WO2018084219A1 - 保持器、及びこれを備えた転がり軸受 - Google Patents
保持器、及びこれを備えた転がり軸受 Download PDFInfo
- Publication number
- WO2018084219A1 WO2018084219A1 PCT/JP2017/039638 JP2017039638W WO2018084219A1 WO 2018084219 A1 WO2018084219 A1 WO 2018084219A1 JP 2017039638 W JP2017039638 W JP 2017039638W WO 2018084219 A1 WO2018084219 A1 WO 2018084219A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cage
- axial
- grease
- guide surface
- groove
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/66—Special parts or details in view of lubrication
- F16C33/6603—Special parts or details in view of lubrication with grease as lubricant
- F16C33/6629—Details of distribution or circulation inside the bearing, e.g. grooves on the cage or passages in the rolling elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/14—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
- F16C19/16—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/22—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
- F16C19/24—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
- F16C19/26—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/38—Ball cages
- F16C33/3806—Details of interaction of cage and race, e.g. retention, centring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/38—Ball cages
- F16C33/3837—Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages
- F16C33/3843—Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/38—Ball cages
- F16C33/3887—Details of individual pockets, e.g. shape or ball retaining means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/66—Special parts or details in view of lubrication
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/66—Special parts or details in view of lubrication
- F16C33/6603—Special parts or details in view of lubrication with grease as lubricant
- F16C33/6607—Retaining the grease in or near the bearing
- F16C33/6614—Retaining the grease in or near the bearing in recesses or cavities provided in retainers, races or rolling elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/14—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
- F16C19/16—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
- F16C19/163—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/46—Cages for rollers or needles
- F16C33/4605—Details of interaction of cage and race, e.g. retention or centring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/46—Cages for rollers or needles
- F16C33/467—Details of individual pockets, e.g. shape or roller retaining means
- F16C33/4676—Details of individual pockets, e.g. shape or roller retaining means of the stays separating adjacent cage pockets, e.g. guide means for the bearing-surface of the rollers
Definitions
- the present invention relates to a cage and a rolling bearing provided with the cage.
- rolling bearings such as cylindrical roller bearings and angular ball bearings are used as bearings for main spindles of machine tools.
- a cage for these rolling bearings a plastic cage made of synthetic resin is used. Since the plastic cage is lightweight, the centrifugal force during rotation is small, which is advantageous for high-speed rotation.
- Grease lubrication, oil-air lubrication, jet lubrication, etc. are appropriately selected as the lubrication method for such rolling bearings.
- grease lubrication by initial encapsulation is used because of low cost and easy maintenance. (See, for example, Patent Document 1).
- an axial groove may be provided on the outer diameter surface of the cage as a guide surface in order to discharge excess grease in the vicinity of the rolling contact portion.
- grease is discharged by being scraped out in the vicinity of the step portion of the groove.
- the guide clearance formed by the outer ring inner diameter surface and the cage outer diameter surface is constant, so if grease enters between the cage and outer ring inner diameter surface, The grease is discharged from the guide surface while being sheared by the rotation of the cage.
- the cage surface is formed at the intersection of the outer ring raceway surface and outer ring guide surface, and the cage makes contact with the cage. easy.
- an amorphous layer on the surface is worn, and this is the starting point, and the entire cage guide surface is worn early.
- the metal cage is easily worn, wear powder is generated, and the lubrication state is deteriorated, so that the performance of the entire bearing is lowered.
- an edge relief groove may be provided on the outer diameter surface of the cage along the circumferential direction.
- an object of the present invention is to provide a cage capable of reducing the amount of heat generated by the stirring resistance of grease and suppressing the reduction in the life of the rolling bearing, and a rolling bearing provided with the cage.
- the present invention has the following configuration. (1) Holding of an outer ring guide system having a plurality of pockets for use in a rolling bearing including an inner ring, an outer ring, and a plurality of rolling elements disposed between the outer ring and the inner ring.
- a vessel A cage guide surface provided at at least one axial end of the cage outer diameter surface of the cage and guided by the outer ring;
- a relief surface formed along the circumferential direction with an outer diameter smaller than the cage guide surface, closer to the center side in the axial direction than the cage guide surface of the cage outer diameter surface, It extends from the pocket of the outer diameter surface of the cage to the axial end, forms an axial step portion across the cage guide surface in the axial direction, and the groove bottom is radially inward from the relief surface.
- a cage comprising.
- the grease that has moved from the pocket of the cage outer diameter surface to the cage outer diameter side enters the axial groove.
- the grease that has entered the axial groove is deposited between the axial step on the upstream side in the rotational direction and pressed against the axial step.
- the grease moves outward in the axial direction.
- the grease adhering to the relief surface from the pocket moves in the circumferential direction, enters the axial groove formed on the radially inner side with respect to the relief surface, and strikes and accumulates on the axial step.
- the accumulated grease merges with the above-described grease flow, and the axial stepped portion discharges from the one axial end portion to the axially outer side, and again adheres to the rolling element to the inner diameter portion of the cage. It returns and flows as a flow circulating in the bearing. As a result, the stirring resistance due to the grease can be reduced, and the increase in the amount of generated heat can be suppressed.
- the circumferential step formed by the relief surface traversing the retainer guide surface in the circumferential direction is configured such that the one axis is located at a position higher than an axial position where the axial step is connected to the pocket.
- the cage according to (1) which is disposed on the direction end side. According to the cage of this configuration, the grease entrance into which the grease adhering to the escape groove enters the axial groove from the gap between the cage guide surface and the rolling element is widened, and the grease on the relief surface is more smoothly distributed. It can be inserted into the axial groove.
- the cage guide surfaces are provided at the one axial end and the other axial end opposite to the one axial end, according to (1) to (4).
- the cage according to any one of the above. According to the cage of this configuration, the cage can be incorporated in the bearing without being aware of the orientation of the cage, and the assembly workability of the cage can be improved.
- a rolling bearing comprising the cage according to any one of (1) to (5). According to the rolling bearing of this configuration, the amount of heat generated by the stirring resistance of grease can be reduced, and the life reduction can be suppressed.
