WO2018086901A1 - Dispositif et procédé permettant un traitement approprié de cartouches fluidiques - Google Patents

Dispositif et procédé permettant un traitement approprié de cartouches fluidiques Download PDF

Info

Publication number
WO2018086901A1
WO2018086901A1 PCT/EP2017/077463 EP2017077463W WO2018086901A1 WO 2018086901 A1 WO2018086901 A1 WO 2018086901A1 EP 2017077463 W EP2017077463 W EP 2017077463W WO 2018086901 A1 WO2018086901 A1 WO 2018086901A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing unit
cartridge
shaft
earth
processing
Prior art date
Application number
PCT/EP2017/077463
Other languages
German (de)
English (en)
Inventor
Martin Schulz
Jochen Rupp
Christian Dorrer
Karsten Seidl
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2018086901A1 publication Critical patent/WO2018086901A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/52Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips
    • B01L9/527Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips for microfluidic devices, e.g. used for lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/04Exchange or ejection of cartridges, containers or reservoirs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0457Moving fluids with specific forces or mechanical means specific forces passive flow or gravitation

Definitions

  • biochemical processes are based on the handling of liquids. Typically, this manipulation is done manually with tools such as pipettes, reaction vessels, active probe surfaces or laboratory equipment. By pipetting robots or special equipment, these processes are already partially automated.
  • So-called Lab-on-a-Chip systems LoC systems for short, are microfluidic systems that accommodate the functionalities of a macroscopic laboratory on a plastic substrate for automated processing. Such systems make it possible to process biochemical processes largely or completely automatically.
  • Lab-on-a-chip systems typically include two major components.
  • the first is a test carrier, usually in the form of a cartridge, which comprises structures and mechanisms for the manipulation of a sample taken, in particular passive components such as channels, reaction chambers or upstream reagents or even active components such as valves, pumps or mixers.
  • the second main component is a processing unit for controlling the microfluidic processes in the cartridge, such as an actuation of the valves or pump, as well as for the detection of constituents of the sample before, during and / or after the processing.
  • the invention relates to a processing unit for processing a particular microfluidic cartridge and into the cartridge
  • the processing unit comprises a shaft for receiving the cartridge.
  • the shaft is arranged in the processing unit such that at one for the operation of the
  • Processing unit predetermined orientation of the processing unit of the shaft extends inclined with respect to the effective direction of the earth's gravitational field.
  • Under the processing unit may in particular a microfluidic
  • Processing unit for example, an analysis unit for analyzing a recorded in the cartridge biological sample are understood.
  • the biological sample may in particular be a blood sample, a
  • Urine sample a saliva sample or a specimen from a smear of a living thing.
  • a processing of the sample may, in particular, be understood as carrying out a test with the sample using the cartridge into which the sample is taken.
  • the assay may be an assay, particularly a molecular biological
  • Assay for example, to detect a particular substance or certain pathogens such as viruses, bacteria or fungi in the sample act.
  • Placement of the processing unit to be understood, in particular a placement on a, relative to the effective direction of the earth's gravity field, substantially transverse to the direction horizontal surface.
  • the effective direction of the earth's gravitational field can be understood in particular to be a direction to the center of the earth, that is to say in particular the direction of gravitational acceleration.
  • the processing unit can in particular be placed on a substantially horizontal surface by contacting a bottom side or underside of the processing unit. So the shaft is so in the
  • Processing unit arranged such that the shaft extends inclined with respect to the orientation or extension of the bottom side.
  • the processing unit according to the invention has the advantage that the effect of the gravitational field of the earth on the inclined cartridge can be exploited particularly advantageously by the receiving of the cartridge in the shaft, which is inclined in relation to the direction of gravitational acceleration.
