WO2023199795A1 - プレスブレーキ、及びプレスブレーキのテーブル駆動方法 - Google Patents

プレスブレーキ、及びプレスブレーキのテーブル駆動方法 Download PDF

Info

Publication number
WO2023199795A1
WO2023199795A1 PCT/JP2023/013928 JP2023013928W WO2023199795A1 WO 2023199795 A1 WO2023199795 A1 WO 2023199795A1 JP 2023013928 W JP2023013928 W JP 2023013928W WO 2023199795 A1 WO2023199795 A1 WO 2023199795A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
teeth
mode
tooth
clutch tooth
Prior art date
Application number
PCT/JP2023/013928
Other languages
English (en)
French (fr)
Inventor
慎太郎 後藤
賢治 安部
Original Assignee
株式会社アマダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アマダ filed Critical 株式会社アマダ
Publication of WO2023199795A1 publication Critical patent/WO2023199795A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/02Bending sheet metal along straight lines, e.g. to form simple curves on press brakes without making use of clamping means

Definitions

  • the present disclosure relates to a press brake and a press brake table driving method.
  • press brakes have been known that bend workpieces by moving a movable table, on which a mold such as a punch is attached, vertically relative to a fixed table on which a mold such as a die is attached.
  • methods using an electric motor are also known.
  • Patent Document 1 discloses a method of moving a movable table at high speed and at low speed using one electric motor by switching the reduction ratio of a speed reducer.
  • a press brake includes a movable table arranged to face a fixed table in the vertical direction, a conversion mechanism that converts rotational motion into linear motion and moves the movable table in the vertical direction, and an electric motor. It includes an electric motor having a shaft and a mysterious planetary gear mechanism, and the rotation of the electric motor shaft is reduced by one of a first reduction ratio and a second reduction ratio larger than the first reduction ratio and output to the conversion mechanism.
  • the first mode operates the reducer at the second reduction ratio by meshing only with the first clutch teeth and fixing the first rotating element
  • the first mode operates the reducer at the second reduction ratio by meshing only with the second clutch teeth.
  • the speed reducer since the speed reducer includes the mysterious planetary gear mechanism, a sufficiently large second speed reduction ratio can be obtained. Moreover, since the fixed clutch teeth operate in the double-biting mode when changing the mode between the first mode and the second mode, the movable table, which is a heavy object, can be maintained in an immovable state.
  • FIG. 1 is a sectional view showing the main parts of a table drive device for a press brake.
  • FIG. 2 is a front view showing the configuration of the press brake.
  • FIG. 3 is a diagram showing a cross section taken along line AA in FIG.
  • FIG. 4 is an explanatory diagram showing a detection device that detects the position of the fixed clutch teeth.
  • FIG. 5A is an explanatory diagram showing a second mode of fixed clutch teeth.
  • FIG. 5B is an explanatory diagram showing the first mode of the fixed clutch teeth.
  • FIG. 5C is an explanatory diagram showing the double engagement mode of the fixed clutch teeth.
  • FIG. 6A is a diagram illustrating a method of controlling the clutch unit according to the second embodiment.
  • FIG. 6B is a diagram illustrating a method of controlling the clutch unit according to the second embodiment.
  • FIG. 6C is a diagram illustrating a method of controlling the clutch unit according to the second embodiment.
  • FIG. 6D is a diagram illustrating a method of controlling the clutch unit according to the second embodiment.
  • FIG. 7A is a diagram illustrating a method of controlling the clutch unit according to the third embodiment.
  • FIG. 7B is a diagram illustrating a method of controlling the clutch unit according to the third embodiment.
  • FIG. 7C is a diagram illustrating a method of controlling the clutch unit according to the third embodiment.
  • FIG. 1 is a sectional view showing the main parts of a press brake table drive device.
  • FIG. 2 is a front view showing the configuration of the press brake.
  • the left-right direction, front-back direction, and up-down direction are used as definitions of directions.
  • the left-right direction and the front-back direction correspond to two directions perpendicular to each other in the horizontal direction, and the up-down direction corresponds to the vertical direction.
  • these directions are only used for convenience in order to explain the press brake and the press brake table driving method according to the present embodiment.
  • the press brake 1 includes an upper table 7 arranged vertically opposite to a lower table 5, and a ball screw mechanism that converts rotational motion into linear motion to move the upper table vertically. 55, an electric motor 25 having an electric motor shaft 26, and a mysterious planetary gear mechanism, the rotation of the electric motor shaft 26 is controlled by one of a first reduction ratio and a second reduction ratio larger than the first reduction ratio. It includes a reducer 31 that decelerates and outputs it to the ball screw mechanism 55, and a clutch unit 45 that switches the reduction ratio in the reducer 31 between a first reduction ratio and a second reduction ratio.
  • the clutch portion 45 is connected to a first rotating element included in the reducer 31 and rotates together with the first rotating element, and a first clutch tooth 47 is connected to a second rotating element included in the reducer 31 and rotates together with the first rotating element.
  • a second clutch tooth 48 is provided between a second clutch tooth 48 that rotates together with the second rotating element, and a first clutch tooth 47 and a second clutch tooth 48 that are arranged to face each other so that the teeth face each other.
  • a fixed clutch tooth 46 moving between tooth 47 and second clutch tooth 48 .
  • the fixed clutch teeth 46 have two switchable operation modes: a first mode in which the reducer 31 is operated at a second reduction ratio by meshing only with the first clutch teeth 47 and fixing the first rotating element; By meshing only with the second clutch teeth 48 and fixing the second rotating element, the mode can be changed between a second mode in which the reducer 31 is operated at the first reduction ratio, and the first mode and the second mode.
  • a double-biting mode is provided in which the first clutch tooth 47 and the second clutch tooth 48 are engaged with each other during the transition.
  • FIG. 3 is a diagram showing a cross section taken along line AA in FIG.
  • FIG. 4 is an explanatory diagram showing a detection device that detects the position of the fixed clutch teeth.
  • the press brake 1 performs a bending process on a plate-shaped workpiece such as a sheet metal by cooperation of an upper mold P such as a punch and a lower mold D such as a die.
  • the press brake 1 includes left and right side frames 2, a lower table 5 that is a fixed table, an upper table 7 that is a movable table, left and right table drive devices 20, and a control device 100.
  • the left and right side frames 2 are placed apart in the left-right direction so as to face each other.
  • the lower table 5 extends in the left-right direction and is supported by the front lower portions of the left and right side frames 2.
  • a lower mold holder 6 that removably holds the lower mold D is provided above the lower table 5 along the left-right direction.
  • a holder groove for holding the base (shank portion) of the lower mold D is formed in the lower mold holder 6 along the left-right direction.
  • the upper table 7 extends in the left-right direction and is supported by the front upper portions of the left and right side frames 2.
  • the upper table 7 is configured to be movable in the vertical direction with respect to the left and right side frames 2.
  • An upper mold holder 8 that removably holds the upper mold P is provided below the upper table 7 along the left-right direction.
  • a holder groove for holding the base portion (shank portion) of the upper mold P is formed in the upper mold holder 8 along the left-right direction.
  • the left and right table drive devices 20 are fixed to the upper portions of the left and right side frames 2, respectively. Each table driving device 20 moves the upper table 7 in the vertical direction.
  • the table drive device 20 mainly includes an electric motor 25, a reduction gear unit 30, and a ball screw mechanism 55.
  • the electric motor 25 is, for example, a servo motor, and includes an electric motor shaft 26 that rotates around its axis.
  • the reducer unit 30 reduces the rotation of the motor shaft 26 at a predetermined reduction ratio and outputs the reduced speed to the ball screw mechanism 55.
  • the reduction gear unit 30 includes a reduction gear 31 and a clutch section 45, the details of which will be described later.
  • the ball screw mechanism 55 moves the upper table 7 in the vertical direction by converting the rotational motion of the output section 41 of the reducer unit 30 into linear motion.
  • Ball screw mechanism 55 includes a ball screw nut 56 and a ball screw shaft 57.
  • the ball screw nut 56 is pivotally supported inside the casing of the ball screw mechanism 55 via a bearing.
  • the ball screw nut 56 is connected to the output section 41 of the reduction gear unit 30 and rotates in accordance with the rotation of the output section 41.
  • the ball screw shaft 57 is screwed into the ball screw nut 56, and moves in the vertical direction as the ball screw nut 56 rotates forward and backward.
  • a connection block 60 is connected to the lower end of the ball screw nut 56.
  • a hanging bolt 61 that hangs down along the vertical direction is attached to the lower end of the connection block 60, and the hanging bolt 61 supports a support shaft 62 that passes through the upper table 7 in the front-back direction.
  • the ball screw nut 56 is connected to the upper table 7 via a connection block 60, a hanging bolt 61, and a support shaft 62. With such a structure, the upper table 7 also moves in the vertical direction as the ball screw shaft 57 moves in the vertical direction.
  • a pair of regulating rollers 60a separated in the left-right direction are provided on the rear surface of the connection block 60.
  • a roller guide 3a extending in the vertical direction is provided on the front surface of the support member 3 provided on the side frame 2. This roller guide 3a is held between a pair of regulating rollers 60a provided on a connection block 60.
  • a control device 100 such as an NC (Numerical Control) device that controls the operation of the press brake 1 is supported on the left side frame 2 via a connecting arm.
  • Control device 100 controls reduction gear unit 30 and electric motor 25.
  • a workpiece is positioned on the lower mold D mounted on the lower mold holder 6 of the lower table 5.
  • the workpiece is pressurized between the upper mold P and the lower mold D.
  • the workpiece is bent at a desired bending angle by cooperation between the upper mold P and the lower mold D.
  • FIG. 4 is an explanatory diagram showing a detection device that detects the position of the fixed clutch teeth.
  • FIG. 5A is an explanatory diagram showing a second mode of fixed clutch teeth.
  • FIG. 5B is an explanatory diagram showing the first mode of the fixed clutch teeth.
  • FIG. 5C is an explanatory diagram showing the double engagement mode of the fixed clutch teeth.
  • the reduction gear unit 30 is composed of a reduction gear 31 and a clutch section 45.
  • the speed reducer 31 reduces the rotation of the motor shaft 26 at one of a first speed reduction ratio and a second speed reduction ratio larger than the first speed reduction ratio, and outputs the speed reducer 31 .
  • the clutch section 45 switches the reduction ratio in the reduction gear 31 between a first reduction ratio and a second reduction ratio.
  • the speed reducer 31 includes a mysterious planetary gear mechanism. Specifically, the reducer 31 includes a sun gear 32, a plurality of planet gear units 33, a planet carrier 34, a first internal gear 38, a second internal gear 40, and an output section 41. .
  • the sun gear 32 is fitted onto the outer peripheral surface of the motor shaft 26.
  • the sun gear 32 rotates together with the motor shaft 26.
  • the plurality of planetary gear units 33 are provided around the sun gear 32 and are arranged at equal intervals in the circumferential direction.
  • Each planetary gear unit 33 includes a first planetary gear 33a and a second planetary gear 33b.
  • the first planetary gear 33a meshes with the sun gear 32 and rotates as the sun gear 32 rotates.
  • the second planetary gear 33b is provided coaxially with the first planetary gear 33a, and rotates together with the first planetary gear 33a.
  • the first planetary gear 33a and the second planetary gear 33b have a two-stage structure that is integrated in the vertical direction, and the first planetary gear 33a and the second planetary gear 33b rotate on the same axis. do.
  • the planet carrier 34 rotates around the motor shaft 26 via a bearing portion 35 fitted onto the motor shaft 26.