- the rolling bearing according to (6) which is an angular ball bearing. According to the rolling bearing of this configuration, grease is smoothly discharged using the counter-bore side as a guide surface. According to the present invention, the amount of heat generated by the stirring resistance of grease can be reduced, and the life reduction of the rolling bearing can be suppressed.
- FIG. 4A It is an expansion perspective view of the cage outer diameter surface of the cage. It is action explanatory drawing which shows the mode of grease movement until grease adheres to an outer ring
- FIG. 1 is a view for explaining an embodiment of the present invention, and is a partial sectional view of a rolling bearing provided with a cage.
- an angular ball bearing used in a device that rotates at high speed such as a spindle of a machine tool, will be described as a rolling bearing, but the present invention is not limited to this, and a rolling bearing having another configuration may be used.
- the angular ball bearing 100 has an outer ring 13 having an outer ring raceway surface 11 on an inner peripheral surface, an inner ring 17 having an inner ring raceway surface 15 on an outer peripheral surface, a plurality of balls (rolling elements) 19, and a plurality of pockets 21. And a container 200.
- FIG. 2 is an enlarged cross-sectional view of the main part of FIG.
- the plurality of balls 19 have a contact angle ⁇ between the outer ring raceway surface 11 and the inner ring raceway surface 15 and are arranged to be freely rollable.
- the cage 200 is disposed between the inner ring 17 and the outer ring 13, and a plurality of pockets 21 are formed on the outer diameter surface of the cage with intervals in the circumferential direction. In each pocket 21, a ball 19 is held so as to roll freely.
- the cage 200 is formed with annular guided portions 23 and 25 projecting radially outward at both axial ends of the cage outer diameter surface.
- the guided portions 23 and 25 are arranged at equal intervals along the circumferential direction (see FIG. 3), and both are arranged at the same circumferential position.
- the guided portions 23 and 25 mean guide surfaces on the cage 200 side that can be guided by the outer ring guide surface 29.
- the cage guide surface 27 in the guided portion 23 on one axial end side (left side in FIG. 2) of the cage 200 slides on the outer ring guide surface 29 on the counter-bore side of the outer ring 13.
- This is an outer ring guide system that is guided in contact.
- the cage 200 is actually guided to the outer ring 13 only by the guided portion 23 on one side.
- both the guided portions 23 and 25 are referred to as “guided portions” here.
- the cage 200 is an injection molded product using a material containing a synthetic resin.
- the synthetic resin that can be used for the cage 200 include PPS (polyphenylene sulfide), PPS-CF (carbon fiber reinforced polyphenylene sulfide), and the like.
- PA polyamide
- PAI polyamideimide
- thermoplastic polyimide polyetheretherketone
- organic fibers such as carbon fiber, glass fiber, and aramid fiber can be used as the reinforcing fiber. Fiber is available.
- FIG. 3 is an external perspective view of the entire cage shown in FIG.
- the radial height between the guided portion 23 and the guided portion 23 adjacent in the circumferential direction and between the guided portion 25 and the guided portion 25 adjacent in the circumferential direction is higher than the cage guide surface 27.
- a low axial groove 31 is provided.
- the axial groove 31 functions as a lubricant (grease) discharge groove, as will be described later.
- channel 31 becomes the structure by which the axial groove
- the axial groove 31 formed between the portion 25 and the guided portion 25 may be omitted together with the guided portion 25 as in a configuration example described later.
- FIG. 4A is a cross-sectional view of the cage shown in FIG. 3, and FIG. 4B is a front view of the main part of the cage shown in FIG.
- FIG. 4A shows a cross-sectional view taken along the line IV-IV in FIG. 4B.
- the cage disposed in the bearing is movable within a range of a guide clearance between the cage guide surface 27 and the outer ring guide surface 29 (see FIG. 2) and a pocket clearance. Therefore, in the outer ring guide type angular contact ball bearing, the cage guide surface 27 may come into contact with the raceway surface edge 33 (see FIG. 2) at the boundary between the outer ring guide surface 29 of the outer ring 13 and the outer ring raceway surface 11. .
- the cage 200 of the present configuration has a relief surface (in the present configuration example, an edge relief groove 35 in the radial direction) in a region facing the raceway edge 33 of the outer ring 13 so as not to contact the raceway edge 33. ) Is provided.
- the edge relief groove 35 is formed on the outer diameter surface of the cage in the circumferential direction on the center side in the axial direction from the cage guide surface 27.
- the edge relief groove 35 has an outer diameter smaller than that of the cage guide surface 27 and is formed in an annular shape.
- the edge relief groove 35 corresponds to an axial region between the guided portion 23 and the guided portion 25, and is formed one step lower than the radial height of the cage guide surface 27. Due to this step, even when the cage 200 is inclined, the raceway edge 33 does not contact the cage 200, and wear of the cage 200 due to contact with the raceway edge 33 can be prevented in advance.
- the cage 200 has a symmetrical shape in FIG. 4B with a virtual line 37 that bisects the edge relief groove 35 in the groove width direction (left-right direction in FIG. 4B) as a boundary.
- FIG. 5 is an enlarged perspective view of the outer diameter surface of the cage of the bearing cage.
- the cage 200 has an axial groove 31 that crosses the cage guide surface 27 in the axial direction on the outer diameter surface of the cage.
- the axial groove 31 is formed from the pocket 21 to the axial end face 30.
- the axial groove 31 of this configuration is formed across both the guided portion 23 and the guided portion 25.
- the axial grooves 31 formed in the guided portions 23 and 25 have the same phase in the circumferential direction, and the groove bottom is formed radially inward from the edge relief groove 35. That is, the axial groove 31 is formed at a position lower than the edge relief groove 35.
- the cage 200 has an outer diameter of the cage guide surface 27 as D1, an outer diameter of the edge relief groove 35 as D2, and an outer diameter of the groove bottom of the axial groove 31 as D3.
- PCD is a ball pitch circle diameter.
- the cage 200 is D1 ⁇ 0.999 ⁇ D2 (Formula 2) It is.
- the cage 200 has a height step between the groove bottom of the axial groove 31 and the edge relief groove 35 shown in FIG. 5, and the edge relief groove 35.
- the cage guide surface 27 has a height h.
- the axial groove 31 forms an axial step 39 having a step H between the edge relief groove 35 and a step (H + h) with the cage guide surface 27 at both ends in the circumferential direction. .
