WO2018084104A1 - 有線式ドローン群 - Google Patents

有線式ドローン群 Download PDF

Info

Publication number
WO2018084104A1
WO2018084104A1 PCT/JP2017/039071 JP2017039071W WO2018084104A1 WO 2018084104 A1 WO2018084104 A1 WO 2018084104A1 JP 2017039071 W JP2017039071 W JP 2017039071W WO 2018084104 A1 WO2018084104 A1 WO 2018084104A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
wired
group
drones
cable
Prior art date
Application number
PCT/JP2017/039071
Other languages
English (en)
French (fr)
Inventor
基彦 能見
夕美子 関野
Original Assignee
株式会社 荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 荏原製作所 filed Critical 株式会社 荏原製作所
Priority to US16/344,058 priority Critical patent/US20190256207A1/en
Publication of WO2018084104A1 publication Critical patent/WO2018084104A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F3/00Ground installations specially adapted for captive aircraft
    • B64F3/02Ground installations specially adapted for captive aircraft with means for supplying electricity to aircraft during flight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H11/00Marine propulsion by water jets
    • B63H11/02Marine propulsion by water jets the propulsive medium being ambient water
    • B63H11/04Marine propulsion by water jets the propulsive medium being ambient water by means of pumps
    • B63H11/08Marine propulsion by water jets the propulsive medium being ambient water by means of pumps of rotary type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C19/00Aircraft control not otherwise provided for
    • B64C19/02Conjoint controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C37/00Convertible aircraft
    • B64C37/02Flying units formed by separate aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F3/00Ground installations specially adapted for captive aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0866Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft specially adapted to captive aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/104Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/60Tethered aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • B64U2201/102UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS] adapted for flying in formations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • B64U2201/202Remote controls using tethers for connecting to ground station
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports

Definitions

  • the present invention relates to a drone that is an unmanned moving body that moves in the air, underwater, or both, and particularly relates to a wired drone group in which a plurality of drones are connected by a cable.
  • a drone defined as an unmanned moving body that moves in the air and / or underwater is widely used in various fields such as photographing or monitoring, inspection or inspection, and measurement.
  • the drone moves autonomously according to a preset purpose, or controls a human being using radio waves (radio waves, visible light, laser light of any wavelength band, sound waves, ultrasonic waves, or a combination thereof). It is steered by a person or controlled by an external control device (including a computer) through radio.
  • the line for transmitting and receiving the above signal and / or power to and from the drone is referred to as a wired cable.
  • the present invention has been made in view of the above-described circumstances, and is a drone group in which a plurality of drones are connected by a wired cable, and the wired cable does not get caught by a natural object or an artificial object and does not get tangled.
  • An object of the present invention is to provide a control method for a group of wired drones and a group of wired drones.
  • the wired drone group of the present invention forms a drone group by connecting a plurality of drones in series by a wired cable, and the wired cable supplies power to each drone and / or each drone.
  • the control device or the control device for controlling the movement of the drone group is connected to the drone on one end side of the drone group.
  • the control device or the controller moves the drone group so that the plurality of drones and the wired cable maintain a broken line relationship.
  • a broken line is defined as a line obtained by sequentially connecting line segments having various lengths and directions.
  • a line segment is a wired cable
  • a connection part between the line segments is defined as a line cable.
  • a polygonal line is defined as a line obtained by sequentially connecting wired cables having various lengths and directions through a drone.
  • a line formed by connecting a plurality of wired cables via a drone is not limited to a zigzag line, but includes a line having an arbitrary shape such as an arc-shaped line, a mountain-shaped line, and a wave-shaped line.
  • a group of drones connected by a plurality of wired cables can function as if they are one articulated robot arm.
  • the drone is an aerial drone, and the wired cable has a function of supplying power to the aerial drone.
  • the drone is an underwater drone, and the wired cable has a function of communicating with the underwater drone.
  • the drone group includes a main drone group in which a plurality of drones are connected in series by a wired cable, and a sub-branch in which a plurality of drones are connected in series by a wired cable by branching from the middle of the main drone group. It consists of drone groups.
  • both ends of the wired cable are connected to lower portions of two drone aircraft to be connected, and the drone group of the two drone aircraft to be connected is connected while the drone group is moving. It is characterized by being positioned below.
  • both ends of the wired cable are connected to the upper part of two drone aircraft to be connected, and the drone group is connected to the two drone aircraft to which the wired cable is connected during movement of the drone group. It is characterized by being positioned above.
  • the drone includes a gimbal mechanism having one or a plurality of rotating bodies each rotatable around one or a plurality of orthogonal axes.
  • the end of the wired cable is connected to one rotating body in the gimbal mechanism or an outer rotating body among a plurality of rotating bodies.
  • the drone includes a plurality of thrust generating mechanisms that pressurize the fluid sucked from the suction port with an impeller and discharge the boosted fluid from the discharge port to obtain thrust.
  • the drone includes a plurality of thrust generation mechanisms including a plurality of rotor blades.
  • the drone body includes a sphere or a polyhedron close to a sphere, and the thrust generation mechanism is disposed inside the sphere or the polyhedron.
  • the drone body includes a sphere or a polyhedron close to a sphere, and the thrust generation mechanism is disposed on an outer surface of the sphere or the polyhedron.
  • the two drones are connected by a plurality of wired cables arranged in parallel.
  • a mechanism for changing a length of a wired cable connecting the two drones is provided.
  • a protective tube is provided to cover a wired cable connecting the two drones.
  • at least one drone in the drone group is replaced with a dead weight or a joint.
  • the wired drone group control method of the present invention is a drone group control method formed by connecting a plurality of drones in series with a wired cable, and supplying power to each drone and / or each drone using the wired cable.
  • the drone group is moved so that the plurality of drones and the wired cable maintain a broken line relationship while communicating with each other.
  • the distance between the i-th drone and the (i + 1) -th drone constituting the drone group is Li, and the wired cable connecting the i-th drone and the (i + 1) -th drone.
  • Drone so that Lmini ⁇ Li ⁇ Lci is established, where Lci is the minimum distance between the drones considering the slack of the wired cable connecting the i th drone and the (i + 1) th drone. It is characterized by controlling the group.
  • Loi ⁇ Lomini is established, where the object approach distance between the i-th drone and the object is Loi, and the minimum approach distance between the i-th drone and the object is Lomini.
  • the drone group is controlled.
  • the wired cable does not get caught or entangled with a natural object or an artificial object, and each drone can reliably perform a predetermined operation. be able to.
  • FIG. 1 is a schematic diagram showing a basic configuration of a wired drone group according to the present invention.
  • FIG. 2A is a schematic diagram illustrating a case where an object is investigated using the wired drone group having the configuration illustrated in FIG. 1, and shows an aerial drone group.
  • FIG. 2B is a schematic diagram illustrating a case where an object is investigated using the wired drone group having the configuration illustrated in FIG. 1, and shows an underwater drone group.
  • FIG. 3 is a schematic diagram showing an embodiment in which a long drone group is configured by connecting a large number of drones with a large number of wired cables.
  • FIG. 4 is a schematic diagram showing a modification of the wired drone group according to the present invention.
  • FIG. 1 is a schematic diagram showing a basic configuration of a wired drone group according to the present invention.
  • FIG. 2A is a schematic diagram illustrating a case where an object is investigated using the wired drone group having the configuration illustrated in FIG. 1, and shows an aerial drone group.
  • FIG. 2B is
  • FIG. 5A is a schematic diagram illustrating a method of connecting a plurality of drones and a plurality of wired cables.
  • FIG. 5B is a schematic diagram illustrating a method of connecting a plurality of drones and a plurality of wired cables.
  • FIG. 6 is a schematic diagram showing a drone equipped with a gimbal mechanism.
  • FIG. 7 is a schematic perspective view showing an example of a thrust generating mechanism of an underwater drone.
  • FIG. 8 is a schematic perspective view showing an example of a thrust generating mechanism of an aerial drone.
  • FIG. 9A is a schematic diagram showing an embodiment in which a drone thrust generating mechanism is mounted on the surface of the airframe.
  • FIG. 9B is a schematic diagram showing an embodiment in which a drone thrust generation mechanism is installed in the airframe.
  • FIG. 10 is a schematic diagram showing an embodiment in which drones are connected by a plurality of wired cables arranged in parallel.
  • FIG. 11 is a schematic diagram showing an embodiment in which the cable length of the wired cable connecting the drones can be changed.
  • FIG. 12A is a schematic diagram illustrating a mechanism for changing the cable length of a wired cable connecting between drones.
  • FIG. 12B is a schematic diagram illustrating a mechanism for changing the cable length of a wired cable connecting the drones.
  • FIG. 13A is a diagram illustrating an embodiment in which a protection tube is provided on a wired cable that connects the drones, and is a schematic perspective view illustrating the drone and the protection tube. 13B is a cross-sectional view taken along line AA in FIG. 13A.
  • FIG. 14A is a schematic diagram illustrating an embodiment in which dead weights are provided between drones.
  • FIG. 14B is a schematic diagram illustrating an example in which a joint is provided between the drones.
  • FIG. 15 is a schematic diagram illustrating a method for controlling a drone group including a plurality of drones connected by a plurality of wired cables so as not to be caught by an object.
  • FIG. 16 is a schematic diagram showing an embodiment in which the drone itself includes an objective distance sensor.
  • FIG. 17 is a schematic diagram illustrating a modified example of a wired cable that connects drones.
  • FIG. 1 is a schematic diagram showing a basic configuration of a wired drone group according to the present invention.
  • a plurality of drones 1 are connected in series by a wired cable 2 to form a drone group. That is, a plurality of drones 1 are connected in a chain by a plurality of wired cables 2 to form a drone group.
  • a control device (or control device) 3 is connected to the drone 1 on one end side.
  • the control device (or control device) 3 may cause the wired cable 2 to be caught on various objects by moving the drone group so that the plurality of drones 1 and the plurality of wired cables 2 always maintain a substantially broken line relationship. There is no entanglement.
  • a broken line is defined as a line obtained by sequentially connecting line segments having various lengths and directions in Kojien, but in this specification, the line segment is assumed to be a wired cable 2 and line segments are connected to each other.
  • the broken line is defined as a line obtained by sequentially connecting the wired cables 2 having various lengths and directions through the drone 1. Accordingly, the line formed by connecting the plurality of wired cables 2 via the drone 1 is not limited to the zigzag line as shown in FIG. 1, but may be any arc-shaped line, mountain-shaped line, wave-shaped line, or the like. Shape lines are included.
  • a group of drones connected by a plurality of wired cables 2 can function as if they are one articulated robot arm.
  • the battery capacity is small and the flight time is short even if a battery is installed in an aerial drone. Needs to supply power to the drone 1 by the wired cable 2.
  • the wired cable 2 In an underwater drone, since radio wave attenuation is intense in water or seawater and radio wave communication is difficult, in the case of an underwater drone, it is necessary to ensure communication with the drone 1 by the wired cable 2. Note that communication may be performed by the wired cable 2 in an aerial drone, and power supply may be performed by the wired cable 2 in an underwater drone. Therefore, the wired cable 2 has a function of supplying power to the drone 1 and / or communicating with the drone 1.
  • FIG. 2A and 2B are schematic diagrams illustrating a case where an object is investigated using the wired drone group having the configuration illustrated in FIG.
  • FIG. 2A shows an aerial drone group
  • FIG. 2B shows an underwater drone group.
  • a drone group composed of a plurality of drones 1 connected by a plurality of wired cables 2 is controlled by a control device (or a pilot) 3, and a cylindrical object 10 to be investigated is moved upward and obliquely.
  • the object 10 is investigated by moving in the air to a position that surrounds from the side.
  • the control device (or control device) 3 has a built-in power supply and supplies power to the plurality of drones 1 through the plurality of wired cables 2.
  • Communication between the control device (or control device) 3 and the plurality of drones 1 may be performed by radio waves or by a wired cable 2.
  • the control device (or control device) 3 maintains a predetermined interval between the drones, and maintains an interval between each drone 1 and the object 10 such as the piping to be investigated suitable for the investigation. Control drones.
  • the plurality of drones 1 and the plurality of wired cables 2 always maintain a substantially broken line relationship.
  • a drone group composed of a plurality of drones 1 connected by a plurality of wired cables 2 is controlled by a control device (or a pilot) 3 and has a rectangular cross section to be investigated in a water tank 4.
  • the objects 10A and 10B are investigated by moving underwater to positions that surround the object 10A and the object 10B having an L-shaped cross section from above, below, and from the side.
  • the control device (or control device) 3 maintains a predetermined interval between the drones, and maintains a predetermined interval between each drone 1 and the objects 10A and 10B to be investigated. Control the group.
  • the plurality of drones 1 and the plurality of wired cables 2 always maintain a substantially broken line relationship.
