WO2018086373A1 - 水箱的温度传感器监测方法和装置、热水系统 - Google Patents

水箱的温度传感器监测方法和装置、热水系统 Download PDF

Info

Publication number
WO2018086373A1
WO2018086373A1 PCT/CN2017/093364 CN2017093364W WO2018086373A1 WO 2018086373 A1 WO2018086373 A1 WO 2018086373A1 CN 2017093364 W CN2017093364 W CN 2017093364W WO 2018086373 A1 WO2018086373 A1 WO 2018086373A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
temperature sensor
sequence
water tank
injected
Prior art date
Application number
PCT/CN2017/093364
Other languages
English (en)
French (fr)
Inventor
陈文强
Original Assignee
广东美的暖通设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的暖通设备有限公司, 美的集团股份有限公司 filed Critical 广东美的暖通设备有限公司
Publication of WO2018086373A1 publication Critical patent/WO2018086373A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters

Definitions

  • the invention relates to the technical field of hot water control, in particular to a temperature sensor monitoring method and device for a water tank and a hot water system.
  • the water temperature at different positions is detected.
  • there may be an error in the placement of the temperature sensor For example, the temperature sensor originally placed in the A position is mistakenly placed in the B position after maintenance. The temperature sensor was originally used to detect A. The water temperature at the location is now the water temperature at the B position. In this way, the actual definition information of the temperature sensor is inconsistent with the definition information of the pre-written program, so that the control system obtains the wrong information, causing the control operation to be abnormal.
  • one method commonly used in the industry is to make corresponding signs to distinguish each temperature sensor, so as to ensure accurate installation by manual differentiation during installation or maintenance.
  • the disadvantage of this method is that the difference in personnel quality may still have the possibility of installation errors and low reliability.
  • Another common method is to make different interfaces to correspond to different sensors, and to distinguish different temperature sensors by different interfaces.
  • the disadvantage of this method is that it requires a large number of different types of interfaces to be produced, which will cause great inconvenience to the production organization and after-sales maintenance and preparation.
  • the present invention provides a temperature sensor monitoring method and apparatus for a water tank, and a hot water system.
  • a temperature sensor monitoring method for a water tank provided by the present invention includes:
  • the currently stored definition information is updated according to the sequence
  • the theoretical temperature change order is a theoretical temperature drop sequence, and the sequence is a sequence in which the temperature decrease rate detected by each temperature sensor exceeds the first preset rate;
  • the theoretical temperature change order is a theoretical temperature rise order, and the sequence is an order in which the rate of rise of the temperature detected by each temperature sensor exceeds a second preset rate.
  • the method includes: when the cold water or the hot water is injected into the water tank, performing a step of acquiring the temperature detected by each temperature sensor and determining the sequence, and determining whether the sequence is related after each determining the sequence Whether the currently stored theoretical temperature change order is consistent until the number of consecutively determined inconsistencies exceeds a preset number of times, exits the loop and updates the definition information according to the last determined sequence.
  • the updating the currently stored definition information according to the sequence includes:
  • the numbers in the definition information of the respective temperature sensors are sorted to implement updating of the definition information.
  • the process of determining whether cold water or hot water is injected into the water tank includes:
  • the control device of the water tank After the control device of the water tank is powered on, it is determined whether the temperature detected by the temperature sensor starts to decrease, and when it is determined that the temperature detected by the temperature sensor begins to decrease, it is determined that cold water is injected into the water tank;
  • the control of the water tank is powered on, it is determined whether or not the temperature detected by the temperature sensor starts to rise, and when it is determined that the temperature detected by the temperature sensor starts to rise, it is determined that hot water is injected into the water tank.
  • the method further includes:
  • the temperature rise or constant of each temperature sensor after power-on is regarded as a temperature change of 0 ° C;
  • the temperature detected by each temperature sensor is decreased or unchanged after power-on, and the temperature change is regarded as 0 °C.
  • the first preset rate and/or the second preset rate is 0.1 to 2 ° C/min.
  • a temperature sensor monitoring device for a water tank provided by the present invention includes:
  • a sequence determining module configured to acquire a temperature detected by each temperature sensor in the water tank when cold water or hot water is injected into the water tank, and determine a sequence in which a rate of change of the temperature detected by each temperature sensor exceeds a preset rate
  • a consistency judging module configured to determine whether the sequence is consistent with a theoretical temperature change order corresponding to the currently stored definition information of each temperature sensor
  • an update module configured to update the currently stored definition information according to the sequence when the determination is inconsistent
  • the theoretical temperature change order is a theoretical temperature drop sequence, and the sequence is a sequence in which the temperature decrease rate detected by each temperature sensor exceeds the first preset rate;
  • the theoretical temperature change order is a theoretical temperature rise order, and the sequence is an order in which the rate of rise of the temperature detected by each temperature sensor exceeds a second preset rate.
  • the device further includes:
  • a memory module configured to store the definition information and the theoretical temperature drop order.
  • the sequence determining module is specifically configured to: when the cold water or the hot water is injected into the water tank, perform a step of acquiring a temperature detected by each temperature sensor and determining the sequence; and the consistency determining module is specifically used After the sequence determining module determines the sequence, whether the sequence is consistent with the currently stored theoretical temperature change order; the definition update module is specifically configured to: continuously determine that the number of inconsistencies exceeds a preset number of times The sequence determination module is caused to exit the loop and update the definition information according to the last determined sequence.
  • the definition update module is specifically configured to: sort the numbers in the definition information of each temperature sensor according to the sequence, to implement updating the definition information.
  • sequence determining module is further configured to determine whether cold water or hot water is injected into the water tank, and the specific process includes:
  • the control device of the water tank After the control device of the water tank is powered on, it is determined whether the temperature detected by the temperature sensor starts to decrease, and when it is determined that the temperature detected by the temperature sensor starts to decrease, it is determined that cold water is injected into the water tank; or, the control device of the water tank After power-on, it is determined whether or not the temperature detected by the temperature sensor starts to rise. When it is determined that the temperature detected by the temperature sensor starts to rise, it is determined that hot water is injected into the water tank.
  • sequence determining module is further configured to:
  • the temperature rise or constant of each temperature sensor after power-on is regarded as a temperature change of 0 ° C;
  • the temperature detected by each temperature sensor is decreased or unchanged after power-on, and the temperature change is regarded as 0 °C.
  • the first preset rate and/or the second preset rate is 0.1 to 2 ° C/min.
  • FIG. 1 is a flow chart showing a method for monitoring a temperature sensor according to an embodiment of the present invention
  • FIG. 2 is a schematic flow chart showing a temperature sensor monitoring method according to another embodiment of the present invention.
  • Figure 3 is a schematic view showing the structure of a hot water system in an embodiment of the present invention.
