WO2018079175A1 - プレスブレーキ - Google Patents

プレスブレーキ Download PDF

Info

Publication number
WO2018079175A1
WO2018079175A1 PCT/JP2017/035203 JP2017035203W WO2018079175A1 WO 2018079175 A1 WO2018079175 A1 WO 2018079175A1 JP 2017035203 W JP2017035203 W JP 2017035203W WO 2018079175 A1 WO2018079175 A1 WO 2018079175A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
nut
ram
screw
drive
Prior art date
Application number
PCT/JP2017/035203
Other languages
English (en)
French (fr)
Inventor
賢正 服部
Original Assignee
村田機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 村田機械株式会社 filed Critical 村田機械株式会社
Priority to CN201780064902.3A priority Critical patent/CN109843462B/zh
Priority to US16/343,693 priority patent/US10919248B2/en
Priority to JP2018547498A priority patent/JP6662467B2/ja
Publication of WO2018079175A1 publication Critical patent/WO2018079175A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B1/00Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen
    • B30B1/18Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by screw means
    • B30B1/186Control arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/02Bending sheet metal along straight lines, e.g. to form simple curves on press brakes without making use of clamping means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B1/00Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen
    • B30B1/18Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by screw means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B1/00Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen
    • B30B1/18Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by screw means
    • B30B1/181Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by screw means the screw being directly driven by an electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/14Control arrangements for mechanically-driven presses
    • B30B15/142Control arrangements for mechanically-driven presses controlling the brake or the clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/16Control arrangements for fluid-driven presses
    • B30B15/161Control arrangements for fluid-driven presses controlling the ram speed and ram pressure, e.g. fast approach speed at low pressure, low pressing speed at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H2025/2053Screws in parallel arrangement driven simultaneously with an output member moved by the screws
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H2025/2062Arrangements for driving the actuator
    • F16H2025/2081Parallel arrangement of drive motor to screw axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • F16H25/2204Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with balls

