WO2018079637A1 - 電気化学デバイス - Google Patents

電気化学デバイス Download PDF

Info

Publication number
WO2018079637A1
WO2018079637A1 PCT/JP2017/038617 JP2017038617W WO2018079637A1 WO 2018079637 A1 WO2018079637 A1 WO 2018079637A1 JP 2017038617 W JP2017038617 W JP 2017038617W WO 2018079637 A1 WO2018079637 A1 WO 2018079637A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrochemical device
conductive polymer
negative electrode
anion
Prior art date
Application number
PCT/JP2017/038617
Other languages
English (en)
French (fr)
Inventor
林 宏樹
野本 進
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018547744A priority Critical patent/JP7178553B2/ja
Priority to US16/341,945 priority patent/US20190245207A1/en
Priority to CN201780065310.3A priority patent/CN109863633B/zh
Publication of WO2018079637A1 publication Critical patent/WO2018079637A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • H01M4/608Polymers containing aromatic main chain polymers containing heterocyclic rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electrochemical device in which a positive electrode including a conductive polymer capable of doping and undoping anions as a positive electrode active material and a negative electrode including a negative electrode active material capable of occluding and releasing lithium ions are combined.
  • Electrochemical devices having intermediate performance between lithium ion secondary batteries and electric double layer capacitors have attracted attention, and for example, the use of conductive polymers as positive electrode active materials has been studied.
  • Electrochemical devices containing conductive polymers as such positive electrode active materials charge and discharge by anion adsorption (dope) and desorption (de-dope), and thus have a low reaction resistance and a general lithium ion secondary Compared with the positive electrode of the battery, it has a high output.
  • Known examples of the conductive polymer include polyaniline and polypyrrole (see Patent Documents 1 and 2).
  • Electrochemical devices are used as a backup power source for supplying power to devices when power supply to devices such as PCs and servers is interrupted due to, for example, a power failure.
  • a state in which a predetermined voltage is applied to the electrochemical device is maintained (float charging is performed), and power is supplied from the electrochemical device to the device when an abnormality such as a power failure occurs (the electrochemical device is discharged) ).
  • the positive electrode active material conductive polymer
  • the capacity tends to decrease. Therefore, it is important to suppress the capacity decrease after the float charging of the electrochemical device (maintain the float characteristic).
  • one aspect of the present invention is a positive electrode including a conductive polymer capable of doping and undoping anions as a positive electrode active material, a negative electrode including a negative electrode active material capable of inserting and extracting lithium ions, and the anion And an electrolyte solution containing lithium ions, the total amount A (mol) of monomer units constituting the conductive polymer contained in the positive electrode, and the electrochemical device What is the total amount B (mol) of anions? Relational expression: The present invention relates to an electrochemical device satisfying 0 ⁇ B / A ⁇ 0.7.
  • an electrochemical device that combines a positive electrode containing a conductive polymer capable of doping and undoping anions as a positive electrode active material, and a negative electrode containing a negative electrode active material capable of occluding and releasing lithium ions, Capacitance reduction after float charging can be suppressed (float characteristics can be maintained).
  • FIG. 1 is a schematic cross-sectional view of an electrochemical device according to an embodiment of the present invention.
  • FIG. 2 is a schematic view for explaining the configuration of the electrochemical device according to the embodiment.
  • FIG. 3 is a graph showing the relationship between B / A and capacity retention rate in the electrochemical device according to the embodiment of the present invention.
  • the present invention includes a positive electrode including, as a positive electrode material, a conductive polymer capable of doping and undoping anions as a positive electrode active material, a negative electrode including a negative electrode active material capable of occluding and releasing lithium ions, and an anion and lithium ions. And an electrochemical device.
  • the anion in the electrolytic solution is doped into the conductive polymer, and the lithium ions in the electrolytic solution are occluded in the negative electrode material.
  • the anion is dedoped from the conductive polymer and moves into the electrolytic solution, and lithium ions are released from the negative electrode material and move into the electrolytic solution.
  • the conductive polymer includes a case where there is almost no conductivity or no conductivity in the dedope state.
  • the total amount A (mol) of monomer units constituting the conductive polymer contained in the positive electrode and the total amount B (mol) of anions contained in the electrochemical device are related by the following formula: 0 ⁇ B / A ⁇ 0.7 Meet. As the total amount A of monomer units constituting the conductive polymer contained in the positive electrode is larger than the total amount B of anions contained in the electrochemical device, B / A is closer to 0. The total amount B of anions contained in the electrochemical device only needs to include an amount necessary to obtain at least a predetermined discharge capacity.
  • B / A When B / A is within the above range, the float characteristics can be maintained.
  • B / A When B / A is 0.7 or more, the amount of anions contained in the electrolytic solution increases, and the proportion of the conductive polymer doped with anions in the positive electrode during charging increases. Along with this, the ratio of the conductive polymer that deteriorates during long-time float charging increases, so that the float characteristics deteriorate.
  • the conductive polymer can be doped with an appropriate amount of anion from the electrolyte during charging, and a good discharge capacity can be obtained. Moreover, since the quantity of the anion contained in electrolyte solution increases and favorable ionic conductivity is obtained, favorable discharge capacity is obtained.
  • the total amount A (mol) of monomer units constituting the conductive polymer contained in the positive electrode and the amount C (mol) of the anion doped in the conductive polymer contained in the positive electrode in the charged state of the electrochemical device Relational expression: 0 ⁇ C / A ⁇ 0.7 It is preferable to satisfy. In this case, the ratio of the conductive polymer that is doped with anions in the positive electrode during charging can be reduced, and the ratio of the conductive polymer that deteriorates during long-time float charging can be sufficiently reduced. Can be maintained.
  • the electrochemical device is charged, most of the anions in the electrolyte are doped into the positive electrode conductive polymer, and when the electrolyte contains almost no anions, the value of C is almost the same as the value of B. is there.
  • the amount C (mol) of the anion doped in the conductive polymer contained in the positive electrode is calculated from the amount D (mol) of the anion contained in the electrolytic solution in the discharge state of the electrochemical device. Alternatively, a value obtained by subtracting the amount of anion E (mol) contained in the electrolytic solution may be used.
  • the above state of charge refers to the case where the SOC of the electrochemical device is 90 to 100%.
  • the above discharge state refers to a case where the SOC of the electrochemical device is 0 to 10%.
  • SOC state of charge indicates the ratio of the charge amount to the capacity at the time of full charge.
  • the discharge state in which the SOC is 0 to 10% is a state in which the voltage of the electrochemical device is the end-of-discharge voltage, and the charge state in which the SOC is 90 to 100% is the charge of the electrochemical device. This is the state where the end voltage is reached.
  • the end-of-discharge voltage and end-of-charge voltage are determined by the manufacturer, including the charge / discharge conditions. Usually, it can be uniquely determined by the charge / discharge circuit and product information provided by the manufacturer.
  • the charge end voltage is set to, for example, 3.4 to 4.2 V, and the discharge end voltage is usually Set to 2.5-2.6V.
  • the charge end voltage is usually set to 2.4 to 2.5 V, and the discharge end voltage is usually 1.1 to 1.2V.
  • the conductive polymer preferably has at least one anion accepting site per monomer unit constituting the conductive polymer.
  • the anion accepting site means a site where the conductive polymer can theoretically accept (dope) the anion from the viewpoint of the molecular structure of the conductive polymer during charging.