  • 1-water tank 11-cold water inlet; 12-hot water outlet; T1, T2-temperature sensor; 2-temperature sensor monitoring device; 21-memory module.
  • the present invention provides a temperature sensor monitoring method for a water tank, comprising:
  • the theoretical temperature change order is a theoretical temperature drop sequence, and the sequence is a sequence in which the temperature decrease rate detected by each temperature sensor exceeds the first preset rate;
  • the theoretical temperature change order is a theoretical temperature rise order, and the sequence is an order in which the rate of rise of the temperature detected by each temperature sensor exceeds a second preset rate.
  • the rate of change of the temperature exceeds the preset rate, and the characteristic temperature is greatly decreased or increased.
  • the preset rate can be set according to requirements.
  • the invention is not limited thereto, and the first preset rate and/or Or the second predetermined rate may be selected from 0.1 to 2 ° C / min, such as 0.5 ° C / min.
  • the so-called definition information is information used to characterize which sensor is used to detect which region, the water temperature at the height position.
  • the so-called theoretical temperature change order refers to a sequence in which the temperature detected by each temperature sensor largely changes under the above-described definition information when cold water or hot water is injected into the water tank.
  • One of the relatively simple definition forms is: the relative mounting positions of the respective temperature sensors are numbered in a certain order, for example, the way in which the height direction of the water tank increases from bottom to top, and the bottommost temperature sensor is the first sensor.
  • Adjacent to the first sensor is a second sensor, and then a third sensor, a fourth sensor, etc., in which case the corresponding theoretical temperature change order is the first sensor, the second sensor, the third sensor... .
  • the definition information and the corresponding theoretical temperature change order may be stored in a physical module that performs the above method, or may be stored separately in a physical module and called when needed.
  • cold water refers to water having a lower temperature relative to the current water in the water tank
  • hot water refers to water having a higher temperature than the current water in the water tank.
  • the temperature sensor located at the lower position of the water tank contacts the cold water first with respect to the temperature sensor of the higher position, so the lower temperature sensor detects a significant decrease in temperature earlier than the temperature sensor of the higher position, thus The order in which the temperature drops drastically reflects the current installation position of each temperature sensor in the water tank.
  • the temperature sensor located at the lower position of the water tank contacts the hot water first with respect to the temperature sensor at the higher position, so The low position temperature sensor detects a substantial rise in temperature earlier than the higher position temperature sensor.
  • cold water or hot water is not necessarily injected from the lower part of the water tank, and may be injected from the upper part or from both sides. If injected at the top, the temperature sensor at the higher position first senses the change in temperature, and the temperature sensor at the lower position later feels the change in temperature. If injected on both sides, the temperature sensor near the injection port experiences a change in temperature earlier than the temperature sensor far from the injection port.
  • the above method can be applied to a hot water system, and the hot water system is generally cold water and hot water, so it is suitable for a monitoring scheme when cold water is injected into the water tank.
  • the hot water system uses hot water during the heating process and the hot water after the heating is completed. There is cold water injected into the water tank. In the heating process, hot water is used and cold water is injected. The water temperature change may be complicated, in order to avoid This complication affects the prediction of the relative position of the temperature sensor. It is preferable to perform the above method when the cold water is injected into the water tank after the end of heating, that is, the use phase after the heating of the hot water system is completed. It should be understood that the above method can be used not only for a system such as a hot water system for hot water to enter and exit, but also for a system for hot water to enter and exit a cold water.
  • the above process may be referred to as a temperature sensor automatic error correction process, and may be referred to as a temperature sensor automatic error correction program if implemented by software.
  • the latest definition information is matched with the current relative position of each temperature sensor, so that the control of the hot water system does not cause an abnormality due to an incorrect installation position of the temperature sensor.
  • the manner in which the definition information of each temperature sensor is updated by the present invention is more reliable than the manual distinction in the prior art, and the method of distinguishing different interfaces in the prior art does not need to make a large number of different types of interfaces, and the production organization , after-sales maintenance and preparation of materials, etc. will not cause inconvenience.
  • the determining step of the above sequence and the determining step of whether the sequence is consistent with the theoretical temperature change order may be performed only once, and it is determined whether the definition information needs to be updated.
  • multiple executions or loop executions can be performed.
  • the method may be specifically: when the cold water or the hot water is injected into the water tank, the steps of acquiring the temperature detected by each temperature sensor and determining the sequence are performed cyclically, and after each determining the sequence It is determined whether the sequence is consistent with the currently stored theoretical temperature change order until the number of consecutively determined inconsistencies exceeds a preset number of times, exiting the loop and updating the definition information according to the last determined sequence.
  • a counter is provided for counting the number of consecutive determinations that the sequence is inconsistent with the currently stored theoretical temperature drop order.
  • the counter is cleared, and then the temperature data detected by each temperature sensor is collected to determine the sequence in which the temperature of each temperature sensor is greatly reduced, and then it is determined whether the sequence is consistent with the currently stored theoretical temperature drop order. If they are inconsistent, the counter is incremented by 1, and then it is judged whether the counter count exceeds the preset number; if the preset number of times is not exceeded, the temperature data detected by each temperature sensor is collected again, and the temperature of each temperature sensor is again determined to be greatly decreased. In order, it is again determined whether the order of the determination is consistent with the current stored theoretical temperature drop order.
  • the counter is incremented by one, and then It is judged whether the counter count exceeds the preset number; and so on, when the number of consecutive inconsistencies is determined to exceed the preset number of times, the loop is exited, and the update operation of the definition information is performed.
  • the definition information and the theoretical descending order are read in the memory module, and the memory module may be a module in the physical device that executes the method flow, or may be outside the physical device. A module.
  • the cycle of the substantially detected temperature changes and the sequence of the theoretical temperature change are determined multiple times by loop or multiple times, thereby avoiding errors caused by errors in a certain data acquisition and improving control accuracy.
  • the specific update manner is related to the definition manner of each temperature sensor.
  • each temperature sensor is sequentially numbered in the manner of increasing the height direction of the water tank from bottom to top.
  • the updating manner may be: sorting the numbers in the definition information of each temperature sensor according to the sequence, to implement updating the definition information.
  • the currently stored definition information is the first sensor T10 and the second sensor T20
  • the sensor T1 is defined as the first sensor T10
  • the sensor T2 is defined as the second sensor T20
  • the first sensor T10 is prior to the second sensor
  • the T20 appears to have a large temperature drop, that is, the sensor that is considered to be located at a lower position in the water tank 1 in the definition information is the first sensor T10