- the axial groove 31 has one end near the center in the axial direction connected to the pocket 21 and the other end on the opposite axially outer side opened as a discharge opening. That is, the axial groove 31 functions as a discharge groove for discharging the grease outward in the axial direction.
- the stepped portion H overlaps the pocket 21 in the axial direction (left-right direction in FIG. 5). Further, the pocket 21 is not in contact with the guided portion 23. Therefore, a grease entrance 41 that enters the groove bottom of the axial groove 31 from the edge relief groove 35 is secured between the ball 19 accommodated in the pocket 21 and the inner wall of the guided portion 23.
- the grease can enter the grease entrance 41 in the direction indicated by the arrow 43.
- the grease that has entered the grease inlet 41 enters the axial groove 31 that is lower than the edge relief groove 35.
- the circumferential step 57 is formed by the edge relief groove 35 crossing the retainer guide surface 27 at one end in the axial direction in the circumferential direction.
- the circumferential step 57 is disposed closer to one end in the axial direction than the axial position where the axial step 39 is connected to the pocket 21. Therefore, the opening of the grease inlet 41 is widened, and the grease adhering to the edge relief groove 35 can be more smoothly introduced into the axial groove 31.
- the cage 200 satisfies the above (Equation 2), so that an appropriate gap is set between the ball 19 and the outer ring guide surface 29.
- Equation 2 the above (Equation 2), so that an appropriate gap is set between the ball 19 and the outer ring guide surface 29.
- appropriate gaps are set between the pocket 21 and the ball 19, and between the outer ring guide surface 29 and the cage guide surface 27, respectively.
- the cage 200 rotates with an inclination with respect to the outer ring 13 within the range of the gap as the bearing rotates. Therefore, the depth of the edge relief groove 35 is desirably 0.1% or more of the outer diameter D1 of the cage guide surface 27.
- the cage 200 is (Axial groove depth H)> (3 ⁇ edge relief groove depth h) (Equation 3) Is desirable.
- the cage 200 can secure a large area (S1 + S2) of the axial step portion 39 extending from the pocket 21 toward the bearing end surface.
- the force for pushing out the grease by the axial step portion 39 can be increased, and the grease discharging effect can be enhanced.
- the area of S2 and the step of the axial step 39 are secured, so that the grease scraped out radially outward from the gap between the pocket 21 and the ball 19 is removed. When moved in the circumferential direction, the grease can be scooped into the axial step 39 portion.
- the cage 200 is intended to hold the ball 19 and contacts at the maximum diameter portion of the ball 19, so the axial groove 31 and the edge relief groove 35 need to be outside the ball PCD.
- these axial grooves 31 and the axial step 39 are inside the ball PCD, there is a problem that the ball 19 comes into contact with the corner of the cage 200 and wears or rides on the cage 200. May occur.
- FIG. 6 is an operation explanatory view showing a state of grease movement until the grease adheres to the outer ring 13.
- the running-in operation is performed in the initial stage.
- the break-in operation is completed by moving to a predetermined position where the initially filled grease is discharged from the inside of the bearing.
- the grease in the inner diameter portion of the cage is discharged directly from the axial end of the cage 200 to the outside. Further, as indicated by an arrow 47, the grease contacts the ball 19 or moves to the outer diameter side of the cage along the pocket inner diameter surface and adheres to the inner diameter surface of the outer ring by centrifugal force.
- the grease in the bearing hardly intersects on the counter bore side and the counter counter bore side with the ball 19 as the center. The grease on the counterbore side remains at the staying position 53.
- the grease on the counter-bore side adheres to the staying position 49, but in the case of the conventional structure, the grease at the staying position 49 does not act in the axially outward movement, and the flow from the arrow 47 to the arrow 51 is repeated.
- FIG. 7A and 7B are diagrams for explaining the operation until the grease adhered to the outer ring 13 is discharged to the outside in the axial direction
- FIG. 7A is a partial sectional view of the rolling bearing
- FIG. It is a principal part front view of a cage.
- the grease at the staying position 49 is narrow between the outer ring guide surface 29 and the cage guide surface 27. It enters into the gap (guide gap), and is discharged outward in the axial direction so as to be pushed out of the guide gap by shear due to the relative movement between the cage 200 and the outer ring 13.
- the grease moved in the circumferential direction in the edge relief groove 35 moves from the grease inlet 41 to the edge as indicated by an arrow 43. It enters the axial groove 31 that is recessed from the escape groove 35.
- the grease that has entered the axial groove 31 is deposited between the axial step 39 (particularly, the area S1) on the upstream side in the rotational direction to increase the thickness and face the outer ring guide surface 29 (see FIG. 2) that faces the grease. Adhere to.
- the accumulated grease is pressed by the axial step 39 and moves outward in the axial direction while shearing due to contact with the outer ring guide surface 29. Accordingly, the grease is urged to be discharged outward in the axial direction from the axial end portion on the outer ring guide surface 29 side opposite to the ball 19 located in the axial center in the axial groove 31.
- the grease that has entered the axial groove 31 is accumulated between the axial step 39 on the upstream side in the rotation direction (particularly, the portion having the area S2) and pressed against the axial step 39. As a result, it merges with the grease flow indicated by the arrow 43 and moves outward in the axial direction.
- the cage 200 of this configuration has the cage guide surface 27, and an axial groove 31 is provided between the guided portions 23 and the guided portions 23 adjacent to each other. Therefore, the grease is discharged due to the combination of the grease movement in the axial direction by pressing against the axial step 39 and the shearing of the grease by the relative movement between the axial groove 31 and the outer ring guide surface 29. Promoted.
- the grease can be discharged from the guide surface side, and the wear resistance of the outer diameter surface of the cage can be improved. It is possible to reduce the life of the bearing.
- the grease is used at a dmn value of 800,000 (PCD (ball pitch circle diameter) ⁇ number of rotations) or more in grease lubrication, the above-mentioned effect is remarkably obtained.
- FIG. 8A is a partial cross-sectional view of the cage of the second configuration example
- FIG. 8B is a front view of an essential part of the cage shown in FIG. 8A.
- the cage 200 has a symmetrical shape with respect to a virtual line 37 that bisects the edge relief groove 35.
- the cage may be asymmetric.
