WO2018084091A1 - アルミニウム部材、および、アルミニウム部材の製造方法 - Google Patents

アルミニウム部材、および、アルミニウム部材の製造方法 Download PDF

Info

Publication number
WO2018084091A1
WO2018084091A1 PCT/JP2017/038982 JP2017038982W WO2018084091A1 WO 2018084091 A1 WO2018084091 A1 WO 2018084091A1 JP 2017038982 W JP2017038982 W JP 2017038982W WO 2018084091 A1 WO2018084091 A1 WO 2018084091A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
surface film
aluminum member
water
film
Prior art date
Application number
PCT/JP2017/038982
Other languages
English (en)
French (fr)
Inventor
公一 芦澤
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Priority to EP17868345.4A priority Critical patent/EP3536820A4/en
Priority to US16/344,425 priority patent/US20200227756A1/en
Priority to CN202210511471.3A priority patent/CN115148999A/zh
Priority to CN201780066428.8A priority patent/CN109890996A/zh
Publication of WO2018084091A1 publication Critical patent/WO2018084091A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/18Polishing of light metals
    • C25F3/20Polishing of light metals of aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/664Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/526Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an aluminum surface film.
  • Aluminum is immediately oxidized in the air, and a surface film (natural film) which is a metal oxide film is formed on the surface of aluminum.
  • a surface film naturally film
  • aluminum oxide is insulative.
  • an aluminum member and another conductive member copper, stainless steel, carbon, or the like
  • a large voltage drop does not occur between them. This is because the resistance of the aluminum surface film interposed between aluminum and the other conductive member is small.
  • a method for further reducing the resistance of the aluminum surface film has been demanded.
  • the resistance of the surface coating is R
  • the resistivity of the surface coating is ⁇
  • the thickness of the surface coating is l
  • the contact area between the two is S, it is considered that there is a relationship of formula (1).
  • is determined according to the properties of a natural aluminum film or an aluminum surface film formed by some surface treatment. However, no good method has been found to reduce ⁇ .
  • the natural film thickness is about 3 nm. The thickness of the natural film varies slightly depending on the production conditions of the aluminum member, and the natural film gradually increases depending on the use environment or storage condition. The thickness of the surface film formed by the surface treatment is generally thicker than the natural film. Therefore, no good method has been found to reduce l.
  • S can be increased by devising the shape of the contact surface. In general, increasing S is performed, but there is a limit to increasing S.
  • the contact area S between the aluminum member and the particulate conductive member is reduced.
  • a conductive agent mainly composed of carbon or DLC diamond-like carbon
  • An object of one embodiment of the present invention is to improve the conductivity of an aluminum member.
  • the aluminum member which concerns on 1 aspect of this invention is an aluminum member which is aluminum or aluminum alloy, Comprising:
  • the surface film of the said aluminum member contains at least one of aluminum oxide and aluminum hydroxide, In the said surface film, the semiconductor portion of water formed in the agglomerated portion is configured to present more than 100,000 sites per area of 1.0 cm 2 of a surface of the aluminum member.
  • the aluminum member which concerns on 1 aspect of this invention is an aluminum member which is aluminum or aluminum alloy, Comprising:
  • the surface film of the said aluminum member contains at least one of aluminum oxide and aluminum hydroxide, In the said surface film,
  • the area ratio of the semiconductor portion formed in the water-aggregated portion on one surface of the aluminum member is 5 ppm or more.
  • the manufacturing method of the aluminum member which concerns on 1 aspect of this invention is a manufacturing method of the aluminum member which is aluminum or an aluminum alloy, Comprising: The said surface is obtained by carrying out a roughening process, heat processing, or a rolling process of the surface film of an aluminum member. It is a method including a treatment step for improving the conductivity of the film.
  • An aluminum member according to one embodiment of the present invention is an aluminum member that is aluminum or an aluminum alloy, and the surface coating of the aluminum member is roughened, heat-treated, or rolled to improve the conductivity of the surface coating. It is the structure where the process to perform was performed.
  • the conductivity of the aluminum member can be improved.
  • FIG. 1 It is a schematic diagram which shows the structure of the measuring apparatus which measures electric current distribution. It is sectional drawing which expands and shows the contact location of an aluminum member and a probe. It is an image which shows the AFM image obtained using the said measuring apparatus, and electric current distribution. It is a figure which shows the IV characteristic (current-voltage characteristic) measured in the location which is not a current passage point, and a current passage point. It is a figure which shows the result of having performed XPS (X-ray photoelectron spectroscopy) analysis with respect to aluminum foil A and B. FIG. It is a figure which shows the area rate (%) isolate
  • FIG. 2 is an image (negative image) showing the distribution of OH ⁇ of the surface film of aluminum foil A, detected by TOF-SIMS. It is a figure which shows Cube azimuth
  • is the volume resistivity.
  • the film defect theory and the tunnel effect theory have been proposed but have not been clarified.
  • the inventor of the present invention has clarified for the first time the reason why the aluminum surface film is conductive from the experiments and analysis results described below.
  • FIG. 1 is a schematic diagram showing a configuration of a measuring apparatus for measuring a current distribution.
  • the evaluation of the aluminum member 8 was performed in the atmosphere at room temperature.
  • the aluminum member 8 is disposed on a stage 16 installed on a support base 15 of the measuring device.
  • the lower surface of the aluminum member 8 is in contact with the stage 16, and the upper surface of the aluminum member 8 is in contact with the tip of the probe 17.
  • FIG. 2 is an enlarged cross-sectional view showing a contact portion between the aluminum member 8 and the probe 17.
  • the aluminum member 8 is an aluminum foil, and includes an internal metal aluminum 8a that is not oxidized and a surface film 8b.
  • the surface film 8b is a mixture of aluminum oxide and aluminum hydroxide. Although not shown in FIG. 2, the surface film 8b is also formed on the stage 16 side of the metal aluminum 8a.
  • a power supply device 19 capable of applying a voltage in both directions to the aluminum member 8 and an ammeter 20 are connected in series.
  • a voltmeter 21 is connected between the cantilever 18 and the stage 16. The current I flowing through the aluminum member 8 can be measured using the ammeter 20, and the voltage V applied to the aluminum member 8 can be measured using the voltmeter 21.
  • the internal resistance of the ammeter 20 is sufficiently low with respect to the measurement system, and the internal resistance of the voltmeter 21 is sufficiently high with respect to the measurement system.
  • the cantilever 18 of the contacting AFM model number Tap190E-G manufactured by Budget sensors was used.
  • the cantilever 18 is provided with a probe 17.
  • a probe was used in which chrome plating with a thickness of 5 nm was formed on silicon, and platinum plating with a thickness of 25 nm was further formed on the chrome plating.
  • the tip diameter of the probe 17 was about 25 nm. That is, the diameter of the portion where the platinum plating layer at the tip of the probe 17 contacts the surface film of the aluminum foil was about 25 nm, and the contact area between the surface film and the platinum plating layer was about 450 nm 2 .
  • the resonance frequency was 190 kHz.
  • both the aluminum foils A and B are made of 1085 (Al is 99.85%, mainly containing Fe and Si as other elements), the size is 50 mm ⁇ 50 mm, and the thickness is about 0.1 mm.
  • the aluminum foil A is a general plain aluminum foil, and surface processing is not performed.
  • the aluminum foil B is an aluminum foil whose surface has been processed by sandblasting with respect to a plain aluminum foil.
  • FIG. 3 shows an AFM image obtained using the above measuring apparatus and an image showing the current distribution.
  • FIG. 3A is an image showing the surface shape of the aluminum foil A obtained by AFM.
  • FIG. 3B is an image showing the surface shape of the aluminum foil B obtained by AFM.
  • C) of FIG. 3 is an image which shows the location where the electric current flowed about the aluminum foil A.
  • (D) of FIG. 3 is an image which shows the location where the electric current flowed about the aluminum foil B.
  • FIG. 3 (c) and 3 (d) dark portions (black dots) indicate portions where current flows. In the bright part (white part), almost no current flowed (the flowing current was very small).
  • the current does not flow uniformly, but some points where the current flows exist in a dispersed manner. Since each region where current flows on the surface of the aluminum foil is small, this region is referred to as a current passing point here.
  • the surface-treated aluminum foil B was found to have a larger number of current passing points (density).
  • FIG. 4 is a diagram showing IV characteristics (current-voltage characteristics) measured at locations that are not current passing points and at current passing points.
  • FIG. 4A shows the IV characteristics of a portion that is not a current passing point.
  • FIG. 4B shows the IV characteristic of the current passing point.
  • the probe 17 was fixed at a current passing point or at a location other than the current passing point, and IV characteristics were measured.
  • the bias voltage on the aluminum foil side was changed from ⁇ 0.2 V to +0.2 V, and the sweep speed was 25 mV / s.
  • rectification means that the interface between the metal (aluminum) portion of the aluminum foil and the surface film is Schottky bonded, and that the surface film at the current passing point is a p-type semiconductor.
  • FIG. 3 (c) in the aluminum foil A, there were about 20 current passing points in the range of 25 ⁇ m ⁇ 25 ⁇ m, and most of the range showed insulation.
  • FIG. 3 (d) in the aluminum foil B, the current passing points existing in the range of 25 ⁇ m ⁇ 25 ⁇ m are considerably larger than those in the aluminum foil A, but most of the regions showed insulating properties.
  • the majority of the aluminum foil surface film is an insulator, whereas a small part of it can pass current and has a rectifying property. And it turned out to be a p-type semiconductor.
  • Adsorbed water is water adsorbed on the outside (surface) of the surface film.
  • Bonded water is obtained by heating gibbsite or bayerite (Al (OH) 3 or Al 2 O 3 .3H 2 O), which is a kind of aluminum hydroxide, to 200 ° C. to 300 ° C. and aluminum oxide Al 2 O 3 and water H 2. Water that is decomposed into O or boehmite Al 2 O 3 .H 2 O and water H 2 O. Bonded water does not exist as water at room temperature.
  • Al 2 O 3 ⁇ 3H 2 O and aluminum hydroxide Al (OH) 3 to water to aluminum oxide Al 2 O 3 was bound can be expressed either by the same chemical formula H 3 AlO 3.
  • H 3 AlO 3 There is a view that the bound water reacts with aluminum oxide to form aluminum hydroxide and is present in the surface film as aluminum hydroxide.
  • thermal decomposition occurs at 200 to 300 ° C., and aluminum hydroxide is decomposed into aluminum oxide and water.
  • Non-Patent Document 1 when the aluminum foil is heated, adsorbed water on the surface is desorbed at 100 ° C., and 0.4 mg / m 2 of water desorbed at 400 ° C. is detected. Further, in the experimental results of Non-Patent Document 1, it is reported that water is desorbed even at 600 ° C. Water desorbed at 600 ° C. is believed to be derived from boehmite Al 2 O 3 ⁇ H 2 O . It should be noted that the thermal behavior was the same between 4N high-purity aluminum and 99.4% aluminum foil.
  • the area ratio occupied by Al (OH) 3 on the surface of the aluminum foil is about 10%.
  • H 2 O derived from Al (OH) 3 can be calculated to be about 0.25 mg / m 2 .
  • This value is a value smaller than the non-patent document 0.4 mg / m 2, which is detected by the experiment 1.
  • this water is referred to as containing water.
  • excess water is combined with aluminum hydroxide with a weak force and exists as contained water. If the bond between the contained water and aluminum hydroxide is not strong, it can be assumed that the contained water molecules attract each other contained water molecules by hydrogen bonds and aggregate (moving relatively freely in the surface film).
  • XPS analysis XPS analysis was performed on the aluminum foils A and B in order to investigate what kind of material the current passing point of the surface film is.
  • Ar sputtering process was performed with respect to aluminum foil A and B, and the oil component of the surface was removed.
  • XPS analysis was performed for a range of several mm in diameter on the surfaces of the aluminum foils A and B. The ratio of the obtained substance is an average in the above range.
  • FIG. 5 is a diagram showing the results of XPS (X-ray photoelectron spectroscopy) analysis performed on the aluminum foils A and B.
  • FIG. FIG. 5A is a diagram showing a distribution of binding energy for the aluminum foil A.
  • FIG. FIG. 5B is a view showing a distribution of binding energy for the aluminum foil B.
  • FIG. 5A and 5B also show the results of separating the binding energy distribution with respect to the O1s peak by the energy peaks (area%) of Al 2 O 3 , Al (OH) 3 , and H 2 O.
  • FIG. 6 is a diagram showing the area ratio (%) separated by energy peaks for the XPS analysis results of aluminum foils A and B.
  • FIG. From these results, it is found that in both aluminum foils A and B, Al 2 O 3 is 80% or more, Al (OH) 3 is about 10%, and H 2 O is about half of Al (OH) 3. It was.
  • Towards the aluminum foil A of aluminum foil B was found that Al (OH) 3 and H 2 O area% are both large (Al (OH) 3 and H 2 O are abundant). From this, it can be estimated that a large amount of H 2 O is present where a large amount of Al (OH) 3 is present. H 2 O shown here is considered to be contained water.
  • Resistivity of Al 2 O 3 is for example 1 ⁇ 10 12 ⁇ cm or more, a good insulator.
  • the resistivity of Al (OH) 3 is, for example, 2 ⁇ 10 4 to 5 ⁇ 10 4 ⁇ cm as a powder and is a high resistance body.
  • the inventor considered that the water H 2 O in the surface film is related to the current passing point. In that case, considering the fact that the current passing point exists only in a small part of the surface of the aluminum foil, water H 2 O is not uniformly dispersed in the surface film, but is microscopically water. It is considered that H 2 O is aggregated in some places and is present in a non-uniform manner. In particular, it can be estimated that a portion where water H 2 O is aggregated becomes a current passing point. This agglomerated water is considered to be the above-mentioned contained water.
  • FIG. 7 is an image (negative image) showing the distribution of OH ⁇ on the surface film of the aluminum foil A, detected by TOF-SIMS.