  • FIG. 3 is a schematic diagram showing an embodiment in which a long drone group is configured by connecting a large number of drones 1 by a large number of wired cables 2.
  • the object 10 to be investigated is a large structure such as a pump facility
  • a large number of drones 1 are connected by a large number of wired cables 2 to form a long drone group.
  • the long drone group is controlled by the control device (or control unit) 3, and the object 10 is investigated by moving in the water to a position where the drone group surrounds the lower surface and the lower side surface of the large object 10 to be investigated. .
  • the control device (or controller) 3 controls the drone group so that the distance between the drones maintains a predetermined distance, and the distance between each drone 1 and the object 10 to be investigated maintains an appropriate distance for the investigation. Control. As a result, the large number of drones 1 and the large number of wired cables 2 always maintain a substantially broken line relationship.
  • FIG. 4 is a schematic diagram showing a modification of the wired drone group according to the present invention.
  • the wired drone group is configured by a main drone group in which a plurality of drones 1 are connected in series by a plurality of wired cables 2 and a sub drone group branched from the middle of the main drone group.
  • the sub drone group is also configured by connecting a plurality of drones 1 in series by a plurality of wired cables 2.
  • FIG. 5A and 5B are schematic diagrams illustrating a method for connecting a plurality of drones 1 and a plurality of wired cables 2.
  • FIG. 5A and FIG. 5B show the drone for the air, the same applies to the drone for the underwater.
  • FIG. 5A is a schematic diagram illustrating a connection method between the plurality of drones 1 and the plurality of wired cables 2 when the object 10 to be investigated is located above the position of the operator (that is, the control device (or control device) 3). is there.
  • the control device (or control device) 3 when the object 10 to be investigated is located above the position of the operator (that is, the control device (or control device) 3), both ends of each wired cable 2 are connected to the two objects to be connected.
  • each wired cable 2 is positioned below the two drone 1 bodies to be connected during flight. Thereby, it can prevent that the wired cable 2 contacts the rotary blade 1R of the drone 1.
  • FIG. 5B is a schematic diagram showing a method for connecting a plurality of drones 1 and a plurality of wired cables 2 when the object 10 to be investigated is located below the operator's position.
  • the object 10 to be investigated is below the position of the operator (that is, the control device (or control device) 3)
  • the two ends of each wired cable 2 are connected to the two objects to be connected.
  • each wired cable 2 is positioned above the two drone 1 bodies to be connected during flight. Thereby, it can prevent that the wired cable 2 contacts the rotary blade 1R of the drone 1.
  • FIG. 6 is a schematic diagram showing a drone equipped with a gimbal mechanism.
  • the drone 1 shown in FIG. 6 includes a gimbal mechanism.
  • the gimbal mechanism includes a first shaft 11 extending in a vertical direction from a drone main body 1 a provided with a rotating blade 1 R, an inner ring (inner rotating body) 12 that can rotate around the axis of the first shaft 11, and a radius greater than that of the inner ring 12.
  • a second shaft 13 that extends outward in the direction and orthogonal to the first shaft 11, and an outer ring that is a ring larger in diameter than the inner ring 12 and that can rotate about the axis of the second shaft 13 (outer rotating body) 14).
  • the outer ring 14 can be rotated in any direction of 360 ° while maintaining the posture of the drone body 1a as it is.
  • the two drones 1 provided with the gimbal mechanism are connected by connecting the outer rings 14 with each other by a wired cable 2. Since each outer ring 14 in the two drones 1 can rotate in any direction of 360 °, the distance between the two drones 1 is kept constant while always applying tension to the wired cable 2 connecting the outer rings 14 to each other. be able to.
  • the wired cable 2 performs power feeding to the drone body 1a and / or communication with the drone body 1a via a gimbal mechanism.
  • FIG. 7 is a schematic perspective view showing an example of a thrust generation mechanism of the underwater drone 1.
  • the drone 1 has a spherical body, and a plurality of axial flow thrusters Th having a pair of suction ports 1s and discharge ports 1d are provided on the entire surface of the sphere.
  • Each axial flow thruster Th includes an axial flow impeller (arranged inside the fuselage) between the suction port 1s and the discharge port 1d, and boosts the fluid (water) sucked from the suction port 1s with the axial flow impeller.
  • the generated fluid (water) is discharged from the discharge port 1d to obtain thrust. Since the axial flow thrusters Th are distributed over the entire surface of the sphere, the drone 1 can obtain a propulsive force in an arbitrary direction.
  • the drone 1 may be a polyhedron that is nearly spherical.
  • FIG. 8 is a schematic perspective view showing an example of a thrust generating mechanism of the aerial drone 1.
  • the body of the drone 1 is a sphere, and its center of gravity is near the center of the sphere.
  • the wired cable 2 is fixed to a sphere.
  • a plurality of rotor blade units Ru are provided on the entire surface of the sphere. In the illustrated example, a total of six rotor blade units Ru are provided, one on the top of the sphere, four on the side, and one (not shown) on the bottom.
  • Each rotor unit Ru includes a plurality of rotor blades 1R supported by a support 15 fixed to a sphere.
  • a total of five rotor blades 1R are provided, one in the axial direction of the support 15 and four at equal intervals around the axis of the support.
  • the rotary blade units Ru including a plurality of rotary blades 1 ⁇ / b> R are distributed over the entire surface of the sphere, so that the drone 1 can obtain a propulsive force in an arbitrary direction.
  • the drone 1 may be a polyhedron that is nearly spherical.
  • FIGS. 9A and 9B are schematic views showing an embodiment in which the thrust generating mechanism of the drone 1 is installed on the surface or inside of the airframe.
  • a concave portion is formed on the surface of the spherical body
  • a thrust generating mechanism is provided in the concave portion
  • the thrust generating mechanism is covered with a cover 16.
  • the thrust generation mechanism is the same as that shown in FIG.
  • a thrust generating mechanism is provided inside a spherical airframe.
  • the thrust generation mechanism is the same as that shown in FIG.
  • FIGS. 9A and 9B by installing the thrust generation mechanism on the surface of the body of the drone 1 or inside, it is possible to prevent the wired cable 2 from being caught by the thrust generation mechanism.
  • the drone 1 may be a polyhedron that is nearly spherical.
  • FIG. 10 is a schematic diagram showing an embodiment in which the drones 1 are connected by a plurality of wired cables 2 arranged in parallel.
  • two drones 1 are connected by two wired cables 2 arranged in parallel.
  • the power line and the signal line can be separated, and power can be supplied with the two power lines.
  • FIG. 11 is a schematic diagram showing an embodiment in which the cable length of the wired cable 2 connecting the drones 1 can be changed.
  • the cable length of the wired cable 2 between the foremost drone 1 and the next drone 1 is changed from the upper state to the lower state.
  • the cable lengths of the other wired cables 2 can be changed similarly.
  • the change of the length of the wired cable 2 may be performed while the drone group is moving, or may be performed during the investigation of the object.
  • each drone 1 includes two cable winding mechanisms 18 that wind and unwind the wired cable 2 connected to the drone 1.
  • Each cable winding mechanism 18 is configured to wind and rewind the wired cable 2 by rotating the reel 19 forward and backward with a motor.
  • each drone 1 can move along the wired cable 2 and change its position with respect to the cable 2.
  • a thrust generating mechanism possessed by each drone 1 may be operated, or a separate moving mechanism may be provided.
  • Each drone 1 includes a clamp mechanism 20, and the drone 1 can move along the wired cable 2 when the clamp mechanism 20 is in a released state.
  • the clamp mechanism 20 is operated to fix the drone 1 to the wired cable 2.
  • the wired cable 2 performs power feeding to the drone 1 and / or communication with the drone 1 via the clamp mechanism 20.
  • FIGS. 13A and 13B are diagrams showing an embodiment in which a protective tube is provided on the wired cable 2 that connects the drones 1.
  • 13A is a schematic perspective view showing the drone 1 and the protective tube 21, and FIG. 13B is a cross-sectional view taken along line AA of FIG. 13A.
  • a protective tube 21 is provided so as to cover the wired cable 2 connecting the drones 1.
  • the protective tube 21 is made of a lightweight and non-bending resin material, light metal, wood, paper, or a composite material thereof, and connects the drones 1 linearly. Therefore, the protective tube 21 moves in the same manner as the robot arm and functions to keep the distance between the drones 1 constant. Thereby, the risk that the wired cable 2 is caught on an object due to slack can be reduced.
  • Each drone 1 includes a gimbal mechanism as in the embodiment shown in FIG.
  • FIGS. 14A and 14B are schematic views showing an embodiment in which dead weights and joints are provided between the drones 1.
  • FIG. 14A In the embodiment shown in FIGS. 1 to 13, a plurality of drones 1 are connected by a plurality of wired cables 2, but in the embodiment shown in FIG. 14A, a dead weight 23 is provided between the two drones 1. ing. 14B, a joint 24 is provided between the two drones 1.
  • FIGS. 14A and 14B by replacing the drone 1 with a dead weight 23 or a joint 24, the number of drones to be controlled can be reduced.
  • the embodiment in which the dead weight 23 is provided is applied to an underwater drone group, since the dead weight 23 is substantially kept stationary in the water, another drone 1 can be moved with the position of the dead weight 23 as a fixed point.
  • FIG. 15 is a schematic diagram illustrating a method for controlling the drone group including the plurality of drones 1 connected by the plurality of wired cables 2 so as not to be caught by an object.
  • numbers such as i and i + 1 are assigned to the drones 1 constituting the drone group.
  • the distance between the i-th drone 1 and the (i + 1) -th drone 1 is Li
  • the cable length of the wired cable 2 connecting the i-th drone 1 and the (i + 1) -th drone 1 is Lci.
  • the minimum distance Lmini between drones is set to a distance at which the wired cable 2 is not excessively slack since it causes the object to be caught on the object if the wired cable 2 is excessively slack. Further, by controlling the two drones 1 so that the distance Li between the drones is equal to the cable length Lci of the wired cable 2 or shorter than the cable length Lci, the wired cable 2 is slightly slackened from the tensioned state. Control to be between.
  • the drone group is configured by n drones 1, the trajectory of each drone 1 is determined in advance in such a manner that the n drones 1 satisfy the constraint condition of the expression (1), and each drone 1 is determined according to the determined trajectory. Control and move.
  • the control may be either open loop or closed loop.
  • the drone position required for the control may be a position sensor built in the drone 1, or may be an external image, radar, ultrasonic measurement, or a combination thereof.
  • FIG. 16 is a schematic diagram showing an embodiment in which the drone itself includes an objective distance sensor.
  • the i-th drone 1 includes an objective distance sensor.
  • the objective distance sensor outputs, for example, a radar wave, and the i-th drone 1 and the (i-1) -th drone 1 , Each distance between the (i + 1) th drone 1 and the object 10 is measured.
  • a signal representing each measured distance is transmitted to the control device (or pilot).
  • the control device or control device controls the i-th, (i ⁇ 1) -th, and (i + 1) -th drones 1 to maintain an appropriate distance from each other. That is, the drone group is controlled so that the above equation (1) is established.
  • FIG. 17 is a schematic diagram showing a modification of the wired cable 2 that connects the drones 1 together.
  • the wired cable 2 that connects the drones 1 may be a coil-like stretchable cable.
  • the present invention can be used for a drone that is an unmanned mobile body that moves in the air, underwater, or both, and a drone group that includes a plurality of drones.
  • drone 1a drone main body 1s suction port 1d discharge port 1R rotor blade 2 wired cable 3 control device (or control device) 4 Water tank 10, 10A, 10B Object 11 First shaft 12 Inner ring 13 Second shaft 14 Outer ring 15 Support 16 Cover 18 Cable winding mechanism 19 Reel 20 Clamp mechanism 21 Protective tube 23 Dead weight 24 Joint Th Axial flow thruster Ru Rotary blade unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Catching Or Destruction (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本発明は、空中または水中あるいはその両方の領域を移動する無人移動体であるドローンおよび複数のドローンを備えた有線式ドローン群に関するものである。複数のドローン(1)を有線ケーブル(2)によって直列に連結して有線式ドローン群を形成し、有線ケーブル(2)は、各ドローン(1)への給電および/または各ドローン(1)との通信を行う機能を有し、ドローン群の一端側のドローン(1)に、ドローン群の移動を制御する制御装置(3)を接続した。