Definitions

  • the present invention relates to a press brake.
  • a press brake has been proposed in which the upper die is moved up and down using the relative rotational movement of the ball screw and nut (for example, see Patent Document 1).
  • a screw is connected to a high-speed drive source that generates low torque at high speed, and a nut is connected to a pressure drive source that generates high torque at low speed.
  • the screw is connected to a ram having a holder that supports the upper mold via a rotation prevention mechanism.
  • the nut is screwed to the screw, and movement in the vertical direction is restricted.
  • the pressure drive source is fixed to the frame or the like, the high-speed drive source needs to be moved along with the vertical movement of the screw, and a guide mechanism for movement is provided.
  • a guide mechanism for guiding one of the drive sources is required, which complicates the entire configuration of the press brake and increases the cost. Will be invited.
  • the press brake of Patent Document 1 uses a high-speed drive source when approaching a workpiece and uses a pressure drive source for machining the workpiece. Therefore, it takes time to switch the drive source, and the time required to machine the workpiece. become longer. Furthermore, since only the pressure driving source is used for processing the workpiece, it is necessary to use a large (high output) pressure driving source, resulting in an increase in cost.
  • the present invention eliminates the relative position change between the first motor and the second motor and simplifies the configuration, thereby suppressing an increase in cost, further shortening the workpiece machining time, and
  • An object of the present invention is to provide a press brake capable of realizing the downsizing of the motor 2.
  • a press brake according to the present invention is a press brake for bending a workpiece with an upper die and a lower die sandwiched therebetween, a ram capable of mounting the upper die or the lower die, a ram drive mechanism for moving the ram up and down, and a ram A rotation / linear motion conversion unit comprising a screw fixed to the ram and moving up and down as the ram moves up and down, and a nut screwed to the screw.
  • a drive rotating body that is disposed apart from the nut in the axial direction of the screw and that is rotatably disposed around the rotation axis of the nut, a first motor that is fixedly disposed, and a first motor
  • a first power transmission unit that transmits rotation to the nut at high speed and low torque
  • a second motor that is fixedly arranged, and a second power transmission that transmits rotation of the second motor to the drive rotor at low speed and high torque Part
  • nut and drive rotor Provided, and a clutch portion for integrally combining the rotary member by connecting the nut and the drive rotor.
  • control unit causes the upper die or the lower die to descend within a range including at least a part of the approach to the workpiece among the strokes including the approach to the workpiece, the contact with the workpiece, and the end of the bending of the workpiece.
  • a synchronous rotation control unit for controlling the first motor and making the speed of the nut rotated by the first motor and the driving rotating body rotated by the second motor the same during the approach, and controlling the synchronous rotation
  • the speed of the nut and the drive rotator may be made the same by the part, and the nut and the drive rotator may be connected by the clutch part.
  • the synchronous rotation control unit may control the first motor so that the rotation of the nut is decelerated to the rotational speed of the drive rotating body that is rotating at a low speed or scheduled to rotate by the second motor.
  • the drive rotating body has a housing portion that houses at least a part of the nut, the outer peripheral portion is a transmitted portion to which power is transmitted from the second power transmission portion, and the inner peripheral portion is a nut via a bearing.
  • the driving rotating body may be rotatably supported via a reaction force receiving portion held by a frame that is fixedly arranged in the axial direction.
  • the control unit may include a use / non-use selection unit that selects use or non-use of the clutch unit.
  • the clutch portion may connect the nut and the drive rotating body by a reaction force generated when processing the workpiece.
  • the clutch unit may include a drive unit that moves at least one of the separated nut and the drive rotator to couple them together.
  • the press brake according to the present invention is a press brake for bending a workpiece with an upper mold and a lower mold sandwiched between the ram, which can be mounted with the upper mold or the lower mold, and the ram that is installed on the floor to move the ram up and down.
  • a frame that guides in a direction, a ram drive mechanism that moves the ram up and down, and a control unit that controls the ram drive mechanism, the ram drive mechanism including a screw and a nut screwed to the screw.
  • One of the nuts is fixed to the ram, and the other of the screw and the nut is fixed to the frame, a first motor fixed to the ram or the frame, and the first motor are fixed
  • a second motor fixed to the ram or frame and a nut or screw rotated by the first motor, spaced apart in the axial direction of the screw and rotatable about the rotation axis of the nut or screw
  • a drive rotator that is rotated by the second motor, a nut or screw that is rotated by the first motor, and the drive rotator, and connects the nut or screw and the drive rotator.
  • a clutch part for integrating as a rotating body.
  • the press brake according to the present invention when either one or both of the first motor and the second motor are driven, the relative positions of the two are maintained, so that the first motor and the second motor are maintained.
  • a guide mechanism for guiding one of the motors becomes unnecessary. With this configuration, it is possible to suppress an increase in cost by suppressing complication of the entire configuration. Furthermore, since the nut (screw) rotated by the first motor and the driving rotating body rotated by the second motor are connected by the clutch portion, the work from the approach to the workpiece to the bending process can be performed in a short time and smoothly. Therefore, the machining time of the workpiece can be shortened. In addition, since both the first motor and the second motor can be used when processing the workpiece, it is possible to reduce the size of the second motor that rotates the drive rotor.
  • the upper die or the lower die is lowered in a range including at least a part of the approach to the workpiece among the strokes including the approach to the workpiece, the contact with the workpiece, and the end of bending of the workpiece.
  • the first motor is controlled by the above-mentioned synchronous rotation control unit, and the speed of the nut rotated by the first motor during the approach and the driving rotating body rotated by the second motor are made the same before the clutch unit.
  • the synchronous rotation control unit makes the rotation speed of the nut and the drive rotator the same so that both can be smoothed in a short time. Can be linked to.
  • the synchronous rotation control unit controls the first motor so that the rotation of the nut is decelerated to the rotation speed of the drive rotating body that is rotating at a low speed or scheduled to rotate by the second motor, It is possible to connect the nut and the drive rotator by the clutch portion in a short time without rotating the drive rotator at a high speed by this motor.
  • the drive rotating body has a housing portion that houses at least a part of the nut, the outer peripheral portion is a transmitted portion to which power is transmitted from the second power transmission portion, and the inner peripheral portion is a nut via a bearing.
  • the drive rotating body is rotatably supported via a reaction force receiving portion held by a frame that is fixedly arranged in the axial direction thereof, in the housing portion. Since a part of the nut is accommodated, it is possible to suppress the deviation of the rotation shaft between the drive rotating body and the nut.
  • the reaction force receiving portion receives the reaction force at the time of machining the workpiece and restricts the screw from moving in the axial direction, whereby the workpiece can be bent accurately.
  • control unit has a use / non-use selection unit that selects use or non-use of the clutch unit, workpiece bending using rotation of the drive rotating body and rotation of the nut, and rotation of only the nut It is possible to arbitrarily select a workpiece bending process using the.
  • the clutch portion connects the nut and the drive rotating body by the reaction force generated when the workpiece is processed, a drive source for driving the clutch portion is unnecessary, and the product cost can be reduced.
  • the clutch unit includes a drive unit that moves at least one of the separated nut and the drive rotator and couples them, the drive unit connects the nut and the drive rotator by the clutch unit. This can be performed reliably, and the timing of connection can be set arbitrarily.
  • FIG. 1 It is a front view showing an example of a press brake concerning a 1st embodiment. It is a perspective view which shows the press brake of 1st Embodiment. It is a figure explaining the ram drive mechanism of the press brake of 1st Embodiment. It is a figure which shows the time of the releasing of the clutch part of 1st Embodiment. It is a figure which shows the time of the connection of the clutch part of 1st Embodiment. (A) is a timing chart of the pressing method according to the present embodiment, and (B) is a timing chart of the conventional pressing method. It is a figure explaining the ram drive mechanism of the press brake which concerns on 2nd Embodiment.
  • the direction of the arrow in the figure is the + direction
  • the direction opposite to the arrow direction is the ⁇ direction.
  • the part which shows the cross section in a figure there exists the part which gave the hatching in order to make it easy to see.
  • FIG. 1 is a front view showing an example of a press brake 10 according to the first embodiment.
  • FIG. 2 is a perspective view showing the press brake 10.
  • the press brake 10 of this embodiment includes a frame 11 and a table 13 that supports the lower mold 12.
  • the frame 11 includes a pair of side plates 14 and forms an outline of the press brake 10.
  • the frame 11 is installed on the floor surface FL.
  • the lower mold 12 is a fixed (lower) mold, and is formed long in the left-right direction.
  • the lower mold 12 has a molding recess 12a.
  • the table 13 is attached to the front side ( ⁇ Y side) of the frame 11 and fixes the lower mold 12.
  • the side plates 14 are respectively disposed on the left and right side portions of the frame 11.
  • Each of the side plates 14 is formed with guide plates 18 projecting inward at two locations, upper and lower.
  • An upper cover plate (not shown) is attached to the front surface between the pair of side plates 14.
  • a ram 27 is disposed between the left and right side plates 14.
  • the ram 27 is a plate-like member made of, for example, metal and has a weight of several tens to several hundreds kg.
  • the ram 27 is formed with a roller 27 a that sandwiches the guide plate 18.
  • the roller 27a is guided by the guide plate 18 to guide the ram 27 in the vertical direction.
  • a plurality of upper mold holders 28 are attached at regular intervals in the left-right direction.
  • Each of the upper mold holders 28 has a clamp mechanism for sandwiching and holding the upper mold 29. Note that the ram 27 and the upper mold holder 28 are not limited to the illustrated configuration, and an arbitrary configuration is applied.
  • the upper mold 29 is disposed so as to face the recess 12 a of the lower mold 12 when held by the upper mold holder 28.
  • the upper die 29 has a tip portion 29 a that enters the recess 12 a of the lower die 12.
  • the ram 27, the upper mold holder 28, and the upper mold 29 form a structure that moves in the vertical direction together with a screw 19 described later.
  • the press brake 10 includes a pair of left and right ram drive mechanisms 17.
  • the two ram drive mechanisms 17 have the same configuration and are respectively arranged behind the upper cover plate (not shown) of the frame 11. Each of the ram drive mechanisms 17 is held by the frame 11.
  • the ram drive mechanism 17 includes a ball screw (rotation / linear motion conversion unit) 21 having a screw 19 and a nut 20, a first motor 22 as a high-speed drive source, a first power transmission unit 23, and a pressure drive source.
  • the second motor 24, the second power transmission unit 25, the clutch unit 26, and the nut 20 are spaced apart from each other in the axial direction of the screw 19, and are disposed so as to be rotatable around the rotation axis of the nut 20.
  • Drive rotator 37 The ball screw (rotation / linear motion conversion unit) 21 having a screw 19 and a nut 20, a first motor 22 as a high-speed drive source, a first power transmission unit 23, and a pressure drive source.
  • the ball screw 21 is used as the rotation / linear motion conversion unit.
  • the present invention is not limited to this configuration, and a roller screw or the like may be used as the rotation / linear motion conversion unit.
  • the press brake 10 is provided with the control part 15 which controls the ram drive mechanism 17, as shown in FIG.
  • the control unit 15 is configured by, for example, a central processing unit, a storage device, and the like, and may comprehensively control the entire press brake 10 including the ram drive mechanism 17.
  • the control unit 15 includes a synchronous rotation control unit 15a that makes the speeds of the nut 20 rotated by the first motor 22 and a drive rotating body 37 (described later) rotated by the second motor 24 the same, and a clutch (described later).
  • a use / non-use selection unit 15b that selects use or non-use of the unit 26.
  • FIG. 3 is a diagram for explaining the ram drive mechanism 17 of the press brake 10.
  • the screw 19 is arranged along the vertical direction (Z direction), and the lower end is attached to the ram 27.
  • the rotation of the screw 19 is restricted by being attached to the ram 27.
  • the screw 19 is movable integrally with the ram 27 in the vertical direction.
  • the length of the screw 19 is set according to the movement range of the upper die 29.
  • the nut 20 is arranged in a state where it is screwed to the screw 19.
  • the nut 20 is accommodated in a case 40 fixed to the frame 11. Therefore, the nut 20 is restricted from moving in the vertical direction.
  • the case 40 includes a first body portion 41, a second body portion 42, a first lid portion 43, and a second lid portion 44.
  • the first body portion 41 is provided, for example, in a cylindrical shape, and is disposed around the lower portion of the nut 20.
  • the first body 41 supports the nut 20 so as to be rotatable around the axis AX by the bearings 16a and 16b.
  • ball bearings or the like are used as the bearings 16a and 16b.
  • the bearing 16 a is disposed at the lower end portion of the first body portion 41.
  • the bearing 16 b is disposed at the upper end portion of the first body portion 41.
  • the bearing 16 a is disposed below the flange portion 20 a of the nut 20.
  • the bearing 16a is disposed in a state of being sandwiched between the flange portion 20a and a first lid portion 43 described later.
  • the nut 20 is restricted from moving downward by the bearing 16 a and the first lid 43.
  • the second body portion 42 is disposed above the first body portion 41 and is fixed to the first body portion 41 by a fixing member such as a bolt.
  • the second body portion 42 is provided in a cylindrical shape, for example, and has an inner diameter and an outer diameter larger than those of the first body portion 41.
  • the second body portion 42 is disposed at a position surrounding the upper portion of the nut 20 and a drive rotator 37 described later.
  • the first lid portion 43 is disposed at the lower end portion of the first body portion 41.
  • the first lid portion 43 has an opening at the center, and the lower end portion of the nut 20 protrudes downward from the opening. Further, the screw 19 is disposed through the opening of the first lid 43.
  • the second lid portion 44 is disposed at the upper end portion of the second body portion 42.
  • the 2nd cover part 44 has an opening part in the center, and is arrange
  • the first motor 22 is, for example, a low torque and high speed rotation type servo motor.
  • the output shaft 22 a of the first motor 22 is connected to the input side of the first power transmission unit 23.
  • the first motor 22 is fixedly arranged on the frame 11 by a fixing portion 22b. With this configuration, the first motor 22 is in a state where movement in the vertical direction and the horizontal direction is restricted with respect to the frame 11.
  • the first motor 22 rotationally drives the output shaft 22 a according to a command from the control unit 15.
  • the second motor 24 for example, a servo motor is used in the same manner as the first motor 22.
  • a high torque and low speed rotation type servo motor is used.
  • the output shaft 24 a of the second motor 24 is connected to the input side of the second power transmission unit 25.
  • the second motor 24 is fixedly disposed on the frame 11 by a fixing portion 24b. With this configuration, the second motor 24 is in a state in which movement in the vertical direction and the horizontal direction is restricted with respect to the frame 11. Similar to the first motor 22, the second motor 24 rotationally drives the output shaft 24 a according to a command from the control unit 15.
  • the 1st motor 22 and the 2nd motor 24 are each supported by the flame
  • the first power transmission unit 23 transmits the rotation of the first motor 22 to the nut 20 at high speed and low torque.
  • the first power transmission unit 23 includes an output shaft pulley 33, a drive pulley 34, and a belt 35.
  • the output shaft pulley 33 is attached to the output shaft 22 a of the first motor 22.
  • the drive pulley 34 is fixed to the lower end portion of the nut 20 coaxially with the nut 20.
  • the belt 35 is spanned between the output shaft pulley 33 and the drive pulley 34. Therefore, by driving the first motor 22, the nut 20 is rotated at high speed and with low torque via the first power transmission unit 23. Due to the rotation of the nut 20, the screw 19 whose rotation is restricted by the ram 27 moves at a high speed in the vertical direction.
  • the second power transmission unit 25 transmits the rotation of the second motor 24 to the drive rotator 37 at a low speed and with a high torque.
  • the second power transmission unit 25 includes an output shaft pulley 36, a drive rotator 37, and a belt 38.
  • the output shaft pulley 36 is attached to the output shaft 24 a of the second motor 24.
  • the drive rotator 37 is spaced above the nut 20 and is disposed coaxially with the nut 20.
  • the drive rotator 37 is accommodated in the case 40 together with the nut 20.
  • the drive rotating body 37 is supported by the case 40 so as to be rotatable around the axis AX.
  • the drive rotator 37 is disposed inside the second body portion 42 and below the second lid portion 44.
  • the drive rotating body 37 can be connected to the nut 20 by the clutch portion 26.
  • the drive rotator 37 has an accommodating portion 37e that accommodates an upper portion (a part) of the nut 20.
  • the inner peripheral portion of the drive rotator 37 that is the side surface of the housing portion 37e is in a state of facing the outer peripheral surface of the upper portion of the nut 20 via the bearings 37a and 37b.
  • the drive rotator 37 is disposed so as to be rotatable around the rotation axis of the nut 20 by bearings 37a and 37b.
  • the bearings 37a and 37b are disposed above the bearing 16b and may support the upper portion of the nut 20 or may not support it.
  • a thrust bearing 37 c is disposed on the upper portion of the drive rotor 37.
  • the thrust bearing 37 c is disposed between the drive rotating body 37 and the second lid portion 44 of the case 40. Therefore, the drive rotator 37 is rotatably supported in the axial direction by the thrust bearing 37c held by the case 40 (frame 11). Further, the drive rotor 37 is restricted from moving upward by the thrust bearing 37c. With this configuration, the upward movement of the screw 19 and the nut 20 is restricted.
  • the thrust bearing 37c is a reaction force receiving portion that receives a reaction force acting on the drive rotating body 37 when the workpiece W is bent.
  • the second lid portion 44 is formed with increased thickness and rigidity in order to receive a reaction force acting on the thrust bearing 37c.
  • the belt 38 is stretched over the output shaft pulley 36 and a transmitted portion 37 d which is an outer peripheral portion of the drive rotating body 37. Therefore, by driving the second motor 24, the drive rotating body 37 is rotated at a low speed and with a high torque via the second power transmission unit 25.
  • the drive rotator 37 is connected to the nut 20 by the clutch portion 26, the rotation of the drive rotator 37 causes the nut 20 to rotate at a low speed and a high torque, and the screw 19 is moved downward at a low speed and a high load (large thrust). Can be moved to.
  • the ram drive mechanism 17 has a configuration in which the first power transmission unit 23 and the second power transmission unit 25 transmit the driving force by the belts 35 and 38, but is not limited to this configuration.
  • the driving force may be transmitted by a gear train.
  • the two ram driving mechanisms 17 are not limited to being arranged for one ram 27, and one or three or more ram driving mechanisms 17 may be arranged.
  • the clutch unit 26 connects the nut 20 rotated by the first motor 22 and the drive rotating body 37, and transmits the rotation (driving force) of the drive rotating body 37 to the nut 20.
  • An annular member 61 is fixed to the upper end surface of the nut 20 by a fixing member such as a bolt.
  • the annular member 61 has, for example, a flat end surface 61 f and is disposed to face the flat lower surface 37 f of the drive rotating body 37.
  • the end surface 61f of the annular member 61 and the lower surface 37f of the drive rotating body 37 are not limited to a flat configuration, and may have other shapes.
  • the clutch portion 26 connects the nut 20 and the drive rotator 37 when the end surface 61 f of the annular member 61 contacts the lower surface 37 f of the drive rotator 37.
  • FIG. 4 and 5 are views showing the main part of the ram drive mechanism 17 and showing the positional relationship between the drive rotating body 37 and the nut 20 by the clutch part 26.
  • FIG. 4 shows a state in which the upper die 29 is not receiving a reaction force from the workpiece W
  • FIG. 5 shows a state in which the upper die 29 receives a reaction force from the workpiece W.
  • the gap between the end surface 61 f of the annular member 61 and the lower surface 37 f of the driving rotating body 37 is maintained with a gap L ⁇ b> 1 formed. Is done.
  • the gap L1 is set, for example, from several tens of ⁇ m to several mm.
  • the nut 20 and the drive rotator 37 are connected by the clutch portion 26 and integrated as a rotator R. Therefore, by rotating the drive rotator 37 by the second motor 24, the rotation of the drive rotator 37 is transmitted to the nut 20 via the annular member 61, and rotation (drive force) is applied to the nut 20. it can.
  • the ram drive mechanism 17 can connect and release the clutch part 26 without using a drive source dedicated to the clutch part.
  • the nut 20 is moved upward by the positional change between the inner ring and the outer ring such as the bearing 37 a or the elastic deformation of the bearing 37 a, but the present invention is not limited to this configuration.
  • the bearing 37a and the like may be configured to be movable up and down with respect to the drive rotating body 37 and the like, and the nut 20 may move up and down together with the bearing 37a and the like.
  • the nut 20 may be configured to move up and down with respect to the bearing 37a and the like.