  • polyaniline having aniline as a repeating monomer unit theoretically has one anion accepting site per monomer unit of aniline.
  • the conductive polymer is preferably a ⁇ -conjugated polymer having a repeating unit containing a hetero atom.
  • Heteroatoms (nitrogen atoms, sulfur atoms, etc.) of ⁇ -conjugated polymers tend to interact with anions.
  • the anion is considered to be adsorbed or desorbed from the heteroatom during the redox of the conductive polymer accompanying charge / discharge.
  • Examples of the ⁇ -electron conjugated polymer include a homopolymer and / or a copolymer of at least one polymerizable compound selected from the group consisting of aniline, pyrrole, thiophene, furan, thiophene vinylene, pyridine, and derivatives thereof. Coalescence can be used. That is, as the ⁇ -electron conjugated polymer, a homopolymer containing a monomer unit derived from the polymerizable compound and a copolymer containing a monomer unit derived from two or more kinds of the polymerizable compounds can be used.
  • polyaniline, polypyrrole, polythiophene, polyfuran, polythiophene vinylene, polypyridine, polymer derivatives having these as a basic skeleton, and the like are obtained.
  • the polymer derivative is a polymer of a derivative compound such as an aniline derivative, a pyrrole derivative, a thiophene derivative, a furan derivative, a thiophene vinylene derivative, a pyridine derivative, and the like.
  • the ⁇ -electron conjugated polymer is preferably polyaniline, polypyrrole, polythiophene, or a polymer derivative having these as a basic skeleton. Furthermore, since the capacity density is high, the ⁇ -electron conjugated polymer is more preferably polyaniline.
  • the weight average molecular weight of the conductive polymer is not particularly limited, but is, for example, 1000 to 100,000.
  • Examples of anions that can be doped and dedoped with a conductive polymer in association with charge / discharge include ClO 4 ⁇ , BF 4 ⁇ , PF 6 ⁇ , AlCl 4 ⁇ , SbF 6 ⁇ , SCN ⁇ , CF 3 SO 3 ⁇ , FSO 3 ⁇ , CF 3 CO 2 ⁇ , AsF 6 ⁇ , B 10 Cl 10 ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , BCl 4 ⁇ , N (FSO 2 ) 2 ⁇ , N (CF 3 SO 2 ) 2 ⁇ Etc. Of these, oxo acid anions and imide anions containing halogen atoms are desirable.
  • oxo acid anion containing a halogen atom examples include a tetrafluoroborate anion (BF 4 ⁇ ), a hexafluorophosphate anion (PF 6 ⁇ ), a perchlorate anion (ClO 4 ⁇ ), and a fluorosulfate anion (FSO 3 ⁇ ).
  • PF 6 ⁇ is more preferable because the conductive polymer is easily reversibly doped and de-doped, and 90 mol% or more of the total anions contained in the electrolytic solution in the charged state and the discharged state are PF 6 ⁇ . It may be.
  • the imide anion is preferably a bis (fluorosulfonyl) imide anion (N (FSO 2 ) 2 ⁇ ). These may be used alone or in combination of two or more.
  • the amount of anions in the electrolyte solution is small so that the electrolyte solution contains almost no anions in the charged state (SOC 90 to 100%) (for example, the anion concentration in the charged electrolyte solution is less than 0.5 mol / L). It is preferable to adjust. In this case, the proportion of the conductive polymer that is doped with anions in the positive electrode during charging can be reduced. Therefore, it is easy to reduce the proportion of the conductive polymer that deteriorates even during long-time float charging, and the float characteristics can be maintained better.
  • the conductive polymer tends to be deteriorated. Also from this point, it is preferable to adjust the amount of anion in the electrolytic solution so that the anion concentration of the electrolytic solution in the charged state is less than 0.5 mol / L. However, it is preferable to adjust the amount of anions in the electrolytic solution so that the anion concentration of the electrolytic solution in a charged state is 0.1 mol / L or more. Thereby, the fall of the discharge capacity of an electrochemical device can be suppressed.
  • the amount of anions in the electrolytic solution so that the concentration of anions in the electrolytic solution is about 1.0 to 2.5 mol / L.
  • the anion doped in the conductive polymer during charging can be efficiently dedoped from the conductive polymer during discharging.
  • the positive electrode has, for example, a positive electrode material layer containing the above conductive polymer as a positive electrode active material.
  • the positive electrode material layer is usually carried on a positive electrode current collector.
  • a positive electrode current collector for example, a conductive sheet material is used.
  • a metal foil, a metal porous body, a punching metal, or the like is used.
  • a material of the positive electrode current collector aluminum, an aluminum alloy, nickel, titanium, or the like can be used.
  • the positive electrode material layer may further contain a conductive agent and a binder in addition to the positive electrode active material.
  • a conductive agent include carbon black and carbon fiber.
  • the binder include a fluororesin, an acrylic resin, a rubber material, and a cellulose derivative.
  • the conductive polymer contained in the positive electrode material layer is synthesized by polymerizing a polymerizable compound (monomer) that is a raw material of the conductive polymer.
  • the synthesis of the conductive polymer may be performed by electrolytic polymerization or chemical polymerization.
  • a conductive sheet material for example, metal foil
  • the positive electrode current collector and the counter electrode are immersed in a monomer solution
  • the positive electrode current collector is used as an anode to face the positive electrode current collector.
  • a conductive polymer film (positive electrode material layer) may be formed so as to cover at least a part of the surface of the positive electrode current collector by flowing a current between the electrodes.
  • the monomer solution may contain the anion exemplified above as a dopant, or may contain anions other than the anions exemplified above, such as sulfate ions and nitrate ions. Moreover, you may add the oxidizing agent which accelerates
  • the negative electrode has, for example, a negative electrode material layer containing a negative electrode active material.
  • the negative electrode material layer is usually carried on a negative electrode current collector.
  • a negative electrode current collector for example, a conductive sheet material is used.
  • a metal foil, a metal porous body, a punching metal, or the like is used.
  • a material of the negative electrode current collector copper, copper alloy, nickel, stainless steel, or the like can be used.
  • Examples of the negative electrode active material include carbon materials, metal compounds, alloys, and ceramic materials.
  • As the carbon material graphite, non-graphitizable carbon (hard carbon), and graphitizable carbon (soft carbon) are preferable, and graphite and hard carbon are particularly preferable.
  • Examples of the metal compound include silicon oxide and tin oxide.
  • Examples of the alloy include a silicon alloy and a tin alloy.
  • Examples of the ceramic material include lithium titanate and lithium manganate. These may be used alone or in combination of two or more. Among these, a carbon material is preferable in that the potential of the negative electrode can be lowered.
  • the negative electrode material layer preferably contains a conductive agent, a binder, and the like.
  • a conductive agent those exemplified for the positive electrode material layer can be used.
  • the negative electrode be pre-doped with lithium ions in advance. Therefore, since the electric potential of a negative electrode falls, the electric potential difference (namely, voltage) of a positive electrode and a negative electrode becomes large, and the energy density of an electrochemical device improves.
  • Pre-doping of lithium ions into the negative electrode is, for example, by forming a metal lithium layer as a lithium ion supply source on the surface of the negative electrode material layer, lithium ions are eluted from the metal lithium layer into the electrolyte, and the eluted lithium ions are It progresses by being occluded by the negative electrode active material.
  • a metal lithium layer as a lithium ion supply source
  • lithium ions are eluted from the metal lithium layer into the electrolyte, and the eluted lithium ions are It progresses by being occluded by the negative electrode active material.
  • graphite or hard carbon is used as the negative electrode active material
  • lithium ions are inserted between graphite layers or hard carbon pores.
  • the amount of lithium ions to be predoped can be controlled by the mass of the metallic lithium layer.
  • the negative electrode material layer included in the negative electrode is prepared, for example, by preparing a negative electrode mixture paste in which a negative electrode active material, a conductive agent, a binder, and the like are mixed together with a dispersion medium, and applying the negative electrode mixture paste to the negative electrode current collector. It is formed by.