Description

有線式ドローン群
 本発明は、空中または水中あるいはその両方の領域を移動する無人移動体であるドローンに係り、特に複数のドローンをケーブルで連結した有線式ドローン群に関するものである。
 空中または水中あるいはその両方の領域を移動する無人移動体として定義されるドローンは、撮影もしくは監視、点検もしくは検査、計測などの様々な分野で広く用いられている。
 ドローンは、あらかじめ設定された目的によって自律的に運動するか、無線(電波、可視光、あらゆる波長帯のレーザー光、音波、超音波のいずれか、あるいはこれらの複合)を用いて人間である操縦者によって操縦されるか、無線を通じた外部の制御装置(コンピュータを含む)によって制御される。
米国特許第9,387,928号公報 特開2012-51545号公報
 上述した各種ドローンのうち、自律的な運動をするドローンの場合には、問題はないが、無線による指令に基づき運動をするドローンの場合、以下のような問題が生ずる。
 空中のドローンでは、比較的大容量の動力源(電池、蓄電池、コンデンサー、燃料電池等のあらゆる種類の電源、あるいは燃焼用の燃料)を搭載できる大型の機種以外では飛行時間が長くとれない場合が多い。水中のドローンでは、電波が水中を透過しにくい特性があるため、広く通信に使われるGHz周波数帯の電波による無線操縦は難しい。超音波や長波長の電波による通信は可能であるが、機体にカメラやセンサーを搭載しても大量のデータの高速伝送はしにくい。
 これらの問題を解決する手段として、空中あるいは水中のドローンと操縦者の操縦器あるいは外部の制御装置を有線でつなぐことが提案されており、一部は実用化されている。以下、上記の信号および/または電力をドローンと送受する線を有線ケーブルと称する。
 しかしながら、空中あるいは水中のドローンを任意の作業に適用する場合、妨害物のない開放的な環境であれば問題はないが、有線ケーブルと絡みやすいなんらかの物体がある環境では、絡みが発生することにより正常な動作ができなくなったり、機体の回収ができなくなるなどの問題が発生する。絡みやすい物体としては、岩や樹木、海草などの天然物や、電線やホース、チューブ等の既設の線材、電柱、パイプライン、建設物や構造物の角部、そのほか複雑な形状の任意の物品などの人工物が挙げられる。これらに対し、気流や水流などのある環境で、ドローンの機体と有線ケーブルが上記のような物体と絡まないように操縦方法あるいは制御方法だけで対応するのは困難である。
 本発明は、上述の事情に鑑みなされたもので、複数のドローンを有線ケーブルで連結したドローン群であって、有線ケーブルが天然の物体や人工の物体に引っ掛かることなく、また絡まることがない有線式ドローン群および有線式ドローン群の制御方法を提供することを目的とする。
 上述の目的を達成するため、本発明の有線式ドローン群は、複数のドローンを有線ケーブルによって直列に連結してドローン群を形成し、前記有線ケーブルは、各ドローンへの給電および/または各ドローンとの通信を行う機能を有し、前記ドローン群の一端側のドローンに、ドローン群の移動を制御する制御装置または操縦器を接続したことを特徴とする。
 本発明の好ましい態様は、前記制御装置または操縦器は、前記複数のドローンと前記有線ケーブルが折れ線状の関係を維持するようにドローン群を移動させることを特徴とする。
 折れ線は、種々の長さおよび方向をもった線分を順次に接続して得られる線と定義されるが、本明細書では、線分を有線ケーブルと仮定し、線分同士の接続部をドローンと仮定して、折れ線は、種々の長さおよび方向をもった有線ケーブルをドローンを介して順次に接続して得られる線と定義される。したがって、複数の有線ケーブルがドローンを介して繋がってできる線には、ジグザグの線に限らず、円弧状の線、山形状の線、波形状の線など任意の形状の線が含まれる。複数の有線ケーブルで連結されたドローン群は、あたかも多関節の1つのロボットアームのように機能させることができる。
 本発明の好ましい態様は、前記ドローンは空中用のドローンであり、前記有線ケーブルは前記空中用のドローンへの給電を行う機能を有することを特徴とする。
 本発明の好ましい態様は、前記ドローンは水中用のドローンであり、前記有線ケーブルは前記水中用のドローンとの通信を行う機能を有することを特徴とする。
 本発明の好ましい態様は、前記ドローン群は、複数のドローンを有線ケーブルによって直列に連結した主ドローン群と、該主ドローン群の途中から分岐して複数のドローンを有線ケーブルによって直列に連結した副ドローン群とから構成されることを特徴とする。
 本発明の好ましい態様は、前記有線ケーブルの両端部を連結対象の2台のドローンの機体の下部に接続し、ドローン群の移動中に前記有線ケーブルが連結対象の前記2台のドローンの機体の下方に位置するようにしたことを特徴とする。
 本発明の好ましい態様は、前記有線ケーブルの両端部を連結対象の2台のドローンの機体の上部に接続し、ドローン群の移動中に前記有線ケーブルが連結対象の前記2台のドローンの機体の上方に位置するようにしたことを特徴とする。
 本発明の好ましい態様は、前記ドローンは、直交する1つあるいは複数の軸心の回りにそれぞれ回転可能な1つあるいは複数の回転体を有したジンバル機構を備えていることを特徴とする。
 本発明の好ましい態様は、前記有線ケーブルの端部は、前記ジンバル機構における1つの回転体、あるいは複数の回転体のうち外側の回転体に接続されていることを特徴とする。
 本発明の好ましい態様は、前記ドローンは、吸込口から吸い込んだ流体をインペラで昇圧し、昇圧された流体を吐出口から吐出して推力を得る推力発生機構を複数個備えていることを特徴とする。
 本発明の好ましい態様は、前記ドローンは、複数の回転翼からなる推力発生機構を複数個備えていることを特徴とする。
 本発明の好ましい態様は、前記ドローンの機体は球体又は球形に近い多面体からなり、前記球体又は前記多面体の内部に前記推力発生機構を配置することを特徴とする。
 本発明の好ましい態様は、前記ドローンの機体は球体又は球形に近い多面体からなり、前記球体又は前記多面体の外面に前記推力発生機構を配置することを特徴とする。
 本発明の好ましい態様は、前記2つのドローン間を並列する複数の有線ケーブルで連結することを特徴とする。
 本発明の好ましい態様は、前記2つのドローン間を連結する有線ケーブルの長さを変更する機構を備えることを特徴とする。
 本発明の好ましい態様は、前記2つのドローン間を連結する有線ケーブルを覆う保護管を設けたことを特徴とする。
 本発明の好ましい態様は、前記ドローン群における少なくとも1つのドローンをデッドウェイト又は関節に置き換えることを特徴とする。
 本発明の有線式ドローン群の制御方法は、複数のドローンを有線ケーブルによって直列に連結して形成されたドローン群の制御方法であって、前記有線ケーブルによって各ドローンへの給電および/または各ドローンとの通信を行いつつ、前記複数のドローンと前記有線ケーブルが折れ線状の関係を維持するようにドローン群を移動させることを特徴とする。
 本発明の好ましい態様は、前記ドローン群を構成するi番目のドローンと(i+1)番目のドローンとの間の距離をLiとし、i番目のドローンと(i+1)番目のドローンとを連結する有線ケーブルのケーブル長をLciとし、i番目のドローンと(i+1)番目のドローンとを連結する有線ケーブルのたるみを考慮したドローン間最小距離をLminiとすると、Lmini≦Li≦Lciが成立するように、ドローン群を制御することを特徴とする。
 本発明の好ましい態様は、前記i番目のドローンと物体との間の対物接近距離をLoiとし、前記i番目のドローンと物体との間の最小接近距離をLominiとすると、Loi≧Lominiが成立するように、ドローン群を制御することを特徴とする。
 本発明によれば、複数のドローンを有線ケーブルで連結したドローン群において有線ケーブルが天然の物体や人工の物体に引っ掛かることなく、また絡まることがなく、各ドローンに所定の作業を確実に遂行させることができる。
図1は、本発明に係る有線式ドローン群の基本構成を示す模式図である。 図2Aは、図1に示す構成の有線式ドローン群を使用して物体の調査を行う場合を示す模式図であり、空中用のドローン群を示す。 図2Bは、図1に示す構成の有線式ドローン群を使用して物体の調査を行う場合を示す模式図であり、水中用のドローン群を示す。 図3は、多数のドローンを多数の有線ケーブルによって連結することにより長尺のドローン群を構成した実施例を示す模式図である。 図4は、本発明に係る有線式ドローン群の変形例を示す模式図である。 図5Aは、複数のドローンと複数の有線ケーブルとの接続方法を示す模式図である。 図5Bは、複数のドローンと複数の有線ケーブルとの接続方法を示す模式図である。 図6は、ジンバル機構を備えたドローンを示す模式図である。 図7は、水中用のドローンの推力発生機構の一例を示す模式的斜視図である。 図8は、空中用のドローンの推力発生機構の一例を示す模式的斜視図である。 図9Aは、ドローンの推力発生機構が機体の表面に装備されている実施例を示す模式図である。 図9Bは、ドローンの推力発生機構が機体の内部に装備されている実施例を示す模式図である。 図10は、ドローン間を並列する複数の有線ケーブルで連結する実施例を示す模式図である。 図11は、ドローン間を連結する有線ケーブルのケーブル長さが変更可能である実施例を示す模式図である。 図12Aは、ドローン間を連結する有線ケーブルのケーブル長さを変更する機構を示す模式図である。 図12Bは、ドローン間を連結する有線ケーブルのケーブル長さを変更する機構を示す模式図である。 図13Aは、ドローン間を連結する有線ケーブルに保護管を設けた実施例を示す図であり、ドローンと保護管とを示す模式的斜視図である。 図13Bは、図13AのA-A線断面図である。 図14Aは、ドローン間にデッドウェイトを設けた実施例を示す模式図である。 図14Bは、ドローン間に関節を設けた実施例を示す模式図である。 図15は、複数の有線ケーブルで連結された複数のドローンからなるドローン群が物体に引っ掛からないように制御する方法を示す模式図である。 図16は、ドローン自体が対物距離センサーを備えた実施例を示す模式図である。 図17は、ドローン間を連結する有線ケーブルの変形例を示す模式図である。
