WO2018084259A1 - 車両用空調装置の空調ユニットおよび第1空調ユニットと第2空調ユニットの製造方法 - Google Patents

車両用空調装置の空調ユニットおよび第1空調ユニットと第2空調ユニットの製造方法 Download PDF

Info

Publication number
WO2018084259A1
WO2018084259A1 PCT/JP2017/039797 JP2017039797W WO2018084259A1 WO 2018084259 A1 WO2018084259 A1 WO 2018084259A1 JP 2017039797 W JP2017039797 W JP 2017039797W WO 2018084259 A1 WO2018084259 A1 WO 2018084259A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
unit
case
cooler
blower
Prior art date
Application number
PCT/JP2017/039797
Other languages
English (en)
French (fr)
Inventor
馬場 公一郎
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018084259A1 publication Critical patent/WO2018084259A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices

Definitions

  • the present disclosure relates to an air conditioning unit for a vehicle air conditioner and a method for manufacturing the first air conditioning unit and the second air conditioning unit.
  • Patent Document 1 describes an air conditioning unit having a so-called push layout in which a blower is arranged on the upstream side of the air flow of a cooler and pushes air from the blower into the cooler.
  • This air conditioning unit has a configuration in which coolers of different sizes can be mounted on a common specification case. According to this air conditioning unit, even when the size of the cooler accommodated in the case is changed, it is not necessary to change the shape and size of the case.
  • the wind that flows from the blower toward the cooler flows in a specific direction. For this reason, when the size of the cooler is changed, the wind does not uniformly pass through the entire ventilation region of the cooler, and the wind speed distribution of the wind passing through the cooler becomes non-uniform. As a result, the temperature distribution of the cold air after passing through the cooler becomes non-uniform. Therefore, in the above-described conventional push-in layout air conditioning unit, when the size of the cooler is changed, a guide for guiding the wind is provided in the case of the cooler so that the wind uniformly passes through the entire ventilation region of the cooler. It is necessary to provide it at a site upstream of the air flow. At this time, an adjustment process for setting the shape and position of the guide to the shape and position corresponding to the size of the cooler is required, which takes time and effort.
  • An object of the present invention is to provide an air conditioning unit that can easily make the wind speed distribution close to uniform. Furthermore, this indication makes it the other objective to provide the manufacturing method of a 1st air conditioning unit and a 2nd air conditioning unit.
  • Air conditioning units for vehicle air conditioners A cooler unit for cooling the air; It is arranged on the downstream side of the air flow of the cooler unit, and includes a blower unit that blows air toward the passenger compartment.
  • the cooler unit includes a cooler case and a cooler that is disposed inside the cooler case and cools the air flowing inside the cooler case.
  • the blower unit has a blower case and a blower provided in the blower case so as to form an air flow inside the blower case,
  • the cooler case and the blower case are configured separately from each other and have a connecting portion that connects the cooler case and the blower case.
  • the cooler case and the blower case are separated. For this reason, when changing the size of a cooler, what is necessary is just to change a cooler case according to the size change of a cooler, and it is not necessary to change a ventilation case. Therefore, even when the size of the cooler is changed, the fan unit having the same specification as that before the change can be used.
  • the blower unit is arranged on the air flow downstream side of the cooler unit. For this reason, the air of the whole ventilation area
  • the manufacturing method for manufacturing the first air conditioning unit and the second air conditioning unit is as follows: Preparing a first cooler unit in which a first cooler for cooling air is disposed inside the first cooler case, and a first blower unit in which a first blower is provided in the first blower case; The first cooler unit is arranged on the downstream side of the air flow of the first cooler unit, the first cooler case and the first blower case are connected, and the first cooler unit and the first blower unit are assembled to form the first cooler unit.
  • a second cooler having a size different from that of the first cooler for cooling the air, a second cooler unit disposed inside a second cooler case having a size different from that of the first cooler case, a shape and a size of the first blower
  • a second blower having the same second fan unit provided in the second blower case having the same shape and size as the first blower case;
  • the second air blower unit is disposed downstream of the second cooler unit, the second air cooler case and the second air blow case are connected, and the second air cooler unit and the second air blower unit are assembled to each other. Manufacturing an air conditioning unit.
  • an air conditioning unit is manufactured by connecting a cooler case and a blower case which are separate from each other. For this reason, when changing the size of a cooler, what is necessary is just to change a cooler case according to the size change of a cooler, and it is not necessary to change a ventilation case. Therefore, it is possible to use a blower unit having the same specifications as before the change.
  • the blower unit is arranged on the air flow downstream side of the cooler unit. For this reason, the air of the whole ventilation area
  • FIG. 3 is a sectional view taken along line III-III in FIG. 2.
  • 1st Embodiment it is sectional drawing of the rear seat air conditioning unit at the time of changing the size of an evaporator.
  • the cooler unit which is a replacement part of the rear seat air conditioning unit of 1st Embodiment.
  • the vehicle air conditioner of this embodiment includes a front seat air conditioning unit 1 and a rear seat air conditioning unit 2.
  • the front seat air conditioning unit 1 performs air conditioning of the space on the front seat 3a side in the vehicle interior by blowing out the air whose temperature is adjusted toward the space on the front seat 3a side in the vehicle interior of the vehicle 3.
  • the front seat air conditioning unit 1 is disposed inside the instrument panel 3d at the foremost part of the vehicle interior.
  • the rear seat air conditioning unit 2 performs air conditioning of the space on the rear seat 3b side in the vehicle interior by blowing out air whose temperature is adjusted toward the space on the rear seat 3b side in the vehicle interior of the vehicle 3.
  • the rear seat air conditioning unit 2 is accommodated between a quarter trim 3e constituting an inner wall on the side of the rear seat 3b and an outer wall 3f of the vehicle. Accordingly, the rear seat air conditioning unit 2 is disposed on the vehicle rear side of the front seat air conditioning unit 1 in the vehicle 3.
  • the rear seat air conditioning unit 2 includes a cooler unit 10, a blower unit 20, and a heater unit 40.
  • the air blowing unit 20 is provided between the cooler unit 10 and the heater unit 40 so that air flows in the order of the cooler unit 10, the air blowing unit 20, and the heater unit 40.
  • the cooler unit 10 is a unit that cools air.
  • the cooler unit 10 has a cooler case 11 constituting an outer shell.
  • the cooler case 11 is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent in strength.
  • the cooler case 11 is formed with an air inlet 111 for introducing the air in the passenger compartment to the most upstream side of the air flow.
  • a duct (not shown) that is separate from the cooler case 11 may be connected to the air inlet 111. In this case, air is introduced from the air inlet 111 through the duct.
  • an evaporator 12 that cools the air introduced from the air inlet 111 is disposed.
  • the evaporator 12 is a cooler that cools the air flowing inside the cooler case 11.
  • the evaporator 12 is mounted on the cooler case 11 at a mounting angle at which the air outlet surface 121 of the evaporator 12 forms 0 degrees with respect to the vertical direction (that is, the vertical direction).
  • the evaporator 12 of the present embodiment is composed of a low-pressure heat exchanger in a vapor compression refrigeration cycle. That is, the evaporator 12 is a heat exchanger that cools the air that flows through the interior of the cooler case 11 by evaporating the low-temperature and low-pressure refrigerant that flows through the interior through heat exchange with the air.
  • the blower unit 20 is a unit that blows air toward the passenger compartment.
  • the blower unit 20 is arranged on the downstream side of the air flow of the evaporator 12 that is a cooler.
  • the blower unit 20 has a blower case 21 constituting an outer shell.
  • the blower case 21 is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent in strength.
  • a blower 30 is disposed inside the blower case 21.
  • the air sucked into the blower 30 flows inside the blower case 21.
  • the blower 30 includes a scroll case portion 31, a first fan 32, a second fan 33, and an electric motor 34.
  • the scroll case unit 31 is a fan housing unit that houses the first fan 32 and the second fan 33.
  • the scroll case portion 31 has a spiral air passage 310 formed therein.
  • the scroll case portion 31 has a first suction port 311 and a second suction port 312.
  • the first suction port 311 and the second suction port 312 are formed in portions of the scroll case portion 31 that face each other.
  • the first fan 32 sucks air from the first suction port 311 by rotating.
  • the second fan 33 sucks air from the second suction port 312 by rotating.
  • the first fan 32 and the second fan 33 are fixed to the rotating shaft 341 of the electric motor 34.
  • the first fan 32 and the second fan 33 are arranged in the axial direction of the rotation shaft 341. As shown in FIG. 2, the first fan 32 and the second fan 33 rotate in the rotation direction D1.