  • FIG. 6A is a timing chart of the pressing method according to this embodiment.
  • the rotation direction and the rotation speed of the shaft 24a are shown in correspondence with each other.
  • the horizontal axis of FIG. 6 (A) is time.
  • the operations of the first motor 22 and the second motor 24 of the ram drive mechanism 17 described below are executed by the control unit 15 (see FIG. 1).
  • the work W is placed on the lower mold 12 with the upper mold 29 retracted upward.
  • the press brake 10 has a workpiece positioning mechanism (not shown), and an operator positions the workpiece W on the lower mold 12 by abutting the tip of the workpiece W against the positioning mechanism.
  • Section A is a section in which the upper die 29 approaches the workpiece W.
  • the nut 20 is rotated at a high speed by the first motor 22.
  • the operation of each part in the lowering operation of the ram 27 will be specifically described.
  • the driving by the first motor 22 is started (time t1)
  • the number of rotations per unit time of the first motor 22 is determined from the time t1. Gradually increase.
  • the rotation speed of the first motor 22 When the rotation speed of the first motor 22 has reached a predetermined first rotation speed R1 (time t2), the rotation speed is made constant at the first rotation speed R1. At this time, a gap L1 is generated between the drive rotor 37 of the second power transmission unit 25 and the annular member 61 (see FIG. 4). For this reason, the nut 20 is rotated at a high speed by the driving force of the first motor 22, and the rotation of the nut 20 is not transmitted to the drive rotating body 37. Therefore, the screw 19 descends at a high speed by the high-speed rotation of the nut 20.
  • the rotational speed of the first motor 22 is gradually decreased from the first rotational speed R1.
  • the rotation speed is decreased so that the rotation speed of the first motor 22 becomes the second rotation speed R2 smaller than the first rotation speed R1.
  • the control unit 15 performs the first rotation so that the rotation of the nut 20 is reduced to the (rotational speed) at the second rotation speed R2 of the drive rotating body 37 that is rotated at a low speed by the second motor 24 or scheduled to rotate.
  • the motor 22 is controlled.
  • the second rotation speed R2 is the rotation speed when bending the workpiece W, for example.
  • the synchronous rotation control unit 15 a of the control unit 15 makes the speeds of the nut 20 rotated by the first motor 22 and the drive rotating body 37 described later rotated by the second motor 24 the same.
  • the rotation speed of the second motor 24 is the second rotation speed R2 before the first motor 22.
  • the present invention is not limited to this example.
  • the rotational speed of the second motor 24 is simultaneously with the first motor 22. It may be the second rotational speed R2.
  • the rotation speed of the nut 20 by the first motor 22 and the rotation speed of the drive rotor 37 by the second motor 24 are both the first. 2 revolutions R2. That is, the nut 20 and the drive rotator 37 rotate in synchronization. Thereby, the rotational speed of the nut 20 (annular member 61) and the rotational speed of the drive rotor 37 become the same.
  • a gap L1 is still formed between the annular member 61 and the drive rotator 37, and the annular member 61 and the drive rotator 37 rotate at the same rotational speed while facing away from each other. is doing.
  • section B low speed pressurization
  • the ram 27 is lowered at a low speed from the first position P1 to the third position P3 by driving the first motor 22.
  • the third position P3 is the position of the ram 27 when the upper die 29 contacts the workpiece W.
  • the fourth position P4 is the position of the ram 27 when the upper mold 29 reaches the bottom dead center (time t7).
  • the ram 27 reaches the fourth position P4
  • the upper die 29 reaches the bottom dead center, the workpiece W is sandwiched between the upper die 29 and the lower die 12, and the workpiece W is bent. Is done.
  • the control unit 15 moves down in a range in which the upper die 29 includes a part of the approach to the workpiece W among strokes including the approach to the workpiece W, the contact with the workpiece W, and the bending end of the workpiece W.
  • the first motor 22 is controlled so that the rotational speed of the nut 20 rotated by the first motor 22 and the drive rotating body 37 rotated by the second motor 24 during the approach is synchronized with the synchronous rotation control unit 15a.
  • the nut 20 and the drive rotating body 37 are connected to each other by the clutch portion 26.
  • the ram 27 is lowered from the third position P3 to the fourth position P4, the load (thrust) required for machining the workpiece W is shared by the first motor 22 and the second motor 24, respectively. For this reason, the output and size reduction of the second motor 24 can be achieved.
  • the rotational speeds of the first motor 22 and the second motor 24 are decreased immediately before time t7 (from immediately before the upper die 29 reaches the bottom dead center).
  • the first motor 22 and the second motor The driving of the first motor 22 and the second motor 24 is stopped until time t8 (section C: stop).
  • the upper die 29 is maintained at the bottom dead center and further prevents the workpiece W from being pressurized beyond the bottom dead center.
  • the first motor 22 and the second motor 24 are synchronized to start driving in reverse rotation.
  • the first motor 22 and the second motor 24 gradually increase the rotational speed of the reverse rotation synchronously, and are maintained at the third rotational speed R3 at the same timing (section D: pressure release).
  • the upper die 29 is separated from the workpiece W by moving the screw 19 upward.
  • the reaction force acting on the upper die 29 from the workpiece W is eliminated, and the upward pressing force on the nut 20 and the annular member 61 is eliminated.
  • the nut 20 and the annular member 61 move downward with respect to the drive rotating body 37 due to the load of the ram 27 and the like. Therefore, the annular member 61 is separated downward from the drive rotator 37, and a gap L1 is formed between the annular member 61 and the drive rotator 37 (time t9).
  • the nut 20 is in a state where the driving force from the second motor 24 is interrupted and rotated by the driving force of the first motor 22.
  • the rotational speed of the first motor 22 is gradually increased from the third rotational speed R3 to the fourth rotational speed R4 (section E: high speed increase).
  • the nut 20 rotates at a high speed by the high-speed rotation of the first motor 22.
  • the screw 19 rises at a high speed.
  • the ram 27 is returned to the original position (time t10).
  • the first motor 22 is stopped.
  • the second motor 24 after the annular member 61 is moved downward from the drive rotating body 37 (after time t9), the driving at the third rotational speed R3 is continued for a predetermined time, and then the driving is stopped. ing.
  • the ram 27 is returned to the original position, and the operation of the press brake 10 is completed by stopping the operation of the first motor 22 (section F: operation stop).
  • FIG. 6B is a timing chart showing the operation of the conventional press brake.
  • the conventional press brake has a configuration in which the first motor is used when the ram is lowered at a high speed (section A) and the second motor is used when a workpiece is processed by a low-speed press of the ram (section B). .
  • this configuration when switching the drive source, it is necessary to stop both the first motor and the second motor and operate the clutch, so that much time is required (sections G and H), and the workpiece The time required for processing becomes longer. Furthermore, since only the second motor is used for processing the workpiece, it is necessary to use a large (high output) second motor, which leads to an increase in cost.
  • the pressing method according to the present embodiment does not require both the first motor and the second motor to be stopped when the drive source is switched.
  • the driving forces of both the first motor and the second motor are used. With this configuration, it is possible to reduce the processing time of the workpiece W and reduce the size of the second motor 24.
  • the press brake 10 and the press method according to the first embodiment when one or both of the first motor 22 and the second motor 24 are driven, the relative positions of both are maintained. Yes. Therefore, a guide mechanism for guiding one of the first motor 22 and the second motor 24 is not necessary. With this configuration, it is possible to suppress an increase in cost by suppressing complication of the entire configuration. Furthermore, since the nut 20 is driven by the first motor 22 and the second motor 24, the drive source can be switched smoothly. In the above-described pressing method, the nut W is rotated by both the first motor 22 and the second motor 24 to bend the workpiece W, but the present invention is not limited to this configuration.
  • the control unit 15 may rotate the nut 20 only by the first motor 22 and execute the bending process of the workpiece W.
  • the control unit 15 selects the non-use of the clutch unit 26 (that is, the non-use of the second motor 24) by the use / non-use selection unit 15b (see FIG. 1).
  • the inner ring moves such as the bearing 37a or the bearing 37a. The deformation is small, and the coupling between the nut 20 and the drive rotating body 37 by the clutch portion 26 is not executed.
  • the bending process of the workpiece W is performed by the rotation of the nut 20 by only the first motor 22.
  • the control unit 15 selects the use of the clutch unit 26 (that is, the use of the second motor 24) by the use / non-use selection unit 15b, and has been described above.
  • the nut 20 and the drive rotator 37 are connected by the clutch portion 26.
  • FIG. 7 is a view for explaining a ram drive mechanism of a press brake according to the second embodiment.
  • FIG. 7 shows the ram drive mechanism 117 of the press brake 110.
  • the configuration other than the ram drive mechanism 117 is the same as that of the first embodiment shown in FIGS.
  • symbol is attached
  • the clutch portion 126 has a drive portion 62.
  • the drive unit 62 makes the nut 20 rotated by the first motor 22 and the drive rotating body 37 abut.
  • the drive unit 62 has a hydraulic cylinder mechanism that raises and lowers the nut 20.
  • the drive unit 62 includes a piston portion 62a and a hydraulic pressure supply portion 62b that supplies oil to a cylinder chamber in which the piston portion 62a slides in the vertical direction.
  • the driving of the driving unit 62 is controlled by the control unit 15 (see FIG. 1).
  • the hydraulic cylinder mechanism is formed in the first lid portion 43 of the case 40, and the piston portion 62a is disposed in contact with the lower portion of the bearing 16a that supports the lower portion of the nut 20.
  • Piston part 62a is arranged in the position which pinches bearing 16a in the up-and-down direction between flange parts 20a.
  • the piston portion 62a moves in the vertical direction by adjusting the hydraulic pressure in the cylinder chamber by the hydraulic pressure supply portion 62b.
  • the piston portion 62a can move upward and push the nut 20 upward when oil from the hydraulic pressure supply portion 62b is supplied to the cylinder chamber.
  • the piston 62a moves downward when the supply of oil from the hydraulic pressure supply unit 62b is stopped or the supply pressure of the oil is reduced in a state of being positioned above.
  • the drive unit 62 can bring the end surface 61f of the annular member 61 into contact with the lower surface 37f of the drive rotating body 37 by pushing the nut 20 upward by the piston portion 62a of the hydraulic cylinder mechanism. Further, the drive unit 62 moves the piston 62 a downward from the state in which the end surface 61 f of the annular member 61 is in contact with the lower surface 37 f of the drive rotator 37, thereby moving the end surface 61 f of the annular member 61 to the drive rotator 37. It can be separated from the lower surface 37f.
  • the drive unit 62 can switch the contact or separation between the annular member 61 and the drive rotating body 37, that is, connection or release by the clutch unit 126, at any timing by the control unit 15. .
  • the drive of the drive unit 62 may be performed by the use / non-use selection unit 15b (see FIG. 1) of the control unit 15. For example, when the use / non-use selection unit 15b selects non-use of the clutch unit 26, the drive unit 62 may not be driven, or the use / non-use selection unit 15b selects use of the clutch unit 26. In such a case, the drive unit 62 may be driven as described above.
  • the ram drive mechanism 117 has a sensor 63.
  • the sensor 63 is disposed on the upper surface of the flange portion 20a.
  • various sensors such as a contact sensor such as a pressure sensor or a non-contact sensor such as an optical sensor can be used.
  • the sensor 63 can detect the pressure applied upward to the flange portion 20a or the upward movement of the flange portion 20a. The detection result is sent to the control unit 15, for example. Further, the sensor 63 can detect the cancellation of the pressure and the downward movement when the upward pressure applied to the nut 20 is eliminated or when the flange portion 20a moves downward.
  • the sensor 63 detects, for example, the pressure or movement of the flange portion 20a, so that the nut 20 is pushed upward by the drive portion 62 or the nut 20 is returned downward by the drive portion 62. Is transmitted to the control unit 15 so that the connection or release by the clutch unit 26 can be detected.
  • the sensor 63 can be installed regardless of the presence or absence of the drive unit 62, and can also be applied to other embodiments in which the nut 20 moves up and down.
  • the ram drive mechanism 117 is provided with a sensor 64 different from the sensor 63.
  • the sensor 64 is disposed, for example, below the screw 19.
  • a load cell or a temperature sensor is used as the sensor 64.
  • a load (thrust) or torque acting on the screw 19 can be detected.
  • the sensor 64 is a temperature sensor, the temperature of the ram drive mechanism 17 or the ram 27 can be detected. Note that the arrangement of one or both of the sensors 63 and 64 is arbitrary, and one or both of the sensors 63 and 64 may not be provided.
  • the operation is stopped after performing the high-speed descending operation, the low-speed pressurizing operation, the stop operation, the depressurizing operation, and the high-speed ascending operation by the same method as in the first embodiment.
  • the drive unit 62 for example, when the rotational speed of the first motor 22 and the rotational speed of the second motor 24 become the same second rotational speed R2 (for example, at the time t5 shown in FIG. 6A). (Timing) or after that, by supplying oil from the hydraulic pressure supply part 62b and driving the piston part 62a, the annular member 61 is connected to the drive rotating body 37. At this time, the sensor 63 may detect that the nut 20 is pushed upward. By this sensor 63, it can be easily confirmed that the annular member 61 (nut 20) is connected to the drive rotating body 37.
  • the drive unit 62 stops the supply of oil by the hydraulic supply unit 62b or reduces the supply pressure of the oil after the upper die 29 is separated from the workpiece W.
  • the piston part 62a is lowered together with the nut 20 by the load of the ram 27 or the like.
  • the annular member 61 is separated from the drive rotator 37 by the lowering of the piston portion 62a.
  • the sensor 63 may detect that the nut 20 is returned downward. With this sensor 63, the control unit 15 can easily confirm that the connection between the annular member 61 and the drive rotating body 37 has been released.
  • the sensor 64 When the sensor 64 is a load cell, the load or torque value applied to the screw 19 is detected, and when the load or torque value exceeds a preset value, for example, a load ( You may alert
  • the sensor 64 When the sensor 64 is a temperature sensor, the temperature of the ram driving mechanism 17 or the ram 27 is detected. If the detected temperature is equal to or higher than a preset value, the temperature is high due to an alarm, for example. You may notify.
  • the press brake 110 maintains the relative positions of the first motor 22 and the second motor 24 as in the first embodiment.
  • a guide mechanism for guiding one of the motor 22 and the second motor 24 becomes unnecessary, and an increase in cost can be suppressed.
  • the processing time of the workpiece W can be shortened, and the second motor 24 can be downsized.
  • the press brake 110 includes a drive unit 62 in which the clutch unit 126 makes contact with the nut 20 rotated by the first motor 22 and the drive rotating body 37. Release can be performed reliably, and the timing of connection can be set arbitrarily. Further, since the press brake 110 includes a sensor 63 that detects contact between the nut 20 and the drive rotating body 37 by the drive unit 62, the sensor 63 ensures that the clutch unit 126 is connected or released. Can be detected.
  • the drive unit 62 described above uses a hydraulic cylinder mechanism, but is not limited to this configuration. For example, a pneumatic cylinder mechanism may be used, or an electric actuator such as a piezo element may be used.
  • FIG. 8 is a view for explaining a ram drive mechanism of a press brake according to the third embodiment.
  • FIG. 8 shows the ram drive mechanism 217 of the press brake 210, and the configuration other than the ram drive mechanism 217 is the same as that of the second embodiment shown in FIG.
  • symbol is attached
  • the ram drive mechanism 217 has a spline shaft 219a provided on the screw 219 and a spline nut 65 through which the spline shaft 219a passes as a rotation preventing portion for stopping the rotation of the screw 219. .
  • the spline shaft 219 a is provided on an upper portion of the screw 219 including a portion protruding from the second lid portion 44 of the case 40.
  • the spline shaft 219a is formed downward from the upper end portion of the screw 219. Note that the length of the spline shaft 219a in the vertical direction is set to be greater than the stroke range of the ram 27 (upper die 29), for example.
  • FIG. 9 is a diagram showing a configuration when the screw 219 is viewed from above. As shown in FIG. 9, the spline nut 65 has a plurality of spline grooves 65a on the inner periphery. A spline shaft 219a of a screw 219 is inserted into the spline groove 65a.
  • the spline shaft 219a is locked to the spline groove 65a at the upper part of the screw 219 in the rotational direction around the axis AX. For this reason, the rotation of the screw 219 around the axis AX is restricted.
  • the spline shaft 219a is movable in the vertical direction with respect to the spline nut 65. Therefore, the movement of the screw 219 in the vertical direction is not hindered by the spline nut 65.
  • the method of pressing the workpiece W by the press brake 210 is the same as in the second embodiment.
  • the ram drive mechanism 217 can receive the force in the rotational direction of the screw 219 by the spline nut 65 even when a force is applied in the rotational direction of the screw 219.
  • a force that rotates around the screw 219 acts. A part of this force is received by the spline nut 65, and the ram 27 Rotational torque applied to can be reduced.
  • the press brake 210 maintains the relative positions of the first motor 22 and the second motor 24 as in the second embodiment.
  • a guide mechanism for guiding one of the motor 22 and the second motor 24 becomes unnecessary, and an increase in cost can be suppressed.
  • the processing time of the workpiece W can be shortened, and the second motor 24 can be downsized.
  • the drive unit 62 can reliably perform connection or release by the clutch unit 126, and can arbitrarily set the connection timing.
  • the sensor 63 can reliably detect the state of being connected or released by the clutch portion 126. Note that the spline shaft 219a and the spline nut 65 shown in FIGS.
  • the anti-rotation portions such as the spline shaft 219a and the spline nut 65 can be applied to other embodiments in which the screw 19 does not rotate.
  • the press brake 210 since the press brake 210 includes anti-rotation portions such as the spline shaft 219a and the spline nut 65, the rotation of the screw 219 is restricted. With this configuration, since the rotation preventing portion receives a part of the rotational torque of the screw 219, the rotational torque transmitted from the screw 219 to the ram 27 can be reduced, and the deformation of the ram 27 by the screw 219 can be prevented.
  • FIG. 10 is a diagram illustrating a ram drive mechanism of a press brake according to the fourth embodiment.
  • FIG. 10 shows the ram drive mechanism 317 of the press brake 310, and the configuration other than the ram drive mechanism 317 is the same as that of the first embodiment shown in FIGS.
  • symbol is attached
  • a configuration in the case where the rotation of the nut 320 and the movement in the vertical direction are restricted, and the screw 319 is rotated and moved in the vertical direction will be described.
  • the ram drive mechanism 317 includes a ball screw (rotation / linear motion conversion unit) 321 having a screw 319 and a nut 320, a first motor 22, a first power transmission unit 323, and a second The motor 24, the second power transmission unit 325, the clutch unit 326, and the drive rotation disposed so as to be spaced apart from the screw 319 in the axial direction of the screw 319 and rotatably around the rotation axis of the screw 319.
  • the ball screw 321 is used as the rotation / linear motion conversion unit.
  • the present invention is not limited to this configuration, and a roller screw or the like may be used as the rotation / linear motion conversion unit.
  • the screw 319 is disposed along the vertical direction.
  • a ram 27 is attached below the screw 319 via a case 340.
  • the screw 319 is integrally movable with the ram 27 and can be moved in the vertical direction, and is supported in a state of being suspended from a nut 320 fixed to the frame 11.
  • the length of the screw 319 is set according to the stroke of the upper die 29.
  • the lower part of the screw 319 is accommodated in a case 340 fixed to the ram 27.
  • the case 340 includes a body part 341 and a lid part 343.
  • the body portion 341 is provided in a cylindrical shape and is disposed around the lower portion of the screw 319.
  • the body 341 supports a drive rotator 337 described later by bearings 337a and 337b so as to be rotatable around the axis AX.
  • ball bearings or the like are used as the bearings 337a and 337b.
  • the lid portion 343 is disposed at the lower end portion of the body portion 341.
  • the lid 343 is provided with a connecting member 344 that is connected to the ram 27. Therefore, the case 340 moves in the vertical direction together with the ram 27, but the rotation is restricted.
  • the nut 320 is screwed to the screw 319.
  • the nut 320 is fixed to the frame 11 by a fixing member (not shown) such as a bolt.
  • the nut 320 is restricted from rotating and moving in the vertical direction.
  • the ram 27 is suspended from the nut 320 via a connecting member 344, bearings 337 a and 337 b, a drive rotating body 337, bearings 316 a and 316 b described later, and a screw 319.
  • the output shaft 22 a of the first motor 22 is connected to the input side of the first power transmission unit 323.
  • the first motor 22 is fixed to the ram 27 via a fixing portion 322b and a case 340.
  • the output shaft 24 a of the second motor 24 is connected to the input side of the second power transmission unit 325.
  • the second motor 24 is fixed to the ram 27 via the fixing portion 324b and the case 340.
  • the first motor 22 and the second motor 24 are respectively supported by the ram 27 and move up and down together with the ram 27, but the relative positions of the two are maintained. .
  • a guide for moving in the vertical direction is unnecessary.
  • a guide for guiding one or both of the first motor 22 and the second motor 24 may be provided.
  • the first power transmission unit 323 transmits the rotation of the first motor 22 to the screw 319 at high speed and low torque.