  • a dark spot black dot indicates that many secondary ions (OH ⁇ ) are detected.
  • the measurement range is 100 ⁇ m ⁇ 100 ⁇ m.
  • M / z in the figure is a mass-to-charge ratio (mass number divided by number of charges).
  • some dark spots existed in addition to the light and shade caused by the pattern on the surface of the aluminum foil by rolling.
  • the aluminum surface film contains at least one of aluminum oxide and aluminum hydroxide.
  • the surface coating of aluminum contains both aluminum oxide and aluminum hydroxide.
  • Aluminum oxide, which is the main component of the surface film, is an insulator and has no electrical conductivity.
  • the contained water In the aluminum surface film, there is water (containing water) other than bound water. Although the contained water is present in a dispersed manner in the surface film, it is not uniformly dispersed, but a part of the contained water is present in an aggregated state with high density. Further, the contained water tends to aggregate more in the portion where aluminum hydroxide exists than in the portion where aluminum oxide exists.
  • the portion where the contained water is agglomerated at a high density exists in a dot shape.
  • the portion becomes a p-type semiconductor and exhibits conductivity.
  • This portion corresponds to a current passing point.
  • the semiconductor portion exists so as to penetrate the surface film in a direction perpendicular to the surface.
  • the surface density of the current passing points is low, and is about 30000 pieces / cm 2 in a general aluminum foil. Note that the size (diameter) of one current passing point is approximately 0.1 ⁇ m. Current passing points may exist by themselves, but several to several tens are often collected.
  • the junction between the metal aluminum and the p-type semiconductor is a Schottky junction and exhibits rectification.
  • the polarity direction becomes the forward direction of the Schottky junction.
  • About ⁇ 0.015V becomes the ON voltage, and only a very small current flows at a voltage higher than this ( ⁇ 0.015 to 0V).
  • the current rises at a voltage lower than about ⁇ 0.015 V (a negative voltage having a large absolute value), and a forward current flows.
  • the polarity direction is the reverse direction of the Schottky junction. Therefore, only a minute current flows.
  • the positive bias voltage becomes larger than the breakdown voltage, a large current suddenly flows.
  • the breakdown voltage is considered to be around +0.04 to + 0.3V.
  • the aluminum surface film substantially does not show rectification and shows good conductivity.
  • a typical aluminum surface film mainly contains aluminum oxide and aluminum hydroxide.
  • the resistivity of aluminum oxide and aluminum hydroxide is extremely large, and most of the surface film is considered to be substantially an insulator.
  • the resistivity at the current passing point of the surface film is considered to be about 1.3 ⁇ cm.
  • the area occupied by one current passing point is approximately 1.0 ⁇ 10 ⁇ 10 cm 2 (0.1 ⁇ m ⁇ 0.1 ⁇ m), and all the current passing points have substantially the same area.
  • the resistance value at one current passing point can be calculated as about 3.8 k ⁇ .
  • the density of current passing points in a normal aluminum surface film is about 32,000 pieces / cm 2 . From this, the average sheet resistance of the surface film can be calculated as 0.12 ⁇ cm 2 .
  • the surface resistance of the surface film decreases in inverse proportion to this, and the conductivity of the surface film can be improved.
  • the electrical conductivity of the surface coating of aluminum is determined by the surface density of the current passing points in the surface coating.
  • the aluminum surface film contains aluminum oxide, aluminum hydroxide, or a mixture thereof, and water.
  • the contained water is aggregated and non-uniformly present in the surface film.
  • the portion where the contained water is present at a high density becomes a current passage point and has conductivity.
  • the conductivity of the aluminum surface film (1) increase the portion of the surface film where the contained water is aggregated, or (2) increase the area ratio of the portion where the contained water is aggregated. Can be considered. Thereby, microscopically, the surface film of aluminum with improved conductivity can be obtained by increasing the number or area of current passing points. Thereby, the electroconductivity of an aluminum member can be improved.
  • the resistance of the surface film can be substantially reduced to about ⁇ or less of the resistance of the normal surface film, which is effective in improving the conductivity. Is. Furthermore, when the density of current passing points is 200000 pieces / cm 2 or more, the resistance of the surface film can be substantially reduced to about 1/6 or less, which is more effective.
  • the area ratio of the current passing point of a normal surface coating is about 3.2 ppm. When the area ratio of the current passing point is 5 ppm or more, the resistance of the surface film can be substantially reduced to about 2/3 or less of the resistance of the normal surface film, which is effective in improving the conductivity.
  • the resistance of the surface film can be substantially reduced to about 1/3 or less, which is more effective. Furthermore, when the area ratio of the current passing point is 20 ppm or more, the resistance of the surface film can be substantially reduced to about 1/6 or less, which is more effective. A specific method will be described below.
  • the surface of the aluminum member is mechanically roughened, and the surface of the aluminum member is microscopically roughened.
  • the roughening treatment for example, methods such as sand blasting, liquid honing, shot peening, electric discharge machining, laser dull machining, and fine powder spraying can be used.
  • the following mechanical method, chemical method, or physical method may be employed.
  • the mechanical method include a method of rubbing the surface of the aluminum member with abrasive paper such as emery paper, and a method of roughening the surface of the aluminum member using blasting such as sand blasting.
  • the chemical method include a method of etching the surface of the aluminum member with an acid or the like.
  • a method of roughening the surface by causing ions to collide with the surface of the aluminum member by sputtering or the like can be used. From these methods, one method may be used, or a plurality of methods may be used in combination.
  • the surface film of the aluminum member is locally broken, and metallic aluminum is exposed instantaneously.
  • the exposed metal aluminum immediately reacts with oxygen in the air to generate new aluminum oxide (aluminum oxide or aluminum hydroxide).
  • new aluminum oxide aluminum oxide or aluminum hydroxide
  • water vapor in the air is taken into the surface film and becomes water contained in the surface film.
  • the part in which the contained water is aggregated can be increased, and the current passing point in the surface film can be increased.
  • the portion where the contained water is aggregated behaves as a semiconductor. Due to carrier movement in the semiconductor part, the entire surface film exhibits high conductivity in a direction perpendicular to the surface. Therefore, the conductivity of the surface of the aluminum member can be improved.
  • An aluminum member is manufactured by a rolling method so that the (100) crystal orientation of metallic aluminum is finely dispersed in the surface film.
  • heat treatment may be performed before final cold rolling.
  • the heat treatment can be performed at 200 ° C. for 10 hours in an inert gas atmosphere such as argon.
  • the crystal orientation of metallic aluminum includes (100), (110), (111), and the like.
  • the work function of (100) is the highest, and therefore it is easy to attract the contained water. Therefore, the current passing point can be increased by exposing many (100) planes on the surface of the metal aluminum (interface with the surface coating).
  • the electrical contact or contact area with other conductive members that are in contact with the aluminum member is increased. Therefore, the contact resistance between the aluminum member and the other conductive member can be greatly reduced.
  • the highly conductive aluminum member obtained by the above method can be used as a conductive member.
  • the aluminum member can be used as a current collector (positive electrode or negative electrode) of a bus bar or a lithium ion battery (secondary battery).
  • the bus bar is a conductor used for electrical connection.
  • the aluminum member in the above embodiment may be either mainly made of aluminum or made of an aluminum alloy.
  • the shape of the aluminum member is not limited to a foil, a plate, and a wire, and may be a member having an arbitrary shape.
  • valve metals other than aluminum such as titanium, tantalum, niobium, zirconium, tungsten, hafnium, and their respective alloys.
  • the aluminum member which concerns on 1 aspect of this invention is an aluminum member which is aluminum or aluminum alloy, Comprising:
  • the surface film of the said aluminum member contains at least one of aluminum oxide and aluminum hydroxide, In the said surface film,
  • the semiconductor portion formed in the portion where the water is aggregated is configured to be present at 100,000 locations or more per 1.0 cm 2 area on one surface of the aluminum member.
  • the aluminum member which concerns on 1 aspect of this invention is an aluminum member which is aluminum or aluminum alloy, Comprising:
  • the surface film of the said aluminum member contains at least one of aluminum oxide and aluminum hydroxide, In the said surface film,
  • the area ratio of the semiconductor portion formed in the water-aggregated portion on one surface of the aluminum member is 5 ppm or more.
  • the bus bar according to one embodiment of the present invention has a configuration using the aluminum member.
  • a current collector for a secondary battery according to one embodiment of the present invention has a configuration using the aluminum member.
  • the manufacturing method of the aluminum member which concerns on 1 aspect of this invention is a manufacturing method of the aluminum member which is aluminum or an aluminum alloy, Comprising: The said surface is obtained by carrying out a roughening process, heat processing, or a rolling process of the surface film of an aluminum member. It is a method including a treatment step for improving the conductivity of the film.
  • the number of the semiconductor parts formed in the portion where water is aggregated in the surface film per area of the surface of the aluminum member may be increased.
  • the area ratio of the semiconductor portion formed in the portion where water is aggregated in the surface film in the surface of the aluminum member may be increased by the treatment step.
  • An aluminum member according to one embodiment of the present invention is an aluminum member that is aluminum or an aluminum alloy, and the surface coating of the aluminum member is roughened, heat-treated, or rolled to improve the conductivity of the surface coating. It is the structure where the process to perform was performed.
  • One surface (one surface) of the 20 mm tip portion of each sample was surface-finished by electropolishing, and the surface roughness Ra was set to 0.1 ⁇ m.
  • This electropolished surface was set as the following observation object.
  • the three samples thus obtained were designated as samples 1 to 3.
  • Samples 4 to 6 were prepared by performing exactly the same treatment as Samples 1 to 3 except that heat treatment was performed at 200 ° C. for 10 hours in argon gas before the final cold rolling. . Using these samples, the relationship between the current passing point of the surface coating and the (100) crystal orientation (Cube orientation) of the surface coating was examined.
  • the AFM was set to the contact mode, and the tip of the probe was brought into contact with the surface of the sample.
  • the number of current passing points was counted by scanning a range of 25 ⁇ m ⁇ 25 ⁇ m by applying a bias voltage of ⁇ 0.05 V to samples 2 and 5 with the probe as a reference.
  • a bias voltage of +0.05 V was applied to samples 2 and 5, and the number of current passing points was counted by scanning another 25 ⁇ m ⁇ 25 ⁇ m range.
  • the density of current passing points was hardly related to the difference in bias voltage. However, the density of current passing points in Sample 2 (without heat treatment) was about 34000 pieces / cm 2 .
  • FIG. 8 is a diagram showing Cube orientation existence rate (%), current passing point density (pieces / cm 2 ), and contact resistance ( ⁇ cm 2 ) with a copper plate, with and without heat treatment. From this, it was found that increasing the (100) plane (Cube orientation) of the aluminum member is very useful as a means for improving the conductivity of the surface film.
  • Sample 12 was roughened by mechanically roughing the surface. Specifically, shot dull processing was performed on both surfaces of the aluminum foil using projection grid particles having a particle diameter of 40 ⁇ m. Sample 12 was obtained by washing away the projection grid particles remaining on the surface of the aluminum foil with distilled water after the shot dull process. The surface roughness Ra of the sample 12 was 0.8 ⁇ m.
  • sample 13 A sample obtained by cutting out 10 mm ⁇ 10 mm from the vicinity of the center of sample 11 (without roughening treatment) was designated as sample 13.
  • sample 14 A sample obtained by cutting 10 mm ⁇ 10 mm from the vicinity of the center of sample 12 (with roughening treatment) was used as sample 14.
  • the AFM was set to the contact mode, and the tip of the probe was brought into contact with the surface of the sample.
  • a bias voltage of ⁇ 0.05 V was applied to the samples 13 and 14 with the probe as a reference, and the range of 25 ⁇ m ⁇ 25 ⁇ m was scanned to count the number of current passing points.
  • the density of current passing points in Sample 13 (without roughening treatment) was about 32000 / cm 2 .
  • the density of current passing points in Sample 14 (with roughening treatment) was about 260000 pieces / cm 2 . It was found that the density of current passing points increased significantly by the roughening treatment.
  • LFP lithium iron phosphate, average particle size 1.0 ⁇ m
  • acetylene black primary particle size 5 nm
  • PVDF vinylene fluoride 5 as a binder.
  • the positive electrode produced from the sample 11 was designated as the positive electrode 1
  • the positive electrode produced from the sample 12 was designated as the positive electrode 2.
  • the difference between the positive electrode 1 and the positive electrode 2 is whether or not the surface of the aluminum foil has been subjected to a roughening treatment.
  • FIG. 9 is a diagram showing “ion transfer resistance + electron transfer resistance” and “reaction resistance” depending on the presence or absence of the roughening treatment.
  • “ion transfer resistance + electron transfer resistance” was reduced by 47% and “reaction resistance” was reduced by 64%, compared with the positive electrode 1 (without roughening treatment). It was found that the internal resistance of the positive electrode can be greatly reduced by the roughening treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Conductive Materials (AREA)