  • the first fan 32 and the second fan 33 are centrifugal fans that blow out air sucked in from the axial direction of the rotary shaft 341 toward the outside in the radial direction of the rotary shaft 341.
  • the electric motor 34 is an electric motor that rotates the first fan 32 and the second fan 33.
  • the electric motor 34 includes a rotating shaft 341 and a motor main body 342 that rotationally drives the rotating shaft 341.
  • the motor main body 342 is fixed to the blower case 21.
  • the blower case 21 is configured as a separate body from the cooler case 11.
  • a connection port 211 on the air inlet side of the blower case 21 is connected to a connection port 112 on the air outlet side of the cooler case 11.
  • the cooler case 11 and the blower case 21 have a connecting portion 50 that connects the cooler case 11 and the blower case 21.
  • the connecting part 50 is configured by a fitting part 51 in which a male-side end part 51 a of the cooler case 11 and a female-side end part 51 b of the blower case 21 are fitted. That is, one end portion 51 a of the cooler case 11 and one end portion 51 b of the blower case 21 constitute one connecting portion 50.
  • cooler case 11 and the ventilation case 21 are being fixed by fastening members, such as a snap fitting part, a metal spring clip, and a screw.
  • the snap fit portion is mechanically formed by fitting a convex portion provided on one of the cooler case 11 and the blower case 21 into the other concave portion of the cooler case 11 and the blower case 21 by using the elasticity of the material. It is to be fixed to.
  • the heater unit 40 is a unit for heating air.
  • the heater unit 40 has a heater case 41 constituting an outer shell.
  • the heater case 41 is made of a resin (for example, polypropylene) having a certain degree of elasticity and excellent in strength.
  • the opening end on the air inlet side of the heater case 41 is connected to the air blowing portion of the blower 30 so that the air blown from the blower unit 20 is introduced into the heater case 41.
  • a heater core 42 for heating air is accommodated in the heater case 41.
  • the heater core 42 is a heater that heats air blown from the blower unit 20 by heat exchange with engine coolant (not shown).
  • a bypass passage 43 is formed to bypass the heater core 42 and flow air.
  • An air mix door 44 that adjusts the air volume ratio between the air volume passing through the heater core 42 and the air volume passing through the bypass passage 43 is disposed inside the heater case 41.
  • the heater case 41 is provided with a blowing opening 45 for blowing the air after passing through the heater core 42 or the bypass passage 43 to the vehicle interior side, on the most downstream side of the air flow.
  • the air blown out from the blowout opening 45 is supplied into the vehicle compartment via a duct (not shown).
  • the blowout opening 45 has a face opening 45a and a foot opening 45b.
  • the face opening 45a is connected to a face outlet that blows out toward the upper body of an occupant seated on the rear seat via a duct (not shown).
  • the foot opening 45b is connected to a foot outlet that blows out toward the lower half of the occupant seated in the rear seat via a duct (not shown).
  • the heater case 41 is provided with a mode door 46 that selectively opens and closes the face opening 45a and the foot opening 45b.
  • the operation of the rear seat air conditioning unit 2 of this embodiment will be described.
  • the rear seat air conditioning unit 2 When the rotary shaft 341 of the electric motor 34 of the blower 30 rotates, the rear seat air conditioning unit 2 generates an airflow that flows in the order of the cooler unit 10, the blower unit 20, and the heater unit 40 as indicated by arrows F1 and F2 in FIG. To do.
  • An arrow F ⁇ b> 1 in FIG. 2 indicates an air flow introduced into the cooler case 11.
  • An arrow F ⁇ b> 2 in FIG. 2 indicates an air flow blown from the blower 30.
  • the air in the vehicle compartment is introduced into the cooler case 11 through the air inlet 111 as indicated by an arrow F1 in FIG. .
  • the air introduced into the cooler case 11 is cooled by the evaporator 12.
  • the air cooled by the evaporator 12 is sucked into the blower 30.
  • air is sucked from each of the first suction port 311 and the second suction port 312 and blown out from the first fan 32 and the second fan 33 to the air passage 310. Is done.
  • the air is blown out from the air passage 310 into the heater case 41 as indicated by an arrow F2 in FIG.
  • the air blown out to the heater case 41 passes through the heater core 42 or the bypass passage 43 and is then blown into the vehicle interior via the blowout opening 45.
  • the air volume ratio between the air volume passing through the heater core 42 and the air volume passing through the bypass passage 43 is adjusted by the position of the air mix door 44.
  • the conditioned air having a desired temperature is blown into the vehicle interior via the face opening 45a or the foot opening 45b.
  • a cooler unit 10 in FIG. 2, a blower unit 20 in FIG. 2, and a heater unit 40 in FIG. 2 are prepared.
  • the evaporator 12 is disposed inside the cooler case 11.
  • the blower unit 20 is disposed inside the blower case 21.
  • the heater core 42 is disposed inside the heater case 41.
  • the prepared cooler unit 10 and the blower unit 20 are assembled.
  • the blower unit 20 is disposed on the air flow downstream side of the cooler unit 10.
  • the cooler case 11 and the ventilation case 21 are connected.
  • the end 51a of the cooler case 11 and the end 51b of the blower case 21 are fitted together.
  • the fitting part 51 is formed. That is, the connecting part 50 is formed.
  • the cooler case 11 and the blower case 21 are fastened by a fastening member (not shown).
  • the blower unit 20 and the heater unit 40 are assembled.
  • the heater unit 40 is arranged on the air flow downstream side of the blower unit 20.
  • the ventilation case 21 and the heater case 41 are connected.
  • FIG. thus, the rear seat air conditioning unit 2 of this embodiment is manufactured.
  • the first air conditioning unit 2 that is the rear seat air conditioning unit 2 in FIGS. 2 and 3 and the second air conditioning unit 2A in FIG. 4 in which the size of the evaporator 12 is changed with respect to the first air conditioning unit 2 are manufactured.
  • a manufacturing method will be described. This manufacturing method includes manufacturing the first air conditioning unit 2 and manufacturing the second air conditioning unit 2A.
  • the first air conditioning unit 2 is as described in the method for manufacturing the rear seat air conditioning unit 2 described above.
  • the cooler unit 10, the cooler case 11, and the evaporator 12 are referred to as a first cooler unit 10, a first cooler case 11, and a first evaporator 12, respectively.
  • the first evaporator 12 constitutes a first cooler.
  • the blower unit 20, the blower case 21, and the blower 30 in FIGS. 2 and 3 constitute a first blower unit, a first blower case, and a first blower, respectively.
  • a second cooler unit 10A In manufacturing the second air conditioning unit 2A, a second cooler unit 10A, a blower unit 20, and a heater unit (not shown) in FIG. 4 are prepared. At this time, in the second cooler unit 10 ⁇ / b> A, the second evaporator 12 ⁇ / b> A having a size different from that of the first evaporator 12 is disposed inside the second cooler case 11 ⁇ / b> A having a size different from that of the first cooler case 11.
  • the second evaporator 12A is larger in size than the first evaporator 12.
  • the second cooler case 11 ⁇ / b> A is larger in size than the first cooler case 11.
  • connection port 112A on the downstream side of the air flow of the second cooler case 11A is equal to the size of the connection port 112 of the first cooler case 11 so that the second cooler case 11A and the blower case 21 can be connected. The same.
  • the blower unit 20 of the second air conditioning unit 2A has the same shape and size as the blower unit 20 of the first air conditioning unit 2.
  • the heater unit of the second air conditioning unit 2A has the same shape and size as the heater unit 40 of the first air conditioning unit 2.
  • the same shape and size means that the product specifications are the same, that is, the product number and model number are the same. For this reason, the same shape and size are not limited to the perfect match of the shape and size, and even if there is a difference in shape and size, the difference is within the tolerances allowed for the product. Means.
  • the blower unit 20, the blower case 21, and the blower 30 in FIG. 4 constitute a second blower unit, a second blower case, and a second blower, respectively.
  • the prepared second cooler unit 10A and the blower unit 20 are assembled.
  • the blower unit 20 is disposed on the downstream side of the air flow of the second cooler unit 10A.
  • the 2nd cooler case 11A and the ventilation case 21 are connected. Thereby, the connection part 50 is formed.
  • the air blowing unit 20 and the heater unit of the second air conditioning unit 2A are assembled. In this way, the second air conditioning unit 2A is manufactured.
  • 2nd air conditioning unit 2A is manufactured only by changing 1st cooler unit 10 of 1st air conditioning unit 2 to 2nd cooler unit 10A. can do. That is, as shown in FIG. 5, the first cooler unit 10 of the rear seat air conditioning unit 2 shown in FIG. 3 is a replacement part.
  • the cooler case 11 and the blower case 21 are configured separately from each other. And the cooler case 11 and the ventilation case 21 have the connection part 50 which connects the cooler case 11 and the ventilation case 21.
  • the cooler case 11 may be changed in accordance with the size change of the evaporator 12, and there is no need to change the blower case 21. Therefore, even if the size of the evaporator 12 is changed, the blower unit 20 and the heater unit 40 having the same specifications as before the change can be used.