  • a plurality of unit shafts 36 are provided in the planetary carrier 34 along the circumferential direction.
  • a bearing portion 37 is fitted onto each unit shaft 36, and the planetary gear unit 33 is attached via the bearing portion 37.
  • the planetary carrier 34 supports each of the plurality of planetary gear units 33 so as to be rotatable.
  • the first internal gear 38 is an internal gear that meshes with the first planetary gear 33a.
  • the first internal gear 38 is provided on the inner circumferential surface of the housing of the reduction gear unit 30 via a bearing portion 39, and can rotate around the motor shaft 26.
  • the second internal gear 40 is an internal gear that has a different number of teeth than the first internal gear 38 and meshes with the second planetary gear 33b.
  • the second internal gear 40 is provided on the inner circumferential surface of the housing of the reduction gear unit 30 via a bearing portion 42 and can rotate around the motor shaft 26 .
  • the output section 41 is formed integrally with the second internal gear 40 and rotates together with the second internal gear 40.
  • the output section 41 is connected to the ball screw nut 56 of the ball screw mechanism 55 described above.
  • the clutch portion 45 includes fixed clutch teeth 46, first clutch teeth 47, and second clutch teeth 48.
  • the fixed clutch teeth 46, the first clutch teeth 47, and the second clutch teeth 48 are each annular members, and have a tooth structure as described below.
  • the first clutch teeth 47 and the second clutch teeth 48 are arranged to face each other so that their tooth structures face each other.
  • the fixed clutch tooth 46 is provided between the first clutch tooth 47 and the second clutch tooth 48 .
  • the fixed clutch tooth 46 moves between the first clutch tooth 47 and the second clutch tooth 48.
  • the fixed clutch teeth 46 are restricted from movement in directions other than the vertical direction, including rotation in the circumferential direction.
  • the fixed clutch teeth 46 are provided with a plurality of first engagement teeth 46a along the circumferential direction, and a plurality of second engagement teeth 46b are provided along the circumferential direction. It is provided.
  • Each of the first engaging teeth 46a projects toward the first clutch tooth 47 side
  • each of the second engaging teeth 46b projects toward the second clutch tooth 48 side.
  • the first clutch teeth 47 are connected to the first internal gear 38, which is the first rotating element included in the reduction gear 31, and rotate together with the first internal gear 38.
  • the first clutch tooth 47 is provided with a plurality of third engagement teeth 47a along the circumferential direction. Each of the third engagement teeth 47a projects toward the fixed clutch teeth 46 and second clutch teeth 48 side.
  • the second clutch teeth 48 are connected to the planetary carrier 34, which is a second rotating element included in the reduction gear 31, and rotate together with the planetary carrier 34.
  • the second clutch teeth 48 are provided with a plurality of fourth engagement teeth 48a along the circumferential direction. Each fourth engaging tooth 48a projects toward the fixed clutch tooth 46 and first clutch tooth 47 side.
  • the clutch section 45 includes a pressing member (not shown) and a solenoid 49.
  • the pressing member is, for example, a compression coil spring, and presses the fixed clutch tooth 46 toward the first clutch tooth 47 side. That is, the fixed clutch teeth 46 are normally moved toward the first clutch teeth 47 because they receive the pressing force of the pressing member.
  • the solenoid 49 moves the fixed clutch tooth 46 toward the second clutch tooth 48 by attracting it with electromagnetic force. That is, when the solenoid 49 is operated and the fixed clutch tooth 46 is attracted by electromagnetic force, the fixed clutch tooth 46 moves toward the second clutch tooth 48 against the pressing force of the pressing member.
  • the clutch unit 45 further includes a capacitor (not shown) that supplies power to the solenoid 49 when external power to the solenoid 49 is cut off.
  • the press brake 1 further includes a detection device 50 that detects the position of the fixed clutch tooth 46 between the first clutch tooth 47 and the second clutch tooth 48.
  • the position of the fixed clutch tooth 46 detected by the detection device 50 is output to the control device 100.
  • the detection device 50 is composed of a detection plate 51 and a sensor 52.
  • the detection plate 51 is a plate that is elongated in one direction, and has one end fixed to the fixed clutch teeth 46 and the other end extending to the outside of the casing of the clutch section 45.
  • the detection plate 51 moves in the axial direction of the motor shaft 26 in accordance with the movement of the fixed clutch teeth 46.
  • the sensor 52 is provided outside the housing of the clutch section 45.
  • the sensor 52 is fixed at a predetermined position above the detection plate 51, that is, at a predetermined position on the second clutch tooth 48 side with respect to the fixed clutch tooth 46.
  • the sensor 52 is, for example, a proximity sensor, and detects the detection plate 51 that is displaced in accordance with the movement of the fixed clutch teeth 46. Specifically, the sensor 52 detects whether the detection plate 51 is in a close position or in a far position.
  • the sensor 52 detects that the detection plate 51 is in a close position, it is determined that the fixed clutch teeth 46 are located on the second clutch teeth 48 side, that is, it is determined that the mode is in the second mode, which will be described later. be able to.
  • the sensor 52 detects that the detection plate 51 is in a far position, it is determined that the fixed clutch teeth 46 are located on the first clutch teeth 47 side, that is, the mode is in the first mode described later. can do.
  • the fixed clutch teeth 46 have three switchable operation modes. As shown in FIGS. 5A to 5C, the three operating modes include a first mode, a second mode, and a dual bite mode.
  • the first mode is a mode in which the fixed clutch teeth 46 mesh only with the first clutch teeth 47.
  • the plurality of first engaging teeth 46a of the fixed clutch teeth 46 and the plurality of third engaging teeth 47a of the first clutch teeth 47 mesh with each other.
  • the plurality of second engagement teeth 46b of the fixed clutch teeth 46 and the plurality of fourth engagement teeth 48a of the second clutch teeth 48 are released. Since the first clutch teeth 47 are fixed by the fixed clutch teeth 46 meshing with the first clutch teeth 47, rotation of the first internal gear 38 is regulated. In this case, the reducer 31 operates at a large reduction ratio (second reduction ratio).
  • the second mode is a mode in which the fixed clutch teeth 46 mesh only with the second clutch teeth 48.
  • the plurality of second engaging teeth 46b of the fixed clutch teeth 46 and the plurality of fourth engaging teeth 48a of the second clutch teeth 48 mesh with each other.
  • the plurality of first engaging teeth 46a of the fixed clutch teeth 46 and the plurality of third engaging teeth 47a of the first clutch teeth 47 are released. Since the second clutch teeth 48 are fixed by the fixed clutch teeth 46 meshing with the second clutch teeth 48, rotation of the planetary carrier 34 is regulated.
  • the speed reducer 31 operates at a speed reduction ratio (first speed reduction ratio) smaller than the second speed reduction ratio.
  • the double bite mode is defined as when the fixed clutch teeth 46 transition from the first mode to the second mode, or vice versa, when the fixed clutch teeth 46 transition from the second mode to the first mode.
  • This is the mode that operates when transitioning to .
  • This double engagement mode is a mode in which the fixed clutch teeth 46 mesh with the first clutch teeth 47 and the second clutch teeth 48, respectively.
  • the plurality of first engaging teeth 46a of the fixed clutch teeth 46 and the plurality of third engaging teeth 47a of the first clutch teeth 47 mesh with each other.
  • the plurality of second engaging teeth 46b of the fixed clutch teeth 46 and the plurality of fourth engaging teeth 48a of the second clutch teeth 48 mesh with each other.
  • the rotations of the planetary carrier 34 and the first internal gear 38 are respectively regulated.
  • a workpiece is positioned between the upper mold P and the lower mold D.
  • the control device 100 causes the solenoid 49 to perform a suction operation.
  • the fixed clutch teeth 46 move toward the second clutch teeth 48, so that the fixed clutch teeth 46 enter the second mode in which they mesh only with the second clutch teeth 48 (FIG. 5A).
  • the control device 100 operates the electric motor 25 and rotates the electric motor shaft 26 in the forward direction.
  • the planet carrier 34 is fixed, but the first internal gear 38 is released. Since the planetary carrier 34 is fixed, the first planetary gear 33a meshing with the first internal gear 38 does not revolve, but rotates in accordance with the rotation of the sun gear 32, which rotates integrally with the motor shaft 26.
  • the second internal gear 40 since the rotation of the first planetary gear 33a also rotates the second planetary gear 33b integral therewith, the second internal gear 40 also rotates due to the rotation of the second planetary gear 33b. As a result, the output section 41 coupled to the second internal gear 40 also rotates synchronously.
  • the rotation of the motor shaft 26 is outputted to the output section 41 as a simple planetary gear mechanism without being decelerated by the mysterious planetary gear mechanism. That is, the reduction ratio of the reduction gear 31 becomes the first reduction ratio. Therefore, a high-speed, low-torque output is output to the output section 41, and the upper table 7 is lowered at a high speed.
  • the control device 100 stops the rotation of the motor shaft 26. After that, the control device 100 ends the suction operation of the solenoid 49. As a result, the fixed clutch teeth 46 move toward the first clutch teeth 47, so that the fixed clutch teeth 46 enter the first mode in which they mesh only with the first clutch teeth 47 (FIG. 5B).
  • the control device 100 operates the electric motor 25 and reversely rotates the electric motor shaft 26.
  • the first internal gear 38 is fixed, but the planet carrier 34 is released. Therefore, the first planetary gear 33a meshing with the first internal gear 38 rotates around the sun gear 32, which rotates integrally with the motor shaft 26.
  • the rotation of the first planetary gear 33a also rotates the second planetary gear 33b, which is integral with the first planetary gear 33a. Therefore, the rotation of the second planetary gear 33b also rotates the second internal gear 40, which has a different number of teeth from the first internal gear 38. let As a result, the output section 41 coupled to the second internal gear 40 also rotates synchronously.
  • the rotation of the motor shaft 26 is significantly decelerated by the mysterious planetary gear mechanism and is output to the output section 41. That is, the reduction ratio of the reduction gear 31 becomes a second reduction ratio larger than the first reduction ratio. Therefore, a low-speed, high-torque output is output to the output section 41, and the upper table 7 is lowered at a low speed.
  • the workpiece is bent with great force by the upper die P and the lower die D, and is bent to a desired angle.
  • the control device 100 After stopping the reverse rotation of the motor shaft 26, the control device 100 causes the motor shaft 26 to rotate forward. At this time, the rotation of the motor shaft 26 is significantly decelerated by the mysterious planetary gear mechanism and is output to the output section 41. As a result, the upper table 7 rises at a low speed.
  • the control device 100 stops the rotation of the motor shaft 26. After that, the control device 100 causes the solenoid 49 to perform a suction operation. As a result, the fixed clutch teeth 46 move toward the second clutch teeth 48, so that the fixed clutch teeth 46 enter the second mode in which they mesh only with the second clutch teeth 48.
  • the control device 100 operates the electric motor 25 and reversely rotates the electric motor shaft 26. At this time, the rotation of the motor shaft 26 is outputted to the output section 41 as a simple planetary gear mechanism without being decelerated by the mysterious planetary gear mechanism. As a result, the upper table 7 rises at high speed.
  • the speed reducer 31 since the speed reducer 31 includes the mysterious planetary gear mechanism, a sufficiently large speed reduction ratio (second speed reduction ratio) can be obtained. Thereby, the operating performance necessary for the press brake 1 can be sufficiently obtained. Furthermore, the fixed clutch teeth 46 operate in a double-bit mode when changing modes between the first mode and the second mode. Thereby, the upper table 7, which is a heavy object, is maintained in an immovable state, so that it is possible to suppress the upper table 7 from unexpectedly descending.