  • the step of pre-doping lithium ions into the negative electrode may be performed before assembling the electrode group, or pre-doping may be performed after the electrode group is accommodated in the case of the electrochemical device together with the electrolyte.
  • the electrolytic solution includes a solvent (nonaqueous solvent) and a lithium salt dissolved in the solvent.
  • Lithium salt contains the anion doped by the conductive polymer at the time of charge, and the lithium ion occluded by the negative electrode active material.
  • lithium salt examples include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiFSO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl 10 , LiCl, LiB, LiB , LiBCl 4 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 and the like. These may be used individually by 1 type, or may be used in combination of 2 or more type.
  • At least one selected from the group consisting of a lithium salt having an oxoacid anion containing a halogen atom and a lithium salt having an imide anion is desirable to use seeds.
  • the concentration of the lithium salt in the electrolytic solution in the charged state is, for example, less than 0.5 mol / L.
  • Solvents include cyclic carbonates such as ethylene carbonate, propylene carbonate (PC) and butylene carbonate, chain carbonates such as dimethyl carbonate (DMC), diethyl carbonate and ethyl methyl carbonate, methyl formate, methyl acetate, methyl propionate, propionic acid Aliphatic carboxylic acid esters such as ethyl, lactones such as ⁇ -butyrolactone, ⁇ -valerolactone, 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), ethoxymethoxyethane (EME), etc.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate (PC) and butylene carbonate
  • chain carbonates such as dimethyl carbonate (DMC), diethyl carbonate and ethyl methyl carbonate, methyl formate, methyl acetate, methyl propionate, propionic acid
  • Chain ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, aceto Tonitrile, propionitrile, nitromethane, ethyl monoglyme, trimethoxymethane, sulfolane, methyl sulfolane, 1,3-propane sultone and the like can be used. These may be used alone or in combination of two or more.
  • a mixed solvent containing DMC and PC is preferable, and it is preferable that DMC and PC occupy 50% by mass or more, further 80% by mass or more of the solvent.
  • the volume ratio (DMC / PC) between DMC and PC is, for example, 30. / 70 to 70/30 may be sufficient.
  • the electrolyte may contain an additive in the solvent as necessary.
  • unsaturated carbonates such as vinylene carbonate, vinyl ethylene carbonate, and divinyl ethylene carbonate may be added as an additive for forming a film having high lithium ion conductivity on the negative electrode surface.
  • Separator It is preferable to interpose a separator between the positive electrode and the negative electrode.
  • the separator include cellulose fiber nonwoven fabric, glass fiber nonwoven fabric, polyolefin microporous membrane, woven fabric, and nonwoven fabric.
  • the thickness of the separator is, for example, 10 to 300 ⁇ m, and preferably 10 to 40 ⁇ m.
  • the electrode group 10 is a wound body as shown in FIG. 2, and includes a positive electrode 21, a negative electrode 22, and a separator 23 interposed therebetween. The outermost periphery of the wound body is fixed by a winding tape 24.
  • the positive electrode 21 is connected to the lead tab 15A
  • the negative electrode 22 is connected to the lead tab 15B.
  • the electrochemical device includes an electrode group 10, a bottomed case 11 that accommodates the electrode group 10, a sealing body 12 that closes an opening of the bottomed case 11, lead wires 14 ⁇ / b> A and 14 ⁇ / b> B led out from the sealing body 12, Liquid (not shown).
  • Lead wires 14A and 14B are connected to lead tabs 15A and 15B, respectively.
  • the sealing body 12 is made of, for example, an elastic material containing a rubber component. The vicinity of the open end of the bottomed case 11 is drawn inward, and the open end is curled so as to caulk the sealing body 12.
  • a cylindrical electrochemical device including a wound electrode group is shown.
  • a rectangular electrochemical device including an electrode group in which a positive electrode and a negative electrode are stacked with a separator interposed between both electrodes. May be configured.
  • the positive electrode current collector and the counter electrode are immersed in an aniline aqueous solution and subjected to electrolytic polymerization for 20 minutes at a current density of 10 mA / cm 2 , and doped with sulfate ions (SO 4 2 ⁇ ), which are conductive polymer dopants.
  • SO 4 2 ⁇ sulfate ions
  • the conductive polymer doped with sulfate ions was reduced, and the doped sulfate ions were dedoped. In this way, a porous conductive polymer film (positive electrode material layer) in which sulfate ions were dedoped was formed.
  • the thickness of the conductive polymer film was 60 ⁇ m per side of the positive electrode current collector.
  • the conductive polymer film was thoroughly washed and then dried.
  • the dedope amount of the sulfate ion which is a dopant of the conductive polymer
  • the amount of anion doped and dedope in the conductive polymer with charge / discharge can be adjusted, or electrolysis can be performed during the charge / discharge process.
  • the amount of anions contained in the liquid can be adjusted.
  • Electrolytic Solution 0.2% by mass of vinylene carbonate was added to a 1: 1 volume ratio mixture of propylene carbonate and dimethyl carbonate to prepare a solvent.
  • LiPF 6 as a lithium salt was dissolved at a predetermined concentration in the obtained solvent to prepare an electrolytic solution having hexafluorophosphate ions (PF 6 ⁇ ) as anions.
  • Capacity maintenance rate measurement evaluation of float characteristics
  • the electrochemical device obtained above was subjected to a charge / discharge test in the order of charge, rest and discharge under the following conditions, and the initial discharge capacity A (capacity per gram of the positive electrode active material) was measured.
  • Environmental temperature 25 °C Charging: 1C charging with constant current until reaching the end-of-charge voltage of 3.8V Pause: 5 minutes
  • 1C charge indicates that the amount of electricity corresponding to the rated capacity C (unit: mAh) of the electrochemical device is charged at a constant current in one hour.
  • 1C discharge indicates that the amount of electricity corresponding to the rated capacity C of the electrochemical device is discharged at a constant current in one hour.
  • the electrochemical device obtained above was prepared, charged under the same conditions as the above charging conditions, and then charged at a constant voltage of 3.8 V for 1000 hours (float charging). Then, it discharged on the same conditions as said discharge conditions, and measured the discharge capacity B.
  • Capacity retention rate (%) (discharge capacity B / discharge capacity A) ⁇ 100
  • the amount of anion (PF 6 ⁇ ) contained in the positive electrode was determined by decomposing the electrochemical device and taking out the positive electrode, and peeling off the positive electrode material layer from the positive electrode current collector. Thereafter, the positive electrode material layer was dissolved by heating in a mixed acid (a mixture of hydrochloric acid, nitric acid and water), allowed to cool, and then insolubles were separated by filtration and determined, and the P concentration was measured by ICP emission spectrometry.
  • a mixed acid a mixture of hydrochloric acid, nitric acid and water
  • the amount of anion (PF 6 ⁇ ) contained in the electrolytic solution was determined using the amount of the electrolytic solution accommodated in the electrochemical device and the anion (PF 6 ⁇ ) concentration of the electrolytic solution.
  • the amount of the electrolytic solution accommodated in the electrochemical device was determined by decomposing the electrochemical device, taking out the electrode group containing the electrolytic solution, and measuring the weight W1 of the electrode group before drying. Thereafter, the electrode group was disassembled, the positive electrode, the negative electrode, and the separator were each washed with water and then dried, and the total weight W2 of the dried positive electrode, negative electrode, and separator was measured. And the value which deducted W2 from W1 was calculated
  • the anion concentration of the electrolyte contained in the electrochemical device was determined by disassembling the electrochemical device and collecting the electrolyte contained in the separator and measuring the P concentration by ICP emission spectroscopy.
  • the electrochemical device according to the present invention can be suitably applied to applications that require higher capacity than electric double layer capacitors and lithium ion capacitors and higher output than lithium ion secondary batteries.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

