WO2018084219A1 - 保持器、及びこれを備えた転がり軸受 - Google Patents

保持器、及びこれを備えた転がり軸受 Download PDF

Info

Publication number
WO2018084219A1
WO2018084219A1 PCT/JP2017/039638 JP2017039638W WO2018084219A1 WO 2018084219 A1 WO2018084219 A1 WO 2018084219A1 JP 2017039638 W JP2017039638 W JP 2017039638W WO 2018084219 A1 WO2018084219 A1 WO 2018084219A1
Authority
WO
WIPO (PCT)
Prior art keywords
cage
axial
grease
guide surface
groove
Prior art date
Application number
PCT/JP2017/039638
Other languages
English (en)
French (fr)
Inventor
芳史 杉田
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to US16/344,504 priority Critical patent/US10648508B2/en
Priority to CN201780067545.6A priority patent/CN109996970B/zh
Priority to KR1020197011822A priority patent/KR102144265B1/ko
Priority to EP17866517.0A priority patent/EP3536995B1/en
Priority to JP2018549068A priority patent/JP7031602B2/ja
Publication of WO2018084219A1 publication Critical patent/WO2018084219A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6603Special parts or details in view of lubrication with grease as lubricant
    • F16C33/6629Details of distribution or circulation inside the bearing, e.g. grooves on the cage or passages in the rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/3806Details of interaction of cage and race, e.g. retention, centring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/3837Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages
    • F16C33/3843Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/3887Details of individual pockets, e.g. shape or ball retaining means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6603Special parts or details in view of lubrication with grease as lubricant
    • F16C33/6607Retaining the grease in or near the bearing
    • F16C33/6614Retaining the grease in or near the bearing in recesses or cavities provided in retainers, races or rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4605Details of interaction of cage and race, e.g. retention or centring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/467Details of individual pockets, e.g. shape or roller retaining means
    • F16C33/4676Details of individual pockets, e.g. shape or roller retaining means of the stays separating adjacent cage pockets, e.g. guide means for the bearing-surface of the rollers