  • the sensor located at the higher position in the water tank 1 is the second sensor T20.
  • the temperature data collected by the two sensors T1 and T2 if it is determined that the sensor T1 is to be cooled significantly before the sensor T2, that is, the sequence and the theoretical temperature are lowered.
  • the sequence is inconsistent with the theoretical temperature drop order, indicating that the height order of the two temperature sensors in the water tank is changed, and the definition information is updated:
  • the sensor T1 is defined as the second sensor T20
  • the sensor T2 is defined as the first sensor T10.
  • the theoretical temperature drop order is still that the first sensor T10 has a large temperature drop before the second sensor T20, and no change occurs.
  • the invention is not limited.
  • One of the optional judging methods is: after the control device of the water tank is powered on, it is determined whether the temperature detected by the temperature sensor starts to decrease, and when it is determined that the temperature detected by the temperature sensor starts to decrease, it is determined that there is a cold water injection station. Said water tank.
  • the temperature detected by the temperature sensor is always rising during the heating phase, in the use phase after the heating is completed, with the use of hot water, cold water is injected into the water tank from the cold water inlet, and the temperature detected by the temperature sensor will be It drops, so it can be used to determine if the hot water system is in use.
  • the control device of the water tank is powered on, it is determined whether the temperature detected by the temperature sensor starts to rise. If it is determined that the temperature detected by the temperature sensor starts to rise, it can be determined that hot water is injected into the water tank. This method of judgment is simple and reliable.
  • the temperature detected by each temperature sensor after power-on may be regarded as a temperature change of 0 ° C, so that even in the heating stage, If the power is turned on, it will not be operated according to the above-mentioned sequence determination, order consistency judgment, etc., and only when the temperature drops, that is, enters the use phase, the above-mentioned sequence determination, order consistency judgment, etc. are performed, It is avoided to perform the above-mentioned sequence determination, order consistency judgment and the like in the heating stage, thereby avoiding error control.
  • the temperature detected by each temperature sensor after power-on may be regarded as a temperature change of 0 °C to avoid erroneous control.
  • the present invention also provides a temperature sensor monitoring device for a water tank, the device comprising:
  • a sequence determining module configured to acquire a temperature detected by each temperature sensor in the water tank when cold water or hot water is injected into the water tank, and determine a sequence in which a rate of change of the temperature detected by each temperature sensor exceeds a preset rate
  • a consistency judging module configured to determine whether the sequence is consistent with a theoretical temperature change order corresponding to the currently stored definition information of each temperature sensor
  • an update module configured to update the currently stored definition information according to the sequence when the determination is inconsistent
  • the theoretical temperature change order is a theoretical temperature drop sequence, and the sequence is a sequence in which the temperature decrease rate detected by each temperature sensor exceeds the first preset rate;
  • the theoretical temperature change order is a theoretical temperature rise order, and the sequence is an order in which the rate of rise of the temperature detected by each temperature sensor exceeds a second preset rate.
  • the temperature sensor monitoring device provided by the second aspect of the present invention actually corresponds to the temperature sensor monitoring method provided in the first aspect, and related content may be referred to the corresponding content in the first aspect, for example, for example.
  • the sequence determining module is specifically configured to: when the cold water or the hot water is injected into the water tank, perform a step of acquiring the temperature detected by each temperature sensor and determining the sequence; the consistency determining module is specifically configured to: The sequence determining module determines whether the sequence is consistent with the currently stored theoretical temperature change order after determining the sequence; the definition update module is specifically configured to: when the number of consecutively determined inconsistencies exceeds a preset number of times, The sequence determination module exits the loop and updates the definition information according to the last determined sequence.
  • the definition update module is specifically configured to: sort the numbers in the definition information of each temperature sensor according to the sequence, to implement updating the definition information.
  • sequence determining module is further configured to determine whether cold water or hot water is injected into the water tank.
  • the specific process includes:
  • the control device of the water tank After the control device of the water tank is powered on, it is determined whether the temperature detected by the temperature sensor starts to decrease, and when it is determined that the temperature detected by the temperature sensor begins to decrease, it is determined that cold water is injected into the water tank;
  • the control of the water tank is powered on, it is determined whether or not the temperature detected by the temperature sensor starts to rise, and when it is determined that the temperature detected by the temperature sensor starts to rise, it is determined that hot water is injected into the water tank.
  • sequence determining module is further configured to:
  • the temperature rise or constant of each temperature sensor after power-on is regarded as a temperature change of 0 ° C;
  • the temperature detected by each temperature sensor is decreased or unchanged after power-on, and the temperature change is regarded as 0 °C.
  • the first preset rate and/or the second preset rate is 0.1 to 2 ° C/min.
  • the foregoing sequence determining module, the consistency determining module, and the definition updating module in the temperature sensor monitoring device may be integrated into one physical module as a controller to monitor the temperature sensor in the water tank, or may use multiple
  • the physical module is implemented, in order to facilitate the definition information, the acquisition or update action of the theoretical temperature change sequence, the above definition information and the theoretical temperature change order may be stored in the temperature sensor monitoring device, for example, as shown in FIG. 3, in the temperature sensor monitoring device 2
  • a module is separately provided: a memory module 21 for storing the definition information and the theoretical temperature drop order.
  • a separate memory module is used to separately store the definition information and the theoretical temperature drop order, and the information is called by reading when used, so as to avoid the temporary data pair definition information and theoretical temperature that may need to be stored when performing other operations.
  • the descending order has an impact, ensuring the security of the defined information and the theoretical temperature drop order.
  • it is not suitable to refresh the memory module at a high frequency. Therefore, in the case of power, refresh once, and then maintain the definition information after the power is turned off.
  • the present invention provides a hot water system including a water tank, a temperature sensor disposed in the water tank, and any of the temperature sensor monitoring devices described above, the temperature sensor and each of the water tanks Temperature sensor connection.
  • the hot water outlet 12 in the hot water system is disposed at the upper portion of the water tank 1, and the cold water inlet 11 is disposed at the lower portion of the water tank, that is, the cold water is injected from the cold water inlet 11 into the water tank 1, and the hot water is heated from above.
  • the water outlet 12 flows out.
  • the hot water system provided by the second aspect of the present invention includes the temperature sensor monitoring device provided in the second aspect of the present invention, and the explanation, optional embodiments, examples, beneficial effects, and the like of the related content may be referred to. Corresponding parts in the second aspect of the present invention are not described herein again.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