Abstract

アルミニウム部材の導電性を改善する。アルミニウム部材の表面皮膜は、酸化アルミニウムおよび水酸化アルミニウムのうちの少なくとも一方を含み、表面皮膜中において水が凝集した部分に形成された半導体部が、アルミニウム部材の一表面の1.0cmの面積当たりに100000箇所以上存在する。

Description

アルミニウム部材、および、アルミニウム部材の製造方法
 本発明はアルミニウムの表面皮膜に関する。
 アルミニウムは空気中においてすぐに酸化し、アルミニウムの表面には、金属酸化膜である表面皮膜(自然皮膜)が形成される。通常、アルミニウム酸化物は絶縁性である。ところが不思議なことに、例えば、アルミニウム部材と他の導電部材(銅、ステンレス、またはカーボン等)を接触させて両者の間に電流を流しても、両者の間で大きな電圧降下は生じない。アルミニウムと他の導電部材との間に介在するアルミニウム表面皮膜の抵抗が小さいためである。しかし、アルミニウム表面皮膜の抵抗をさらに小さくする方法が求められるようになってきた。一般には、表面皮膜の抵抗をR、表面皮膜の抵抗率をρ、表面皮膜の厚さをl、両者の接触面積をSとすれば、式(1)の関係があると考えられている。
  R=ρl/S   (1)
 抵抗Rを下げるためには、ρを小さくする、lを小さくする(表面皮膜の厚さを薄くする)、または、Sを大きくする(接触面積を大きくする)しか方法がないと考えられていた。
 ρはアルミニウムの自然皮膜、または、何らかの表面処理によって形成されたアルミニウムの表面皮膜の特性に応じて決まる。しかしながら、ρを小さくする良い方法は見出されていない。lに関して、自然皮膜の厚さは約3nmである。自然皮膜の厚さはアルミニウム部材の製造条件によって若干変化し、また、使用環境または保管状態によっては、自然皮膜は徐々に厚くなる。表面処理によって形成される表面皮膜の厚さは、一般に自然皮膜より厚くなる。それゆえ、lを小さくする良い方法は見出されていない。Sに関して、接触面の形状を工夫することによってSを大きくすることができる。一般にはSを大きくすることが行われるが、Sを増大させることには限度がある。
 例えば、アルミニウム部材に接触する他の導電部材の形状が粒子状である場合、アルミニウム部材と粒子状導電部材との接触面積Sが小さくなる。この場合、アルミニウム部材の表面に導電性膜を付与する方法がある。具体的には、カーボンを主体とする導電剤またはDLC(ダイアモンドライクカーボン)を表面皮膜上に付与することにより、表面皮膜と粒子状導電部材との間に入り込む導電性膜を形成する。これにより、実質的に接触面積Sを大きくし、Rを小さくすることができる。
吉森孝良 他、「階段状加熱-電量滴定法によるアルミニウム表面の水の挙動の検討」、日本金属学会誌、p950-p955、47巻、1983
 しかしながら、導電性膜を形成する方法では、アルミニウム部材と他の導電部材との間に、追加の膜を設ける必要がある。また、上記方法は、他の導電部材の表面形状によっては効果が見込めない。
 本発明の一態様は、アルミニウム部材の導電性を向上することを目的とする。
 本発明の一態様に係るアルミニウム部材は、アルミニウムまたはアルミニウム合金であるアルミニウム部材であって、上記アルミニウム部材の表面皮膜は、酸化アルミニウムおよび水酸化アルミニウムのうちの少なくとも一方を含み、上記表面皮膜中において水が凝集した部分に形成された半導体部が、上記アルミニウム部材の一表面の1.0cmの面積当たりに100000箇所以上存在する構成である。
 本発明の一態様に係るアルミニウム部材は、アルミニウムまたはアルミニウム合金であるアルミニウム部材であって、上記アルミニウム部材の表面皮膜は、酸化アルミニウムおよび水酸化アルミニウムのうちの少なくとも一方を含み、上記表面皮膜中において水が凝集した部分に形成された半導体部が、上記アルミニウム部材の一表面において占める面積率が、5ppm以上である構成である。
 本発明の一態様に係るアルミニウム部材の製造方法は、アルミニウムまたはアルミニウム合金であるアルミニウム部材の製造方法であって、アルミニウム部材の表面皮膜を粗化処理、熱処理、または圧延処理することにより、上記表面皮膜の導電性を向上させる処理工程を含む方法である。
 本発明の一態様に係るアルミニウム部材は、アルミニウムまたはアルミニウム合金であるアルミニウム部材であって、アルミニウム部材の表面皮膜を粗化処理、熱処理、または圧延処理することにより、上記表面皮膜の導電性を向上させる処理が施された構成である。
 本発明の一態様によれば、アルミニウム部材の導電性を向上させることができる。
電流分布を測定する測定装置の構成を示す模式図である。 アルミニウム部材とプローブとの接触箇所を拡大して示す断面図である。 上記測定装置を用いて得られたAFM像、および電流分布を示す画像である。 電流通過点ではない箇所と、電流通過点とにおいて測定したI-V特性(電流-電圧特性)を示す図である。 アルミニウム箔A、Bに対して、XPS(X線光電子分光)分析を行った結果を示す図である。 アルミニウム箔A、BのXPS分析結果について、エネルギーピークで分離した面積率(%)を示す図である。 TOF-SIMSで検出された、アルミニウム箔Aの表面皮膜のOHの分布を示す画像(ネガ像)である。 熱処理の有無による、Cube方位存在率(%)、電流通過点密度(個/cm)、および銅板との接触抵抗(Ωcm)を示す図である。 粗化処理の有無による、「イオン移動抵抗+電子移動抵抗」と「反応抵抗」とを示す図である。
 アルミニウムの表面皮膜自体の導電性を高める方法を見出すに当たり、まず、式(1)におけるアルミニウムの表面皮膜の抵抗率ρの意味を見直した。通常、ρは体積固有抵抗率である。アルミニウムの表面皮膜の主成分は、酸化アルミニウム(ρ=1014~1015Ωcm)であり、導電性はほとんどないと言える。また、これら酸化アルミニウムまたは水酸化アルミニウム自体のρを小さくすることは技術的に不可能である。しかしながら、実際にはアルミニウムの表面皮膜には十分な導電性がある。このような矛盾が生じる理由について以下に説明する。
 アルミニウムの表面皮膜の導電性を向上させるために、まず表面皮膜に導電性が発現するメカニズムを解明することが重要である。アルミニウムの表面皮膜の導電メカニズムについては、皮膜欠陥説及びトンネル効果説等が提唱されているが、解明されていなかった。本発明者は、後述の実験及び分析結果より、アルミニウムの表面皮膜に導電性がある理由を初めて解明した。
 (電流通過点)
 アルミニウムの表面皮膜の局所的性質を調べるために、2種類のアルミニウム箔について表面皮膜を流れる電流分布の測定を行った。測定にはコンタクティングAFM(原子間力顕微鏡:日本電子製の走査型プローブ顕微鏡JSPM-5200)を用いた。
 図1は、電流分布を測定する測定装置の構成を示す模式図である。アルミニウム部材8の評価は、大気中、室温で行った。アルミニウム部材8は、測定装置の支持台15に設置されたステージ16上に配置される。アルミニウム部材8の下面がステージ16と接触し、アルミニウム部材8の上面がプローブ17の先端と接触する。
 図2は、アルミニウム部材8とプローブ17との接触箇所を拡大して示す断面図である。アルミニウム部材8は、アルミニウム箔であり、酸化されていない内部の金属アルミニウム8aと、表面皮膜8bとを含む。表面皮膜8bは、酸化アルミニウムと水酸化アルミニウムとの混合物である。図2には示されていないが、金属アルミニウム8aのステージ16側にも表面皮膜8bが形成されている。
 ステージ16と、コンタクティングAFMのカンチレバー18との間には、アルミニウム部材8に両方向の電圧を印加可能な電源装置19及び、電流計20が直列接続されている。一方、カンチレバー18とステージ16との間には電圧計21が接続されている。電流計20を用いてアルミニウム部材8を流れる電流Iを測定し、電圧計21を用いてアルミニウム部材8に印加された電圧Vを測定することができる。なお、電流計20の内部抵抗は測定系に対して十分低く、電圧計21の内部抵抗は測定系に対して十分高い。
 コンタクティングAFMのカンチレバー18には、Budget sensors社製、型番Tap190E-Gを用いた。カンチレバー18には、プローブ17が設けられている。プローブ17には、シリコンの上に5nm厚のクロムメッキがされ、クロムメッキの上にさらに25nm厚の白金メッキがされたプローブを用いた。プローブ17の先端径は約25nmであった。すなわち、プローブ17の先端にある白金メッキ層がアルミニウム箔の表面皮膜に接触する部分の直径が約25nmであり、表面皮膜と白金メッキ層の接触面積は約450nmであった。共振周波数は190kHzであった。
 アルミニウム部材8としては、アルミニウム箔Aとアルミニウム箔Bとの2種類を用いた。アルミニウム箔A、Bともに、材質は1085(Alは99.85%、他元素として主にFe、Siを含有)、サイズは50mm×50mm、厚さは約0.1mmである。アルミニウム箔Aは、一般的なプレーンのアルミニウム箔であり、表面加工は行われていない。アルミニウム箔Bは、プレーンのアルミニウム箔に対してサンドブラストによって表面に凹凸加工が施されたアルミニウム箔である。