  • a gravitational field of the earth on the inclined cartridge can be exploited particularly advantageously by the receiving of the cartridge in the shaft, which is inclined in relation to the direction of gravitational acceleration.
  • Carriage of fluids can be exploited in the cartridge. Due to the inclination of the cartridge in the gravitational field during processing, a constant resultant force acts on fluids in the cartridge in the direction of a lowest point of the cartridge relative to the effective direction of the earth's gravitational field. Thus, technical means for conveying these fluids toward these lowest points can be reduced or completely eliminated, allowing a slimmer and less costly design, as well as a more compact cartridge and processing unit design.
  • fluid reagents located in the cartridge are more effective due to the utilization of inclination and gravity
  • the shaft In the orientation of the processing unit predetermined for the operation of the processing unit, the shaft preferably has a first angle of inclination between 5 and 85 degrees, preferably between 25 and 35 degrees, very preferably between 25 and 30 degrees, with respect to the direction of action of the earth's gravitational field. This has the advantage that the inclination of the shaft does not correspond to a completely horizontal or completely vertical alignment of the shaft with respect to the effective direction of the earth's gravitational field.
  • the inclined orientation of the shaft also has the advantage that a fluid in a cartridge received in the shaft can be processed gravitationally driven and in particular can be conveyed not only horizontally but also in the direction of the inclination of the shaft and the cartridge taken up by exploiting the earth's gravity ,
  • the shaft extends with respect to the effective direction of the earth's gravity field inclined so that at the predetermined for the operation of the processing unit an end closing the shaft with respect to the effective direction of the
  • the inclination of the shaft according to the invention makes it particularly easy for a person operating the processing unit to insert the cartridge into the shaft. This thus supports a particularly ergonomically advantageous interaction with the processing unit by a standing or sitting user.
  • the shaft has a rectangular cross section, wherein preferably one or more corners of the cross section are rounded. This has the advantage that cartridges with rectangular cross-section and
  • rounded corners can be accurately absorbed into the shaft.
  • the rounded corners of the cross-section further facilitate a simplified receiving a cartridge, since the rounding a guide is effected in a correct orientation of the cartridge when receiving in the slot. This is particularly advantageous in cartridges whose cross section is adapted to the dimensions of the cross section of the shaft.
  • Processing unit by a user, wherein the interaction surface at the predetermined for the operation of the processing unit alignment a second Inclination angle with respect to the effective direction of the earth's gravitational field has.
  • processing units are typically placed on a table for operation. In such a case, such is an inclined one
  • the interaction surface has an opening of the shaft for inputting the cartridge into the shaft.
  • Interaction surface and the shaft at an angle between 80 and 100 degrees, in particular between 85 and 95 degrees, preferably 90 degrees to each other. This has the advantage that an operation of the interaction surface and an input of the cartridge into the shaft via hand movements of the user can take place in the same direction, which further promotes efficient use of the processing unit according to the invention.
  • the invention also relates to a processing system comprising a processing unit according to the invention and a particular microfluidic cartridge, the cartridge comprising a layer structure comprising at least two layers.
  • the layers of the cartridge extend along a main plane of extension, so that the main plane of extension has a slope with respect to the direction of action of the earth's gravitational field when the cartridge is received in the shaft of the processing unit and the processing unit is in the orientation predetermined for the operation of the processing unit.
  • the main extension level corresponds to this
  • the cartridge is preferably a substantially
  • the system according to the invention has the advantage that, as already described above, an interaction of the gravitation and the inclined cartridge for a gravitational drive of Fluids in the cartridge can be exploited.
  • fluid quantities of, for example, 10 microliters to 3 milliliters can be easily moved by the cartridge along the extent of the layers by utilizing the gravitational force.