  • the first power transmission unit 323 includes an output shaft pulley 33, a drive pulley 334, and a belt 35.
  • the driving pulley 334 is fixed below the nut 320 and above the lower end of the screw 319.
  • the belt 35 is stretched around the output shaft pulley 33 and the drive pulley 334. Therefore, by driving the first motor 22, the screw 319 is rotated at high speed and with low torque via the first power transmission unit 323. Due to the rotation of the screw 319, the screw 319 moves in a vertical direction at a high speed.
  • the second power transmission unit 325 transmits the rotation of the second motor 24 to the drive rotator 337 at low speed and high torque.
  • the second power transmission unit 325 includes an output shaft pulley 36, a drive rotator 337, and a belt 38.
  • the drive rotator 337 is a drive pulley and is disposed below the screw 319 and coaxially with the screw 319.
  • the drive rotator 337 is housed in the case 340 together with the lower end of the screw 319.
  • the drive rotator 337 is supported by the case 340 so as to be rotatable around the axis AX by the bearings 337a and 337b described above. Further, the drive rotator 337 can be connected to the screw 319 by the clutch portion 326.
  • the drive rotator 337 has an accommodating portion 337e for accommodating a lower part (a part) of the screw 319.
  • the inner peripheral portion of the drive rotator 337 which is the side surface of the housing portion 337e, is in a state of facing the outer peripheral surface of the lower portion of the screw 319 via the bearing 316a and the bearing 316b.
  • the drive rotator 337 is disposed so as to be rotatable around the rotation axis of the screw 319 by bearings 337a and 337b.
  • the bearings 316a and 316b are disposed inside the drive rotator 337, and may or may not support the lower portion of the screw 319.
  • a thrust bearing 337c is disposed below the drive rotor 337.
  • the thrust bearing 337 c is sandwiched between the drive rotating body 337 and the lid portion 343 of the case 340.
  • the thrust bearing 337c supports the lower end of the drive rotator 337, and appropriately transmits the reaction force acting via the ram 27 when the workpiece W is processed to the drive rotator 337. With this configuration, the drive rotator 337 can be accurately moved upward and can be reliably connected by a clutch portion 326 described later.
  • the belt 38 is bridged between the output shaft pulley 36 and a transmitted portion 337 g which is an outer peripheral portion of the drive rotating body 337. Therefore, by driving the second motor 24, the drive rotating body 337 is rotated at a low speed and with a high torque via the second power transmission unit 325.
  • the drive rotator 337 is connected to the screw 319 by the clutch portion 326, the screw 319 is rotated at a low speed and a high torque by the rotation of the drive rotator 337, and the screw 319 is moved downward at a low speed and a high load (large thrust) Can be moved to.
  • the ram drive mechanism 317 is configured such that the first power transmission unit 323 and the second power transmission unit 325 transmit the driving force by the belts 35 and 38, but is not limited to this configuration.
  • the driving force may be transmitted by a gear train.
  • the clutch unit 326 connects the screw 319 rotated by the first motor 22 and the drive rotator 337, and transmits the rotation (drive force) of the drive rotator 337 to the screw 319.
  • a disk-shaped member 361 is fixed to the lower end surface of the screw 319 by a fixing member such as a bolt.
  • the disk-like member 361 has an end surface 361f formed flat and is disposed to face the flat end surface 337f of the drive rotating body 337. Note that the end surface 337f of the disk-shaped member 361 and the end surface 337f of the drive rotating body 337 are not limited to a flat configuration, and may have other shapes.
  • the clutch portion 326 connects the screw 319 and the drive rotator 337 when the end surface 361 f of the disk-like member 361 contacts the end surface 337 f of the drive rotator 37.
  • a predetermined gap (for example, as shown in FIG. 4) is provided between the end surface 361f of the disk-like member 361 and the end surface 337f of the drive rotating body 337.
  • the gap L1) shown is generated.
  • FIG. 11 is an enlarged view showing a main part of the ram drive mechanism 317, and is a view showing a positional relationship between the screw 319 and the drive rotator 337.
  • FIG. FIG. 11 shows a state in which the screw 319 and the drive rotator 337 are connected by the clutch portion 326.
  • an elastic member 337 d is disposed between the bearing 316 b and the drive rotor 337.
  • the elastic member 337d applies an elastic force in a direction in which the screw 319 and the drive rotating body 337 are separated in the vertical direction.
  • the elastic member 337d separates the screw 319 and the drive rotating body 337 when the clutch portion 326 is released by an elastic force.
  • the point that the workpiece W is positioned and arranged on the lower die 12 in a state where the upper die 29 is retracted upward is the same as in the first embodiment.
  • the operation after positioning the workpiece W is the same as the timing chart of the first embodiment shown in FIG.
  • the screw 319 is rotated at a high speed by the first motor 22.
  • the screw 319 descends at a high speed by the high-speed rotation of the screw 319, and the ram 27 connected to the screw 319 descends by the lowering of the screw 319.
  • the first motor 22 fixed to the ram 27 by the fixing portion 322b and the second motor 24 fixed to the ram 27 by the fixing portion 324b are lowered together with the ram 27. Therefore, the relative positions of the first motor 22 and the second motor 24 are kept constant.
  • the rotational speed of the first motor 22 is gradually reduced to lower the lowering speed of the ram 27.
  • the control unit 15 controls the first motor 22 so that the rotation of the screw 319 is reduced to the rotational speed of the drive rotating body 337 that is rotated at a low speed by the second motor 24 or scheduled to rotate.
  • the driving of the second motor 24 is started. Until the ram 27 reaches a predetermined target position (before the upper die 29 reaches the workpiece W), the rotational speed of the first motor 22 and the rotational speed of the second motor 24 are made to coincide or substantially coincide with each other. adjust.
  • the first motor 22 and the second motor 24 rotate synchronously until the ram 27 reaches a predetermined target position.
  • a gap is formed by the elastic member 337d between the disk-shaped member 361 and the drive rotator 337, and the disk-shaped member 361 and the drive rotator 337 are rotated in the same state while being separated from each other. Rotating at speed.
  • the ram 27 is lowered at a low speed by driving the first motor 22 and the upper die 29 is brought into contact with the workpiece W. After the upper die 29 comes into contact with the workpiece W, the upper die 29 is further lowered, so that the upper die 29 receives a reaction force from the workpiece W. Due to this reaction force, the drive rotator 337 is pushed upward via the ram 27 and the case 340, and moves upward against the elastic force of the elastic member 337d. When the drive rotor 337 is pushed upward, the bearings 316a and 316b, which are ball bearings that rotatably support the screw 319, move the outer ring upward relative to the inner ring, or one of the bearings 316a and 316b.
  • the disk-shaped member 361 and the drive rotator 337 are not stopped without stopping the rotation of the screw 319 and the drive rotator 337.
  • the space is smoothly connected in a short time.
  • the drive rotator 337 is moved upward by changing the positions of the inner and outer rings of the bearings 316a and 316b or by elastic deformation of the bearings 316a and 316b.
  • the present invention is not limited to this configuration.
  • the bearings 316a and 316b may be configured to move up and down with respect to the drive rotator 337 or the screw 319, and the drive rotator 337 may move up and down together with the bearings 316a and 316b. May be configured to move up and down with respect to the bearings 316a and 316b.
  • the screw 319 rotates in a state where the driving force from the first motor 22 and the driving force from the second motor 24 are applied.
  • the screw 319 is rotated, the screw 319 is lowered at a low speed and with a high torque, and the upper die 29 reaches the bottom dead center, so that the workpiece W is sandwiched between the upper die 29 and the lower die 12, and A bending process is applied to it.
  • the upper die 29 comes into contact with the workpiece W and is lowered to the bottom dead center, the load required for machining the workpiece W is shared by the first motor 22 and the second motor 24. For this reason, the output and size reduction of the second motor 24 can be achieved.
  • the reaction force at the time of processing the workpiece W is transmitted from the ram 27 to the frame 11 via the case 340, the drive rotating body 337, the screw 319, and the nut 320, and is received by the frame 11. After the upper die 29 reaches the bottom dead center, the driving of the first motor 22 and the second motor 24 is stopped after a predetermined time has elapsed.
  • the screw 319 After stopping the driving of the first motor 22 and the second motor 24, the screw 319 is reversely rotated by synchronously driving so that the first motor 22 and the second motor 24 have the same or substantially the same rotational speed. And the screw 319 is moved upward. As the screw 319 rises, the upper die 29 is separated from the workpiece W through pressure release to the workpiece W.
  • the drive rotator 337 is separated from the disk-shaped member 361, and a gap is formed between the disk-shaped member 361 and the drive rotator 337, so that the driving force from the second motor 24 is blocked by the screw 319.
  • the first motor 22 is rotated by the driving force.
  • the screw 319 is raised at a high speed by the high-speed rotation of the first motor 22.
  • the ram 27 is returned to its original position.
  • the first motor 22 is stopped.
  • the driving of the second motor 24 is stopped after the driving rotating body 337 is separated from the disk-shaped member 361. The operation of the press brake 310 is completed when the ram 27 is returned to the original position and the first motor 22 and the second motor 24 stop operating.
  • the press brake 310 maintains the relative positions of the first motor 22 and the second motor 24 as in the first embodiment.
  • a guide mechanism for guiding one of the motor 22 and the second motor 24 becomes unnecessary, and an increase in cost can be suppressed.
  • the processing time of the workpiece W can be shortened, and the second motor 24 can be downsized.
  • FIG. 12 is a diagram for explaining a main part of a press brake according to the fifth embodiment.
  • FIG. 12 shows the ram drive mechanism 417 of the press brake 410, and the configuration other than the ram drive mechanism 417 is the same as that of the first embodiment shown in FIGS.
  • symbol is attached
  • the rotation and the vertical movement of the screw 19 are restricted, the nut 20 is held by the ram 27, and the nut 20 rotates together with the ram 27. A configuration for moving in the vertical direction is applied.
  • the ram drive mechanism 417 includes a ball screw 21 having a screw 19 and a nut 20, a first motor 22, a first power transmission unit 23, and a second, similarly to the first embodiment.
  • the motor 24, the 2nd power transmission part 25, and the clutch part 26 are provided.
  • the ram drive mechanism 417 is substantially equivalent to a configuration in which the ram drive mechanism 17 of the first embodiment is inverted up and down.
  • the screw 19 is fixed to the frame 11 at the upper end, and the rotation and vertical movement of the screw 19 are restricted.
  • the case 40 is fixed to the ram 27 via a connecting member 440.
  • the first motor 22 is fixed to the case 40 by a fixing portion 22b.
  • the second motor 24 is fixed to the case 40 by fixing portions 24b and 24c.
  • the first motor 22 and the second motor 24 are respectively supported by the ram 27 and move up and down together with the ram 27. The relative position is maintained. Further, since the first motor 22 and the second motor 24 are fixed to the ram 27, a guide for moving in the vertical direction is unnecessary. However, a guide for guiding one or both of the first motor 22 and the second motor 24 may be provided.
  • the nut 20 is rotated at a high speed by the first motor 22.
  • a gap (see the gap L1 in FIG. 4) is generated between the drive rotator 37 of the second power transmission unit 25 and the annular member 61.
  • the nut 20 is rotated at a high speed by the driving force of the first motor 22, and the rotation of the nut 20 is not transmitted to the driving rotating body 37. Therefore, the nut 20 descends at a high speed due to the high-speed rotation of the nut 20.
  • the ram 27 descends at a high speed.
  • the first motor 22 and the second motor 24 are lowered together with the ram 27, and the relative positions of the two are held constant.
  • the rotational speed of the first motor 22 is gradually reduced to lower the lowering speed of the ram 27.
  • driving of the second motor 24 is started.
  • the rotational speed of the nut 20 by the first motor 22 and the rotational speed of the drive rotating body 37 by the second motor 24 are adjusted so as to match or substantially match.
  • the nut 20 and the drive rotating body 37 are rotated synchronously.
  • a gap is formed between the annular member 61 and the drive rotator 37, and the annular member 61 and the drive rotator 37 are rotated at the same rotational speed while being separated.
  • the rotation of the nut 20 and the drive rotator 37 can be stopped without stopping the rotation of the nut 20 and the drive rotator 37.
  • the space is smoothly connected in a short time.
  • the nut 20 rotates in a state where the drive force from the first motor 22 and the drive force from the second motor 24 are applied.
  • the rotation of the nut 20 by the first motor 22 and the second motor 24 causes the nut 20 to descend at a low speed, and the workpiece W is between the upper mold 29 and the lower mold 12 while the upper mold 29 reaches the bottom dead center. It is sandwiched between and bent.
  • the load required for processing the workpiece W is shared by each of the first motor 22 and the second motor 24. For this reason, the output and size reduction of the second motor 24 can be achieved.
  • the reaction force at the time of processing the workpiece W is transmitted from the ram 27 to the frame 11 via the case 40, the drive rotating body 37, the nut 20, and the screw 19, and is received by the frame 11. After the upper die 29 reaches the bottom dead center, the driving of the first motor 22 and the second motor 24 is stopped after a predetermined time has elapsed.
  • the nut 20 After stopping the driving of the first motor 22 and the second motor 24, the nut 20 is reversely rotated by synchronously driving so that the first motor 22 and the second motor 24 have the same or substantially the same rotational speed. And the nut 20 is moved upward. Due to the rise of the nut 20 (ram 27), the upper die 29 is separated from the workpiece W through pressure release to the workpiece W. When the upper die 29 is separated from the workpiece W, there is no reaction force acting on the upper die 29 from the workpiece W, so that the upward pressing force on the drive rotating body 37 is eliminated. When the pressing force is lost, the drive rotator 37 moves downward due to the load of the ram 27 and the like, and is separated from the annular member 61 downward. By forming a gap between the annular member 61 and the drive rotator 37, the nut 20 is blocked from the driving force from the second motor 24 and is rotated by the driving force of the first motor 22. Become.
  • the nut 20 rotates at a high speed and rises at a high speed.
  • the first motor 22 is stopped after the ram 27 is returned to the original position by the rise of the nut 20.
  • the second motor 24 stops driving after the drive rotating body 37 is separated from the annular member 61.
  • the operation of the press brake 410 is completed when the ram 27 is returned to the original position and the first motor 22 and the second motor 24 stop operating.
  • the press brake 410 maintains the relative positions of the first motor 22 and the second motor 24 as in the first embodiment.
  • a guide mechanism for guiding one of the motor 22 and the second motor 24 becomes unnecessary, and an increase in cost can be suppressed.
  • the processing time of the workpiece W can be shortened, and the second motor 24 can be downsized.
  • FIG. 13 is a diagram for explaining a main part of a press brake according to the sixth embodiment.
  • FIG. 13 shows the ram drive mechanism 517 of the press brake 510, and the configuration other than the ram drive mechanism 517 is the same as that of the fourth embodiment shown in FIG.
  • symbol is attached
  • a configuration in which the nut 320 is coupled to the ram 27 and the nut 320 is moved up and down together with the ram 27 by rotating the screw 319 will be described. .
  • the ram drive mechanism 517 includes a ball screw 321 having a screw 319 and a nut 320, the first motor 22, the first power transmission unit 323, and the second, similarly to the fourth embodiment.
  • a motor 24, a second power transmission unit 325, and a clutch unit 326 are provided.
  • the ram drive mechanism 517 is substantially equivalent to a configuration in which the ram drive mechanism 317 of the fourth embodiment is inverted up and down. However, the lower end of the nut 320 is fixed to the ram 27 via the connecting member 520, and the nut 320 moves in the vertical direction together with the ram 27 while the rotation is restricted.
  • the case 340 that accommodates the drive rotating body 337 is fixed to the frame 11 via a connecting portion 544 that extends from the lid portion 343 in the horizontal direction.
  • the upper portion of the screw 319 is rotatably supported by the housing portion 337e of the drive rotator 337 in the case 340, and movement in the vertical direction is restricted.
  • the screw 319 is arranged in a state of being hung from the case 340 via the drive rotating body 337.
  • the first motor 22 is fixed to the frame 11 by a fixing portion 522b.
  • the second motor 24 is fixed to the case 340 by a fixing portion 324 b and supported by the frame 11 through the case 340.
  • the first motor 22 and the second motor 24 are respectively supported by the frame 11, and the relative positions of both are held.
  • FIG. 14 is an enlarged view showing a main part of the ram drive mechanism 517, and is a view showing a positional relationship between the screw 319 and the drive rotator 337.
  • an elastic member 337 d is disposed between the bearing 316 b and the drive rotator 337.
  • the elastic member 337d applies an elastic force in a direction in which the screw 319 and the drive rotating body 337 are separated in the vertical direction.
  • the elastic member 337d separates the screw 319 and the drive rotating body 337 when the clutch portion 326 is released by an elastic force.
  • the screw 319 is rotated at high speed by the first motor 22.
  • a gap (see a gap L1 in FIG. 4) is generated between the drive rotating body 337 of the second power transmission unit 325 and the disk-like member 361.
  • the screw 319 is rotated at a high speed by the driving force of the first motor 22, and the rotation of the screw 319 is not transmitted to the driving rotating body 337. Therefore, the nut 320 descends at a high speed due to the high-speed rotation of the screw 319.
  • the ram 27 descends at a high speed.
  • the relative positions of the two are held constant.
  • the rotational speed of the first motor 22 is gradually reduced to lower the lowering speed of the ram 27.
  • the driving of the second motor 24 is started. Until the ram 27 reaches a predetermined target position (before the upper die 29 reaches the workpiece W), the number of rotations of the screw 319 by the first motor 22 and the number of rotations of the driving rotating body 337 by the second motor 24 To match or nearly match. By this adjustment, the screw 319 and the drive rotator 337 rotate in synchronization.
  • a gap is formed between the disk-like member 361 and the drive rotator 337 by the load of the ram 27 and the like and the elastic force of the elastic member 337d, and the disk-like member 361 and the drive rotator 337 are formed. Are rotating at the same rotational speed in a separated state.
  • the bearings 316a and 316b which are ball bearings that rotatably support the screw 319 when the screw 319 is pushed upward, move the inner ring upward relative to the outer ring, or a part of the bearings 316a and 316b or All are elastically deformed.
  • the disk-shaped member 361 and the drive rotator 337 are not stopped without stopping the rotation of the screw 319 and the drive rotator 337.
  • the space is smoothly connected in a short time.
  • the screw 319 rotates in a state where the driving force from the first motor 22 and the driving force from the second motor 24 are applied.
  • the screw 319 is rotated, the nut 320 is lowered at a low speed and with a high torque, and the upper die 29 reaches the bottom dead center, whereby the workpiece W is sandwiched between the upper die 29 and the lower die 12, A bending process is applied to it.
  • the upper die 29 comes into contact with the workpiece W and is lowered to the bottom dead center, the load required for machining the workpiece W is shared by the first motor 22 and the second motor 24. For this reason, the output and size reduction of the second motor 24 can be achieved.
  • the reaction force at the time of processing the workpiece W is transmitted from the ram 27 to the nut 320, the screw 319, and the drive rotating body 337, and is received by the thrust bearing 337c of the case 340 fixed to the frame 11.
  • the thrust bearing 337c is a reaction force receiving portion.
  • the screw 319 Since the screw 319 is separated from the drive rotator 337 and a gap is formed between the disk-like member 361 and the drive rotator 337, the screw 319 is blocked from the driving force from the second motor 24, and 1 is rotated by the driving force of the motor 22.
  • the nut 320 rises at a high speed.
  • the ram 27 is returned to its original position.
  • the first motor 22 is stopped.
  • the driving of the second motor 24 is stopped after the driving rotating body 337 is separated from the disk-shaped member 361.
  • the operation of the press brake 510 is completed when the ram 27 is returned to the original position and the first motor 22 and the second motor 24 stop operating.
  • the press brake 510 maintains the relative positions of the first motor 22 and the second motor 24 as in the first embodiment.
  • a guide mechanism for guiding one of the motor 22 and the second motor 24 becomes unnecessary, and an increase in cost can be suppressed.
  • the processing time of the workpiece W can be shortened, and the second motor 24 can be downsized.
  • the ram 27 holds the upper die 29, and the workpiece W is bent by moving the upper die 29 up and down.
  • the lower die 12 is held by the ram 27.
  • the workpiece W may be bent by moving the lower mold 12 up and down by the ram drive mechanism 17 or the like.
  • the constituent elements described in the above embodiments may be applied when applicable to other embodiments.
  • the drive unit 62 and the sensor 63 described in the second embodiment, or the spline shaft 219a and the spline nut 65 described in the third embodiment are applied if applicable to the fourth to sixth embodiments. Also good.
  • the drive unit 62 is applied to the fourth embodiment, for example, the drive unit 62 that moves the drive rotating body 337 upward with respect to the case 340 is applied.
  • the drive unit 62 is applied to the sixth embodiment, for example, the drive unit 62 that moves the screw 319 upward with respect to the case 340 is applied.
  • Japanese Patent Application No. 2016-210724 which is a Japanese patent application, and all the references cited in this specification are incorporated as part of the description of the text.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Press Drives And Press Lines (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • Control Of Presses (AREA)
  • Transmission Devices (AREA)