アニオンをドープおよび脱ドープ可能な導電性高分子を含む正極と、リチウムイオンを吸蔵および放出可能な負極材料を含む負極と、を組み合わせた電気化学デバイスにおいて、フロート特性を維持する。電気化学デイバスは、正極活物質としてアニオンをドープおよび脱ドープ可能な導電性高分子を含む正極と、リチウムイオンを吸蔵および放出可能な負極活物質を含む負極と、アニオンおよびリチウムイオンを含む電解液と、を備える。正極に含まれる導電性高分子を構成するモノマー単位の総量A(mol)と、電気化学デバイスに含まれるアニオンの総量B(mol)とは、関係式:0<B/A<0.7を満たす。

Description

電気化学デバイス
 本発明は、正極活物質としてアニオンをドープおよび脱ドープ可能な導電性高分子を含む正極と、リチウムイオンを吸蔵および放出可能な負極活物質を含む負極と、を組み合わせた電気化学デバイスに関する。
 近年、リチウムイオン二次電池と電気二重層キャパシタの中間的な性能を有する電気化学デバイスが注目を集めており、例えば導電性高分子を正極活物質として用いることが検討されている。このような正極活物質として導電性高分子を含む電子化学デバイスは、アニオンの吸着(ドープ)と脱離(脱ドープ)により充放電を行うため、反応抵抗が小さく、一般的なリチウムイオン二次電池の正極に比べると高い出力を有している。導電性高分子としては、ポリアニリンやポリピロールなどが知られている(特許文献1および2参照)。
特開平1-146255号公報 特開2014-35836号公報
 電気化学デバイスは、例えば、停電などでPCやサーバーなどの機器への電力供給が遮断された場合に機器へ電力を供給するためのバックアップ電源として用いられる。通常は、電気化学デバイスに所定の電圧が印加された状態が維持され(フロート充電が行われ)、停電などの異常時に、電気化学デバイスより機器に電力が供給される(電気化学デバイスは放電する)。しかし、フロート充電を長時間行うと正極活物質(導電性高分子)が劣化して容量が低下する傾向がある。よって、電気化学デバイスのフロート充電後の容量低下を抑制する(フロート特性を維持する)ことは重要である。
 フロート特性と、正極中の導電性高分子を構成するモノマー単位の量および電気化学デバイスに含まれるアニオンの量のバランスとの関係についての検討は、依然として十分に行われていない。
 上記に鑑み、本発明の一局面は、正極活物質としてアニオンをドープおよび脱ドープ可能な導電性高分子を含む正極と、リチウムイオンを吸蔵および放出可能な負極活物質を含む負極と、前記アニオンおよび前記リチウムイオンを含む電解液と、を備える電気化学デバイスであって、前記正極に含まれる前記導電性高分子を構成するモノマー単位の総量A(mol)と、前記電気化学デバイスに含まれる前記アニオンの総量B(mol)とは、
関係式:
  0<B/A<0.7を満たす、電気化学デバイスに関する。
 本発明によれば、正極活物質としてアニオンをドープおよび脱ドープ可能な導電性高分子を含む正極と、リチウムイオンを吸蔵および放出可能な負極活物質を含む負極とを組み合わせた電気化学デバイスにおいて、フロート充電後の容量低下を抑制する(フロート特性を維持する)ことができる。
図1は、本発明の実施形態に係る電気化学デバイスの断面模式図である。 図2は、同実施形態に係る電気化学デバイスの構成を説明するための概略図である。 図3は、本発明の実施形態に係る電気化学デバイスにおける、B/Aと容量維持率との関係を示すグラフである。
 本発明は、正極活物質としてアニオンをドープおよび脱ドープ可能な導電性高分子を正極材料として含む正極と、リチウムイオンを吸蔵および放出可能な負極活物質を含む負極と、アニオンおよびリチウムイオンを含む電解液と、を備える電気化学デバイスに関する。充電時には、電解液中のアニオンが導電性高分子にドープされ、電解液中のリチウムイオンが負極材料に吸蔵される。放電時には、導電性高分子からアニオンが脱ドープされ、電解液中へ移動し、負極材料からリチウムイオンが放出され、電解液中へ移動する。本発明において、導電性高分子は、脱ドープ状態において導電性が殆どない、または導電性がない場合も含む。
 正極に含まれる導電性高分子を構成するモノマー単位の総量A(mol)と、電気化学デバイスに含まれるアニオンの総量B(mol)とは、関係式:
  0<B/A<0.7
を満たす。正極に含まれる導電性高分子を構成するモノマー単位の総量Aが、電気化学デバイスに含まれるアニオンの総量Bに比べて大きいほど、B/Aは0に近い値となる。電気化学デバイスに含まれるアニオンの総量Bは、少なくとも所定の放電容量を得るために必要な量を含んでいればよい。
 B/Aが上記範囲内である場合、フロート特性を維持することができる。B/Aが0.7以上である場合、電解液に含まれるアニオンの量が多くなり、充電時に正極中においてアニオンをドープする導電性高分子の割合が大きくなる。これに伴い、長時間のフロート充電時に劣化する導電性高分子の割合が大きくなるため、フロート特性が低下する。
 B/Aは0.2以上が好ましい。この場合、充電時に導電性高分子が電解液から適切な量のアニオンをドープすることができ、良好な放電容量が得られる。また、電解液に含まれるアニオンの量が多くなり、良好なイオン伝導性が得られるため、良好な放電容量が得られる。
 正極に含まれる導電性高分子を構成するモノマー単位の総量A(mol)と、電気化学デバイスの充電状態において、正極に含まれる導電性高分子にドープされたアニオンの量C(mol)とは、関係式:
 0<C/A<0.7
を満たすことが好ましい。この場合、充電時に正極中においてアニオンをドープする導電性高分子の割合を小さくして、長時間のフロート充電時に劣化する導電性高分子の割合を十分に低減することができ、フロート特性を更に維持することができる。電気化学デバイスの充電状態において、電解液中のアニオンの殆どが正極の導電性高分子にドープされ、電解液がアニオンを殆ど含まない場合、上記Cの値は、上記Bの値と殆ど同じである。
 正極に含まれる導電性高分子にドープされたアニオンの量C(mol)は、電気化学デバイスの放電状態において、電解液に含まれるアニオンの量D(mol)から、電気化学デバイスの充電状態において、電解液に含まれるアニオンの量E(mol)を差し引いた値としてもよい。
 ここで、上記の充電状態とは、電気化学デバイスのSOCが90~100%である場合を指す。上記の放電状態とは、電気化学デバイスのSOCが0~10%である場合を指す。SOC(state of charge)は、満充電時の容量に対する充電量の割合を指す。