- the cage 200A having this configuration has a guided portion 23 that protrudes radially outward only at one axial end of the cage outer diameter surface.
- an edge relief surface 55 having a smaller outer diameter than the cage guide surface 27 is formed on the opposite side of the guided portion 23 in the axial direction. Accordingly, a circumferential step 57 is formed between the cage guide surface 27 and the edge relief surface 55.
- Other configurations of the cage 200A are the same as those of the cage 200 described above.
- the cage 200A can have a simple structure, and both the durability and productivity of the cage 200A can be improved. Further, as shown in FIG. 8B, the axial position of the circumferential step portion 57 of the edge relief surface 55 is positioned inward in the axial direction from the pocket end portion P on the cage guide surface 27 side. (L> 0). By doing in this way, the area of S2 (refer FIG. 5) becomes large, and the grease scraped off from the clearance part between the ball and the pocket 21 can be easily discharged to the outside in the axial direction.
- ⁇ Third configuration example> 9 is an external perspective view of the cage 200B of the third configuration example
- FIG. 10 is a side view of the cage 200B
- FIG. 11 is a front view of the cage 200B.
- the cage 200B having this configuration has the same configuration as the cage 200 except that the groove portions 61 are formed in the guided portions 23 and 25 of the cage 200 shown in FIG. 3 along the axial direction.
- FIG. 12 is an enlarged view of the end face of the cage 200B
- FIG. 13 is an enlarged view of the pocket 21 of the cage 200B as seen from the inner diameter side
- FIG. 14 is an enlarged view of the pocket 21 of the cage 200B as seen from the outer diameter side. It is an enlarged view.
- a concave groove 61 is formed in the cage guide surface 27 of the guided portions 23 and 25 and a part of the edge relief groove 35.
- the groove 61 is deeper than the edge relief groove 35, and the circumferential groove section has an arc shape.
- the concave groove 61 is formed in the middle of the edge relief groove 35 through the cage guide surface 27 having the maximum outer diameter in the axial direction.
- the outer diameter of the groove bottom of the concave groove 61 is equal on the cage guide surface 27 side and the edge relief groove 35 side, and the inner surfaces of both concave grooves 61 are smoothly continuous.
- the groove 61 may have a V-shaped circumferential groove cross section.
- the recessed groove 61 of the guided portion 23 and the recessed groove 61 of the guided portion 25 are both formed at the center in the circumferential direction of one cage guide surface 27 and are formed in the same phase with respect to the circumferential direction.
- the concave grooves 61 arranged in a straight line in the axial direction can further promote the discharging ability of the grease to the outside in the axial direction.
- the concave groove 61 can be made into the position of the parting line of metal mold
- the cage 200B of the third configuration example may have an asymmetric shape as in the second configuration example.
- 15 is an external perspective view of the cage 200C of the fourth configuration example
- FIG. 16 is a side view of the cage 200C
- FIG. 17 is a front view of the cage 200C.
- 18 is an enlarged view of the end face of the cage 200C
- FIG. 19 is an enlarged view of the pocket 21 of the cage 200C as viewed from the inner diameter side
- FIG. 20 is an enlarged view of the pocket 21 of the cage 200C as viewed from the outer diameter side.
- the cage 200C having this configuration has a guided portion 23 that protrudes outward in the radial direction only at one axial end of the outer diameter surface of the cage.
- the rest of the configuration of the cage 200C is the same as the configuration of the cage 200B described above.
- the cage 200C can have a simple structure, and both the durability and productivity of the cage 200C can be improved, and the same operational effects as in the second configuration example can be obtained. It is done.
- FIG. 22 and FIG. 22 is a partial sectional view of the bearing used in the test
- FIG. 23 is a partial side view of the bearing shown in FIG.
- the grease 73 is discharged from the syringe 71 with the tip of the syringe 71 directed between the outer peripheral surface of the inner ring 17 and the inner peripheral surface of the cage 200.
- the grease 73 is supplied between the balls 19 along the circumferential direction of the bearing, and is in a state of being sealed only on the inner diameter side of the cage 200.
- the cage of Comparative Example 1 has no edge relief groove and is provided only with an axial groove having a depth of 0.5 mm.
- the cage of Example 1 has both an edge relief groove along the circumferential direction and an axial groove along the axial direction at the outer diameter portion, and the width of the edge relief groove is made equal to the pocket diameter. Yes.
- the depth of the groove is deeper in the axial groove than in the edge relief groove.
- the axial groove of the cage is formed by dividing it into two across a pocket penetrating in the radial direction, and opens at the end of the cage. The axial groove overlaps with the pocket along the axial direction, and the axial end portion of the overlapped pocket becomes the inner end portion of the axial groove formed by being divided.
- the edge relief groove in the cage of Example 1 is deepened to the same depth as the axial groove.
- the cage of Comparative Example 3 has a larger width in the axial direction of the edge relief groove in the cage of Comparative Example 2 and is wider than the pocket diameter.
- the material of each cage is carbon fiber reinforced polyphenylene sulfide (PPS-CF).
- the grease on the outer ring guide surface side discharged from the pocket moves in the circumferential direction by the relative movement of the outer ring guide surface and the cage guide surface.
- the grease moved in the circumferential direction was pressed against the axial step portion of the axial groove communicated with the edge relief groove and moved in the axial direction to be discharged from the inside of the bearing.
- the axial groove is extended along the peripheral edge of the pocket from the axial end of the pocket to a position near the axial center of the cage.
- the cross-sectional area of the flow path that connects the edge relief groove and the axial groove increases, and the grease enters the axial groove smoothly.
- the axial groove reaches a position closer to the center of the retainer than the raceway edge of the outer ring, and this also enhances the effect of discharging the grease adhering to the edge relief groove to the axial groove. Further, in this configuration, there is no contact of the edge portion, the grease reaches the guide surface, and the lubrication state is good, so that it is considered that there is sufficient wear resistance.