  • the clutch structure described in Patent Document 1 is shown as a comparative example.
  • the clutch cylinder moves up and down to switch between a high speed reduction ratio and a low speed reduction ratio.
  • This clutch structure is equipped with gear trains (A-side gear train and B-side gear train) consisting of a group of gears from the first to the third at two locations, upper and lower.
  • meshing gears (an A-side meshing gear and a B-side meshing gear) are provided in the clutch cylinder at two locations, upper and lower.
  • each meshing gear switches the gears that mesh with each other among a group of gears that constitute the corresponding gear train.
  • the clutch portion 45 according to the present embodiment can reduce the clearance required between the engaging teeth compared to the structure of the comparative example in which the clutch portions 45 mesh at two locations. This makes it possible to more actively suppress the lowering of the upper table 7.
  • the reducer 31 includes a sun gear 32 that rotates together with the motor shaft 26, a first planetary gear 33a that meshes with the sun gear 32, and rotates by the rotation of the sun gear 32.
  • a plurality of planetary gear units 33 having a second planetary gear 33b that is provided coaxially with the first planetary gear 33a and rotates together with the first planetary gear 33a, and a plurality of planetary gear units 33 that support each of the plurality of planetary gear units 33 so as to be rotatable on their own axis, and a motor shaft.
  • a planetary carrier 34 as a second rotating element rotating around 26, a first internal gear 38 as a first rotating element meshing with the first planetary gear 33a, and a first internal gear having a different number of teeth from the first internal gear 38, It includes a second internal gear 40 that meshes with the second planetary gear 33b, and an output section 41 that is connected to a ball screw mechanism 55 and rotates integrally with the second internal gear 40.
  • the reducer 31 outputs the rotation of the motor shaft 26 to the output section 41 as a simple planetary gear mechanism (first reduction ratio), or as a mysterious planetary gear mechanism. (second reduction ratio).
  • first reduction ratio simple planetary gear mechanism
  • second reduction ratio a simple planetary gear mechanism
  • the fixed clutch teeth 46 include a plurality of first engagement teeth 46a, each of which protrudes toward the first clutch tooth 47 side, and a plurality of first engagement teeth 46a, each of which protrudes toward the second clutch tooth 48 side. It is an annular member having two engaging teeth 46b provided along the circumferential direction.
  • the first clutch tooth 47 is an annular member provided along the circumferential direction with a plurality of third engagement teeth 47a, each of which protrudes toward the second clutch tooth 48 side.
  • the second clutch tooth 48 is an annular member provided along the circumferential direction with a plurality of fourth engagement teeth 48a, each of which protrudes toward the first clutch tooth 47 side.
  • the engagement teeth can be engaged with the first clutch teeth 47 or the second clutch teeth 48. Engagement can be easily performed. Further, since the fixed clutch teeth 46 are located between the first clutch teeth 47 and the second clutch teeth 48, an area where the fixed clutch teeth 46 mesh with both the first clutch teeth 47 and the second clutch teeth 48 can be set. I can do it. Thereby, when the fixed clutch teeth 46 change modes between the first mode and the second mode, the fixed clutch teeth 46 can be operated in the double engagement mode.
  • the plurality of first engagement teeth 46a and the plurality of third engagement teeth 47a are engaged with each other, and the plurality of second engagement teeth 46b and the plurality of fourth engagement teeth are engaged with each other.
  • Rotation of the first internal gear 38 is restricted in a state where the teeth 48a are released.
  • the plurality of second engagement teeth 46b and the plurality of fourth engagement teeth 48a are engaged with each other, and the plurality of first engagement teeth 46a and the plurality of third engagement teeth 47a are released. In this state, rotation of the planet carrier 34 is restricted.
  • the plurality of first engaging teeth 46a and the plurality of third engaging teeth 47a are in mesh with each other, and the plurality of second engaging teeth 46b and the plurality of fourth engaging teeth 48a are in mesh with each other. mesh with each other to restrict rotation of the first internal gear 38 and the planetary carrier 43.
  • the fixed clutch teeth 46 restrict the rotation of the first internal gear 38 and the planetary carrier 43 when changing the mode between the first mode and the second mode.
  • the upper table 7, which is a heavy object is maintained in an immovable state, so that it is possible to suppress the upper table 7 from unexpectedly descending.
  • the clutch portion 45 is attracted to a pressing member that presses the fixed clutch teeth 46 toward the first clutch teeth 47 by electromagnetic force, so that the clutch portion 45 is pressed toward the first clutch teeth 47 by the pressing member.
  • the clutch further includes a solenoid 49 that moves the fixed clutch tooth 46 toward the second clutch tooth 48 side.
  • the fixed clutch teeth 46 can be driven by using the magnetic attraction of the solenoid 49 and the pressing force of the pressing member. Thereby, switching between the first mode and the second mode can be easily performed.
  • the press brake 1 includes a detection device 50 that detects the position of the fixed clutch tooth 46 between the first clutch tooth 47 and the second clutch tooth 48, and a clutch 45 and a control device 100 that controls the electric motor 25.
  • control device 100 can appropriately control the clutch section 45 and the electric motor 25 while referring to the position of the fixed clutch teeth 46.
  • the detection device 50 is fixed to the fixed clutch teeth 46, and includes a detection plate 51 that extends to the outside of the casing that houses the clutch portion 45, and a detection plate 51 that is arranged outside the casing and detects the A sensor 52 that detects the plate 51 is provided.
  • the detection plate 51 moves up and down in synchronization with the movement of the fixed clutch teeth 46.
  • the detection plate 51 By detecting the detection plate 51 with the sensor 52, it is possible to detect the position of the fixed clutch tooth 46, that is, in which mode the fixed clutch tooth 46 is in.
  • the clutch section 45 further includes a capacitor that supplies power to the solenoid 49 when external power to the solenoid 49 is cut off.
  • the power for excitation of the solenoid 49 can be provided by the capacitor.
  • the fixed clutch teeth 46 on the second clutch teeth 48 side can be prevented from moving toward the first clutch teeth 47, which prevents the engagement teeth from interfering with each other and damaging the clutch portion 45. The situation can be brought under control.
  • FIGS. 6A to 6D are diagrams illustrating a method of controlling the clutch unit according to the second embodiment.
  • the fixed clutch teeth 46 and the second clutch teeth 48 will wear out due to the frictional force between the fixed clutch teeth 46 and the second clutch teeth 48. Furthermore, in some cases, the fixed clutch teeth 46 may not normally transition to the first mode.
  • control device 100 slightly rotates the motor shaft 26 of the motor 25 in the direction in which the upper table 7 rises.
  • a gap can be provided between the second engagement tooth 46b and the fourth engagement tooth 48a, as shown in FIG. 6B.
  • the fixed clutch teeth 46 can move toward the first clutch teeth 47, so the fixed clutch teeth 46 can transition to the first mode. Then, when the fixed clutch teeth 46 transition to the first mode, a force that rotates the first clutch teeth 47 in the circumferential direction (in the opposite direction to FIG. 6A) acts due to the weight of the upper table 7.
  • the plurality of first engaging teeth 46a of the fixed clutch teeth 46 and the plurality of third engaging teeth 47a of the first clutch teeth 47 are in close contact with each other in the circumferential direction.
  • control device 100 operates the electric motor 25 so that the upper table 7 rises by a small amount when changing the mode between the first mode and the second mode.
  • FIGS. 7A to 7C are diagrams illustrating a method of controlling the clutch unit according to the third embodiment.
  • the control device 100 performs control (first control) to rotate the motor shaft 26 of the electric motor 25 by a predetermined rotation angle in the rotation direction R1.
  • the rotation angle in this control corresponds to the angle at which the second clutch tooth 48 on the movable side of the fixed clutch tooth 46 rotates by one tooth width (the tooth width of the fourth engaging tooth 48a).
  • the rotational position of the fourth engaging tooth 48a on the second clutch tooth 48, that is, the tooth phase, is detected by a phase sensor such as a phototransistor.
  • the control device 100 can rotate the second clutch tooth 48 by the width of one tooth in the predetermined rotation direction R1 based on the detection result of the phase sensor.
  • the phases of the second clutch teeth 48 and the fixed clutch teeth 46 are shifted, so that the second engagement teeth of the fixed clutch teeth 46 differ from the gaps between the fourth engagement teeth 48a of the second clutch teeth 48 A situation occurs in which the tip of the tooth 46b coincides with the tip of the tooth.
  • the fixed clutch teeth 46 can be transitioned to the second mode.
  • control device 100 rotates the motor shaft 26 of the electric motor 25 in the opposite rotation direction R2.
  • Control (second control) is performed to rotate the tooth by a predetermined rotation angle (rotation angle corresponding to the width of one tooth).
  • a gap is generated between the third engaging tooth 47a of the first clutch tooth 47 and the first engaging tooth 46a of the fixed clutch tooth 46, so that the fixed clutch tooth 46 is changed from the first mode to the second mode. It is possible to transition to .
  • the clutch teeth 47 and 48 located on the side where the fixed clutch teeth 46 are switched are set by one tooth.
  • a first control is performed to control the electric motor 25 to rotate by a width of .
  • the amount of rotation of the clutch teeth 47 and 48 is required to be small in order to realize the mode transition, so the amount and time of movement of the upper table 7 in the upward or downward direction can be shortened. . As a result, the time required for mode transition can be shortened.
  • control device 100 when the control device 100 cannot change the mode between the first mode and the second mode even if the first control is performed, the control device 100 performs the control in the opposite direction to the first control.
  • a second control is performed to control the electric motor 25 so that the clutch teeth 47 and 48 rotate by the width of one tooth.
  • the mode can be reliably transitioned between the first mode and the second mode.
  • the rotational shafts of the electric motor 25 and the reduction gear unit 30 and the rotational shaft of the ball screw mechanism 55 are arranged coaxially.
  • the output section 41 of the reduction gear unit 30 and the ball screw nut 56 of the ball screw mechanism 55 are The structure may be such that the power is transmitted by connecting the two with a timing belt. According to this structure, the size in the vertical direction can be reduced.
  • the upper table 7 is illustrated as a movable table, but the lower table 5 may be a movable table.
  • the table driving method of the press brake 1 is such that when driving the movable table in either the upward or downward direction, the fixed clutch teeth 46 are engaged only with the first clutch teeth 47 and the first rotation is performed.
  • the first step is to operate the reducer at the second reduction ratio by fixing the elements, and the second rotating element is fixed by meshing the fixed clutch teeth 46 only with the second clutch teeth 48, thereby reducing the speed reducer.
  • the second step of operating at the first reduction ratio and when transitioning between the first and second steps, the fixed clutch teeth 46 are replaced with the first clutch teeth 47 and the second clutch teeth 48, respectively.
  • a third step of meshing is performed.
  • the reducer 31 since the reducer 31 includes the mysterious planetary gear mechanism, it is possible to obtain a second reduction ratio that is sufficiently larger than the first reduction ratio. Thereby, the operating performance necessary for the press brake 1 can be sufficiently obtained. Furthermore, the fixed clutch teeth 46 operate in a double-bit mode when changing modes between the first mode and the second mode. Thereby, the upper table 7, which is a heavy object, is maintained in an immovable state, so that it is possible to suppress the upper table 7 from unexpectedly descending.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • Retarders (AREA)