 SOCが0~10%である放電状態とは、電気化学デバイスの電圧が放電終止電圧になっている状態であり、SOCが90~100%である充電状態とは、電気化学デバイスの電圧が充電終止電圧になっている状態である。放電終止電圧および充電終止電圧は、充放電条件も含めて、メーカーが決定するものである。通常は、メーカーが提供する充放電回路や製品情報により、一義的に決定することができる。
 導電性高分子としてπ共役系高分子を用い、負極活物質として炭素材料を用いる場合には、充電終止電圧は、例えば、3.4~4.2Vに設定され、放電終止電圧は、通常、2.5~2.6Vに設定される。導電性高分子としてπ共役系高分子を用い、負極活物質としてチタン酸リチウムを用いる場合には、充電終止電圧は、通常、2.4~2.5Vに設定され、放電終止電圧は、通常、1.1~1.2Vに設定される。
 放電特性を高めるためには、導電性高分子は、当該導電性高分子を構成するモノマー単位1つ当たり、アニオンの受容サイトを少なくとも1つ有することが好ましい。ここで、アニオンの受容サイトとは、充電時に、導電性高分子が、当該導電性高分子の分子構造の観点から理論的にアニオンを受容(ドープ)可能なサイトを意味する。例えば、アニリンを繰り返しモノマー単位とするポリアニリンは、論理的には、アニリンのモノマー単位1つ当たり、アニオンの受容サイトを1つ有する。
 導電性高分子は、ヘテロ原子を含む繰り返し単位を有するπ共役系高分子であることが望ましい。π共役系高分子のヘテロ原子(窒素原子や硫黄原子など)は、アニオンと相互作用しやすい。アニオンは、充放電に伴う導電性高分子の酸化還元の際に、ヘテロ原子に対して吸着もしくは脱離すると考えられる。
 π電子共役系高分子としては、例えば、アニリン、ピロール、チオフェン、フラン、チオフェンビニレン、ピリジンおよびこれらの誘導体よりなる群から選択される少なくとも1種の重合性化合物の単独重合体および/または共重合体を用いることができる。すなわち、π電子共役系高分子としては、上記重合性化合物に由来するモノマー単位を含む単独重合体、2種以上の上記重合性化合物に由来するモノマー単位を含む共重合体を用いることができる。より具体的には、ポリアニリン、ポリピロール、ポリチオフェン、ポリフラン、ポリチオフェンビニレン、ポリピリジン、これらを基本骨格とする高分子誘導体などが得られる。高分子誘導体とは、例えばアニリン誘導体、ピロール誘導体、チオフェン誘導体、フラン誘導体、チオフェンビニレン誘導体、ピリジン誘導体などのような誘導体化合物の重合体であり、例えばポリチオフェンを基本骨格とするポリ(3,4-エチレンジオキシチオフェン)(PEDOT)が挙げられる。これらの中でも、安定した電気化学的特性(充放電特性)が得られることから、π電子共役系高分子は、ポリアニリン、ポリピロール、ポリチオフェンおよびこれらを基本骨格とする高分子誘導体であることが好ましい。更に、容量密度が高いことから、π電子共役系高分子は、ポリアニリンであることがより好ましい。
 導電性高分子の重量平均分子量は、特に限定されないが、例えば1000~100000である。
 充放電に伴い導電性高分子がドープおよび脱ドープ可能なアニオンとしては、例えば、ClO 、BF 、PF 、AlCl 、SbF 、SCN、CFSO 、FSO 、CFCO 、AsF 、B10Cl10 、Cl、Br、I、BCl 、N(FSO 、N(CFSO などが挙げられる。中でも、ハロゲン原子を含むオキソ酸アニオン、イミドアニオンなどが望ましい。ハロゲン原子を含むオキソ酸アニオンとしては、テトラフルオロ硼酸アニオン(BF )、ヘキサフルオロ燐酸アニオン(PF )、過塩素酸アニオン(ClO )、フルオロ硫酸アニオン(FSO )などが好ましい。これらの中でも、導電性高分子が可逆的にドープおよび脱ドープし易いことから、PF がより好ましく、充電状態および放電状態において電解液に含まれるアニオン全体の90モル%以上がPF であってもよい。また、イミドアニオンとしては、ビス(フルオロスルホニル)イミドアニオン(N(FSO )が好ましい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 充電状態(SOC90~100%)において電解液がアニオンを殆ど含まなくなる(例えば、充電状態の電解液中のアニオン濃度が0.5mol/L未満となる)ように、電解液中のアニオン量を少なく調整することが好ましい。この場合、充電時に正極中においてアニオンをドープする導電性高分子の割合を小さくすることができる。よって、長時間のフロート充電時にも、劣化する導電性高分子の割合を低減しやすく、フロート特性を更に良好に維持することができる。
 また、電解液のアニオン濃度が高い状態でフロート充電すると、導電性高分子が劣化し易くなる傾向がある。この点からも、充電状態における電解液のアニオン濃度が0.5mol/L未満となるように、電解液中のアニオン量を調整することが好ましい。ただし、充電状態における電解液のアニオン濃度が0.1mol/L以上となるように、電解液中のアニオン量を調整することが好ましい。これにより、電気化学デバイスの放電容量の低下を抑制することができる。
 一方、放電状態(SOC0~10%)では、電解液中のアニオンの濃度が1.0~2.5mol/L程度となるように、電解液中のアニオン量を調整することが好ましい。この場合、充電時において導電性高分子にドープされたアニオンを、放電時に効率良く導電性高分子から脱ドープすることができる。
 以下、電気化学デバイスの構成要素ごとに、更に詳しく説明する。
(正極)
 正極は、例えば、正極活物質として上記の導電性高分子を含む正極材料層を有する。正極材料層は、通常、正極集電体に担持される。正極集電体には、例えば導電性のシート材料が用いられる。シート材料としては、金属箔、金属多孔体、パンチングメタルなどが用いられる。正極集電体の材質としては、アルミニウム、アルミニウム合金、ニッケル、チタンなどを用いることができる。
 正極材料層は、正極活物質の他に、更に、導電剤および結着剤を含んでいてもよい。導電剤としては、カーボンブラック、炭素繊維などが挙げられる。結着剤としては、フッ素樹脂、アクリル樹脂、ゴム材料、セルロース誘導体などが挙げられる。
 正極材料層に含まれる導電性高分子は、導電性高分子の原料である重合性化合物(モノマー)を重合することにより合成される。導電性高分子の合成は、電解重合で行なってもよく、化学重合で行なってもよい。例えば、正極集電体として導電性のシート材料(例えば金属箔)を準備し、モノマー溶液中に正極集電体と対向電極とを浸漬し、正極集電体をアノードとして正極集電体と対向電極との間に電流を流すことにより、正極集電体の表面の少なくとも一部を覆うように、導電性高分子の膜(正極材料層)を形成してもよい。モノマー溶液は、ドーパントとして、上記で例示したアニオンを含んでもよく、硫酸イオン、硝酸イオンなどの上記で例示したアニオン以外のアニオンを含んでもよい。また、電解重合を促進する酸化剤を添加してもよい。