 以下、本発明に係る有線式ドローン群の実施形態を図1乃至図17を参照して説明する。図1乃至図17において、同一または相当する構成要素には、同一の符号を付して重複した説明を省略する。
 図1は、本発明に係る有線式ドローン群の基本構成を示す模式図である。図1に示すように、複数のドローン1は、有線ケーブル2によって直列に連結されてドローン群を形成している。すなわち、複数のドローン1を複数の有線ケーブル2によって鎖状に接続してドローン群を形成している。一端側のドローン1に制御装置(または操縦器)3が接続される。制御装置(または操縦器)3は、複数のドローン1と複数の有線ケーブル2がおおよそ折れ線状の関係を常時維持するようにドローン群を移動させることによって、有線ケーブル2が各種物体に引っ掛かることがなく、また絡まることがないようにしている。折れ線は、広辞苑では、種々の長さおよび方向をもった線分を順次に接続して得られる線と定義されるが、本明細書では、線分を有線ケーブル2と仮定し、線分同士の接続部をドローン1と仮定して、折れ線は、種々の長さおよび方向をもった有線ケーブル2をドローン1を介して順次に接続して得られる線と定義される。したがって、複数の有線ケーブル2がドローン1を介して繋がってできる線には、図1に示すようなジグザグの線に限らず、円弧状の線、山形状の線、波形状の線など任意の形状の線が含まれる。複数の有線ケーブル2で連結されたドローン群は、あたかも多関節の1つのロボットアームのように機能させることができる。
 ドローンをポンプ等の流体機械およびその周囲環境の点検や調査に使用する場合、空中用のドローンに電池を搭載しても電池容量が小さくて、飛行時間が短いため、空中用のドローンの場合には、有線ケーブル2によってドローン1に電力を供給する必要がある。水中用のドローンにおいては、水中または海水中では電波の減衰が激しくて電波通信が難しいため、水中用のドローンの場合には、有線ケーブル2によってドローン1との通信を確保する必要がある。なお、空中用のドローンにおいて有線ケーブル2によって通信を行ってもよく、また水中用のドローンにおいて有線ケーブル2によって給電を行ってもよい。したがって、有線ケーブル2は、ドローン1への給電および/またはドローン1との通信を行う機能を有する。
 図2Aおよび図2Bは、図1に示す構成の有線式ドローン群を使用して物体の調査を行う場合を示す模式図である。図2Aは、空中用のドローン群を示し、図2Bは、水中用のドローン群を示す。
 図2Aに示すように、複数の有線ケーブル2で連結された複数のドローン1からなるドローン群は、制御装置(または操縦器)3によって制御され、調査対象の円柱状の物体10を上方および斜め横から囲むような位置まで空中を移動して物体10の調査を行う。制御装置(または操縦器)3は、電源を内蔵しており、複数の有線ケーブル2によって複数のドローン1に電力を供給する。制御装置(または操縦器)3と複数のドローン1との間の通信は、電波で行ってもよく、有線ケーブル2で行ってもよい。制御装置(または操縦器)3は、ドローン間の間隔が所定の間隔を維持し、かつ各ドローン1と調査対象の配管等の物体10との間隔がそれぞれ調査に適した間隔を維持するようにドローン群を制御する。これによって、複数のドローン1と複数の有線ケーブル2は、おおよそ折れ線状の関係を常時維持する。
 図2Bに示すように、複数の有線ケーブル2で連結された複数のドローン1からなるドローン群は、制御装置(または操縦器)3によって制御され、水槽4内にある調査対象の矩形状断面の物体10AおよびL字状断面の物体10Bを上方、下方および横から囲むような位置まで水中を移動して物体10A,10Bの調査を行う。制御装置(または操縦器)3は、ドローン間の間隔が所定の間隔を維持し、かつ各ドローン1と調査対象の物体10A,10Bとの間隔がそれぞれ調査に適した間隔を維持するようにドローン群を制御する。これによって、複数のドローン1と複数の有線ケーブル2は、おおよそ折れ線状の関係を常時維持する。
 図3は、多数のドローン1を多数の有線ケーブル2によって連結することにより長尺のドローン群を構成した実施例を示す模式図である。図3に示すように、調査対象の物体10がポンプ設備等の大型の構造物である場合には、多数のドローン1を多数の有線ケーブル2によって連結して長尺のドローン群を構成する。制御装置(または操縦器)3によって長尺のドローン群を制御し、ドローン群が調査対象の大型の物体10の下面および下部側面を囲むような位置まで水中を移動して物体10の調査を行う。制御装置(または操縦器)3は、ドローン間の間隔が所定の間隔を維持し、かつ各ドローン1と調査対象の物体10との間隔がそれぞれ調査に適した間隔を維持するようにドローン群を制御する。これによって、多数のドローン1と多数の有線ケーブル2は、おおよそ折れ線状の関係を常時維持する。
 図4は、本発明に係る有線式ドローン群の変形例を示す模式図である。図4に示すように、有線式ドローン群は、複数のドローン1を複数の有線ケーブル2によって直列に連結した主ドローン群と、主ドローン群の途中から分岐した副ドローン群とによって構成されている。副ドローン群も複数のドローン1を複数の有線ケーブル2によって直列に連結して構成されている。
 図5Aおよび図5Bは、複数のドローン1と複数の有線ケーブル2との接続方法を示す模式図である。図5Aおよび図5Bは、空中用のドローンを示しているが、水中用のドローンの場合も同様である。
 図5Aは、調査対象の物体10が操作者(すなわち制御装置(または操縦器)3)の位置より上方にある場合の複数のドローン1と複数の有線ケーブル2との接続方法を示す模式図である。図5Aに示すように、調査対象の物体10が操作者(すなわち制御装置(または操縦器)3)の位置より上方にある場合には、各有線ケーブル2の両端部を接続対象の2台のドローン1の機体の下部に接続することにより、飛行中に各有線ケーブル2が接続対象の2台のドローン1の機体の下方に位置するようにする。これにより、有線ケーブル2がドローン1の回転翼1Rに接触することを防止できる。
 図5Bは、調査対象の物体10が操作者の位置より下方にある場合の複数のドローン1と複数の有線ケーブル2との接続方法を示す模式図である。図5Bに示すように、調査対象の物体10が操作者(すなわち制御装置(または操縦器)3)の位置より下方にある場合には、各有線ケーブル2の両端部を接続対象の2台のドローン1の機体の上部に接続することにより、飛行中に各有線ケーブル2が接続対象の2台のドローン1の機体の上方に位置するようにする。これにより、有線ケーブル2がドローン1の回転翼1Rに接触することを防止できる。
 図6は、ジンバル機構を備えたドローンを示す模式図である。図6に示すドローン1はジンバル機構を備えている。ジンバル機構は、回転翼1Rを備えたドローン本体1aから鉛直方向に延びる第1軸11と、第1軸11の軸心の回りに回転可能な内輪(内側回転体)12と、内輪12より半径方向外方に延びる軸であって第1軸11に直交する第2軸13と、内輪12より大径のリングであって第2軸13の軸心の回りに回転可能な外輪(外側回転体)14とから構成されている。図6に示すように、ジンバル機構を備えたドローン1によれば、ドローン本体1aの姿勢をそのまま維持した状態で外輪14を360°いずれの方向にも回転させることができる。
 図6に示すように、ジンバル機構を備えた2つのドローン1は、外輪14同士を有線ケーブル2で接続することにより、連結されている。2つのドローン1における各外輪14は360°いずれの方向にも回転可能であるため、外輪14同士を接続している有線ケーブル2に常にテンションを加えつつ2つのドローン1間の距離を一定に保つことができる。有線ケーブル2は、ドローン本体1aへの給電および/またはドローン本体1aとの通信をジンバル機構を介して行う。
 図7は、水中用のドローン1の推力発生機構の一例を示す模式的斜視図である。図7に示すように、ドローン1の機体は球体からなり、球体の全面には、対をなす吸込口1sと吐出口1dとを備えた軸流スラスタThが複数個設けられている。各軸流スラスタThは、吸込口1sと吐出口1dとの間に軸流インペラ(機体の内部に配置)を備え、吸込口1sから吸い込んだ流体(水)を軸流インペラで昇圧し、昇圧された流体(水)を吐出口1dから吐出して、推力を得るように構成している。軸流スラスタThは、球体の全面に分散して配置されているため、ドローン1は任意の方向の推進力を得ることができる。ドローン1の機体は球形に近い多面体であってもよい。