  • a cartridge based on a simple, horizontal layer construction
  • the invention further provides a method for inclined processing of a particular microfluidic cartridge and a biological sample accommodated in the cartridge with a processing unit.
  • the processing unit is aligned such that a slot for receiving the cartridge in the processing unit extends inclined relative to the effective direction of the earth's gravity field.
  • the processing unit is aligned such that a slot for receiving the cartridge in the processing unit extends inclined relative to the effective direction of the earth's gravity field.
  • the second step may be done prior to the first step.
  • the cartridge inclined with respect to the direction of action of the earth's gravitational field is processed.
  • the sample is introduced into the cartridge before the cartridge is received in the processing unit.
  • FIG. 1 to 3 an embodiment of the invention
  • Figure 4 shows an embodiment of the method according to the invention.
  • Figure 1 shows an embodiment of an inventive
  • Processing system 1000 comprising a processing unit 100 according to the invention for processing a microfluidic cartridge 200 and a biological sample 201 accommodated in the cartridge 200.
  • the processing unit 100 comprises a shaft 110 for receiving the cartridge 200.
  • the shaft 110 is arranged in the processing unit 100 in this way in that, in the case of an orientation of the processing unit 100 predetermined for the operation of the processing unit 100, the shaft 110 extends inclined with respect to the direction of action 1 of the earth's gravitational field.
  • the orientation predetermined for the operation of the processing unit 100 corresponds to placement of the processing unit 100 on a table 10, for example a laboratory bench.
  • a table 10 for example a laboratory bench.
  • an underside 101 of the processing unit 100 contacts the upper side 11 of the table 10.
  • the shaft 110 has a first during this placement of the processing unit 100
  • Inclination angle a of 30 degrees to the direction of action 1 of the earth's gravitational field that is, a main extension direction 111 of the shaft 110 has a first inclination angle a of 30 degrees to the direction of action 1 of the earth's gravitational field.
  • the shaft 110 may also be arranged in the processing unit 100 such that the angle of inclination is between 5 and 85 degrees, preferably between 25 and 35 degrees, more preferably between 25 and 30 degrees.
  • the shaft 110 is arranged in the processing unit 100 such that the end 110 closing the shaft 110 is closer to the lower side 101 of the processing unit 100 than the opening 120 for inserting the cartridge 200 into the shaft 110.
  • This inclined arrangement of the Shaft 110 assists in transporting fluids in a received cartridge towards the interior of the cartridge
  • Processing unit 100 using the direction of action 1 gravitational field of the earth. Furthermore, this arrangement of the shaft 110 reduces the risk that fluids leaving the cartridge 200 can leave the processing unit 100 via the opening 120.
  • the shaft 110 can have a rectangular cross-section 122, which preferably has one or more rounded corners 121.
  • the processing unit 100 comprises an interaction surface 130, wherein the interaction surface 130 has a second inclination angle b with respect to the direction of action 1 of the earth gravity field at the orientation predetermined for the operation of the processing unit 100.
  • the interaction surface 130 forms an outer surface of the processing unit 100 surrounding the opening 120 in the shaft 110 and has a first interaction field 131 and a second interaction field 132.
  • the interaction surface 130 has the opening 120 for inputting the cartridge 200 into the shaft 110.
  • Interaction fields 131, 132 to the opening 120 of the shaft 110 a user can thus operate both the processing unit 100 via the interaction fields 131, 132 and enter and remove the cartridge 200 in the processing unit 100 without having to move away from its location.
  • the interaction surface 130 and the shaft 110 have an angle c of between 85 and 95 degrees, in particular 90 degrees, relative to one another, which is an effective rectangular input to the interaction surface 130
  • Cartridge 100 in the shaft 110 allows.
  • an angle c of 90 degrees and a first inclination angle a of 30 degrees the above-mentioned second inclination angle b between the extension direction 113 of FIG.
  • Interaction surface 130 and the direction of action 1 of the Earth's gravitational field to 60 degrees in this example.
  • Such an inclined orientation of the interaction surface 130 is for operation by a standing or seated on the table 10