一种水箱(1)的温度传感器(T1、T2)监测方法,该方法包括:在冷水或热水注入水箱(1)时,获取水箱(1)内各个温度传感器(T1、T2)所检测到的温度,并确定各个温度传感器(T1、T2)所检测到的温度的变化速率超过预设速率的先后顺序;判断先后顺序与当前存储的对各个温度传感器(T1、T2)的定义信息所对应的理论温度变化顺序是否一致;在判定为不一致时,根据先后顺序对当前存储的定义信息进行更新。还提供了一种水箱(1)的温度传感器(T1、T2)监测装置和热水系统。相对于现有技术中人工区分的方式更加可靠,相对于现有技术中不同接口的方式区分不需要制作大量不同类型的接口,对生产组织、售后维修备料等都不会造成不便。

Description

水箱的温度传感器监测方法和装置、热水系统 技术领域
本发明涉及热水控制技术领域,尤其是涉及一种水箱的温度传感器监测方法和装置、热水系统。
背景技术
在热水系统的水箱内一般需要布置多个温度传感器时,对不同位置的水温进行检测。然而,在安装或维修过程中,可能会存在温度传感器的放置位置错误的情况,例如,原本放置在A位置的温度传感器在维修后被误放在了B位置,该温度传感器原本用于检测A位置的水温,现在检测的却是B位置的水温。这样使得温度传感器的实际定义信息与预先写入程序的定义信息不一致,从而使得控制系统得到错误的信息,造成控制操作不正常。
目前,业内常用的一种方法是制作相应的标志来区分各个温度传感器,以便在安装或维修时,通过人工区分的方式来确保安装准确。这种方法的缺点是:人员素质的差异,仍然可能会存在安装错误的可能性,可靠性低。还有一种常用方法是制作不同的接口来对应不同的传感器,通过不同接口的方式区分不同的温度传感器。这种方法的缺点是:需要制作大量的不同类型的接口,对生产组织、售后维修备料等都会造成极大的不便。
发明内容
针对以上缺陷,本发明提供一种水箱的温度传感器监测方法和装置、热水系统。
第一方面,本发明提供的水箱的温度传感器监测方法包括:
在冷水或热水注入水箱时,获取所述水箱内各个温度传感器所检测到的温度,并确定各个温度传感器所检测到的温度的变化速率超过预设速率的先后顺 序;
判断所述先后顺序与当前存储的对各个温度传感器的定义信息所对应的理论温度变化顺序是否一致;
在判定为不一致时,根据所述先后顺序对当前存储的所述定义信息进行更新;
其中,在冷水注入水箱时,所述理论温度变化顺序为理论温度下降顺序,所述先后顺序为各个温度传感器所检测到的温度的下降速率超过第一预设速率的顺序;在热水注入水箱时,所述理论温度变化顺序为理论温度上升顺序,所述先后顺序为各个温度传感器所检测到的温度的上升速率超过第二预设速率的顺序。
可选的,具体包括:在冷水或热水注入水箱时,循环执行获取各个温度传感器所检测到的温度及确定所述先后顺序的步骤,并在每一次确定先后顺序后判断该先后顺序是否与当前存储的理论温度变化顺序是否一致,直至在连续判定为不一致的次数超出预设次数时,退出循环并根据最后一次确定的先后顺序对所述定义信息进行更新。
可选的,所述根据所述先后顺序对当前存储的所述定义信息进行更新,包括:
按照所述先后顺序,对各个温度传感器的定义信息中的编号进行排序,以实现对所述定义信息的更新。
可选的,判断是否有冷水或热水注入所述水箱的过程包括:
在水箱的控制装置上电后判断是否有温度传感器所检测到的温度开始降低,在判定有温度传感器所检测到的温度开始降低时,确定有冷水注入所述水箱;
或者,在水箱的控制装置上电后判断是否有温度传感器所检测到的温度开始上升,在判定有温度传感器所检测到的温度开始上升时,确定有热水注入所述水箱。
可选的,所述方法还包括:
若冷水注入水箱,则将在上电后各个温度传感器所检测到的温度上升或不变的情况视为温度变化为0℃;
若热水注入水箱,则将在上电后各个温度传感器所检测到的温度下降或不变的情况视为温度变化为0℃。
可选的,所述第一预设速率和/或所述第二预设速率为0.1~2℃/min。
第二方面,本发明提供的水箱的温度传感器监测装置,包括:
顺序确定模块,用于在冷水或热水注入水箱时,获取所述水箱内各个温度传感器所检测到的温度,并确定各个温度传感器所检测到的温度的变化速率超过预设速率的先后顺序;
一致性判断模块,用于判断所述先后顺序与当前存储的对各个温度传感器的定义信息所对应的理论温度变化顺序是否一致;
定义更新模块,用于在判定为不一致时,根据所述先后顺序对当前存储的所述定义信息进行更新;
其中,在冷水注入水箱时,所述理论温度变化顺序为理论温度下降顺序,所述先后顺序为各个温度传感器所检测到的温度的下降速率超过第一预设速率的顺序;在热水注入水箱时,所述理论温度变化顺序为理论温度上升顺序,所述先后顺序为各个温度传感器所检测到的温度的上升速率超过第二预设速率的顺序。
可选的,所述装置还包括:
记忆模块,用于存储所述定义信息和所述理论温度下降顺序。
可选的,所述顺序确定模块具体用于:在冷水或热水注入水箱时,循环执行获取各个温度传感器所检测到的温度及确定所述先后顺序的步骤;所述一致性判断模块具体用于:在所述顺序确定模块每一次确定先后顺序后判断该先后顺序是否与当前存储的理论温度变化顺序是否一致;所述定义更新模块具体用于:在连续判定为不一致的次数超出预设次数时,使所述顺序确定模块退出循环并根据最后一次确定的先后顺序对所述定义信息进行更新。
可选的,所述定义更新模块具体用于:按照所述先后顺序,对各个温度传感器的定义信息中的编号进行排序,以实现对所述定义信息的更新。
可选的,所述顺序确定模块还用于判断是否有冷水或热水注入所述水箱,具体过程包括:
在水箱的控制装置上电后判断是否有温度传感器所检测到的温度开始降低,在判定有温度传感器所检测到的温度开始降低时,确定有冷水注入所述水箱;或者,在水箱的控制装置上电后判断是否有温度传感器所检测到的温度开始上升,在判定有温度传感器所检测到的温度开始上升时,确定有热水注入所述水箱。
可选的,所述顺序确定模块还用于:
若冷水注入水箱,则将在上电后各个温度传感器所检测到的温度上升或不变的情况视为温度变化为0℃;
若热水注入水箱,则将在上电后各个温度传感器所检测到的温度下降或不变的情况视为温度变化为0℃。
可选的,所述第一预设速率和/或所述第二预设速率为0.1~2℃/min。
第三方面,本发明提供的热水系统包括水箱、设置在所述水箱内的温度传感器及上述任一温度传感器监测装置,所述温度传感器与水箱内的各个温度传感器连接。
当在水箱内注入冷水或热水时,水箱内的不同位置的温度传感器会在不同时刻感受到水箱内温度的变化。基于这一点,可确定水箱内各个温度传感器的相对位置,将反应该相对位置的先后顺序与当前存储的理论温度变化顺序进行一致性判断,由于当前的定义信息和当前的理论温度变化顺序是对应的,不同的定义信息会有不同的理论温度变化顺序。若经判断为一致,说明此时水箱内各个温度传感器的相对位置与当前存储的定义信息相匹配,即各个温度传感器的相对位置没有发生变化,若不一致,则对各个温度传感器的定义信息进行更新,使得最新的定义信息与各个温度传感器当前的相对位置相匹配,从而使得 热水系统的控制不会因为温度传感器的安装位置错误而出现异常。通过本发明对各个温度传感器的定义信息更新的方式,相对于现有技术中人工区分的方式更加可靠,相对于现有技术中不同接口的方式区分不需要制作大量不同类型的接口,对生产组织、售后维修备料等都不会造成不便。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些图获得其他的附图。