Definitions

  • the present invention relates to a cage and a rolling bearing provided with the cage.
  • rolling bearings such as cylindrical roller bearings and angular ball bearings are used as bearings for main spindles of machine tools.
  • a cage for these rolling bearings a plastic cage made of synthetic resin is used. Since the plastic cage is lightweight, the centrifugal force during rotation is small, which is advantageous for high-speed rotation.
  • Grease lubrication, oil-air lubrication, jet lubrication, etc. are appropriately selected as the lubrication method for such rolling bearings.
  • grease lubrication by initial encapsulation is used because of low cost and easy maintenance. (See, for example, Patent Document 1).
  • an axial groove may be provided on the outer diameter surface of the cage as a guide surface in order to discharge excess grease in the vicinity of the rolling contact portion.
  • grease is discharged by being scraped out in the vicinity of the step portion of the groove.
  • the guide clearance formed by the outer ring inner diameter surface and the cage outer diameter surface is constant, so if grease enters between the cage and outer ring inner diameter surface, The grease is discharged from the guide surface while being sheared by the rotation of the cage.
  • the cage surface is formed at the intersection of the outer ring raceway surface and outer ring guide surface, and the cage makes contact with the cage. easy.
  • an amorphous layer on the surface is worn, and this is the starting point, and the entire cage guide surface is worn early.
  • the metal cage is easily worn, wear powder is generated, and the lubrication state is deteriorated, so that the performance of the entire bearing is lowered.
  • an edge relief groove may be provided on the outer diameter surface of the cage along the circumferential direction.
  • an object of the present invention is to provide a cage capable of reducing the amount of heat generated by the stirring resistance of grease and suppressing the reduction in the life of the rolling bearing, and a rolling bearing provided with the cage.
  • the present invention has the following configuration. (1) Holding of an outer ring guide system having a plurality of pockets for use in a rolling bearing including an inner ring, an outer ring, and a plurality of rolling elements disposed between the outer ring and the inner ring.
  • a vessel A cage guide surface provided at at least one axial end of the cage outer diameter surface of the cage and guided by the outer ring;
  • a relief surface formed along the circumferential direction with an outer diameter smaller than the cage guide surface, closer to the center side in the axial direction than the cage guide surface of the cage outer diameter surface, It extends from the pocket of the outer diameter surface of the cage to the axial end, forms an axial step portion across the cage guide surface in the axial direction, and the groove bottom is radially inward from the relief surface.
  • a cage comprising.
  • the grease that has moved from the pocket of the cage outer diameter surface to the cage outer diameter side enters the axial groove.
  • the grease that has entered the axial groove is deposited between the axial step on the upstream side in the rotational direction and pressed against the axial step.
  • the grease moves outward in the axial direction.
  • the grease adhering to the relief surface from the pocket moves in the circumferential direction, enters the axial groove formed on the radially inner side with respect to the relief surface, and strikes and accumulates on the axial step.
  • the accumulated grease merges with the above-described grease flow, and the axial stepped portion discharges from the one axial end portion to the axially outer side, and again adheres to the rolling element to the inner diameter portion of the cage. It returns and flows as a flow circulating in the bearing. As a result, the stirring resistance due to the grease can be reduced, and the increase in the amount of generated heat can be suppressed.
  • the circumferential step formed by the relief surface traversing the retainer guide surface in the circumferential direction is configured such that the one axis is located at a position higher than an axial position where the axial step is connected to the pocket.
  • the cage according to (1) which is disposed on the direction end side. According to the cage of this configuration, the grease entrance into which the grease adhering to the escape groove enters the axial groove from the gap between the cage guide surface and the rolling element is widened, and the grease on the relief surface is more smoothly distributed. It can be inserted into the axial groove.
  • the cage guide surfaces are provided at the one axial end and the other axial end opposite to the one axial end, according to (1) to (4).
  • the cage according to any one of the above. According to the cage of this configuration, the cage can be incorporated in the bearing without being aware of the orientation of the cage, and the assembly workability of the cage can be improved.
  • a rolling bearing comprising the cage according to any one of (1) to (5). According to the rolling bearing of this configuration, the amount of heat generated by the stirring resistance of grease can be reduced, and the life reduction can be suppressed.
  • the rolling bearing according to (6) which is an angular ball bearing. According to the rolling bearing of this configuration, grease is smoothly discharged using the counter-bore side as a guide surface. According to the present invention, the amount of heat generated by the stirring resistance of grease can be reduced, and the life reduction of the rolling bearing can be suppressed.
  • FIG. 4A It is an expansion perspective view of the cage outer diameter surface of the cage. It is action explanatory drawing which shows the mode of grease movement until grease adheres to an outer ring
  • FIG. 1 is a view for explaining an embodiment of the present invention, and is a partial sectional view of a rolling bearing provided with a cage.
  • an angular ball bearing used in a device that rotates at high speed such as a spindle of a machine tool, will be described as a rolling bearing, but the present invention is not limited to this, and a rolling bearing having another configuration may be used.
  • the angular ball bearing 100 has an outer ring 13 having an outer ring raceway surface 11 on an inner peripheral surface, an inner ring 17 having an inner ring raceway surface 15 on an outer peripheral surface, a plurality of balls (rolling elements) 19, and a plurality of pockets 21. And a container 200.
  • FIG. 2 is an enlarged cross-sectional view of the main part of FIG.
  • the plurality of balls 19 have a contact angle ⁇ between the outer ring raceway surface 11 and the inner ring raceway surface 15 and are arranged to be freely rollable.
  • the cage 200 is disposed between the inner ring 17 and the outer ring 13, and a plurality of pockets 21 are formed on the outer diameter surface of the cage with intervals in the circumferential direction. In each pocket 21, a ball 19 is held so as to roll freely.
  • the cage 200 is formed with annular guided portions 23 and 25 projecting radially outward at both axial ends of the cage outer diameter surface.
  • the guided portions 23 and 25 are arranged at equal intervals along the circumferential direction (see FIG. 3), and both are arranged at the same circumferential position.
  • the guided portions 23 and 25 mean guide surfaces on the cage 200 side that can be guided by the outer ring guide surface 29.
  • the cage guide surface 27 in the guided portion 23 on one axial end side (left side in FIG. 2) of the cage 200 slides on the outer ring guide surface 29 on the counter-bore side of the outer ring 13.
  • This is an outer ring guide system that is guided in contact.
  • the cage 200 is actually guided to the outer ring 13 only by the guided portion 23 on one side.
  • both the guided portions 23 and 25 are referred to as “guided portions” here.
  • the cage 200 is an injection molded product using a material containing a synthetic resin.
  • the synthetic resin that can be used for the cage 200 include PPS (polyphenylene sulfide), PPS-CF (carbon fiber reinforced polyphenylene sulfide), and the like.
  • PA polyamide
  • PAI polyamideimide
  • thermoplastic polyimide polyetheretherketone
  • organic fibers such as carbon fiber, glass fiber, and aramid fiber can be used as the reinforcing fiber. Fiber is available.
  • FIG. 3 is an external perspective view of the entire cage shown in FIG.
  • the radial height between the guided portion 23 and the guided portion 23 adjacent in the circumferential direction and between the guided portion 25 and the guided portion 25 adjacent in the circumferential direction is higher than the cage guide surface 27.
  • a low axial groove 31 is provided.
  • the axial groove 31 functions as a lubricant (grease) discharge groove, as will be described later.
  • channel 31 becomes the structure by which the axial groove
  • the axial groove 31 formed between the portion 25 and the guided portion 25 may be omitted together with the guided portion 25 as in a configuration example described later.
  • FIG. 4A is a cross-sectional view of the cage shown in FIG. 3, and FIG. 4B is a front view of the main part of the cage shown in FIG.
  • FIG. 4A shows a cross-sectional view taken along the line IV-IV in FIG. 4B.
  • the cage disposed in the bearing is movable within a range of a guide clearance between the cage guide surface 27 and the outer ring guide surface 29 (see FIG. 2) and a pocket clearance. Therefore, in the outer ring guide type angular contact ball bearing, the cage guide surface 27 may come into contact with the raceway surface edge 33 (see FIG. 2) at the boundary between the outer ring guide surface 29 of the outer ring 13 and the outer ring raceway surface 11. .
  • the cage 200 of the present configuration has a relief surface (in the present configuration example, an edge relief groove 35 in the radial direction) in a region facing the raceway edge 33 of the outer ring 13 so as not to contact the raceway edge 33. ) Is provided.
  • the edge relief groove 35 is formed on the outer diameter surface of the cage in the circumferential direction on the center side in the axial direction from the cage guide surface 27.
  • the edge relief groove 35 has an outer diameter smaller than that of the cage guide surface 27 and is formed in an annular shape.
  • the edge relief groove 35 corresponds to an axial region between the guided portion 23 and the guided portion 25, and is formed one step lower than the radial height of the cage guide surface 27. Due to this step, even when the cage 200 is inclined, the raceway edge 33 does not contact the cage 200, and wear of the cage 200 due to contact with the raceway edge 33 can be prevented in advance.
  • the cage 200 has a symmetrical shape in FIG. 4B with a virtual line 37 that bisects the edge relief groove 35 in the groove width direction (left-right direction in FIG. 4B) as a boundary.
  • FIG. 5 is an enlarged perspective view of the outer diameter surface of the cage of the bearing cage.
  • the cage 200 has an axial groove 31 that crosses the cage guide surface 27 in the axial direction on the outer diameter surface of the cage.
  • the axial groove 31 is formed from the pocket 21 to the axial end face 30.
  • the axial groove 31 of this configuration is formed across both the guided portion 23 and the guided portion 25.
  • the axial grooves 31 formed in the guided portions 23 and 25 have the same phase in the circumferential direction, and the groove bottom is formed radially inward from the edge relief groove 35. That is, the axial groove 31 is formed at a position lower than the edge relief groove 35.
  • the cage 200 has an outer diameter of the cage guide surface 27 as D1, an outer diameter of the edge relief groove 35 as D2, and an outer diameter of the groove bottom of the axial groove 31 as D3.
  • PCD is a ball pitch circle diameter.
  • the cage 200 is D1 ⁇ 0.999 ⁇ D2 (Formula 2) It is.
  • the cage 200 has a height step between the groove bottom of the axial groove 31 and the edge relief groove 35 shown in FIG. 5, and the edge relief groove 35.
  • the cage guide surface 27 has a height h.
  • the axial groove 31 forms an axial step 39 having a step H between the edge relief groove 35 and a step (H + h) with the cage guide surface 27 at both ends in the circumferential direction. .
  • the axial groove 31 has one end near the center in the axial direction connected to the pocket 21 and the other end on the opposite axially outer side opened as a discharge opening. That is, the axial groove 31 functions as a discharge groove for discharging the grease outward in the axial direction.
  • the stepped portion H overlaps the pocket 21 in the axial direction (left-right direction in FIG. 5). Further, the pocket 21 is not in contact with the guided portion 23. Therefore, a grease entrance 41 that enters the groove bottom of the axial groove 31 from the edge relief groove 35 is secured between the ball 19 accommodated in the pocket 21 and the inner wall of the guided portion 23.
  • the grease can enter the grease entrance 41 in the direction indicated by the arrow 43.
  • the grease that has entered the grease inlet 41 enters the axial groove 31 that is lower than the edge relief groove 35.
  • the circumferential step 57 is formed by the edge relief groove 35 crossing the retainer guide surface 27 at one end in the axial direction in the circumferential direction.
  • the circumferential step 57 is disposed closer to one end in the axial direction than the axial position where the axial step 39 is connected to the pocket 21. Therefore, the opening of the grease inlet 41 is widened, and the grease adhering to the edge relief groove 35 can be more smoothly introduced into the axial groove 31.
  • the cage 200 satisfies the above (Equation 2), so that an appropriate gap is set between the ball 19 and the outer ring guide surface 29.
  • Equation 2 the above (Equation 2), so that an appropriate gap is set between the ball 19 and the outer ring guide surface 29.
  • appropriate gaps are set between the pocket 21 and the ball 19, and between the outer ring guide surface 29 and the cage guide surface 27, respectively.