  • the air conditioning unit J1 of the comparative example 1 is different from the rear seat air conditioning unit 2 of the present embodiment in that the air blower has a pushing layout in which the blower is arranged on the upstream side of the air flow of the evaporator.
  • the air conditioning unit J1 of Comparative Example 1 includes an air conditioning case J10, a fan J11, an evaporator J12, a heater core J13, air mix doors J14 and J15, and a mode door J16.
  • the air conditioning case J10 has a scroll case portion J17 that houses the fan J11. Further, the air conditioning case J10 has a face opening J18 and a foot opening J19 as blowout openings.
  • the evaporator J12 corresponds to the evaporator 12 of this embodiment.
  • the air conditioning case J10 has a guide portion J20.
  • the guide part J20 is provided in the site
  • the guide part J20 is a member that guides the wind from the fan J11 (that is, the blower) so that the wind uniformly passes through the entire ventilation region of the evaporator J12.
  • Guide part J20 is constituted as a part of air-conditioning case J10.
  • the guide part J20 has a stepped shape. The shape of the guide portion J20 is set so that the wind speed distribution of the wind passing through the evaporator J12 is uniform.
  • the guide part J20 of the dashed-dotted line in FIG. 7 is the guide part J20 before the size change of the evaporator J12.
  • a solid-line guide portion J20 in FIG. 7 is the guide portion J20 after the size of the evaporator J12 is changed.
  • the wind flowing from the fan J11 toward the evaporator J12 side flows in a specific direction. Therefore, when the size of the evaporator J12 is changed and the guide portion J20 is not changed, the wind does not uniformly pass through the entire ventilation region of the evaporator J12, and the wind speed distribution of the wind passing through the evaporator J12 is not uniform. Become. As a result, the temperature distribution of the cold air after passing through the evaporator J12 becomes non-uniform. If the temperature distribution of the cold air becomes non-uniform, the temperature control characteristics when adjusting the temperature of the air-conditioning air by mixing the cold air and the hot air will change.
  • the temperature control characteristic is the relationship between the position of the air mix doors J14 and J15 and the temperature of the mixed air of cold air and hot air.
  • the wind speed of the passing wind may be reduced.
  • the temperature of the cold air that bypasses the heater core J13 is lower than the temperature of the cold air toward the heater core J13.
  • the positions of the air mix doors J14 and J15 are the same as compared with the case where the wind speed distribution of the wind passing through the evaporator J12 is uniform.
  • the temperature of the conditioned air after mixing is different. Therefore, in the air-conditioning unit J1 with the push-in layout, when the size of the evaporator J12 is changed, it is necessary to adjust the direction of the wind flowing into the evaporator J12.
  • the blower unit 20 is disposed on the downstream side of the air flow of the cooler unit 10. That is, the rear seat air conditioning unit 2 has a suction layout in which air passing through the evaporator 12 is sucked into the blower 30. For this reason, the air in the whole ventilation area of the evaporator 12 is sucked into the blower 30. Therefore, when the size of the evaporator 12 is changed, the wind speed distribution of the wind passing through the evaporator 12 can be made to be uniform even without setting and adjusting the guide section upstream of the air flow of the evaporator 12. it can.
  • the rear seat air conditioning unit 2 of the present embodiment makes the wind speed distribution of the wind passing through the evaporator 12 closer to uniform as compared with the air conditioning unit J1 of Comparative Example 1. Is easy. That is, according to the rear seat air conditioning unit 2 of the present embodiment, even if the size of the evaporator 12 is changed, the temperature control characteristics can be prevented from changing.
  • this embodiment differs in the structure of the air blower 30 from 1st Embodiment.
  • Other configurations of the rear seat air conditioning unit 2 are the same as those in the first embodiment.
  • the blower 30 has one fan 32A.
  • the scroll case portion 31 has one suction port 311A.
  • the fan 32A rotates and sucks air from the suction port 311A as indicated by an arrow F3. Also in this embodiment, there exists an effect similar to 1st Embodiment.
  • this embodiment differs in direction of the air blower 30 from 1st Embodiment.
  • Other configurations of the rear seat air conditioning unit 2 are the same as those in the first embodiment.
  • the axial direction of the rotating shaft 341 of the blower 30 is 90 degrees different from that of the blower 30 of the first embodiment.
  • the blower 30 is provided in the blower case 21 so that the axial direction of the rotating shaft 341 is a direction along the direction in which the cooler unit 10 and the blower unit 20 are arranged. That is, the blower 30 is provided in the blower case 21 in such a direction that the evaporator 12 is positioned on the extended line of the rotating shaft 341. Also in this embodiment, the same effect as the first embodiment can be obtained.
  • the present embodiment is different from the first embodiment in the mounting angle of the evaporator 12.
  • Other configurations of the rear seat air conditioning unit 2 are the same as those in the first embodiment.
  • the evaporator 12 is mounted on the cooler case 11 at a mounting angle at which the air outlet surface 121 of the evaporator 12 forms 90 degrees with respect to the vertical direction (that is, the vertical direction). Even if the mounting angle of the evaporator 12 is such an angle, the air in the entire ventilation region of the evaporator 12 is sucked into the blower 30. Therefore, also in this embodiment, the same effect as the first embodiment can be obtained.
  • the mounting angle of the evaporator 12 may be different from those in the first and fourth embodiments.
  • the present disclosure is not limited to this case. Even when the second evaporator having a smaller size than the first evaporator is mounted, the rear seat air conditioning unit can be manufactured by the same method as in the first embodiment. In this case, a cooler case having a size smaller than that of the first cooler case 11 is used.
  • the rear seat air conditioning unit 2 includes the heater unit 40, but the heater unit 40 may not be included. Even in this case, when the size of the evaporator 12 is changed, the wind speed distribution of the wind passing through the evaporator 12 is made to be uniform even without setting and adjusting the guide to the upstream side of the air flow of the evaporator 12. The effect that it can be obtained.
  • the rear seat air conditioning unit 2 is arranged between the quarter trim 3e and the outer wall 3f of the vehicle.
  • the location of the rear seat air conditioning unit 2 may be any other location on the vehicle rear side than the front seat air conditioning unit 1.
  • the rear seat air conditioning unit 2 may be disposed inside the interior member between the driver seat and the passenger seat.
  • the air conditioning unit of the present disclosure is applied to the rear seat air conditioning unit 2, but the air conditioning unit of the present disclosure may be applied to the front seat air conditioning unit 1.
  • the air-conditioning unit of a vehicle air conditioner is equipped with a cooler unit and the ventilation unit arrange
  • the cooler unit includes a cooler case and a cooler disposed inside the cooler case.
  • the blower unit has a blower case and a blower provided in the blower case.
  • the cooler case and the blower case are configured separately from each other and have a connecting portion that connects the cooler case and the blower case.
  • the air conditioning unit is disposed on the vehicle rear side of the front seat air conditioning unit that performs air conditioning of the space on the front side of the vehicle in the vehicle interior, and performs air conditioning on the space on the vehicle rear side in the vehicle interior. It is a rear seat air conditioning unit to be performed.
  • the air conditioning unit according to the first aspect is preferably applied to the rear seat air conditioning unit.
  • the air conditioning unit further includes a heater unit for heating the air.
  • the heater unit includes a heater case disposed on the air flow downstream side of the blower unit, and a heater that is disposed inside the heater case and heats the air flowing inside the heater case. It is preferable to adopt such a configuration in the air conditioning unit of the second aspect.
  • the manufacturing method for manufacturing the first air conditioning unit and the second air conditioning unit includes preparing the first cooler unit and the first air blowing unit.
  • the manufacturing method further includes disposing the first air blowing unit on the air flow downstream side of the first cooler unit, connecting the first air cooler case and the first air blowing case, and the first air cooler unit and the first air blowing unit.
  • To manufacture the first air conditioning unit The manufacturing method further includes preparing a second cooler unit and a second air blowing unit.
  • the prepared second cooler unit is configured such that a second cooler having a size different from that of the first cooler is disposed inside a second cooler case having a size different from that of the first cooler case.
  • the second blower unit to be prepared is such that a second blower having the same shape and size as the first blower is provided in a second blower case having the same shape and size as the first blower case.
  • the manufacturing method further includes disposing the second air blowing unit on the downstream side of the air flow of the second cooler unit, connecting the second cooler case and the second air blowing case, and the second cooler unit and the second air blowing unit. This includes manufacturing the second air conditioning unit.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