(負極)
 負極は、例えば、負極活物質を含む負極材料層を有する。負極材料層は、通常、負極集電体に担持される。負極集電体には、例えば導電性のシート材料が用いられる。シート材料としては、金属箔、金属多孔体、パンチングメタルなどが用いられる。負極集電体の材質としては、銅、銅合金、ニッケル、ステンレス鋼などを用いることができる。
 負極活物質としては、炭素材料、金属化合物、合金、セラミックス材料などが挙げられる。炭素材料としては、黒鉛、難黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)が好ましく、特に黒鉛やハードカーボンが好ましい。金属化合物としては、ケイ素酸化物、錫酸化物などが挙げられる。合金としては、ケイ素合金、錫合金などが挙げられる。セラミックス材料としては、チタン酸リチウム、マンガン酸リチウムなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。中でも、炭素材料は、負極の電位を低くすることができる点で好ましい。
 負極材料層には、負極活物質の他に、導電剤、結着剤などを含ませることが望ましい。導電剤および結着剤には、正極材料層で例示したものを用いることができる。
 負極には、予めリチウムイオンをプレドープすることが望ましい。これにより、負極の電位が低下するため、正極と負極の電位差(すなわち電圧)が大きくなり、電気化学デバイスのエネルギー密度が向上する。
 リチウムイオンの負極へのプレドープは、例えば、リチウムイオン供給源となる金属リチウム層を、負極材料層の表面に形成し、金属リチウム層からリチウムイオンが電解液中に溶出し、溶出したリチウムイオンが負極活物質に吸蔵されることで進行する。例えば負極活物質として黒鉛やハードカーボンを用いる場合には、リチウムイオンが黒鉛の層間やハードカーボンの細孔に挿入される。プレドープさせるリチウムイオンの量は、金属リチウム層の質量により制御することができる。
 負極が具備する負極材料層は、例えば、負極活物質、導電剤、結着剤などを、分散媒とともに混合した負極合剤ペーストを調製し、負極合剤ペーストを負極集電体に塗布することにより形成される。
 負極にリチウムイオンをプレドープする工程は、電極群を組み立てる前に行なってもよく、電解液とともに電極群を電気化学デバイスのケースに収容してからプレドープを進行させてもよい。
(電解液)
 電解液(非水電解液)は、溶媒(非水溶媒)と、溶媒に溶解するリチウム塩とを含む。リチウム塩は、充電時に導電性高分子にドープされるアニオンおよび負極活物質に吸蔵されるリチウムイオンを含む。
 リチウム塩としては、例えば、LiClO、LiBF、LiPF、LiAlCl、LiSbF、LiSCN、LiCFSO、LiFSO、LiCFCO、LiAsF、LiB10Cl10、LiCl、LiBr、LiI、LiBCl、LiN(FSO、LiN(CFSOなどが挙げられる。これらは1種を単独で用いても、2種以上を組み合わせて用いてもよい。中でも、ハロゲン原子を含むオキソ酸アニオンを有するリチウム塩およびイミドアニオンを有するリチウム塩よりなる群から選択される少なくとも1
種を用いることが望ましい。
 充電状態(SOC90~100%)における電解液中のリチウム塩の濃度は、例えば、0.5mol/L未満である。
 溶媒としては、エチレンカーボネート、プロピレンカーボネート(PC)、ブチレンカーボネートなどの環状カーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート、エチルメチルカーボネートなどの鎖状カーボネート、ギ酸メチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチルなどの脂肪族カルボン酸エステル、γ-ブチロラクトン、γ-バレロラクトンなどのラクトン類、1,2-ジメトキシエタン(DME)、1,2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)などの鎖状エーテル、テトラヒドロフラン、2-メチルテトラヒドロフランなどの環状エーテル、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピオニトリル、ニトロメタン、エチルモノグライム、トリメトキシメタン、スルホラン、メチルスルホラン、1,3-プロパンサルトンなどを用いることができる。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。中でも、イオン伝導性の観点から、DMCおよびPCを含む混合溶媒が好ましく、DMCおよびPCが溶媒の50質量%以上、更には80質量%以上を占めることが好ましい。このとき、DMCとPCとの体積比(DMC/PC)は、例えば30
/70~70/30であればよい。
 電解液に、必要に応じて溶媒に添加剤を含ませてもよい。例えば、負極表面にリチウムイオン伝導性の高い被膜を形成する添加剤として、ビニレンカーボネート、ビニルエチレンカーボネート、ジビニルエチレンカーボネートなどの不飽和カーボネートを添加してもよい。
(セパレータ)
 正極と負極との間に、セパレータを介在させることが好ましい。セパレータとしては、例えば、セルロース繊維製の不織布、ガラス繊維製の不織布、ポリオレフィン製の微多孔膜、織布、不織布などが用いられる。セパレータの厚みは、例えば10~300μmであり、10~40μmが好ましい。
 本発明の実施形態に係る電気化学デバイスを、図1および2を参照しながら説明する。
 電極群10は、図2に示すような巻回体であり、正極21と、負極22と、これらの間に介在するセパレータ23とを備える。巻回体の最外周は、巻止めテープ24により固定される。正極21は、リードタブ15Aと接続され、負極22は、リードタブ15Bと接続されている。電気化学デバイスは、電極群10と、電極群10を収容する有底ケース11と、有底ケース11の開口を塞ぐ封口体12と、封口体12から導出されるリード線14A、14Bと、電解液(図示せず)とを備える。リード線14A、14Bは、それぞれリードタブ15A、15Bと接続される。封口体12は、例えば、ゴム成分を含む弾性材料で形成されている。有底ケース11の開口端近傍は、内側に絞り加工され、開口端は封口体12にかしめるようにカール加工される。
 上記の実施形態では巻回型の電極群を備える円筒形状の電気化学デバイスを示したが、正極と負極とを、両極間にセパレータを介在させて積層した電極群を備える角形形状の電気化学デバイスを構成してもよい。
[実施例]
 以下、実施例に基づいて、本発明をより詳細に説明するが、本発明は実施例に限定されるものではない。