Abstract

【課題】第1のモータと第2のモータとの相対的な位置変化をなくして構成の簡略化を図ることによりコストの増加を抑制する。 【解決手段】上型29を装着するラム27を上下動させるラム駆動機構17が、ラムに固定されてラムの上下動に伴い上下動するネジ19及びこのネジに螺子結合されるナット20から成るボールネジ21と、ナットに対してネジの軸方向に離間して配置され、かつナットの回転軸周りに回転可能に配置された駆動回転体37と、固定配置された第1のモータ22と、第1のモータの回転を高速かつ低トルクでナットに伝達する第1動力伝達部23と、固定配置された第2のモータ24と、第2のモータの回転を低速かつ高トルクで駆動回転体に伝達する第2動力伝達部25と、ナットと駆動回転体との間に設けられ、ナットと駆動回転体とを連結して回転体として一体化させるためのクラッチ部26と、を備える。

Description

プレスブレーキ
 本発明は、プレスブレーキに関する。
 従来、ボールネジのネジ及びナットの相対的な回転運動を用いて上型を上下に移動させるプレスブレーキが提案されている(例えば、特許文献1参照)。特許文献1に記載のプレスブレーキは、高速で低トルクを発生する高速駆動源にネジを連結しており、低速で高トルクを発生する加圧駆動源にナットを連結している。ネジは、上型を支持するホルダーを備えるラムに供回り防止機構を介して連結されている。ナットは、ネジに螺子結合され、上下方向への移動が規制されている。
 このプレスブレーキは、ワークへのアプローチ時に、ナットの回転を加圧駆動源によりロックした状態で、高速駆動源によりネジを回転させてラム(上型)を高速(低トルク)で上型がワークに当接する直前の所定位置まで下降させる。この所定位置に上型が達すると、高速駆動源の駆動を停止した後、高速駆動源によりネジの回転をロックして加圧駆動源によりナットを回転させてネジを高トルク(低速)で下降させ、上型と下型とでワークを挟み込み、曲げ加工を行う。なお、加圧駆動源によりナットを回転させる際、低トルクの高速駆動源ではネジの供回りを防止できないので、ネジが供回りしないようにネジをロックする供回り防止機構を備える場合がある。
国際公開第2015/049930号
 特許文献1のプレスブレーキは、加圧駆動源がフレーム等に固定され、高速駆動源をネジの上下方向の移動に伴って移動させる必要があり、移動のためのガイド機構が設けられる。このように、高速駆動源と加圧駆動源とが相対的に移動するプレスブレーキでは、一方の駆動源を案内するガイド機構が必要となって、プレスブレーキの全体構成が複雑化してコストの増加を招くことになる。また、特許文献1のプレスブレーキは、ワークへのアプローチ時に高速駆動源を用い、ワークの加工に加圧駆動源を用いるため、駆動源の切り替えに時間を要し、ワークの加工に要する時間が長くなる。さらに、ワークの加工に加圧駆動源のみを用いるため、大型の(高出力の)加圧駆動源を使用する必要があり、コストの増加を招くことになる。
 本発明は、第1のモータと第2のモータとの相対的な位置変化をなくして構成の簡略化を図ることによりコストの増加を抑制でき、さらに、ワークの加工時間の短縮、及び、第2のモータの小型化を実現可能なプレスブレーキを提供することを目的とする。
 本発明のプレスブレーキは、上型と下型とによりワークを挟んで曲げ加工するプレスブレーキであって、上型または下型を装着可能なラムと、ラムを上下動させるラム駆動機構と、ラム駆動機構を制御する制御部と、を備え、ラム駆動機構は、ラムに固定されてラムの上下動に伴い上下動するネジ、及びこのネジに螺子結合されるナットから成る回転・直動変換部と、ナットに対してネジの軸方向に離間して配置され、かつナットの回転軸周りに回転可能に配置された駆動回転体と、固定配置された第1のモータと、第1のモータの回転を高速かつ低トルクでナットに伝達する第1動力伝達部と、固定配置された第2のモータと、第2のモータの回転を低速かつ高トルクで駆動回転体に伝達する第2動力伝達部と、ナットと駆動回転体との間に設けられ、ナットと駆動回転体とを連結して回転体として一体化させるためのクラッチ部と、を備える。
 また、制御部は、上型または下型が、ワークへのアプローチ、ワークへの当接、ワークの曲げ加工終了を含むストロークのうち、少なくともワークへのアプローチの一部を含む範囲で下降するように第1のモータを制御し、アプローチの途中で第1のモータにより回転するナットと、第2のモータにより回転する駆動回転体との速度を同じにする同期回転制御部を備え、同期回転制御部によりナットと駆動回転体との速度を同じにしてからナットと駆動回転体とをクラッチ部で連結させてもよい。また、同期回転制御部は、第2のモータにより低速回転しているまたは回転予定の駆動回転体の回転速度まで、ナットの回転が減速するように第1のモータを制御してもよい。
 また、駆動回転体は、ナットの少なくとも一部を収容する収容部を有し、外周部が第2動力伝達部から動力が伝達される被伝達部であり、内周部が軸受を介してナットの外周部の一部に対向しており、駆動回転体は、その軸方向において、固定配置されたフレームに保持された反力受部を介して回転可能に支持されてもよい。また、制御部は、クラッチ部の使用または不使用を選択する使用・不使用選択部を有してもよい。
 また、クラッチ部は、ワークを加工する際に生じる反力によってナットと駆動回転体とを連結してもよい。また、クラッチ部は、離間しているナットと駆動回転体との少なくとも一方を移動させて両者を連結する駆動部を備えてもよい。
 また、本発明のプレスブレーキは、上型と下型とによりワークを挟んで曲げ加工するプレスブレーキであって、上型または下型を装着可能なラムと、床面に設置されてラムを上下方向に案内するフレームと、ラムを上下動させるラム駆動機構と、ラム駆動機構を制御する制御部と、を備え、ラム駆動機構は、ネジ及びこのネジに螺子結合されるナットから成り、ネジ及びナットの一方がラムに固定され、かつネジ及びナットの他方がフレームに固定される回転・直動変換部と、ラムまたはフレームに固定配置される第1のモータと、第1のモータが固定されたラムまたはフレームに固定配置される第2のモータと、第1のモータにより回転するナットまたはネジに対してネジの軸方向に離間してナットまたはネジの回転軸周りに回転可能に配置され、かつ第2のモータにより回転する駆動回転体と、第1のモータにより回転するナットまたはネジと、駆動回転体との間に設けられ、ナットまたはネジと駆動回転体とを連結して回転体として一体化させるためのクラッチ部と、を備える。
 本発明に係るプレスブレーキによれば、第1のモータ及び第2のモータのいずれか一方または双方が駆動した場合に両者の相対的な位置が保持されるため、第1のモータ及び第2のモータの一方を案内するガイド機構が不要となる。この構成により、全体構成の複雑化を抑制してコストの増加を抑制できる。さらに、第1のモータにより回転するナット(ネジ)と、第2のモータにより回転する駆動回転体とを、クラッチ部により連結するので、ワークへのアプローチから曲げ加工までを短時間かつスムーズに行うことによりワークの加工時間を短縮できる。また、ワークの加工時に第1のモータ及び第2のモータの双方を用いることができるので駆動回転体を回転させる第2のモータの小型化を実現することができる。
 また、制御部において、上型または下型が、ワークへのアプローチ、ワークへの当接、ワークの曲げ加工終了を含むストロークのうち、少なくともワークへのアプローチの一部を含む範囲で下降するように第1のモータを制御し、前述した同期回転制御部によりアプローチの途中で第1のモータにより回転するナットと、第2のモータにより回転する駆動回転体との速度を同じにしてからクラッチ部で連結する例では、ナットと駆動回転体とを連結する際に双方を停止させる必要がなく、同期回転制御部によってナットと駆動回転体との回転速度を同じにして、両者を短時間で滑らかに連結することができる。また、同期回転制御部が、第2のモータにより低速回転しているまたは回転予定の駆動回転体の回転速度まで、ナットの回転が減速するように第1のモータを制御する例では、第2のモータによって駆動回転体を高速で回転させることなく、クラッチ部によるナットと駆動回転体との連結を短時間で行うことができる。
 また、駆動回転体は、ナットの少なくとも一部を収容する収容部を有し、外周部が第2動力伝達部から動力が伝達される被伝達部であり、内周部が軸受を介してナットの外周部の一部に対向しており、駆動回転体は、その軸方向において、固定配置されたフレームに保持された反力受部を介して回転可能に支持される例では、収容部にナットの一部が収容されるので、駆動回転体とナットとの回転軸のズレを抑制できる。さらに、反力受部によりワークの加工時の反力を受け止めてネジが軸方向に移動するのを規制することにより、ワークに対する曲げ加工を精度よく行うことができる。また、制御部が、クラッチ部の使用または不使用を選択する使用・不使用選択部を有する例では、駆動回転体の回転とナットの回転とを用いたワークの曲げ加工と、ナットのみの回転を用いたワークの曲げ加工とを任意に選択することができる。
 また、クラッチ部が、ワークを加工する際に生じる反力によってナットと駆動回転体とを連結する例では、クラッチ部を駆動するための駆動源が不要であり、製品コストを減少させることができる。また、クラッチ部が、離間しているナットと駆動回転体との少なくとも一方を移動させて両者を連結する駆動部を備える例では、駆動部によって、クラッチ部によるナットと駆動回転体との連結を確実に行うことができ、さらに連結のタイミングを任意に設定できる。
第1実施形態に係るプレスブレーキの一例を示す正面図である。 第1実施形態のプレスブレーキを示す斜視図である。 第1実施形態のプレスブレーキのラム駆動機構を説明する図である。 第1実施形態のクラッチ部の解放時を示す図である。 第1実施形態のクラッチ部の連結時を示す図である。 (A)は本実施形態に係るプレス方法のタイミングチャートであり、(B)は従来のプレス方法のタイミングチャートである。 第2実施形態に係るプレスブレーキのラム駆動機構を説明する図である。 第3実施形態に係るプレスブレーキのラム駆動機構を説明する図である。 第3実施形態のネジを上方から見た場合の構成を示す図である。 第4実施形態に係るプレスブレーキのラム駆動機構を説明する図である。 第4実施形態のクラッチ部を示す図である。 第5実施形態に係るプレスブレーキのラム駆動機構を説明する図である。 第6実施形態に係るプレスブレーキのラム駆動機構を説明する図である。 第6実施形態のクラッチ部を示す図である。
 以下、本発明の実施形態について図面を参照しながら説明する。ただし、本発明は以下に説明する実施形態に限定されない。また、図面では実施形態を説明するため、一部分を大きくまたは強調して記載するなど適宜縮尺を変更して表現している。また、各図において、XYZ座標系を用いて図中の方向を説明する場合がある。このXYZ座標系において、上下方向をZ方向とし、水平方向をX方向、Y方向とする。X方向は左右方向であり、Y方向は前後方向である。X方向、Y方向、及びZ方向のそれぞれは、図中の矢印の方向が+方向であり、矢印の方向とは反対の方向が-方向であるとして説明する。なお、図中の断面を示す部分については、見やすくするためにハッチングを施した部分がある。
 〔第1実施形態〕
 図1は、第1実施形態に係るプレスブレーキ10の一例を示す正面図である。図2は、プレスブレーキ10を示す斜視図である。図1及び図2に示すように、本実施形態のプレスブレーキ10は、フレーム11と、下型12を支持するテーブル13と、を備える。フレーム11は、一対の側板14を備え、プレスブレーキ10の外郭を形成する。また、フレーム11は、床面FLに設置される。
 下型12は、固定側(下側)の金型であり、左右方向に長く形成されている。下型12は、成形用の凹部12aを有する。テーブル13は、フレーム11の前面側(-Y側)に取り付けられており、下型12を固定している。側板14は、フレーム11の左右の側部にそれぞれ配置されている。また、側板14のそれぞれには、上下の二箇所に、内側に突出するガイド板18が形成されている。一対の側板14の間の前面には、不図示の上部カバー板が取り付けられている。
 左右の側板14の間にはラム27が配置される。ラム27は、例えば、金属等により形成された板状の部材であり、数十kg~数百kgの重量を有している。ラム27には、ガイド板18を挟み込むローラ27aが形成されている。このローラ27aがガイド板18にガイドされることにより、ラム27を上下方向にガイドしている。ラム27の下方には、複数の上型ホルダー28が左右方向に一定間隔で取り付けられている。上型ホルダー28のそれぞれは、上型29を挟み込んで保持するためのクランプ機構を有している。なお、ラム27及び上型ホルダー28は、図示の構成に限定されず、任意の構成が適用される。上型29は、上型ホルダー28で保持された際、下型12の凹部12aに対向して配置される。また、上型29は、下型12の凹部12aに進入する先端部29aを有している。これらラム27、上型ホルダー28、及び上型29は、後述するネジ19と一体となって上下方向に移動する構成体を形成している。
 プレスブレーキ10は、左右一対のラム駆動機構17を備える。2つのラム駆動機構17は、同一の構成を有しており、フレーム11の不図示の上部カバー板の後方にそれぞれ配置されている。ラム駆動機構17のそれぞれは、フレーム11に保持されている。ラム駆動機構17は、ネジ19及びナット20を有するボールネジ(回転・直動変換部)21と、高速駆動源としての第1のモータ22と、第1動力伝達部23と、加圧駆動源としての第2のモータ24と、第2動力伝達部25と、クラッチ部26と、ナット20に対してネジ19の軸方向に離間して配置され、かつナット20の回転軸周りに回転可能に配置された駆動回転体37と、を備える。なお、本実施形態では回転・直動変換部としてボールネジ21を用いているが、この構成に限定されず、回転・直動変換部として例えばローラネジ等が用いられてもよい。また、プレスブレーキ10は、図1に示すように、ラム駆動機構17を制御する制御部15を備える。制御部15は、例えば、中央演算処理装置、記憶装置などにより構成され、ラム駆動機構17を含めてプレスブレーキ10の全体を統括制御してもよい。また、制御部15は、第1のモータ22により回転するナット20と、第2のモータ24により回転する後述の駆動回転体37との速度を同じにする同期回転制御部15aと、後述するクラッチ部26の使用または不使用を選択する使用・不使用選択部15bと、を備える。
 図3は、プレスブレーキ10のラム駆動機構17を説明する図である。図3に示すように、ネジ19は、上下方向(Z方向)に沿って配置され、下端がラム27に取り付けられる。ネジ19は、ラム27に取り付けられることにより、回転が規制されている。また、ネジ19は、ラム27と一体で上下方向に移動可能である。ネジ19の長さは、上型29の移動範囲に合わせて設定される。
 ナット20は、ネジ19に螺子結合した状態で配置される。ナット20は、フレーム11に固定されたケース40に収容される。したがって、ナット20は、上下方向の移動が規制されている。ケース40は、第1胴部41と、第2胴部42と、第1蓋部43と、第2蓋部44とを有する。第1胴部41は、例えば筒状に設けられ、ナット20の下部の周囲に配置される。第1胴部41は、軸受16a、16bによりナット20を軸線AX周りに回転可能に支持する。軸受16a、16bとしては、例えばボールベアリング等が用いられる。軸受16aは、第1胴部41の下端部に配置される。軸受16bは、第1胴部41の上端部に配置される。軸受16aは、ナット20のフランジ部20aの下側に配置される。軸受16aは、フランジ部20aと、後述する第1蓋部43との間に挟まれた状態で配置される。ナット20は、軸受16a及び第1蓋部43により、下方への移動が規制されている。
 第2胴部42は、第1胴部41の上方に配置され、ボルト等の固定部材により第1胴部41に固定される。第2胴部42は、例えば筒状に設けられ、第1胴部41よりも大きい内径及び外径を有する。第2胴部42は、ナット20の上部と、後述の駆動回転体37とを囲む位置に配置される。
 第1蓋部43は、第1胴部41の下端部に配置される。第1蓋部43は、中央に開口部を有しており、この開口部からナット20の下端部が下方に突出した状態となっている。また、第1蓋部43の開口部には、ネジ19が貫通した状態で配置される。第2蓋部44は、第2胴部42の上端部に配置される。第2蓋部44は、中央に開口部を有しており、この開口部からネジ19が上方に突出した状態で配置される。
 第1のモータ22は、例えば、低トルクかつ高速回転タイプのサーボモータが用いられる。第1のモータ22の出力軸22aは、第1動力伝達部23の入力側に連結されている。第1のモータ22は、固定部22bによりフレーム11に固定配置されている。この構成により、第1のモータ22は、フレーム11に対して上下方向及び左右方向の移動が規制された状態となっている。第1のモータ22は、制御部15からの指令により出力軸22aを回転駆動する。
 第2のモータ24は、第1のモータ22と同様に、例えばサーボモータが用いられる。第2のモータ24としては、高トルクかつ低速回転タイプのサーボモータが用いられる。第2のモータ24の出力軸24aは、第2動力伝達部25の入力側に連結されている。第2のモータ24は、固定部24bによりフレーム11に固定配置されている。この構成により、第2のモータ24は、フレーム11に対して上下方向及び左右方向の移動が規制された状態となっている。第2のモータ24は、第1のモータ22と同様に、制御部15からの指令により出力軸24aを回転駆動する。このように、本実施形態では、第1のモータ22および第2のモータ24がフレーム11にそれぞれ支持されることにより両者の相対的な位置が保持される。
 第1動力伝達部23は、第1のモータ22の回転を高速かつ低トルクでナット20に伝達する。第1動力伝達部23は、出力軸プーリ33と、駆動プーリ34と、ベルト35と、を備える。出力軸プーリ33は、第1のモータ22の出力軸22aに取り付けられている。駆動プーリ34は、ナット20の下端部にナット20と同軸に固定されている。ベルト35は、出力軸プーリ33と駆動プーリ34とに架け渡されている。したがって、第1のモータ22を駆動することにより、第1動力伝達部23を介してナット20を高速かつ低トルクで回転させる。ナット20の回転により、ラム27に回転を規制されているネジ19は、上下方向に高速で移動する。
 第2動力伝達部25は、第2のモータ24の回転を低速かつ高トルクで駆動回転体37に伝達する。第2動力伝達部25は、出力軸プーリ36と、駆動回転体37と、ベルト38と、を備える。出力軸プーリ36は、第2のモータ24の出力軸24aに取り付けられている。駆動回転体37は、ナット20の上方に離間してナット20と同軸に配置されている。駆動回転体37は、ナット20とともにケース40に収容される。駆動回転体37は、ナット20と同様に軸線AX周りに回転可能にケース40に支持されている。また、駆動回転体37は、第2胴部42の内側かつ第2蓋部44の下側に配置される。駆動回転体37は、クラッチ部26によりナット20と連結可能である。
 駆動回転体37は、ナット20の上部(一部)を収容する収容部37eを有している。収容部37eの側面である駆動回転体37の内周部は、軸受37a、37bを介してナット20の上部の外周面と対向した状態となっている。また、駆動回転体37は、軸受37a、37bによってナット20の回転軸周りに回転可能に配置されている。軸受37a、37bは、軸受16bの上方に配置され、ナット20の上部を支持してもよいし、支持しなくてもよい。また、駆動回転体37の上部には、スラスト軸受37cが配置される。スラスト軸受37cは、駆動回転体37とケース40の第2蓋部44との間に配置される。したがって、駆動回転体37は、その軸方向が、ケース40(フレーム11)に保持されるスラスト軸受37cによって回転可能に支持されている。また、駆動回転体37は、スラスト軸受37cによって上方への移動が規制される。この構成により、ネジ19及びナット20の上方への移動が規制される。スラスト軸受37cは、ワークWを曲げ加工する際に駆動回転体37に作用する反力を受ける反力受部である。また、第2蓋部44は、スラスト軸受37cに作用する反力を受けるため肉厚で剛性を高めて形成されている。
 ベルト38は、出力軸プーリ36と駆動回転体37の外周部である被伝達部37dとに架け渡されている。したがって、第2のモータ24を駆動することにより、第2動力伝達部25を介して駆動回転体37を低速かつ高トルクで回転させる。駆動回転体37がクラッチ部26によりナット20に連結されている場合、駆動回転体37の回転によりナット20を低速かつ高トルクで回転させ、ネジ19を、低速かつ高負荷(大きな推力)で下方に移動させることができる。
 なお、ラム駆動機構17としては、第1動力伝達部23及び第2動力伝達部25がベルト35、38によって駆動力を伝達する構成であるが、この構成に限定されず、例えば、リンク機構あるいは歯車列によって駆動力を伝達してもよい。また、1つのラム27に対して2つのラム駆動機構17が配置されることに限定されず、1つまたは3つ以上のラム駆動機構17が配置されてもよい。
 クラッチ部26は、第1のモータ22により回転するナット20と駆動回転体37とを連結して、駆動回転体37の回転(駆動力)をナット20に伝達する。ナット20の上端面には、ボルトなどの固定部材により環状部材61が固定される。環状部材61は、例えば端面61fが平坦に形成され、駆動回転体37の平坦な下面37fに対向して配置される。ただし、環状部材61の端面61f及び駆動回転体37の下面37fが平坦な構成に限定されず、他の形状であってもよい。クラッチ部26は、環状部材61の端面61fが駆動回転体37の下面37fに当接することにより、ナット20と駆動回転体37とを連結する。
 図4及び図5は、ラム駆動機構17の要部を示す図であり、クラッチ部26による駆動回転体37とナット20との位置関係を示す図である。図4は上型29がワークWから反力を受けていない状態を示し、図5は上型29がワークWから反力を受ける状態を示す。図4に示すように、上型29がワークWから反力を受けていない場合、環状部材61の端面61fと駆動回転体37の下面37fとの間は、隙間L1が形成された状態で保持される。なお、隙間L1は、例えば、数十μmから数mmに設定されている。この場合、第1のモータ22の駆動力によりナット20が回転しても、ナット20の回転は駆動回転体37には伝達されない。また、第2のモータ24の駆動力により駆動回転体37が回転しても、駆動回転体37の回転はナット20には伝達されない。
 図5に示すように、上型29がワークWから反力を受ける場合、反力によりラム27及びネジ19を介してナット20が上方に押される。ナット20が上方に押されることにより、ナット20を回転可能に支持するボールベアリングである軸受37aは、内輪が外輪に対して上方に移動し、あるいは軸受37aの一部または全部が弾性変形する。なお、図示しないが、ナット20を回転可能に支持する軸受37b、16a、16bについても同様である。その結果、ナット20及び環状部材61が一体となって上方に移動して、環状部材61が駆動回転体37を上方に押し上げるように駆動回転体37に当接する。すなわち、クラッチ部26によりナット20と駆動回転体37とが連結して回転体Rとして一体化する。したがって、第2のモータ24によって駆動回転体37を回転させることにより、駆動回転体37の回転が環状部材61を介してナット20に伝達され、ナット20に回転(駆動力)を付与することができる。また、上型29がワークWから反力を受けなくなると、ラム27及びネジ19を介してナット20が下方に移動し、環状部材61が駆動回転体37から離れてクラッチ部26を解放させる。このように、ラム駆動機構17は、クラッチ部専用の駆動源を用いることなくクラッチ部26の連結及び解放を行うことが可能となっている。なお、図5では、軸受37a等の内輪と外輪との位置変化あるいは軸受37a等の弾性変形によりナット20を上方に移動させているが、この構成に限定されない。例えば、軸受37a等が駆動回転体37等に対して上下動可能に形成されて、ナット20が軸受37a等とともに上下動する構成であってもよいし、ナット20が軸受37a等に対して上下動可能に形成されて、ナット20が軸受37a等に対して上下動する構成であってもよい。
 次に、プレスブレーキ10によるプレス方法について図6を用いて説明する。図6(A)は、本実施形態に係るプレス方法のタイミングチャートである。図6(A)では、ラム27の位置と、ワークWに加える負荷荷重(推力)の大きさと、第1のモータ22の出力軸22aの回転方向及び回転数と、第2のモータ24の出力軸24aの回転方向及び回転数とを対応させて示している。図6(A)の横軸は時刻である。なお、以下で説明するラム駆動機構17の第1のモータ22及び第2のモータ24の動作は、上記した制御部15(図1参照)により実行される。先ず、上型29が上方に退避した状態で、下型12上にワークWを配置する。なお、プレスブレーキ10は、不図示のワーク位置決め機構を有しており、作業者は、ワークWの先端を位置決め機構に突き当てることによりワークWを下型12上で位置決めする。
 ワークWの位置決めが完了した後、ラム27(上型29)がワークに近接する第1位置P1まで下降させる(区間A:高速下降)。区間Aは、上型29がワークWへアプローチする区間である。高速下降動作では、第1のモータ22によりナット20を高速で回転させる。ラム27の下降動作における各部の動作を具体的に説明する。第1のモータ22による駆動を開始した後(時刻t1)、第1のモータ22の単位時間当たりの回転数(例えば、rpmであり、以下、単に「回転数」と表記する)を時刻t1から徐々に大きくしていく。第1のモータ22の回転数が所定の第1回転数R1に到達した場合(時刻t2)、回転数を第1回転数R1で一定とする。このとき、第2動力伝達部25の駆動回転体37と環状部材61との間には、隙間L1が生じた状態となっている(図4参照)。このため、ナット20は、第1のモータ22の駆動力によって高速回転した状態となり、ナット20の回転は駆動回転体37には伝達されない。したがって、ナット20の高速回転により、ネジ19が高速で下降していく。