  • the processing system according to the invention in addition to the processing unit also includes a particular microfluidic cartridge.
  • the embodiment of the invention shown in Figures 1 to 3 are particularly ergonomically advantageous, in particular in combination with the above-mentioned spatial proximity of the interaction fields 131, 132 to the opening 120 of the shaft 110.
  • the processing system according to the invention in addition to the processing unit also includes a particular microfluidic cartridge.
  • Processing system 1000 includes an example of the processing unit 100 as well as an example of the cartridge 200, which is shown in FIG. 1 on the table 10.
  • the cartridge 200 comprises at least two
  • Layers 210, 220 comprising layer structure, wherein the layers 210, 220 extend along a main extension plane 250 of the cartridge 200, wherein the main extension plane 250, as shown in Figure 1, a plane along the longest spatial extent of the substantially
  • the cartridge 200 in this example comprises a first chamber 241 for receiving a fluid sample 201 and a second chamber 242, in which a reagent 202 for the
  • the cartridge 200 further comprises a resealable lid 260 to the first chamber 241, so that when the lid 260 is opened, the sample 201 is introduced into the first chamber 241 can be.
  • the first chamber 241 is separated from the second chamber 242 by a first valve 231.
  • the second chamber 242 is separated by a second valve 232 from a detection area 243 of the cartridge 200, wherein the detection area 243 comprises, for example, a microarray for detecting predetermined species.
  • the cartridge 200 can indeed comprise further fluidic structures such as chambers, valves or pumps on the sample 201, depending on the type of processing for which the cartridge 200 is set up.
  • FIG. 3 shows the processing unit 100 with the cartridge 200 accommodated in the shaft 110.
  • the layers 210, 220 of the cartridge 200 extend along the main extension plane 250 of the cartridge 200 so that the main extension plane 250 has a slope a in relation to FIG Direction of action 1 of the earth gravity field when the cartridge 200 is received in the shaft 110 of the processing unit 100 and the processing unit 100 is in the predetermined for the operation of the processing unit 100 orientation, which in this example corresponds to a placement processing unit 100 on a horizontal surface, for example
  • FIG. 3 shows the processing unit 100 with the cartridge 200 accommodated in the shaft 110.
  • the main extension plane 250 of the cartridge 100 and the inclination, that is to say the main extension direction 111 of the shaft 120 coincide due to the advantageous inclination of the cartridge 200 in the inclined one Well 120 can
  • the sample 201 as well as the reagents can be forwarded by simply opening the first valve 231 or the second valve 232 by utilizing gravity in the cartridge 200.
  • the tendency of the cartridge 200 prevents larger residues, for example in the form of capillary or droplet-shaped
  • the sample 201 or the reagents 202 remain in the chambers 241, 242 after further transport, which is not readily possible in a horizontal or vertical processing of the cartridge 200.
  • Processed sample 201 in the detection region 243 of the cartridge 200 can be actuated by actuators 161, 162 of the processing unit 100 or by a readout unit 165 of the processing unit 100.
  • FIG. 4 shows a flowchart of an embodiment of the invention
  • Method 500 for inclined processing of a particular microfluidic cartridge and one into the cartridge
  • a processing unit for example in conjunction with the embodiment shown in Figures 1 to 3.
  • the processing unit 100 is aligned so that a slot for receiving the cartridge 200 in the processing unit extends inclined with respect to the direction of action 1 of the earth's gravity field.
  • the cartridge 200 is inserted into the shaft 110 of the
  • the second step may be done prior to the first step.
  • the cartridge 200 inclined with respect to the direction of action 1 of the gravitational field is processed.
  • the sample 201 is preferably introduced into the cartridge 201 before the cartridge 200 is received in the processing unit 100.
  • the cartridge 200 can first be placed on the table 10 and then the sample 201 can be in the first chamber 241.
  • the user only has to move the lid 260 of the cartridge 200 in the direction of the table surface 11 and, for example, close it in the direction of the surface of the table 11 by gentle finger pressure.
  • the cartridge 200 can be inserted into the shaft 110 of the processing unit 100 and the processing unit 100 operated via the interaction fields 131, 131 for the subsequent processing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