 上記測定装置を用いて、アルミニウム部材8側にバイアス電圧として-50mVを印加し、かつ、アルミニウム部材8の表面にプローブ17をコンタクトさせた状態で、プローブ17の先端を25μm×25μmの範囲でスキャンさせた。すなわち、負のバイアス電圧を印加することは、プローブ17に対して、ステージ16側がマイナス電圧となっていることを意味する。電流はアルミニウム部材8の表面に垂直な方向に流れる。
 図3は、上記測定装置を用いて得られたAFM像、および電流分布を示す画像である。図3の(a)は、アルミニウム箔AについてAFMによって得られた表面形状を示す画像である。図3の(b)は、アルミニウム箔BについてAFMによって得られた表面形状を示す画像である。図3の(c)は、アルミニウム箔Aについて電流が流れた箇所を示す画像である。図3の(d)は、アルミニウム箔Bについて電流が流れた箇所を示す画像である。図3の(c)(d)において、濃い箇所(黒い点)は電流が流れた箇所を示す。明るい箇所(白い箇所)では、電流はほとんど流れなかった(流れる電流が非常に小さかった)。
 図3の(c)(d)から分かるように、アルミニウム箔の表面において、一様に電流が流れるのではなく、電流が流れるいくつかの点が分散して存在していた。アルミニウム箔の表面において電流が流れる各領域は小さいので、ここでは、この領域のことを電流通過点と呼ぶことにする。アルミニウム箔Aに比べて、表面加工がされたアルミニウム箔Bでは、電流通過点の数(密度)が多いことが分かった。
 図4は、電流通過点ではない箇所と、電流通過点とにおいて測定したI-V特性(電流-電圧特性)を示す図である。図4の(a)は、電流通過点ではない箇所のI-V特性を示す。図4の(b)は、電流通過点のI-V特性を示す。アルミニウム箔上において、プローブ17を電流通過点または電流通過点ではない箇所に固定して、I-V特性を測定した。アルミニウム箔側のバイアス電圧を-0.2Vから+0.2Vまで変化させ、掃引速度を25mV/sとした。
 図4の(a)に示すように、電流通過点ではない箇所においては、このバイアス電圧の範囲では電流は流れなかった。このことは、電流通過点ではない箇所におけるアルミニウムの表面皮膜が絶縁体または高抵抗体であることを意味する。これに対し、図4の(b)に示すように、電流通過点においては、+0.2V~-0.015Vの範囲では電流は流れなかったが、-0.015Vより低いバイアス電圧で大きな電流が流れた。このように、電流通過点では、表面皮膜は整流性を示した。整流性が見られるということは、アルミニウム箔の金属(アルミニウム)部分と表面皮膜との界面がショットキー接合されていることを意味し、電流通過点における表面皮膜がp型半導体であることを意味する。図3の(c)に示すように、アルミニウム箔Aにおいて、25μm×25μmの範囲に存在する電流通過点は20個程度であり、該範囲の大部分は絶縁性を示した。図3の(d)に示すように、アルミニウム箔Bにおいて、25μm×25μmの範囲に存在する電流通過点はアルミニウム箔Aに比べてかなり多いものの、ほとんどの領域は絶縁性を示した。
 アルミニウム箔の表面皮膜の電流分布の測定結果より、アルミニウム箔の表面皮膜の大部分は絶縁体であるのに対し、ごく一部の領域は、電流を通すことが可能で、整流性を有し、かつ、p型半導体であることが判明した。
 (表面皮膜における水)
 一般に、アルミニウムの表面皮膜には吸着水および結合水が存在する。吸着水は、表面皮膜の外側(表面)に吸着する水である。結合水は、水酸化アルミニウムの一種であるギブサイトまたはバイヤライト(Al(OH)またはAl・3HO)を200℃~300℃に加熱すると酸化アルミニウムAlと水HOまたはベーマイトAl・HOと水HOに分解されて出てくる水である。結合水は、常温では水としては存在しない。
 酸化アルミニウムAlに水が結合したAl・3HOと水酸化アルミニウムAl(OH)は、いずれも同じ化学式HAlOで表すことができる。結合水が酸化アルミニウムと反応して水酸化アルミニウムになり、水酸化アルミニウムとして表面皮膜中に存在するとの見方がある。しかしながら、水酸化アルミニウム粉末を大気中で加熱してTG・DTA分析を行うと、200~300℃で熱分解を起こし、水酸化アルミニウムは酸化アルミニウムと水に分解される。
 非特許文献1の実験結果では、アルミニウム箔を加熱すると、100℃で表面の吸着水が脱離し、400℃で脱離した0.4mg/mの水が検出されている。また、非特許文献1の実験結果では、600℃でも水が脱離することが報告されている。600℃で脱離する水は、ベーマイトAl・HOに由来すると考えられている。なお、4N高純度アルミニウムと99.4%アルミニウム箔とでは、熱挙動は同じであったとのことである。
 後述の通り、XPS分析によるとアルミニウム箔の表面においてAl(OH)の占める面積率は約10%である。表面皮膜の厚さを3nmとすると、Al(OH)に由来するHOは0.25mg/m程度と計算できる。この値は、非特許文献1の実験で検出された0.4mg/mよりも小さな値である。このことは、表面皮膜中に水酸化アルミニウムに由来しない水がかなり含まれていることを示している。ここでは、この水を含有水と呼ぶことにする。酸化アルミニウムと水とが反応して水酸化アルミニウムが生成された場合、余剰の水は水酸化アルミニウムと弱い力で結合して含有水として存在すると考えられる。この含有水と水酸化アルミニウムとの結合が強くなければ、含有水分子は近接する含有水分子と水素結合で引き合い、(表面皮膜中を比較的自由に移動して)凝集すると推測できる。
 (XPS分析)
 表面皮膜の電流通過点がどのような物質であるかを調べるため、アルミニウム箔A、Bに対して、XPS分析を行った。なお、XPS分析の前に、アルミニウム箔A、Bに対してArスパッタ処理を行い、表面の油分を除去した。ここでは、アルミニウム箔A、Bの表面の直径数mmの範囲についてXPS分析を行った。得られた物質の存在割合は、上記範囲での平均を示すものである。
 図5は、アルミニウム箔A、Bに対して、XPS(X線光電子分光)分析を行った結果を示す図である。図5の(a)は、アルミニウム箔Aについての結合エネルギーの分布を示す図である。図5の(b)は、アルミニウム箔Bについての結合エネルギーの分布を示す図である。図5の(a)(b)において、結合エネルギーの分布を、O1sのピークについて、Al、Al(OH)、HOのエネルギーピーク(面積%)で分離した結果も示す。
 図6は、アルミニウム箔A、BのXPS分析結果について、エネルギーピークで分離した面積率(%)を示す図である。これらの結果から、アルミニウム箔A、Bの両方において、Alが80%以上、Al(OH)が10%程度、HOはAl(OH)の半分程度存在することが分かった。アルミニウム箔Aよりアルミニウム箔Bの方が、Al(OH)およびHOの面積%が共に大きい(Al(OH)およびHOが多く存在している)ことが分かった。これより、HOは、Al(OH)が多く存在しているところに多く存在すると推定できる。ここで示すHOは含有水であると考えられる。
 Alの抵抗率は例えば1×1012Ωcm以上であり、良好な絶縁体である。またAl(OH)の抵抗率は例えば粉末で2×10~5×10Ωcmであり、高抵抗体である。本発明者は、表面皮膜中の水HOが電流通過点に関係していると考えた。その場合、電流通過点はアルミニウム箔の表面のごく一部にしか存在しないという事実を考え合わせると、水HOは表面皮膜に均一に分散しているのではなく、微視的には水HOは、所々に凝集しており、不均一に分散して存在していると考えられる。特に水HOが凝集している部分が電流通過点になると推測できる。この凝集した水は上述の含有水であると考えられる。
 (表面皮膜における水の分布)
 次に、アルミニウム箔の表面皮膜における水の分散状態を調べた。図6に示すように、水HOが占める面積率は水酸化アルミニウムの面積率と関係があるが、酸化アルミニウムの面積率とは関係がないことが分かった。すなわち、XPS分析の結果は、水酸化アルミニウムの占める面積率が高いと、水HOの占める面積率も高いことを示している。表面皮膜中において、水酸化アルミニウムが多く存在する部分には、水HOも多く存在し、酸化アルミニウムが多く存在する部分には、水HOは少ないと言うことができる。表面皮膜の表面における水酸化アルミニウムの分布の測定は、TOF-SIMS(飛行時間型二次イオン質量分析法)を用いて調べることができる。
 図7は、TOF-SIMSで検出された、アルミニウム箔Aの表面皮膜のOHの分布を示す画像(ネガ像)である。濃い箇所(黒い点)は、二次イオン(OH)の検出が多いことを示す。測定範囲は100μm×100μmである。図中のm/zは質量電荷比(質量数を電荷数で割ったもの)である。m/z=17はOHを示す。すなわち、OHの分布は、水酸化アルミニウムAl(OH)の分布を示す。図7に示すように、圧延によるアルミニウム箔表面の模様に起因する濃淡の他に、濃い点がいくつか存在していた。これは、水酸化アルミニウムが占める割合が高い箇所が、点状に分散して存在することを示す。水HOは水酸化アルミニウムが多いところに多く存在するので、アルミニウムの表面皮膜には水の密度が高い部分が存在することが確認できた。