- the width of the edge relief groove and the pocket diameter are equal, and there is a circumferential cut at the axial end of the edge relief groove at a position where the end of the pocket is projected in the circumferential direction. For this reason, the grease discharged from the pocket spreads and discharges only a part of the grease adhering to the cage guide surface side to the cage guide surface, but most of it circulates inside the bearing. Therefore, in this shape, the grease discharging performance was lowered as compared with Example 1. Further, since the grease adhering to the guide surface is very small and some of the grease is not adhering, it can be considered that the guide surface is poorly lubricated and worn. Furthermore, since excessive grease remains in the bearing, heat is generated due to stirring resistance, which may cause early damage of the bearing.
- each of the cages of Example 1 and Comparative Examples 1 to 3 is symmetrical with respect to the axial direction, but similar results were obtained even with asymmetric stepped cages as shown in FIG.
- the mark ⁇ indicates a non-defective product level
- the mark X indicates that there is no problem under normal use conditions, but may be a defective product when the use conditions are severe. Represents a possible level.
- the present invention is not limited to the above-described embodiments, and those skilled in the art can make changes and applications based on combinations of the configurations of the embodiments, descriptions in the specification, and well-known techniques. This is also the scope of the present invention, and is included in the scope for which protection is sought.
- the rolling bearing is not limited to an angular ball bearing, and may be another type of rolling bearing such as a cylindrical roller bearing. This effect is expected not only for grease lubrication but also for oil-air lubrication, jet lubrication, and the like.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Rolling Contact Bearings (AREA)
Abstract
Description
このような転がり軸受の潤滑法としては、グリース潤滑、オイルエア潤滑、ジェット潤滑等が適宜、選択されており、一般的には、低コストでメンテナンスも容易なことから初期封入によるグリース封入潤滑が利用されることが多い(例えば特許文献1参照)。
しかしながら、グリースが保持器案内面を通り、保持器の軸方向外側へ移動するためには、保持器案内面と外輪案内面がグリースと接することによる上記のせん断、若しくは軸方向溝の段部による上記の掻き出しが必要となる。ところが、保持器外径面にエッジ逃し溝等が形成された場合、エッジ逃し溝に対面する外輪案内面の位置に溜まったグリースに、排出するための力が働かない場合がある。このグリースは、再び転動体に付着し、軸受内を循環して保持器内径面に戻る。このようなグリースの挙動は、攪拌抵抗を大きくし、通常よりも発熱量を増大させ、軸受の寿命低下や焼付きの原因となる虞がある。これは、特にグリース潤滑でdmn値が80万(PCD(玉ピッチ円直径)×回転数)以上で使用するような工作機械主軸用軸受について顕著となる。
(1) 内輪と、外輪と、前記外輪及び前記内輪の間に配置される複数の転動体とを備える転がり軸受に用いられ、前記転動体が収容される複数のポケットを有する外輪案内方式の保持器であって、
前記保持器の保持器外径面における少なくとも一方の軸方向端部に設けられ、前記外輪に案内される保持器案内面と、
前記保持器外径面の前記保持器案内面よりも軸方向中央側に、前記保持器案内面よりも小さな外径で円周方向に沿って形成された逃し面と、
前記保持器外径面の前記ポケットから軸方向端まで延設され、前記保持器案内面を軸方向に横断して軸方向段部を形成し、前記逃し面よりも溝底が径方向内側に形成された軸方向溝と、
を備える保持器。
本構成の保持器によれば、保持器外径面のポケットから保持器外径側へ移動したグリースが、軸方向溝へ入り込む。この軸方向溝に入り込んだグリースは、回転方向上流側の軸方向段部との間に堆積され、軸方向段部に押し付けられる。これにより、グリースが軸方向外側へ移動する。また、ポケットから逃し面に付着したグリースは、周方向に移動して、逃し面よりも溝底が径方向内側に形成された軸方向溝に入り込み、軸方向段部に突き当たって堆積される。堆積されたグリースは、上記したグリースの流れと合流して、軸方向段部によって一方の軸方向端部から軸方向外側へ排出される流れと、再び転動体に付着して保持器内径部に戻って軸受内を循環する流れとなって流動する。これにより、グリースによる攪拌抵抗を低減し、発熱量の増大を抑制することが可能となる。
本構成の保持器によれば、逃し溝に付着したグリースが保持器案内面と転動体との間の隙間から軸方向溝に入り込むグリース進入口が広くなり、逃し面のグリースを、より円滑に軸方向溝に入り込ませることができる。
本構成の保持器によれば、ポケットから保持器外径側に移動するグリースが軸方向溝内に入りやすくなる。その結果、グリースが逃し面のみで円周方向に沿って移動することが抑制される。
D1×0.999≧D2
である(1)~(3)のいずれか一つに記載の保持器。
本構成の保持器によれば、転動体と、外輪案内面との間に、適切な隙間が設定され、グリースの円滑な流れが得られる。
本構成の保持器によれば、保持器の向きを意識することなく、軸受に組み込むことができ、保持器の組立作業性を向上できる。
本構成の転がり軸受によれば、グリースの攪拌抵抗による発熱量を低減し、寿命低下を抑制できる。
本構成の転がり軸受によれば、反カウンタボア側を案内面として、グリースの排出が円滑に行われる。