車両用空調装置の空調ユニットは、空気を冷却するクーラユニット(10)と、クーラユニットの空気流れ下流側に配置され、車室内に向かって送風する送風ユニット(20)とを備える。クーラユニットは、クーラケース(11)と、クーラケースの内部に配置された冷却器(12)とを有する。送風ユニットは、送風ケース(21)と、送風ケースに設けられた送風機(30)とを有する。クーラケースおよび送風ケースは、互いに別体として構成されるとともに、クーラケースと送風ケースとを連結する連結部(50)を有する。

Description

車両用空調装置の空調ユニットおよび第1空調ユニットと第2空調ユニットの製造方法 関連出願への相互参照
 本出願は、2016年11月4日に出願された日本特許出願番号2016-216533号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、車両用空調装置の空調ユニットおよび第1空調ユニットと第2空調ユニットの製造方法に関するものである。
 特許文献1には、送風機が冷却器の空気流れ上流側に配置され、送風機からの風を冷却器に押し込む、いわゆる押し込みレイアウトの空調ユニットが記載されている。この空調ユニットは、共通仕様のケースに対して、異なるサイズの冷却器の搭載が可能な構成である。この空調ユニットによれば、ケースに収容される冷却器のサイズを変更した場合でも、ケースの形状および大きさを変更する必要がない。
特開2006-264680号広報
 しかし、押し込みレイアウトでは、送風機から冷却器側に向かって流れる風は、特定の方向に向かって流れる。このため、冷却器のサイズを変更した場合、冷却器の通風領域全体を風が均一に通過せず、冷却器を通過する風の風速分布が不均一となる。この結果、冷却器を通過した後の冷風の温度分布が不均一となる。したがって、上記した従来の押し込みレイアウトの空調ユニットでは、冷却器のサイズを変更した場合、冷却器の通風領域全体を風が均一に通過するように、風を誘導するガイドをケースのうち冷却器の空気流れ上流側の部位に設ける必要がある。このとき、ガイドの形状および位置を、冷却器のサイズに応じた形状および位置とするための調整工程が必要となり、手間と時間がかかる。
 本開示は、冷却器のサイズを変更した場合でも、変更前と共通仕様の空調ユニットの構成部品を用いることができ、かつ、上記した従来の空調ユニットと比較して、冷却器を通過する風の風速分布を均一に近づけることが容易な空調ユニットを提供することを目的とする。さらに、本開示は、第1空調ユニットと第2空調ユニットの製造方法を提供することを他の目的とする。
 上記目的を達成するため、本開示の1つの観点によれば、
 車両用空調装置の空調ユニットは、
 空気を冷却するクーラユニットと、
 クーラユニットの空気流れ下流側に配置され、車室内に向かって送風する送風ユニットとを備え、
 クーラユニットは、クーラケースと、クーラケースの内部に配置され、クーラケースの内部を流れる空気を冷却する冷却器とを有し、
 送風ユニットは、送風ケースと、送風ケースの内部に空気流れを形成するように送風ケースに設けられた送風機とを有し、
 クーラケースおよび送風ケースは、互いに別体として構成されるとともに、クーラケースと送風ケースとを連結する連結部を有する。
 これによれば、クーラケースと送風ケースとを別体としている。このため、冷却器のサイズを変更する場合、冷却器のサイズ変更にあわせてクーラケースを変更すればよく、送風ケースを変更する必要がない。したがって、冷却器のサイズを変更した場合であっても、変更前と共通仕様の送風ユニットを用いることができる。
 さらに、これによれば、クーラユニットの空気流れ下流側に送風ユニットを配置している。このため、冷却器の通風領域全域の空気が送風機に吸い込まれる。したがって、冷却器の空気流れ上流側へのガイドの設定および調整をしなくても、冷却器を通過する風の風速分布を均一に近づけることができる。よって、この空調ユニットによれば、上記した従来の空調ユニットと比較して、冷却器を通過する風の風速分布を均一に近づけることが容易である。
 また、本開示の別の観点によれば、
 第1空調ユニットと第2空調ユニットとを製造する製造方法は、
 空気を冷却する第1冷却器が第1クーラケースの内部に配置された第1クーラユニットと、第1送風機が第1送風ケースに設けられた第1送風ユニットとを用意することと、
 第1クーラユニットの空気流れ下流側に第1送風ユニットを配置し、第1クーラケースと第1送風ケースとを連結させて、第1クーラユニットと第1送風ユニットとを組み付けることで、第1空調ユニットを製造することと、
 空気を冷却する、第1冷却器とサイズが異なる第2冷却器が、第1クーラケースとサイズが異なる第2クーラケースの内部に配置された第2クーラユニットと、第1送風機と形状およびサイズが同じ第2送風機が第1送風ケースと形状およびサイズが同じ第2送風ケースに設けられた第2送風ユニットとを用意することと、
 第2クーラユニットの空気流れ下流側に第2送風ユニットを配置し、第2クーラケースと第2送風ケースとを連結させて、第2クーラユニットと第2送風ユニットとを組み付けることで、第2空調ユニットを製造することとを含む。
 これによれば、互いに別体のクーラケースと送風ケースとを連結させて、空調ユニットを製造する。このため、冷却器のサイズを変更する場合、冷却器のサイズ変更にあわせてクーラケースを変更すればよく、送風ケースを変更する必要がない。したがって、変更前と共通仕様の送風ユニットを用いることができる。
 さらに、これによれば、クーラユニットの空気流れ下流側に送風ユニットを配置している。このため、冷却器の通風領域全域の空気が送風機に吸い込まれる。したがって、冷却器の空気流れ上流側へのガイドの設定および調整をしなくても、冷却器を通過する風の風速分布を均一に近づけることができる。よって、この空調ユニットによれば、上記した従来の空調ユニットと比較して、冷却器を通過する風の風速分布を均一に近づけることが容易である。
第1実施形態における車両用空調装置の搭載場所を示す車両の平面図である。 第1実施形態における後席空調ユニットの断面図である。 図2のIII-III線断面図である。 第1実施形態において、蒸発器のサイズを変更した場合の後席空調ユニットの断面図である。 第1実施形態の後席空調ユニットの交換部品であるクーラユニットの断面図である。 比較例における後席空調ユニットの断面図である。 比較例において、蒸発器のサイズを変更した場合の後席空調ユニットの一部の断面図である。 第2実施形態における後席空調ユニットの断面図であり、図3に対応する断面図である。 第3実施形態における後席空調ユニットの断面図であり、図3に対応する断面図である。 第4実施形態における後席空調ユニットの断面図であり、図2に対応する断面図である。
 以下、本開示の実施形態について説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
 (第1実施形態)
 本実施形態では、車両用空調装置の後席空調ユニットに対して本開示の空調ユニットを適用した例について説明する。なお、図2、3中の上下前後や上下を示す矢印は、車両搭載状態における方向を示している。
 図1に示すように、本実施形態の車両用空調装置は、前席空調ユニット1と、後席空調ユニット2とを備える。
 前席空調ユニット1は、車両3の車室内の前席3a側の空間に向けて温度調整された空気を吹き出すことで、車室内の前席3a側の空間の空調を行う。前席空調ユニット1は、車室内最前部のインストルメントパネル3dの内側に配置されている。