 図8は、空中用のドローン1の推力発生機構の一例を示す模式的斜視図である。図8に示すように、ドローン1の機体は球体からなり、その重心は球の中心近くにある。有線ケーブル2は球体に固定されている。球体の全面には、回転翼ユニットRuが複数個設けられている。図示例では、球体の上部に1個、側部に等間隔に4個、下部に1個(図示せず)、合計6個の回転翼ユニットRuが設けられている。各回転翼ユニットRuは、球体に固定されたサポート15に支持された複数の回転翼1Rを備えている。図示例では、サポート15の軸心方向に1個、サポートの軸心の周囲に等間隔に4個、合計5個の回転翼1Rが設けられている。図8に示すように、複数の回転翼1Rを備えた回転翼ユニットRuは、球体の全面に分散して配置されているため、ドローン1は任意の方向の推進力を得ることができる。ドローン1の機体は球形に近い多面体であってもよい。
 図9Aおよび図9Bは、ドローン1の推力発生機構が機体の表面又は内部に装備されている実施例を示す模式図である。
 図9Aに示すドローン1においては、球形の機体表面に凹部を形成し、凹部に推力発生機構を装備し、推力発生機構をカバー16で覆うように構成している。推力発生機構は、図7に示すものと同様である。
 図9Bに示すドローン1においては、球形の機体内部に推力発生機構を装備している。推力発生機構は、図7に示すものと同様である。
 図9Aおよび図9Bに示すように、推力発生機構をドローン1の機体表面あるいは内部に装備することにより、有線ケーブル2が推力発生機構に引っ掛かることを防止できる。ドローン1の機体は球形に近い多面体であってもよい。
 図10は、ドローン1間を並列する複数の有線ケーブル2で連結する実施例を示す模式図である。図10に示す例においては、2つのドローン1間を並列する2本の有線ケーブル2で連結している。このように、2つのドローン1間を2本の有線ケーブル2で連結することにより、電力線と信号線とを別けることもできるし、2本の電力線で給電することもできる。
 図11は、ドローン1間を連結する有線ケーブル2のケーブル長さが変更可能である実施例を示す模式図である。図11に示す例においては、最前方のドローン1と次のドローン1との間の有線ケーブル2を、上の状態から下の状態にケーブル長さを変更した場合を示す。他の有線ケーブル2も同様にケーブル長さを変更できるようになっている。有線ケーブル2の長さの変更は、ドローン群の移動中に行ってもよく、物体の調査中に行ってもよい。
 図12Aおよび図12Bは、ドローン1間を連結する有線ケーブル2のケーブル長さを変更する機構を示す模式図である。
 図12Aに示す例においては、各ドローン1は、ドローン1に接続される有線ケーブル2の巻き上げ及び巻き戻しを行うケーブル巻き上げ機構18を2個備えている。各ケーブル巻き上げ機構18は、リール19をモータで正逆転させることにより、有線ケーブル2の巻き上げ及び巻き戻しを行うように構成されている。これにより、2つのドローン1間を連結する有線ケーブル2を調査対象の物体に応じて最適な長さに維持することができる。
 図12Bに示す例においては、各ドローン1は、有線ケーブル2に沿って移動してケーブル2に対して位置を変えることができるようになっている。各ドローン1が有線ケーブル2に沿って移動するときには、各ドローン1が持っている推力発生機構を作動させてもよいし、別途移動機構を設けてもよい。各ドローン1はクランプ機構20を備えており、クランプ機構20が解除状態にあるときに、ドローン1は有線ケーブル2に沿って移動可能になっている。有線ケーブル2上でドローン1の位置が決まったときに、クランプ機構20を作動させてドローン1を有線ケーブル2に対して固定する。これにより、2つのドローン1間を連結する有線ケーブル2を調査対象の物体に応じて最適な長さに維持することができる。有線ケーブル2は、クランプ機構20を介してドローン1への給電および/またはドローン1との通信を行う。
 図13Aおよび図13Bは、ドローン1間を連結する有線ケーブル2に保護管を設けた実施例を示す図である。図13Aはドローン1と保護管21とを示す模式的斜視図であり、図13Bは図13AのA-A線断面図である。
 図13Aおよび図13Bに示すように、ドローン1間を連結する有線ケーブル2を覆うように保護管21が設けられている。保護管21は、軽量でかつ曲がらない樹脂材あるいは軽金属あるいは木材あるいは紙、あるいはこれらの複合材料で構成されており、ドローン1間を直線的に接続している。したがって、保護管21は、ロボットアームと同じような動きをし、ドローン1間の距離を常に一定に保つ機能を果たす。これにより、有線ケーブル2がたるみにより物体に引っ掛かるリスクを減らすことができる。各ドローン1は、図6に示す実施例と同様にジンバル機構を備えている。
 図14Aおよび図14Bは、ドローン1間にデッドウェイトや関節を設けた実施例を示す模式図である。
 図1乃至図13に示す実施例においては、複数のドローン1を複数の有線ケーブル2で連結するようにしたが、図14Aに示す実施例においては、2つのドローン1間にデッドウェイト23を設けている。また、図14Bに示す実施例においては、2つのドローン1間に関節24を設けている。図14Aおよび図14Bに示すように、ドローン1に置き換えてデッドウェイト23又は関節24を設けることにより、制御するドローンの数を減らすことができる。デッドウェイト23を設ける実施例を水中用のドローン群に適用する場合、デッドウェイト23が水中でおおよそ静止状態を保つので、デッドウェイト23の位置を固定点として、他のドローン1を移動させることができる。関節24を設ける実施例をドローン群に適用する場合、図13Aおよび図13Bに示す保護管21を併用すると、2つのロボットアームを関節24で接続したような態様になり、物体に引っ掛かるリスクをさらに減らすことができる。
 図15は、複数の有線ケーブル2で連結された複数のドローン1からなるドローン群が物体に引っ掛からないように制御する方法を示す模式図である。
 図15に示すように、ドローン群を構成する各ドローン1にi,i+1などの番号を付ける。ここで、i番目のドローン1と(i+1)番目のドローン1との間の距離をLiとし、i番目のドローン1と(i+1)番目のドローン1とを連結する有線ケーブル2のケーブル長をLciとし、i番目のドローン1と(i+1)番目のドローン1とを連結する有線ケーブル2のたるみを考慮したドローン間最小距離をLminiとすると、以下の(1)式が成立するように、ドローン群を制御することが必要である。
   Lmini≦Li≦Lci・・・・・(1)
 (1)式において、ドローン間最小距離Lminiは、有線ケーブル2がたるみすぎると物体に引っ掛かる原因になるため、有線ケーブル2がたるみすぎない距離に設定されている。また、ドローン間距離Liが有線ケーブル2のケーブル長Lciと等しいか、ケーブル長Lciより短くなるように2つのドローン1を制御することにより、有線ケーブル2がぴんと張った状態から少したるんだ状態の間になるように制御する。
 n個のドローン1によってドローン群を構成する場合には、n個のドローン1が(1)式の拘束条件を満たす形で各ドローン1の軌道を予め決定し、決定された軌道に従って各ドローン1を制御して動かす。制御は開ループ、閉ループなどいずれでもよい。制御のために必要となるドローン位置は、ドローン1に内蔵した位置センサーを用いてもよいし、外部からの画像やレーダー、超音波等の計測あるいはその複合でもよい。
 図16は、ドローン自体が対物距離センサーを備えた実施例を示す模式図である。図16に示すように、i番目のドローン1は対物距離センサーを内蔵しており、対物距離センサーは、例えばレーダー波を出力し、i番目のドローン1と、(i-1)番目のドローン1、(i+1)番目のドローン1および物体10との間の各距離を計測する。計測された各距離を表す信号は、制御装置(または操縦器)に送信される。制御装置(または操縦器)は、i番目,(i-1)番目,(i+1)番目のドローン1が互いに適正な距離を保つように制御する。すなわち、上記の(1)式が成立するように、ドローン群を制御する。また、i番目のドローン1と物体10との間の対物接近距離をLoiとし、i番目のドローン1と物体10との間の最小接近距離をLominiとすると、以下の(2)式が成立するように、ドローン群を制御することが必要である。
   Loi≧Lomini・・・・・(2)
 n個のドローン1によってドローン群を構成する場合には、n個のドローン1が(1)式および(2)式の拘束条件を満たす形で各ドローン1の軌道を予め決定し、決定された軌道に従って各ドローン1を制御して動かす。
 図17は、ドローン1間を連結する有線ケーブル2の変形例を示す模式図である。図17に示すように、ドローン1間を連結する有線ケーブル2は、コイル状の伸縮性のあるケーブルであってもよい。
 上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうる。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲とすべきである。
 本発明は、空中または水中あるいはその両方の領域を移動する無人移動体であるドローンおよび複数のドローンを備えたドローン群に利用可能である。
  1  ドローン
  1a ドローン本体
  1s 吸込口
  1d 吐出口
  1R 回転翼
  2  有線ケーブル
  3  制御装置(または操縦器)
  4  水槽
 10,10A,10B  物体
 11  第1軸
 12  内輪
 13  第2軸
 14  外輪
 15  サポート
 16  カバー
 18  ケーブル巻き上げ機構
 19  リール
 20  クランプ機構
 21  保護管
 23  デッドウェイト
 24  関節
 Th  軸流スラスタ
 Ru  回転翼ユニット