本発明によれば、グリースの攪拌抵抗による発熱量を低減し、転がり軸受の寿命低下を抑制できる。
<第1構成例>
図1は本発明の実施形態を説明するための図で、保持器を備える転がり軸受の一部断面図である。ここでは、転がり軸受として工作機械の主軸等、高速回転する装置に用いられるアンギュラ玉軸受を用いて説明するが、これに限らず、他の構成の転がり軸受であってもよい。
複数の玉19は、外輪軌道面11及び内輪軌道面15との間に接触角αを有して転動自在に配置される。保持器200は、内輪17と外輪13との間に配置され、保持器外径面には周方向に間隔を有して複数のポケット21が形成される。それぞれのポケット21には、玉19が転動自在に保持される。
周方向に隣接する被案内部23と被案内部23との間、及び、周方向に隣接する被案内部25と被案内部25との間は、保持器案内面27より径方向高さが低い軸方向溝31とされている。軸方向溝31は、後述するように潤滑剤(グリ-ス)の排出溝として機能する。
一般に、軸受内に配置された保持器は、保持器案内面27と外輪案内面29(図2参照)との間の案内すきまと、ポケットすきまとの範囲で移動自在となる。そのため、外輪案内方式のアンギュラ玉軸受においては、外輪13の外輪案内面29と外輪軌道面11との境界の軌道面エッジ33(図2参照)に、保持器案内面27が接触することがある。保持器案内面27が軌道面エッジ33に接触すると、保持器案内面27は軌道面エッジ33との接触部分から摩耗が進行する。そこで、本構成の保持器200は、軌道面エッジ33と接触しないように、外輪13の軌道面エッジ33との対面領域に、径方向内側に窪む逃し面(本構成例ではエッジ逃し溝35)を設けてある。
保持器200は、保持器外径面において、保持器案内面27を軸方向に横断する軸方向溝31が形成される。軸方向溝31は、ポケット21から軸方向端面30まで形成される。本構成の軸方向溝31は、被案内部23と被案内部25との双方を横断して形成される。即ち、被案内部23,25に形成されるそれぞれの軸方向溝31は、周方向の位相が一致しており、エッジ逃し溝35よりも溝底が径方向内側に形成される。つまり、軸方向溝31は、エッジ逃し溝35よりも低い位置に形成される。
D1>D2>D3>PCD・・・(式1)
である。但し、PCDは、玉ピッチ円直径とする。
D1×0.999≧D2・・・(式2)
である。
(軸方向溝の深さH)>(3×エッジ逃し溝の深さh)・・・(式3)
とすることが望ましい。保持器200は、(式3)を満たすことにより、ポケット21から軸受端面側に延在する軸方向段部39の面積(S1+S2)を大きく確保できる。軸方向段部39の面積(S1+S2)を大きくすることにより、軸方向段部39によりグリースを押し出す力を増大させることができ、グリースの排出効果を高められる。更には、(式3)を満足することで、S2の面積と軸方向段部39の段差が確保されるので、ポケット21と玉19とのすきま部分から径方向外側に掻き出されたグリースが円周方向に移動した際、グリースを軸方向段部39の部分にスクープすることが可能となる。
図6は外輪13にグリースが付着するまでのグリース移動の様子を示す作用説明図である。
アンギュラ玉軸受100をグリース潤滑で使用する際には、初期に慣らし運転を実施する。慣らし運転は、初期に封入したグリースが軸受内部から排出される所定の位置へ移動することによって完了する。
カウンタボア側のグリースは、滞留位置53へ留まる。一方、反カウンタボア側のグリースは、滞留位置49に付着するが、従来構造の場合、滞留位置49のグリースは軸方向外側へ移動する力が働かず、矢印47から矢印51の流れを繰り返す。
ここで、外輪案内面29の、保持器200の軸方向溝31が存在しない部位に対面する対面位置においては、滞留位置49のグリースが、外輪案内面29と保持器案内面27の間の狭い隙間(案内隙間)に入り、保持器200と外輪13との相対運動によるせん断により、案内隙間から押し出されるように、軸方向外側へ排出される。
図8Aは第2構成例の保持器の一部断面図、図8Bは図8Aに示す保持器の要部正面図である。
上記の保持器200は、エッジ逃し溝35を二分する仮想線37を境に左右対称形状であったが、保持器は非対称であってもよい。本構成の保持器200Aは、保持器外径面の軸方向一端のみに半径方向外側へ突出する被案内部23を有する。保持器外径面には、被案内部23に対し軸方向の反対側に、保持器案内面27より小外径のエッジ逃し面55が形成される。したがって、保持器案内面27とエッジ逃し面55との間は、周方向段部57となる。保持器200Aのこれ以外の構成は、前述の保持器200と同様である。
図9は第3構成例の保持器200Bの外観斜視図、図10は保持器200Bの側面図、図11は保持器200Bの正面図である。
本構成の保持器200Bは、図3に示す保持器200の被案内部23,25に、軸方向に沿って凹溝61が形成されたこと以外は、保持器200と同様の構成である。
更に、第3構成例の保持器200Bは、第2構成例と同様に非対称な形状であってもよい。
図15は第4構成例の保持器200Cの外観斜視図、図16は保持器200Cの側面図、図17は保持器200Cの正面図である。また、図18は保持器200Cの端面部の拡大図、図19は保持器200Cのポケット21を内径側から見た拡大図、図20は保持器200Cのポケット21を外径側から見た拡大図である。
実施例1の保持器は、外径部に円周方向に沿ったエッジ逃し溝と、軸方向に沿った軸方向溝とを共に有し、エッジ逃し溝の幅が、ポケット径と等しくされている。溝の深さは、エッジ逃し溝よりも軸方向溝の方が深い。この保持器の軸方向溝は、径方向に貫通するポケットを跨いで2つに分断して形成され、保持器端部でそれぞれ開口する。軸方向溝は、ポケットと軸方向に沿ってオーバーラップし、オーバーラップしたポケットの軸方向端部が、分断して形成される軸方向溝の内側端部となる。
比較例2の保持器は、実施例1の保持器におけるエッジ逃し溝を深くして、軸方向溝と同じ深さにされている。
比較例3の保持器は、比較例2の保持器におけるエッジ逃し溝の軸方向幅を広げ、ポケット径より大きい幅にされている。
各保持器の材質は、カーボン繊維強化ポリフェニレンサルファイド(PPS-CF)である。
更に、軸受内部に過剰なグリースが残存するので、攪拌抵抗による発熱が生じ、軸受の早期損傷の恐れがある。
なお、図21に示す○印は良品レベル、×印は通常の使用条件では問題ないが、使用条件が過酷になる場合に不良品となり得るレベル、△印は良品ではないが使用状態によっては適用可能なレベルを表す。
17 内輪
19 玉(転動体)
21 ポケット
27 保持器案内面
31 軸方向溝
35 エッジ逃し溝(逃し面)
100 アンギュラ玉軸受
200,200A,200B,200C 保持器
Claims (7)
- 内輪と、外輪と、前記外輪及び前記内輪の間に配置される複数の転動体とを備える転がり軸受に用いられ、前記転動体が収容される複数のポケットを有する外輪案内方式の保持器であって、
前記保持器の保持器外径面における少なくとも一方の軸方向端部に設けられ、前記外輪に案内される保持器案内面と、
前記保持器外径面の前記保持器案内面よりも軸方向中央側に、前記保持器案内面よりも小さな外径で円周方向に沿って形成された逃し面と、
前記保持器外径面の前記ポケットから軸方向端まで延設され、前記保持器案内面を軸方向に横断して軸方向段部を形成し、前記逃し面よりも溝底が径方向内側に形成された軸方向溝と、
を備える保持器。 - 前記保持器案内面を前記逃し面が円周方向に横断して形成される周方向段部は、前記軸方向段部が前記ポケットと接続される軸方向位置よりも前記一方の軸方向端部側に配置された請求項1に記載の保持器。
- 前記周方向段部は、前記ポケットの前記一方の軸方向端部側におけるポケット端部よりも軸方向中央側に配置された請求項2に記載の保持器。
- 前記保持器案内面の外径をD1、前記逃し面の外径をD2としたとき、
D1×0.999≧D2
である請求項1~請求項3のいずれか一項に記載の保持器。 - 前記保持器案内面は、前記一方の軸方向端部と、前記一方の軸方向端部とは反対側の他方の軸方向端部とに設けられた請求項1~請求項4のいずれか一項に記載の保持器。
- 請求項1~請求項5のいずれか一項に記載の保持器を備える転がり軸受。