(1)正極の作製
 厚さ30μmのアルミニウム箔を正極集電体として準備した。一方、アニリンおよび硫酸を含むアニリン水溶液を準備した。
 正極集電体と対向電極とを、アニリン水溶液に浸漬し、10mA/cmの電流密度で20分間、電解重合を行ない、導電性高分子のドーパントである硫酸イオン(SO 2-)がドープされた導電性高分子(ポリアニリン)の膜を、正極集電体の裏表の全面に付着させた。
 硫酸イオンがドープされた導電性高分子を還元し、ドープされていた硫酸イオンを脱ドープした。こうして、硫酸イオンが脱ドープされた、多孔質な導電性高分子膜(正極材料層)を形成した。導電性高分子膜の厚さは、正極集電体の片面あたり60μmであった。導電性高分子膜は十分に洗浄し、その後、乾燥を行なった。なお、導電性高分子のドーパントである硫酸イオンの脱ドープ量を調整することにより、充放電に伴い導電性高分子にドープおよび脱ドープされるアニオンの量を調整したり、充放電過程で電解液中に含まれるアニオンの量を調整したりすることができる。
(2)負極の作製
 厚さ20μmの銅箔を負極集電体として準備した。一方、ハードカーボン97質量部と、カルボキシセルロース1質量部と、スチレンブタジエンゴム2質量部とを混合した混合粉末と、水とを、重量比で40:60の割合で混錬したカーボンペーストを調製した。カーボンペーストを負極集電体の両面に塗布し、乾燥して、厚さ35μmの負極材料層を両面に有する負極を得た。次に、負極材料層に、プレドープ完了後の電解液中での負極電位が金属リチウムに対して0.2V以下となるように計算された分量の金属リチウム層を形成した。
(3)電極群の作製
 正極と負極にそれぞれリードタブを接続した後、図2に示すように、セルロース製不織布のセパレータ(厚さ35μm)と、正極、負極とを、それぞれ、交互に重ね合わせた積層体を巻回して、電極群を形成した。
(4)電解液の調製
 プロピレンカーボネートとジメチルカーボネートとの体積比1:1の混合物に、ビニレンカーボネートを0.2質量%添加して、溶媒を調製した。得られた溶媒にリチウム塩としてLiPFを所定濃度で溶解させて、アニオンとしてヘキサフルオロ燐酸イオン(PF )を有する電解液を調製した。
(5)電気化学デバイスの作製
 開口を有する有底ケースに、電極群と電解液とを収容し、図1に示すような電気化学デバイスを組み立てた。その後、正極と負極との端子間に3.8Vの充電電圧を印加しながら25℃で24時間エージングし、リチウムイオンの負極へのプレドープを進行させた。
 上記電気化学デバイスの作製において、ケース内に収容する電解液の量は一定とし、ケース内に収容する電解液のリチウム塩の濃度を変えて、B/Aが表1に示す値であるNo.1~12の試験セルを作製した。なお、表1中のNo.1~6が実施例であり、No.7~12が比較例である。
Figure JPOXMLDOC01-appb-T000001
[評価]
(1)容量維持率の測定(フロート特性の評価)
 上記で得られた電気化学デバイスについて、下記条件で、充電、休止、放電の順に充放電試験を行い、初期の放電容量A(正極活物質1g当たりの容量)を測定した。
 環境温度25℃
 充電:充電終止電圧3.8Vに到達するまで定電流で1C充電
 休止:5分間
 放電:放電終止電圧2.5Vに到達するまで定電流で1C放電
 1C充電は、電気化学デバイスの定格容量C(単位:mAh)に相当する電気量を1時間で定電流充電することを示す。1C放電は、電気化学デバイスの定格容量Cに相当する電気量を1時間で定電流放電することを示す。
 別途、上記で得られた電気化学デバイスを準備し、上記の充電条件と同じ条件で充電した後、更に、3.8Vの定電圧で1000時間充電した(フロート充電)。その後、上記の放電条件と同じ条件で放電し、放電容量Bを測定した。
 上記で得られた放電容量AおよびBを用いて、下記式より容量維持率を求め、フロート特性を評価した。
  容量維持率(%)=(放電容量B/放電容量A)×100
(2)AおよびBの測定
(i)正極に含まれる導電性高分子を構成するモノマー単位の総量A(mol)
 電気化学デバイスを分解して正極を取り出し、正極集電体から正極材料層を剥離した後、ICP発光分光分析法を用いて、正極材料層に含まれるポリアニリン中の窒素原子の総モル数を求めた。モノマー単位(アニリン骨格)1つ当たり窒素原子を1つ含むことに基づいて、正極材料層中の導電性高分子を構成するモノマー単位の総量A(mol)を求めた。ポリアニリンは、論理的に、モノマー単位(アニリン骨格)1つ当たりアニオンの受容サイトを1つ有する。
(ii)電気化学デバイスに含まれるアニオンの総量B(mol)
 電気化学デバイスに含まれるアニオン(PF )の総量B(mol)は、正極に含まれるアニオン量(mol)、および電解液に含まれるアニオン量(mol)を合算することにより求めた。
 正極に含まれているアニオン(PF )量は、電気化学デバイスを分解して正極を取り出し、正極集電体から正極材料層を剥離した。その後、正極材料層を混酸(塩酸と硝酸と水の混合物)に加熱溶解させ、放冷後、不溶分を濾別して定容し、ICP発光分光分析法でP濃度を測定することにより求めた。
 電解液に含まれているアニオン(PF )量は、電気化学デバイスに収容された電解液の量および電解液のアニオン(PF )濃度を用いて求めた。
 電気化学デバイスに収容された電解液の量は、電気化学デバイスを分解し、電解液を含む電極群を取り出し、乾燥前の電極群の重量W1を測定した。その後、電極群を解体して、正極、負極、セパレータをそれぞれ水洗した後、乾燥し、乾燥後の正極、負極、セパレータの合計重量W2を測定した。そして、W1からW2を差し引いた値を、電解液量として求めた。
 電気化学デバイスに収容した電解液のアニオン濃度は、電気化学デバイスを分解してセパレータに含まれる電解液を採取し、ICP発光分光分析法でP濃度を測定することにより求めた。
 表1および図3に示すように、B/Aが0.7未満である実施例の試験セル(No.1~6)では、容量維持率が高く、フロート充電後の容量低下が抑制された。B/Aが0.7以上である比較例の試験セル(No.7~12)では、容量維持率が低下した。
 本発明に係る電気化学デバイスは、電気二重層キャパシタやリチウムイオンキャパシタより高容量であり、かつリチウムイオン二次電池より高出力が要求される用途に好適に適用できる。
 10:電極群、11:有底ケース、12:封口体、14A,14B:リード線、15A,15B:リードタブ、21:正極、22:負極、23:セパレータ、24:巻止めテープ
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Claims (4)