  • the cage 200 rotates with an inclination with respect to the outer ring 13 within the range of the gap as the bearing rotates. Therefore, the depth of the edge relief groove 35 is desirably 0.1% or more of the outer diameter D1 of the cage guide surface 27.
  • the cage 200 is (Axial groove depth H)> (3 ⁇ edge relief groove depth h) (Equation 3) Is desirable.
  • the cage 200 can secure a large area (S1 + S2) of the axial step portion 39 extending from the pocket 21 toward the bearing end surface.
  • the force for pushing out the grease by the axial step portion 39 can be increased, and the grease discharging effect can be enhanced.
  • the area of S2 and the step of the axial step 39 are secured, so that the grease scraped out radially outward from the gap between the pocket 21 and the ball 19 is removed. When moved in the circumferential direction, the grease can be scooped into the axial step 39 portion.
  • the cage 200 is intended to hold the ball 19 and contacts at the maximum diameter portion of the ball 19, so the axial groove 31 and the edge relief groove 35 need to be outside the ball PCD.
  • these axial grooves 31 and the axial step 39 are inside the ball PCD, there is a problem that the ball 19 comes into contact with the corner of the cage 200 and wears or rides on the cage 200. May occur.
  • FIG. 6 is an operation explanatory view showing a state of grease movement until the grease adheres to the outer ring 13.
  • the running-in operation is performed in the initial stage.
  • the break-in operation is completed by moving to a predetermined position where the initially filled grease is discharged from the inside of the bearing.
  • the grease in the inner diameter portion of the cage is discharged directly from the axial end of the cage 200 to the outside. Further, as indicated by an arrow 47, the grease contacts the ball 19 or moves to the outer diameter side of the cage along the pocket inner diameter surface and adheres to the inner diameter surface of the outer ring by centrifugal force.
  • the grease in the bearing hardly intersects on the counter bore side and the counter counter bore side with the ball 19 as the center. The grease on the counterbore side remains at the staying position 53.
  • the grease on the counter-bore side adheres to the staying position 49, but in the case of the conventional structure, the grease at the staying position 49 does not act in the axially outward movement, and the flow from the arrow 47 to the arrow 51 is repeated.
  • FIG. 7A and 7B are diagrams for explaining the operation until the grease adhered to the outer ring 13 is discharged to the outside in the axial direction
  • FIG. 7A is a partial sectional view of the rolling bearing
  • FIG. It is a principal part front view of a cage.
  • the grease at the staying position 49 is narrow between the outer ring guide surface 29 and the cage guide surface 27. It enters into the gap (guide gap), and is discharged outward in the axial direction so as to be pushed out of the guide gap by shear due to the relative movement between the cage 200 and the outer ring 13.
  • the grease moved in the circumferential direction in the edge relief groove 35 moves from the grease inlet 41 to the edge as indicated by an arrow 43. It enters the axial groove 31 that is recessed from the escape groove 35.
  • the grease that has entered the axial groove 31 is deposited between the axial step 39 (particularly, the area S1) on the upstream side in the rotational direction to increase the thickness and face the outer ring guide surface 29 (see FIG. 2) that faces the grease. Adhere to.
  • the accumulated grease is pressed by the axial step 39 and moves outward in the axial direction while shearing due to contact with the outer ring guide surface 29. Accordingly, the grease is urged to be discharged outward in the axial direction from the axial end portion on the outer ring guide surface 29 side opposite to the ball 19 located in the axial center in the axial groove 31.
  • the grease that has entered the axial groove 31 is accumulated between the axial step 39 on the upstream side in the rotation direction (particularly, the portion having the area S2) and pressed against the axial step 39. As a result, it merges with the grease flow indicated by the arrow 43 and moves outward in the axial direction.
  • the cage 200 of this configuration has the cage guide surface 27, and an axial groove 31 is provided between the guided portions 23 and the guided portions 23 adjacent to each other. Therefore, the grease is discharged due to the combination of the grease movement in the axial direction by pressing against the axial step 39 and the shearing of the grease by the relative movement between the axial groove 31 and the outer ring guide surface 29. Promoted.
  • the grease can be discharged from the guide surface side, and the wear resistance of the outer diameter surface of the cage can be improved. It is possible to reduce the life of the bearing.
  • the grease is used at a dmn value of 800,000 (PCD (ball pitch circle diameter) ⁇ number of rotations) or more in grease lubrication, the above-mentioned effect is remarkably obtained.
  • FIG. 8A is a partial cross-sectional view of the cage of the second configuration example
  • FIG. 8B is a front view of an essential part of the cage shown in FIG. 8A.
  • the cage 200 has a symmetrical shape with respect to a virtual line 37 that bisects the edge relief groove 35.
  • the cage may be asymmetric.
  • the cage 200A having this configuration has a guided portion 23 that protrudes radially outward only at one axial end of the cage outer diameter surface.
  • an edge relief surface 55 having a smaller outer diameter than the cage guide surface 27 is formed on the opposite side of the guided portion 23 in the axial direction. Accordingly, a circumferential step 57 is formed between the cage guide surface 27 and the edge relief surface 55.
  • Other configurations of the cage 200A are the same as those of the cage 200 described above.
  • the cage 200A can have a simple structure, and both the durability and productivity of the cage 200A can be improved. Further, as shown in FIG. 8B, the axial position of the circumferential step portion 57 of the edge relief surface 55 is positioned inward in the axial direction from the pocket end portion P on the cage guide surface 27 side. (L> 0). By doing in this way, the area of S2 (refer FIG. 5) becomes large, and the grease scraped off from the clearance part between the ball and the pocket 21 can be easily discharged to the outside in the axial direction.
  • ⁇ Third configuration example> 9 is an external perspective view of the cage 200B of the third configuration example
  • FIG. 10 is a side view of the cage 200B
  • FIG. 11 is a front view of the cage 200B.
  • the cage 200B having this configuration has the same configuration as the cage 200 except that the groove portions 61 are formed in the guided portions 23 and 25 of the cage 200 shown in FIG. 3 along the axial direction.
  • FIG. 12 is an enlarged view of the end face of the cage 200B
  • FIG. 13 is an enlarged view of the pocket 21 of the cage 200B as seen from the inner diameter side
  • FIG. 14 is an enlarged view of the pocket 21 of the cage 200B as seen from the outer diameter side. It is an enlarged view.
  • a concave groove 61 is formed in the cage guide surface 27 of the guided portions 23 and 25 and a part of the edge relief groove 35.
  • the groove 61 is deeper than the edge relief groove 35, and the circumferential groove section has an arc shape.
  • the concave groove 61 is formed in the middle of the edge relief groove 35 through the cage guide surface 27 having the maximum outer diameter in the axial direction.
  • the outer diameter of the groove bottom of the concave groove 61 is equal on the cage guide surface 27 side and the edge relief groove 35 side, and the inner surfaces of both concave grooves 61 are smoothly continuous.
  • the groove 61 may have a V-shaped circumferential groove cross section.
  • the recessed groove 61 of the guided portion 23 and the recessed groove 61 of the guided portion 25 are both formed at the center in the circumferential direction of one cage guide surface 27 and are formed in the same phase with respect to the circumferential direction.
  • the concave grooves 61 arranged in a straight line in the axial direction can further promote the discharging ability of the grease to the outside in the axial direction.
  • the concave groove 61 can be made into the position of the parting line of metal mold
  • the cage 200B of the third configuration example may have an asymmetric shape as in the second configuration example.
  • 15 is an external perspective view of the cage 200C of the fourth configuration example
  • FIG. 16 is a side view of the cage 200C
  • FIG. 17 is a front view of the cage 200C.
  • 18 is an enlarged view of the end face of the cage 200C
  • FIG. 19 is an enlarged view of the pocket 21 of the cage 200C as viewed from the inner diameter side
  • FIG. 20 is an enlarged view of the pocket 21 of the cage 200C as viewed from the outer diameter side.
  • the cage 200C having this configuration has a guided portion 23 that protrudes outward in the radial direction only at one axial end of the outer diameter surface of the cage.
  • the rest of the configuration of the cage 200C is the same as the configuration of the cage 200B described above.
  • the cage 200C can have a simple structure, and both the durability and productivity of the cage 200C can be improved, and the same operational effects as in the second configuration example can be obtained. It is done.
  • FIG. 22 and FIG. 22 is a partial sectional view of the bearing used in the test
  • FIG. 23 is a partial side view of the bearing shown in FIG.
  • the grease 73 is discharged from the syringe 71 with the tip of the syringe 71 directed between the outer peripheral surface of the inner ring 17 and the inner peripheral surface of the cage 200.
  • the grease 73 is supplied between the balls 19 along the circumferential direction of the bearing, and is in a state of being sealed only on the inner diameter side of the cage 200.
  • the cage of Comparative Example 1 has no edge relief groove and is provided only with an axial groove having a depth of 0.5 mm.
  • the cage of Example 1 has both an edge relief groove along the circumferential direction and an axial groove along the axial direction at the outer diameter portion, and the width of the edge relief groove is made equal to the pocket diameter. Yes.
  • the depth of the groove is deeper in the axial groove than in the edge relief groove.
  • the axial groove of the cage is formed by dividing it into two across a pocket penetrating in the radial direction, and opens at the end of the cage. The axial groove overlaps with the pocket along the axial direction, and the axial end portion of the overlapped pocket becomes the inner end portion of the axial groove formed by being divided.
  • the edge relief groove in the cage of Example 1 is deepened to the same depth as the axial groove.
  • the cage of Comparative Example 3 has a larger width in the axial direction of the edge relief groove in the cage of Comparative Example 2 and is wider than the pocket diameter.
  • the material of each cage is carbon fiber reinforced polyphenylene sulfide (PPS-CF).
  • the grease on the outer ring guide surface side discharged from the pocket moves in the circumferential direction by the relative movement of the outer ring guide surface and the cage guide surface.
  • the grease moved in the circumferential direction was pressed against the axial step portion of the axial groove communicated with the edge relief groove and moved in the axial direction to be discharged from the inside of the bearing.
  • the axial groove is extended along the peripheral edge of the pocket from the axial end of the pocket to a position near the axial center of the cage.
  • the cross-sectional area of the flow path that connects the edge relief groove and the axial groove increases, and the grease enters the axial groove smoothly.
  • the axial groove reaches a position closer to the center of the retainer than the raceway edge of the outer ring, and this also enhances the effect of discharging the grease adhering to the edge relief groove to the axial groove. Further, in this configuration, there is no contact of the edge portion, the grease reaches the guide surface, and the lubrication state is good, so that it is considered that there is sufficient wear resistance.
  • the width of the edge relief groove and the pocket diameter are equal, and there is a circumferential cut at the axial end of the edge relief groove at a position where the end of the pocket is projected in the circumferential direction. For this reason, the grease discharged from the pocket spreads and discharges only a part of the grease adhering to the cage guide surface side to the cage guide surface, but most of it circulates inside the bearing. Therefore, in this shape, the grease discharging performance was lowered as compared with Example 1. Further, since the grease adhering to the guide surface is very small and some of the grease is not adhering, it can be considered that the guide surface is poorly lubricated and worn. Furthermore, since excessive grease remains in the bearing, heat is generated due to stirring resistance, which may cause early damage of the bearing.
  • each of the cages of Example 1 and Comparative Examples 1 to 3 is symmetrical with respect to the axial direction, but similar results were obtained even with asymmetric stepped cages as shown in FIG.
  • the mark ⁇ indicates a non-defective product level
  • the mark X indicates that there is no problem under normal use conditions, but may be a defective product when the use conditions are severe. Represents a possible level.
  • the present invention is not limited to the above-described embodiments, and those skilled in the art can make changes and applications based on combinations of the configurations of the embodiments, descriptions in the specification, and well-known techniques. This is also the scope of the present invention, and is included in the scope for which protection is sought.
  • the rolling bearing is not limited to an angular ball bearing, and may be another type of rolling bearing such as a cylindrical roller bearing. This effect is expected not only for grease lubrication but also for oil-air lubrication, jet lubrication, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