L'invention concerne une unité de traitement (100) servant au traitement d'une cartouche (200), en particulier microfluidique, et d'un échantillon biologique (201) logé dans la cartouche (200), l'unité de traitement (100) comprenant un compartiment (110) logeant la cartouche (200), et le compartiment (110) étant agencé dans l'unité de traitement (100) de telle manière que lors d'une orientation de l'unité de traitement (100) prédéfinie pour le fonctionnement de l'unité de traitement (100), le compartiment (110) s'étend à l'oblique par rapport au sens d'action (1) du champ de gravitation terrestre. L'invention concerne par ailleurs un système de traitement (1000) et un procédé (500) permettant un traitement approprié.
PCT/EP2017/077463 2016-11-10 2017-10-26 Dispositif et procédé permettant un traitement approprié de cartouches fluidiques WO2018086901A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016222072.1A DE102016222072A1 (de) 2016-11-10 2016-11-10 Vorrichtung und Verfahren zur geneigten Prozessierung von mikrofluidischen Kartuschen
DE102016222072.1 2016-11-10

Publications (1)

Publication Number Publication Date
WO2018086901A1 true WO2018086901A1 (fr) 2018-05-17

Family

ID=60190851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/077463 WO2018086901A1 (fr) 2016-11-10 2017-10-26 Dispositif et procédé permettant un traitement approprié de cartouches fluidiques

Country Status (2)

Country Link
DE (1) DE102016222072A1 (fr)
WO (1) WO2018086901A1 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019213313A1 (de) * 2019-09-03 2021-03-04 Robert Bosch Gmbh Zentrifugeneinheit für eine mikrofluidische Vorrichtung zur Prozessierung von flüssigen Proben
DE102020215567A1 (de) 2020-12-09 2022-06-09 Robert Bosch Gesellschaft mit beschränkter Haftung Rückhaltevorrichtung und Verfahren zur Separierung von Zellen
DE102020215986A1 (de) 2020-12-16 2022-06-23 Robert Bosch Gesellschaft mit beschränkter Haftung Anpassung einer Prozessierung einer insbesondere biologischen Probe mit einer Prozessiereinheit
DE102020216120A1 (de) 2020-12-17 2022-06-23 Robert Bosch Gesellschaft mit beschränkter Haftung Ermittlung der Quantität und Qualität einer DNA-Bibliothek
DE102020216542A1 (de) 2020-12-23 2022-06-23 Robert Bosch Gesellschaft mit beschränkter Haftung Membran für eine mikrofluidische Kartusche mit Ausnehmungen für einen Mikrokanal oder ein Sensorelement und Verfahren zur Herstellung einer Membran und einer Kartusche mit Membran
DE102021202795A1 (de) 2021-03-23 2022-09-29 Robert Bosch Gesellschaft mit beschränkter Haftung Bauteil zur Aufnahme optischer Komponenten, insbesondere für die Medizintechnik, und Herstellverfahren
DE102021203409A1 (de) 2021-04-07 2022-10-13 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Nachweis aktiver Viren
DE102021203617A1 (de) 2021-04-13 2022-10-13 Robert Bosch Gesellschaft mit beschränkter Haftung L-Kartusche