图1示出了本发明一实施例中温度传感器监测方法的流程示意图;
图2示出了本发明另一实施例中温度传感器监测方法的流程示意图;
图3示出了本发明一实施例中热水系统的结构示意图;
附图标记说明:
1-水箱;11-冷水进口;12-热水出口;T1、T2-温度传感器;2-温度传感器监测装置;21-记忆模块。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
第一方面,本发明提供一种水箱的温度传感器监测方法,包括:
S1、在冷水或热水注入水箱时,获取所述水箱内各个温度传感器所检测到的温度,并确定各个温度传感器所检测到的温度的变化速率超过预设速率的先后顺序;
S2、判断所述先后顺序与当前存储的对各个温度传感器的定义信息所对应的理论温度变化顺序是否一致;
S3、在判定为不一致时,根据所述先后顺序对当前存储的所述定义信息进行更新;
其中,在冷水注入水箱时,所述理论温度变化顺序为理论温度下降顺序,所述先后顺序为各个温度传感器所检测到的温度的下降速率超过第一预设速率的顺序;在热水注入水箱时,所述理论温度变化顺序为理论温度上升顺序,所述先后顺序为各个温度传感器所检测到的温度的上升速率超过第二预设速率的顺序。
可理解的是,温度的变化速率超过预设速率,实际上表征温度大幅下降或上升,其中的预设速率可以根据需要自行设置,对此本发明不做限定,通常第一预设速率和/或第二预设速率可以在0.1~2℃/min中选取,例如0.5℃/min。
可理解的是,所谓的定义信息是用来表征哪个传感器用于检测哪个区域、高度位置的水温的信息。所谓的理论温度变化顺序,是指在冷水或热水注入水箱时,在上述定义信息下,各个温度传感器所检测到的温度大幅变化的顺序。其中,定义信息的定义形式可以有多种,对此实施例不做限定。其中一种比较简单的定义形式是:对各个温度传感器的相对安装位置按照某一顺序进行编号,例如沿水箱的高度方向从下至上依次增大的方式编号,最底部的温度传感器为第一传感器,第一传感器之上相邻的是第二传感器,然后依次是第三传感器、第四传感器……,这样的话,对应的理论温度变化顺序为第一传感器、第二传感器、第三传感器……。定义信息和对应的理论温度变化顺序可以存储在执行上述方法的实体模块内,也可以单独存储在一个实体模块内,在需要使用时进行调用。
可理解的是,冷水是指相对于水箱内的当前水温较低的水,热水是指相对于水箱内的当前水温较高的水。
举例来说,若从水箱的下部注入冷水,随着冷水的不断注入,冷水的水位 逐渐上升,位于水箱较低位置的温度传感器相对于较高位置的温度传感器先接触到冷水,所以较低位置的温度传感器相对于较高位置的温度传感器更早的检测到温度的大幅降低,因此温度大幅下降的先后顺序可以反映各个温度传感器在水箱内的当前安装位置。当然,若从水箱的下部注入热水,随着热水的不断注入,热水的水位逐渐上升,位于水箱较低位置的温度传感器相对于较高位置的温度传感器先接触到热水,所以较低位置的温度传感器相对于较高位置的温度传感器更早的检测到温度的大幅上升。
可理解的是,冷水或热水不一定是从水箱的下部注入,也可能从上部注入,或从两侧注入。如果在上部注入,则位于较高位置的温度传感器首先感受到温度的变化,较低位置的温度传感器后来才感受到温度的变化。如果在两侧注入,则靠近注入口的温度传感器要比远离注入口的温度传感器更早的感受到温度的变化。
可理解的是,上述方法可以用于热水系统,热水系统一般是冷水进热水出,因此适合采用冷水注入水箱时的监测方案。热水系统在加热过程中使用热水和在加热完成后使用热水均会有冷水注入水箱,而在加热过程中使用热水的同时也有冷水的注入,其水温的变化可能会复杂,为了避免这种复杂情况影响到温度传感器相对位置的预测,最好在加热结束后冷水注入所述水箱时,即指热水系统加热完成后的使用阶段执行上述方法。应当理解的是,上述方法不仅可以用于热水系统这样冷水进热水出的系统,还可以用于热水进冷水出的系统。
可理解的是,由于上述方法的目的是进行温度传感器自动纠错,因此可以上述过程可以称为温度传感器自动纠错过程,如采用软件实现的话,可以称为温度传感器自动纠错程序。
当在水箱内注入冷水或热水时,水箱内的不同位置的温度传感器会在不同时刻感受到水箱内温度的变化。基于这一点,可确定水箱内各个温度传感器的相对位置,将反应该相对位置的先后顺序与当前存储的理论温度变化顺序进行一致性判断,由于当前的定义信息和当前的理论温度变化顺序是对应的,不同 的定义信息会有不同的理论温度变化顺序。若经判断为一致,说明此时水箱内各个温度传感器的相对位置与当前存储的定义信息相匹配,即各个温度传感器的相对位置没有发生变化,若不一致,则对各个温度传感器的定义信息进行更新,使得最新的定义信息与各个温度传感器当前的相对位置相匹配,从而使得热水系统的控制不会因为温度传感器的安装位置错误而出现异常。通过本发明对各个温度传感器的定义信息更新的方式,相对于现有技术中人工区分的方式更加可靠,相对于现有技术中不同接口的方式区分不需要制作大量不同类型的接口,对生产组织、售后维修备料等都不会造成不便。
在具体实施时,如图1所示,可以对上述先后顺序的确定步骤以及对先后顺序与理论温度变化顺序是否一致的判断步骤均只执行一次,便得出是否需要对定义信息进行更新的判断。当然,为了保证足够的精确度,可以执行多次执行或循环执行。
当采用循环执行的方式时,方法可以具体为:在冷水或热水注入水箱时,循环执行获取各个温度传感器所检测到的温度及确定所述先后顺序的步骤,并在每一次确定先后顺序后判断该先后顺序是否与当前存储的理论温度变化顺序是否一致,直至在连续判定为不一致的次数超出预设次数时,退出循环并根据最后一次确定的先后顺序对所述定义信息进行更新。
以在水箱内注入冷水为例说明上述过程:
参考图2,设置一计数器,用于对连续判定为先后顺序与当前存储的理论温度下降顺序不一致的次数进行计数。在执行控制操作开始时,计数器清零,然后采集各个温度传感器所检测到的温度数据,确定各个温度传感器温度大幅下降的先后顺序,然后判断该先后顺序是否与当前存储的理论温度下降顺序是否一致,若不一致,则计数器加1,然后判断计数器的计数是否超出预设次数;若没有超出预设次数,则再次采集各个温度传感器所检测到的温度数据,再次确定各个温度传感器温度大幅下降的先后顺序,再次判断此次确定的先后顺序是否与当前存储的理论温度下降顺序是否一致,若不一致则计数器再加1,再 判断计数器的计数是否超出预设次数;以此类推,当连续判定为不一致的次数超出预设次数时,则退出循环,并执行定义信息的更新操作。在图3示出的流程中,定义信息和理论下降顺序是在记忆模块中读取的,该记忆模块可以是执行该方法流程的实体装置中的一个模块,也可以是该实体装置之外的一个模块。
这里,通过循环或多次的方式,对实际检测到的温度大幅变化的先后顺序与理论温度变化顺序进行多次判断,避免了某一次数据采集的错误所导致的误差,提高控制精度。
在以在水箱内注入冷水为例进行说明的上述过程中,若在某一次将先后顺序与理论温度下降顺序是否一致的判断中,判断得知两者是一致的,则保持所存储的定义信息不变,计数器不加1,然后返回循环继续执行采集温度数据、确定先后顺序、一致性判断等这些操作。由于只有在连续判定为不一致的次数超出预设次数时,才会退出循环,因此当不满足该条件时,控制器会一直进行循环操作,进行一致性判断,因此一旦出现安装位置有问题,就会检测出来,及时更新。