外輪案内方式の保持器(200)は、保持器案内面(27)と、逃し面(エッジ逃し溝)(35)と、軸方向溝(31)とを備える。保持器案内面(27)は、保持器外径面における少なくとも一方の軸方向端部に設けられ、外輪(13)に案内される。逃し面(35)は、保持器外径面の保持器案内面(27)よりも軸方向中央側に、保持器案内面(27)よりも小さな外径で円周方向に沿って形成される。軸方向溝(31)は、保持器外径面のポケットから軸方向端まで延設され、保持器案内面(27)を軸方向に横断して軸方向段部(39)を形成し、逃し面(35)よりも溝底が径方向内側に形成される。

Description

保持器、及びこれを備えた転がり軸受
 本発明は、保持器、及びこれを備えた転がり軸受に関する。
 一般に、工作機械の主軸用軸受には、円筒ころ軸受やアンギュラ玉軸受等の転がり軸受が使用されている。これらの転がり軸受の保持器としては、合成樹脂製のプラスチック保持器が用いられる。プラスチック保持器は、軽量なので回転時の遠心力が小さく、高速回転に有利である。
 このような転がり軸受の潤滑法としては、グリース潤滑、オイルエア潤滑、ジェット潤滑等が適宜、選択されており、一般的には、低コストでメンテナンスも容易なことから初期封入によるグリース封入潤滑が利用されることが多い(例えば特許文献1参照)。
 ところで、外輪案内方式の保持器を有する転がり軸受では、転がり接触部近傍の過剰なグリースを排出するために案内面である保持器外径面に軸方向の溝を設けることがある。保持器外径面に軸方向に溝がある場合は、溝の段部近傍にグリースが掻き出されることにより排出される。一方、保持器外径面に軸方向溝がない場合は、外輪内径面と保持器外径面で形成される案内すきまが一定であるため、保持器と外輪内径面の間にグリースが入ると、保持器の回転により、グリースがせん断されながら案内面から排出される。
日本国特開2014-95469号公報
 外輪案内方式のアンギュラ玉軸受では、外輪軌道面と外輪案内面の交差部位でできる軌道面エッジと保持器とが接触することにより、保持器が他の接触部分と比較して、非常に摩耗し易い。特に、射出成形により作られる樹脂保持器では、表面の非晶質層が摩耗し、そこが起点となり、保持器案内面全体が早期に摩耗する。また、金属保持器においても同様に摩耗し易く、摩耗粉が発生し、潤滑状態が悪くなることで軸受全体の性能が低下する。この摩耗を防止することを目的として、エッジ逃し溝を保持器外径面に円周方向に沿って設けることがある。
 しかしながら、グリースが保持器案内面を通り、保持器の軸方向外側へ移動するためには、保持器案内面と外輪案内面がグリースと接することによる上記のせん断、若しくは軸方向溝の段部による上記の掻き出しが必要となる。ところが、保持器外径面にエッジ逃し溝等が形成された場合、エッジ逃し溝に対面する外輪案内面の位置に溜まったグリースに、排出するための力が働かない場合がある。このグリースは、再び転動体に付着し、軸受内を循環して保持器内径面に戻る。このようなグリースの挙動は、攪拌抵抗を大きくし、通常よりも発熱量を増大させ、軸受の寿命低下や焼付きの原因となる虞がある。これは、特にグリース潤滑でdmn値が80万(PCD(玉ピッチ円直径)×回転数)以上で使用するような工作機械主軸用軸受について顕著となる。
 そこで本発明は、グリースの攪拌抵抗による発熱量を低減し、転がり軸受の寿命低下を抑制できる保持器、及びこれを備えた転がり軸受を提供することを目的とする。
 本発明は下記構成からなる。
(1) 内輪と、外輪と、前記外輪及び前記内輪の間に配置される複数の転動体とを備える転がり軸受に用いられ、前記転動体が収容される複数のポケットを有する外輪案内方式の保持器であって、
 前記保持器の保持器外径面における少なくとも一方の軸方向端部に設けられ、前記外輪に案内される保持器案内面と、
 前記保持器外径面の前記保持器案内面よりも軸方向中央側に、前記保持器案内面よりも小さな外径で円周方向に沿って形成された逃し面と、
 前記保持器外径面の前記ポケットから軸方向端まで延設され、前記保持器案内面を軸方向に横断して軸方向段部を形成し、前記逃し面よりも溝底が径方向内側に形成された軸方向溝と、
を備える保持器。
 本構成の保持器によれば、保持器外径面のポケットから保持器外径側へ移動したグリースが、軸方向溝へ入り込む。この軸方向溝に入り込んだグリースは、回転方向上流側の軸方向段部との間に堆積され、軸方向段部に押し付けられる。これにより、グリースが軸方向外側へ移動する。また、ポケットから逃し面に付着したグリースは、周方向に移動して、逃し面よりも溝底が径方向内側に形成された軸方向溝に入り込み、軸方向段部に突き当たって堆積される。堆積されたグリースは、上記したグリースの流れと合流して、軸方向段部によって一方の軸方向端部から軸方向外側へ排出される流れと、再び転動体に付着して保持器内径部に戻って軸受内を循環する流れとなって流動する。これにより、グリースによる攪拌抵抗を低減し、発熱量の増大を抑制することが可能となる。
(2) 前記保持器案内面を前記逃し面が円周方向に横断して形成される周方向段部は、前記軸方向段部が前記ポケットと接続される軸方向位置よりも前記一方の軸方向端部側に配置された(1)に記載の保持器。
 本構成の保持器によれば、逃し溝に付着したグリースが保持器案内面と転動体との間の隙間から軸方向溝に入り込むグリース進入口が広くなり、逃し面のグリースを、より円滑に軸方向溝に入り込ませることができる。
(3) 前記周方向段部は、前記ポケットの前記一方の軸方向端部側におけるポケット端部よりも軸方向中央側に配置された(2)に記載の保持器。
 本構成の保持器によれば、ポケットから保持器外径側に移動するグリースが軸方向溝内に入りやすくなる。その結果、グリースが逃し面のみで円周方向に沿って移動することが抑制される。
(4) 前記保持器案内面の外径をD1、前記逃し面の外径をD2としたとき、
 D1×0.999≧D2
である(1)~(3)のいずれか一つに記載の保持器。
 本構成の保持器によれば、転動体と、外輪案内面との間に、適切な隙間が設定され、グリースの円滑な流れが得られる。
(5) 前記保持器案内面は、前記一方の軸方向端部と、前記一方の軸方向端部とは反対側の他方の軸方向端部とに設けられた(1)~(4)のいずれか一つに記載の保持器。
 本構成の保持器によれば、保持器の向きを意識することなく、軸受に組み込むことができ、保持器の組立作業性を向上できる。
(6) (1)~(5)のいずれか一つに記載の保持器を備える転がり軸受。
 本構成の転がり軸受によれば、グリースの攪拌抵抗による発熱量を低減し、寿命低下を抑制できる。
(7) アンギュラ玉軸受である(6)に記載の転がり軸受。
 本構成の転がり軸受によれば、反カウンタボア側を案内面として、グリースの排出が円滑に行われる。
 本発明によれば、グリースの攪拌抵抗による発熱量を低減し、転がり軸受の寿命低下を抑制できる。
本発明の実施形態を説明するための図で、第1構成例の保持器を備える転がり軸受の一部断面図である。 図1の要部拡大断面図である。 図2に示した保持器全体の外観斜視図である。 図3に示す保持器の断面図である。 図4Aに示す保持器の要部正面図である。 保持器の保持器外径面の拡大斜視図である。 外輪にグリースが付着するまでのグリース移動の様子を示す作用説明図である。 外輪に付着したグリースが軸方向外側に排出されるまでの作用を説明する図で、転がり軸受の一部断面図である。 外輪に付着したグリースが軸方向外側に排出されるまでの作用を説明する図で、外輪に接するグリースが付着した保持器の要部正面図である。 第2構成例の保持器の一部断面図である。 図8Aに示す保持器の要部正面図である。 第3構成例の保持器の外観斜視図である。 第3構成例の保持器の側面図である。 第3構成例の保持器の正面図である。 第3構成例の保持器の端面部の拡大図である。 第3構成例の保持器のポケットを内径側から見た拡大図である。 第3構成例の保持器のポケットを外径側から見た拡大図である。 第4構成例の保持器の外観斜視図である。 第4構成例の保持器の正面図である。 第4構成例の保持器の側面図である。 第4構成例の保持器の端面部の拡大図である。 第4構成例の保持器のポケットを内径側から見た拡大図である。 第4構成例の保持器のポケットを外径側から見た拡大図である。 グリースの排出性と保持器の耐摩耗性を試験した各保持器とその試験結果を示す説明図である。 試験に用いた軸受のグリース封入状態を示す一部断面図である。 試験に用いた軸受のグリース封入状態を示す一部側面図である。
 以下、本発明の実施形態について、図面を参照して詳細に説明する。
<第1構成例>
 図1は本発明の実施形態を説明するための図で、保持器を備える転がり軸受の一部断面図である。ここでは、転がり軸受として工作機械の主軸等、高速回転する装置に用いられるアンギュラ玉軸受を用いて説明するが、これに限らず、他の構成の転がり軸受であってもよい。
 アンギュラ玉軸受100は、内周面に外輪軌道面11を有する外輪13と、外周面に内輪軌道面15を有する内輪17と、複数の玉(転動体)19と、複数のポケット21を有する保持器200と、を備える。
 図2は図1の要部拡大断面図である。
 複数の玉19は、外輪軌道面11及び内輪軌道面15との間に接触角αを有して転動自在に配置される。保持器200は、内輪17と外輪13との間に配置され、保持器外径面には周方向に間隔を有して複数のポケット21が形成される。それぞれのポケット21には、玉19が転動自在に保持される。
 保持器200は、保持器外径面の軸方向両端に、径方向外側へ突出する環状の被案内部23,25が形成される。被案内部23,25は、それぞれ周方向に沿って等間隔で(図3参照)、しかも双方が同じ周位置に配置される。ここで、被案内部23,25とは、外輪案内面29によって案内され得る保持器200側の案内面を意味する。
 本構成のアンギュラ玉軸受100は、保持器200の軸方向一端側(図2における左側)の被案内部23における保持器案内面27が、外輪13の反カウンタボア側の外輪案内面29に摺接して案内される外輪案内方式である。なお、本構成ではアンギュラ型の軸受であるため、実際に保持器200が外輪13に案内されるのは、片側の被案内部23のみとなる。しかし、図示例の保持器200は軸対象形状であり、被案内部23,25は互いに等価であるため、ここでは、いずれの被案内部23,25も「被案内部」と呼称する。