Abstract

クラッチ部(45)は、減速機(31)に含まれる第1回転要素と一体に回転する第1クラッチ歯(47)と、減速機(31)に含まれる第2回転要素と一体に回転する第2クラッチ歯(48)と、第1クラッチ歯(47)と第2クラッチ歯(48)との間で移動する固定クラッチ歯(46)と、を含む。固定クラッチ歯(46)は、切り換え可能な動作モードとして、第1クラッチ歯(47)のみと歯合して第1回転要素を固定することで、減速機(31)を第2減速比で動作させる第1モードと、第2クラッチ歯(48)のみと歯合して第2回転要素を固定することで、減速機(31)を第1減速比で動作させる第2モードと、第1モードと第2モードとの間でモードを遷移するときに第1クラッチ歯(47)と第2クラッチ歯(48)とにそれぞれ歯合する両噛みモードと、を備える。

Description

プレスブレーキ、及びプレスブレーキのテーブル駆動方法
 本開示は、プレスブレーキ、及びプレスブレーキのテーブル駆動方法に関する。
 従来より、ダイなどの金型が取り付けられる固定テーブルに対して、パンチなどの金型が装着される可動テーブルを上下方向に移動させることにより、ワークの曲げ加工を行うプレスブレーキが知られている。可動テーブルの駆動方法には、油圧を用いるものの他に、電動機を用いるものも知られている。
 例えば特許文献1には、減速機の減速比を切り換えることで、可動テーブルの高速移動と低速移動とを一つの電動機で行う手法が開示されている。
特許第3884352号公報
 しかしながら、プレスブレーキの動作性能を十分に得るためには、低速移動時の減速比を十分に大きくとる必要がある。また、重量物である可動テーブルは、自重によって下方向へと大きな力を受けるため、可動テーブルが不意に下降することを抑制する必要がある。これらの要求を満たす必要があることから、電動機を用いたプレスブレーキのテーブル駆動は、改善の余地を有していた。
 本開示の一態様のプレスブレーキは、固定テーブルに対して上下方向に対向して配置される可動テーブルと、回転運動を直線運動に変換して可動テーブルを上下方向に移動させる変換機構と、電動機軸を備える電動機と、不思議遊星歯車機構を含み、電動機軸の回転を、第1減速比及び第1減速比よりも大きな第2減速比のいずれか一方の減速比で減速して変換機構に出力する減速機と、減速機における減速比を第1減速比と第2減速比とで切り替えるクラッチ部と、を備え、クラッチ部は、減速機に含まれる第1回転要素と連結され、第1回転要素と一体に回転する第1クラッチ歯と、減速機に含まれる第2回転要素と連結され、第2回転要素と一体に回転する第2クラッチ歯と、互いの歯構造が向き合うように対向して配置される第1クラッチ歯と第2クラッチ歯との間に設けられ、第1クラッチ歯と第2クラッチ歯との間で移動する固定クラッチ歯と、を含み、固定クラッチ歯は、切り換え可能な動作モードとして、第1クラッチ歯のみと歯合して第1回転要素を固定することで、減速機を第2減速比で動作させる第1モードと、第2クラッチ歯のみと歯合して第2回転要素を固定することで、減速機を第1減速比で動作させる第2モードと、第1モードと第2モードとの間でモードを遷移するときに第1クラッチ歯と第2クラッチ歯とにそれぞれ歯合する両噛みモードと、を有する。
 本開示の一態様によれば、減速機が不思議遊星歯車機構を含んでいるので、十分に大きな第2減速比を得ることができる。また、固定クラッチ歯は、第1モードと第2モードとの間でモードを遷移するときに両噛みモードで動作するので、重量物である可動テーブルを不動状態で維持することができる。
 本開示の一態様によれば、プレスブレーキとしての必要な動作性能を得つつ、重量物である可動テーブルが不意に下降することを抑制することができる。
図1は、プレスブレーキのテーブル駆動装置の要部を示す断面図である。 図2は、プレスブレーキの構成を示す正面図である。 図3は、図2のAA断面を示す図である。 図4は、固定クラッチ歯の位置を検出する検出装置を示す説明図である。 図5Aは、固定クラッチ歯の第2モードを示す説明図である。 図5Bは、固定クラッチ歯の第1モードを示す説明図である。 図5Cは、固定クラッチ歯の両噛みモードを示す説明図である。 図6Aは、第2実施形態に係るクラッチ部の制御方法を説明する図である。 図6Bは、第2実施形態に係るクラッチ部の制御方法を説明する図である。 図6Cは、第2実施形態に係るクラッチ部の制御方法を説明する図である。 図6Dは、第2実施形態に係るクラッチ部の制御方法を説明する図である。 図7Aは、第3実施形態に係るクラッチ部の制御方法を説明する図である。 図7Bは、第3実施形態に係るクラッチ部の制御方法を説明する図である。 図7Cは、第3実施形態に係るクラッチ部の制御方法を説明する図である。
 以下、図面を参照し、本実施形態に係るプレスブレーキ、及びプレスブレーキのテーブル駆動方法について説明する。
 図1は、プレスブレーキのテーブル駆動装置の要部を示す断面図である。図2は、プレスブレーキの構成を示す正面図である。プレスブレーキの構成を説明するにあたり、方向の定義として、左右方向、前後方向、及び上下方向を用いる。左右方向及び前後方向は水平方向において直交する2つの方向に対応し、上下方向は鉛直方向に対応する。ただし、これらの方向は、本実施形態に係るプレスブレーキ及びプレスブレーキのテーブル駆動方法を説明するために、便宜的に用いられるに過ぎない。
 本実施形態に係るプレスブレーキ1は、下部テーブル5に対して上下方向に対向して配置される上部テーブル7と、回転運動を直線運動に変換して上部テーブルを上下方向に移動させるボールねじ機構55と、電動機軸26を備える電動機25と、不思議遊星歯車機構を含み、電動機軸26の回転を、第1減速比及び第1減速比よりも大きな第2減速比のいずれか一方の減速比で減速してボールねじ機構55に出力する減速機31と、減速機31における減速比を第1減速比と第2減速比とで切り替えるクラッチ部45と、を備える。クラッチ部45は、減速機31に含まれる第1回転要素と連結され、第1回転要素と一体に回転する第1クラッチ歯47と、減速機31に含まれる第2回転要素と連結され、第2回転要素と一体に回転する第2クラッチ歯48と、互いの歯同士が向き合うように対向して配置される第1クラッチ歯47と第2クラッチ歯48との間に設けられ、第1クラッチ歯47と第2クラッチ歯48との間で移動する固定クラッチ歯46と、を含む。固定クラッチ歯46は、切り換え可能な動作モードとして、第1クラッチ歯47のみと歯合して第1回転要素を固定することで、減速機31を第2減速比で動作させる第1モードと、第2クラッチ歯48のみと歯合して第2回転要素を固定することで、減速機31を第1減速比で動作させる第2モードと、第1モードと第2モードとの間でモードを遷移するときに第1クラッチ歯47と第2クラッチ歯48とにそれぞれ歯合する両噛みモードと、を備える。
(第1の実施形態)
 以下、図1乃至図4を参照し、第1の実施形態に係るプレスブレーキ1について詳細に説明する。図3は、図2のAA断面を示す図である。図4は、固定クラッチ歯の位置を検出する検出装置を示す説明図である。
 プレスブレーキ1は、パンチなどの上金型Pと、ダイなどの下金型Dとの協働により、板金などの板状のワークに対して曲げ加工を行う。プレスブレーキ1は、左右のサイドフレーム2と、固定テーブルである下部テーブル5と、可動テーブルである上部テーブル7と、左右のテーブル駆動装置20と、制御装置100とを備えている。
 左右のサイドフレーム2は、互いに対向するように、左右方向に離間して配置されている。
 下部テーブル5は、左右方向に延在しており、左右のサイドフレーム2の前側下部に支持されている。下部テーブル5の上側には、下金型Dを着脱可能に保持する下金型ホルダ6が、左右方向に沿って設けられている。下金型ホルダ6には、下金型Dの基部(シャンク部)を保持するためのホルダ溝が左右方向に沿って形成されている。
 上部テーブル7は、左右方向に延在しており、左右のサイドフレーム2の前側上部に支持されている。上部テーブル7は、左右のサイドフレーム2に対して、上下方向に移動自在に構成されている。
 上部テーブル7の下側には、上金型Pを着脱可能に保持する上金型ホルダ8が、左右方向に沿って設けられている。上金型ホルダ8には、上金型Pの基部(シャンク部)を保持するためのホルダ溝が左右方向に沿って形成されている。
 左右のテーブル駆動装置20は、左右のサイドフレーム2の上部にそれぞれ固定されている。個々のテーブル駆動装置20は、上部テーブル7を上下方向へ移動させる。テーブル駆動装置20は、電動機25と、減速機ユニット30と、ボールねじ機構55とを主体に構成されている。
 電動機25は、例えばサーボモータであり、軸線周りで回転する電動機軸26を備えている。減速機ユニット30は、電動機軸26の回転を所定の減速比で減速してボールねじ機構55に出力する。減速機ユニット30は、減速機31と、クラッチ部45とから構成されており、その詳細については後述する。
 ボールねじ機構55は、減速機ユニット30の出力部41の回転運動を直線運動に変換することで、上部テーブル7を上下方向に移動させる。ボールねじ機構55は、ボールねじナット56と、ボールねじ軸57とを含む。ボールねじナット56は、ボールねじ機構55の筐体内部に軸受部を介して軸支されている。ボールねじナット56は、減速機ユニット30の出力部41と連結されており、出力部41の回転に応じて回転する。ボールねじ軸57は、ボールねじナット56に螺合しており、ボールねじナット56が正逆回転することにより、上下方向に移動する。
 ボールねじナット56の下端には、接続ブロック60が連結されている。接続ブロック60の下端には、上下方向に沿って垂下する吊りボルト61が取り付けられており、吊りボルト61は、上部テーブル7を前後方向に貫通する支持軸62を支持している。ボールねじナット56は、接続ブロック60、吊りボルト61、及び支持軸62を介して、上部テーブル7に連結されている。このような構造により、ボールねじ軸57の上下方向の移動に応じて、上部テーブル7も上下方向に移動する。
 図3に示すように、接続ブロック60の後面には、左右方向に隔離された一対の規制ローラ60aが設けられている。サイドフレーム2に設けられたサポート部材3の前面には、上下方向に延在するローラガイド3aが設けられている。このローラガイド3aは、接続ブロック60に設けられた一対の規制ローラ60aによって挟持されている。