  1.  正極活物質としてアニオンをドープおよび脱ドープ可能な導電性高分子を含む正極と、
     リチウムイオンを吸蔵および放出可能な負極活物質を含む負極と、
     前記アニオンおよび前記リチウムイオンを含む電解液と、
    を備える電気化学デバイスであって、
     前記正極に含まれる前記導電性高分子を構成するモノマー単位の総量A(mol)と、前記電気化学デバイスに含まれる前記アニオンの総量B(mol)とは、関係式:
      0<B/A<0.7を満たす、電気化学デバイス。
  2.  前記導電性高分子は、ポリアニリン、ポリピロール、ポリチオフェン、およびこれらを基本骨格とする高分子誘導体よりなる群から選択される少なくとも1種を含む、請求項1に記載の電気化学デバイス。
  3.  前記アニオンは、BF 、PF 、ClO 、FSO 、およびN(FSO よりなる群から選択される少なくとも1種を含む、請求項1または2に記載の電気化学デバイス。
  4.  前記電解液は、溶媒としてジメチルカーボネートおよびプロピレンカーボネートを含む、請求項1~3のいずれか1項に記載の電気化学デバイス。
     
     
     
     
     
     
     
     
     
     
     
     
     
     
PCT/JP2017/038617 2016-10-28 2017-10-26 電気化学デバイス WO2018079637A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018547744A JP7178553B2 (ja) 2016-10-28 2017-10-26 電気化学デバイス
US16/341,945 US20190245207A1 (en) 2016-10-28 2017-10-26 Electrochemical device
CN201780065310.3A CN109863633B (zh) 2016-10-28 2017-10-26 电化学装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016212210 2016-10-28
JP2016-212210 2016-10-28

Publications (1)

Publication Number Publication Date
WO2018079637A1 true WO2018079637A1 (ja) 2018-05-03

Family

ID=62023646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038617 WO2018079637A1 (ja) 2016-10-28 2017-10-26 電気化学デバイス

Country Status (4)

Country Link
US (1) US20190245207A1 (ja)
JP (1) JP7178553B2 (ja)
CN (1) CN109863633B (ja)
WO (1) WO2018079637A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114026730A (zh) * 2019-06-25 2022-02-08 松下知识产权经营株式会社 电化学器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261418A (ja) * 1997-03-18 1998-09-29 Kyushu Electric Power Co Inc リチウム二次電池用正極材料
JP2000077100A (ja) * 1998-08-28 2000-03-14 Sanyo Electric Co Ltd 非水電解液二次電池
JP2004047487A (ja) * 1995-01-25 2004-02-12 Ricoh Co Ltd リチウム二次電池用負極および該負極を用いたリチウム二次電池
JP2013239306A (ja) * 2012-05-14 2013-11-28 Nitto Denko Corp デュアルモード型蓄電デバイス
JP2014123641A (ja) * 2012-12-21 2014-07-03 Taiyo Yuden Co Ltd 電気化学デバイス
JP2014130719A (ja) * 2012-12-28 2014-07-10 Ricoh Co Ltd 非水電解液蓄電素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101551135B1 (ko) * 2011-10-28 2015-09-07 아사히 가세이 가부시키가이샤 비수계 이차 전지
JP2014035836A (ja) * 2012-08-07 2014-02-24 Nitto Denko Corp 非水電解液二次電池およびその製造方法
KR20150092271A (ko) * 2012-12-05 2015-08-12 이시오닉 코포레이션 전해질 조성물, 이의 제조 방법 및 이로부터 형성된 전지 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047487A (ja) * 1995-01-25 2004-02-12 Ricoh Co Ltd リチウム二次電池用負極および該負極を用いたリチウム二次電池
JPH10261418A (ja) * 1997-03-18 1998-09-29 Kyushu Electric Power Co Inc リチウム二次電池用正極材料
JP2000077100A (ja) * 1998-08-28 2000-03-14 Sanyo Electric Co Ltd 非水電解液二次電池
JP2013239306A (ja) * 2012-05-14 2013-11-28 Nitto Denko Corp デュアルモード型蓄電デバイス
JP2014123641A (ja) * 2012-12-21 2014-07-03 Taiyo Yuden Co Ltd 電気化学デバイス
JP2014130719A (ja) * 2012-12-28 2014-07-10 Ricoh Co Ltd 非水電解液蓄電素子

Also Published As

Publication number Publication date
CN109863633A (zh) 2019-06-07
JPWO2018079637A1 (ja) 2019-09-19
US20190245207A1 (en) 2019-08-08
JP7178553B2 (ja) 2022-11-28
CN109863633B (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
JP6814945B2 (ja) 電気化学デバイスおよびその製造方法
WO2018143048A1 (ja) 電気化学デバイス用正極および電気化学デバイス、ならびにこれらの製造方法
CN108604683B (zh) 电化学设备用正极活性物质、电化学设备用正极和电化学设备、以及电化学设备用正极活性物质的制造方法
JP6865355B2 (ja) 電気化学デバイスおよびこれに用いる負極とその製造方法
JP7407350B2 (ja) 電気化学デバイス
JP7178553B2 (ja) 電気化学デバイス
JP7090228B2 (ja) 電気化学デバイス
WO2019188760A1 (ja) 電気化学デバイス
US20220328877A1 (en) Electrochemical device
US20230129000A1 (en) Electrochemical device
US20230025107A1 (en) Electrochemical device
WO2019188757A1 (ja) 電気化学デバイス
WO2019188759A1 (ja) 電気化学デバイス
WO2018143049A1 (ja) 電気化学デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863562

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547744

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17863562

Country of ref document: EP

Kind code of ref document: A1