在具体实施时,在执行对所述定义信息的更新步骤时,具体的更新方式与各个温度传感器的定义方式有关,例如,各个温度传感器沿水箱高度方向从下至上依次增大的方式依次编号,则更新方式可以为:按照所述先后顺序,对各个温度传感器的定义信息中的编号进行排序,以实现对所述定义信息的更新。
下面以图3中热水系统的水箱中设置有两个温度传感器T1和T2的情况进行举例说明:
参考图2,当前存储的定义信息为第一传感器T10和第二传感器T20,且将传感器T1定义为第一传感器T10,传感器T2定义为第二传感器T20,第一传感器T10要先于第二传感器T20出现温度大幅下降,也就是说,定义信息中认为位于水箱1中较低位置的传感器为第一传感器T10,位于水箱1中较高位置的传感器为第二传感器T20。当根据两个传感器T1和T2所采集的温度数据,若确定传感器T1要先于传感器T2出现大幅降温,即先后顺序与理论温度下降 顺序一致,则认为两个温度传感器在水箱1中的安装位置没有错误。但是如果确定的结果是传感器T1要晚于传感器T2出现大幅降温,即先后顺序与理论温度下降顺序不一致,说明两个温度传感器在水箱中的高度顺序发生了调换,这时对定义信息进行更新:将传感器T1定义为第二传感器T20,传感器T2定义为第一传感器T10,此时理论温度下降顺序还是第一传感器T10要先于第二传感器T20出现温度大幅下降,没有发生变化。虽然在图3中示出的流程图中,以循环的方式执行,但是若选择只执行一次的先后顺序确定和一致性判断过程,则可以将预设次数设置为0。通过上述过程,可以对两个传感器进行纠错,避免错误的定义信息造成控制混乱。
在具体实施时,需要首先判断水箱当前是否注入热水或冷水,当应用至热水系统时甚至需要判断热水系统是否进入加热完成后的使用阶段,具体的判断方法有多种,对此本发明不做限定。其中一种可选的判断方法为:在水箱的控制装置上电后判断是否有温度传感器所检测到的温度开始降低,在判定有温度传感器所检测到的温度开始降低时,确定有冷水注入所述水箱。由于在加热阶段,温度传感器所检测到的温度是一直上升的,在加热完成后的使用阶段,随着热水的使用,会有冷水从冷水进口注入水箱,此时温度传感器检测到的温度会下降,因此可以用来判断热水系统是否进入使用阶段。对应的,在水箱的控制装置上电后判断是否有温度传感器所检测到的温度开始上升,若判定有温度传感器所检测到的温度开始上升,则可以确定有热水注入所述水箱。这种判断方式简单、可靠。
在具体实施时,假如上述方法应用在热水系统中,还可以将在上电后各个温度传感器所检测到的温度上升或不变的情况视为温度变化为0℃,这样即便在加热阶段,上电的话,也不会根据进行上述先后顺序的确定、顺序一致性判断等操作,只有在温度下降时,即进入使用阶段,才会执行上述先后顺序的确定、顺序一致性判断等操作,以避免在加热阶段便进行上述先后顺序的确定、顺序一致性判断等操作,从而避免出现错误控制。同样的,当上述方法引用于 热水进冷水出的系统中时,可以将在上电后各个温度传感器所检测到的温度下降或不变的情况视为温度变化为0℃,以避免错误控制。
第二方面,本发明还提供一种水箱的温度传感器监测装置,该装置包括:
顺序确定模块,用于在冷水或热水注入水箱时,获取所述水箱内各个温度传感器所检测到的温度,并确定各个温度传感器所检测到的温度的变化速率超过预设速率的先后顺序;
一致性判断模块,用于判断所述先后顺序与当前存储的对各个温度传感器的定义信息所对应的理论温度变化顺序是否一致;
定义更新模块,用于在判定为不一致时,根据所述先后顺序对当前存储的所述定义信息进行更新;
其中,在冷水注入水箱时,所述理论温度变化顺序为理论温度下降顺序,所述先后顺序为各个温度传感器所检测到的温度的下降速率超过第一预设速率的顺序;在热水注入水箱时,所述理论温度变化顺序为理论温度上升顺序,所述先后顺序为各个温度传感器所检测到的温度的上升速率超过第二预设速率的顺序。
可理解的是,本发明第二方面提供的温度传感器监测装置实际上与第一方面中提供的温度传感器监测方法相对应,其有关内容可选实施方式可以参考第一方面中的相应内容,例如:所述顺序确定模块具体用于:在冷水或热水注入水箱时,循环执行获取各个温度传感器所检测到的温度及确定所述先后顺序的步骤;所述一致性判断模块具体用于:在所述顺序确定模块每一次确定先后顺序后判断该先后顺序是否与当前存储的理论温度变化顺序是否一致;所述定义更新模块具体用于:在连续判定为不一致的次数超出预设次数时,使所述顺序确定模块退出循环并根据最后一次确定的先后顺序对所述定义信息进行更新。
再例如,所述定义更新模块具体用于:按照所述先后顺序,对各个温度传感器的定义信息中的编号进行排序,以实现对所述定义信息的更新。
再例如,所述顺序确定模块还用于判断是否有冷水或热水注入所述水箱, 具体过程包括:
在水箱的控制装置上电后判断是否有温度传感器所检测到的温度开始降低,在判定有温度传感器所检测到的温度开始降低时,确定有冷水注入所述水箱;
或者,在水箱的控制装置上电后判断是否有温度传感器所检测到的温度开始上升,在判定有温度传感器所检测到的温度开始上升时,确定有热水注入所述水箱。
再例如,所述顺序确定模块还用于:
若冷水注入水箱,则将在上电后各个温度传感器所检测到的温度上升或不变的情况视为温度变化为0℃;
若热水注入水箱,则将在上电后各个温度传感器所检测到的温度下降或不变的情况视为温度变化为0℃。
再例如,所述第一预设速率和/或所述第二预设速率为0.1~2℃/min。
对于其他有关内容的解释、举例说明、有益效果等均可以参考本发明第一方面中的相应部分,这里不再赘述。
在具体实施时,上述温度传感器监测装置中的上述顺序确定模块、一致性判断模块、定义更新模块可以集成在一个实体模块中作为一个控制器对水箱内的温度传感器进行监测,也可以采用多个实体模块实现,为了便于定义信息、理论温度变化顺序的获取或更新动作,可以将上述定义信息、理论温度变化顺序存储在温度传感器监测装置中,例如如图3所示,在温度传感器监测装置2中单独设置一个模块:记忆模块21,用于存储所述定义信息和所述理论温度下降顺序。这里,采用单独的一个记忆模块单独存储定义信息和理论温度下降顺序,在使用时通过读取的方式调用其中的信息,这样可以避免执行其他操作时可能需要存储的临时数据对定义信息和理论温度下降顺序造成影响,保证定义信息和理论温度下降顺序的安全性。为保证记忆模块的使用寿命,不宜高频的刷新记忆模块,因此在有电的情况下,刷新一次即可,而后在断电之前都维持刷新后的定义信息即可,
第三方面,本发明提供一种热水系统,该热水系统包括水箱、设置在所述水箱内的温度传感器及上述任一所述的温度传感器监测装置,所述温度传感器与水箱内的各个温度传感器连接。
如图3所示,热水系统中的热水出口12设置在水箱1的上部,冷水进口11设置在水箱的下部,也就是说,冷水从冷水进口11注入水箱1,热水从上方的热水出口12流出。
可理解的是,本发明第二方面提供的热水系统中包括本发明第二方面中提供的温度传感器监测装置,其有关内容的解释、可选实施方式、举例说明、有益效果等均可以参考本发明第二方面中的相应部分,这里不再赘述。
本发明的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解;其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。