 図2に示すように、左側のサイドフレーム2には、プレスブレーキ1の動作を制御するNC(Numerical Control)装置などの制御装置100が接続アームを介して支持される。制御装置100は、減速機ユニット30及び電動機25を制御する。
 このような構成のプレスブレーキ1では、下部テーブル5の下金型ホルダ6に装着された下金型D上にワークが位置決めされる。上金型ホルダ8に上金型Pが装着された上部テーブル7を下部テーブル5に向かって下降させると、上金型Pと下金型Dとの間でワークが加圧される。上金型Pと下金型Dとの協働によってワークが所望の曲げ角度で折り曲げられる。
 以下、図1、図4、図5A乃至図5Cを参照し、減速機ユニット30の詳細を説明する。図4は、固定クラッチ歯の位置を検出する検出装置を示す説明図である。図5Aは、固定クラッチ歯の第2モードを示す説明図である。図5Bは、固定クラッチ歯の第1モードを示す説明図である。図5Cは、固定クラッチ歯の両噛みモードを示す説明図である。
 図1に示すように、減速機ユニット30は、減速機31と、クラッチ部45とから構成されている。減速機31は、電動機軸26の回転を、第1減速比及び第1減速比よりも大きな第2減速比のいずれか一方の減速比で減速して出力する。クラッチ部45は、減速機31における減速比を第1減速比と第2減速比とで切り替える。
 減速機31は、不思議遊星歯車機構を含んでいる。具体的には、減速機31は、太陽歯車32と、複数の遊星歯車ユニット33と、遊星キャリア34と、第1内歯車38と、第2内歯車40と、出力部41とを備えている。
 太陽歯車32は、電動機軸26の外周面に外嵌されている。太陽歯車32は、電動機軸26と一体となって回転する。
 複数の遊星歯車ユニット33は、太陽歯車32の周囲に設けられており、周方向にかけて等間隔で配置されている。個々の遊星歯車ユニット33は、第1遊星歯車33aと、第2遊星歯車33bとで構成されている。第1遊星歯車33aは、太陽歯車32と噛み合っており、太陽歯車32の回転によって回転する。第2遊星歯車33bは、第1遊星歯車33aと同軸上に設けられており、第1遊星歯車33aと一体となって回転する。本実施形態では、第1遊星歯車33aと第2遊星歯車33bは、上下方向にかけて一体化された2段構造であり、第1遊星歯車33aと第2遊星歯車33bとは同一の軸上で回転する。
 遊星キャリア34は、電動機軸26に外嵌された軸受部35などを介して、電動機軸26周りで回転する。遊星キャリア34には、複数のユニット軸36が周方向に沿って設けられている。個々のユニット軸36には軸受部37が外嵌されており、軸受部37を介して遊星歯車ユニット33が取り付けられる。遊星キャリア34は、複数の遊星歯車ユニット33をそれぞれ自転可能に支持する。
 第1内歯車38は、第1遊星歯車33aと噛み合う内歯車である。第1内歯車38は、軸受部39を介して、減速機ユニット30のハウジングの内周面に設けられており、電動機軸26を中心に回転することができる。
 第2内歯車40は、第1内歯車38と異なる歯数を備え、第2遊星歯車33bと噛み合う内歯車である。第2内歯車40は、軸受部42を介して、減速機ユニット30のハウジングの内周面に設けられており、電動機軸26を中心に回転することができる。
 出力部41は、第2内歯車40と一体に形成されており、第2内歯車40と一体となって回転する。出力部41は、上述したボールねじ機構55のボールねじナット56と連結されている。
 クラッチ部45は、固定クラッチ歯46と、第1クラッチ歯47と、第2クラッチ歯48とを備えている。固定クラッチ歯46、第1クラッチ歯47、及び第2クラッチ歯48は、それぞれ環状の部材であり、後述するような歯構造が形成されている。第1クラッチ歯47と第2クラッチ歯48は、互いの歯構造が向き合うように対向して配置されている。固定クラッチ歯46は、第1クラッチ歯47と第2クラッチ歯48との間に設けられている。
 固定クラッチ歯46は、第1クラッチ歯47と第2クラッチ歯48との間で移動する。固定クラッチ歯46は、周方向への回転を含め、上下方向以外の移動が規制されている。図5A乃至図5Cに示すように、固定クラッチ歯46には、複数の第1係合歯46aが周方向に沿って設けられるとともに、複数の第2係合歯46bとが周方向に沿って設けられている。第1係合歯46aのそれぞれは、第1クラッチ歯47側に向かって突出し、第2係合歯46bのそれぞれは、第2クラッチ歯48側に向かって突出している。
 図1に示すように、第1クラッチ歯47は、減速機31に含まれる第1回転要素である第1内歯車38と連結され、この第1内歯車38と一体に回転する。図5A乃至図5Cに示すように、第1クラッチ歯47には、複数の第3係合歯47aが周方向に沿って設けられている。第3係合歯47aのそれぞれは、固定クラッチ歯46及び第2クラッチ歯48側に向かって突出している。
 図1に示すように、第2クラッチ歯48は、減速機31に含まれる第2回転要素である遊星キャリア34と連結され、この遊星キャリア34と一体に回転する。図5A乃至図5Cに示すように、第2クラッチ歯48には、複数の第4係合歯48aが周方向に沿って設けられている。個々の第4係合歯48aは、固定クラッチ歯46及び第1クラッチ歯47側に向かって突出している。
 図1に示すように、クラッチ部45は、図示しない押圧部材と、ソレノイド49とを備えている。押圧部材は、例えば圧縮コイルばねであり、固定クラッチ歯46を第1クラッチ歯47側へと押圧する。すなわち、固定クラッチ歯46は、押圧部材の押圧力を受けるので、通常、第1クラッチ歯47側へ移動している。一方、ソレノイド49は、電磁力で吸着することにより、固定クラッチ歯46を第2クラッチ歯48側へと移動させる。すなわち、ソレノイド49を動作させて電磁力で吸着すると、固定クラッチ歯46は、押圧部材の押圧力に抗して、第2クラッチ歯48側へ移動する。
 クラッチ部45は、ソレノイド49に対する外部電力が遮断された場合に、ソレノイド49に電力を供給するコンデンサ(図示せず)を更に備えている
 図4に示すように、プレスブレーキ1は、第1クラッチ歯47と第2クラッチ歯48との間における固定クラッチ歯46の位置を検出する検出装置50を更に備えている。検出装置50によって検出される固定クラッチ歯46の位置は、制御装置100へと出力される。
 検出装置50は、検出プレート51と、センサ52とで構成されている。
 検出プレート51は、一方向に長手となるプレートであり、一端側が固定クラッチ歯46に固定され、他端側がクラッチ部45の筐体の外部へと延出されている。検出プレート51は、固定クラッチ歯46の移動に応じて、電動機軸26の軸線方向に移動する。
 センサ52は、クラッチ部45の筐体の外部に設けられている。センサ52は、検出プレート51の上方の所定位置、すなわち、固定クラッチ歯46を基準としたときの第2クラッチ歯48側の所定位置に固定されている。センサ52は、例えば近接センサであり、固定クラッチ歯46の移動に応じて変位する検出プレート51を検出する。具体的には、センサ52は、検出プレート51が近接した位置にあるのか、それとも検出プレート51が遠い位置にあるのかを検出する。センサ52によって、検出プレート51が近接した位置にあることが検出される場合には、固定クラッチ歯46が第2クラッチ歯48側に位置すること、すなわち後述する第2モードであることを判断することができる。また、センサ52によって、検出プレート51が遠い位置にあることが検出される場合には、固定クラッチ歯46が第1クラッチ歯47側に位置すること、すなわち後述する第1モードであることを判断することができる。
 本実施形態の特徴の一つとして、固定クラッチ歯46は、切り換え可能な動作モードとして、3つの動作モードを備えている。図5A乃至図5Cに示すように、3つの動作モードは、第1モード、第2モード、及び両噛みモードを含んでいる。
 図5Bに示すように、第1モードは、固定クラッチ歯46が第1クラッチ歯47のみと歯合するモードである。この第1モードでは、固定クラッチ歯46における複数の第1係合歯46aと、第1クラッチ歯47における複数の第3係合歯47aとが相互に歯合する。一方、固定クラッチ歯46における複数の第2係合歯46bと、第2クラッチ歯48における複数の第4係合歯48aとが解放される。固定クラッチ歯46が第1クラッチ歯47と歯合することで、第1クラッチ歯47が固定されるので、第1内歯車38の回転が規制される。この場合、減速機31は、大きい減速比(第2減速比)で動作する。
 図5Aに示すように、第2モードは、固定クラッチ歯46が第2クラッチ歯48のみと歯合するモードである。この第2モードでは、固定クラッチ歯46における複数の第2係合歯46bと、第2クラッチ歯48における複数の第4係合歯48aとが相互に歯合する。一方、固定クラッチ歯46における複数の第1係合歯46aと、第1クラッチ歯47における複数の第3係合歯47aとが解放される。固定クラッチ歯46が第2クラッチ歯48と歯合することで、第2クラッチ歯48が固定されるので、遊星キャリア34の回転が規制される。この場合、減速機31は、第2減速比よりも小さい減速比(第1減速比)で動作する。
 図5Cに示すように、両噛みモードは、固定クラッチ歯46が第1モードから第2モードへと遷移するときに、或いはそれとは逆に、固定クラッチ歯46が第2モードから第1モードへと遷移するときに動作するモードである。この両噛みモードは、固定クラッチ歯46が第1クラッチ歯47と第2クラッチ歯48とにそれぞれ歯合するモードである。この両噛みモードでは、固定クラッチ歯46における複数の第1係合歯46aと第1クラッチ歯47における複数の第3係合歯47aとが相互に歯合する。同様に、固定クラッチ歯46における複数の第2係合歯46bと第2クラッチ歯48における複数の第4係合歯48aとが相互に歯合する。この場合、第1クラッチ歯47及び第2クラッチ歯48がそれぞれ固定されるので、遊星キャリア34及び第1内歯車38の回転がそれぞれ規制される。
 以下、図1、図2、図5A乃至図5Cを参照し、本実施形態に係るプレスブレーキ1のテーブル駆動方法を説明する。
 上金型Pと下金型Dとの間にワークが位置決めされる。制御装置100は、ソレノイド49を吸着動作させる。これにより、固定クラッチ歯46が第2クラッチ歯48側へと移動するので、固定クラッチ歯46は、第2クラッチ歯48のみと歯合する第2モードとなる(図5A)。