 図3の(c)に示すように、アルミニウム箔Aの25μm×25μmの範囲には20個ほどの電流通過点が存在しているが、複数の電流通過点が集合している部分は1つしかなかった。一方、図7に示すように、アルミニウム箔Aの100μm×100μmの範囲には10個ほどの水密度が高い部分が存在している。それゆえ、電流通過点の密度と水密度が高い部分の密度とは、概略して同程度と言うことができる。このことより、アルミニウムの表面皮膜の電流通過点は、表面皮膜の表面の水密度が高い部分に形成されると考えられる。
 (表面皮膜の導電メカニズム)
 アルミニウムの表面皮膜に導電性が生じるメカニズムを以下にまとめる。
 アルミニウムの表面皮膜は、酸化アルミニウムおよび水酸化アルミニウムのうちの少なくとも一方を含む。通常は、アルミニウムの表面皮膜は、酸化アルミニウムおよび水酸化アルミニウムの両方を含む。表面皮膜の主成分である酸化アルミニウムは、絶縁体であり導電性はない。
 アルミニウムの表面皮膜中には、結合水以外の水(含有水)が存在する。含有水は、表面皮膜中において分散して存在しているが、均一に分散しているのではなく、含有水の一部は高密度に凝集して存在する。また、含有水は酸化アルミニウムが存在する部分よりも水酸化アルミニウムが存在する部分により多く凝集しやすい。
 表面皮膜中において、含有水が高密度に凝集した部分は点状に存在する。該部分はp型半導体となって導電性を示す。該部分が電流通過点に対応する。半導体部分は、表面に垂直な方向に、表面皮膜を貫通するように存在する。電流通過点の面密度は低く、一般的なアルミニウム箔では、30000個/cm程度である。なお、1つの電流通過点の大きさ(直径)は、およそ0.1μm程度である。電流通過点は、単体で存在する点もあるが、数個~数十個が集合することが多い。
 金属アルミニウムと上記p型半導体の接合部分は、ショットキー接合となり、整流性を示す。
 金属アルミニウム側に負のバイアス電圧を印加すると、極性の方向はショットキー接合の順方向となる。約-0.015VがON電圧となり、これ以上の電圧(-0.015~0V)では微少電流しか流れない。約-0.015Vより低い電圧(絶対値が大きい負電圧)で電流が立ち上がり、順方向電流が流れる。
 金属アルミニウム側に正のバイアス電圧を印加すると、極性の方向はショットキー接合の逆方向となる。そのため、微少電流しか流れない。正のバイアス電圧が降伏電圧よりも大きくなると急に大きな電流が流れる。降伏電圧は+0.04~+0.3V辺りであると考えられる。
 表面皮膜上の電流通過点では、順方向および逆方向の比較的低いバイアス電圧で両方向に電流が流れる。すなわち、バイアス電圧が-0.015~+0.04Vの範囲では微少電流しか流れないが、-0.015Vより低いバイアス電圧または+0.04Vより高いバイアス電圧ではよく電流が流れる。よって、実質的にアルミニウムの表面皮膜(酸化皮膜)は整流性を示さず、良好な導電性を示す。
 (導電性を向上させる方法)
 アルミニウムの表面皮膜の導電性を改善するためには、体積固有抵抗ではなく、単位面積当たりの、電流通過点の数または電流通過点が占める面積に着目することが重要である。
 通常のアルミニウムの表面皮膜は、主として酸化アルミニウムおよび水酸化アルミニウムを含む。上述のように、酸化アルミニウムおよび水酸化アルミニウムの抵抗率は極めて大きく、表面皮膜の大部分は実質的に絶縁体と考えられる。これに対し、表面皮膜の電流通過点の抵抗率は1.3Ωcm程度と考えられる。1つの電流通過点の占める面積は、およそ1.0×10-10cm(0.1μm×0.1μm)であり、いずれの電流通過点もほぼ同程度の面積である。表面皮膜の厚さを3nmとすると、1つの電流通過点の抵抗値は約3.8kΩと計算できる。通常のアルミニウムの表面皮膜における電流通過点の存在密度は、約32000個/cmである。これから、表面皮膜の平均の面抵抗は0.12Ωcmと計算できる。
 表面皮膜における電流通過点の面密度を増加させると、これに反比例して、表面皮膜の面抵抗は下がることになり、表面皮膜の導電性を向上させることができる。このように、アルミニウムの表面皮膜の導電性は、表面皮膜における電流通過点の面密度で決定される。
 アルミニウムの表面皮膜は、酸化アルミニウム、水酸化アルミニウム、またはそれらの混合物と、含有水とを含む。含有水は、表面皮膜中において、凝集し、不均一に存在している。表面皮膜中において、含有水が高密度に存在する部分が、電流通過点となり、導電性を有する。
 アルミニウムの表面皮膜の導電性を向上させるために、(1)表面皮膜中において含有水が凝集している部分を増やす、または(2)含有水が凝集している部分の面積率を高くすることが考えられる。これにより微視的に、電流通過点の数または面積が増加することにより、導電性が向上したアルミニウムの表面皮膜が得られる。これにより、アルミニウム部材の導電性を向上させることができる。
 電流通過点の存在密度が100000個/cm以上であることにより、実質的に表面皮膜の抵抗を通常の表面皮膜の抵抗の約1/3以下にすることができ、導電性の向上に効果的である。さらには電流通過点の存在密度が200000個/cm以上であることにより、表面皮膜の抵抗を実質的に約1/6以下にすることができ、より効果的である。通常の表面被膜の電流通過点の面積率は約3.2ppmである。電流通過点の面積率が5ppm以上であることにより、実質的に表面皮膜の抵抗を通常の表面皮膜の抵抗の約2/3以下にすることができ、導電性の向上に効果的である。さらには電流通過点の面積率が10ppm以上であることにより、実質的に表面皮膜の抵抗を約1/3以下にすることができ、より効果的である。さらには電流通過点の面積率が20ppm以上であることにより、実質的に表面皮膜の抵抗を約1/6以下にすることができ、より効果的である。以下により具体的な方法について説明する。
 [実施形態1]
 アルミニウム部材の表面を機械的に粗化処理し、アルミニウム部材の表面を微視的に粗く加工する。上記粗化処理としては、例えば、サンドブラスト、液体ホーニング、ショットピーニング、放電加工、レーザダル加工、微粉末溶射等の方法を用いることができる。これ以外の方法として、以下の機械的方法、化学的方法、または物理的方法を採用することもできる。機械的方法として、例えば、アルミニウム部材の表面をエメリー紙等の研磨紙で擦る方法、および、サンドブラスト等のブラスト加工を用いてアルミニウム部材の表面を粗面化する方法を挙げることができる。化学的方法として、アルミニウム部材の表面を酸等によりエッチングする方法等を挙げることができる。物理的方法として、スパッタリング等により、アルミニウム部材の表面にイオンを衝突させて、表面を粗面化する方法等を挙げることができる。これらの方法から、1つの方法を使用してもよいし、複数の方法を併用してもよい。
 アルミニウム部材の表面を加工すると、アルミニウム部材の表面皮膜が局所的に破断し、瞬間的に金属アルミニウムが露出する。ただし、露出した金属アルミニウムはすぐに空気中の酸素と反応して、新たなアルミニウム酸化物(酸化アルミニウムまたは水酸化アルミニウム)が生成される。この過程で、空気中の水蒸気が、表面皮膜中に取り込まれ、表面皮膜中の含有水となる。これにより、含有水が凝集している部分を増加させることができ、表面皮膜における電流通過点を増加させることができる。含有水が凝集している部分(電流通過点)は半導体として振る舞う。半導体部の中のキャリア移動によって、表面皮膜全体が表面に垂直な方向に高い導電性を示す。それゆえ、アルミニウム部材の表面の導電性を向上させることができる。
 [実施形態2]
 表面皮膜において金属アルミニウムの(100)結晶方位が細かく分散するように、圧延法でアルミニウム部材を製造する。また、熱間圧延後冷間圧延を繰り返して製造する際に、最終冷間圧延の前に熱処理を行ってもよい。例えば、熱処理は、アルゴン等の不活性ガス雰囲気中で200℃、10時間の条件で行うことができる。金属アルミニウムの結晶方位には、(100)、(110)、(111)等がある。このうち、(100)の仕事関数が最も高く、それゆえ含有水を引きつけやすい。よって、金属アルミニウムの表面(表面被膜との界面)に(100)面を多く露出させることで、電流通過点を増加させることができる。
 なお、含有水の凝集点(電流通過点)をSEMで観察しても、表面被膜に特別な構造は見出されない。そこで、金属アルミニウムの(100)結晶方位と(100)面に接する表面被膜中の水濃度に関係があると推定した。金属アルミニウムの仕事関数は結晶方位により異なり、(100)面が4.41eV、(110)面が4.06eV、(111)面が4.24eVと言われている。表面被膜の酸化アルミニウムの仕事関数は4.28eV程度と言われている。(100)面は、他の面より電子を受け取りやすい状態(電気化学では貴な電位)である。(100)面と水分子の酸素電子対(δ-)との間で結合力が生じ、これにより(100)面の表面の水濃度が高くなると考えられる。
 (効果)
 上述の実施形態で得られるアルミニウム部材では、以下の効果が得られる。
 表面皮膜における電流通過点を増加させることにより、アルミニウム部材に接触させる他の導電部材との、電気的接点または接触面積が増加する。そのため、アルミニウム部材と他の導電部材との間の接触抵抗を大幅に低減することができる。
 (応用)
 上記の方法で得られた導電性のよいアルミニウム部材は、導電部材として利用することができる。例えば、該アルミニウム部材を、バスバーまたはリチウムイオン電池(二次電池)の集電体(正極または負極)として利用することができる。バスバーは、電気接続に用いられる導体である。