Claims (14)

  1. 一种水箱的温度传感器监测方法,其特征在于,包括:
    在冷水或热水注入水箱时,获取所述水箱内各个温度传感器所检测到的温度,并确定各个温度传感器所检测到的温度的变化速率超过预设速率的先后顺序;
    判断所述先后顺序与当前存储的对各个温度传感器的定义信息所对应的理论温度变化顺序是否一致;
    在判定为不一致时,根据所述先后顺序对当前存储的所述定义信息进行更新;
    其中,在冷水注入水箱时,所述理论温度变化顺序为理论温度下降顺序,所述先后顺序为各个温度传感器所检测到的温度的下降速率超过第一预设速率的顺序;在热水注入水箱时,所述理论温度变化顺序为理论温度上升顺序,所述先后顺序为各个温度传感器所检测到的温度的上升速率超过第二预设速率的顺序。
  2. 根据权利要求1所述的方法,其特征在于,具体包括:在冷水或热水注入水箱时,循环执行获取各个温度传感器所检测到的温度及确定所述先后顺序的步骤,并在每一次确定先后顺序后判断该先后顺序是否与当前存储的理论温度变化顺序是否一致,直至在连续判定为不一致的次数超出预设次数时,退出循环并根据最后一次确定的先后顺序对所述定义信息进行更新。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述先后顺序对当前存储的所述定义信息进行更新,包括:
    按照所述先后顺序,对各个温度传感器的定义信息中的编号进行排序,以实现对所述定义信息的更新。
  4. 根据权利要求1所述的方法,其特征在于,判断是否有冷水或热水注入所述水箱的过程包括:
    在水箱的控制装置上电后判断是否有温度传感器所检测到的温度开始降低,在判定有温度传感器所检测到的温度开始降低时,确定有冷水注入所述水箱;
    或者,在水箱的控制装置上电后判断是否有温度传感器所检测到的温度开始上升,在判定有温度传感器所检测到的温度开始上升时,确定有热水注入所述水箱。
  5. 根据权利要求1~4任一所述的方法,其特征在于,还包括:
    若冷水注入水箱,则将在上电后各个温度传感器所检测到的温度上升或不变的情况视为温度变化为0℃;
    若热水注入水箱,则将在上电后各个温度传感器所检测到的温度下降或不变的情况视为温度变化为0℃。
  6. 根据权利要求1~4任一所述的方法,其特征在于,所述第一预设速率和/或所述第二预设速率为0.1~2℃/min。
  7. 一种水箱的温度传感器监测装置,其特征在于,包括:
    顺序确定模块,用于在冷水或热水注入水箱时,获取所述水箱内各个温度传感器所检测到的温度,并确定各个温度传感器所检测到的温度的变化速率超过预设速率的先后顺序;
    一致性判断模块,用于判断所述先后顺序与当前存储的对各个温度传感器的定义信息所对应的理论温度变化顺序是否一致;
    定义更新模块,用于在判定为不一致时,根据所述先后顺序对当前存储的所述定义信息进行更新;
    其中,在冷水注入水箱时,所述理论温度变化顺序为理论温度下降顺序,所述先后顺序为各个温度传感器所检测到的温度的下降速率超过第一预设速率的顺序;在热水注入水箱时,所述理论温度变化顺序为理论温度上升顺序,所述先后顺序为各个温度传感器所检测到的温度的上升速率超过第二预设速率的顺序。
  8. 根据权利要求7所述的装置,其特征在于,还包括:
    记忆模块,用于存储所述定义信息和所述理论温度下降顺序。
  9. 根据权利要求7所述的装置,其特征在于,
    所述顺序确定模块具体用于:在冷水或热水注入水箱时,循环执行获取各个温度传感器所检测到的温度及确定所述先后顺序的步骤;
    所述一致性判断模块具体用于:在所述顺序确定模块每一次确定先后顺序后判断该先后顺序是否与当前存储的理论温度变化顺序是否一致;
    所述定义更新模块具体用于:在连续判定为不一致的次数超出预设次数时,使所述顺序确定模块退出循环并根据最后一次确定的先后顺序对所述定义信息进行更新。
  10. 根据权利要求7所述的装置,其特征在于,所述定义更新模块具体用于:按照所述先后顺序,对各个温度传感器的定义信息中的编号进行排序,以实现对所述定义信息的更新。
  11. 根据权利要求7所述的装置,其特征在于,所述顺序确定模块还用于判断是否有冷水或热水注入所述水箱,具体过程包括:
    在水箱的控制装置上电后判断是否有温度传感器所检测到的温度开始降低,在判定有温度传感器所检测到的温度开始降低时,确定有冷水注入所述水箱;
    或者,在水箱的控制装置上电后判断是否有温度传感器所检测到的温度开始上升,在判定有温度传感器所检测到的温度开始上升时,确定有热水注入所述水箱。
  12. 根据权利要求7~11任一所述的装置,其特征在于,所述顺序确定模块还用于:
    若冷水注入水箱,则将在上电后各个温度传感器所检测到的温度上升或不变的情况视为温度变化为0℃;
    若热水注入水箱,则将在上电后各个温度传感器所检测到的温度下降或不变的情况视为温度变化为0℃。
  13. 根据权利要求7~11任一所述的装置,其特征在于,所述第一预设速率 和/或所述第二预设速率为0.1~2℃/min。
  14. 一种热水系统,其特征在于,包括水箱、设置在所述水箱内的温度传感器及权利要求7~13任一所述的温度传感器监测装置,所述温度传感器与水箱内的各个温度传感器连接。
PCT/CN2017/093364 2016-11-14 2017-07-18 水箱的温度传感器监测方法和装置、热水系统 WO2018086373A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611029659.5 2016-11-14
CN201611029659.5A CN106766215B (zh) 2016-11-14 2016-11-14 水箱的温度传感器监测方法和装置、热水系统

Publications (1)

Publication Number Publication Date
WO2018086373A1 true WO2018086373A1 (zh) 2018-05-17

Family

ID=58970316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093364 WO2018086373A1 (zh) 2016-11-14 2017-07-18 水箱的温度传感器监测方法和装置、热水系统