 制御装置100は、電動機25を動作させ、電動機軸26を正回転させる。第2モードでは、遊星キャリア34は固定されているが、第1内歯車38は解放されている。遊星キャリア34が固定されているため、第1内歯車38と噛み合っている第1遊星歯車33aは、公転することなく、電動機軸26と一体で回転する太陽歯車32の回転に合わせて自転する。一方、第1遊星歯車33aの回転は、これと一体の第2遊星歯車33bも回転させるため、第2遊星歯車33bの回転によって第2内歯車40も回転する。これにより、第2内歯車40と結合された出力部41も同期して回転する。このとき、電動機軸26の回転は、不思議遊星歯車機構によって減速されることなく、単純な遊星歯車機構として出力部41へ出力される。すなわち、減速機31の減速比は、第1減速比となる。したがって、高速低トルクの出力が出力部41に出力され、上部テーブル7が高速で下降する。
 上部テーブル7が所定の切換位置まで下降したとき、制御装置100は、電動機軸26の回転を停止させる。その後、制御装置100は、ソレノイド49の吸着動作を終了する。これにより、固定クラッチ歯46が第1クラッチ歯47側へと移動するので、固定クラッチ歯46は、第1クラッチ歯47のみと歯合する第1モードとなる(図5B)。
 その後、制御装置100は、電動機25を動作させ、電動機軸26を逆回転させる。第1モードでは、第1内歯車38が固定されているが、遊星キャリア34は解放されている。したがって、第1内歯車38と噛み合っている第1遊星歯車33aは、自転しつつ、電動機軸26と一体で回転する太陽歯車32の周りを公転する。第1遊星歯車33aの回転は、これと一体の第2遊星歯車33bも回転させるため、第2遊星歯車33bの回転が、第1内歯車38とは歯数が異なる第2内歯車40も回転させる。これにより、第2内歯車40と結合された出力部41も同期して回転する。このとき、電動機軸26の回転は、不思議遊星歯車機構によって大幅に減速され、出力部41へと出力される。すなわち、減速機31の減速比は、第1減速比よりも大きな第2減速比となる。したがって、低速高トルクの出力が出力部41に出力され、上部テーブル7が低速で下降する。
 上部テーブル7が所定の加圧位置まで到達すると、ワークは上金型Pと下金型Dにより大きな力で曲げ加工され、所望の角度まで折り曲げられる。
 制御装置100は、電動機軸26の逆回転を停止した後、電動機軸26を正回転させる。このとき、電動機軸26の回転は、不思議遊星歯車機構によって大幅に減速され、出力部41へと出力される。これにより、上部テーブル7は、低速で上昇する。
 そして、上部テーブル7が所定の切換位置まで上昇したとき、制御装置100は、電動機軸26の回転を停止させる。その後、制御装置100は、ソレノイド49を吸着動作させる。これにより、固定クラッチ歯46が第2クラッチ歯48側へと移動するので、固定クラッチ歯46は、第2クラッチ歯48のみと歯合する第2モードとなる。
 制御装置100は、電動機25を動作させ、電動機軸26を逆回転させる。このとき、電動機軸26の回転は、不思議遊星歯車機構によって減速されることなく、単純な遊星歯車機構として出力部41へ出力される。これにより、上部テーブル7は、高速で上昇する。
 最後に、上部テーブル7が所定の上昇端へ移動すると、制御装置100は、電動機軸26の回転を停止させる。以上の動作を経て、曲げ加工の一連の工程が終了する。
 上述した一連の工程において、固定クラッチ歯46が第1モードと第2モードとの間でモードを遷移するとき、固定クラッチ歯46は、両噛みモードで動作する。したがって、固定クラッチ歯46の切り換え時、遊星キャリア34及び第1内歯車38がそれぞれ固定される。重量物である上部テーブル7は、自重によって下方向へ大きな力を受けるが、遊星キャリア34及び第1内歯車38の回転がそれぞれ規制されているので、上部テーブル7は、不動状態で維持されることとなる。
 このように本実施形態によれば、減速機31が不思議遊星歯車機構を含んでいるので、十分に大きな減速比(第2減速比)を得ることができる。これにより、プレスブレーキ1として必要な動作性能を十分に得ることができる。また、固定クラッチ歯46は、第1モードと第2モードとの間でモードを遷移するときに両噛みモードで動作する。これにより、重量物である上部テーブル7が不動状態で維持されるので、上部テーブル7が不意に下降することを抑制することができる。
 ここで、特許文献1に記載されるクラッチ構造を比較例として示す。比較例に係るクラッチ構造は、クラッチシリンダが上下に移動することで、高速側の減速比と低速側の減速比とを切り替えるものである。このクラッチ構造は、上下の2箇所に、第1から第3までの一群の歯車からなる歯車列(A側歯車列及びB側歯車列)を備え、この上下2箇所の歯車列に対応して、上下の2箇所に噛合い歯車(A側噛合い歯車及びB側噛合い歯車)がクラッチシリンダに設けられている。クラッチシリンダを切り換える時、各噛合い歯車は、対応する歯車列を構成する一群の歯車のなかで、歯合する歯車の切り換えを行う。すなわち、クラッチを切り換える時、2箇所の噛合い歯車が、それぞれ新たな歯車と歯合する状況が生じる。クラッチシリンダをスムーズに切り替えるためには、周方向で見たときに、噛合い歯車の歯と歯車列側の歯車の歯との間に、ある程度のクリアランスが必要となる。しかしながら、クラッチを切り換えた時、クリアランスの分だけ歯車が回転してしまう可能性があり、この回転に伴って上部テーブル7が下降してしまう可能性がある。
 この点、本実施形態に係るクラッチ部45は、固定クラッチ歯46を切り換えるときには、固定クラッチ歯46が新たに歯合するクラッチ歯(第1クラッチ歯47又は第2クラッチ歯48)は1箇所だけとなっている。このため、本実施形態に係るクラッチ部45は2箇所それぞれで歯合させる比較例の構造と比べて、係合歯同士に必要なクリアランスを小さくすることができる。これより、上部テーブル7の下降をより積極的に抑制することができるのである。
 本実施形態において、減速機31は、電動機軸26と一体となって回転する太陽歯車32と、太陽歯車32と噛み合って太陽歯車32の回転によって回転する第1遊星歯車33a及び第1遊星歯車33aと同軸上に設けられて第1遊星歯車33aと一体となって回転する第2遊星歯車33bを有する複数の遊星歯車ユニット33と、複数の遊星歯車ユニット33をそれぞれ自転可能に支持するとともに電動機軸26周りで回転する第2回転要素としての遊星キャリア34と、第1遊星歯車33aと噛み合う、第1回転要素としての第1内歯車38と、第1内歯車38と異なる歯数を備え、第2遊星歯車33bと噛み合う第2内歯車40と、ボールねじ機構55に連結されており、第2内歯車40と一体となって回転する出力部41と、を含む。
 この構成によれば、減速機31は、電動機軸26の回転を、単純な遊星歯車機構として出力部41へ出力したり(第1減速比)、不思議遊星歯車機構として出力部41へ出力したりすることができる(第2減速比)。これにより、第1減速比と比べて、十分に大きな第2減速比を得ることができるので、プレスブレーキ1として必要な動作性能を十分に得ることができる。
 本実施形態において、固定クラッチ歯46は、それぞれが第1クラッチ歯47側に向かって突出する複数の第1係合歯46aと、それぞれが第2クラッチ歯48側に向かって突出する複数の第2係合歯46bとが周方向に沿って設けられた環状の部材である。第1クラッチ歯47は、それぞれが第2クラッチ歯48側に向かって突出する複数の第3係合歯47aが周方向に沿って設けられた環状の部材である。第2クラッチ歯48は、それぞれが第1クラッチ歯47側に向かって突出する複数の第4係合歯48aが周方向に沿って設けられた環状の部材である。
 この構成によれば、互いに対向する係合歯同士を噛み合わせる構造となっているので、固定クラッチ歯46を上下方向へと移動させることで、第1クラッチ歯47又は第2クラッチ歯48との係合を簡単に行うことができる。また、固定クラッチ歯46が第1クラッチ歯47と第2クラッチ歯48との間にあるので、固定クラッチ歯46が第1クラッチ歯47及び第2クラッチ歯48の双方と噛み合う領域を設定することができる。これにより、固定クラッチ歯46が第1モードと第2モードとの間でモードを遷移するときに、固定クラッチ歯46を両噛みモードで動作させることができる。
 本実施形態において、第1モードは、複数の第1係合歯46aと複数の第3係合歯47aとが相互に歯合し、複数の第2係合歯46bと複数の第4係合歯48aとが解放された状態で、第1内歯車38の回転を規制する。第2モードは、複数の第2係合歯46bと複数の第4係合歯48aとが相互に歯合し、複数の第1係合歯46aと複数の第3係合歯47aとが解放された状態で、遊星キャリア34の回転を規制する。両噛みモードは、複数の第1係合歯46aと複数の第3係合歯47aとが相互に歯合し、且つ、複数の第2係合歯46bと複数の第4係合歯48aとが相互に歯合し、第1内歯車38及び遊星キャリア43の回転を規制する。
 この構成によれば、第1モードでは、第2モードで作用する第1減速比と比べて、十分に大きな第2減速比を得ることができる。これにより、プレスブレーキ1として必要な動作性能を十分に得ることができる。また、固定クラッチ歯46は、第1モードと第2モードとの間でモードを遷移するときに、第1内歯車38及び遊星キャリア43の回転を規制する。これにより、重量物である上部テーブル7が不動状態で維持されるので、上部テーブル7が不意に下降することを抑制することができる。
 本実施形態において、クラッチ部45は、固定クラッチ歯46を第1クラッチ歯47側へと押圧する押圧部材と、電磁力で吸着することにより、押圧部材によって第1クラッチ歯47側へと押圧されている固定クラッチ歯46を第2クラッチ歯48側へと移動させるソレノイド49とを更に含む。
 この構成によれば、ソレノイド49の磁気吸引と、押圧部材の押圧力とを利用することにより、固定クラッチ歯46を駆動することができる。これにより、第1モードと第2モードとの切り換えを簡単に行うことができる。
 本実施形態において、プレスブレーキ1は、第1クラッチ歯47と第2クラッチ歯48との間における固定クラッチ歯46の位置を検出する検出装置50と、検出装置50の検出結果に基づいて、クラッチ部45及び電動機25を制御する制御装置100と、を更に有する。