- アンギュラ玉軸受である請求項6に記載の転がり軸受。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/344,504 US10648508B2 (en) | 2016-11-04 | 2017-11-01 | Retainer and rolling bearing with same |
CN201780067545.6A CN109996970B (zh) | 2016-11-04 | 2017-11-01 | 保持架和具备该保持架的滚动轴承 |
KR1020197011822A KR102144265B1 (ko) | 2016-11-04 | 2017-11-01 | 유지기, 및 이것을 구비한 구름 베어링 |
EP17866517.0A EP3536995B1 (en) | 2016-11-04 | 2017-11-01 | Retainer and rolling bearing with same |
JP2018549068A JP7031602B2 (ja) | 2016-11-04 | 2017-11-01 | アンギュラ玉軸受 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-216734 | 2016-11-04 | ||
JP2016216734 | 2016-11-04 | ||
JP2017092524 | 2017-05-08 | ||
JP2017-092524 | 2017-05-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018084219A1 true WO2018084219A1 (ja) | 2018-05-11 |
Family
ID=62076775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/039638 WO2018084219A1 (ja) | 2016-11-04 | 2017-11-01 | 保持器、及びこれを備えた転がり軸受 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10648508B2 (ja) |
EP (1) | EP3536995B1 (ja) |
JP (3) | JP7031602B2 (ja) |
KR (1) | KR102144265B1 (ja) |
CN (1) | CN109996970B (ja) |
TW (1) | TWI704298B (ja) |
WO (1) | WO2018084219A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018189167A (ja) * | 2017-05-08 | 2018-11-29 | 日本精工株式会社 | アンギュラ玉軸受 |
CN112739923A (zh) * | 2018-09-21 | 2021-04-30 | Ntn株式会社 | 滚珠轴承用保持架及滚动轴承 |
WO2023105677A1 (ja) * | 2021-12-08 | 2023-06-15 | ミネベアミツミ株式会社 | 転がり軸受 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10165027C5 (de) * | 2000-10-27 | 2019-10-02 | Nsk Ltd. | Wälzlager und Spindelvorrichtung für Werkzeugmaschine |
CN110285139A (zh) * | 2019-07-01 | 2019-09-27 | 洛阳新强联回转支承股份有限公司 | 一种低摩擦特大型双列圆锥滚子回转支承 |
JP2023137696A (ja) * | 2022-03-18 | 2023-09-29 | 日本精工株式会社 | 転がり軸受用保持器、転がり軸受、及び転がり軸受用保持器の設計方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005090657A (ja) * | 2003-09-18 | 2005-04-07 | Nsk Ltd | 転がり軸受用保持器及び該保持器を組み込んだ転がり軸受 |
JP2009058039A (ja) * | 2007-08-31 | 2009-03-19 | Jtekt Corp | 転がり軸受用保持器 |
JP2011196513A (ja) * | 2010-03-23 | 2011-10-06 | Nsk Ltd | 転がり軸受 |
JP2013007419A (ja) * | 2011-06-23 | 2013-01-10 | Nsk Ltd | 軸受装置及び工作機械用主軸装置 |
JP2014095469A (ja) | 2012-10-09 | 2014-05-22 | Nsk Ltd | 転がり軸受 |
JP2014534388A (ja) * | 2011-10-10 | 2014-12-18 | ゼネラル・エレクトリック・カンパニイ | 動的に潤滑される軸受および軸受を動的に潤滑する方法 |
JP2016216734A (ja) | 2003-09-12 | 2016-12-22 | 日立化成株式会社 | セリウム塩の製造方法、酸化セリウム及びセリウム系研磨剤 |
JP2017092524A (ja) | 2015-11-02 | 2017-05-25 | Necプラットフォームズ株式会社 | 電話端末、自動応答方法、及び自動応答プログラム |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11315840A (ja) * | 1998-05-07 | 1999-11-16 | Nippon Seiko Kk | 転がり軸受用保持器 |
DE19959498A1 (de) | 1999-12-10 | 2001-06-13 | Schaeffler Waelzlager Ohg | Käfig für ein Wälzlager |
JP2005090658A (ja) * | 2003-09-18 | 2005-04-07 | Nsk Ltd | 転がり軸受 |
JP5288029B2 (ja) * | 2006-10-19 | 2013-09-11 | 日本精工株式会社 | 円筒ころ軸受及び工作機械用主軸装置 |
CN201606409U (zh) * | 2010-02-05 | 2010-10-13 | 江苏帝达贝轴承有限公司 | 一种圆柱滚子轴承整体式保持架 |
JP5604896B2 (ja) | 2010-02-17 | 2014-10-15 | 日本精工株式会社 | アンギュラ玉軸受 |
JP5750901B2 (ja) * | 2011-01-19 | 2015-07-22 | 日本精工株式会社 | 転がり軸受 |
CN105736579A (zh) * | 2012-06-21 | 2016-07-06 | 日本精工株式会社 | 滚动轴承及机床用主轴装置 |
JP6326725B2 (ja) | 2013-05-21 | 2018-05-23 | 株式会社ジェイテクト | 複列円筒ころ軸受用の櫛型保持器及び複列円筒ころ軸受 |
CN203477080U (zh) * | 2013-08-29 | 2014-03-12 | 上海添佶轴承科技有限公司 | 一种角接触球轴承用保持架 |
CN103790965B (zh) * | 2014-02-27 | 2017-02-15 | 洛阳轴研科技股份有限公司 | 一种外径带槽的轴承保持架及其设计方法 |
JP2016090010A (ja) * | 2014-11-10 | 2016-05-23 | 株式会社ジェイテクト | 転がり軸受 |
US10422381B2 (en) * | 2015-02-04 | 2019-09-24 | Nsk Ltd. | Rolling bearing retainer, rolling bearing, and method for manufacturing rolling bearing retainer |
-
2017
- 2017-10-25 TW TW106136702A patent/TWI704298B/zh active
