、搬入口8aaから搬出口8abまでの搬送経路に沿った距離を基準として、当該距離よりも搬送経路に沿った全長が長いガラス基板2をエッチング処理の対象としている。また、本実施形態においては、ガラス基板2を一定の搬送速度で搬送している。
 次いで、搬入後のガラス基板2に、搬入口8aaと処理器5との間に配置された第二ダミー処理器11の隙間21を通過させる。なお、搬入口8aaからチャンバー8内に流入し、ガラス基板2の下面2aに沿って搬送方向の下流側に流れてくるガスは、第二ダミー処理器11の箱体10aの底部に連なった排気管22で吸引する。これに加え、第二ダミー処理器11を防風部材として機能させることで、搬入口8aaからチャンバー8内に流入したガスが、処理器5の処理空間13まで到達することを防止する。
 次いで、第二ダミー処理器11の隙間21を通過後のガラス基板2に、処理器5の処理空間13を通過させる。このとき、ガラス基板2の先頭部2fが処理空間13に進入する直前から第一パージガス6の噴射を開始する。そして、処理空間13を通過中のガラス基板2の下面2a側では、各給気口14が給気した処理ガス4により下面2aにエッチング処理を施しつつ、上流側端部および下流側端部の各々の排気口15により処理空間13から処理ガス4を排気する。一方、処理空間13を通過中のガラス基板2の上面2b側では、隙間13aに形成された第一パージガス6の流れにより、ガラス基板2の先頭部2f側から隙間13aに流入しようとする処理ガス4による上面2bに対するエッチング処理を防止する。また、エッチング処理で発生した生成物は吸引ノズル12で吸引し、チャンバー8外に排出する。第一パージガス6は、ガラス基板2の最後部2eが処理空間13に進入する直前に噴射を停止する。
 ここで、本実施形態においては、ガラス基板2の最後部2eが処理空間13に進入する直前に、第一パージガス6の噴射を停止する態様となっているが、これに限定されるものではない。ガラス基板2の先頭部2fが処理空間13から脱出した後であれば、ガラス基板2の最後部2eが処理空間13に進入する直前よりも更に前に、第一パージガス6の噴射を停止する態様としてもよく、ガラス基板2の先頭部2fが処理空間13から脱出した直後に第一パージガス6の噴射を停止する態様でも構わない。
 第一パージガス6の噴射を停止させると、第一パージガス6に代えて第二パージガス23の噴射を開始する。これに伴い、処理空間13を通過中のガラス基板2の上面2b側にて、隙間13aに形成された第二パージガス23の流れにより、ガラス基板2の最後部2e側から隙間13aに流入しようとする処理ガス4による上面2bに対するエッチング処理を防止する。一方、処理空間13を通過中のガラス基板2の下面2a側では、引き続き各給気口14が給気した処理ガス4により下面2aにエッチング処理を施しつつ、上流側端部および下流側端部の各々の排気口15により処理空間13から処理ガス4を排気する。第二パージガス23は、ガラス基板2の最後部2eが処理空間13から脱出した直後に噴射を停止する。
 ここで、本実施形態において、第二パージガス23は、ガラス基板2の最後部2eが処理空間13に進入する直前に噴射を開始すると共に、脱出した直後に噴射を停止する態様となっているが、これに限定されるものではない。第二パージガス23は、少なくともガラス基板2の最後部2eが処理空間13に進入する時点から脱出する時点までの間、噴射されていればよい。
 また、本実施形態においては、第一パージガス6の噴射の停止直後に、第二パージガス23の噴射を開始したが、これに限定されるものではない。第一パージガス6の噴射停止後に所定時間が経過した後に、第二パージガス23の噴射を開始しても良い。これにより、第一パージガス6と第二パージガス23とが処理空間13内で衝突して処理空間13内で気流が乱れることを防止することができる。また、第一パージガス6と第二パージガス23の使用量も節約することができる。なお、第一パージガス6と第二パージガス23は、処理ガス4がガラス基板2の下面2a側から搬送方向側面を経由して(ガラス基板2の幅方向端部を伝って)上面2b側に周り込んでくるのを防止する効果も奏すると考えられる。これらのことから、第一パージガス6の噴射停止から第二パージガス23の噴射開始までの所定時間は、処理空間13内でのガス同士の衝突を防止しつつも、前述の周り込みを防止する観点からは可及的に短いことが好ましく、0.5秒~2秒が好ましく、0.5秒~1秒がより好ましい。一方、第一パージガス6及び第二パージガス23の使用量を節約する観点からは、前述の所定時間は可及的に長いことが好ましく、ガラス基板2の先頭部2fが処理空間13から脱出した直後に第一パージガス6の噴射を停止し、ガラス基板2の最後部2eが処理空間13へ進入する直前に第二パージガス23の噴射を開始するように所定時間を確保することが好ましい。
 また、本実施形態においては、ガラス基板2の最後部2eが処理空間13に進入する直前に、第一パージガス6の噴射を停止する態様となっており、第一パージガス6の噴射時間の方が、第二パージガス23の噴射時間よりも長い態様となっているが、これに限定されるものではない。ガラス基板2の先頭部2fが処理空間13から脱出した直後に第一パージガス6の噴射を停止し、その直後に第二パージガス23の噴射を開始することで、第一パージガス6の噴射時間よりも第二パージガス23の噴射時間の方を長くしても良い。また、適宜前述の所定時間を確保することで、第一パージガス6の噴射時間と第二パージガス23の噴射時間とを同一時間としてもよい。また、前述の所定時間を確保しつつ、第一パージガス6の噴射時間を第二パージガラス23の噴射時間よりも長くしてもよく、逆に短くしても良い。
 次いで、処理器5の処理空間13を通過したエッチング処理後のガラス基板2に、処理器5と搬出口8abとの間に配置された第一ダミー処理器10の隙間21を通過させる。なお、搬出口8abからチャンバー8内に流入し、ガラス基板2の下面2aに沿って搬送方向の上流側に流れてくるガスは、第一ダミー処理器10の箱体10aの底部に連なった排気管22で吸引する。さらに、第一ダミー処理器10を防風部材として機能させることで、搬出口8abからチャンバー8内に流入したガスが、処理器5の処理空間13まで到達することを防止する。また、排気管22により、ガラス基板2の下面2aに引きずられて処理空間13内から搬送方向の下流側に流出した処理ガス4を吸引し、チャンバー8外に排気する。
 最後に、第一ダミー処理器10の隙間21を通過後のガラス基板2を、搬出口8abからチャンバー8外に搬出する。そして、下面2aにエッチング処理が施されたガラス基板2が得られる。以上により、本発明の実施形態に係るガラス基板の製造方法が完了する。
 以下、本発明の実施形態に係るガラス基板の製造方法による主たる作用・効果について説明する。
 この方法においては、ガラス基板2の最後部2eが処理空間13に進入する前に、第一パージガス6の噴射を停止している。これにより、最後部2eが処理空間13に進入した後において、第一パージガス6の圧力で煽られた処理ガス4が、最後部2eの後方側から隙間13aに流入するような事態の発生が必然的に防止される。その結果、最後部2eの上面2bが不当に粗化されるようなことがなくなり、ガラス基板2の品質の低下を防止することが可能となる。
 2     ガラス基板
 2a    下面
 2e    最後部
 2f    先頭部
 4     処理ガス
 5a    本体部(下部構成体)
 5b    天板部(上部構成体)
 6     第一パージガス
 13    処理空間
 13a   隙間
 14    給気口
 23    第二パージガス