 後席空調ユニット2は、車両3の車室内の後席3b側の空間に向けて温度調整された空気を吹き出すことで、車室内の後席3b側の空間の空調を行う。後席空調ユニット2は、後席3bの側方の内壁を構成するクォータトリム3eと車両の外壁3fとの間に収容されている。したがって、後席空調ユニット2は、車両3のうち前席空調ユニット1よりも車両後方側に配置されている。
 図2に示すように、後席空調ユニット2は、クーラユニット10と、送風ユニット20と、ヒータユニット40とを備える。後席空調ユニット2は、クーラユニット10、送風ユニット20、ヒータユニット40の順序で空気が流れるように、クーラユニット10とヒータユニット40との間に送風ユニット20が設けられている。
 クーラユニット10は、空気を冷却するユニットである。クーラユニット10は、外殻を構成するクーラケース11を有している。クーラケース11は、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて形成されている。
 クーラケース11には、空気流れ最上流側に車室内の空気を導入する空気導入口111が形成されている。なお、クーラケース11とは別体の図示しないダクトが、空気導入口111に接続されていてもよい。この場合、ダクトを介して、空気導入口111から空気が導入される。
 クーラケース11の内部には、空気導入口111から導入された空気を冷却する蒸発器12が配置されている。蒸発器12は、クーラケース11の内部を流れる空気を冷却する冷却器である。本実施形態では、蒸発器12の空気出口面121が鉛直方向(すなわち、上下方向)に対して0度をなす搭載角度で、蒸発器12がクーラケース11に搭載されている。
 本実施形態の蒸発器12は、蒸気圧縮式の冷凍サイクルにおける低圧側の熱交換器で構成されている。すなわち、蒸発器12は、内部を流れる低温低圧の冷媒を空気と熱交換させて蒸発させることで、クーラケース11の内部を流れる空気を冷却する熱交換器である。
 送風ユニット20は、車室内に向かって送風するユニットである。送風ユニット20は、冷却器である蒸発器12の空気流れ下流側に配置されている。送風ユニット20は、外殻を構成する送風ケース21を有している。送風ケース21は、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて形成されている。
 図2、3に示すように、送風ケース21の内部には、送風機30が配置されている。送風ケース21の内部に、送風機30に吸い込まれる空気が流れる。送風機30は、スクロールケース部31と、第1ファン32と、第2ファン33と、電動モータ34とを有する。
 スクロールケース部31は、第1ファン32および第2ファン33を収容するファン収容部である。スクロールケース部31は、内部に渦巻状の空気通路310が形成されている。スクロールケース部31は、第1吸込口311と第2吸込口312とを有する。第1吸込口311と第2吸込口312は、スクロールケース部31のうち互いに対向する部位に形成されている。
 第1ファン32は、回転することによって第1吸込口311から空気を吸い込む。第2ファン33は、回転することによって第2吸込口312から空気を吸い込む。第1ファン32および第2ファン33は、電動モータ34の回転軸341に固定されている。第1ファン32および第2ファン33は、回転軸341の軸方向に並んでいる。第1ファン32および第2ファン33は、図2に示すように、回転方向D1に回転する。第1ファン32および第2ファン33は、回転軸341の軸方向から吸い込んだ空気を回転軸341の径方向の外側に向けて吹き出す遠心ファンである。
 電動モータ34は、第1ファン32と第2ファン33は回転させる電動機である。電動モータ34は、回転軸341と、回転軸341を回転駆動するモータ本体部342を有している。モータ本体部342は、送風ケース21に固定されている。
 図2、3に示すように、送風ケース21は、クーラケース11と別体として構成されている。送風ケース21の空気入口側の接続口211が、クーラケース11の空気出口側の接続口112に連結されている。このため、クーラケース11および送風ケース21は、クーラケース11と送風ケース21とを連結する連結部50を有する。連結部50は、クーラケース11のオス側の端部51aと、送風ケース21のメス側の端部51bとが嵌合された嵌合部51によって構成されている。すなわち、クーラケース11の端部51aと、送風ケース21の端部51bとによって、1つの連結部50が構成されている。また、クーラケース11および送風ケース21は、スナップフィット部、金属バネクリップ、ネジなどの締結部材によって固定されている。スナップフィット部は、クーラケース11と送風ケース21の一方に設けた凸部を、材料の弾性を利用して、クーラケース11と送風ケース21の他方の凹部に、はめ込んで引っ掛けることにより、機械的に固定するものである。
 図2に示すように、ヒータユニット40は、空気を加熱するユニットである。ヒータユニット40は、外殻を構成するヒータケース41を有する。ヒータケース41は、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて形成されている。
 ヒータケース41の内部に送風ユニット20から送風された空気が導入されるように、ヒータケース41の空気入口側の開口端部が送風機30の空気吹出部に連結されている。
 ヒータケース41の内部には、空気を加熱するヒータコア42が収容されている。ヒータコア42は、図示しないエンジンの冷却水との熱交換によって、送風ユニット20から送風された空気を加熱する加熱器である。
 ヒータケース41の内部には、ヒータコア42を迂回して空気を流すバイパス通路43が形成されている。また、ヒータケース41の内部には、ヒータコア42を通過する風量とバイパス通路43を通過する風量との風量割合を調整するエアミックスドア44が配置されている。
 ヒータケース41には、空気流れの最下流側に、ヒータコア42またはバイパス通路43を通過した後の空気を車室内側へ吹き出すための吹出開口部45が設けられている。この吹出開口部45から吹き出された空気は、図示しないダクトを介して車室内へ供給される。吹出開口部45は、フェイス開口部45aと、フット開口部45bとを有する。フェイス開口部45aは、後部座席に着座する乗員の上半身に向けて吹き出すフェイス吹出口に、図示しないダクトを介して接続されている。フット開口部45bは、後部座席に着座する乗員の下半身に向けて吹き出すフット吹出口に、図示しないダクトを介して接続されている。また、ヒータケース41には、フェイス開口部45aとフット開口部45bとを選択的に開閉するモードドア46が設けられている。
 次に、本実施形態の後席空調ユニット2の作動を説明する。後席空調ユニット2は、送風機30の電動モータ34の回転軸341が回転すると、図2中の矢印F1、F2のように、クーラユニット10、送風ユニット20、ヒータユニット40の順に流れる気流が発生する。図2中の矢印F1は、クーラケース11に導入される気流を示す。図2中の矢印F2は、送風機30から吹き出される気流を示す。
 具体的には、送風機30の電動モータ34の回転軸341が回転すると、図2中の矢印F1のように、空気導入口111を介してクーラケース11の内部に車室内の空気が導入される。クーラケース11に導入された空気は、蒸発器12にて冷却される。蒸発器12にて冷却された空気は、送風機30に吸入される。このとき、図3中の矢印F3、F4に示すように、第1吸込口311、第2吸込口312のそれぞれから空気が吸入され、第1ファン32および第2ファン33から空気通路310に吹き出される。そして、図2中の矢印F2のように、空気通路310からヒータケース41の内部に吹き出される。ヒータケース41に吹き出された空気は、ヒータコア42またはバイパス通路43を通過した後、吹出開口部45を介して車室内に吹き出される。このとき、エアミックスドア44の位置によって、ヒータコア42を通過する風量とバイパス通路43を通過する風量との風量割合が調整される。これにより、所望の温度とされた空調風が、フェイス開口部45aまたはフット開口部45bを介して車室内に吹き出される。