Claims (20)

  1.  複数のドローンを有線ケーブルによって直列に連結してドローン群を形成し、
     前記有線ケーブルは、各ドローンへの給電および/または各ドローンとの通信を行う機能を有し、
     前記ドローン群の一端側のドローンに、ドローン群の移動を制御する制御装置または操縦器を接続したことを特徴とする有線式ドローン群。
  2.  前記制御装置または操縦器は、前記複数のドローンと前記有線ケーブルが折れ線状の関係を維持するようにドローン群を移動させることを特徴とする請求項1記載の有線式ドローン群。
  3.  前記ドローンは空中用のドローンであり、前記有線ケーブルは前記空中用のドローンへの給電を行う機能を有することを特徴とする請求項1または2記載の有線式ドローン群。
  4.  前記ドローンは水中用のドローンであり、前記有線ケーブルは前記水中用のドローンとの通信を行う機能を有することを特徴とする請求項1または2記載の有線式ドローン群。
  5.  前記ドローン群は、複数のドローンを有線ケーブルによって直列に連結した主ドローン群と、該主ドローン群の途中から分岐して複数のドローンを有線ケーブルによって直列に連結した副ドローン群とから構成されることを特徴とする請求項1乃至4のいずれか一項に記載の有線式ドローン群。
  6.  前記有線ケーブルの両端部を連結対象の2台のドローンの機体の下部に接続し、ドローン群の移動中に前記有線ケーブルが連結対象の前記2台のドローンの機体の下方に位置するようにしたことを特徴とする請求項1乃至5のいずれか一項に記載の有線式ドローン群。
  7.  前記有線ケーブルの両端部を連結対象の2台のドローンの機体の上部に接続し、ドローン群の移動中に前記有線ケーブルが連結対象の前記2台のドローンの機体の上方に位置するようにしたことを特徴とする請求項1乃至5のいずれか一項に記載の有線式ドローン群。
  8.  前記ドローンは、直交する1つあるいは複数の軸心の回りにそれぞれ回転可能な1つあるいは複数の回転体を有したジンバル機構を備えていることを特徴とする請求項1乃至7のいずれか一項に記載の有線式ドローン群。
  9.  前記有線ケーブルの端部は、前記ジンバル機構における1つの回転体、あるいは複数の回転体のうち外側の回転体に接続されていることを特徴とする請求項8記載の有線式ドローン群。
  10.  前記ドローンは、吸込口から吸い込んだ流体をインペラで昇圧し、昇圧された流体を吐出口から吐出して推力を得る推力発生機構を複数個備えていることを特徴とする請求項1乃至9のいずれか一項に記載の有線式ドローン群。
  11.  前記ドローンは、複数の回転翼からなる推力発生機構を複数個備えていることを特徴とする請求項1乃至9のいずれか一項に記載の有線式ドローン群。
  12.  前記ドローンの機体は球体又は球形に近い多面体からなり、前記球体又は前記多面体の内部に前記推力発生機構を配置することを特徴とする請求項10または11記載の有線式ドローン群。
  13.  前記ドローンの機体は球体又は球形に近い多面体からなり、前記球体又は前記多面体の外面に前記推力発生機構を配置することを特徴とする請求項10または11記載の有線式ドローン群。
  14.  前記2つのドローン間を並列する複数の有線ケーブルで連結することを特徴とする請求項1乃至13のいずれか一項に記載の有線式ドローン群。
  15.  前記2つのドローン間を連結する有線ケーブルの長さを変更する機構を備えることを特徴とする請求項1乃至13のいずれか一項に記載の有線式ドローン群。
  16.  前記2つのドローン間を連結する有線ケーブルを覆う保護管を設けたことを特徴とする請求項1乃至15のいずれか一項に記載の有線式ドローン群。
  17.  前記ドローン群における少なくとも1つのドローンをデッドウェイト又は関節に置き換えることを特徴とする請求項1乃至16のいずれか一項に記載の有線式ドローン群。
  18.  複数のドローンを有線ケーブルによって直列に連結して形成されたドローン群の制御方法であって、
     前記有線ケーブルによって各ドローンへの給電および/または各ドローンとの通信を行いつつ、前記複数のドローンと前記有線ケーブルが折れ線状の関係を維持するようにドローン群を移動させることを特徴とする有線式ドローン群の制御方法。
  19.  前記ドローン群を構成するi番目のドローンと(i+1)番目のドローンとの間の距離をLiとし、i番目のドローンと(i+1)番目のドローンとを連結する有線ケーブルのケーブル長をLciとし、i番目のドローンと(i+1)番目のドローンとを連結する有線ケーブルのたるみを考慮したドローン間最小距離をLminiとすると、Lmini≦Li≦Lciが成立するように、ドローン群を制御することを特徴とする請求項18記載の有線式ドローン群の制御方法。
  20.  前記i番目のドローンと物体との間の対物接近距離をLoiとし、前記i番目のドローンと物体との間の最小接近距離をLominiとすると、Loi≧Lominiが成立するように、ドローン群を制御することを特徴とする請求項19記載の有線式ドローン群の制御方法。
PCT/JP2017/039071 2016-11-07 2017-10-30 有線式ドローン群 WO2018084104A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/344,058 US20190256207A1 (en) 2016-11-07 2017-10-30 Wired drone group