Claims (5)

  1.  対向させて配置した上部構成体と下部構成体との相互間に形成される処理空間を通過するようにガラス基板を平置き姿勢で搬送方向に搬送しつつ、前記下部構成体に備わった給気口から前記処理空間に給気した処理ガスで前記ガラス基板の下面にエッチング処理を施すに際し、前記ガラス基板のうちの前記処理空間に進入した部位と前記上部構成体との間に形成される隙間に、前記搬送方向に沿った第一パージガスの流れが形成されるように、前記搬送方向の下流側に向けて前記第一パージガスを噴射するガラス基板の製造方法であって、
     前記ガラス基板の最後部が前記処理空間に進入する前に、前記第一パージガスの噴射を停止することを特徴とするガラス基板の製造方法。
  2.  前記ガラス基板の先頭部が前記処理空間に進入する前に、前記第一パージガスの噴射を開始することを特徴とする請求項1に記載のガラス基板の製造方法。
  3.  前記搬送方向に沿った長さが前記処理空間よりも長い前記ガラス基板の下面にエッチング処理を施すに際し、
     前記ガラス基板の先頭部が前記処理空間から脱出した後、前記第一パージガスの噴射を停止することを特徴とする請求項1又は2に記載のガラス基板の製造方法。
  4.  前記ガラス基板の最後部が前記処理空間に進入した時点から脱出する時点までの間、
     前記隙間に、前記搬送方向とは逆方向に沿った第二パージガスの流れが形成されるように、前記搬送方向の上流側に向けて前記第二パージガスを噴射することを特徴とする請求項1~3のいずれかに記載のガラス基板の製造方法。
  5.  前記第一及び第二パージガスとして、クリーンドライエアーを用いることを特徴とする請求項4に記載のガラス基板の製造方法。
PCT/JP2017/039032 2016-11-16 2017-10-30 ガラス基板の製造方法 WO2018092556A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197007165A KR102373650B1 (ko) 2016-11-16 2017-10-30 유리 기판의 제조 방법
JP2018551555A JP6905672B2 (ja) 2016-11-16 2017-10-30 ガラス基板の製造方法
CN201780059814.4A CN109790064B (zh) 2016-11-16 2017-10-30 玻璃基板的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-223258 2016-11-16
JP2016223258 2016-11-16