 保持器200は、合成樹脂を含む材料を用いた射出成形品である。保持器200に使用可能な合成樹脂としては、例えば、PPS(ポリフェニレンサルファイド)、PPS-CF(カーボン繊維強化ポリフェニレンサルファイド)等が挙げられる。その他にも、母材として、PA(ポリアミド)、PAI(ポリアミドイミド)、熱可塑性ポリイミド、PEEK(ポリエーテルエーテルケトン)が利用可能で、強化繊維として、カーボン繊維、ガラス繊維、アラミド繊維等の有機繊維が利用可能である。
 図3は図2に示した保持器全体の外観斜視図である。
 周方向に隣接する被案内部23と被案内部23との間、及び、周方向に隣接する被案内部25と被案内部25との間は、保持器案内面27より径方向高さが低い軸方向溝31とされている。軸方向溝31は、後述するように潤滑剤(グリ-ス)の排出溝として機能する。
 なお、本構成において、軸方向溝31は、周方向で隣接する被案内部23と被案内部23との間に形成される軸方向溝31が必須の構成となり、周方向で隣接する被案内部25と被案内部25との間に形成される軸方向溝31は後述する構成例のように被案内部25と共に省略されていてもよい。
 図4Aは図3に示した保持器の断面図、図4Bは図3に示す保持器の要部正面図である。なお、図4Aは図4BのIV-IV断面図を示している。
 一般に、軸受内に配置された保持器は、保持器案内面27と外輪案内面29(図2参照)との間の案内すきまと、ポケットすきまとの範囲で移動自在となる。そのため、外輪案内方式のアンギュラ玉軸受においては、外輪13の外輪案内面29と外輪軌道面11との境界の軌道面エッジ33(図2参照)に、保持器案内面27が接触することがある。保持器案内面27が軌道面エッジ33に接触すると、保持器案内面27は軌道面エッジ33との接触部分から摩耗が進行する。そこで、本構成の保持器200は、軌道面エッジ33と接触しないように、外輪13の軌道面エッジ33との対面領域に、径方向内側に窪む逃し面(本構成例ではエッジ逃し溝35)を設けてある。
 エッジ逃し溝35は、保持器外径面において、保持器案内面27よりも軸方向中央側で円周方向に形成される。このエッジ逃し溝35は、保持器案内面27よりも小さな外径となって環状に形成される。エッジ逃し溝35は、被案内部23と被案内部25との間の軸方向領域に相当し、保持器案内面27の径方向高さから一段低く形成される。この段差によって、保持器200が傾斜した場合でも、軌道面エッジ33が保持器200に接触することがなくなり、軌道面エッジ33との接触による保持器200の摩耗を未然に防止できる。本構成において、保持器200は、エッジ逃し溝35を溝幅方向(図4Bの左右方向)に二等分する仮想線37を境に、図4Bにおいて左右対称形状となる。
 図5は軸受用保持器の保持器外径面の拡大斜視図である。
 保持器200は、保持器外径面において、保持器案内面27を軸方向に横断する軸方向溝31が形成される。軸方向溝31は、ポケット21から軸方向端面30まで形成される。本構成の軸方向溝31は、被案内部23と被案内部25との双方を横断して形成される。即ち、被案内部23,25に形成されるそれぞれの軸方向溝31は、周方向の位相が一致しており、エッジ逃し溝35よりも溝底が径方向内側に形成される。つまり、軸方向溝31は、エッジ逃し溝35よりも低い位置に形成される。
 図4Bに示すように、保持器200は、保持器案内面27の外径をD1、エッジ逃し溝35の外径をD2、軸方向溝31の溝底の外径をD3としたとき、
 D1>D2>D3>PCD・・・(式1)
である。但し、PCDは、玉ピッチ円直径とする。
 より望ましくは、保持器200は、
 D1×0.999≧D2・・・(式2)
である。
 保持器200は、上記の(式1)を満たすことにより、図5に示す軸方向溝31の溝底とエッジ逃し溝35との間に高さHの段差が生じ、且つ、エッジ逃し溝35と保持器案内面27との間に高さhの段差が生じる。これにより、軸方向溝31は、円周方向の両端において、エッジ逃し溝35との間では段差H、保持器案内面27との間では段差(H+h)となる軸方向段部39を形成する。
 軸方向溝31は、軸方向中央寄りの一端が、ポケット21に接続され、反対側の軸方向外側の他端が排出開口となって開放されている。つまり、軸方向溝31は、グリ-スを軸方向外側に排出する排出溝として機能する。軸方向溝31は、段差Hの部分が、軸方向(図5の左右方向)でポケット21とオーバーラップしている。また、ポケット21は、被案内部23と接していない。そのため、ポケット21に収容された玉19と、被案内部23の内側壁との間には、エッジ逃し溝35から軸方向溝31の溝底に入り込むグリース進入口41が確保される。
 このグリース進入口41には、保持器200が図5のM方向で回転した場合、グリースが矢印43で示す方向で進入可能となる。グリース進入口41に進入したグリースは、エッジ逃し溝35よりも低い軸方向溝31に入り込むことになる。本構成において、軸方向一方の端部の保持器案内面27をエッジ逃し溝35が円周方向に横断することで、周方向段部57が形成される。周方向段部57は、軸方向段部39がポケット21と接続される軸方向位置よりも、軸方向一方の端部側に配置される。そのため、グリース進入口41の開口が広くなり、エッジ逃し溝35に付着するグリースを、より円滑に軸方向溝31に入り込ませることができる。
 また、保持器200は、上記の(式2)を満たすことにより、玉19、外輪案内面29との間に、適切な隙間が設定される。外輪案内方式の保持器200では、ポケット21と玉19との間、外輪案内面29と保持器案内面27との間にそれぞれ適切な隙間が設定されている。保持器200は、軸受の回転に伴いこの隙間の範囲で外輪13に対して傾きを持って回転する。そのため、エッジ逃し溝35の深さは、保持器案内面27の外径D1の0.1%以上とすることが望ましい。
 また、保持器200は、
 (軸方向溝の深さH)>(3×エッジ逃し溝の深さh)・・・(式3)
とすることが望ましい。保持器200は、(式3)を満たすことにより、ポケット21から軸受端面側に延在する軸方向段部39の面積(S1+S2)を大きく確保できる。軸方向段部39の面積(S1+S2)を大きくすることにより、軸方向段部39によりグリースを押し出す力を増大させることができ、グリースの排出効果を高められる。更には、(式3)を満足することで、S2の面積と軸方向段部39の段差が確保されるので、ポケット21と玉19とのすきま部分から径方向外側に掻き出されたグリースが円周方向に移動した際、グリースを軸方向段部39の部分にスクープすることが可能となる。
 一方、保持器200は、玉19を保持することを目的としており、玉19の最大直径部で接触するため、軸方向溝31及びエッジ逃し溝35は、玉PCDより外側にある必要がある。これらの軸方向溝31や軸方向段部39が玉PCDよりも内側にある場合は、玉19が保持器200の角と接触して摩耗したり、保持器200に乗り上げたりするなどの不具合が生じるおそれがある。
 次に、上記した構成の作用を説明する。
 図6は外輪13にグリースが付着するまでのグリース移動の様子を示す作用説明図である。
 アンギュラ玉軸受100をグリース潤滑で使用する際には、初期に慣らし運転を実施する。慣らし運転は、初期に封入したグリースが軸受内部から排出される所定の位置へ移動することによって完了する。
 この慣らし運転では、まず、矢印45に示すように、保持器内径部のグリースが保持器200の軸方向端部から直接外部へ排出される。また、グリースは、矢印47に示すように、玉19に接触、若しくはポケット内径面に沿って保持器外径側へ移動し、遠心力で外輪内径面に付着する。軸受内のグリースは玉19を中心として、カウンタボア側と反カウンタボア側でほとんど交わらない。
 カウンタボア側のグリースは、滞留位置53へ留まる。一方、反カウンタボア側のグリースは、滞留位置49に付着するが、従来構造の場合、滞留位置49のグリースは軸方向外側へ移動する力が働かず、矢印47から矢印51の流れを繰り返す。
 図7A,図7Bは外輪13に付着したグリースが軸方向外側に排出されるまでの作用を説明する図で、図7Aは転がり軸受の一部断面図、図7Bは外輪13に接するグリースが付着した保持器の要部正面図である。
 ここで、外輪案内面29の、保持器200の軸方向溝31が存在しない部位に対面する対面位置においては、滞留位置49のグリースが、外輪案内面29と保持器案内面27の間の狭い隙間(案内隙間)に入り、保持器200と外輪13との相対運動によるせん断により、案内隙間から押し出されるように、軸方向外側へ排出される。
 一方、図5に示す軸方向溝31においては、保持器200がM方向に回転すると、エッジ逃し溝35を円周方向に移動したグリースが、矢印43で示すように、グリース進入口41からエッジ逃し溝35よりも窪んだ軸方向溝31に入り込む。軸方向溝31に入り込んだグリースは、回転方向上流側の軸方向段部39(特に面積S1の部位)との間に堆積されて厚みを増し、対面する外輪案内面29(図2参照)に付着する。これにより、堆積されたグリースが、軸方向段部39により押し付けられて、また、外輪案内面29との接触によってせん断を生じながら軸方向外側へ移動する。したがって、グリースは、軸方向溝31において、軸方向中央に位置する玉19と反対側となる外輪案内面29側の軸方向端部から、軸方向外側への排出が促される。
 また、保持器200のポケット21から、玉19の回転に伴って径方向外側に移動したグリースは、矢印44で示すように軸方向溝31へ入り込む。この軸方向溝31に入り込んだグリースは、回転方向上流側の軸方向段部39(特に面積S2の部位)との間に堆積され、軸方向段部39に押し付けられる。これにより、上記した矢印43のグリースの流れと合流して、軸方向外側へ移動する。
 このように、本構成のアンギュラ玉軸受100では、エッジ逃し溝35が保持器外径面に形成されている場合であっても、軸方向溝31の軸方向段部39へのグリースの付着、及び外輪案内面29へのグリースの付着により、グリースを軸方向端へ排出するための力が働く。このため、グリースが軸方向端に向けて円滑に移動して排出される。これにより、グリースによる攪拌抵抗を低減し、発熱量の増大を抑制することが可能となる。
 なお、保持器200に軸方向溝31が存在しても、軸方向溝31とエッジ逃し溝35の深さが略同一(即ち、H=0)である場合、ポケット21から排出されたグリースは、外輪案内面29と保持器案内面27との相対運動により、主に円周方向に移動し、軸方向段部39により押し出す力が働きにくくなる。その場合、移動したグリースは、案内面側から軸方向外側へ排出されず、軸受内部で循環し続ける。