 なお、上記の実施形態におけるアルミニウム部材は、主としてアルミニウムを材料とするものでも、アルミニウム合金を材料とするものでも、いずれでもよい。アルミニウム部材の形状は、箔、板、線に限らず、任意の形状の部材であってよい。
 また、上記の方法は、アルミニウム以外のバルブ金属である、チタン、タンタル、ニオブ、ジルコニウム、タングステン、ハフニウム、および、これらそれぞれの合金においても適用することができる。
 〔まとめ〕
 本発明の一態様に係るアルミニウム部材は、アルミニウムまたはアルミニウム合金であるアルミニウム部材であって、上記アルミニウム部材の表面皮膜は、酸化アルミニウムおよび水酸化アルミニウムのうちの少なくとも一方を含み、上記表面皮膜中において水が凝集した部分に形成された半導体部が、上記アルミニウム部材の一表面の1.0cmの面積当たりに100000箇所以上存在する構成である。
 本発明の一態様に係るアルミニウム部材は、アルミニウムまたはアルミニウム合金であるアルミニウム部材であって、上記アルミニウム部材の表面皮膜は、酸化アルミニウムおよび水酸化アルミニウムのうちの少なくとも一方を含み、上記表面皮膜中において水が凝集した部分に形成された半導体部が、上記アルミニウム部材の一表面において占める面積率が、5ppm以上である構成である。
 本発明の一態様に係るバスバーは、上記アルミニウム部材を用いた構成である。
 本発明の一態様に係る二次電池用集電体は、上記アルミニウム部材を用いた構成である。
 本発明の一態様に係るアルミニウム部材の製造方法は、アルミニウムまたはアルミニウム合金であるアルミニウム部材の製造方法であって、アルミニウム部材の表面皮膜を粗化処理、熱処理、または圧延処理することにより、上記表面皮膜の導電性を向上させる処理工程を含む方法である。
 上記処理工程によって、上記表面皮膜中において水が凝集した部分に形成された半導体部の、上記アルミニウム部材の一表面の面積当たりの数を増加させてもよい。
 上記処理工程によって、上記表面皮膜中において水が凝集した部分に形成された半導体部が、上記アルミニウム部材の一表面において占める面積率を増加させてもよい。
 本発明の一態様に係るアルミニウム部材は、アルミニウムまたはアルミニウム合金であるアルミニウム部材であって、アルミニウム部材の表面皮膜を粗化処理、熱処理、または圧延処理することにより、上記表面皮膜の導電性を向上させる処理が施された構成である。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明の一実施例について説明する。ここでは、加熱処理により(100)が成長しやすい高純度アルミニウム板を用いた。なお、バスバー用アルミニウム部材としてよく使用される6000系合金(Al-Mg-Si)を用いてもよい。
 試料として、4Nアルミニウム板(厚さ0.1mm、表面粗さRa=0.7μm)100mm×100mmから切り出した小片(10mm×50mm)を3個用意した。各試料の先端20mmの部分の片面(一表面)を、電解研磨による表面仕上げで、表面粗さRaを0.1μmにした。この電解研磨された面を以下の観察対象とした。このようにして得られた3個の試料を試料1~3とした。また、最終冷間圧延の前にアルゴンガス中で200℃で10時間熱処理を行ったこと以外は試料1~3と全く同じ処理を行った3個の試料を用意し、試料4~6とした。これらの試料を用いて、表面皮膜の電流通過点と表面皮膜の(100)結晶方位(Cube方位)との関係を調べた。
 試料1(熱処理なし)と試料4(熱処理あり)とのそれぞれについて、EBSP(Electron Backscatter Diffraction Pattern:電子後方散乱回折像)観察を行い、試料表面の結晶方位の分布像を得た。得られた像から(100)結晶方位であるCube方位の存在率(面積率)を測定した。試料の表面におけるCube方位の存在率は、試料1(熱処理なし)で0.1%、試料4(熱処理あり)で10%であった。
 試料2(熱処理なし)と試料5(熱処理あり)とのそれぞれについて、AFMをコンタクトモードにし、プローブの先端を試料の表面に接触させた。プローブを基準として試料2、5にバイアス電圧-0.05Vを印加して、25μm×25μmの範囲をスキャニングすることにより電流通過点の数を数えた。次に、試料2、5にバイアス電圧+0.05Vを印加して、別の25μm×25μmの範囲をスキャニングすることにより電流通過点の数を数えた。電流通過点の存在密度は、バイアス電圧の違いにはほとんど関係なかった。ただし、試料2(熱処理なし)における電流通過点の存在密度は、約34000個/cmであった。一方、試料5(熱処理あり)における電流通過点の存在密度は、約240000個/cmであった。熱処理によって電流通過点の存在密度が大幅に増加することが分かった。ただし、Cube方位の存在率と電流通過点の存在密度とは、比例関係ではなかった。
 試料3(熱処理なし)と試料6(熱処理あり)とのそれぞれについて、試料の電解研磨された面と、銅板(厚さ0.1mm、10mm×50mm、表面粗さRa=0.1μm)の面とが面積1.0cmの範囲で均一に接触するよう、各試料と銅板とをプレスした。各試料と銅板の間に定電流10.0mAを流し、各試料と銅板との接触面の中央の電圧を精密に測定した。ここから、各試料と銅板との接触抵抗を求めた。試料3(熱処理なし)について、接触抵抗は0.15Ωcmであった。試料6(熱処理あり)について、接触抵抗は0.05Ωcmであった。
 図8は、熱処理の有無による、Cube方位存在率(%)、電流通過点密度(個/cm)、および銅板との接触抵抗(Ωcm)を示す図である。これより、アルミニウム部材の(100)面(Cube方位)を増加させることは、表面皮膜の導電性を向上させる手段として、大変有用であることが分かった。
 本発明の他の実施例について説明する。リチウムイオン電池の正極集電体によく使用される、アルミニウム箔(1N30(99.3%Al)、100mm×100mm×厚さ15μm、表面粗さRa=0.2μm)を2個用意し、試料11、12とした。試料12については表面を機械的に粗くする粗化処理を行った。具体的には、上記アルミニウム箔の両面に、粒径40μmの投射グリッド粒子を用いてショットダル加工を施した。ショットダル加工の後、蒸留水でアルミニウム箔の表面に残留する投射グリッド粒子を洗い流したものを試料12とした。試料12の表面粗さRaは0.8μmになった。試料11(粗化処理なし)の中央付近から10mm×10mmを切り出した試料を試料13とした。試料12(粗化処理あり)の中央付近から10mm×10mmを切り出した試料を試料14とした。
 試料13(粗化処理なし)と試料14(粗化処理あり)とのそれぞれについて、AFMをコンタクトモードにし、プローブの先端を試料の表面に接触させた。プローブを基準として試料13、14にバイアス電圧-0.05Vを印加して、25μm×25μmの範囲をスキャニングすることにより電流通過点の数を数えた。試料13(粗化処理なし)における電流通過点の存在密度は、約32000個/cmであった。一方、試料14(粗化処理あり)における電流通過点の存在密度は、約260000個/cmであった。粗化処理によって電流通過点の存在密度が大幅に増加することが分かった。
 試料11(粗化処理なし)および試料12(粗化処理あり)をリチウムイオン電池の正極集電体として使用した場合の内部抵抗を調べるために、実際に正極を製作した。試料11(粗化処理なし)および試料12(粗化処理あり)を、それぞれ30mm×100mmに切断した。リチウムイオン電池の正極とするために、各試料の先端から30mmまでの片面に、正極活物質のペーストを塗工した。具体的には、活物質としてLFP(リン酸鉄リチウム、平均粒子径1.0μm)、導電助剤としてアセチレンブラック(一次粒子径5nm)を5質量%、バインダーとしてPVDF(ピリフッ化ビニリデン)を5質量%、溶剤としてNMP(N-メチル-2-ピロリドン)をそれぞれ用い、これらを混ぜ合わせたものをペーストとした。各試料にペーストを塗工した後、大気中80℃で、30分間乾燥させた。電極面積が2.0cmになるように塗工部周囲および試料の反対面を絶縁材で被覆して、試料の電極作用面以外は電解液と接触しないようにした。試料11から製作した正極を正極1とし、試料12から製作した正極を正極2とした。正極1と正極2との違いは、アルミニウム箔の表面に粗化処理を行ったか否かであり、それ以外は全く同じとした。
 電極内部抵抗の測定を界面インピーダンス法で行った。対極にリチウム金属を用い、電解液としてLiPFをEC:EMC=3:7の溶媒に溶解した溶液を用いた。電解液の温度は25℃とした。測定したインピーダンスをナイキストプロットにまとめ、「イオン移動抵抗+電子移動抵抗」と「反応抵抗」とに分離した。
 図9は、粗化処理の有無による、「イオン移動抵抗+電子移動抵抗」と「反応抵抗」とを示す図である。正極2(粗化処理あり)は正極1(粗化処理なし)に比べて、「イオン移動抵抗+電子移動抵抗」が47%減少し、「反応抵抗」が64%減少していた。粗化処理によって、正極の内部抵抗を大きく減少させることができることが分かった。
8  アルミニウム部材
8a 金属アルミニウム
8b 表面皮膜
16 ステージ
17 プローブ
18 カンチレバー