 その後、ラム27が第1位置P1に到達させる途中(時刻t3)の第2位置P2において、第1のモータ22の回転数を第1回転数R1から徐々に小さくする。この場合、ラム27が第1位置P1に到達する時点(時刻t5)で、第1のモータ22の回転数が第1回転数R1よりも小さい第2回転数R2となるように回転数を減少させる。すなわち、制御部15は、第2のモータ24により低速回転しているまたは回転予定の駆動回転体37の第2回転数R2で(回転速度)まで、ナット20の回転が減速するように第1のモータ22を制御する。なお、第2回転数R2は、例えばワークWに曲げ加工を行う場合の回転数である。第1のモータ22の回転数を低下させることにより、ナット20の回転が徐々に低速になり、下降速度を徐々に低下させつつネジ19が下降していく。
 一方、ラム27が第2位置P2に到達した場合(時刻t3)、第2のモータ24による駆動を開始し、駆動回転体37を回転させる。この場合、第2のモータ24の回転数を徐々に大きくしていき、例えばラム27が第1位置P1に到達する前の時点(時刻t4)で、駆動回転体37の回転数が上記の第2回転数R2となるようにする。すなわち、制御部15の同期回転制御部15aは、第1のモータ22により回転するナット20と、第2のモータ24により回転する後述の駆動回転体37との速度を同じにする。なお、図6(A)のタイミングチャートでは、時刻t4が時刻t5の前である場合、すなわち、第2のモータ24の回転数が、第1のモータ22よりも先に第2回転数R2となる場合を例に挙げているが、この例に限定されず、ラム27が第1位置P1に到達する時点(時刻t5)で、第1のモータ22と同時に第2のモータ24の回転数が第2回転数R2となってもよい。
 上記した動作により、ラム27が第1位置P1に到達する場合(時刻t5)、第1のモータ22によるナット20の回転数と第2のモータ24による駆動回転体37の回転数とが共に第2回転数R2となる。つまり、ナット20と駆動回転体37とが同期して回転する。これにより、ナット20(環状部材61)の回転速度と、駆動回転体37の回転速度とが同一となる。なお、この段階では、環状部材61と駆動回転体37との間にはまだ隙間L1が形成されており、環状部材61と駆動回転体37とは離れて対向した状態で同一の回転速度で回転している。
 ラム27が第1位置P1に到達した後、ラム27を低速で下降させる(区間B:低速加圧)。低速加圧動作では、まず、第1のモータ22の駆動により、ラム27が第1位置P1から第3位置P3に向けて低速で下降する。なお、第3位置P3は、上型29がワークWに当接する時点でのラム27の位置である。
 ラム27が第3位置P3に到達した場合(時刻t6)、上型29がワークWに当接し、ワークWから反力を受ける。この反力により、ナット20及び環状部材61が上方に押され、環状部材61(ナット20)と駆動回転体37とが連結される(図5参照)。このとき、ナット20及び駆動回転体37が第2回転数R2で一致した状態となっているため、ナット20及び駆動回転体37の回転を停止させることなく、環状部材61と駆動回転体37との間が短時間で滑らかに連結される。また、ナット20に作用する反力は、スラスト軸受37cで受けるため、ワークWに対する加圧力が減少することを抑制している。
 環状部材61と駆動回転体37とが連結されることにより、ナット20は、第1のモータ22による駆動力と、第2のモータ24による駆動力とが加えられた状態で回転する。ナット20の回転により、ネジ19が下降し、ラム27が第4位置P4まで移動する。第4位置P4は、上型29が下死点に到達する時点(時刻t7)でのラム27の位置である。ラム27が第4位置P4に到達することにより、上型29が下死点に到達し、ワークWが上型29と下型12との間に挟み込まれ、ワークWに対して曲げ加工が施される。すなわち、制御部15は、上型29が、ワークWへのアプローチ、ワークWへの当接、ワークWの曲げ加工終了を含むストロークのうち、ワークWへのアプローチの一部を含む範囲で下降するように第1のモータ22を制御し、アプローチの途中で第1のモータ22により回転するナット20と、第2のモータ24により回転する駆動回転体37との回転速度を同期回転制御部15aにより同じにしてからクラッチ部26でナット20と駆動回転体37とを連結させている。なお、ラム27を第3位置P3から第4位置P4に下降させる間、ワークWの加工に要する負荷(推力)は、第1のモータ22及び第2のモータ24のそれぞれに分担される。このため、第2のモータ24の低出力化及び小型化を図ることができる。
 また、時刻t7の直前から(上型29が下死点に到達する直前から)第1のモータ22及び第2のモータ24の回転数を減少させ、時刻t7では第1のモータ22及び第2のモータ24の駆動を停止させ、時刻t8まで第1のモータ22及び第2のモータ24の駆動の停止が維持される(区間C:停止)。第1のモータ22及び第2のモータ24の駆動の停止により、上型29は、下死点で維持され、さらに下死点を超えてワークWを加圧しないようにしている。時刻t8で第1のモータ22及び第2のモータ24を同期して逆回転での駆動を開始する。第1のモータ22及び第2のモータ24は、同期して逆回転の回転数を徐々に大きくし、同じタイミングで第3回転数R3に維持される(区間D:圧抜き)。この区間Dでラム27が第4位置P4から第5位置P5まで移動する。これに伴い、ワークWへの負荷荷重が時刻t8から徐々に減少し、時刻t9の直前で負荷荷重が0となる。これにより、ワークWに対する加圧が抜かれた状態となる。
 この区間Dでネジ19を上方へ移動させることにより、上型29がワークWから離れることになる。上型29がワークWから離れることにより、ワークWから上型29に作用する反力が解消されるため、ナット20及び環状部材61に対する上方への押圧力が解消される。その結果、ラム27の荷重等によりナット20及び環状部材61が駆動回転体37に対して下方に移動する。したがって、環状部材61が駆動回転体37から下方に離れ、環状部材61と駆動回転体37との間に隙間L1が形成された状態となる(時刻t9)。この場合、ナット20は、第2のモータ24からの駆動力が遮断され、第1のモータ22の駆動力によって回転する状態となる。
 その後、第1のモータ22による回転数を第3回転数R3から第4回転数R4まで徐々に大きくしていく(区間E:高速上昇)。この場合、ナット20は、第1のモータ22の高速回転によって高速で回転する。ナット20の高速回転により、ネジ19が高速で上昇していく。ネジ19の上昇により、ラム27が元の位置に戻される(時刻t10)。ラム27が元の位置に戻された後、第1のモータ22を停止する。一方、第2のモータ24については、環状部材61が駆動回転体37から下方に離れた後(時刻t9の後)、所定時間だけ第3回転数R3での駆動を継続した後に駆動を停止させている。ラム27が元の位置に戻され、第1のモータ22の動作を停止させることで、プレスブレーキ10の動作が完了する(区間F:動作停止)。
 図6(B)は、従来のプレスブレーキの動作を示すタイミングチャートである。従来のプレスブレーキは、ラムの高速下降を行う場合(区間A)に第1のモータを用い、ラムの低速加圧によりワークを加工する場合(区間B)に第2のモータを用いる構成である。この構成では、駆動源の切り替えの際に第1のモータ及び第2のモータの双方を停止させてクラッチを動作させる必要があるため、その分の時間を要し(区間G、H)、ワークの加工に要する時間が長くなってしまう。さらに、ワークの加工に第2のモータのみを用いるため、大型の(高出力の)第2のモータを使用する必要があり、コストの増加を招くことになる。従来の構成に対して、本実施形態に係るプレス方法は、駆動源の切り替えの際に第1のモータ及び第2のモータの双方を停止させる必要がなく、さらに、ワークWの加工時に第1のモータ及び第2のモータの双方の駆動力を用いている。この構成により、ワークWの加工時間の短縮、及び、第2のモータ24の小型化を実現可能となる。
 また、第1実施形態に係るプレスブレーキ10及びプレス方法によれば、第1のモータ22及び第2のモータ24のいずれか一方または双方が駆動した場合に両者の相対的な位置が保持されている。したがって、第1のモータ22及び第2のモータ24の一方を案内するガイド機構が不要となる。この構成により、全体構成の複雑化を抑制してコストの増加を抑制できる。さらに、ナット20を第1のモータ22及び第2のモータ24で駆動するので、駆動源の切り替えをスムーズに行うことができる。なお、上記したプレス方法では、第1のモータ22及び第2のモータ24の双方によりナット20を回転させてワークWの曲げ加工を行っているが、この構成に限定されない。制御部15は、第1のモータ22のみによりナット20を回転させてワークWの曲げ加工を実行させてもよい。この場合、制御部15は、使用・不使用選択部15b(図1参照)によってクラッチ部26の不使用(すなわち第2のモータ24の不使用)を選択する。例えば、ワークWを曲げ加工する際の反力が小さい場合(すなわちワークWに対して曲げ加工を小さい荷重で行う低負荷曲げ加工の場合)は、軸受37a等の内輪の移動あるいは軸受37a等の変形が小さく、クラッチ部26によるナット20と駆動回転体37との連結が実行されない。したがって、ワークWの曲げ加工は、第1のモータ22のみによるナット20の回転により行われる。一方、ワークWを曲げ加工する際の反力が大きい場合、制御部15は、使用・不使用選択部15bによってクラッチ部26の使用(すなわち第2のモータ24の使用)を選択し、上記したように、クラッチ部26によりナット20と駆動回転体37とが連結される。
 〔第2実施形態〕
 第2実施形態について図7を参照しながら説明する。図7は、第2実施形態に係るプレスブレーキのラム駆動機構を説明する図である。図7では、プレスブレーキ110のラム駆動機構117について示しており、ラム駆動機構117以外の構成については図1から図5に示す第1実施形態と同様である。また、本実施形態において、第1実施形態と同様の構成については、同じ符号を付してその説明を省略または簡略化する。
 図7に示すように、ラム駆動機構117において、クラッチ部126は、駆動部62を有する。駆動部62は、第1のモータ22により回転するナット20と、駆動回転体37とを当接させる。第2実施形態において、駆動部62は、ナット20を昇降させる油圧シリンダ機構を有する。具体的には、駆動部62は、ピストン部62aと、ピストン部62aが上下方向に摺動するシリンダ室に油を供給する油圧供給部62bとを有する。駆動部62の駆動は、制御部15(図1参照)によって制御される。
 油圧シリンダ機構は、ケース40の第1蓋部43に形成され、ピストン部62aがナット20の下部を支持する軸受16aの下方に接して配置される。ピストン部62aは、フランジ部20aとの間で軸受16aを上下方向に挟む位置に配置される。ピストン部62aは、油圧供給部62bによってシリンダ室の油圧が調整されることにより、上下方向に移動する。ピストン部62aは、油圧供給部62bからの油がシリンダ室に供給されると上方に移動してナット20を上方に押し上げることが可能である。一方、ピストン部62aは、上方に位置した状態において、油圧供給部62bからの油の供給が停止または油の供給圧力が減少すると、下方に移動する。
 したがって、駆動部62は、油圧シリンダ機構のピストン部62aによりナット20を上方に押し上げることで、環状部材61の端面61fを駆動回転体37の下面37fに当接させることができる。また、駆動部62は、環状部材61の端面61fが駆動回転体37の下面37fに当接した状態からピストン部62aを下方に移動させることにより、環状部材61の端面61fを駆動回転体37の下面37fから離間させることができる。このように、駆動部62は、環状部材61と駆動回転体37との当接または離間、すなわちクラッチ部126による連結または解放といった切り替えを、制御部15によって任意のタイミングで行うことが可能である。なお、駆動部62の駆動は、制御部15の使用・不使用選択部15b(図1参照)によって行ってもよい。例えば、使用・不使用選択部15bでクラッチ部26の不使用が選択された場合は、駆動部62を駆動させなくてもよいし、使用・不使用選択部15bでクラッチ部26の使用が選択された場合は、上記したように駆動部62を駆動させてもよい。
 また、ラム駆動機構117は、センサ63を有する。センサ63は、フランジ部20aの上面に配置される。センサ63は、例えば圧力センサ等の接触式センサ、または光センサ等の非接触式センサ等、各種センサを用いることができる。センサ63は、ナット20が上方に押し上げられた場合、フランジ部20aに対して上方に加えられる圧力又はフランジ部20aの上方への移動を検出可能である。検出結果は、例えば制御部15に送られる。また、センサ63は、ナット20に加えられる上方への圧力が解消された場合またはフランジ部20aが下方へ移動する場合に、当該圧力の解消及び下方への移動を検出可能である。このように、センサ63は、例えば、フランジ部20aの圧力又は移動を検出することにより、駆動部62によりナット20が上方に押し上げられたこと、または駆動部62によりナット20が下方へ戻されたこと、が制御部15に送られて、クラッチ部26による連結または解放をそれぞれ検出可能である。なお、このセンサ63は、駆動部62の有無に関係なく設置可能であり、また、ナット20が上下動する他の実施形態においても適用可能である。
 また、ラム駆動機構117は、センサ63とは別のセンサ64が設けられる。センサ64は、例えばネジ19の下部に配置される。センサ64としては、例えばロードセルまたは温度センサ等が用いられる。センサ64がロードセルの場合、ネジ19に作用する荷重(推力)またはトルクを検出可能である。また、センサ64が温度センサの場合、ラム駆動機構17あるいはラム27等の温度を検出可能である。なお、上記したセンサ63、64の一方または双方の配置は任意であり、センサ63、64の一方または双方が設けられなくてもよい。
 プレスブレーキ110では、第1実施形態と同様の方法により、高速下降動作と、低速加圧動作と、停止動作と、圧抜き動作と、高速上昇動作とを行った後、動作を停止させる。なお、駆動部62は、例えば第1のモータ22の回転数及び第2のモータ24の回転数がそれぞれ同じ第2回転数R2となった時(例えば、図6(A)に示す時刻t5のタイミング)またはその後に、油圧供給部62bから油を供給してピストン部62aを駆動することにより、環状部材61を駆動回転体37に連結させる。このとき、センサ63によりナット20が上方に押し上げられることを検出してもよい。このセンサ63により、環状部材61(ナット20)が駆動回転体37に連結されたことを容易に確認できる。
 また、駆動部62は、圧抜き動作(図6(A)の区間D参照)において、上型29がワークWから離れた後、油圧供給部62bによる油の供給を停止または油の供給圧力を減少することによりピストン部62aがラム27等の荷重によりナット20とともに下降する。ピストン部62aの下降により、環状部材61は、駆動回転体37から離間した状態となる。このとき、センサ63によりナット20が下方に戻されることを検出してもよい。このセンサ63により、制御部15は、環状部材61と駆動回転体37との連結が解放されたことを容易に確認できる。なお、センサ64がロードセルの場合は、ネジ19に加わる荷重あるいはトルク値を検出し、荷重あるいはトルク値が予め設定された値以上となった場合は、例えばアラーム等によりラム27に作用する荷重(推力)あるいはトルク(回転モーメント)が大きいことを報知してもよい。また、センサ64が温度センサの場合は、ラム駆動機構17あるいはラム27等の温度を検出し、検出した温度が予め設定された値以上となった場合は、例えばアラーム等により温度が高いことを報知してもよい。
 以上のように、第2実施形態に係るプレスブレーキ110は、第1実施形態と同様に、第1のモータ22及び第2のモータ24の相対的な位置が保持されるため、第1のモータ22及び第2のモータ24の一方を案内するガイド機構が不要となり、コストの増加を抑制できる。さらに、ワークWの加工時間を短縮することができ、第2のモータ24の小型化を実現することができる。
 また、プレスブレーキ110は、クラッチ部126が、第1のモータ22により回転するナット20と駆動回転体37とを当接させる駆動部62を備えるため、駆動部62によって、クラッチ部126による連結または解放を確実に行うことができ、さらに、連結のタイミングを任意に設定できる。また、プレスブレーキ110は、駆動部62によるナット20と駆動回転体37との当接を検出するセンサ63を備えるため、センサ63によって、クラッチ部126により連結された状態あるいは解放された状態を確実に検出できる。なお、上記した駆動部62は、油圧シリンダ機構を用いているが、この構成に限定されない。例えば空圧シリンダ機構が用いられてもよいし、ピエゾ素子等の電動のアクチュエータが用いられてもよい。
 〔第3実施形態〕
 第3実施形態について図8を参照しながら説明する。図8は、第3実施形態に係るプレスブレーキのラム駆動機構を説明する図である。図8では、プレスブレーキ210のラム駆動機構217について示しており、ラム駆動機構217以外の構成については図7示す第2実施形態と同様である。また、本実施形態において、第1実施形態及び第2実施形態と同様の構成については、同じ符号を付してその説明を省略または簡略化する。
 図8に示すように、ラム駆動機構217は、ネジ219の回転を止めるための回り止め部として、ネジ219に設けられたスプライン軸219aと、このスプライン軸219aが貫通するスプラインナット65とを有する。スプライン軸219aは、ネジ219のうちケース40の第2蓋部44から突出する部分を含む上部に設けられる。スプライン軸219aは、ネジ219の上端部から下方に向けて形成される。なお、スプライン軸219aの上下方向の長さは、例えば、ラム27(上型29)のストロークの範囲以上に設定される。
 また、ケース40の第2蓋部44には、スプラインナット65が設けられる。スプラインナット65は、第2蓋部44に、ボルト等の不図示の固定部材により固定される。したがって、スプラインナット65は、ケース40(フレーム11)に対して回転しない状態となる。また、スプラインナット65は、ネジ219のスプライン軸219aが貫通する。図9は、ネジ219を上方から見た場合の構成を示す図である。図9に示すように、スプラインナット65は、内周に複数のスプライン溝65aを有する。スプライン溝65aは、ネジ219のスプライン軸219aが挿入される。この構成により、ネジ219の上部は、軸線AX周りの回転方向において、スプライン軸219aがスプライン溝65aに係止される。このため、ネジ219の軸線AX周りの回転が規制される。なお、スプライン軸219aは、スプラインナット65に対して上下方向に移動可能である。したがって、ネジ219は、上下方向の移動がスプラインナット65によって阻害されない。
 なお、プレスブレーキ210によるワークWのプレス方法は、第2実施形態と同様である。なお、ラム駆動機構217は、ネジ219の回転方向に力が加わった場合であってもスプラインナット65によりネジ219の回転方向の力を受け止めることができる。例えば、第1のモータ22及び第2のモータ24の双方を駆動した際に、ネジ219に対して供回りするような力が働くが、この力の一部をスプラインナット65により受け止め、ラム27に与える回転トルクを減少させることができる。
 以上のように、第3実施形態に係るプレスブレーキ210は、第2実施形態と同様に、第1のモータ22及び第2のモータ24の相対的な位置が保持されるため、第1のモータ22及び第2のモータ24の一方を案内するガイド機構が不要となり、コストの増加を抑制できる。さらに、ワークWの加工時間を短縮することができ、第2のモータ24の小型化を実現することができる。また、駆動部62によって、クラッチ部126による連結または解放を確実に行うことができ、さらに、連結のタイミングを任意に設定できる。また、センサ63によって、クラッチ部126により連結された状態あるいは解放された状態を確実に検出できる。なお、図8及び図9に示すスプライン軸219a及びスプラインナット65は、回り止め部の一例であり、ネジ19の回転を止めることが可能な任意の構成を適用可能である。また、スプライン軸219a及びスプラインナット65などの回り止め部は、ネジ19が回転しない他の実施形態においても適用可能である。
 また、プレスブレーキ210は、スプライン軸219a及びスプラインナット65といった回り止め部を備えるため、ネジ219の回転が規制される。この構成により、ネジ219の回転トルクの一部を回り止め部が受け止めるため、ネジ219からラム27に伝達される回転トルクを減少させることができ、ネジ219によるラム27の変形を防止できる。
 〔第4実施形態〕
 第4実施形態について図10を参照しながら説明する。図10は、第4実施形態に係るプレスブレーキのラム駆動機構を説明する図である。図10では、プレスブレーキ310のラム駆動機構317について示しており、ラム駆動機構317以外の構成については図1から図5に示す第1実施形態と同様である。また、本実施形態において、第1実施形態と同様の構成については、同じ符号を付してその説明を省略または簡略化する。本実施形態では、ナット320の回転及び上下方向への移動を規制し、ネジ319を回転させかつ上下方向に移動させる場合の構成を説明する。
 図10に示すように、ラム駆動機構317は、ネジ319及びナット320を有するボールネジ(回転・直動変換部)321と、第1のモータ22と、第1動力伝達部323と、第2のモータ24と、第2動力伝達部325と、クラッチ部326と、ネジ319に対してネジ319の軸方向に離間して配置され、かつネジ319の回転軸周りに回転可能に配置された駆動回転体337と、を備える。なお、本実施形態では回転・直動変換部としてボールネジ321を用いているが、この構成に限定されず、回転・直動変換部として例えばローラネジ等が用いられてもよい。ネジ319は、上下方向に沿って配置される。ネジ319の下方には、ケース340介してラム27が取り付けられる。ネジ319は、ラム27と一体で上下方向に移動可能とであり、フレーム11に固定されるナット320に吊り下げられた状態で支持される。ネジ319の長さは、上型29のストロークに合わせて設定される。
 ネジ319の下部は、ラム27に固定されたケース340に収容される。ケース340は、胴部341と、蓋部343とを有する。胴部341は、筒状に設けられ、ネジ319の下部の周囲に配置される。胴部341は、軸受337a、337bにより後述の駆動回転体337を軸線AX周りに回転可能に支持する。軸受337a、337bとしては、例えばボールベアリング等が用いられる。蓋部343は、胴部341の下端部に配置される。蓋部343には、ラム27に連結される連結部材344が設けられる。したがって、ケース340は、ラム27とともに上下方向に移動するが、回転は規制される。
 ナット320は、ネジ319に螺子結合されている。ナット320は、ボルトなどの不図示の固定部材によりフレーム11に固定される。ナット320は、回転及び上下方向への移動が規制されている。ラム27は、連結部材344、軸受337a、337b、駆動回転体337、後述する軸受316a、316b、及びネジ319を介してナット320に吊り下げられる。
 第1のモータ22の出力軸22aは、第1動力伝達部323の入力側に連結されている。第1のモータ22は、固定部322b及びケース340を介してラム27に固定されている。第2のモータ24の出力軸24aは、第2動力伝達部325の入力側に連結されている。第2のモータ24は、固定部324b及びケース340を介してラム27に固定されている。このように、本実施形態では、第1のモータ22および第2のモータ24がラム27にそれぞれ支持されており、ラム27とともに上下方向に移動するが、両者の相対的な位置が保持される。また、第1のモータ22および第2のモータ24は、ラム27に固定されるので、上下方向に移動する際のガイドは不要である。ただし、第1のモータ22および第2のモータ24の一方または双方をガイドするガイドを備えてもよい。
 第1動力伝達部323は、第1のモータ22の回転を高速かつ低トルクでネジ319に伝達する。第1動力伝達部323は、出力軸プーリ33と、駆動プーリ334と、ベルト35と、を備える。駆動プーリ334は、ナット320の下方であって、ネジ319の下端部より上方に固定されている。ベルト35は、出力軸プーリ33と駆動プーリ334とに架け渡されている。したがって、第1のモータ22を駆動することにより、第1動力伝達部323を介してネジ319を高速かつ低トルクで回転させる。ネジ319の回転により、ネジ319は、上下方向に高速で移動する。
 第2動力伝達部325は、第2のモータ24の回転を低速かつ高トルクで駆動回転体337に伝達する。第2動力伝達部325は、出力軸プーリ36と、駆動回転体337と、ベルト38と、を備える。駆動回転体337は、駆動プーリであり、ネジ319の下方に離間してネジ319と同軸に配置されている。駆動回転体337は、ネジ319の下端部とともに、ケース340に収容される。駆動回転体337は、上記した軸受337a、337bにより軸線AX周りに回転可能にケース340に支持される。また、駆動回転体337は、クラッチ部326によりネジ319に連結可能である。
 駆動回転体337は、ネジ319の下部(一部)を収容する収容部337eを有している。収容部337eの側面である駆動回転体337の内周部は、軸受316a、軸受316bを介してネジ319の下部の外周面と対向した状態となっている。また、駆動回転体337は、軸受337a、337bによってネジ319の回転軸周りに回転可能に配置されている。軸受316a、316bは、駆動回転体337の内側に配置され、ネジ319の下部を支持してもよいし、支持しなくてもよい。また、駆動回転体337の下部には、スラスト軸受337cが配置される。スラスト軸受337cは、駆動回転体337とケース340の蓋部343との間に挟持される。スラスト軸受337cは、駆動回転体337の下端を支持しており、ワークWの加工時にラム27を介して作用する反力を駆動回転体337に適切に伝達する。この構成により、駆動回転体337を精度よく上方に移動させ、後述するクラッチ部326による連結を確実に行うことができる。