 しかし、本構成の保持器200は、保持器案内面27を有し、互いに隣接する被案内部23と被案内部23の間に、軸方向溝31が設けられている。そのため、グリースの、軸方向段部39への押し付けによる軸方向への移動と、軸方向溝31と外輪案内面29との相対運動によるグリースのせん断とが相俟って、グリースの排出性が促進される。
 更に、保持器200の形状では、ポケット21の軸方向の端部から軸方向中央に近い位置まで軸方向溝31が達しているので、大きなグリース進入口41を確保でき、グリースを排出させる効果をより促進させることができる。
 したがって、本構成のアンギュラ玉軸受100及び保持器200によれば、グリースの案内面側からの排出性と、保持器外径面の耐摩耗性を向上させ、しかも、グリースの攪拌抵抗による発熱を低減し、軸受の寿命低下を抑制することができる。特にグリース潤滑でdmn値が80万(PCD(玉ピッチ円直径)×回転数)以上で使用される場合には、上記効果が顕著に得られる。
<第2構成例>
 図8Aは第2構成例の保持器の一部断面図、図8Bは図8Aに示す保持器の要部正面図である。
 上記の保持器200は、エッジ逃し溝35を二分する仮想線37を境に左右対称形状であったが、保持器は非対称であってもよい。本構成の保持器200Aは、保持器外径面の軸方向一端のみに半径方向外側へ突出する被案内部23を有する。保持器外径面には、被案内部23に対し軸方向の反対側に、保持器案内面27より小外径のエッジ逃し面55が形成される。したがって、保持器案内面27とエッジ逃し面55との間は、周方向段部57となる。保持器200Aのこれ以外の構成は、前述の保持器200と同様である。
 本構成例の保持器200Aによれば、保持器200Aをシンプルな構造にでき、保持器200Aの耐久性と生産性とを共に高めることができる。また、エッジ逃し面55の周方向段部57の軸方向位置は、図8Bに示すように、周方向段部57を保持器案内面27側のポケット端部Pよりも軸方向内側に位置させている(L>0)。このようにすることで、S2(図5参照)の面積が大きくなり、玉とポケット21とのすきま部分から掻き出されたグリースを、軸方向外側へより排出しやすくできる。
<第3構成例>
 図9は第3構成例の保持器200Bの外観斜視図、図10は保持器200Bの側面図、図11は保持器200Bの正面図である。
 本構成の保持器200Bは、図3に示す保持器200の被案内部23,25に、軸方向に沿って凹溝61が形成されたこと以外は、保持器200と同様の構成である。
 図12は保持器200Bの端面部の拡大図、図13は保持器200Bのポケット21を内径側から見た拡大図、図14は保持器200Bのポケット21の拡大図を外径側から見た拡大図である。
 保持器200Bは、被案内部23,25の保持器案内面27と、エッジ逃し溝35の一部に凹溝61が形成される。凹溝61は、エッジ逃し溝35よりも溝深さが深く、周方向の溝断面が円弧状である。凹溝61は、最大の外径を有する保持器案内面27を軸方向に貫通させ、エッジ逃し溝35の途中まで形成される。凹溝61の溝底の外径は、保持器案内面27側とエッジ逃し溝35側とで等しく、双方の凹溝61の内面は滑らかに連続している。なお、凹溝61は、周方向の溝断面がV字状であってもよい。
 被案内部23の凹溝61と被案内部25の凹溝61は、いずれも一つの保持器案内面27の周方向中央に形成され、互いに周方向に関して同位相に形成されている。
 軸方向に一直線上に配置される凹溝61は、グリースの軸方向外側への排出性をより促進できる。また、凹溝61は、例えば保持器200Bを射出成形する際の金型同士のパーティングラインの位置にすることができる。凹溝61内にパーティングラインを設けることにより、成形時にパーティングラインにバリが生じても、保持器200Bの最大外径となる保持器案内面27から径方向外側に突出することがない。これにより、保持器200Bを軸受に組み込んだ際に、バリが削れてグリース内に混入することがない。
<第4構成例>
 更に、第3構成例の保持器200Bは、第2構成例と同様に非対称な形状であってもよい。
 図15は第4構成例の保持器200Cの外観斜視図、図16は保持器200Cの側面図、図17は保持器200Cの正面図である。また、図18は保持器200Cの端面部の拡大図、図19は保持器200Cのポケット21を内径側から見た拡大図、図20は保持器200Cのポケット21を外径側から見た拡大図である。
 本構成の保持器200Cは、保持器外径面の軸方向一端のみに半径方向外側へ突出する被案内部23を有する。保持器200Cのこれ以外の構成は、前述の保持器200Bの構成と同様である。
 本構成の保持器200Cによれば、保持器200Cをシンプルな構造にでき、保持器200Cの耐久性と生産性とを共に高めることができ、第2構成例の場合と同様の作用効果が得られる。
 内径70mmのアンギュラ玉軸受(日本精工製 型番70BNR10H)において、グリース(日本精工製 MTEグリース)を軸受の空間容積の15%封入し、アンデロン測定機にて4000min-1で2分間回転させた。その後、軸受を分解して保持器へのグリースの付着を観察することでグリースの排出性を確認した。試験に用いた保持器とその試験結果については、図21に纏めて示している。また、試験実施前のグリース封入状態を図22,図23に示す。図22は試験に用いた軸受の一部断面図で、図23は図22に示す軸受の一部側面図である。試験実施前に、シリンジ71の先端を内輪17の外周面と保持器200の内周面との間に向けて、シリンジ71からグリース73を吐出する。グリース73は、軸受の周方向に沿った玉19同士の間にそれぞれ供給され、保持器200の内径側のみに封入された状態となる。
 比較例1の保持器は、エッジ逃し溝がなく、深さ0.5mmの軸方向溝のみが設けられている。
 実施例1の保持器は、外径部に円周方向に沿ったエッジ逃し溝と、軸方向に沿った軸方向溝とを共に有し、エッジ逃し溝の幅が、ポケット径と等しくされている。溝の深さは、エッジ逃し溝よりも軸方向溝の方が深い。この保持器の軸方向溝は、径方向に貫通するポケットを跨いで2つに分断して形成され、保持器端部でそれぞれ開口する。軸方向溝は、ポケットと軸方向に沿ってオーバーラップし、オーバーラップしたポケットの軸方向端部が、分断して形成される軸方向溝の内側端部となる。
 比較例2の保持器は、実施例1の保持器におけるエッジ逃し溝を深くして、軸方向溝と同じ深さにされている。
 比較例3の保持器は、比較例2の保持器におけるエッジ逃し溝の軸方向幅を広げ、ポケット径より大きい幅にされている。
 各保持器の材質は、カーボン繊維強化ポリフェニレンサルファイド(PPS-CF)である。
 比較例1の保持器では、外輪案内面側のポケットから排出されたグリースが、外輪案内面と保持器案内面の相対運動により円周方向へ移動し、そのグリースがポケットに続く軸方向溝の軸方向段部に押し付けられて軸方向に移動することで排出された。しかし、保持器が外輪の軌道面エッジと接触する構成であるため、軌道面のエッジ位置を発生起点とする摩耗は発生する可能性がある。
 実施例1の保持器では、ポケットから排出された外輪案内面側のグリースが外輪案内面と保持器案内面の相対運動により円周方向へ移動する。この円周方向に移動したグリースが、エッジ逃し溝に連通される軸方向溝の軸方向段部に押し付けられ、軸方向へ移動することで、軸受内部から排出された。更に、本形状では、ポケットの軸方向端部から保持器の軸方向中心側に近い位置まで、ポケットの周縁に沿って軸方向溝が延設されている。そのため、エッジ逃し溝と軸方向溝とを連通する流路の断面積が増え、軸方向溝へのグリースの進入が円滑となった。また、軸方向溝は、外輪の軌道面エッジより保持器の中心に近いところまで達しており、これによっても、エッジ逃し溝に付着したグリースを軸方向溝に排出する効果が高められた。更に、この構成ではエッジ部の接触がなく、案内面にグリースが到達し、潤滑状態も良好であることから、十分な耐摩耗性があると考えられる。
 比較例2の保持器では、エッジ逃し溝の幅とポケット径とが等しく、ポケットの端を円周方向へ投影した位置にエッジ逃し溝の軸方向端部における周方向断部がある。そのため、ポケットから排出されたグリースは、保持器案内面側に付着した極一部のグリースのみ保持器案内面に広がって排出されるが、大部分は軸受内部で循環した。よって、本形状では、グリースの排出性が実施例1と比較して低下した。また、案内面に付着したグリースが非常に少なく、一部ではグリースが付着していない部分も見られることから、案内面の潤滑不良と摩耗が発生することが考えられる。
 更に、軸受内部に過剰なグリースが残存するので、攪拌抵抗による発熱が生じ、軸受の早期損傷の恐れがある。
 比較例3の保持器では、保持器案内面側のポケットから排出されたグリースが外輪案内面と保持器案内面との相対運動により円周方向へ移動したが、軸方向外側へ押し出す力が働かず、円周方向に移動したグリースが再び転動体に接触するようになった。そのため、保持器案内面側から軸方向外側へグリースが排出されなかった。また、軌道面エッジによる保持器外径面の耐摩耗性は、グリースの潤滑不良のため比較例2よりも低下した。
 実施例1と比較例1~3の各保持器は、いずれも軸方向に関して左右対称であるが、図8に示すような非対称の段付きの保持器でも同様の結果が得られた。
 なお、図21に示す○印は良品レベル、×印は通常の使用条件では問題ないが、使用条件が過酷になる場合に不良品となり得るレベル、△印は良品ではないが使用状態によっては適用可能なレベルを表す。
 このように、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。
 例えば、転がり軸受としては、アンギュラ玉軸受に限定されるものではなく、円筒ころ軸受等、他の種類の転がり軸受であってもよい。なお、本作用は、グリース潤滑のみならず、オイルエア潤滑やジェット潤滑等でも同様の効果が見込まれる。
 本出願は2016年11月4日出願の日本国特許出願(特願2016-216734)、及び2017年5月8日出願の日本国特許出願(特願2017-92524)に基づくものであり、その内容はここに参照として取り込まれる。
 13 外輪
 17 内輪
 19 玉(転動体)
 21 ポケット
 27 保持器案内面
 31 軸方向溝
 35 エッジ逃し溝(逃し面)
100 アンギュラ玉軸受
200,200A,200B,200C 保持器