DE102021204952A1 (de) 2021-05-17 2022-11-17 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Aufreinigung von Nukleinsäuren, insbesondere in einer mikrofluidischen Vorrichtung
DE102021206225A1 (de) 2021-06-17 2022-12-22 Robert Bosch Gesellschaft mit beschränkter Haftung Gefäß und Verfahren zur Abtrennung von Blutplasma aus Blut über Zentrifugation
DE102021206223A1 (de) 2021-06-17 2022-12-22 Robert Bosch Gesellschaft mit beschränkter Haftung Gefäß und Verfahren zur Abtrennung von Blutplasma aus Blut über Zentrifugation
DE102021208833A1 (de) 2021-08-12 2023-02-16 Robert Bosch Gesellschaft mit beschränkter Haftung Optische Vorrichtung, insbesondere für eine mikrofluidische Vorrichtung
DE102022204604A1 (de) 2021-08-24 2023-03-02 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Anpassung einer Form einer insbesondere mikrofluidischen Kammer und Membranpumpe mit angepasster Kammer
DE102021211545A1 (de) 2021-10-13 2023-04-27 Robert Bosch Gesellschaft mit beschränkter Haftung Klebefolie für eine mikrofluidische Vorrichtung, mikrofluidische Vorrichtung mit Klebefolie und Verwendung einer Klebefolie zum Verschließen einer Öffnung einer mikrofluidischen Vorrichtung
DE102021211549A1 (de) 2021-10-13 2023-04-13 Robert Bosch Gesellschaft mit beschränkter Haftung Vorrichtung, insbesondere mikrofluidische Kartusche, und Verfahren mit Entnahmekammer und entfernbarer Abdeckung
DE102021212645A1 (de) 2021-11-10 2023-05-11 Robert Bosch Gesellschaft mit beschränkter Haftung Vorrichtung und Verfahren zur Durchführung mikrofluidischer Prozessschritte
DE102021214276A1 (de) 2021-12-14 2023-06-15 Robert Bosch Gesellschaft mit beschränkter Haftung Vorrichtung und Verfahren zum Splitten dreidimensionaler Agglomerate
DE102021214281A1 (de) 2021-12-14 2023-06-15 Robert Bosch Gesellschaft mit beschränkter Haftung Vorrichtung und Verfahren zum Splitten dreidimensionaler Agglomerate
DE102023200557A1 (de) 2022-02-03 2023-08-03 Robert Bosch Gesellschaft mit beschränkter Haftung Vorrichtung und computergestütztes Verfahren zum Bestimmen eines Ansteuerungsprotokolls für ein mikrofluidisches System
WO2023148074A1 (fr) 2022-02-03 2023-08-10 Robert Bosch Gmbh Dispositif et procédé assisté par ordinateur pour déterminer un protocole de commande pour un système microfluidique
DE102022202860A1 (de) 2022-03-24 2023-09-28 Robert Bosch Gesellschaft mit beschränkter Haftung Mikrofluidische Vorrichtung mit einer Membran zur Aufnahme einer Probe
DE102022203201A1 (de) 2022-03-31 2023-10-05 Robert Bosch Gesellschaft mit beschränkter Haftung Analysegerät zur Durchführung von mikrofluidischen biologischen Tests mit einer Kartusche mit zwei Pfaden
DE102022203778A1 (de) 2022-04-14 2023-10-19 Robert Bosch Gesellschaft mit beschränkter Haftung Mikrofluidische Kartusche mit einer grabenförmigen Vertiefung zur Behinderung einer Wärmeleitung in der Außenwand