 次に、本実施形態の後席空調ユニット2の製造方法を説明する。
 まず、図2中のクーラユニット10と、図2中の送風ユニット20と、図2中のヒータユニット40とを用意する。このとき、クーラユニット10は、蒸発器12がクーラケース11の内部に配置されている。送風ユニット20は、送風機30が送風ケース21の内部に配置されている。ヒータユニット40は、ヒータコア42がヒータケース41の内部に配置されている。
 続いて、用意したクーラユニット10と送風ユニット20とを組み付ける。このとき、クーラユニット10の空気流れ下流側に送風ユニット20を配置する。そして、クーラケース11と送風ケース21とを連結させる。具体的には、クーラケース11の端部51aと、送風ケース21の端部51bとを嵌め合わせる。これにより、嵌合部51が形成される。すなわち、連結部50が形成される。図示しない締結部材でクーラケース11と送風ケース21とを締結する。
 続いて、送風ユニット20とヒータユニット40とを組み付ける。このとき、送風ユニット20の空気流れ下流側にヒータユニット40を配置する。そして、送風ケース21とヒータケース41とを連結させる。なお、送風ユニット20とヒータユニット40の組み付けを、クーラユニット10と送風ユニット20との組付けの前に行ってもよい。このようにして、本実施形態の後席空調ユニット2が製造される。
 次に、図2、3の後席空調ユニット2である第1空調ユニット2と、第1空調ユニット2に対して蒸発器12のサイズを変更した図4の第2空調ユニット2Aとを製造する製造方法について説明する。この製造方法は、第1空調ユニット2を製造することと、第2空調ユニット2Aを製造することとを含む。
 第1空調ユニット2を製造することは、上述の後席空調ユニット2の製造方法の説明の通りである。なお、図2、3中のクーラユニット10、クーラケース11、蒸発器12を、それぞれ、第1クーラユニット10、第1クーラケース11、第1蒸発器12とする。第1蒸発器12が第1冷却器を構成している。図2、3中の送風ユニット20、送風ケース21、送風機30が、それぞれ、第1送風ユニット、第1送風ケース、第1送風機を構成している。
 第2空調ユニット2Aを製造することにおいては、図4中の第2クーラユニット10Aと、送風ユニット20と、図示しないヒータユニットとを用意する。このとき、第2クーラユニット10Aは、第1蒸発器12とサイズが異なる第2蒸発器12Aが、第1クーラケース11とサイズが異なる第2クーラケース11Aの内部に配置されている。第2蒸発器12Aは、第1蒸発器12よりもサイズが大きい。第2クーラケース11Aは、第1クーラケース11よりもサイズが大きい。ただし、第2クーラケース11Aと送風ケース21とが連結可能なように、第2クーラケース11Aの空気流れ下流側の接続口112Aの大きさは、第1クーラケース11の接続口112の大きさと同じである。
 第2空調ユニット2Aの送風ユニット20は、第1空調ユニット2の送風ユニット20と形状およびサイズが同じである。第2空調ユニット2Aのヒータユニットは、第1空調ユニット2のヒータユニット40と形状およびサイズが同じである。形状およびサイズが同じとは、製品の仕様が同じであること、すなわち、製品の品番および型番が同じであることを意味する。このため、形状およびサイズが同じとは、形状およびサイズが完全に一致することに限られず、形状およびサイズに違いがあっても、その違いがその製品として許容される公差の範囲内であることを意味する。図4中の送風ユニット20、送風ケース21、送風機30が、それぞれ、第2送風ユニット、第2送風ケース、第2送風機を構成している。
 続いて、用意した第2クーラユニット10Aと送風ユニット20とを組み付ける。このとき、第2クーラユニット10Aの空気流れ下流側に送風ユニット20を配置する。そして、第2クーラケース11Aと送風ケース21とを連結させる。これにより、連結部50が形成される。
 続いて、第1空調ユニット2の製造と同様に、第2空調ユニット2Aの送風ユニット20とヒータユニットとを組み付ける。このようにして、第2空調ユニット2Aが製造される。
 このように、第1蒸発器12に替えて第2蒸発器12Aを用いる場合、第1空調ユニット2の第1クーラユニット10を第2クーラユニット10Aに替えるだけで、第2空調ユニット2Aを製造することができる。すなわち、図5に示すように、図3に示す後席空調ユニット2のうち第1クーラユニット10が交換部品となる。
 以上の説明の通り、本実施形態では、クーラケース11および送風ケース21は、互いに別体として構成されている。そして、クーラケース11および送風ケース21は、クーラケース11と送風ケース21とを連結する連結部50を有する。
 このため、車両にあわせて蒸発器12のサイズを変更する場合、蒸発器12のサイズ変更にあわせてクーラケース11を変更すればよく、送風ケース21を変更する必要がない。したがって、蒸発器12のサイズを変更した場合であっても、変更前と共通仕様の送風ユニット20およびヒータユニット40を用いることができる。
 ここで、図6に示す比較例1の空調ユニットJ1において、蒸発器のサイズを変更した場合について説明する。比較例1の空調ユニットJ1は、送風機が蒸発器の空気流れ上流側に配置された押し込みレイアウトである点が、本実施形態の後席空調ユニット2と異なる。
 比較例1の空調ユニットJ1は、空調ケースJ10と、ファンJ11と、蒸発器J12と、ヒータコアJ13と、エアミックスドアJ14、J15と、モードドアJ16とを備えている。空調ケースJ10は、ファンJ11を収容するスクロールケース部J17を有する。さらに、空調ケースJ10は、吹出開口部としてのフェイス開口部J18とフット開口部J19とを有する。蒸発器J12が本実施形態の蒸発器12に対応している。
 比較例1の空調ユニットJ1では、空調ケースJ10はガイド部J20を有している。ガイド部J20は、空調ケースJ10のうち蒸発器J12の空気流れ上流側の部位に設けられている。ガイド部J20は、蒸発器J12の通風領域全体を風が均一に通過するように、ファンJ11(すなわち、送風機)からの風を誘導する部材である。ガイド部J20は、空調ケースJ10の一部として構成されている。ガイド部J20は、階段状の形状を有している。蒸発器J12を通過する風の風速分布が均一となるように、ガイド部J20の形状が設定されている。
 図6に示す蒸発器J12のサイズを大きくした場合、図7に示すように、蒸発器J12を通過する風の風速分布が均一となるように、ガイド部J20の位置および形状を変更する必要がある。なお、図7中の一点鎖線のガイド部J20が蒸発器J12のサイズ変更前のガイド部J20である。図7中の実線のガイド部J20が蒸発器J12のサイズ変更後のガイド部J20である。ガイド部J20の位置および形状を変更するためには、ガイド部J20の形状および位置の調整工程が必要となり、手間と時間がかかる。
 押し込みレイアウトでは、ファンJ11から蒸発器J12側に向かって流れる風は、特定の方向に向かって流れる。このため、蒸発器J12のサイズを変更し、ガイド部J20を変更しない場合、蒸発器J12の通風領域全体を風が均一に通過せず、蒸発器J12を通過する風の風速分布が不均一となる。この結果、蒸発器J12を通過した後の冷風の温度分布が不均一となる。冷風の温度分布が不均一となると、冷風と温風とを混合して空調風の温度を調整する際の温度コントロール特性が変わってしまう。温度コントロール特性とは、エアミックスドアJ14、J15の位置と、冷風と温風の混合風の温度との関係である。