Claims (7)

  1.  内輪と、外輪と、前記外輪及び前記内輪の間に配置される複数の転動体とを備える転がり軸受に用いられ、前記転動体が収容される複数のポケットを有する外輪案内方式の保持器であって、
     前記保持器の保持器外径面における少なくとも一方の軸方向端部に設けられ、前記外輪に案内される保持器案内面と、
     前記保持器外径面の前記保持器案内面よりも軸方向中央側に、前記保持器案内面よりも小さな外径で円周方向に沿って形成された逃し面と、
     前記保持器外径面の前記ポケットから軸方向端まで延設され、前記保持器案内面を軸方向に横断して軸方向段部を形成し、前記逃し面よりも溝底が径方向内側に形成された軸方向溝と、
    を備える保持器。
  2.  前記保持器案内面を前記逃し面が円周方向に横断して形成される周方向段部は、前記軸方向段部が前記ポケットと接続される軸方向位置よりも前記一方の軸方向端部側に配置された請求項1に記載の保持器。
  3.  前記周方向段部は、前記ポケットの前記一方の軸方向端部側におけるポケット端部よりも軸方向中央側に配置された請求項2に記載の保持器。
  4.  前記保持器案内面の外径をD1、前記逃し面の外径をD2としたとき、
     D1×0.999≧D2
    である請求項1~請求項3のいずれか一項に記載の保持器。
  5.  前記保持器案内面は、前記一方の軸方向端部と、前記一方の軸方向端部とは反対側の他方の軸方向端部とに設けられた請求項1~請求項4のいずれか一項に記載の保持器。
  6.  請求項1~請求項5のいずれか一項に記載の保持器を備える転がり軸受。
  7.  アンギュラ玉軸受である請求項6に記載の転がり軸受。
PCT/JP2017/039638 2016-11-04 2017-11-01 保持器、及びこれを備えた転がり軸受 WO2018084219A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/344,504 US10648508B2 (en) 2016-11-04 2017-11-01 Retainer and rolling bearing with same
CN201780067545.6A CN109996970B (zh) 2016-11-04 2017-11-01 保持架和具备该保持架的滚动轴承
KR1020197011822A KR102144265B1 (ko) 2016-11-04 2017-11-01 유지기, 및 이것을 구비한 구름 베어링
EP17866517.0A EP3536995B1 (en) 2016-11-04 2017-11-01 Retainer and rolling bearing with same
JP2018549068A JP7031602B2 (ja) 2016-11-04 2017-11-01 アンギュラ玉軸受