Claims (8)

  1.  アルミニウムまたはアルミニウム合金であるアルミニウム部材であって、
     上記アルミニウム部材の表面皮膜は、酸化アルミニウムおよび水酸化アルミニウムのうちの少なくとも一方を含み、
     上記表面皮膜中において水が凝集した部分に形成された半導体部が、上記アルミニウム部材の一表面の1.0cmの面積当たりに100000箇所以上存在することを特徴とするアルミニウム部材。
  2.  アルミニウムまたはアルミニウム合金であるアルミニウム部材であって、
     上記アルミニウム部材の表面皮膜は、酸化アルミニウムおよび水酸化アルミニウムのうちの少なくとも一方を含み、
     上記表面皮膜中において水が凝集した部分に形成された半導体部が、上記アルミニウム部材の一表面において占める面積率が、5ppm以上であることを特徴とするアルミニウム部材。
  3.  請求項1または2に記載のアルミニウム部材を用いたことを特徴とするバスバー。
  4.  請求項1または2に記載のアルミニウム部材を用いたことを特徴とする二次電池用集電体。
  5.  アルミニウムまたはアルミニウム合金であるアルミニウム部材の製造方法であって、
     アルミニウム部材の表面皮膜を粗化処理、熱処理、または圧延処理することにより、上記表面皮膜の導電性を向上させる処理工程を含むことを特徴とするアルミニウム部材の製造方法。
  6.  上記処理工程によって、上記表面皮膜中において水が凝集した部分に形成された半導体部の、上記アルミニウム部材の一表面の面積当たりの数を増加させることを特徴とする請求項5に記載のアルミニウム部材の製造方法。
  7.  上記処理工程によって、上記表面皮膜中において水が凝集した部分に形成された半導体部が、上記アルミニウム部材の一表面において占める面積率を増加させることを特徴とする請求項5に記載のアルミニウム部材の製造方法。
  8.  アルミニウムまたはアルミニウム合金であるアルミニウム部材であって、
     アルミニウム部材の表面皮膜を粗化処理、熱処理、または圧延処理することにより、上記表面皮膜の導電性を向上させる処理が施されたことを特徴とするアルミニウム部材。
PCT/JP2017/038982 2016-11-02 2017-10-27 アルミニウム部材、および、アルミニウム部材の製造方法 WO2018084091A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17868345.4A EP3536820A4 (en) 2016-11-02 2017-10-27 ALUMINUM ELEMENT AND PROCESS FOR PRODUCING ALUMINUM ELEMENT
US16/344,425 US20200227756A1 (en) 2016-11-02 2017-10-27 Aluminum member and method for producing aluminum member
CN202210511471.3A CN115148999A (zh) 2016-11-02 2017-10-27 铝电极以及铝电极的制造方法
CN201780066428.8A CN109890996A (zh) 2016-11-02 2017-10-27 铝构件以及铝构件的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-215609 2016-11-02
JP2016215609A JP6894211B2 (ja) 2016-11-02 2016-11-02 アルミニウム部材、および、アルミニウム部材の製造方法