 この構成によれば、制御装置100は、固定クラッチ歯46の位置を参照しつつ、クラッチ部45及び電動機25を適切に制御することができる。
 本実施形態において、検出装置50は、固定クラッチ歯46に固定されており、クラッチ部45を収容する筐体の外部へと延出された検出プレート51と、筐体の外部に配置され、検出プレート51を検出するセンサ52と、を備える。
 この構成によれば、検出プレート51が固定クラッチ歯46の動きと同期して上下に井移動する。センサ52によって検出プレート51を検出することで、固定クラッチ歯46の位置、すなわち、固定クラッチ歯46がどのモードにあるかを検出することができる。
 本実施形態において、クラッチ部45は、ソレノイド49に対する外部電力が遮断された場合に、ソレノイド49に電力を供給するコンデンサを更に備えている。
 この構成によれば、コンデンサによりソレノイド49の励磁の電力を賄うことができる。電源喪失時、第2クラッチ歯48側にある固定クラッチ歯46が第1クラッチ歯47へと移動することを抑制することができるので、係合歯同士が干渉してクラッチ部45が損壊するといった事態を抑制することができる。
(第2の実施形態)
 以下、第2の実施形態に係るプレスブレーキ1について説明する。この第2の実施形態に係るプレスブレーキ1の特徴の一つは、第1モードと第2モードとの間でモードを遷移する場合におけるクラッチ部45の制御方法である。以下、図6A乃至図6Dを参照し、クラッチ部45の制御方法を説明する。ここで、図6A乃至図6Dは、第2実施形態に係るクラッチ部の制御方法を説明する図である。
 以下の説明では、固定クラッチ歯46を第2モードから第1モードへと切り換える状況を想定する。電動機25の電動機軸26の回転を停止すると、上部テーブル7の自重により、周方向へと第2クラッチ歯48を回転させる力が作用する。これにより、図6Aに示すように、固定クラッチ歯46における複数の第2係合歯46bと、第2クラッチ歯48における複数の第4係合歯48aとが、周方向にかけて緊密に接触した状態となる。
 このため、ソレノイド49の吸着動作を終了しても、固定クラッチ歯46と第2クラッチ歯48との摩擦力によって、固定クラッチ歯46と第2クラッチ歯48とが摩耗してしまう。また、場合によっては、固定クラッチ歯46が第1モードへと正常に遷移しない可能性もある。
 そこで、制御装置100は、上部テーブル7が上昇する方向へと、電動機25の電動機軸26を微少回転させる。第2クラッチ歯48が回転することで、図6Bに示すように、第2係合歯46bと第4係合歯48aとの間に隙間を設けることができる。
 これにより、図6Cに示すように、固定クラッチ歯46が第1クラッチ歯47側へと移動することができるので、固定クラッチ歯46が第1モードへと遷移することができる。そして、固定クラッチ歯46が第1モードへと遷移すると、上部テーブル7の自重により、周方向(図6Aとは逆方向)へと第1クラッチ歯47を回転させる力が作用する。固定クラッチ歯46における複数の第1係合歯46aと、第1クラッチ歯47における複数の第3係合歯47aとが、周方向にかけて緊密に接触した状態となる。
 このように本実施形態において、制御装置100は、第1モードと第2モードとの間でモードを遷移させるとき、上部テーブル7が微少量だけ上昇するように電動機25を動作させている。
 この構成によれば、固定クラッチ歯46の切り換えを行うときに、上部テーブル7の重量が係合歯同士に作用することを抑制することができる。これにより、係合歯の摩耗が抑制されるので、装置の寿命を向上させることができる。
 上記の実施形態では、固定クラッチ歯46を第2モードから第1モードへと切り換える状況を例示した。しかしながら、この制御方法は、固定クラッチ歯46を第1モードから第2モードへと切り換える状況であっても適用可能である。
(第3の実施形態)
 以下、第3の実施形態に係るプレスブレーキ1について説明する。この第3の実施形態に係るプレスブレーキ1の特徴の一つは、第1モードと第2モードとの間でモードを遷移する場合におけるクラッチ部45の制御方法である。以下、図7A乃至図7Cを参照し、クラッチ部45の制御方法を説明する。ここで、図7A乃至図7Cは、第3実施形態に係るクラッチ部の制御方法を説明する図である。
 以下の説明では、固定クラッチ歯46を第1モードから第2モードへと切り換える状況を想定する。図7Aに示すように、固定クラッチ歯46を第2モードへと遷移させるとき、第2クラッチ歯48と固定クラッチ歯46との位置関係によっては、第2クラッチ歯48における第4係合歯48aの歯先と、固定クラッチ歯46における第2係合歯46bの歯先とが干渉してしまう場合がある。この場合、固定クラッチ歯46を第2モードへと遷移させることができない状況が発生する。
 そこで、制御装置100は、第1モードから第2モードへの切り換えに先立ち、電動機25の電動機軸26を、回転方向R1へと所定の回転角度だけ回転させる制御(第1制御)を行う。この制御における回転角度は、固定クラッチ歯46の移動側にある第2クラッチ歯48が、その1歯分の幅(第4係合歯48aの歯幅)だけ回転する角度に相当する。第2クラッチ歯48における第4係合歯48aの回転位置、すなわち歯位相は、フォトトランジスタなどの位相センサにより検知される。制御装置100は、位相センサの検出結果に基づいて、第2クラッチ歯48を所定の回転方向R1へと1歯分の幅だけ回転させることができる。これにより、第2クラッチ歯48と固定クラッチ歯46との位相がずれるため、第2クラッチ歯48における第4係合歯48a同士の歯間に対して、固定クラッチ歯46における第2係合歯46bの歯先とが一致する状況が出現する。その結果、固定クラッチ歯46を第2モードへと遷移させることができる。
 ただし、図7Bに示すように、第2クラッチ歯48を回転方向R1へと回転させると、第1クラッチ歯47にも回転方向R1への回転力が作用する。このとき、第1クラッチ歯47における第3係合歯47aの回転方向R1側に、固定クラッチ歯46の第1係合歯46aが隣接すると、第3係合歯47aが第1係合歯46aへと押しつけられた状況となる。そのため、固定クラッチ歯46と第1クラッチ歯47との摩擦力によって、固定クラッチ歯46が第2モードへと正常に遷移しない可能性がある。
 そこで、第1制御を行ったにも限らず、固定クラッチ歯46が第1モードから第2モードへと切り換わらない場合、制御装置100は、電動機25の電動機軸26を、逆の回転方向R2へと所定の回転角度(1歯分の幅相当の回転角度)だけ回転させる制御(第2制御)を行う。これにより、第1クラッチ歯47の第3係合歯47aと、固定クラッチ歯46の第1係合歯46aとの間に隙間が発生するので、固定クラッチ歯46を第1モードから第2モードへと遷移させることができる。
 このように本実施形態おいて、制御装置100は、第1モードと第2モードとの間でモードを遷移させるとき、固定クラッチ歯46が切り替わる側に位置するクラッチ歯47、48が1歯分の幅だけ回転するように電動機25を制御する第1制御を行う。
 この構成によれば、モードの遷移を実現するにあたり、クラッチ歯47、48の回転量が少なくて済むので、上方向又は下方向への上部テーブル7の移動量及び移動時間を短縮することができる。その結果、モードの遷移に要する時間を短縮することができる。
 また、本実施形態において、制御装置100は、第1制御を行っても、第1モードと第2モードとの間でモードを遷移させることができないときは、第1制御とは逆方向に、クラッチ歯47、48が1歯分の幅だけ回転するように電動機25を制御する第2制御を行う。
 この構成によれば、第1モードと第2モードとの間でモードを確実に遷移させることができる。
 上記の実施形態では、固定クラッチ歯46を第1モードから第2モードへと切り換える状況を例示した。しかしながら、この制御方法は、固定クラッチ歯46を第2モードから第1モードへと切り換える状況であっても適用可能である。
 なお、上述した各実施形態では、電動機25及び減速機ユニット30の回転軸と、ボールねじ機構55の回転軸とを同軸上に配置している。しかしながら、電動機25及び減速機ユニット30の回転軸と、ボールねじ機構55の回転軸と平行に配置した上で、減速機ユニット30の出力部41と、ボールねじ機構55のボールねじナット56との間をタイミングベルトで繋いで動力を伝達する構造であってもよい。この構造によれば、上下方向におけるサイズを小さくすることができる。
 また、上述した各実施形態では、上部テーブル7を可動テーブルとして例示したが、下部テーブル5を可動テーブルとしてもよい。
 また、本実施形態の特徴の一つは、プレスブレーキ1の構造であるが、上述したプレスブレーキ1のテーブル駆動方法も、本実施形態の特徴の一つとして挙げられる。すなわち、プレスブレーキ1のテーブル駆動方法は、可動テーブルを上方向及び下方向のいずれか一方の方向に駆動するときに、固定クラッチ歯46を第1クラッチ歯47のみと歯合させて第1回転要素を固定することで、減速機を第2減速比で動作させる第1工程と、固定クラッチ歯46を第2クラッチ歯48のみと歯合させて第2回転要素を固定することで、減速機を第1減速比で動作させる第2工程と、第1工程と第2工程との間で工程を移行するときに、固定クラッチ歯46を第1クラッチ歯47と第2クラッチ歯48とにそれぞれ歯合させる第3工程と、を行う。
 この方法によれば、減速機31が不思議遊星歯車機構を含んでいるので、第1減速比と比べて、十分に大きな第2減速比を得ることができる。これにより、プレスブレーキ1として必要な動作性能を十分に得ることができる。また、固定クラッチ歯46は、第1モードと第2モードとの間でモードを遷移するときに両噛みモードで動作する。これにより、重量物である上部テーブル7が不動状態で維持されるので、上部テーブル7が不意に下降することを抑制することができる。
 上記のように、本実施形態を記載したが、この実施形態の一部をなす論述及び図面はこの実施形態を限定するものであると理解すべきではない。この実施形態から当業者には様々な代替の実施形態、実施例及び運用技術が明らかとなろう。
 本願の開示は、2022年4月13日に出願された特願2022-66193号に記載の主題と関連しており、それらの全ての開示内容は引用によりここに援用される。