Country Status (2)

Country Link
CN (1) CN106766215B (zh)
WO (1) WO2018086373A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105222352B (zh) * 2014-06-23 2022-02-15 珠海格力电器股份有限公司 热水器及其控制方法
CN106766215B (zh) * 2016-11-14 2019-09-17 广东美的暖通设备有限公司 水箱的温度传感器监测方法和装置、热水系统
CN107401840B (zh) * 2017-07-26 2020-05-05 珠海格力电器股份有限公司 热水机及其校验水箱感温包位置的检测装置和方法
CN109901647A (zh) * 2017-12-08 2019-06-18 中国石油化工股份有限公司 储罐喷淋控制方法及系统
CN109798670B (zh) * 2019-02-27 2021-04-09 九阳股份有限公司 一种电热水器检测方法及电热水器
CN112107216B (zh) * 2019-06-19 2022-04-12 浙江苏泊尔家电制造有限公司 烹饪器具的控制方法及烹饪器具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010009609A1 (en) * 1999-07-27 2001-07-26 Bradenbaugh Kenneth A. Proportional band temperature control for one or more heating elements
CN102589138A (zh) * 2012-02-16 2012-07-18 广东美的暖通设备有限公司 显示可用热水量的热水器及其控制方法
CN103836800A (zh) * 2012-11-20 2014-06-04 芜湖美的厨卫电器制造有限公司 电热水器及其控制方法
CN104359228A (zh) * 2014-12-01 2015-02-18 芜湖美的厨卫电器制造有限公司 热水器及其防干烧控制方法
CN106766215A (zh) * 2016-11-14 2017-05-31 广东美的暖通设备有限公司 水箱的温度传感器监测方法和装置、热水系统

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2734390B2 (ja) * 1994-12-30 1998-03-30 株式会社ノーリツ 給湯器の出湯温度制御方法
JPH11337177A (ja) * 1998-05-21 1999-12-10 Nippon Dennetsu Co Ltd 電気温水器の通電制御方法
JP3938333B2 (ja) * 2002-06-14 2007-06-27 三洋電機株式会社 給湯機
AU2004213844B2 (en) * 2003-02-19 2009-03-12 State Industries, Inc. Water heater and method of operating the same
CN2869679Y (zh) * 2006-02-24 2007-02-14 李国臣 多功能民用燃气取暖装置
CN2935007Y (zh) * 2006-09-07 2007-08-15 中山华帝燃具股份有限公司 一种可变容热泵热水器
JP5314869B2 (ja) * 2006-10-18 2013-10-16 オリンパスイメージング株式会社 燃料電池の残容量検出方法及び燃料電池の残容量検出装置
KR101059818B1 (ko) * 2007-01-08 2011-08-26 삼성전자주식회사 스팀발생기와 이를 갖는 조리장치 및 그 제어방법
KR20090037563A (ko) * 2007-10-12 2009-04-16 최소라 보일러의 온수공급 시스템
CN101513232A (zh) * 2009-03-16 2009-08-26 秦皇岛正大有限公司 一种新型的丸子水煮机
JP2011089696A (ja) * 2009-10-22 2011-05-06 Chugoku Electric Power Co Inc:The 外部熱交換器付き縦型電気温水器及び伸縮パイプを用いた追い焚き方法
JP5654841B2 (ja) * 2010-10-28 2015-01-14 東芝キヤリア株式会社 給湯システム
CN102305453B (zh) * 2011-07-29 2013-08-07 青岛海信日立空调系统有限公司 双系统空调室外机与水模块盘管温度传感器配对控制方法
CN103104978B (zh) * 2011-11-11 2016-05-04 珠海格力电器股份有限公司 一种储水箱及使用该储水箱的储水式热水器
CN203586565U (zh) * 2013-11-14 2014-05-07 三浦工业设备(苏州)有限公司 一种能监视水管内水垢的锅炉
CN104848521B (zh) * 2015-03-30 2019-04-02 芜湖美的厨卫电器制造有限公司 电热水器及其加热方法
CN104776587B (zh) * 2015-04-16 2017-11-24 嘉兴志嘉智能电器有限公司 一种快速水加热装置及其控制方法
CN106091507A (zh) * 2016-06-14 2016-11-09 广东美的暖通设备有限公司 空调系统的排气温度传感器防呆方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010009609A1 (en) * 1999-07-27 2001-07-26 Bradenbaugh Kenneth A. Proportional band temperature control for one or more heating elements
CN102589138A (zh) * 2012-02-16 2012-07-18 广东美的暖通设备有限公司 显示可用热水量的热水器及其控制方法
CN103836800A (zh) * 2012-11-20 2014-06-04 芜湖美的厨卫电器制造有限公司 电热水器及其控制方法
CN104359228A (zh) * 2014-12-01 2015-02-18 芜湖美的厨卫电器制造有限公司 热水器及其防干烧控制方法
CN106766215A (zh) * 2016-11-14 2017-05-31 广东美的暖通设备有限公司 水箱的温度传感器监测方法和装置、热水系统

Also Published As

Publication number Publication date
CN106766215A (zh) 2017-05-31
CN106766215B (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
WO2018086373A1 (zh) 水箱的温度传感器监测方法和装置、热水系统
JP4499601B2 (ja) 射出成形機の制御装置
CN107908744B (zh) 一种用于大数据清洗的异常检测和消除的方法
CN103389434B (zh) 检测电阻温度检测器的泄漏电流的方法和装置
CN103197995A (zh) 硬盘故障检测方法及装置
US20100049337A1 (en) Peripheral device of programmable logic controller
CN115201395B (zh) 一种基于大数据技术的色谱仪监管方法及装置
BR112020000390A2 (pt) aparelho de monitoramento e método de monitoramento de um sistema
JP5208967B2 (ja) プロセス変量トランスミッタの検証
JP2021068831A (ja) 故障検知システム及び故障検知方法
CN107643699A (zh) 取液控制方法、装置及取液系统
JP6415335B2 (ja) 不具合診断方法及び不具合診断システム
JP2011107760A (ja) プラント異常検出装置
JP6484525B2 (ja) 警報装置およびプロセス制御システム
CA2890169A1 (en) A method for operating a compressor in case of failure of one or more measure signal
US10775211B2 (en) Real-time vessel monitoring system
KR102501286B1 (ko) 기체 센서의 이상 감지 장치 및 방법
US20180361499A1 (en) Weld monitoring systems and methods
US20150082869A1 (en) Detection method and detection device for pipelines in machine-controlled leakage and compliance tests of anesthetic machine
CN106880896B (zh) 一种麻醉机ip阀自适应标校的方法
JPH0511835A (ja) 故障診断装置
CN210963292U (zh) 用于监测体外血液处理装置的监测装置
CN109907714B (zh) 一种洗碗机的洗涤加热控制方法和装置
CN104154886B (zh) 可自动测量的气动测量方法
CN113689040B (zh) 测量模型的控制方法和控制系统及计算机可读介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17869510

Country of ref document: EP

Kind code of ref document: A1