 ベルト38は、出力軸プーリ36と駆動回転体337の外周部である被伝達部337gとに架け渡されている。したがって、第2のモータ24を駆動することにより、第2動力伝達部325を介して駆動回転体337を低速かつ高トルクで回転させる。駆動回転体337がクラッチ部326によりネジ319に連結されている場合、駆動回転体337の回転によりネジ319を低速かつ高トルクで回転させ、ネジ319を、低速かつ高負荷(大きな推力)で下方に移動させることができる。なお、ラム駆動機構317としては、第1動力伝達部323及び第2動力伝達部325がベルト35、38によって駆動力を伝達する構成であるが、この構成に限定されず、例えば、リンク機構あるいは歯車列によって駆動力を伝達してもよい。
 クラッチ部326は、第1のモータ22により回転するネジ319と駆動回転体337とを連結させて、駆動回転体337の回転(駆動力)をネジ319に伝達する。ネジ319の下端面には、ボルトなどの固定部材により円盤状部材361が固定される。円盤状部材361は、端面361fが平坦に形成され、駆動回転体337の平坦な端面337fに対向して配置される。なお、円盤状部材361の端面337f及び駆動回転体337の端面337fが平坦な構成に限定されず、他の形状であってもよい。クラッチ部326は、円盤状部材361の端面361fが駆動回転体37の端面337fに当接することにより、ネジ319と駆動回転体337とを連結する。
 なお、上型29がワークWからの反力を受けない場合には、円盤状部材361の端面361fと、駆動回転体337の端面337fとの間には、所定の隙間(例えば、図4に示す隙間L1)が生じた状態となっている。また、上型29がワークWからの反力を受ける場合には、駆動回転体337の端面337fと円盤状部材361の端面361fとが当接する。
 図11は、ラム駆動機構317の要部を拡大して示す図であり、ネジ319と駆動回転体337との位置関係を示す図である。図11は、クラッチ部326によりネジ319と駆動回転体337とが連結した状態を示している。図11に示すように、軸受316bと駆動回転体337との間には、弾性部材337dが配置される。弾性部材337dは、ネジ319と駆動回転体337との間を上下方向に離間する方向に弾性力を付与する。弾性部材337dは、弾性力により、クラッチ部326の解放時にネジ319と駆動回転体337との間を離間させる。
 次に、プレスブレーキ310によるプレス方法について説明する。先ず、上型29が上方に退避した状態で、下型12上にワークWを位置決めして配置する点は、第1実施形態と同様である。ワークWの位置決め後の動作は、図6(A)に示す第1実施形態のタイミングチャートと同様である。ワークWの位置決め後、第1のモータ22によりネジ319を高速で回転させる。このとき、駆動回転体337と円盤状部材361との間には、隙間が生じた状態となっている。したがって、ネジ319は、第1のモータ22の駆動力によって高速回転し、ネジ319の回転は駆動回転体37には伝達されない。また、ネジ319の高速回転により、ネジ319が高速で下降し、ネジ319の下降によりネジ319に連結されているラム27が下降する。このとき、固定部322bによりラム27に固定された第1のモータ22と、固定部324bによりラム27に固定された第2のモータ24とがラム27と一体となって下降する。したがって、第1のモータ22と第2のモータ24との相対的な位置は一定に保持される。
 その後、第1のモータ22の回転数を徐々に小さくし、ラム27の下降速度を低下させる。すなわち、制御部15(図1参照)は、第2のモータ24により低速回転しているまたは回転予定の駆動回転体337の回転速度まで、ネジ319の回転が減速するように第1のモータ22を制御する。一方、第2のモータ24の駆動を開始する。ラム27が所定の目標位置に到達するまで(上型29がワークWに達する前)に、第1のモータ22の回転数と第2のモータ24の回転数とを一致またはほぼ一致するように調整する。この調整により、ラム27が所定の目標位置に到達するまでに、第1のモータ22と第2のモータ24とが同期して回転する。なお、この段階では、円盤状部材361と駆動回転体337との間には、弾性部材337dにより隙間が形成されており、円盤状部材361と駆動回転体337とは離れた状態で同一の回転速度で回転している。
 第1のモータ22の駆動により低速でラム27を下降させ、上型29をワークWに当接させる。上型29がワークWに当接した後、さらに下降することにより、上型29は、ワークWから反力を受ける。この反力により、ラム27及びケース340を介して、駆動回転体337が上方に押され、弾性部材337dの弾性力に抗して上方に移動する。なお、駆動回転体337が上方に押されることにより、ネジ319を回転可能に支持するボールベアリングである軸受316a、316bは、外輪が内輪に対して上方に移動し、あるいは軸受316a、316bの一部または全部が弾性変形する。外輪の上方への移動等により、駆動回転体337が上方に移動して、円盤状部材361と駆動回転体337とが連結される(図11参照)。すなわち、クラッチ部326によりネジ319と駆動回転体337とが連結して回転体として一体化する。したがって、第2のモータ24によって駆動回転体337を回転させることにより、駆動回転体337の回転が円盤状部材361を介してネジ319に伝達され、ネジ319に回転(駆動力)を付与することができる。このとき、ネジ319及び駆動回転体337が同一又はほぼ同一の回転数となっているため、ネジ319及び駆動回転体337の回転を停止させることなく、円盤状部材361と駆動回転体337との間が短時間で滑らかに連結される。なお、上記では、軸受316a、316bの内輪と外輪との位置変化あるいは軸受316a、316bの弾性変形により駆動回転体337を上方に移動させているが、この構成に限定されない。例えば、軸受316a、316bが駆動回転体337またはネジ319に対して上下動可能に形成されて、駆動回転体337が軸受316a、316bとともに上下動する構成であってもよいし、駆動回転体337が軸受316a、316bに対して上下動する構成であってもよい。
 ネジ319と駆動回転体337とが連結されることにより、ネジ319は、第1のモータ22からの駆動力と、第2のモータ24からの駆動力とが加えられた状態で回転する。ネジ319の回転により、ネジ319が低速かつ高トルクで下降し、上型29が下死点に到達することにより、ワークWを上型29と下型12との間に挟み込んで、ワークWに対して曲げ加工を施す。上型29がワークWに当接してから下死点まで下降させる間、ワークWの加工に要する負荷は、第1のモータ22及び第2のモータ24のそれぞれに分担される。このため、第2のモータ24の低出力化及び小型化を図ることができる。ワークWの加工時の反力は、ラム27からケース340、駆動回転体337、ネジ319、及びナット320を介してフレーム11に伝達され、フレーム11に受け止められる。上型29が下死点に到達した後、所定時間経過後に第1のモータ22及び第2のモータ24の駆動を停止させる。
 第1のモータ22及び第2のモータ24の駆動を停止した後、第1のモータ22及び第2のモータ24が同一又はほぼ同一の回転数となるように同期駆動してネジ319を逆回転させ、ネジ319を上方へ移動させる。ネジ319の上昇により、ワークWへの圧抜きを経て、上型29がワークWから離れた状態となる。
 上型29がワークWから離れることにより、ワークWから上型29に作用する反力がなくなるため、駆動回転体337に対する上方への押圧力がなくなる。押圧力がなくなることにより、駆動回転体337は、ラム27等の荷重及び弾性部材337dの弾性力によって下方に移動し、円盤状部材361から下方に離れた状態となる。なお、ラム27等の荷重だけでなく、弾性部材337dの弾性力を利用することにより、駆動回転体337を確実に円盤状部材361から離すことができ、クラッチ部326による解放を確実に行うことができる。駆動回転体337が円盤状部材361から離れて、円盤状部材361と駆動回転体337との間に隙間が形成されることにより、ネジ319は、第2のモータ24からの駆動力が遮断され、第1のモータ22の駆動力によって回転する状態となる。
 その後、第1のモータ22による回転数を徐々に大きくすることにより、ネジ319は、第1のモータ22の高速回転によって高速で上昇していく。ネジ319の上昇により、ラム27が元の位置に戻される。ラム27が元の位置に戻された後、第1のモータ22を停止する。一方、第2のモータ24については、駆動回転体337が円盤状部材361から離れた後に駆動を停止させる。ラム27が元の位置に戻され、第1のモータ22及び第2のモータ24が動作を停止させることで、プレスブレーキ310の動作が完了する。
 以上のように、第4実施形態に係るプレスブレーキ310は、第1実施形態と同様に、第1のモータ22及び第2のモータ24の相対的な位置が保持されるため、第1のモータ22及び第2のモータ24の一方を案内するガイド機構が不要となり、コストの増加を抑制できる。さらに、ワークWの加工時間を短縮することができ、第2のモータ24の小型化を実現することができる。
 〔第5実施形態〕
 第5実施形態について図12を参照しながら説明する。図12は、第5実施形態に係るプレスブレーキの要部を説明する図である。図12では、プレスブレーキ410のラム駆動機構417について示しており、ラム駆動機構417以外の構成については図1から図5に示す第1実施形態と同様である。また、本実施形態において、第1実施形態と同様の構成については、同じ符号を付してその説明を省略または簡略化する。本実施形態では、第1実施形態と同様の構成要素において、ネジ19の回転及び上下方向への移動を規制し、ナット20をラム27に保持させて、ナット20が回転することによりラム27とともに上下方向に移動させる構成を適用している。
 図12に示すように、ラム駆動機構417は、第1実施形態と同様に、ネジ19及びナット20を有するボールネジ21と、第1のモータ22と、第1動力伝達部23と、第2のモータ24と、第2動力伝達部25と、クラッチ部26と、を備える。ラム駆動機構417は、第1実施形態のラム駆動機構17を上下に反転させた構成にほぼ等しい。ただし、ネジ19が上端においてフレーム11に固定されており、ネジ19の回転及び上下方向の移動が規制されている。また、ケース40は、連結部材440を介してラム27に固定されている。第1のモータ22は、固定部22bによりケース40に固定されている。第2のモータ24は、固定部24b、24cによりケース40に固定されている。
 このように、本実施形態では、第3実施形態と同様に、第1のモータ22および第2のモータ24がラム27にそれぞれ支持されており、ラム27とともに上下方向に移動するが、両者の相対的な位置が保持される。また、第1のモータ22および第2のモータ24は、ラム27に固定されるので、上下方向に移動する際のガイドは不要である。ただし、第1のモータ22および第2のモータ24の一方または双方をガイドするガイドを備えてもよい。
 上記のプレスブレーキ410によるプレス方法については、先ず、ワークWの位置決めが完了した後、第1のモータ22によりナット20を高速で回転させる。第2動力伝達部25の駆動回転体37と環状部材61との間には、隙間(図4の隙間L1参照)が生じた状態となっている。このため、ナット20は、第1のモータ22の駆動力によって高速回転し、ナット20の回転は駆動回転体37には伝達されない。したがって、ナット20の高速回転により、ナット20が高速で下降していく。ナット20の下降に伴ってラム27が高速で下降する。このとき、第1のモータ22及び第2のモータ24はラム27と一体となって下降し、両者の相対的な位置は一定に保持されている。
 その後、第1のモータ22の回転数を徐々に小さくし、ラム27の下降速度を低下させる。一方、第2のモータ24については、駆動を開始する。そして、上型29がワークWに達するまでに第1のモータ22によるナット20の回転数と第2のモータ24による駆動回転体37の回転数とを一致またはほぼ一致するように調整する。この調整により、ナット20と駆動回転体37とを同期して回転させる。なお、この段階では、環状部材61と駆動回転体37との間には隙間が形成されており、環状部材61と駆動回転体37とは離れた状態で同一の回転速度で回転している。
 第1のモータ22による低速駆動によりラム27が下降して、上型29がワークWに当接すると、上型29にはワークWから反力を受ける。この反力により、ラム27及び連結部材440を介してケース40が上方に押される。ケース40の第2蓋部44と駆動回転体37との間にはスラスト軸受37cが配置されており、ケース40が上方に押されることにより駆動回転体37が上方に押され、環状部材61と駆動回転体37とが連結される。このとき、ナット20と駆動回転体37とが同一又はほぼ同一の回転数となっているため、ナット20及び駆動回転体37の回転を停止させることなく、環状部材61と駆動回転体37との間が短時間で滑らかに連結される。
 環状部材61と駆動回転体37とが連結されることにより、ナット20は、第1のモータ22からの駆動力と、第2のモータ24からの駆動力とが加えられた状態で回転する。第1のモータ22及び第2のモータ24によるナット20の回転により、ナット20が低速で下降し、上型29が下死点に達する間にワークWが上型29と下型12との間に挟み込まれて曲げ加工が施される。なお、ワークWの加工に要する負荷は、第1のモータ22及び第2のモータ24のそれぞれに分担される。このため、第2のモータ24の低出力化及び小型化を図ることができる。ワークWの加工時の反力は、ラム27からケース40、駆動回転体37、ナット20、及びネジ19を介してフレーム11に伝達され、フレーム11に受け止められる。上型29が下死点に到達した後、所定時間経過後に第1のモータ22及び第2のモータ24の駆動を停止させる。
 第1のモータ22及び第2のモータ24の駆動を停止した後、第1のモータ22及び第2のモータ24が同一又はほぼ同一の回転数となるように同期駆動してナット20を逆回転させ、ナット20を上方へ移動させる。ナット20(ラム27)の上昇により、ワークWへの圧抜きを経て、上型29がワークWから離れた状態となる。上型29がワークWから離れることにより、ワークWから上型29に作用する反力がなくなるため、駆動回転体37に対する上方への押圧力がなくなる。押圧力がなくなることにより、駆動回転体37は、ラム27等の荷重によって下方に移動し、環状部材61から下方に離れた状態となる。環状部材61と駆動回転体37との間に隙間が形成されることにより、ナット20は、第2のモータ24からの駆動力が遮断され、第1のモータ22の駆動力によって回転する状態となる。
 その後、第1のモータ22による回転数を徐々に大きくすることにより、ナット20が高速で回転し、高速で上昇していく。ナット20の上昇により、ラム27が元の位置に戻された後、第1のモータ22を停止する。一方、第2のモータ24は、駆動回転体37が環状部材61から離れた後に駆動を停止させる。ラム27が元の位置に戻され、第1のモータ22及び第2のモータ24が動作を停止させることで、プレスブレーキ410の動作が完了する。
 以上のように、第5実施形態に係るプレスブレーキ410は、第1実施形態と同様に、第1のモータ22及び第2のモータ24の相対的な位置が保持されるため、第1のモータ22及び第2のモータ24の一方を案内するガイド機構が不要となり、コストの増加を抑制できる。さらに、ワークWの加工時間を短縮することができ、第2のモータ24の小型化を実現することができる。
 〔第6実施形態〕
 第6実施形態について図13及び図14を参照しながら説明する。図13は、第6実施形態に係るプレスブレーキの要部を説明する図である。図13では、プレスブレーキ510のラム駆動機構517について示しており、ラム駆動機構517以外の構成については図10示す第4実施形態と同様である。また、本実施形態において、第4実施形態と同様の構成については、同じ符号を付してその説明を省略または簡略化する。本実施形態では、第4実施形態と同様の構成要素において、ナット320をラム27に連結して、ネジ319を回転させることでナット320をラム27と共に上下方向に移動させる場合の構成を説明する。
 図13に示すように、ラム駆動機構517は、第4実施形態と同様に、ネジ319及びナット320を有するボールネジ321と、第1のモータ22と、第1動力伝達部323と、第2のモータ24と、第2動力伝達部325と、クラッチ部326と、を備える。ラム駆動機構517は、第4実施形態のラム駆動機構317を上下に反転させた構成にほぼ等しい。ただし、ナット320の下端が連結部材520を介してラム27に固定されており、ナット320は、回転が規制されつつ、ラム27とともに上下方向に移動する。
 また、駆動回転体337を収容するケース340は、蓋部343から水平方向に延びる連結部544を介してフレーム11に固定される。ネジ319の上部は、ケース340内の駆動回転体337の収容部337eに回転可能に支持されており、上下方向の移動が規制される。ネジ319は、駆動回転体337を介してケース340から吊り下げられた状態で配置される。第1のモータ22は、固定部522bによりフレーム11に固定されている。第2のモータ24は、固定部324bによりケース340に固定され、ケース340を介してフレーム11に支持されている。このように、本実施形態では、第1実施形態と同様に、第1のモータ22および第2のモータ24がフレーム11にそれぞれ支持されており、両者の相対的な位置が保持される。
 図14は、ラム駆動機構517の要部を拡大して示す図であり、ネジ319と駆動回転体337との位置関係を示す図である。図14に示すように、軸受316bと駆動回転体337との間には、弾性部材337dが配置される。弾性部材337dは、ネジ319と駆動回転体337とを上下方向に離間する方向に弾性力を付与する。弾性部材337dは、弾性力により、クラッチ部326の解放時にネジ319と駆動回転体337との間を離間させる。
 上記のプレスブレーキ510によるプレス方法については、先ず、ワークWの位置決めが完了した後、第1のモータ22によりネジ319を高速で回転させる。第2動力伝達部325の駆動回転体337と円盤状部材361との間には、隙間(図4の隙間L1参照)が生じた状態となっている。このため、ネジ319は、第1のモータ22の駆動力によって高速回転した状態となり、ネジ319の回転は駆動回転体337には伝達されない。したがって、ネジ319の高速回転により、ナット320が高速で下降していく。ナット320の下降にともなって、ラム27が高速で下降する。このとき、第1のモータ22及び第2のモータ24はフレーム11に支持されているので、両者の相対的な位置は一定に保持される。
 その後、第1のモータ22の回転数を徐々に小さくし、ラム27の下降速度を低下させる。一方、第2のモータ24の駆動を開始する。ラム27が所定の目標位置に到達するまで(上型29がワークWに達する前)に、第1のモータ22によるネジ319の回転数と第2のモータ24による駆動回転体337の回転数とを一致またはほぼ一致するように調整する。この調整により、ネジ319と駆動回転体337とが同期して回転する。なお、この段階では、円盤状部材361と駆動回転体337との間には、ラム27等の荷重及び弾性部材337dの弾性力により隙間が形成されており、円盤状部材361と駆動回転体337とは離れた状態で同一の回転速度で回転している。
 第1のモータ22の駆動により低速でラム27を下降させ、上型29がワークWに当接すると、ワークWから反力を受ける。この反力により、ラム27及びナット320を介して、ネジ319が上方に押され、弾性部材337dの弾性力に抗して上方に移動する。ネジ319の上方への移動により、円盤状部材361と駆動回転体337とが連結される(図14参照)。なお、ネジ319が上方に押されることにより、ネジ319を回転可能に支持するボールベアリングである軸受316a、316bは、内輪が外輪に対して上方に移動し、あるいは軸受316a、316bの一部または全部が弾性変形する。このとき、ネジ319及び駆動回転体337が同一又はほぼ同一の回転数となっているため、ネジ319及び駆動回転体337の回転を停止させることなく、円盤状部材361と駆動回転体337との間が短時間で滑らかに連結される。
 ネジ319と駆動回転体337とが連結されることにより、ネジ319は、第1のモータ22からの駆動力と、第2のモータ24からの駆動力とが加えられた状態で回転する。ネジ319の回転により、ナット320が低速かつ高トルクで下降し、上型29が下死点に到達することにより、ワークWを上型29と下型12との間に挟み込んで、ワークWに対して曲げ加工を施す。上型29がワークWに当接してから下死点まで下降させる間、ワークWの加工に要する負荷は、第1のモータ22及び第2のモータ24のそれぞれに分担される。このため、第2のモータ24の低出力化及び小型化を図ることができる。
 また、ワークWの加工時の反力は、ラム27からナット320、ネジ319、駆動回転体337に伝達され、フレーム11に固定されたケース340のスラスト軸受337cによって受け止められる。このスラスト軸受337cは反力受部である。上型29が下死点に到達した後、所定時間経過後に第1のモータ22及び第2のモータ24の駆動を停止させる。第1のモータ22及び第2のモータ24の駆動を停止した後、第1のモータ22及び第2のモータ24が同一又はほぼ同一の回転数となるように同期駆動してネジ319を逆回転させ、ナット320を上方へ移動させる。ナット320(ラム27)の上昇により、ワークWへの圧抜きを経て、上型29がワークWから離れた状態となる。
 上型29がワークWから離れることにより、ワークWから上型29に作用する反力がなくなるため、ネジ319に対する上方への押圧力がなくなる。押圧力がなくなることにより、ネジ319は、ラム27等の荷重及び弾性部材337dの弾性力によって下方に移動し、駆動回転体337から下方に離れた状態となる。なお、ラム27等の荷重だけでなく、弾性部材337dの弾性力を利用することにより、ネジ319を確実に駆動回転体337から離すことができ、クラッチ部326による解放を確実に行うことができる。ネジ319が駆動回転体337から離れて、円盤状部材361と駆動回転体337との間に隙間が形成されることにより、ネジ319は、第2のモータ24からの駆動力が遮断され、第1のモータ22の駆動力によって回転する状態となる。
 その後、第1のモータ22によるネジ319の回転数を徐々に大きくすることにより、ナット320は、高速で上昇していく。ナット320の上昇により、ラム27が元の位置に戻される。ラム27が元の位置に戻された後、第1のモータ22を停止する。一方、第2のモータ24については、駆動回転体337が円盤状部材361から離れた後に駆動を停止させる。ラム27が元の位置に戻され、第1のモータ22及び第2のモータ24が動作を停止させることで、プレスブレーキ510の動作が完了する。
 以上のように、第6実施形態に係るプレスブレーキ510は、第1実施形態と同様に、第1のモータ22及び第2のモータ24の相対的な位置が保持されるため、第1のモータ22及び第2のモータ24の一方を案内するガイド機構が不要となり、コストの増加を抑制できる。さらに、ワークWの加工時間を短縮することができ、第2のモータ24の小型化を実現することができる。
 以上、実施形態について説明したが、本発明は、上述した説明に限定されず、本発明の要旨を逸脱しない範囲において種々の変更が可能である。また、上記の実施形態で説明した要件は、適宜組み合わせることができる。上記した実施形態では、ラム27が上型29を保持し、上型29を上下動させることによりワークWの曲げ加工を行っているが、この構成に代えて、下型12をラム27で保持し、下型12をラム駆動機構17等により上下動させてワークWの曲げ加工を行ってもよい。
 また、上記した各実施形態において説明した構成要素について、他の実施形態に適用可能な場合は適用してもよい。例えば、第2実施形態で説明した駆動部62及びセンサ63、あるいは第3実施形態で説明したスプライン軸219a及びスプラインナット65などは、第4から第6実施形態に適用可能であれば適用してもよい。第4実施形態に駆動部62を適用する場合、例えば、ケース340に対して駆動回転体337を上方に移動させるような駆動部62が適用される。また、第6実施形態に駆動部62を適用する場合、例えば、ケース340に対してネジ319を上方に移動させるような駆動部62が適用される。また、法令で許容される限りにおいて、日本特許出願である特願2016-210724、及び本明細書で引用した全ての文献、の内容を援用して本文の記載の一部とする。
W・・・ワーク
FL・・・床面
R・・・回転体
10、110、210、310、410、510・・・プレスブレーキ
11・・・フレーム
12・・・下型
15・・・制御部
15a・・・同期回転制御部
15b・・・使用・不使用選択部
17、117、217、317、417、517・・・ラム駆動機構
19、219、319・・・ネジ
20、320・・・ナット
21、321・・・ボールネジ(回転・直動変換部)
22・・・第1のモータ
24・・・第2のモータ
26、126、326・・・クラッチ部
27・・・ラム
29・・・上型
37、337・・・駆動回転体
37c、337c・・・スラスト軸受(反力受部)
40、340・・・ケース
62・・・駆動部
63・・・センサ
65・・・スプラインナット(回り止め部)
219a・・・スプライン軸(回り止め部)
337d・・・弾性部材