Claims (12)

  1.  固定テーブルに対して上下方向に対向して配置される可動テーブルと、
     回転運動を直線運動に変換して前記可動テーブルを上下方向に移動させる変換機構と、
     電動機軸を備える電動機と、
     不思議遊星歯車機構を含み、前記電動機軸の回転を、第1減速比及び前記第1減速比よりも大きな第2減速比のいずれか一方の減速比で減速して前記変換機構に出力する減速機と、
     前記減速機における減速比を前記第1減速比と前記第2減速比とで切り替えるクラッチ部と、を備え、
     前記クラッチ部は、
     前記減速機に含まれる第1回転要素と連結され、前記第1回転要素と一体に回転する第1クラッチ歯と、
     前記減速機に含まれる第2回転要素と連結され、前記第2回転要素と一体に回転する第2クラッチ歯と、
     互いの歯構造が向き合うように対向して配置される前記第1クラッチ歯と前記第2クラッチ歯との間に設けられ、前記第1クラッチ歯と前記第2クラッチ歯との間で移動する固定クラッチ歯と、を含み、
     前記固定クラッチ歯は、切り換え可能な動作モードとして、
     前記第1クラッチ歯のみと歯合して前記第1回転要素を固定することで、前記減速機を前記第2減速比で動作させる第1モードと、
     前記第2クラッチ歯のみと歯合して前記第2回転要素を固定することで、前記減速機を前記第1減速比で動作させる第2モードと、
     前記第1モードと第2モードとの間でモードを遷移するときに前記第1クラッチ歯と前記第2クラッチ歯とにそれぞれ歯合する両噛みモードと、を有する
     プレスブレーキ。
  2.  前記減速機は、
     前記電動機軸と一体となって回転する太陽歯車と、
     前記太陽歯車と噛み合って前記太陽歯車の回転によって回転する第1遊星歯車と、第1遊星歯車と同軸上に設けられて前記第1遊星歯車と一体となって回転する第2遊星歯車とを有する複数の遊星歯車ユニットと、
     前記複数の遊星歯車ユニットをそれぞれ自転可能に支持するとともに、前記電動機軸周りで回転する前記第2回転要素としての遊星キャリアと、
     前記第1遊星歯車と噛み合う、前記第1回転要素としての第1内歯車と、
     前記第1内歯車と異なる歯数を備え、前記第2遊星歯車と噛み合う第2内歯車と、
     前記変換機構に連結されており、前記第2内歯車と一体となって回転する出力部と、を含む
     請求項1記載のプレスブレーキ。
  3.  前記固定クラッチ歯は、それぞれが前記第1クラッチ歯側に向かって突出する複数の第1係合歯と、それぞれが前記第2クラッチ歯側に向かって突出する複数の第2係合歯とが周方向に沿って設けられた環状の部材であり、
     前記第1クラッチ歯は、それぞれが前記第2クラッチ歯側に向かって突出する複数の第3係合歯が周方向に沿って設けられた環状の部材であり、
     前記第2クラッチ歯は、それぞれが前記第1クラッチ歯側に向かって突出する複数の第4係合歯が周方向に沿って設けられた環状の部材である
     請求項2記載のプレスブレーキ。
  4.  前記第1モードは、前記複数の第1係合歯と前記複数の第3係合歯とが相互に歯合し、前記複数の第2係合歯と前記複数の第4係合歯とが解放された状態で、前記第1内歯車の回転を規制し、
     前記第2モードは、前記複数の第2係合歯と前記複数の第4係合歯とが相互に歯合し、前記複数の第1係合歯と前記複数の第3係合歯とが解放された状態で、前記遊星キャリアの回転を規制し、
     前記両噛みモードは、前記複数の第1係合歯と前記複数の第3係合歯とが相互に歯合し、且つ、前記複数の第2係合歯と前記複数の第4係合歯とが相互に歯合した状態で、前記第1内歯車及び前記遊星キャリアの回転を規制する
     請求項3記載のプレスブレーキ。
  5.  前記クラッチ部は、
     前記固定クラッチ歯を前記第1クラッチ歯側へと押圧する押圧部材と、
     電磁力で吸着することにより、前記押圧部材によって前記第1クラッチ歯側へと押圧されている前記固定クラッチ歯を、前記第2クラッチ歯側へと移動させるソレノイドと、を更に含む
     請求項1記載のプレスブレーキ。
  6.  前記第1クラッチ歯と前記第2クラッチ歯との間における前記固定クラッチ歯の位置を検出する検出装置と、
     前記検出装置の検出結果に基づいて、前記クラッチ部及び前記電動機を制御する制御装置と、を更に有する
     請求項1から5いずれか一項記載のプレスブレーキ。
  7.  前記制御装置は、
     前記第1モードと前記第2モードとの間でモードを遷移させるとき、前記可動テーブルが微少量だけ上昇するように前記電動機を動作させる
     請求項6記載のプレスブレーキ。
  8.  前記制御装置は、
     前記第1モードと前記第2モードとの間でモードを遷移させるとき、前記固定クラッチ歯が切り替わる側に位置するクラッチ歯が1歯分の幅だけ回転するように前記電動機を制御する第1制御を行う
     請求項6記載のプレスブレーキ。
  9.  前記制御装置は、
     前記第1制御を行っても、前記第1モードと前記第2モードとの間でモードを遷移させることができないときは、前記第1制御とは逆方向に、前記1歯分の幅だけ回転するように前記電動機を制御する第2制御を行う
     請求項8記載のプレスブレーキ。
  10.  前記検出装置は、
     前記固定クラッチ歯に固定されており、前記クラッチ部を収容する筐体の外部へと延出された検出プレートと、
     前記筐体の外部に配置され、前記検出プレートを検出するセンサと、を備える
     請求項6記載のプレスブレーキ。
  11.  前記クラッチ部は、
     前記ソレノイドに対する外部電力が遮断された場合に、前記ソレノイドに電力を供給するコンデンサを更に備える
     請求項5記載のプレスブレーキ。
  12.  プレスブレーキのテーブル駆動方法において、
     前記プレスブレーキは、
     固定テーブルと、
     固定テーブルに対して上下方向に対向して配置される可動テーブルと、
     電動機軸を備える電動機と、
     不思議遊星歯車機構を含み、前記電動機軸の回転を、第1減速比及び前記第1減速比よりも大きな第2減速比のいずれか一方の減速比で減速して出力する減速機と、
     前記減速機における減速比を前記第1減速比と前記第2減速比とで切り替えるクラッチ部と、
     前記減速機から伝達される回転運動を直線運動に変換することで、前記可動テーブルを上下方向に移動させる変換機構と、を備え、
     前記クラッチ部は、
     前記減速機に含まれる第1回転要素と連結され、前記第1回転要素と一体に回転する第1クラッチ歯と、
     前記減速機に含まれる第2回転要素と連結され、前記第2回転要素と一体に回転する第2クラッチ歯と、
     互いの歯構造が向き合うように対向して配置される前記第1クラッチ歯と前記第2クラッチ歯との間に設けられ、前記第1クラッチ歯と前記第2クラッチ歯との間で移動する固定クラッチ歯と、を含み、
     前記可動テーブルを上方向及び下方向のいずれか一方の方向に駆動するときに、
     前記固定クラッチ歯を前記第1クラッチ歯のみと歯合させて前記第1回転要素を固定することで、前記減速機を前記第2減速比で動作させる第1工程と、
     前記固定クラッチ歯を前記第2クラッチ歯のみと歯合させて前記第2回転要素を固定することで、前記減速機を前記第1減速比で動作させる第2工程と、
     前記第1工程と第2工程との間で工程を移行するときに、前記固定クラッチ歯を前記第1クラッチ歯と前記第2クラッチ歯とにそれぞれ歯合させる第3工程と、を行う
     プレスブレーキのテーブル駆動方法。
PCT/JP2023/013928 2022-04-13 2023-04-04 プレスブレーキ、及びプレスブレーキのテーブル駆動方法 WO2023199795A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022066193A JP7320645B1 (ja) 2022-04-13 2022-04-13 プレスブレーキ、及びプレスブレーキのテーブル駆動方法
JP2022-066193 2022-04-13

Publications (1)

Publication Number Publication Date
WO2023199795A1 true WO2023199795A1 (ja) 2023-10-19

Family

ID=87469831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013928 WO2023199795A1 (ja) 2022-04-13 2023-04-04 プレスブレーキ、及びプレスブレーキのテーブル駆動方法

Country Status (2)

Country Link
JP (1) JP7320645B1 (ja)
WO (1) WO2023199795A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05337555A (ja) * 1992-06-12 1993-12-21 Komatsu Ltd プレスブレーキ
JP2017219148A (ja) * 2016-06-09 2017-12-14 トヨタ自動車株式会社 駆動伝達装置
JP2019171453A (ja) * 2018-03-29 2019-10-10 村田機械株式会社 プレス機械及びプレス機械の制御方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5337555B2 (ja) 2009-03-31 2013-11-06 Jx日鉱日石エネルギー株式会社 脱硫装置及び燃料電池システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05337555A (ja) * 1992-06-12 1993-12-21 Komatsu Ltd プレスブレーキ
JP2017219148A (ja) * 2016-06-09 2017-12-14 トヨタ自動車株式会社 駆動伝達装置
JP2019171453A (ja) * 2018-03-29 2019-10-10 村田機械株式会社 プレス機械及びプレス機械の制御方法

Also Published As

Publication number Publication date
JP2023156689A (ja) 2023-10-25
JP7320645B1 (ja) 2023-08-03

Similar Documents

Publication Publication Date Title
JP3953414B2 (ja) 往復駆動機構およびその機構を用いたプレス機械
JP5529013B2 (ja) 機械的プレスのための改造装置及び方法
KR101887726B1 (ko) 공작물, 특히 판금을 기계가공하기 위한 프레스 형태의 공작 기계
JP6662467B2 (ja) プレスブレーキ
JP3850934B2 (ja) ラム昇降駆動装置及びプレス機械
KR0161036B1 (ko) 두개의 모터에 의해 구동되는 두개의 속도를 갖는 선형 액츄에이터
CN101674930B (zh) 冲压机械及其控制方法
JP5406502B2 (ja) サーボモータ駆動プレス成形方法
WO2023199795A1 (ja) プレスブレーキ、及びプレスブレーキのテーブル駆動方法
CN201038905Y (zh) 百叶帘电机行程调节机构
JP2994586B2 (ja) クランプ装置及び送り装置
CN214055064U (zh) 一种机电一体化安装夹具
CN109629124B (zh) 缝纫机及缝纫机针距调节限位装置
CN215304431U (zh) 一种多行程滚动式往复运动构造
CN218426464U (zh) 一种高自由度焊接机器人
CN214770652U (zh) 一种立卧刀库的平移机构
CN217316101U (zh) 一种工件加工用切割装置
JP4591910B2 (ja) 特性切り換えモータ
JP5226987B2 (ja) プレス機械
JP2009299808A (ja) プレス機械の動力伝達装置
KR200314033Y1 (ko) 리벳팅 장치
JP5248061B2 (ja) プレス機械
CN115972120A (zh) 一种电梯压导板固定装置
JP2005104606A (ja) カム式電動直動ユニットおよび重量物体の位置決めシステム
JPH0116569B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23788214

Country of ref document: EP

Kind code of ref document: A1