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120071342A1 (en) * 2010-09-15 2012-03-22 Mbio Diagnostics, Inc. System and method for detecting multiple molecules in one assay
US20130029323A1 (en) * 2011-07-26 2013-01-31 Opgen, Inc. Systems, devices, and methods for automated characterization of a nucleic acid molecule
US20130283931A1 (en) * 2010-10-11 2013-10-31 Mbio Diagnostics, Inc. Fluidic Assay Cartridge With Controlled Passive Flow
WO2015191916A1 (fr) * 2014-06-11 2015-12-17 Micronics, Inc. Cartouches microfluidiques et appareil à témoins de dosage intégrés pour l'analyse d'acides nucléiques

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5980830A (en) * 1996-05-20 1999-11-09 Sendx Medical, Inc. Portable modular blood analyzer with simplified fluid handling sequence
US20030224523A1 (en) * 2002-05-30 2003-12-04 Thornberg John Herbert Cartridge arrangement, fluid analyzer arrangement, and methods
US7442342B2 (en) * 2002-06-26 2008-10-28 Ge Healthcare Bio-Sciences Ab Biochip holder and method of collecting fluid
WO2010088514A1 (fr) * 2009-01-30 2010-08-05 Micronics, Inc. Système portable de détection de fluorescence à gain élevé
KR20150097764A (ko) * 2012-12-21 2015-08-26 마이크로닉스 인코포레이티드. 휴대형 형광 검출 시스템 및 미량분석 카트리지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120071342A1 (en) * 2010-09-15 2012-03-22 Mbio Diagnostics, Inc. System and method for detecting multiple molecules in one assay
US20130283931A1 (en) * 2010-10-11 2013-10-31 Mbio Diagnostics, Inc. Fluidic Assay Cartridge With Controlled Passive Flow
US20130029323A1 (en) * 2011-07-26 2013-01-31 Opgen, Inc. Systems, devices, and methods for automated characterization of a nucleic acid molecule
WO2015191916A1 (fr) * 2014-06-11 2015-12-17 Micronics, Inc. Cartouches microfluidiques et appareil à témoins de dosage intégrés pour l'analyse d'acides nucléiques

Also Published As

Publication number Publication date
DE102016222072A1 (de) 2018-05-17

Similar Documents

Publication Publication Date Title
WO2018086901A1 (fr) Dispositif et procédé permettant un traitement approprié de cartouches fluidiques
EP2280778B1 (fr) Plaque de titration en procédé de détection d'un analyte
DE112013003342B4 (de) Patrone zur biochemischen Verwendung und biochemische Verarbeitungsvorrichtung
DE102005063368B4 (de) Chemische Reaktionspatrone
EP1160573A2 (fr) Plaque de microtitrage et dispositif de pipetage multivoies couplé à celui
DE60016415T2 (de) Genetisches versuchssystem
EP1110609B1 (fr) Système de traitement d'échantillons dans un dispositif à compartiments multiples
DE69737619T2 (de) Waschgerät für automatische Analysevorrichtung
DE102014200483B4 (de) Verfahren zum Betreiben eines mikrofluidischen Chips und mikrofluidischer Chip
DE102013200193A1 (de) Probenverarbeitungssystem mit Dosiervorrichtung und Thermocycler
EP3538267A1 (fr) Dispositif microfluidique et procédé pour l'analyse d'acides nucléiques
EP1366818B1 (fr) Dispositif et méthode d'aspiration de liquides dans des plaques d'extraction en phase solide
WO2003053585A1 (fr) Dispositif et procédé pour transférer des echantillons fluides
DE102013222283B3 (de) Vorrichtung und Verfahren zur Handhabung von Reagenzien
WO2020064332A1 (fr) Système microfluidique, dispositif d'analyse pour analyser un échantillon et procédé de manipulation d'un volume de fluide
DE102023207560B3 (de) Halten und Transferieren von Flüssigkeiten
DE102014200467A1 (de) Mikrofluidisches System sowie Verfahren zum Analysieren einer Probe biologischen Materials
DE10322942A1 (de) Vorrichtung zum Positionieren und Ausschleusen von in Separationsmedium eingebetteten Fluidkompartimenten
WO2021013595A1 (fr) Système de laboratoire sur puce comportant au moins une partie fonctionnalisée
EP3321689A1 (fr) Système de pipette destiné à pipeter des liquides dans un appareil d'analyse automatique
EP3608676B1 (fr) Mettre l'échantillon dans le récipient de pointe de pipette pour un posttraitement
DE202011108189U1 (de) Vorrichtung und Fluidikmodul zum Erzeugen einer Verdünnungsreihe
WO2022218603A1 (fr) Cartouche en forme de l
DE102015204882A1 (de) Aufreinigungseinheit zum Aufreinigen zumindest einer Substanz aus einer Probenflüssigkeit, Aufreinigungsvorrichtung, Verfahren zum Betreiben einer Aufreinigungseinheit und Verfahren zum Herstellen einer Aufreinigungseinheit
DE3909518A1 (de) Vorrichtung zum entfernen von gasblasen, insbesondere luftblasen, aus einem fluessigkeitsstrom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17791369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17791369

Country of ref document: EP

Kind code of ref document: A1