- 2017-11-01 EP EP17866517.0A patent/EP3536995B1/en active Active
- 2017-11-01 KR KR1020197011822A patent/KR102144265B1/ko active IP Right Grant
- 2017-11-01 WO PCT/JP2017/039638 patent/WO2018084219A1/ja unknown
- 2017-11-01 CN CN201780067545.6A patent/CN109996970B/zh active Active
- 2017-11-01 JP JP2018549068A patent/JP7031602B2/ja active Active
- 2017-11-01 US US16/344,504 patent/US10648508B2/en active Active
-
2021
- 2021-08-25 JP JP2021137479A patent/JP7251581B2/ja active Active
- 2021-08-25 JP JP2021137480A patent/JP7255645B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016216734A (ja) | 2003-09-12 | 2016-12-22 | 日立化成株式会社 | セリウム塩の製造方法、酸化セリウム及びセリウム系研磨剤 |
JP2005090657A (ja) * | 2003-09-18 | 2005-04-07 | Nsk Ltd | 転がり軸受用保持器及び該保持器を組み込んだ転がり軸受 |
JP2009058039A (ja) * | 2007-08-31 | 2009-03-19 | Jtekt Corp | 転がり軸受用保持器 |
JP2011196513A (ja) * | 2010-03-23 | 2011-10-06 | Nsk Ltd | 転がり軸受 |
JP2013007419A (ja) * | 2011-06-23 | 2013-01-10 | Nsk Ltd | 軸受装置及び工作機械用主軸装置 |
JP2014534388A (ja) * | 2011-10-10 | 2014-12-18 | ゼネラル・エレクトリック・カンパニイ | 動的に潤滑される軸受および軸受を動的に潤滑する方法 |
JP2014095469A (ja) | 2012-10-09 | 2014-05-22 | Nsk Ltd | 転がり軸受 |
JP2017092524A (ja) | 2015-11-02 | 2017-05-25 | Necプラットフォームズ株式会社 | 電話端末、自動応答方法、及び自動応答プログラム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3536995A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018189167A (ja) * | 2017-05-08 | 2018-11-29 | 日本精工株式会社 | アンギュラ玉軸受 |
CN112739923A (zh) * | 2018-09-21 | 2021-04-30 | Ntn株式会社 | 滚珠轴承用保持架及滚动轴承 |
CN112739923B (zh) * | 2018-09-21 | 2023-03-17 | Ntn株式会社 | 滚珠轴承用保持架及滚动轴承 |
WO2023105677A1 (ja) * | 2021-12-08 | 2023-06-15 | ミネベアミツミ株式会社 | 転がり軸受 |
Also Published As
Publication number | Publication date |
---|---|
EP3536995A1 (en) | 2019-09-11 |
EP3536995B1 (en) | 2021-06-02 |
JP7251581B2 (ja) | 2023-04-04 |
EP3536995A4 (en) | 2019-10-02 |
JP7031602B2 (ja) | 2022-03-08 |
TWI704298B (zh) | 2020-09-11 |
US20190249717A1 (en) | 2019-08-15 |
JP2021181835A (ja) | 2021-11-25 |
KR20190053940A (ko) | 2019-05-20 |
CN109996970B (zh) | 2020-09-15 |
TW201819787A (zh) | 2018-06-01 |
KR102144265B1 (ko) | 2020-08-13 |
JPWO2018084219A1 (ja) | 2019-09-26 |
CN109996970A (zh) | 2019-07-09 |
JP2021181834A (ja) | 2021-11-25 |
US10648508B2 (en) | 2020-05-12 |
JP7255645B2 (ja) | 2023-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018084219A1 (ja) | 保持器、及びこれを備えた転がり軸受 | |
US10221891B2 (en) | Taper roller bearing | |
WO2016010057A1 (ja) | 玉軸受 | |
US10352358B2 (en) | Taper roller bearing | |
RU2585125C2 (ru) | Узел подшипника качения | |
US20160017923A1 (en) | Ball Bearing | |
JP2012087924A (ja) | 円すいころ軸受及び円すいころ軸受用保持器の製造方法 | |
US10539184B2 (en) | Taper roller bearing | |
US10138939B2 (en) | Taper Roller Bearing | |
JP2014005846A (ja) | 転がり軸受及び工作機械用主軸装置 | |
JP2014101946A (ja) | 転がり軸受 | |
JP6686483B2 (ja) | 転がり軸受用保持器、及び転がり軸受、並びに転がり軸受用保持器の製造方法 | |
JP2007147056A (ja) | 円筒ころ軸受 | |
JP2016145644A5 (ja) | ||
US10215233B2 (en) | Taper roller bearing | |
JP6529209B2 (ja) | アンギュラ玉軸受 | |
WO2016125855A1 (ja) | 転がり軸受用保持器、及び転がり軸受、並びに転がり軸受用保持器の製造方法 | |
JP2014190453A (ja) | アンギュラ玉軸受 | |
JP6834760B2 (ja) | アンギュラ玉軸受 | |
US10408266B2 (en) | Cage for taper roller bearing and taper roller bearing | |
TW201721035A (zh) | 密封裝置及滾子軸承裝置 | |
JP2006038134A (ja) | 転がり軸受および転がり軸受の潤滑構造 | |
JP2021131102A (ja) | 密封装置及び密封構造 | |
JP2008008370A (ja) | 円筒ころ軸受用保持器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17866517 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197011822 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018549068 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017866517 Country of ref document: EP Effective date: 20190604 |