Publications (1)

Publication Number Publication Date
WO2018092556A1 true WO2018092556A1 (ja) 2018-05-24

Family

ID=62145308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039032 WO2018092556A1 (ja) 2016-11-16 2017-10-30 ガラス基板の製造方法

Country Status (5)

Country Link
JP (1) JP6905672B2 (ja)
KR (1) KR102373650B1 (ja)
CN (1) CN109790064B (ja)
TW (1) TWI741062B (ja)
WO (1) WO2018092556A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100392A1 (ja) * 2019-11-19 2021-05-27 日本電気硝子株式会社 ガラス板の製造装置及びその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005138010A (ja) * 2003-11-05 2005-06-02 Sekisui Chem Co Ltd 常圧プラズマ処理装置およびレジスト剥離装置
JP2012191001A (ja) * 2011-03-10 2012-10-04 Sekisui Chem Co Ltd 表面処理方法及び装置
JP2014125414A (ja) * 2012-12-27 2014-07-07 Nippon Electric Glass Co Ltd 板状ガラスの表面処理装置及び表面処理方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042498A (ja) * 2001-07-31 2003-02-13 Sony Corp 半導体製造システム、半導体製造装置、半導体製造方法及び半導体装置
JP2004103971A (ja) * 2002-09-12 2004-04-02 Hitachi High-Technologies Corp ダマシン処理方法、ダマシン処理装置および、ダマシン構造
CN1780935B (zh) * 2003-07-16 2010-05-05 柯尼卡美能达控股株式会社 薄膜制造方法以及具有由此薄膜制造方法形成的薄膜的基材
US7456104B2 (en) * 2005-05-31 2008-11-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN101489661A (zh) * 2006-05-19 2009-07-22 乔治洛德方法研究和开发液化空气有限公司 在处理环境中回收工艺流体的系统和方法
CN101781091B (zh) * 2009-01-16 2011-11-09 深圳南玻显示器件科技有限公司 透明导电膜玻璃单面减薄承载装置及其减薄方法
JP5544985B2 (ja) * 2009-06-23 2014-07-09 東京エレクトロン株式会社 液処理装置
CN102770944B (zh) * 2010-02-25 2013-11-06 积水化学工业株式会社 蚀刻方法及装置
CN203382660U (zh) * 2013-06-27 2014-01-08 彩虹显示器件股份有限公司 玻璃表面刻蚀装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005138010A (ja) * 2003-11-05 2005-06-02 Sekisui Chem Co Ltd 常圧プラズマ処理装置およびレジスト剥離装置
JP2012191001A (ja) * 2011-03-10 2012-10-04 Sekisui Chem Co Ltd 表面処理方法及び装置
JP2014125414A (ja) * 2012-12-27 2014-07-07 Nippon Electric Glass Co Ltd 板状ガラスの表面処理装置及び表面処理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100392A1 (ja) * 2019-11-19 2021-05-27 日本電気硝子株式会社 ガラス板の製造装置及びその製造方法
JP2021080129A (ja) * 2019-11-19 2021-05-27 日本電気硝子株式会社 ガラス板の製造装置及びその製造方法
JP7290103B2 (ja) 2019-11-19 2023-06-13 日本電気硝子株式会社 ガラス板の製造装置及びその製造方法

Also Published As

Publication number Publication date
CN109790064B (zh) 2022-01-07
KR102373650B1 (ko) 2022-03-14
TWI741062B (zh) 2021-10-01
CN109790064A (zh) 2019-05-21
TW201830514A (zh) 2018-08-16
JPWO2018092556A1 (ja) 2019-10-17
KR20190078558A (ko) 2019-07-04
JP6905672B2 (ja) 2021-07-21

Similar Documents

Publication Publication Date Title
JP4494269B2 (ja) 基板処理装置
TWI735697B (zh) 玻璃基板之製造方法
WO2018092556A1 (ja) ガラス基板の製造方法
TWI618905B (zh) Substrate processing device
KR102588108B1 (ko) 유리판의 제조 방법 및 그 제조 장치
JP6700605B2 (ja) ガラス基板の製造方法
WO2018092558A1 (ja) ガラス基板の製造方法
JP6641663B2 (ja) ガラス板の製造方法及びその製造装置
WO2017043644A1 (ja) ガラス基板の製造方法、及びガラス基板の製造装置
JP5538255B2 (ja) エッチング装置及びエッチング方法
KR102505553B1 (ko) 유리 기판의 제조 방법
JPH11297598A (ja) 基板処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872612

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018551555

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197007165

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17872612

Country of ref document: EP

Kind code of ref document: A1