Publications (1)

Publication Number Publication Date
WO2018084091A1 true WO2018084091A1 (ja) 2018-05-11

Family

ID=62076940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038982 WO2018084091A1 (ja) 2016-11-02 2017-10-27 アルミニウム部材、および、アルミニウム部材の製造方法

Country Status (5)

Country Link
US (1) US20200227756A1 (ja)
EP (1) EP3536820A4 (ja)
JP (1) JP6894211B2 (ja)
CN (2) CN115148999A (ja)
WO (1) WO2018084091A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10665685B2 (en) * 2017-11-30 2020-05-26 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and fabrication method thereof
US20220356554A1 (en) * 2020-02-05 2022-11-10 Shibaura Institute Of Technology Fastening member and method for manufacturing same
CN111621841B (zh) * 2020-05-21 2022-05-10 南京理工大学 一种基于TiAl单晶EBSD样品的电解抛光液及其电解方法
CN115046833B (zh) * 2022-08-16 2022-12-09 中铝材料应用研究院有限公司 铝合金的金相覆膜方法及覆膜装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052392A1 (ja) * 2014-09-30 2016-04-07 三菱マテリアル株式会社 Ag下地層付パワーモジュール用基板及びパワーモジュール
WO2016088430A1 (ja) * 2014-12-03 2016-06-09 株式会社日立製作所 耐摩耗材、パッファシリンダ及びパッファ型ガス遮断器
WO2016133144A1 (ja) * 2015-02-20 2016-08-25 エレクセル株式会社 リチウムイオン二次電池
JP2016169415A (ja) * 2015-03-12 2016-09-23 株式会社三ツ矢 Snめっき層を備えた導電材

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270258A (ja) * 2000-03-28 2001-10-02 Fuji Photo Film Co Ltd 平版印刷版用支持体
JP4362053B2 (ja) * 2002-09-02 2009-11-11 富士フイルム株式会社 平版印刷版用支持体およびそれを用いる平版印刷版原版
KR101283824B1 (ko) * 2005-03-17 2013-07-08 쇼와 덴코 가부시키가이샤 전해콘덴서 전극용 알루미늄재, 전해콘덴서용 전극재 및 알루미늄 전해콘덴서
JP4711151B2 (ja) * 2008-11-13 2011-06-29 トヨタ自動車株式会社 正極集電体およびその製造方法
EP2907884B1 (en) * 2012-10-11 2018-05-09 UACJ Corporation Plate-like conductor for bus bar, and bus bar comprising same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052392A1 (ja) * 2014-09-30 2016-04-07 三菱マテリアル株式会社 Ag下地層付パワーモジュール用基板及びパワーモジュール
WO2016088430A1 (ja) * 2014-12-03 2016-06-09 株式会社日立製作所 耐摩耗材、パッファシリンダ及びパッファ型ガス遮断器
WO2016133144A1 (ja) * 2015-02-20 2016-08-25 エレクセル株式会社 リチウムイオン二次電池
JP2016169415A (ja) * 2015-03-12 2016-09-23 株式会社三ツ矢 Snめっき層を備えた導電材

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3536820A4
TAKAYOSHI YOSHIMORI ET AL.: "Investigation of the Behavior of Surface Water on Aluminium Metal by Stepwise Heating-Coulometric Titration", JOURNAL OF THE JAPAN INSTITUTE OF METALS, vol. 47, 1983, pages 950 - 955

Also Published As

Publication number Publication date
CN115148999A (zh) 2022-10-04
CN109890996A (zh) 2019-06-14
EP3536820A4 (en) 2020-04-29
JP2018070980A (ja) 2018-05-10
EP3536820A1 (en) 2019-09-11
US20200227756A1 (en) 2020-07-16
JP6894211B2 (ja) 2021-06-30

Similar Documents

Publication Publication Date Title
WO2018084091A1 (ja) アルミニウム部材、および、アルミニウム部材の製造方法
JP4886884B2 (ja) チタン製燃料電池セパレータおよびその製造方法
JP4886885B2 (ja) チタン製燃料電池セパレータ
JP2014508399A (ja) スーパーキャパシタ用ナノ多孔性電極及びこれの製造方法
JP6535662B2 (ja) 集電体用金属箔の製造方法
JP5696447B2 (ja) 表面処理金属材料の製造方法
JP7350307B2 (ja) Ag-グラフェン複合めっき膜金属製端子とその製造方法
Tallman et al. Improved capacity retention of lithium ion batteries under fast charge via metal-coated graphite electrodes
Oka et al. High-temperature cycling performance of LiNi1/3Co1/3Mn1/3O2 cathode with DLC protective film
JP5142254B2 (ja) リチウムイオン電池の正極板及びその製造方法、ならびに、それを用いたリチウムイオン電池
WO2022185778A1 (ja) 集電体用アルミニウム基材、キャパシタ、二次電池、および、集電体用アルミニウム基材の製造方法
Tingting et al. Enhanced electrocatalytic activity of carbon cloth by synergetic effect of plasma and acid treatment
WO2012026624A1 (ja) 表面改質された導電性材料の製造方法
JP2023504161A (ja) 表面処理銅箔、その製造方法及びこれを含む二次電池用負極
Lee et al. Investigation of the Supercapacitor Performance of Ni0. 8Co0. 15Al0. 02 (OH) 2 from the Co-Precipitation Method
Jafaripour et al. Copper oxide@ cobalt oxide core–shell nanostructure, as an efficient binder-free anode for lithium-ion batteries
US11411335B2 (en) Electrical connection component and method of manufacturing the same
JP2018156921A (ja) アルミ導電部材の製造方法及びアルミ導電部材
JP2005063764A (ja) リチウムイオン二次電池用銅箔及びその製造方法
KR102534518B1 (ko) 알루미늄박, 알루미늄박의 제조 방법, 집전체, 리튬 이온 커패시터, 및, 리튬 이온 배터리
Karimpour et al. Layer-by-Layer Cathodic Deposition of Ni/Ni (OH) 2 Particles on Steel Gauze Electrode for High-Performance Supercapacitor Application
JP2004253311A (ja) 電気接続部材及び電気接続部材の接続方法並びに組電池
Siddeswara et al. Electrochemical Enhancement of Nickel oxide Dispersed Graphene Sheets as Electrode Material for Energy Storage Application
JAMALI et al. Field emission investigation of as-synthesized Cu/ZnO nanostructure films
Kai et al. Improved Electrochemical Performance of Surface-Modified Metal Hydride Electrodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017868345

Country of ref document: EP

Effective date: 20190603