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-216734 2016-11-04
JP2016216734 2016-11-04
JP2017092524 2017-05-08
JP2017-092524 2017-05-08

Publications (1)

Publication Number Publication Date
WO2018084219A1 true WO2018084219A1 (ja) 2018-05-11

Family

ID=62076775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039638 WO2018084219A1 (ja) 2016-11-04 2017-11-01 保持器、及びこれを備えた転がり軸受

Country Status (7)

Country Link
US (1) US10648508B2 (ja)
EP (1) EP3536995B1 (ja)
JP (3) JP7031602B2 (ja)
KR (1) KR102144265B1 (ja)
CN (1) CN109996970B (ja)
TW (1) TWI704298B (ja)
WO (1) WO2018084219A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018189167A (ja) * 2017-05-08 2018-11-29 日本精工株式会社 アンギュラ玉軸受
CN112739923A (zh) * 2018-09-21 2021-04-30 Ntn株式会社 滚珠轴承用保持架及滚动轴承
WO2023105677A1 (ja) * 2021-12-08 2023-06-15 ミネベアミツミ株式会社 転がり軸受

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10165027C5 (de) * 2000-10-27 2019-10-02 Nsk Ltd. Wälzlager und Spindelvorrichtung für Werkzeugmaschine
CN110285139A (zh) * 2019-07-01 2019-09-27 洛阳新强联回转支承股份有限公司 一种低摩擦特大型双列圆锥滚子回转支承
JP2023137696A (ja) * 2022-03-18 2023-09-29 日本精工株式会社 転がり軸受用保持器、転がり軸受、及び転がり軸受用保持器の設計方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005090657A (ja) * 2003-09-18 2005-04-07 Nsk Ltd 転がり軸受用保持器及び該保持器を組み込んだ転がり軸受
JP2009058039A (ja) * 2007-08-31 2009-03-19 Jtekt Corp 転がり軸受用保持器
JP2011196513A (ja) * 2010-03-23 2011-10-06 Nsk Ltd 転がり軸受
JP2013007419A (ja) * 2011-06-23 2013-01-10 Nsk Ltd 軸受装置及び工作機械用主軸装置
JP2014095469A (ja) 2012-10-09 2014-05-22 Nsk Ltd 転がり軸受
JP2014534388A (ja) * 2011-10-10 2014-12-18 ゼネラル・エレクトリック・カンパニイ 動的に潤滑される軸受および軸受を動的に潤滑する方法
JP2016216734A (ja) 2003-09-12 2016-12-22 日立化成株式会社 セリウム塩の製造方法、酸化セリウム及びセリウム系研磨剤
JP2017092524A (ja) 2015-11-02 2017-05-25 Necプラットフォームズ株式会社 電話端末、自動応答方法、及び自動応答プログラム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11315840A (ja) * 1998-05-07 1999-11-16 Nippon Seiko Kk 転がり軸受用保持器
DE19959498A1 (de) 1999-12-10 2001-06-13 Schaeffler Waelzlager Ohg Käfig für ein Wälzlager
JP2005090658A (ja) * 2003-09-18 2005-04-07 Nsk Ltd 転がり軸受
JP5288029B2 (ja) * 2006-10-19 2013-09-11 日本精工株式会社 円筒ころ軸受及び工作機械用主軸装置
CN201606409U (zh) * 2010-02-05 2010-10-13 江苏帝达贝轴承有限公司 一种圆柱滚子轴承整体式保持架
JP5604896B2 (ja) 2010-02-17 2014-10-15 日本精工株式会社 アンギュラ玉軸受
JP5750901B2 (ja) * 2011-01-19 2015-07-22 日本精工株式会社 転がり軸受
CN105736579A (zh) * 2012-06-21 2016-07-06 日本精工株式会社 滚动轴承及机床用主轴装置
JP6326725B2 (ja) 2013-05-21 2018-05-23 株式会社ジェイテクト 複列円筒ころ軸受用の櫛型保持器及び複列円筒ころ軸受
CN203477080U (zh) * 2013-08-29 2014-03-12 上海添佶轴承科技有限公司 一种角接触球轴承用保持架
CN103790965B (zh) * 2014-02-27 2017-02-15 洛阳轴研科技股份有限公司 一种外径带槽的轴承保持架及其设计方法
JP2016090010A (ja) * 2014-11-10 2016-05-23 株式会社ジェイテクト 転がり軸受
US10422381B2 (en) * 2015-02-04 2019-09-24 Nsk Ltd. Rolling bearing retainer, rolling bearing, and method for manufacturing rolling bearing retainer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016216734A (ja) 2003-09-12 2016-12-22 日立化成株式会社 セリウム塩の製造方法、酸化セリウム及びセリウム系研磨剤
JP2005090657A (ja) * 2003-09-18 2005-04-07 Nsk Ltd 転がり軸受用保持器及び該保持器を組み込んだ転がり軸受
JP2009058039A (ja) * 2007-08-31 2009-03-19 Jtekt Corp 転がり軸受用保持器
JP2011196513A (ja) * 2010-03-23 2011-10-06 Nsk Ltd 転がり軸受
JP2013007419A (ja) * 2011-06-23 2013-01-10 Nsk Ltd 軸受装置及び工作機械用主軸装置
JP2014534388A (ja) * 2011-10-10 2014-12-18 ゼネラル・エレクトリック・カンパニイ 動的に潤滑される軸受および軸受を動的に潤滑する方法
JP2014095469A (ja) 2012-10-09 2014-05-22 Nsk Ltd 転がり軸受
JP2017092524A (ja) 2015-11-02 2017-05-25 Necプラットフォームズ株式会社 電話端末、自動応答方法、及び自動応答プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3536995A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018189167A (ja) * 2017-05-08 2018-11-29 日本精工株式会社 アンギュラ玉軸受
CN112739923A (zh) * 2018-09-21 2021-04-30 Ntn株式会社 滚珠轴承用保持架及滚动轴承
CN112739923B (zh) * 2018-09-21 2023-03-17 Ntn株式会社 滚珠轴承用保持架及滚动轴承
WO2023105677A1 (ja) * 2021-12-08 2023-06-15 ミネベアミツミ株式会社 転がり軸受

Also Published As

Publication number Publication date
EP3536995A1 (en) 2019-09-11
EP3536995B1 (en) 2021-06-02
JP7251581B2 (ja) 2023-04-04
EP3536995A4 (en) 2019-10-02
JP7031602B2 (ja) 2022-03-08
TWI704298B (zh) 2020-09-11
US20190249717A1 (en) 2019-08-15
JP2021181835A (ja) 2021-11-25
KR20190053940A (ko) 2019-05-20
CN109996970B (zh) 2020-09-15
TW201819787A (zh) 2018-06-01
KR102144265B1 (ko) 2020-08-13
JPWO2018084219A1 (ja) 2019-09-26
CN109996970A (zh) 2019-07-09
JP2021181834A (ja) 2021-11-25
US10648508B2 (en) 2020-05-12
JP7255645B2 (ja) 2023-04-11

Similar Documents

Publication Publication Date Title
WO2018084219A1 (ja) 保持器、及びこれを備えた転がり軸受
US10221891B2 (en) Taper roller bearing
WO2016010057A1 (ja) 玉軸受
US10352358B2 (en) Taper roller bearing
RU2585125C2 (ru) Узел подшипника качения
US20160017923A1 (en) Ball Bearing
JP2012087924A (ja) 円すいころ軸受及び円すいころ軸受用保持器の製造方法
US10539184B2 (en) Taper roller bearing
US10138939B2 (en) Taper Roller Bearing
JP2014005846A (ja) 転がり軸受及び工作機械用主軸装置
JP2014101946A (ja) 転がり軸受
JP6686483B2 (ja) 転がり軸受用保持器、及び転がり軸受、並びに転がり軸受用保持器の製造方法
JP2007147056A (ja) 円筒ころ軸受
JP2016145644A5 (ja)
US10215233B2 (en) Taper roller bearing
JP6529209B2 (ja) アンギュラ玉軸受
WO2016125855A1 (ja) 転がり軸受用保持器、及び転がり軸受、並びに転がり軸受用保持器の製造方法
JP2014190453A (ja) アンギュラ玉軸受
JP6834760B2 (ja) アンギュラ玉軸受
US10408266B2 (en) Cage for taper roller bearing and taper roller bearing
TW201721035A (zh) 密封裝置及滾子軸承裝置
JP2006038134A (ja) 転がり軸受および転がり軸受の潤滑構造
JP2021131102A (ja) 密封装置及び密封構造
JP2008008370A (ja) 円筒ころ軸受用保持器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866517

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197011822

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018549068

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017866517

Country of ref document: EP

Effective date: 20190604