 例えば、冷風と温風の混合割合を調整して空調風の温度調整を行う場合であって、図6の蒸発器J12の左半分を通過する風の風速が大きく、蒸発器J12の右半分を通過する風の風速が小さくなる場合がある。この場合、ヒータコアJ13を迂回する冷風の温度がヒータコアJ13に向かう冷風の温度よりも低くなる。このため、このように蒸発器J12を通過する風に偏りがある場合、蒸発器J12を通過する風の風速分布が均一なときと比較すると、エアミックスドアJ14、J15の位置が同じであっても、混合後の空調風の温度が異なってしまう。したがって、押し込みレイアウトの空調ユニットJ1では、蒸発器J12のサイズを変更した場合、蒸発器J12に流入する風の向きを調整する必要がある。
 これに対して、本実施形態の後席空調ユニット2は、クーラユニット10の空気流れ下流側に送風ユニット20を配置している。すなわち、後席空調ユニット2は、蒸発器12を通過する空気が送風機30に吸い込まれる吸い込みレイアウトである。このため、蒸発器12の通風領域全域の空気が送風機30に吸い込まれる。したがって、蒸発器12のサイズを変更した場合、蒸発器12の空気流れ上流側へのガイド部の設定および調整をしなくても、蒸発器12を通過する風の風速分布を均一に近づけることができる。よって、本実施形態の後席空調ユニット2は、蒸発器12のサイズを変更しても、比較例1の空調ユニットJ1と比較して、蒸発器12を通過する風の風速分布を均一に近づけることが容易である。すなわち、本実施形態の後席空調ユニット2によれば、蒸発器12のサイズを変更しても、温度コントロール特性が変わることを抑制することができる。
 (第2実施形態)
 図8に示すように、本実施形態は、送風機30の構成が第1実施形態と異なる。後席空調ユニット2のその他の構成は、第1実施形態と同じである。
 本実施形態では、送風機30は、1つのファン32Aを有する。スクロールケース部31は、1つの吸込口311Aを有する。ファン32Aは、回転することによって吸込口311Aから、矢印F3のように空気を吸い込む。本実施形態においても、第1実施形態と同様の効果を奏する。
 (第3実施形態)
 図9に示すように、本実施形態は、送風機30の向きが第1実施形態と異なる。後席空調ユニット2のその他の構成は、第1実施形態と同じである。
 本実施形態では、送風機30の回転軸341の軸線方向が、第1実施形態の送風機30に対して90度異なっている。回転軸341の軸線方向がクーラユニット10と送風ユニット20の並び方向に沿う方向となるように、送風機30が送風ケース21に設けられている。すなわち、回転軸341の延長線上に蒸発器12が位置する向きで、送風機30が送風ケース21に設けられている。本実施形態においても、第1実施形態と同様の効果が得られる。
 (第4実施形態)
 図10に示すように、本実施形態は、蒸発器12の搭載角度が第1実施形態と異なる。後席空調ユニット2のその他の構成は、第1実施形態と同じである。
 本実施形態では、蒸発器12の空気出口面121が鉛直方向(すなわち、上下方向)に対して90度をなす搭載角度で、蒸発器12がクーラケース11に搭載されている。蒸発器12の搭載角度がこのような角度であっても、蒸発器12の通風領域全域の空気が送風機30に吸い込まれる。したがって、本実施形態においても、第1実施形態と同様の効果が得られる。なお、蒸発器12の搭載角度は、第1、第4実施形態と異なる角度としてもよい。
 (他の実施形態)
 (1)第1実施形態では、第1蒸発器12よりもサイズが大きい第2蒸発器12Aを搭載する場合について説明したが、本開示は、この場合に限定されない。第1蒸発器よりもサイズが小さい第2蒸発器を搭載する場合においても、第1実施形態と同様の方法によって、後席空調ユニットを製造することができる。この場合、第1クーラケース11よりもサイズが小さいクーラケースを用いる。
 (2)上記各実施形態では、後席空調ユニット2は、ヒータユニット40を備えていたが、ヒータユニット40を備えていなくてもよい。この場合でも、蒸発器12のサイズを変更した場合に、蒸発器12の空気流れ上流側へのガイドの設定および調整をしなくても、蒸発器12を通過する風の風速分布を均一に近づけることができるという効果が得られる。
 (3)上記各実施形態では、後席空調ユニット2がクォータトリム3eと車両の外壁3fとの間に配置されていた。後席空調ユニット2の配置場所は、前席空調ユニット1よりも車両後方側の他の場所であればよい。例えば、運転席と助手席の間の内装部材の内側に後席空調ユニット2が配置されていてもよい。
 (4)上記各実施形態では、後席空調ユニット2に対して本開示の空調ユニットを適用したが、前席空調ユニット1に本開示の空調ユニットを適用してもよい。
 (5)本開示は上記した実施形態に限定されるものではなく、請求の範囲に記載した範囲内において適宜変更が可能であり、様々な変形例や均等範囲内の変形をも包含する。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。
 (まとめ)
 上記各実施形態の一部または全部で示された第1の観点によれば、車両用空調装置の空調ユニットは、クーラユニットと、クーラユニットの空気流れ下流側に配置された送風ユニットとを備える。クーラユニットは、クーラケースと、クーラケースの内部に配置された冷却器とを有する。送風ユニットは、送風ケースと、送風ケースに設けられた送風機とを有する。クーラケースおよび送風ケースは、互いに別体として構成されるとともに、クーラケースと送風ケースとを連結する連結部を有する。
 また、第2の観点によれば、空調ユニットは、車室内の車両前方側の空間の空調を行う前席空調ユニットよりも車両後方側に配置され、車室内の車両後方側の空間の空調を行う後席空調ユニットである。第1の観点の空調ユニットを後席空調ユニットに適用することが好ましい。
 また、第3の観点によれば、空調ユニットは、さらに、空気を加熱するヒータユニットを備える。ヒータユニットは、送風ユニットの空気流れ下流側に配置されるヒータケースと、ヒータケースの内部に配置され、ヒータケースの内部を流れる空気を加熱する加熱器とを有する。第2の観点の空調ユニットにおいて、このような構成を採用することが好ましい。
 また、第4の観点によれば、第1空調ユニットと第2空調ユニットとを製造する製造方法は、第1クーラユニットと、第1送風ユニットとを用意することを含む。この製造方法は、さらに、第1クーラユニットの空気流れ下流側に第1送風ユニットを配置し、第1クーラケースと第1送風ケースとを連結させて、第1クーラユニットと第1送風ユニットとを組み付けることで、第1空調ユニットを製造することを含む。この製造方法は、さらに、第2クーラユニットと、第2送風ユニットとを用意することを含む。用意される第2クーラユニットは、第1冷却器とサイズが異なる第2冷却器が、第1クーラケースとサイズが異なる第2クーラケースの内部に配置されたものである。用意される第2送風ユニットは、第1送風機と形状およびサイズが同じ第2送風機が第1送風ケースと形状およびサイズが同じ第2送風ケースに設けられたものである。この製造方法は、さらに、第2クーラユニットの空気流れ下流側に第2送風ユニットを配置し、第2クーラケースと第2送風ケースとを連結させて、第2クーラユニットと第2送風ユニットとを組み付けることで、第2空調ユニットを製造することを含む。