Claims (8)

  1.  上型と下型とによりワークを挟んで曲げ加工するプレスブレーキであって、
     前記上型または前記下型を装着可能なラムと、
     前記ラムを上下動させるラム駆動機構と、
     前記ラム駆動機構を制御する制御部と、を備え、
     前記ラム駆動機構は、
     前記ラムに固定されて前記ラムの上下動に伴い上下動するネジ、及びこのネジに螺子結合されるナットから成る回転・直動変換部と、
     前記ナットに対して前記ネジの軸方向に離間して配置され、かつ前記ナットの回転軸周りに回転可能に配置された駆動回転体と、
     固定配置された第1のモータと、
     前記第1のモータの回転を高速かつ低トルクで前記ナットに伝達する第1動力伝達部と、
     固定配置された第2のモータと、
     前記第2のモータの回転を低速かつ高トルクで前記駆動回転体に伝達する第2動力伝達部と、
     前記ナットと前記駆動回転体との間に設けられ、前記ナットと前記駆動回転体とを連結して回転体として一体化させるためのクラッチ部と、を備える、プレスブレーキ。
  2.  前記制御部は、
     前記上型または前記下型が、ワークへのアプローチ、ワークへの当接、ワークの曲げ加工終了を含むストロークのうち、少なくともワークへのアプローチの一部を含む範囲で下降するように前記第1のモータを制御し、
     アプローチの途中で前記第1のモータにより回転する前記ナットと、前記第2のモータにより回転する前記駆動回転体との速度を同じにする同期回転制御部を備え、前記同期回転制御部により前記ナットと前記駆動回転体との速度を同じにしてから前記ナットと前記駆動回転体とを前記クラッチ部で連結させる、請求項1に記載のプレスブレーキ。
  3.  前記同期回転制御部は、前記第2のモータにより低速回転しているまたは回転予定の前記駆動回転体の回転速度まで、前記ナットの回転が減速するように前記第1のモータを制御する、請求項2に記載のプレスブレーキ。
  4.  前記駆動回転体は、前記ナットの少なくとも一部を収容する収容部を有し、外周部が前記第2動力伝達部から動力が伝達される被伝達部であり、内周部が軸受を介して前記ナットの外周部の一部に対向しており、
     前記駆動回転体は、その軸方向において、固定配置されたフレームに保持された反力受部を介して回転可能に支持される、請求項1から請求項3のいずれか1項に記載のプレスブレーキ。
  5.  前記制御部は、前記クラッチ部の使用または不使用を選択する使用・不使用選択部を有する、請求項1に記載のプレスブレーキ。
  6.  前記クラッチ部は、ワークを加工する際に生じる反力によって前記ナットと前記駆動回転体とを連結する、請求項1から請求項5のいずれか1項に記載のプレスブレーキ。
  7.  前記クラッチ部は、離間している前記ナットと前記駆動回転体との少なくとも一方を移動させて両者を連結する駆動部を備える、請求項1から請求項5のいずれか1項に記載のプレスブレーキ。
  8.  上型と下型とによりワークを挟んで曲げ加工するプレスブレーキであって、
     前記上型または前記下型を装着可能なラムと、
     床面に設置されて前記ラムを上下方向に案内するフレームと、
     前記ラムを上下動させるラム駆動機構と、
     前記ラム駆動機構を制御する制御部と、を備え、
     前記ラム駆動機構は、
     ネジ及びこのネジに螺子結合されるナットから成り、前記ネジ及び前記ナットの一方が前記ラムに固定され、かつ前記ネジ及び前記ナットの他方が前記フレームに固定される回転・直動変換部と、
     前記ラムまたは前記フレームに固定配置される第1のモータと、
     前記第1のモータが固定された前記ラムまたは前記フレームに固定配置される第2のモータと、
     前記第1のモータにより回転する前記ナットまたは前記ネジに対して前記ネジの軸方向に離間して前記ナットまたは前記ネジの回転軸周りに回転可能に配置され、かつ前記第2のモータにより回転する駆動回転体と、
     前記第1のモータにより回転する前記ナットまたは前記ネジと、前記駆動回転体との間に設けられ、前記ナットまたは前記ネジと前記駆動回転体とを連結して回転体として一体化させるためのクラッチ部と、を備える、プレスブレーキ。
     
PCT/JP2017/035203 2016-10-27 2017-09-28 プレスブレーキ WO2018079175A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780064902.3A CN109843462B (zh) 2016-10-27 2017-09-28 弯板机
US16/343,693 US10919248B2 (en) 2016-10-27 2017-09-28 Press brake
JP2018547498A JP6662467B2 (ja) 2016-10-27 2017-09-28 プレスブレーキ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016210724 2016-10-27
JP2016-210724 2016-10-27

Publications (1)

Publication Number Publication Date
WO2018079175A1 true WO2018079175A1 (ja) 2018-05-03

Family

ID=62023361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035203 WO2018079175A1 (ja) 2016-10-27 2017-09-28 プレスブレーキ

Country Status (4)

Country Link
US (1) US10919248B2 (ja)
JP (1) JP6662467B2 (ja)
CN (1) CN109843462B (ja)
WO (1) WO2018079175A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112958700A (zh) * 2021-02-04 2021-06-15 彭威海 一种高低压成套设备阻燃桥架线槽制造工艺

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7532287B2 (ja) * 2021-02-26 2024-08-13 住友重機械工業株式会社 射出成形機
US11752720B2 (en) * 2021-09-08 2023-09-12 PDInnovative LLC Press machine with modular linear actuator system
US11819906B2 (en) 2021-09-21 2023-11-21 PDInnovative LLC Linear-actuated press machine having multiple motors and clutch system for multi-speed drive functionality
US11541618B1 (en) 2021-09-21 2023-01-03 PDInnovative LLC Linear-actuated press machine having multiple motors and clutch system for multi-speed drive functionality
IT202100027461A1 (it) * 2021-10-26 2023-04-26 Euromac Spa Pressa-piegatrice e relativo gruppo di azionamento
CN116550844B (zh) * 2023-07-11 2023-09-12 常州市武进龙犇金属压铸有限公司 一种电机端盖加工用冲压装置及其冲压方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828588U (ja) * 1981-08-18 1983-02-24 サンリツ工業株式会社 ステツピングモ−タ−
JPH0475798A (ja) * 1990-07-18 1992-03-10 Amada Co Ltd プレス機械
JP2003200221A (ja) * 2001-12-27 2003-07-15 Amada Eng Center Co Ltd 折り曲げ加工方法およびその装置
JP2004098105A (ja) * 2002-09-06 2004-04-02 Amada Eng Center Co Ltd プレスブレーキのテーブル駆動装置
WO2015049930A1 (ja) * 2013-10-02 2015-04-09 村田機械株式会社 プレス機械及びプレス方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528588U (ja) 1990-12-18 1993-04-16 株式会社アマダ プレス機械
CN100566986C (zh) * 2002-10-24 2009-12-09 株式会社金光 冲压机械
JP3953414B2 (ja) * 2002-12-11 2007-08-08 株式会社東洋工機 往復駆動機構およびその機構を用いたプレス機械
WO2005053943A1 (ja) * 2003-12-03 2005-06-16 Hoden Seimitsu Kako Kenkyusho Co., Ltd. プレス装置
JP4995415B2 (ja) * 2004-09-09 2012-08-08 株式会社放電精密加工研究所 プレス装置
JP5593992B2 (ja) * 2010-09-09 2014-09-24 村田機械株式会社 プレス機械
JP5913989B2 (ja) * 2012-01-10 2016-05-11 株式会社アマダホールディングス プレス機械

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828588U (ja) * 1981-08-18 1983-02-24 サンリツ工業株式会社 ステツピングモ−タ−
JPH0475798A (ja) * 1990-07-18 1992-03-10 Amada Co Ltd プレス機械
JP2003200221A (ja) * 2001-12-27 2003-07-15 Amada Eng Center Co Ltd 折り曲げ加工方法およびその装置
JP2004098105A (ja) * 2002-09-06 2004-04-02 Amada Eng Center Co Ltd プレスブレーキのテーブル駆動装置
WO2015049930A1 (ja) * 2013-10-02 2015-04-09 村田機械株式会社 プレス機械及びプレス方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112958700A (zh) * 2021-02-04 2021-06-15 彭威海 一种高低压成套设备阻燃桥架线槽制造工艺
CN112958700B (zh) * 2021-02-04 2022-11-22 国网福建省电力有限公司将乐县供电公司 一种高低压成套设备阻燃桥架线槽制造工艺

Also Published As

Publication number Publication date
JP6662467B2 (ja) 2020-03-11
US20190255791A1 (en) 2019-08-22
JPWO2018079175A1 (ja) 2019-09-12
CN109843462B (zh) 2020-08-21
CN109843462A (zh) 2019-06-04
US10919248B2 (en) 2021-02-16

Similar Documents

Publication Publication Date Title
WO2018079175A1 (ja) プレスブレーキ
JP6016896B2 (ja) ワーク、特に金属薄板を加工するプレスの形態の工作機械
EP3117920A1 (en) A sheet material feeding apparatus
EP2165781B1 (en) Press working method with a pinch release step and apparatus performing such method
EP2377630B1 (en) Workpiece transfer apparatus for press machine and crossbar unit
US10279556B2 (en) Press machine and press method
JP5711923B2 (ja) クランプユニット
EP2969517B1 (en) Press machine
JP2010089148A (ja) サーボモータ駆動プレスおよびその成形方法
KR20160085001A (ko) 로터리 테이블의 클램핑 장치
EP2803476B1 (en) Press machine
KR101597777B1 (ko) 마찰용접기
JP2010082753A (ja) ワーク圧入装置
CN109940566B (zh) 一种平面直线位移驱动装置及其控制方法
JP2019508255A (ja) 適用される力を接続要素に適用するための装置
JP5020216B2 (ja) ダイクッション装置及びプレス機械
JP6649175B2 (ja) プレス機械
WO2023199795A1 (ja) プレスブレーキ、及びプレスブレーキのテーブル駆動方法
JP2008272898A (ja) 工作機械における工具のアンクランプ方法
JP2001071194A (ja) 加圧装置
JP2020157355A (ja) 金型クランプ装置
JP2024101845A (ja) アプセット鍛造のグリップ制御方法とそのシステム
JP2024111531A (ja) 曲げ加工機
JP2007283334A (ja) プレス加工方法及びプレス加工装置
JP2011020173A (ja) プレス装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864958

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547498

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17864958

Country of ref document: EP

Kind code of ref document: A1