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-217345 2016-11-07
JP2016217345A JP6683587B2 (ja) 2016-11-07 2016-11-07 有線式ドローン群

Publications (1)

Publication Number Publication Date
WO2018084104A1 true WO2018084104A1 (ja) 2018-05-11

Family

ID=62076178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039071 WO2018084104A1 (ja) 2016-11-07 2017-10-30 有線式ドローン群

Country Status (3)

Country Link
US (1) US20190256207A1 (ja)
JP (1) JP6683587B2 (ja)
WO (1) WO2018084104A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021187247A (ja) * 2020-05-28 2021-12-13 楽天グループ株式会社 飛行体
US11443644B2 (en) 2019-10-11 2022-09-13 Wipro Limited System and method of guiding a plurality of agents for complete coverage of an inspection area

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6867924B2 (ja) * 2017-10-05 2021-05-12 本田技研工業株式会社 空中散布装置、無人飛行体システム及び無人飛行体
US10710716B2 (en) * 2018-03-15 2020-07-14 T-Mobile Usa, Inc. Inhibiting cable entanglement in tethered drones
CL2018000999A1 (es) * 2018-04-18 2018-05-18 Miguel Angel Mura Yanez Sistema de equipos autónomos transportables y/o instalables en obra que permiten multiplicidad de tareas de construcción; equipos uav (vehículo aéreo no tripulado), dispositivos de adosamiento removible que se fija a obra, brazo robot y herramientas para efectuar tareas complejas. método suministro de carga poder, fluidos continuos y cable de suministros seguro en vuelo y tierra. software, inteligencia artificial y dispositivos.
JP7129220B2 (ja) * 2018-05-29 2022-09-01 株式会社荏原製作所 高高度到達装置
WO2020016942A1 (ja) * 2018-07-17 2020-01-23 株式会社エアロネクスト 給電ケーブル中継用回転翼機を備える給電方法
JP6430057B1 (ja) * 2018-07-20 2018-11-28 祐次 廣田 ドローン給電システム
JP2020192967A (ja) * 2019-05-23 2020-12-03 首都高技術株式会社 無人航空機の飛行領域制限装置
JP7236931B2 (ja) * 2019-05-24 2023-03-10 株式会社荏原製作所 ドローンシステム
JP7349710B2 (ja) * 2019-07-29 2023-09-25 合同会社サウザンズ 風向及び風速を測定する方法及びそれに用いる無人航空機
US11597515B2 (en) * 2019-08-19 2023-03-07 Epazz, Inc. Charging/re-charging drone assembly system and apparatus
JP7085218B2 (ja) * 2019-09-10 2022-06-16 株式会社エアロネクスト 給電ケーブル中継用回転翼機を備える給電方法
JP7148211B2 (ja) * 2019-10-17 2022-10-05 古河電工パワーシステムズ株式会社 回転係合部付き無人航空機およびそれを用いた紐状体の引っ掛け方法
US11548632B2 (en) * 2020-05-13 2023-01-10 The Boeing Company Drone data sharing system
CN111824415B (zh) * 2020-07-08 2022-11-29 北京航空航天大学 一种可串列组合飞行的蜂群无人机气动布局
CN112622657A (zh) * 2020-12-01 2021-04-09 易瓦特科技股份公司 一种无人机编队充电系统
AU2021412656A1 (en) * 2020-12-29 2023-07-06 Kubota Corporation Agricultural machine
CN113247256A (zh) * 2021-06-21 2021-08-13 韩元元 一种由无人机构建的空中通道
KR20230005007A (ko) 2021-06-30 2023-01-09 (주)팔로우테크닉스 목표물 조준이 가능한 유선 군집 드론 시스템 및 그 군집비행 제어방법
JP7474230B2 (ja) 2021-09-30 2024-04-24 Kddi株式会社 回収支援装置、回収支援システム及びプログラム
GB202205518D0 (en) * 2022-04-13 2022-05-25 Agco Int Gmbh Supply system for a vehicle connected to a platform
CN115158648B (zh) * 2022-07-19 2023-04-18 哈尔滨工业大学 共轴双旋翼无人机
WO2024069776A1 (ja) * 2022-09-28 2024-04-04 日本郵船株式会社 ケーブル取り回しシステム、及びプロペラの検査方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05293789A (ja) * 1992-04-16 1993-11-09 Mitsui Eng & Shipbuild Co Ltd 水中作業ロボットコントロール設備
JP2011031635A (ja) * 2009-07-29 2011-02-17 Kowa Kk 潜水機システム
JP2015001450A (ja) * 2013-06-14 2015-01-05 株式会社トプコン 飛行体誘導システム及び飛行体誘導方法
JP2015189321A (ja) * 2014-03-28 2015-11-02 株式会社熊谷組 無人飛行撮影装置
JP2015217901A (ja) * 2014-05-21 2015-12-07 株式会社快適空間Fc マルチコプター
JP2016147565A (ja) * 2015-02-12 2016-08-18 株式会社amuse oneself 飛行体
JP2016180866A (ja) * 2015-03-24 2016-10-13 株式会社フジタ 空撮装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05293789A (ja) * 1992-04-16 1993-11-09 Mitsui Eng & Shipbuild Co Ltd 水中作業ロボットコントロール設備
JP2011031635A (ja) * 2009-07-29 2011-02-17 Kowa Kk 潜水機システム
JP2015001450A (ja) * 2013-06-14 2015-01-05 株式会社トプコン 飛行体誘導システム及び飛行体誘導方法
JP2015189321A (ja) * 2014-03-28 2015-11-02 株式会社熊谷組 無人飛行撮影装置
JP2015217901A (ja) * 2014-05-21 2015-12-07 株式会社快適空間Fc マルチコプター
JP2016147565A (ja) * 2015-02-12 2016-08-18 株式会社amuse oneself 飛行体
JP2016180866A (ja) * 2015-03-24 2016-10-13 株式会社フジタ 空撮装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11443644B2 (en) 2019-10-11 2022-09-13 Wipro Limited System and method of guiding a plurality of agents for complete coverage of an inspection area
JP2021187247A (ja) * 2020-05-28 2021-12-13 楽天グループ株式会社 飛行体

Also Published As

Publication number Publication date
JP6683587B2 (ja) 2020-04-22
JP2018075869A (ja) 2018-05-17
US20190256207A1 (en) 2019-08-22

Similar Documents

Publication Publication Date Title
WO2018084104A1 (ja) 有線式ドローン群
JP6867924B2 (ja) 空中散布装置、無人飛行体システム及び無人飛行体
JP6751399B2 (ja) 水中マニピュレータアームロボット
US8888049B2 (en) Kite ground station and system using same
WO2020170479A1 (ja) ドローンシステム
US7510142B2 (en) Aerial robot
US20110025060A1 (en) Power generator
JP2010208623A (ja) テザエネルギー供給システム
JP6085520B2 (ja) 遠隔操縦式無人飛行体
CN104554675B (zh) 一种水下碟形航行器
JP2017074821A (ja) 水難救助装置
US20180155150A1 (en) Sensor Equipped Tether Guide with Open Tether Channel
US10280034B2 (en) Floating counter-balanced levelwind carrier system
JP2019089422A (ja) 水中ドローンを用いた海底探査システム
JP7216845B2 (ja) スラスタ安定化を有する吊り下げ式空中車両システム
KR20200061781A (ko) 다목적 확장형 무인비행기
JP7011476B2 (ja) 飛行装置
CN109572970B (zh) 一种水下机器人的矢量推进器
WO2022243684A1 (en) Improvements in or relating to a device for use on water
US11518509B2 (en) Tethered aerial vehicle with gimbaled coaxial propellers
AU2021373379A1 (en) Unmanned aerial spraying system
JP7011475B2 (ja) 飛行装置および飛行体
RU2796698C1 (ru) Подвесная система летательного аппарата со стабилизацией создающего тягу устройства
EP2791504B1 (en) Kite ground station and system using same
WO2019070735A2 (en) ATTACHMENT GUIDE WITH OPEN TIE CHANNEL ON BOTH SIDES

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17866906

Country of ref document: EP

Kind code of ref document: A1