Claims (4)

  1.  車両用空調装置の空調ユニットであって、
     空気を冷却するクーラユニット(10)と、
     前記クーラユニットの空気流れ下流側に配置され、車室内に向かって送風する送風ユニット(20)とを備え、
     前記クーラユニットは、クーラケース(11)と、前記クーラケースの内部に配置され、前記クーラケースの内部を流れる空気を冷却する冷却器(12)とを有し、
     前記送風ユニットは、送風ケース(21)と、前記送風ケースの内部に空気流れを形成するように前記送風ケースに設けられた送風機(30)とを有し、
     前記クーラケースおよび前記送風ケースは、互いに別体として構成されるとともに、前記クーラケースと前記送風ケースとを連結する連結部(50)を有する車両用空調装置の空調ユニット。
  2.  前記空調ユニットは、車室内の車両前方側の空間の空調を行う前席空調ユニット(1)よりも車両後方側に配置され、車室内の車両後方側の空間の空調を行う後席空調ユニット(2)である請求項1に記載の空調ユニット。
  3.  前記空調ユニットは、さらに、空気を加熱するヒータユニット(40)を備え、
     前記ヒータユニットは、前記送風ユニットの空気流れ下流側に配置されるヒータケース(41)と、前記ヒータケースの内部に配置され、前記ヒータケースの内部を流れる空気を加熱する加熱器(42)とを有する請求項2に記載の空調ユニット。
  4.  第1空調ユニットと第2空調ユニットとを製造する製造方法であって、
     空気を冷却する第1冷却器(12)が第1クーラケース(11)の内部に配置された第1クーラユニット(10)と、第1送風機(30)が第1送風ケース(21)に設けられた第1送風ユニット(20)とを用意することと、
     前記第1クーラユニットの空気流れ下流側に前記第1送風ユニットを配置し、前記第1クーラケースと前記第1送風ケースとを連結させて、前記第1クーラユニットと前記第1送風ユニットとを組み付けることで、前記第1空調ユニット(2)を製造することと、
     空気を冷却する、前記第1冷却器とサイズが異なる第2冷却器(12A)が、前記第1クーラケースとサイズが異なる第2クーラケース(11A)の内部に配置された第2クーラユニット(10A)と、前記第1送風機と形状およびサイズが同じ第2送風機(30)が前記第1送風ケースと形状およびサイズが同じ第2送風ケース(21)に設けられた第2送風ユニット(20)とを用意することと、
     前記第2クーラユニットの空気流れ下流側に前記第2送風ユニットを配置し、前記第2クーラケースと前記第2送風ケースとを連結させて、前記第2クーラユニットと前記第2送風ユニットとを組み付けることで、前記第2空調ユニット(2A)を製造することとを含む製造方法。
PCT/JP2017/039797 2016-11-04 2017-11-02 車両用空調装置の空調ユニットおよび第1空調ユニットと第2空調ユニットの製造方法 WO2018084259A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016216533A JP2020006701A (ja) 2016-11-04 2016-11-04 車両用空調装置の空調ユニットおよび第1空調ユニットと第2空調ユニットの製造方法
JP2016-216533 2016-11-04

Publications (1)

Publication Number Publication Date
WO2018084259A1 true WO2018084259A1 (ja) 2018-05-11

Family

ID=62076072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039797 WO2018084259A1 (ja) 2016-11-04 2017-11-02 車両用空調装置の空調ユニットおよび第1空調ユニットと第2空調ユニットの製造方法

Country Status (2)

Country Link
JP (1) JP2020006701A (ja)
WO (1) WO2018084259A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024030573A (ja) * 2022-08-24 2024-03-07 サンデン株式会社 車両用空調装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05104936A (ja) * 1991-05-31 1993-04-27 Nippondenso Co Ltd 車両用空調ユニツト
JP2001026209A (ja) * 1999-07-14 2001-01-30 Denso Corp 車両用空調装置
JP2011025810A (ja) * 2009-07-24 2011-02-10 Mitsubishi Heavy Ind Ltd 車両用空調装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05104936A (ja) * 1991-05-31 1993-04-27 Nippondenso Co Ltd 車両用空調ユニツト
JP2001026209A (ja) * 1999-07-14 2001-01-30 Denso Corp 車両用空調装置
JP2011025810A (ja) * 2009-07-24 2011-02-10 Mitsubishi Heavy Ind Ltd 車両用空調装置

Also Published As

Publication number Publication date
JP2020006701A (ja) 2020-01-16

Similar Documents

Publication Publication Date Title
JP6583378B2 (ja) 車両用空調ユニット
US11274670B2 (en) Blower
US10926604B2 (en) Air conditioner
US20160221414A1 (en) Air conditioning unit
US10052934B2 (en) Convex grid shape to reduce turbulence under rotary door
JP2008094251A (ja) 車両用空調装置
JP4957679B2 (ja) 車両用空調装置の空調ユニットおよび車両用空調装置の空調ユニットの製造方法
WO2020153064A1 (ja) 車両用空調装置
US6749008B2 (en) Vehicle air-conditioning system
CN107848366B (zh) 车辆用空调装置
JP5954231B2 (ja) 車両用空調装置
WO2018083940A1 (ja) 車両用空調ユニット
JP2009143338A (ja) 車両用空調装置
WO2018084259A1 (ja) 車両用空調装置の空調ユニットおよび第1空調ユニットと第2空調ユニットの製造方法
JP5711982B2 (ja) 車両用空調装置
US20180272833A1 (en) Vehicle hvac system with sliding door
JP2010149566A (ja) 車両用空調装置
JP2007055370A (ja) 車両用空調装置
JP2016173223A (ja) 空調装置
JP2005306166A (ja) 車両用空調装置
JP2009006896A (ja) 車両用空調装置
JP2002274153A (ja) 車両用空調装置
WO2018025532A1 (ja) 車両用空調装置
JP7024545B2 (ja) 車両用空調装置
JP2002274148A (ja) 車両用空調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17866520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP