WO2018079014A1 - インクリメンタル型エンコーダのパルス化変換装置およびパルス化変換方法 - Google Patents

インクリメンタル型エンコーダのパルス化変換装置およびパルス化変換方法 Download PDF

Info

Publication number
WO2018079014A1
WO2018079014A1 PCT/JP2017/029090 JP2017029090W WO2018079014A1 WO 2018079014 A1 WO2018079014 A1 WO 2018079014A1 JP 2017029090 W JP2017029090 W JP 2017029090W WO 2018079014 A1 WO2018079014 A1 WO 2018079014A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
periodic
phase
origin
pulse
Prior art date
Application number
PCT/JP2017/029090
Other languages
English (en)
French (fr)
Inventor
淑江 中筋
幸治 船岡
尚弘 高橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018547142A priority Critical patent/JP6625236B2/ja
Priority to CN201780065039.3A priority patent/CN109844462B/zh
Priority to KR1020197011105A priority patent/KR102113456B1/ko
Priority to TW106131411A priority patent/TWI650532B/zh
Publication of WO2018079014A1 publication Critical patent/WO2018079014A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction

Definitions

  • the present invention relates to pulse conversion of a signal in an incremental encoder, and particularly to generation of a pulse origin signal synchronized with a pulse position signal.
  • an incremental encoder that detects displacement and detects a position based on a plurality of pulse position signals and a pulse origin signal synchronized with these pulse position signals as described in the following Patent Documents 1-4 and the like has recently been used.
  • the resolution of encoders is increasing.
  • FIG. 3 Patent No. 4,274,751 specification FIG. 1, FIG. 2, FIG. Japanese Patent Laid-Open No. 2000-213925, FIGS. 1 and 13
  • the scale grating has become finer pitch, and the period of the periodic position signal has become shorter. Therefore, due to the effects of manufacturing errors such as assembly errors related to the configuration of the encoder body, the phase position of the origin detection signal with respect to the periodic position signal is likely to vary, with good reproducibility, stable, and accurately synchronized with the pulse position signal. It is becoming difficult to generate signals.
  • An object of the present invention is to provide a pulse conversion device and a pulse conversion method for an incremental encoder that accurately generates a pulse origin signal synchronized with a pulse position signal even if the phase position of the origin detection signal changes.
  • the present invention relates to a position signal generator that generates four periodic position signals having different phases by 90 degrees with the phase of one periodic position signal as a reference phase according to the displacement of the position or angle of the moving object, and the moving object.
  • the origin detection signal generator When the displacement position reaches the reference position, the origin detection signal generator generates an origin detection signal whose signal detection width is 0.5 times or more and less than 1.5 times the period of the four periodic position signals.
  • a polarity switching unit that selectively switches the polarity of each of the four periodic position signals, and a pulse position signal having a set resolution from the four periodic position signals output by the polarity switching unit.
  • the pulse origin signal synchronized with the pulse position signal is accurately generated. can do.
  • FIG. 6 is a waveform diagram of a periodic position signal and an origin detection signal when the polarity switching unit according to the first embodiment of the present invention is not inverted. It is a wave form diagram of the periodic position signal and the signal for origin detection after switching the polarity switching part in connection with Embodiment 1 of this invention to inversion.
  • the horizontal axis for explaining the relationship between the inversion at the polarity switching section and the center phase Pc of the detection width of the origin detection signal related to the first embodiment of the present invention is the A phase periodic position signal, and the vertical axis is the B phase. It is a Lissajous waveform figure at the time of plotting a periodic position signal. In order to explain the detection position of the origin detection signal when the detection width W of the origin detection signal is smaller than 0.5 ⁇ T according to the first embodiment of the present invention, It is a Lissajous waveform figure at the time of plotting a B phase cycle position signal on the vertical axis.
  • Embodiment 1 of the present invention It is a Lissajous waveform figure when a B phase periodic signal is plotted on the vertical axis. It is a schematic diagram which shows an example of a part of structure of the polarity switching part of the pulse conversion apparatus of the incremental type encoder in connection with Embodiment 2 of this invention. It is a block diagram which shows an example of a structure of the pulse conversion apparatus of the incremental type encoder in connection with Embodiment 3 of this invention.
  • the incremental encoder includes a polarity switching unit capable of switching the polarity of each periodic position signal of four periodic position signals having different phases, and switching the non-inverted polarity, and the signal detection width of the origin detection signal is a periodic position.
  • an origin signal generator that generates an origin signal is used or a manufacturing error such as an assembly error occurs in the structure of an encoder body with high resolution, a pulse origin signal can be accurately and stably reproduced. Can be generated.
  • This configuration can prevent problems such as miscounting of the A-phase pulse position signal or B-phase pulse position signal and failure to clear the count.
  • the phase position of the origin detection signal with respect to the periodic position signal and the detection width W of the origin detection signal can be relaxed, and a larger tolerance can be given to manufacturing errors such as assembly errors in the configuration of the encoder body. Therefore, the manufacturing cost can be reduced and the manufacturing can be performed at a low cost. Since the polarity of all the periodic position signals of the four periodic position signals having different phases is inverted or non-inverted, there is no change in the phase advance relationship of each periodic signal corresponding to the displacement direction of the moving body. Therefore, it is not necessary to add a new adjustment function when detecting the positive displacement and the reverse displacement in the direction of displacement of the moving body, and the manufacturing cost is suppressed and the cost is low.
  • FIG. 1 is a block diagram showing an example of a configuration of a pulse conversion device that converts a periodic position signal and an origin detection signal into a pulse signal in the incremental encoder according to the first embodiment of the present invention.
  • the incremental type encoder detects a displacement of a position or an angle of a moving body that is a measured object. From the encoder body 1 of the incremental encoder, four periodic position signals (A +, A ⁇ , B +, B ⁇ ) 2-5 having different phases are output according to the displacement of the moving body.
  • These periodic position signals 2-5 are sine wave signals having a frequency corresponding to the displacement speed, If the periodic position signal (A +) 2 is the reference phase, The periodic position signal (B +) 4 has a phase difference of 90 degrees with respect to the reference phase.
  • the periodic position signal (A ⁇ ) 3 has a phase difference of 180 degrees with respect to the reference phase,
  • the periodic position signal (B ⁇ ) 5 has a phase difference of 270 degrees with respect to the reference phase.
  • the phase of either the periodic position signal (A +) 2 or the periodic position signal (B +) 4 is advanced.
  • the encoder body 1 further outputs an origin detection signal 6 as a Z-phase signal that is output when the reference position of the moving body is detected.
  • the encoder body 1 generates four periodic position signals 2-5 that are different in phase by 90 degrees with the phase of one periodic position signal as a reference phase according to the displacement of the position or angle of the moving body.
  • the origin at which the signal detection width W is 0.5 times or more and less than 1.5 times the period T of the four periodic position signals 2-5
  • the pulse conversion apparatus of FIG. 1 includes the following together with the encoder body 1 and the counter unit 41.
  • the switchable polarity switching unit 7 selectively switches polarity inversion and non-inversion for each of the four periodic position signals (A +, A ⁇ , B +, B ⁇ ) 2-5 having different phases.
  • the first synthesis circuit 19 differentiates the periodic position signals (A + ′) and (A ⁇ ′) whose phases after polarity switching are 180 degrees different from each other to obtain a differential signal ((A + ')-(A-')).
  • the second synthesizing circuit 20 differentiates the periodic position signals (B + ′) and (B ⁇ ′) whose phases after polarity switching are 180 degrees different from each other to obtain a differential signal ((B + ')-(B-')).
  • the interpolation division unit 14 generates an A-phase pulse position signal 16 and a B-phase pulse position signal 17 having a preset resolution from the A-phase periodic position signal 12 and the B-phase periodic position signal 13.
  • the origin signal generator 15 receives the origin detection signal 6, the A phase period position signal 12, the B phase period position signal 13, the A phase pulse position signal 16 and the B phase pulse position signal 17, and receives the A phase pulse position signal 16.
  • the pulse origin signal 18 synchronized with the B-phase pulse position signal 17 is obtained.
  • the A-phase pulse position signal 16, the B-phase pulse position signal 17, and the pulse origin signal 18 output from the pulse conversion device are input to the counter unit 41.
  • the counter unit 41 counts the A-phase pulse position signal 16 and the B-phase pulse position signal 17 and performs a count reset with the pulse origin signal 18 in order to obtain a displacement of the position or angle of the moving body.
  • FIG. 13 is a diagram for explaining the origin synchronization phase based on the Lissajous waveform by two periodic phase signals in the pulse conversion device of the incremental encoder of the present invention.
  • One value of two periodic position signals of A phase periodic position signal 12 and B phase periodic position signal 13 is taken in the horizontal axis direction (a) of the two-dimensional orthogonal coordinate system, and the other value is taken in the vertical axis direction (b).
  • a waveform drawn by moving a point determined by the values of the two periodic position signals 12 and 13 along with the displacement of the moving body on the orthogonal coordinate system is a Lissajous waveform LI of the two periodic position signals 12 and 13.
  • the reference rotation position of the rotation position around the center position O of the Lissajous waveform LI is set to PP.
  • the intersection between the positive horizontal axis of the orthogonal coordinates of the Lissajous waveform LI and the Lissajous waveform LI is set as the reference rotational position PP.
  • the origin synchronization phase X is the phase position of the origin signal generator 15 around the center position of the orthogonal coordinates of the Lissajous waveform LI formed by the values of the two periodic position signals 12 and 13.
  • the synchronization in the origin signal generator 15 is such that one of the two periodic position signals of the A phase and the B phase is higher than the center value of the amplitude of the signal during the period in which the origin detection signal 6 is detected.
  • the A-phase pulse position signal 16 and the B-phase pulse position signal are low-level and the other signal crosses the center value of the amplitude of the signal from the bottom or the phase position that crosses from the top, that is, the origin synchronization phase.
  • a pulse origin signal 18 is generated.
  • the above-described center value of the amplitude is the middle value between the maximum value and the minimum value of the wave of one signal period, and is ⁇ (maximum value ⁇ minimum value) / 2 ⁇ of the signal wave.
  • the origin synchronization phase X is a phase position of 90 ° ⁇ N (N: integer) degrees, which is an integral multiple of 90 degrees such as ⁇ 180 degrees, ⁇ 90 degrees, 0 degrees, 90 degrees, and the like.
  • the position value is obtained by inputting the A-phase pulse position signal 16 and the B-phase pulse position signal 17 to the counter unit 41 and counting them. In this case, it is possible to determine the origin of position detection by resetting the counter unit 41 when the pulse origin signal 18 is generated.
  • FIG. 2 is a signal waveform diagram showing an example of timing at which the A-phase and B-phase periodic position signals 12 and 13 and the origin detection signal 6 are synchronized in the origin signal generator 15 of FIG. .
  • the vertical axis represents amplitude
  • the horizontal axis represents time
  • (a) is the A-phase periodic position signal 12
  • (b) is the B-phase periodic position signal 13
  • (c) shows the origin detection signal 6.
  • the moving body rotates in a set direction, for example, and the phase of the A-phase periodic position signal 12 is advanced by 90 degrees from the B-phase periodic position signal 13.
  • the origin synchronization phase X indicated by the broken line X illustrates a position where the A-phase periodic position signal 12 is higher than the center value and the B-phase periodic position signal 13 intersects the center value from below.
  • the interpolation division unit 14 may include a function of correcting the offset value so that the center value of the A-phase periodic position signal 12 and the center value of the B-phase periodic position signal 13 are at the same level.
  • the interpolation division unit 14 further corrects the phase difference between the A-phase periodic position signal 12 and the B-phase periodic position signal 13, and the amplitude of each of the A-period position signal 12 and the B-phase periodic position signal 13.
  • a function of performing correction may be included. If the origin detection signal 6 has a value greater than the origin detection threshold Vt as the origin detection period of the detection width W, the A-phase pulse position signal 16 and the B-phase pulse position signal are included when the origin synchronization phase is included once. In synchronization with 17, one pulse origin signal 18 is generated.
  • the resolution of encoders has increased, and accordingly, the grating period P of the position displacement detection grating has become smaller, the period T of the A-phase and B-phase periodic position signals 12 and 13 has become smaller, and the frequency has increased.
  • the grating period P becomes finer, manufacturing errors such as assembly errors in the configuration of the encoder body 1 are relatively increased, and the variation in the phase position of the origin detection signal 6 with respect to the periodic position signals 12 and 13 is increased. ing. Due to this variation, the origin synchronization phase within the period in which the origin detection signal 6 is detected is not detected, or is detected a plurality of times, and the pulse origin signal 18 is not accurately detected.
  • the counter unit 41 is cleared and reset by the pulse origin signal 18, but the pulse origin signal 18 is not detected and the counter unit 41 does not clear and reset the count, and a plurality of pulse origin signals 18 are detected, which is unnecessary.
  • the generation of the pulse origin signal 18 causes a problem such as a miscount such as an incorrect count value or a different count value depending on the rotation direction of the moving body.
  • the phase error ⁇ W of the detection width W of the origin detection signal 6 is caused by the manufacturing error of the components of the encoder main body 1 described above. Therefore, the detection width W of the origin detection signal 6 is (T ⁇ W / 360 ° ⁇ T) ⁇ W ⁇ T Manufactured and adjusted to the range of
  • the center phase Pc of the detection width of the origin detection signal 6 is (X ⁇ 180 °) ⁇ Pc ⁇ (X + 180 °) If present in (X ⁇ 180 °) ⁇ Pc ⁇ (X ⁇ 180 ° + ⁇ W / 2), or (X + 180 ° ⁇ W / 2) ⁇ Pc ⁇ (X + 180 °) If this is the case, the origin signal generator 15 does not output the pulse origin signal 18.
  • the detection width W of the origin detection signal is (3/4) ⁇ T ⁇ W ⁇ T And (X-180 °) ⁇ Pc ⁇ (X-135 °), or (X + 135 °) ⁇ Pc ⁇ (X + 180 °) If so, the pulse origin signal 18 is not output. That is, since the phase error ⁇ W of the detection width W of the origin detection signal occurs, the origin detection signal 6 may not be detected.
  • the polarity switching unit 7 capable of switching the polarity of each of the four periodic position signals (A +, A ⁇ , B +, B ⁇ ) 2-5 having different phases can be switched.
  • the signal detection width W of the detection signal 6 is 0.5 times or more and less than 1.5 times the period T of the periodic position signal 2-5, that is, T ⁇ 0.5 ⁇ W ⁇ T ⁇ 1.5
  • phase position of the origin detection signal 6 with respect to the periodic position signals 12 and 13 can be relaxed, and a larger tolerance can be given to manufacturing errors such as assembly accuracy of the configuration of the encoder body 1.
  • the configuration of the polarity switching unit 7 can be simplified by using the two periodic position signals 2 and 3 and the periodic position signals 4 and 5 that are 180 degrees out of phase as input values.
  • the first synthesizing circuit 19 and the second synthesizing circuit 20 have two periodic position signals 2 and 3 when noise or the like is added to the periodic position signal 2-5 in the electrical wiring route. And by making 4 and 5 differential, there is an effect of removing noise and the like.
  • These synthesis circuits 19 and 20 are attached to the interpolation division unit 14. Note that the first synthesis circuit 19 and the second synthesis circuit 20 may be omitted.
  • two periodic position signals having a phase difference of 90 degrees are designated as the A-phase periodic position signal 12 and the B-phase periodic position signal. 13, the interpolation division unit 14 and the origin signal generation unit 15 input.
  • FIG. 3 shows that the center phase Pc of the detection width W of the origin detection signal 6 is (X-180 °) ⁇ Pc ⁇ (X-90 °)
  • the timing at which the A-phase and B-phase periodic position signals 12 and 13 and the origin detection signal 6 are synchronized, that is, another example of the origin synchronization phase X is shown. It is a signal waveform diagram. The vertical axis and the horizontal axes (a) to (c) correspond to those in FIG.
  • the origin synchronization phase X is generated twice and two pulse origin signals 18 are generated within the detection width W during which the origin detection signal 6 is detected as shown in FIG.
  • the polarity switching unit 7 switches all the polarity switching of the four periodic position signals to inversion, the signal waveform diagram of the periodic position signal and the origin detection signal shown in FIG. 4 is obtained.
  • the origin synchronization phase X that is, the pulse origin signal 18 becomes one time within the detection width W where the origin detection signal 6 is detected.
  • the polarity switching unit 7 measures in advance the center phase Pc of the detection width W of the origin detection signal 6 with respect to each periodic position signal 2-5, and the polarity switching of the polarity switching unit 7 depends on the position of the center phase Pc. Switch the circuit.
  • the center phase Pc of the detection width W of the origin detection signal 6 is In the case of (X ⁇ 180 °) ⁇ Pc ⁇ (X + 180 °), (X + 90 °) ⁇ Pc ⁇ (X + 180 °), or (X-180 °) ⁇ Pc ⁇ (X-90 °) If it satisfies, set the polarity of all four periodic position signals 2-5 to inversion, (X-90 °) ⁇ Pc ⁇ (X + 90 °) In the case of satisfying, all the polarities of the four periodic position signals 2-5 are set to non-inverted.
  • one periodic position signal is at a level higher or lower than the above-described center value, and the other periodic position signal increases or exceeds the center value of the amplitude.
  • the origin synchronization phase X is -180 ° in the Lissajous wave when the A-phase periodic position signal 12 is plotted on the horizontal axis and the B-phase periodic position signal 13 is plotted on the vertical axis. , -90 °, 0 °, or 90 °.
  • FIG. 5 shows a Lissajous waveform when the A-phase periodic position signal 12 is plotted on the horizontal axis and the B-phase periodic position signal 13 is plotted on the vertical axis.
  • the origin synchronization phase X is 0 degree
  • set the polarity of all four periodic position signals 2-5 to inversion -90 ° ⁇ Pc ⁇ 90 °
  • all the polarities of the four periodic position signals 2-5 are set to non-inverted.
  • the center phase Pc of the detection width W of the origin detection signal 6 is a negative value of the A-phase periodic position signal 12, that is, in the area hatched by hatching in FIG. 5, the polarity is switched to inversion. . 90 ° ⁇ Pc ⁇ 180 °
  • the center phase Pc2 existing in is switched to inversion by the polarity switching circuit of the polarity switching unit 7, thereby switching to the origin (0, 0) of the Lissajous waveform to Pc2 ′ of ⁇ 90 ° ⁇ Pc ⁇ 0 °. .
  • Pc2 ′ By switching to Pc2 ′, the origin synchronization phase X is once within the period in which the origin detection signal 6 is detected.
  • the center phase Pc3 existing in is switched to inversion by the polarity switching circuit of the polarity switching unit 7 to switch to the origin (0, 0) of the Lissajous waveform and to Pc3 ′ of 0 ° ⁇ Pc ⁇ 90 °.
  • the origin synchronization phase X is once within the period in which the origin detection signal 6 is detected.
  • the moving body After assembling the configuration of the encoder body 1 to the moving body, the moving body is displaced, and each periodic position signal 2-5 and origin detection signal 6 detected from the encoder body 1 are monitored using an oscilloscope or the like.
  • the center phase Pc of the detection width W of the origin detection signal 6 with respect to the position signal 2-5 is measured.
  • the encoder main body 1 is attached to a motor that is a moving body, and the shaft of the motor is coupled to the shaft of a measurement motor that rotates the motor.
  • the measurement motor is driven using a measurement motor drive control device.
  • the motor shaft rotates, and each periodic position signal 2-5 and origin detection signal 6 output from the encoder body 1 are monitored with an oscilloscope, and the detection width W of the origin detection signal 6 with respect to each periodic position signal 2-5.
  • the center phase Pc of is measured.
  • the motor, the measurement motor, the measurement motor drive control device, and the oscilloscope are not shown.
  • inversion or non-inversion of the polarity switching circuit of the polarity switching unit 7 based on the measurement result, it is possible to generate the pulse origin signal accurately and stably with high reproducibility.
  • the phase advance relationship of the periodic position signals 2-5 corresponding to the displacement direction of the moving body does not change. Therefore, it is not necessary to add a new adjustment function when detecting the positive displacement and the reverse displacement in the direction of displacement of the moving body, and the manufacturing cost is suppressed and the cost is low.
  • the detection width W of the origin detection signal 6 is: (T ⁇ W / 360 ° ⁇ T) ⁇ W ⁇ T Met.
  • the accuracy of the detection width W of the origin detection signal 6 is 0.5 ⁇ T ⁇ W ⁇ 1.5 ⁇ T
  • the allowable value of the detection width W can be increased.
  • the center phase Pc of the detection width W of the origin detection signal 6 is positioned at 90 degrees of the Lissajous waveform, and the origin synchronization phase X is If it is 0 degree, as shown in FIG. 6, the origin detection signal 6 is not detected in the origin synchronization phase X, and the pulse origin signal 18 is not detected. Therefore, no matter where the center phase Pc of the detection width W of the origin detection signal 6 is, in order to generate the pulse origin signal 18 accurately, stably and accurately, the detection width of the origin detection signal 6 is determined. W needs to be 0.5 ⁇ T or more.
  • the center phase Pc of the detection width W of the origin detection signal 6 is located at 90 degrees of the Lissajous waveform, and the origin synchronization phase X As shown in FIG. 7, since the origin detection signal 6 is detected twice in the origin synchronization phase X as shown in FIG. 7, two pulse origin signals 18 are generated. Therefore, no matter where the center phase Pc of the detection width W of the origin detection signal 6 is, in order to generate a pulse origin signal accurately, stably and accurately, the detection width W of the origin detection signal 6 is determined. Must be less than 1.5 ⁇ T.
  • the origin detection signal 6 In order to generate the pulse origin signal 18 accurately and stably with high reproducibility wherever the center phase Pc of the detection width W of the origin detection signal 6 is, the origin detection signal 6 The accuracy of the detection width W must satisfy the following formula (1).
  • the detection width W of the conventional origin detection signal 6 T- ⁇ W / 360 ° ⁇ T ⁇ W ⁇ T Rather, the accuracy of the detection width W is relaxed. Therefore, the design margin of the configuration of the encoder body 1 is widened, and a larger manufacturing tolerance can be provided, so that the manufacturing cost can be suppressed and the manufacturing can be performed at a low cost.
  • the moving body After assembling the structure of the encoder body 1 to the moving body, the moving body is displaced, and each periodic position signal 2-5 and origin detection signal 6 detected from the encoder body 1 are monitored using an oscilloscope or the like to detect the origin. The detection width W of the working signal 6 is measured.
  • the encoder body 1 For setting the detection width W of the origin detection signal 6, the encoder body 1 has an adjustment function using a digital potentiometer or the like.
  • the digital potentiometer is not shown.
  • the origin signal generator 15 has an adjustment function for adjusting the origin detection threshold Vt and the like, and the detection width W of the origin detection signal 6 is adjusted to 0.5 ⁇ T or more and less than 1.5 ⁇ T.
  • the pulse origin signal 18 can be generated accurately and stably with good reproducibility.
  • one or more digital integrated circuits including a first synthesis circuit 19, a second synthesis circuit 20, an interpolation division unit 14, and an origin signal generation unit 15 are included.
  • the digital integrated circuit unit is composed of a pulsed conversion substrate in which the digital integrated circuit unit and the polarity switching unit 7 are mounted on one substrate.
  • the integrated circuit preferably has a configuration including the first synthesis circuit 19 and the second synthesis circuit 20 from the effect of noise removal. By using this integrated circuit, the installation area can be drastically reduced and the size can be reduced.
  • phase position Q on the orthogonal coordinates of the Lissajous waveform of the origin signal generator 15 determined at the circuit design stage of the origin signal generator 15, ie, the origin
  • N integer
  • FIG. 12 Another example of the phase position Q is shown in FIG.
  • both of the periodic position signals 12 and 13 of the A phase and the B phase are higher or lower than the central value of the amplitude of the signal wave, and the two periodic position signals
  • the phase position where the signals intersect may be set as the origin synchronization phase X.
  • the origin synchronization phase X is either ⁇ 135 ° or 45 ° in the Lissajous wave when the A-phase periodic position signal 12 is plotted on the horizontal axis and the B-phase periodic position signal 13 is plotted on the vertical axis.
  • the predetermined phase position Q is 45 + 180 ⁇ N degrees (N: integer) obtained by adding an integer multiple of 180 degrees to 45 degrees.
  • the polarity switching unit 7 in the first embodiment is roughly A first polarity switching circuit 71 capable of electrically replacing the reference position periodic position signal 2 and the reference position periodic position signal 3 having a 180 phase difference from the reference phase; A second polarity switching circuit 72 capable of electrically replacing the periodic position signal 4 having a phase different from the reference phase by 90 degrees and the periodic position signal 5 having a phase different from the reference phase by 270 degrees; Is provided.
  • FIG. 8 is a schematic diagram of an example of the first polarity switching circuit 71, and the second polarity switching circuit 72 has the same configuration. As an example, the most simplified configuration of the pulse conversion device is shown in FIG.
  • the first synthesizing circuit 19, the second synthesizing circuit 20, the interpolating / dividing unit 14, and the origin signal generating unit 15 are configured by a digital integrated circuit unit indicated by a pulse conversion IC (DC).
  • the digital integrated circuit unit may be composed of one or more digital integrated circuits.
  • the first polarity switching circuit 71 includes first switching selectors 71a and 71b having the same configuration.
  • the second polarity switching circuit 72 has a similar structure and includes second switching selection units 72a and 72b. Each switching selection unit includes terminal 1, terminal 2, and terminal 3. By electrically connecting terminal 2 to terminal 1, the polarity of the input periodic position signal becomes non-inverted, and terminal 2 is electrically connected to terminal 3. By connecting to, the polarity of each periodic position signal is inverted.
  • a + and A ⁇ are different in phase by 180 degrees.
  • the two periodic position signals shown are set as one set and input to the first polarity switching circuit 71.
  • two periodic position signals indicated by B + and B ⁇ having phases different from each other by 180 degrees other than those inputted to the first polarity switching circuit 71 are inputted to the second polarity switching circuit 72.
  • each of the first and second polarity switching circuits 71 and 72 uses the measurement result obtained by measuring the center phase Pc of the detection width W of the origin detection signal 6 with respect to each periodic position signal 2-5.
  • Terminal 2 is electrically connected to either terminal 1 or terminal 3 by switching selectors 71a, 71b, 72a, 72b.
  • Four periodic position signals output from the first and second polarity switching circuits 71 and 72 and having a phase difference of 90 degrees with the phase of one periodic position signal as a reference phase are input to the pulse conversion IC (DC).
  • the origin detection signal 6a is also input to the pulse conversion IC (DC).
  • the origin detection signal 6a may be input to the pulse conversion IC (DC) together with the inverted origin detection signal 6b obtained by inverting the polarity of the origin detection signal 6a.
  • the pulse conversion IC (DC) performs differential processing of the origin detection signal 6a and the inverted origin detection signal 6b.
  • an A-phase pulse position signal 16 From the pulse conversion IC (DC), an A-phase pulse position signal 16, a B-phase pulse position signal 17, and a pulse origin signal 18 are output.
  • These pulse conversion ICs (DC) may be mounted on the same substrate together with the first and second polarity switching circuits 71 and 72.
  • the reference phase circumferential position period signal (A +) 2 has a period that is different from the reference phase by 180 degrees.
  • the position signal (A ⁇ ′) 9 is switched, and the period position signal (A ⁇ ) 3 having a phase difference of 180 degrees from the reference phase is switched to the period position signal (A + ′) 8 of the reference phase.
  • the periodic position signal (A +) 2 of the reference phase becomes the reference phase.
  • the periodic position signal (A + ') 8 is output as it is, and the periodic position signal (A-) 3 having a phase difference of 180 degrees from the reference phase is the periodic position signal (A-') 9 having a phase difference of 180 degrees from the reference phase. Output as is.
  • each polarity switching circuit In each polarity switching circuit according to the first embodiment, wiring is electrically connected by using two periodic position signals having different phases by 180 degrees as input values, that is, by using four periodic position signals having different phases by 90 degrees. It is possible to provide a polarity switching circuit having a configuration to be replaced.
  • Each polarity switching circuit has a simple configuration as shown in FIG. 8, for example, and does not require signal comparison processing, logic processing, addition, and arithmetic processing. There is no need for an arithmetic processing circuit composed of an operational amplifier or the like, or a comparison circuit composed of a comparator or the like.
  • the displacement speed of the moving body has been increased, and expensive circuit parts having excellent frequency characteristics are used, but the number of parts does not increase. Therefore, the manufacturing cost is suppressed and the cost is low. Increase in installation area can be suppressed, and downsizing is possible. In addition, heat generated from the circuit components can be suppressed, and malfunction of signal characteristics can be prevented.
  • FIG. 9 is a block diagram showing an example of the configuration of a pulse conversion device for an incremental encoder according to Embodiment 3 of the present invention.
  • the periodic position signal output from the encoder body 1 according to the displacement of the moving body in the first embodiment is two periodic position signals (A) 31 having a phase difference of 90 degrees, and the periodic position signal. (B) 32, which includes the first polarity switching unit 21 and the second polarity switching unit 22.
  • the encoder body 1 outputs two periodic position signals (A, B) 31, 32 having phases different by 90 degrees in accordance with the displacement of the moving body. These two periodic position signals 31 and 32 are sine wave signals having a frequency corresponding to the displacement speed. Depending on the direction of displacement of the moving body, either the periodic position signal (A) 31 or the periodic position signal (B) 32 is used. Either phase will be advanced.
  • the encoder body 1 includes a position signal generator 1a that generates two periodic position signals whose phases are different by 90 degrees in accordance with the displacement or displacement of the moving body, and the displacement position of the moving body reaches the reference position. Then, the origin detection signal generator 1b that generates the origin detection signal 6 in which the signal detection width W is 0.5 times or more and less than 1.5 times the period T of the periodic position signals 31 and 32 is provided. It will be.
  • the polarity inversion and non-inversion of the periodic position signal (A) 31 are performed by the switchable first polarity switching unit 21, and the polarity inversion and non-inversion of the periodic position signal (B) 32 can be switched. This is performed by the second polarity switching unit 22.
  • Other portions of the interpolation division unit 14, the origin signal generation unit 15, and the counter unit 41 are the same as those in the above embodiment.
  • the periodic position signals 31 and 32 output from the encoder main body 1 are two periodic position signals having a phase difference of 90 degrees, so that the first polarity switching unit 21 and the second polarity switching unit 22 are provided, so that the embodiment 1 can be obtained.
  • each polarity switching unit 21 and 22 in the third embodiment includes a non-inverting circuit 212b, an inverting circuit 212a, and a switching selecting unit 212c.
  • FIG. 10 shows an example of the first polarity switching unit 21, and the second polarity switching unit 22 has the same configuration.
  • the inverting circuit 212a is configured using an operational amplifier or the like, and can adjust the amplification factor of the amplitude value of each periodic position signal and the offset value. The same applies to the non-inverting circuit 212b.
  • the non-inverting circuit 212b may not be provided as shown by a broken line in FIG. For example, in the case of a periodic position signal having an offset value of 1.0 V and an amplitude of ⁇ 0.5 V around the offset value, a differential circuit that differentials the periodic position signal from 2.0 V is provided. An inverted signal is obtained.
  • a non-inverting circuit including a switching selection unit 212c including a changeover switch and one or two arithmetic circuits It is possible to switch between inversion and non-inversion of the periodic position signal by a polarity switching unit composed of 212b and inversion circuit 212a.
  • the polarity switching unit including the non-inverting circuit 212b and the inverting circuit 212a includes one or two arithmetic circuits and has a relatively simple circuit configuration. The increase in the number of parts is limited, and the manufacturing cost is suppressed and the cost is low. The increase in installation area is also suppressed, and downsizing is possible. In addition, heat generated from the circuit components can be suppressed, and malfunction of signal characteristics can be prevented.
  • the part for measuring the displacement or position of the moving body of the encoder body 1 may be either optical or magnetic.
  • the center phase Pc of the detection width W of the origin detection signal 6 with respect to each periodic position signal 2-5 is measured, and the polarity switching circuit of the polarity switching unit 7 according to the position of the center phase Pc. Is switched manually.
  • an origin detection signal 6 is also input to the polarity switching unit 7, and a sensor such as a voltmeter and a calculation control unit for calculation processing and control based on the detection value of the sensor are provided in the polarity switching unit 7.
  • the switching circuit By configuring the switching circuit with an electric switch controlled by the arithmetic control unit, the above-described measurement of the center phase Pc of the detection width W and the switching of the circuit may be automatically performed.
  • the arithmetic control unit of the polarity switching unit 7 is configured in the digital integrated circuit unit together with the first and second synthesis circuits 19 and 20, the interpolation division unit 14, and the origin signal generation unit 15.
  • a setting signal of a digital potentiometer for setting the detection width W of the origin detection signal 6 may be input from the encoder body 1 to the polarity switching unit 7 and used.
  • the present invention can be applied to pulse conversion devices of incremental encoders in various fields and various forms.
  • 1 Encoder body 1a Position signal generator, 1b Origin detection signal generator, 2-5 Period position signal, 6, 6a Origin detection signal, 6b Reverse origin detection signal, 7 Polarity switching section, 12 A phase period position Signal, 13 B phase period position signal, 14 interpolation division unit, 15 origin signal generation unit, 16 A phase pulse position signal, 17 B phase pulse position signal, 18 pulse origin signal, 19 first synthesis circuit, 20 second Synthesis circuit, 21 first polarity switching unit, 22 second polarity switching unit, 31, 32 periodic position signal, 41 counter unit, 71 first polarity switching circuit, 72 second polarity switching circuit, 71a, 71b 72a, 72b switching selection unit, 212a inverting circuit, 212b non-inverting circuit, 212c switching selection unit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

周期位置信号に対する原点検出用信号の位相位置が変化してもパルス位置信号に同期したパルス原点信号を正確に発生するインクリメンタル型エンコーダのパルス化変換装置を提供する。移動体の変位に伴いエンコーダ本体から出力される、位相が90度ずつ異なる4つの周期位置信号2-5に対し、極性切替部7と、原点検出用信号6の検出幅が周期位置信号の周期Tの0.5倍以上、1.5倍未満であり、4つの周期位置信号から設定された分解能のA相及びB相のパルス位置信号16,17を生成する内挿分割部14と、原点検出用信号6の検出期間において設定された原点同期位相Xでタイミングをとりパルス位置信号に同期してパルス原点信号18を発生する原点信号発生部15を有する。

Description

インクリメンタル型エンコーダのパルス化変換装置およびパルス化変換方法
 この発明は、インクリメンタル型エンコーダにおける信号のパルス化変換、特にパルス位置信号に同期したパルス原点信号の発生に関するものである。
 例えば下記特許文献1-4等に記載されているような、複数のパルス位置信号とこれらのパルス位置信号に同期したパルス原点信号に基づき変位量の検出や位置検出を行うインクリメンタル型エンコーダでは、近年、エンコーダの高分解能化が進んでいる。
特開平1-248020号公報 図3、図5 特許第2558287号明細書 図3 特許第4274751号明細書 図1、図2、図3 特開2000-213925号公報 図1、図13
 近年のエンコーダの高分解能化に伴い、スケール格子が微小ピッチ化しており、周期位置信号の周期が短くなっている。そのため、エンコーダ本体の構成に関する組立誤差等の製造誤差の影響で、周期位置信号に対する原点検出用信号の位相位置がバラツキ易く、再現性よく、安定して、正確にパルス位置信号に同期したパルス原点信号発生することが難しくなってきている。
 この発明は、上記のような課題を解消するためになされたものであり、近年のエンコーダ高分解能化に対応し、エンコーダ本体の構成で、組立誤差等の製造誤差が生じて、周期位置信号に対する原点検出用信号の位相位置が変化しても、パルス位置信号に同期したパルス原点信号を正確に発生するインクリメンタル型エンコーダのパルス化変換装置およびパルス化変換方法を提供することを目的とする。
 この発明は、移動体の位置又は角度の変位に応じて、1つの周期位置信号の位相を基準位相として90度ずつ位相の異なる4つの周期位置信号を発生する位置信号発生部と、前記移動体の変位位置が基準位置に達すると、信号の検出幅が前記4つの周期位置信号の周期の0.5倍以上、1.5倍未満となる原点検出用信号を発生する原点検出用信号発生部と、前記4つの周期位置信号の各信号の極性の切替えを選択的に行う極性切替部と、前記極性切替部が出力する前記4つの周期位置信号から、設定された分解能を有するパルス位置信号を生成する内挿分割部と、前記原点検出用信号が検出された期間における、位相が90度異なる2つの前記周期位置信号に従った予め定められた位相位置に基づき、前記パルス位置信号に同期してパルス原点信号を発生する原点信号発生部と、を備えた、インクリメンタル型エンコーダのパルス化変換装置等にある。
 この発明では、エンコーダ本体の構成で、組立誤差等の製造誤差が生じて、周期位置信号に対する原点検出用信号の位相位置が変化しても、パルス位置信号に同期したパルス原点信号を正確に発生することができる。
この発明の実施の形態1に関わるインクリメンタル型エンコーダの周期位置信号および原点検出用信号をパルス信号に変換するパルス化変換装置の構成の一例を示すブロック図である。 この発明の実施の形態1に関わる周期位置信号、原点検出用信号の同期するタイミングの一例を示す波形図である。 この発明の実施の形態1に関わる極性切替部が非反転時の周期位置信号および原点検出用信号の波形図である。 この発明の実施の形態1に関わる極性切替部を反転に切り替えた後の周期位置信号および原点検出用信号の波形図である。 この発明の実施の形態1に関わる、極性切替部での反転と原点検出用信号の検出幅の中心位相Pcとの関係を説明するための横軸にA相周期位置信号、縦軸にB相周期位置信号をプロットした場合のリサージュ波形図である。 この発明の実施の形態1に関わる、原点検出用信号の検出幅Wが0.5×Tより小さい場合の原点検出用信号の検出位置を説明するための、横軸にA相周期位置信号、縦軸にB相周期位置信号をプロットした場合のリサージュ波形図である。 この発明の実施の形態1に関わる、原点検出用信号の検出幅Wが1.5×T以上である場合の原点検出用信号の検出位置を説明するための、横軸にA相周期信号、縦軸にB相周期信号をプロットした場合のリサージュ波形図である。 この発明の実施の形態2に関わるインクリメンタル型エンコーダのパルス化変換装置の極性切替部の一部の構成の一例を示す模式図である。 この発明の実施の形態3に関わるインクリメンタル型エンコーダのパルス化変換装置の構成の一例を示すブロック図である。 この発明の実施の形態4に関わるインクリメンタル型エンコーダのパルス化変換装置の極性切替部の一部の構成の一例を示す図である。 この発明の実施の形態2に関わるインクリメンタル型エンコーダのパルス化変換装置の構成の一例を示すブロック図である。 この発明の実施の形態1の変形例に関わる周期位置信号、原点検出用信号の同期するタイミングの一例を示す波形図である。 この発明のインクリメンタル型エンコーダのパルス化変換装置における2つの周期位相信号によるリサージュ波形に基づく原点同期位相を説明するための図である。
 この発明によるインクリメンタル型エンコーダは、位相の異なる4つの周期位置信号の各周期位置信号の極性を反転、非反転を切替可能な極性切替部を備え、原点検出用信号の信号検出幅が、周期位置信号の周期Tの0.5倍以上、1.5倍未満であることにより、従来の原点検出用信号が出力されている期間、設定された原点同期位相に基づき、パルス位置信号に同期したパルス原点信号を発生する原点信号発生部を用いても、高分解能化されたエンコーダ本体の構成において、組立誤差等の製造誤差が生じても、再現性よく、安定して、正確にパルス原点信号を生成することが可能になる。
 本構成により、A相パルス位置信号またはB相パルス位置信号のミスカウントや、カウントクリアされないといった不具合を防ぐことができる。周期位置信号に対する原点検出用信号の位相位置や、原点検出用信号の検出幅Wを緩和することができ、エンコーダ本体の構成の組立誤差などの製造誤差について、より大きな許容範囲を持たせることが可能となるため、製造コストが抑えられ、安価に製造することが可能となる。位相の異なる4つの周期位置信号のすべての周期位置信号の極性を反転、または非反転するため、移動体の変位の方向に対応した、各周期信号の位相の進みの関係に変化が生じない。したがって、移動体の変位の方向の正変位、逆変位の検出に際し、新たな調整機能を付加する必要がなく、製造コストが抑えられ安価である。
 以下、この発明によるインクリメンタル型エンコーダのパルス化変換装置およびパルス化変換方法を各実施の形態に従って図面を用いて説明する。なお、各実施の形態において、同一または相当部分は同一符号で示し、重複する説明は省略する。
 実施の形態1.
 図1は、この発明の実施の形態1に関わるインクリメンタル型エンコーダの、周期位置信号および原点検出用信号をパルス信号に変換するパルス化変換装置の構成の一例を示すブロック図である。インクリメンタル型エンコーダは被測定体である移動体の位置又は角度の変位を検出する。インクリメンタル型エンコーダのエンコーダ本体1からは、移動体の変位に応じて、それぞれ位相が異なる4つの周期位置信号(A+、A-、B+、B-)2-5が出力される。これらの周期位置信号2-5は、変位速度に応じた周波数の正弦波信号であって、
 周期位置信号(A+)2を基準位相とすると、
 周期位置信号(B+)4は基準位相に対して位相差90度、
 周期位置信号(A-)3は基準位相に対して位相差180度、
 周期位置信号(B-)5は基準位相に対して位相差270度、をそれぞれ有している。
 移動体の変位の方向によって、周期位置信号(A+)2および周期位置信号(B+)4のいずれか一方の位相が進んだものとなる。エンコーダ本体1からはさらに、移動体の基準位置検出の際に出力されるZ相信号としての原点検出用信号6が出力される。
 エンコーダ本体1は後述するように、移動体の位置又は角度の変位に応じて、1つの周期位置信号の位相を基準位相として90度ずつ位相の異なる4つの周期位置信号2-5を発生する位置信号発生部1aと、移動体の変位位置が基準位置に達すると、信号の検出幅Wが4つの周期位置信号2-5の周期Tの0.5倍以上、1.5倍未満となる原点検出用信号6を発生する原点検出用信号発生部1bと、を有する。これらの信号は例えば、移動体に設けられた非検出体をセンサ等で検出して得る。
 図1のパルス化変換装置はエンコーダ本体1およびカウンタ部41と共に、以下のものを備える。
 切替可能な極性切替部7は、位相の異なる4つ周期位置信号(A+、A-、B+、B-)2-5の各信号に対して、極性の反転と非反転を選択的に切替える。
 第1の合成回路19は、極性切替後の位相が180度異なる周期位置信号(A+’)と(A-’)を差動させて、A相周期位置信号12としての差動信号((A+’)-(A-’))を発生する。
 第2の合成回路20は、極性切替後の位相が180度異なる周期位置信号(B+’)と(B-’)を差動させて、B相周期位置信号13としての差動信号((B+’)-(B-’))を発生する。
 内挿分割部14は、A相周期位置信号12およびB相周期位置信号13から、予め設定された分解能を備えたA相パルス位置信号16およびB相パルス位置信号17を生成する。
 原点信号発生部15は、原点検出用信号6、A相周期位置信号12、B相周期位置信号13、A相パルス位置信号16およびB相パルス位置信号17を入力として、A相パルス位置信号16およびB相パルス位置信号17に同期したパルス原点信号18を求める。
 パルス化変換装置から出力されたA相パルス位置信号16、B相パルス位置信号17、およびパルス原点信号18は、カウンタ部41に入力される。カウンタ部41は、移動体の位置又は角度の変位を得るために、A相パルス位置信号16およびB相パルス位置信号17をカウントすると共にパルス原点信号18でカウントリセットを行う。
 原点信号発生部15における同期は、原点検出用信号6が検出された期間における、予め定められた原点同期位相Xに基づいて、A相パルス位置信号16およびB相パルス位置信号17に同期して、パルス原点信号18が発生される。
 図13に、この発明のインクリメンタル型エンコーダのパルス化変換装置における2つの周期位相信号によるリサージュ波形に基づく原点同期位相を説明するための図を示す。
 A相周期位置信号12およびB相周期位置信号13の2つの周期位置信号の一方の値を2次元の直交座標系の横軸方向(a)にとり、他方の値を縦軸方向(b)にとり、上記直交座標系上で、2つの周期位置信号12,13の値によって決まる点が移動体の変位につれて移動して描かれる波形を、2つの周期位置信号12,13のリサージュ波形LIとする。図13で一点鎖線で示されたリサージュ波形LIの2次元の直交座標の中心位置をOとする。また、リサージュ波形LIの中心位置Oの周りの回転位置の基準回転位置をPPとする。図13では、リサージュ波形LIの直交座標の正側の横軸とリサージュ波形LIとの交点を基準回転位置PPとしている。Qは、原点信号発生部15の回路設計段階で決められた、原点信号発生部15のリサージュ波形の直交座標上の予め定められた位相位置の点である。そして例えば基準回転位置PPを基準とすると、中心位置Oを中心とする角∠PPOQの角度位置を原点同期位相Xとする。
 すなわち、原点同期位相Xは2つの周期位置信号12,13の値で形成されるリサージュ波形LIの直交座標の中心位置の周りの原点信号発生部15の位相位置である。
 一例として、原点信号発生部15における同期は、原点検出用信号6が検出された期間における、A相およびB相の2つの周期位置信号の一方の信号が、信号の振幅の中心値より高いまたは低いレベルであって、他方の信号が、信号の振幅の中心値を下から交差する、または上から交差する位相位置すなわち原点同期位相に基づいて、A相パルス位置信号16およびB相パルス位置信号17に同期して、パルス原点信号18を発生する。
 上述の振幅の中心値とは、信号1周期の波の最大値と最小値の真ん中の値であり、信号の波の{(最大値-最小値)/2}である。
 原点同期位相Xは、-180度、-90度、0度、90度、等の90度の整数倍、90°×N(N:整数)度の位相位置である。位置の値は、A相パルス位置信号16、B相パルス位置信号17をカウンタ部41に入力してカウントすることによって求める。この場合、パルス原点信号18が発生したときにカウンタ部41をリセットすることによって、位置検出の原点を定めることが可能となる。
 図2は、図1の原点信号発生部15における、A相およびB相の周期位置信号12,13と原点検出用信号6の同期するタイミング、すなわち原点同期位相の一例を示す信号波形図である。図2において、縦軸が振幅、横軸が時間を示し、
 (a)がA相周期位置信号12、
 (b)がB相周期位置信号13、
 (c)が原点検出用信号6を示す。
 図2では、移動体が例えば設定された方向に回転しており、A相周期位置信号12がB相周期位置信号13より90度位相が進んでいる。一例として、破線Xで示す原点同期位相Xは、A相周期位置信号12がその中心値より高く、B相周期位置信号13がその中心値を下から交差する位置を図示している。内挿分割部14は、A相周期位置信号12の中心値とB相周期位置信号13の中心値が同じレベルになるようオフセット値の補正を行う機能を含み得る。また、内挿分割部14はさらに、A相周期位置信号12とB相周期位置信号13の位相差の補正、および、A周期位置信号12、B相周期位置信号13、それぞれの信号の振幅の補正を行う機能を含み得る。原点検出用信号6が、原点検出閾値Vtより大きい値の期間を、検出幅Wの原点検出期間とすると、原点同期位相が1回含まれる場合、A相パルス位置信号16およびB相パルス位置信号17に同期して、パルス原点信号18が1個生成される。
 近年、エンコーダの高分解能化が進み、それに伴い、位置変位検出用の格子の格子周期Pが小ピッチ化しており、A相およびB相周期位置信号12,13の周期Tが小さくなり、高周波化されている。格子周期Pの微細化に伴い、相対的に、エンコーダ本体1の構成における、組立誤差などの製造誤差は大きくなり、周期位置信号12,13に対する原点検出用信号6の位相位置のばらつきが大きくなっている。このばらつきにより、原点検出用信号6が検出された期間内の原点同期位相が検出されなかったり、複数回検出されたりして、パルス原点信号18が正確に検出されない。カウンタ部41はパルス原点信号18でカウントクリア、リセットされるが、パルス原点信号18が検出されず、カウンタ部41においてカウントクリア、リセットされないといった不具合や、パルス原点信号18が複数検出され、不要なパルス原点信号18が発生されることにより、誤ったカウント値になったり、移動体の回転方向によってカウント値が異なるといったミスカウント等の問題が発生していた。
 従来の原点検出用信号6が出力されている期間、設定された原点同期位相でタイミングをとりパルス原点信号18を発生する方式では、原点信号発生部において、パルス原点信号18を正確に出力できない問題があった。以下
 T:周期位置信号2-5、および12,13の周期
 W:原点検出用信号6の検出幅、
 ΔW:エンコーダ本体1の構成部品の製造誤差等による原点検出用信号6の検出幅Wの位相誤差
 Pc:原点検出用信号6の検出幅Wの中心位相
 X:原点同期位相
 とする。
 上述のエンコーダ本体1の構成部品の製造誤差等によって、原点検出用信号6の検出幅Wの位相誤差ΔWが生じるので、原点検出用信号6の検出幅Wは、
 (T-ΔW/360°×T)≦W<T
 の範囲に製造、調整される。原点検出用信号6の検出幅の中心位相Pcが、
 (X-180°)≦Pc<(X+180°)
 に存在する場合、
 (X-180°)≦Pc<(X-180°+ΔW/2)、または、
 (X+180°-ΔW/2)<Pc<(X+180°)
 であると、原点信号発生部15においてパルス原点信号18が出力されない。
 一例として、位相誤差ΔWを90度とすると、原点検出用信号の検出幅Wは、
 (3/4)×T≦W<T
 であり、
 (X-180°)≦Pc<(X-135°)、または、
 (X+135°)<Pc<(X+180°)
 であると、パルス原点信号18が出力されない。すなわち、原点検出用信号の検出幅Wの位相誤差ΔWが生じるため、原点検出用信号6は検出されない場合が生じていた。
 この発明の構成によれば、位相が異なる4つの各周期位置信号(A+、A-、B+、B-)2-5の極性を反転、非反転を切替可能な極性切替部7を備え、原点検出用信号6の信号検出幅Wが、周期位置信号2-5の周期Tの0.5倍以上、1.5倍未満、すなわち
 T×0.5≦W<T×1.5
 であるようにすることにより、周期位置信号12,13に対して、原点検出用信号6の検出幅の中心位相Pcがばらついていても、再現性よく、安定して、正確にパルス原点信号18を発生することができ、A相パルス位置信号16またはB相パルス位置信号17のカウンタ部41におけるミスカウントや、カウントクリアされないといった不具合を防ぐことができる。周期位置信号12,13に対する原点検出用信号6の位相位置を緩和することができ、エンコーダ本体1の構成の組立精度等の製造誤差について、より大きな許容範囲を持たせることが可能となる。
 極性切替部7において、入力値として180度位相が異なる2つの周期位置信号2と3、また周期位置信号4と5を用いることにより、極性切替部7の構成の簡素化が可能となる。
 第1の合成回路19および第2の合成回路20は、電気的な配線の引きまわし経路にて、ノイズ等が周期位置信号2-5に加算された場合、2つの周期位置信号2と3、および4と5を差動させることにより、ノイズ等を除去する効果がある。これらの合成回路19,20は、内挿分割部14に付属するものである。
 なお、第1の合成回路19および第2の合成回路20は省略しても構わない。この場合、極性切替部7から出力された4つの周期位置信号(2-5)のうち、位相差が90度異なる2つの周期位置信号を、A相周期位置信号12、およびB相周期位置信号13として、内挿分割部14、原点信号発生部15が入力する。
 図3は、原点検出用信号6の検出幅Wの中心位相Pcが、
 (X-180°)≦Pc<(X-90°)
 に存在する場合の、極性切替部7が非反転時の、A相およびB相の周期位置信号12,13と原点検出用信号6の同期するタイミング、すなわち原点同期位相Xの別の例を示す信号波形図である。縦軸、横軸(a)-(c)はそれぞれ図2のものに対応する。
 (c)に示す、原点検出用信号6が検出された期間である検出幅W内に、原点同期位相Xが2回生じており、パルス原点信号18が2個発生している。この場合、極性切替部7にて、4つの周期位置信号の極性の切替を、すべて反転に切り替えると、図4に示す、周期位置信号と原点検出用信号の信号波形図となる。4つの周期位置信号2-5の極性をすべて反転に切り替えたことにより、原点検出用信号6が検出された検出幅W内に、原点同期位相X、すなわちパルス原点信号18が1回となる。
 極性切替部7にて、各周期位置信号2-5に対する原点検出用信号6の検出幅Wの中心位相Pcを予め測定しておき、この中心位相Pcの位置によって、極性切替部7の極性切替回路の切替を行う。原点検出用信号6の検出幅Wの中心位相Pcが、
 (X-180°)≦Pc<(X+180°)に存在する場合、
 (X+90°)<Pc<(X+180°)、または、
 (X-180°)≦Pc<(X-90°)
 を満たす場合、4つの周期位置信号2-5の極性をすべて反転に設定し、
 (X-90°)≦Pc≦(X+90°)
 を満たす場合、4つの周期位置信号2-5の極性をすべて非反転に設定する。
 A相およびB相の2つの周期位置信号の、一方の周期位置信号が、上述の中心値より高いまたは低いレベルであり、他方の周期位置信号が振幅の中心値を増加して超える、または減少して下回る位相位置を原点同期位相Xとすると、原点同期位相Xは、横軸にA相周期位置信号12、縦軸にB相周期位置信号13をプロットした場合のリサージュ波において、-180°、-90°、0°、90°のいずれかとなる。
 図5に、横軸にA相周期位置信号12、縦軸にB相周期位置信号13をプロットした場合のリサージュ波形を示す。一例として、原点同期位相Xを0度とすると、
 90°<Pc<180°、または、
 -180°≦Pc<-90°
 を満たす場合、4つの周期位置信号2-5の極性をすべて反転に設定し、
 -90°≦Pc≦90°
 を満たす場合、4つの周期位置信号2-5の極性をすべて非反転に設定する。
 すなわち、原点検出用信号6の検出幅Wの中心位相Pcが、A相周期位置信号12がマイナス値となる場合、すなわち図5における斜線にハッチングした領域に存在する場合は、極性を反転に切り替える。
 90°<Pc<180°
 に存在する中心位相Pc2は、極性切替部7の極性切替回路にて反転に切り替えることにより、リサージュ波形の原点(0,0)に対象に、-90°<Pc<0°のPc2’に切り替わる。Pc2’に切り替わることにより、原点検出用信号6が検出された期間内に、原点同期位相Xが1回となる。
 同様に、
 -180°≦Pc<-90°
 に存在する中心位相Pc3は、極性切替部7の極性切替回路にて反転に切り替えることにより、リサージュ波形の原点(0,0)に対象に、0°<Pc<90°のPc3’に切り替わることにより、原点検出用信号6が検出された期間内に、原点同期位相Xが1回となる。
 エンコーダ本体1の構成を移動体に組立後、移動体を変位させ、エンコーダ本体1から検出される各周期位置信号2-5および原点検出用信号6を、オシロスコープ等を用いてモニタし、各周期位置信号2-5に対する原点検出用信号6の検出幅Wの中心位相Pcを測定する。
 一例として、エンコーダ本体1を移動体であるモータに取り付け、モータのシャフトを、モータを回転させる測定用モータのシャフトとカップリングする。測定用モータは、測定用モータ用駆動制御装置を用いて、駆動する。モータのシャフトが回転し、エンコーダ本体1から出力される各周期位置信号2-5および原点検出用信号6をオシロスコープでモニタし、各周期位置信号2-5に対する原点検出用信号6の検出幅Wの中心位相Pcを測定する。
 なお上述のモータ、測定用モータ、測定用モータ用駆動制御装置、オシロスコープの図示は省略されている。
 その測定結果に基づき、極性切替部7の極性切替回路の反転、非反転を設定することで、再現性よく、安定して、正確にパルス原点信号を発生することが可能となる。さらに、各周期位置信号2-5の極性をすべて反転、または非反転するため、移動体の変位の方向に対応した、各周期位置信号2-5の位相の進みの関係に変化が生じない。したがって、移動体の変位の方向の正変位、逆変位の検出に際し、新たな調整機能を付加する必要がなく、製造コストが抑えられ安価である。
 従来の原点検出用信号6が出力されている期間、設定された原点同期位相Xでタイミングをとりパルス原点信号18を発生する原点信号発生部15では、原点検出用信号6の検出幅Wは、
 (T-ΔW/360°×T)≦W<T
 であった。しかし、極性切替部7を備えることにより、原点検出用信号6の検出幅Wの精度が、
 0.5×T≦W<1.5×T
 となり、検出幅Wの許容値を大きくとることが可能となる。
 原点検出用信号6の検出幅Wが0.5×Tより小さい場合、一例として、原点検出用信号6の検出幅Wの中心位相Pcがリサージュ波形の90度に位置し、原点同期位相Xを0度とすると、図6に示すように、原点同期位相Xにて原点検出用信号6が検出されず、パルス原点信号18が検出されない。したがって、原点検出用信号6の検出幅Wの中心位相Pcがどこにあっても、再現性よく、安定して、正確にパルス原点信号18を発生するためには、原点検出用信号6の検出幅Wが0.5×T以上である必要がある。
 原点検出用信号6の検出幅Wが1.5×T以上である場合、一例として、原点検出用信号6の検出幅Wの中心位相Pcがリサージュ波形の90度に位置し、原点同期位相Xを0度とすると、図7に示すように、原点同期位相Xにて、原点検出用信号6を2回検出するので、パルス原点信号18を2個発生することになる。したがって、原点検出用信号6の検出幅Wの中心位相Pcがどこにあっても、再現性よく、安定して、正確にパルス原点信号を発生するためには、原点検出用信号6の検出幅Wが1.5×Tより小さいことが必要である。
 上述のように、原点検出用信号6の検出幅Wの中心位相Pcがどこにあっても、再現性よく、安定して、正確にパルス原点信号18を発生するためには、原点検出用信号6の検出幅Wの精度が、下記式(1)を満たす必要ある。
 0.5×T≦W<1.5×T   (1)
 式(1)を満たすことより、従来の原点検出用信号6の検出幅W
 T-ΔW/360°×T≦W<T
 よりも、検出幅Wの精度が緩和される。したがって、エンコーダ本体1の構成の設計裕度が広がり、より大きな製造許容範囲を持たせることが可能となるため、製造コストが抑えられ、安価に製造することが可能となる。エンコーダ本体1の構成を移動体に組立後、移動体を変位させ、エンコーダ本体1から検出される各周期位置信号2-5および原点検出用信号6を、オシロスコープ等を用いてモニタし、原点検出用信号6の検出幅Wを測定する。原点検出用信号6の検出幅Wの設定には、エンコーダ本体1に、ディジタルポテンショメータ等を用いた調整機能が付いている。ディジタルポテンショメータは図示が省略されている。また、原点信号発生部15に、原点検出閾値Vtなどを調整する調整機能が付いており、原点検出用信号6の検出幅Wを0.5×T以上、1.5×T未満に調整、設定することにより、再現性よく、安定して、正確にパルス原点信号18を発生することが可能となる。
 なお、パルス化変換装置の一例として、第1の合成回路19と、第2の合成回路20と、内挿分割部14と、原点信号発生部15を含めて、1つまたは複数のディジタル集積回路からなるディジタル集積回路部で構成し、このディジタル集積回路部と、極性切替部7を1つの基板上に実装したパルス化変換基板で構成することがあげられる。集積回路は、ノイズ除去の効果から、第1の合成回路19と第2の合成回路20を含めた構成が望ましい。この集積回路を用いることで、飛躍的に設置面積が小さくなり、小型化が可能となる。
 なお、上記の例では図2に示すように、原点信号発生部15の回路設計段階で決められた、原点信号発生部15のリサージュ波形の直交座標上の予め定められた位相位置Q、すなわち原点同期位相Xが90度の整数倍である90度×N(N:整数)の場合を説明した。
 位相位置Qの別の例を図12に示す。図12に示すように、A相およびB相の2つの周期位置信号12,13の、どちらの周期位置信号も、信号の波の振幅の中心値より高いまたは低いレベルであり、2つの周期位置信号が交差する位相位置を原点同期位相Xとしてもよい。原点同期位相Xは、横軸にA相周期位置信号12、縦軸にB相周期位置信号13をプロットした場合のリサージュ波において、-135°、45°のいずれかとなる。
 これはひいては、予め定められた位相位置Qは、45度に180度の整数倍を加えた45+180×N度(N:整数)となる。
 実施の形態2.
 実施の形態2では、実施の形態1における極性切替部7が、概略、
 基準位相の周期位置信号2と、基準位相と180位相が異なる周期位置信号3とを、電気的に配線を入れかえ可能な第1の極性切替回路71と、
 基準位相と90度位相が異なる周期位置信号4と、基準位相と270度位相が異なる周期位置信号5とを、電気的に入れかえ可能な第2の極性切替回路72と、
 を備える。図8は、第1の極性切替回路71の一例の模式図であり、第2の極性切替回路72も同様の構成である。
 一例として、最も簡素化された、パルス化変換装置の構成を図11に示す。第1の合成回路19、第2の合成回路20、内挿分割部14、原点信号発生部15の部分は、パルス化変換IC(DC)で示したディジタル集積回路部で構成する。ディジタル集積回路部は、1つまたは複数のディジタル集積回路で構成され得る。
 第1の極性切替回路71は、同じ構成を有する第1の切替選択部71a,71bを備える。第2の極性切替回路72も同様の構造を有し、第2の切替選択部72a,72bを備える。各切替選択部は端子1、端子2、端子3を備え、端子2を端子1に電気的に接続することにより、入力した周期位置信号の極性が非反転となり、端子2を端子3に電気的に接続することにより、各周期位置信号の極性が反転する。
 エンコーダ本体1から出力された、1つの周期位置信号の位相を基準位相として90度ずつ位相の異なる4つの周期位置信号(2-5)のうち、それぞれ互いに位相が180度異なるA+、A-で示された2つの周期位置信号を1セットとし、第1の極性切替回路71に入力する。同様に、第1の極性切替回路71に入力した以外の、それぞれ互いに位相が180度異なるB+、B-で示された2つの周期位置信号を、第2の極性切替回路72に入力する。
 上述のように、各周期位置信号2-5に対する原点検出用信号6の検出幅Wの中心位相Pcを測定した測定結果に基づき、第1および第2の極性切替回路71,72にて、各切替選択部71a,71b,72a,72bで端子2を、端子1または端子3のどちらか一方に電気的に接続する。第1および第2の極性切替回路71,72から出力された、1つの周期位置信号の位相を基準位相として90度ずつ位相の異なる4つの周期位置信号はパルス化変換IC(DC)に入力される。原点検出用信号6aもパルス化変換IC(DC)に入力される。原点検出用信号6aは、原点検出用信号6aの極性を反転した反転原点検出用信号6bと併せて、パルス化変換IC(DC)に入力してもよい。この場合、パルス化変換IC(DC)にて、原点検出用信号6aと反転原点検出用信号6bの差動処理を行う。パルス化変換IC(DC)からは、A相パルス位置信号16、B相パルス位置信号17、およびパルス原点信号18が出力される。これらのパルス化変換IC(DC)は第1および第2の極性切替回路71,72と共に同一基板上に実装してもよい。
 第1の極性切替回路71の第1の切替選択部71a,71bを図8に示す反転状態に切り替えると、基準位相の周位置期信号(A+)2は、基準位相と180度位相が異なる周期位置信号(A-’)9に切り替わり、基準位相と180度位相が異なる周期位置信号(A-)3は、基準位相の周期位置信号(A+’)8に切り替わる。
 第1の極性切替回路71の第1の切替選択部71a,71bを図8のそれぞれ下側の端子に接続する非反転に切替ると、基準位相の周期位置信号(A+)2は、基準位相の周期位置信号(A+’)8のまま出力され、基準位相と180度位相が異なる周期位置信号(A-)3は、基準位相と180度位相が異なる周期位置信号(A-’)9のまま出力される。
 第2の切替選択部72a,72bを有する第2の極性切替回路72も同様である。
 実施の形態1の各極性切替回路において、入力値として180度位相が異なる2つの周期位置信号を用いること、すなわち90度ずつ位相の異なる4つの周期位置信号を用いることにより、電気的に配線を入れかえる構成の極性切替回路を備えることが可能となる。
 各極性切替回路は、例えば図8に示すような、簡易な構成をしており、信号の比較処理や論理処理や加算、演算処理をする必要がない。オペアンプ等で構成される演算処理回路やコンパレータなどで構成される比較回路などは必要ない。近年、移動体の変位速度は高速化しており、周波数特性が優れた高価な回路部品を用いているが、その部品点数の増加は生じない。したがって製造コストが抑えられ、安価である。設置面積の増加が抑えられ、小型化が可能となる。また、回路部品から生じる発熱も抑えられ、信号特性の不具合を防げる。
 実施の形態3.
 図9はこの発明の実施の形態3に関わるインクリメンタル型エンコーダのパルス化変換装置の構成の一例を示すブロック図である。実施の形態3は、実施の形態1における、エンコーダ本体1から、移動体の変位に応じて出力される周期位置信号が、90度位相の異なる2つの周期位置信号(A)31、周期位置信号(B)32であり、第1の極性切替部21および第2の極性切替部22を備える。
 エンコーダ本体1からは、移動体の変位に応じて、90度位相が異なる2つの周期位置信号(A、B)31,32が出力される。これら2つの周期位置信号31,32は、変位速度に応じた周波数の正弦波信号であって、移動体の変位の方向によって、周期位置信号(A)31または周期位置信号(B)32のいずれか一方の位相が進んだものになる。
 この場合、エンコーダ本体1は、移動体の位置又は角度の変位に応じて、位相が90度異なる2つの周期位置信号を発生する位置信号発生部1aと、移動体の変位位置が基準位置に達すると、信号の検出幅Wが周期位置信号31,32の周期Tの0.5倍以上、1.5倍未満となる原点検出用信号6を発生する原点検出用信号発生部1bと、を有することになる。
 周期位置信号(A)31の極性の反転と非反転は、切替可能な第1の極性切替部21で行われ、周期位置信号(B)32の極性の反転と非反転は、切替可能な第2の極性切替部22で行われる。その他の内挿分割部14、原点信号発生部15、カウンタ部41の部分については上記実施の形態と同様である。
 エンコーダ本体1から出力される周期位置信号31,32が、90度位相が異なる2つの周期位置信号でも、第1の極性切替部21および第2の極性切替部22を備えることにより、実施の形態1と同様の効果を得ることができる。
 実施の形態4.
 実施の形態4は、実施の形態3における各極性切替部21,22が、非反転回路212bと反転回路212aと切替選択部212cで構成される。図10は、第1の極性切替部21の一例を示すもので、第2の極性切替部22も同様の構成である。
 反転回路212aはオペアンプなどを用いて構成され、各周期位置信号の振幅値の増幅率調整や、オフセット値の調整が可能である。非反転回路212bも同様である。ただし、各周期位置信号の調整が不要であれば、非反転回路212bは図10で破線で示すように、備えなくても構わない。例えば、オフセット値が1.0Vであって、オフセット値を中心に、±0.5Vの振幅の周期位置信号の場合、2.0Vから周期位置信号を差動する差動回路を備えることで、反転信号が得られる。
 エンコーダ本体1から出力される周期位置信号が、90度位相が異なる2つの周期位置信号31,32でも、切替スイッチからなる切替選択部212cと、演算回路を1つまたは2つを備える非反転回路212bと反転回路212aからなる極性切替部にて、周期位置信号の反転、非反転とを切替可能となる。非反転回路212bと反転回路212aからなる極性切替部は、演算回路を1つまたは2つ含み、比較的簡易な回路構成である。部品点数の増加は限られており、製造コストが抑えられ安価である。設置面積の増加も抑えられ、小型化が可能となる。また、回路部品から生じる発熱も抑えられ、信号特性の不具合を防げる。
 なお、エンコーダ本体1の移動体の位置又は角度の変位を計測する部分は、光学式でも磁気式でもどちらでも構わない。
 また、上記各実施の形態では、各周期位置信号2-5に対する原点検出用信号6の検出幅Wの中心位相Pcの測定およびこの中心位相Pcの位置に従った極性切替部7の極性切替回路の切替を人手により行っている。しかしながら、例えば極性切替部7に原点検出用信号6も入力し、極性切替部7に電圧計等のセンサおよびセンサでの検出値に基づく演算処理および制御のための演算制御部を設け、さらに極性切替回路を演算制御部で制御される電動スイッチで構成することにより、上述の検出幅Wの中心位相Pc等の測定、回路の切替えを自動で行うようにしてもよい。この場合、極性切替部7の演算制御部は、第1、第2の合成回路19、20、内挿分割部14、原点信号発生部15と共にディジタル集積回路部内に構成する。
 またはさらに、エンコーダ本体1から原点検出用信号6の検出幅Wの設定用ディジタルポテンショメータの設定信号を極性切替部7で入力して使用するようにしてもよい。
 なおこの発明は上記各実施の形態に限定されるものではなく、これらの可能な組み合わせを全て含む。
産業上の利用の可能性
 この発明は、種々の分野、種々の形態のインクリメンタル型エンコーダのパルス化変換装置に適用可能である。
 1 エンコーダ本体、1a 位置信号発生部、1b 原点検出用信号発生部、2-5 周期位置信号、6,6a 原点検出用信号、6b 反転原点検出用信号、7 極性切替部、12 A相周期位置信号、13 B相周期位置信号、14 内挿分割部、15 原点信号発生部、16 A相パルス位置信号、17 B相パルス位置信号、18 パルス原点信号、19 第1の合成回路、20 第2の合成回路、21 第1の極性切替部、22 第2の極性切替部、31,32 周期位置信号、41 カウンタ部、71 第1の極性切替回路、72 第2の極性切替回路、71a,71b,72a,72b 切替選択部、212a 反転回路、212b 非反転回路、212c 切替選択部。

Claims (24)

  1.  移動体の位置又は角度の変位に応じて、1つの周期位置信号の位相を基準位相として90度ずつ位相の異なる4つの周期位置信号を発生する位置信号発生部と、
     前記移動体の変位位置が基準位置に達すると、信号の検出幅が前記4つの周期位置信号の周期の0.5倍以上、1.5倍未満となる原点検出用信号を発生する原点検出用信号発生部と、
     前記4つの周期位置信号の各信号の極性の切替えを選択的に行う極性切替部と、
     前記極性切替部が出力する前記4つの周期位置信号から、設定された分解能を有するパルス位置信号を生成する内挿分割部と、
    前記原点検出用信号が検出された期間における、位相が90度異なる2つの前記周期位置信号に従った予め定められた位相位置に基づき、前記パルス位置信号に同期してパルス原点信号を発生する原点信号発生部と、
     を備えた、インクリメンタル型エンコーダのパルス化変換装置。
  2.  移動体の位置又は角度の変位に応じて、1つの周期位置信号の位相を基準位相として90度ずつ位相の異なる4つの周期位置信号を発生する位置信号発生部と、
     前記移動体の変位位置が基準位置に達すると、信号の検出幅が前記4つの周期位置信号の周期の0.5倍以上、1.5倍未満となる原点検出用信号を発生する原点検出用信号発生部と、
     前記4つの周期位置信号の各信号の極性の切替えを選択的に行う極性切替部と、
     前記極性切替部から出力されたそれぞれ互いに位相が180度異なる2つの前記周期位置信号の差動信号である周期位置信号を発生させる第1および第2の合成回路と、
     前記第1および第2の合成回路からの90度位相の異なる2つの差動信号である前記周期位置信号から、設定された分解能を有するパルス位置信号を生成する内挿分割部と、
     前記原点検出用信号が検出された期間における、前記第1および第2の合成回路からの90度位相の異なる2つの差動信号である前記周期位置信号に従った予め定められた位相位置に基づき、前記パルス位置信号に同期してパルス原点信号を発生する原点信号発生部と、
     を備えた、インクリメンタル型エンコーダのパルス化変換装置。
  3.  前記原点信号発生部における予め定められた位相位置が、2つの前記周期位置信号の一方の値を2次元の直交座標系の横軸方向にとり、他方の値を縦軸方向にとり、前記直交座標系上で、2つの周期位置信号の値によって決まる、移動体の変位に従ったリサージュ波形の中心位置周りの基準回転位置に対する角度位置である、請求項1または2に記載のインクリメンタル型エンコーダのパルス化変換装置。
  4.  前記予め定められた位相位置は、90度の整数倍(90×N(N:整数))である、請求項3に記載のインクリメンタル型エンコーダのパルス化変換装置。
  5.  前記予め定められた位相位置は、45度に180度の整数倍を加えた値(45+180×N(N:整数))である、請求項3に記載のインクリメンタル型エンコーダのパルス化変換装置。
  6.  移動体の位置又は角度の変位に応じて、1つの周期位置信号の位相を基準位相として90度ずつ位相の異なる4つの周期位置信号を発生する位置信号発生部と、
     前記移動体の変位位置が基準位置に達すると、信号の検出幅が前記4つの周期位置信号の周期の0.5倍以上、1.5倍未満となる原点検出用信号を発生する原点検出用信号発生部と、
     前記4つの周期位置信号の各信号の極性の切替えを選択的に行う極性切替部と、
     前記極性切替部が出力する前記4つの周期位置信号から、設定された分解能を有するパルス位置信号を生成する内挿分割部と、
     前記原点検出用信号が検出された期間における、位相が90度異なる2つの前記周期位置信号の、一方の周期位置信号が振幅の中心値より高いまたは低いレベルであり、他方の周期位置信号が振幅の中心値を増加して超える、または減少して下回る位相位置に基づき、前記パルス位置信号に同期してパルス原点信号を発生する原点信号発生部と、
     を備えた、インクリメンタル型エンコーダのパルス化変換装置。
  7.  移動体の位置又は角度の変位に応じて、1つの周期位置信号の位相を基準位相として90度ずつ位相の異なる4つの周期位置信号を発生する位置信号発生部と、
     前記移動体の変位位置が基準位置に達すると、信号の検出幅が前記4つの周期位置信号の周期の0.5倍以上、1.5倍未満となる原点検出用信号を発生する原点検出用信号発生部と、
     前記4つの周期位置信号の各信号の極性の切替えを選択的に行う極性切替部と、
     前記極性切替部から出力されたそれぞれ互いに位相が180度異なる2つの前記周期位置信号の差動信号である周期位置信号を発生させる第1および第2の合成回路と、
     前記第1および第2の合成回路からの90度位相の異なる2つの差動信号である前記周期位置信号から、設定された分解能を有するパルス位置信号を生成する内挿分割部と、
     前記原点検出用信号が検出された期間における、前記第1および第2の合成回路からの90度位相の異なる2つの差動信号である前記周期位置信号の、一方の周期位置信号が振幅の中心値より高いまたは低いレベルであり、他方の周期位置信号が振幅の中心値を増加して超える、または減少して下回る位相位置に基づき、前記パルス位置信号に同期してパルス原点信号を発生する原点信号発生部と、
     を備えた、インクリメンタル型エンコーダのパルス化変換装置。
  8.  移動体の位置又は角度の変位に応じて、1つの周期位置信号の位相を基準位相として90度ずつ位相の異なる4つの周期位置信号を発生する位置信号発生部と、
     前記移動体の変位位置が基準位置に達すると、信号の検出幅が前記4つの周期位置信号の周期の0.5倍以上、1.5倍未満となる原点検出用信号を発生する原点検出用信号発生部と、
     前記4つの周期位置信号の各信号の極性の切替えを選択的に行う極性切替部と、
     前記極性切替部が出力する前記4つの周期位置信号から、設定された分解能を有するパルス位置信号を生成する内挿分割部と、
     前記原点検出用信号が検出された期間における、位相が90度異なる2つの前記周期位置信号の、両方の前記周期位置信号も振幅の中心値より高いまたは低いレベルであり、2つの前記周期位置信号が交差する位相位置に基づき、前記パルス位置信号に同期してパルス原点信号を発生する原点信号発生部と、
     を備えた、インクリメンタル型エンコーダのパルス化変換装置。
  9.  移動体の位置又は角度の変位に応じて、1つの周期位置信号の位相を基準位相として90度ずつ位相の異なる4つの周期位置信号を発生する位置信号発生部と、
     前記移動体の変位位置が基準位置に達すると、信号の検出幅が前記4つの周期位置信号の周期の0.5倍以上、1.5倍未満となる原点検出用信号を発生する原点検出用信号発生部と、
     前記4つの周期位置信号の各信号の極性の切替えを選択的に行う極性切替部と、
     前記極性切替部から出力されたそれぞれ互いに位相が180度異なる2つの前記周期位置信号の差動信号である周期位置信号を発生させる第1および第2の合成回路と、
     前記第1および第2の合成回路からの90度位相の異なる2つの差動信号である前記周期位置信号から、設定された分解能を有するパルス位置信号を生成する内挿分割部と、
     前記原点検出用信号が検出された期間における、前記第1および第2の合成回路からの90度位相の異なる2つの差動信号である前記周期位置信号の、位相が90度異なる2つの前記周期位置信号の、両方の前記周期位置信号も振幅の中心値より高いまたは低いレベルであり、2つの前記周期位置信号が交差する位相位置に基づき、前記パルス位置信号に同期してパルス原点信号を発生する原点信号発生部と、
     を備えた、インクリメンタル型エンコーダのパルス化変換装置。
  10.  前記極性切替部は、
     第1の切替選択部を含む第1の極性切替回路と、
     第2の切替選択部を含む第2の極性切替回路と、
     を有し、
     前記第1の極性切替回路は、前記第1の切替選択部の極性の選択に基づき、基準位相の周期位置信号の電気配線の接続と、基準位相と180度位相が異なる周期位置信号の電気配線の接続を入れ替え、
     前記第2の極性切替回路は、前記第2の切替選択部の極性の選択に基づき、基準位相と90度位相が異なる周期位置信号の電気配線の接続と、基準位相と270度位相が異なる周期位置信号の電気配線の接続を入れ替える、
     請求項1から9までのいずれか1項に記載のインクリメンタル型エンコーダのパルス化変換装置。
  11.  移動体の位置又は角度の変位に応じて、位相が90度異なる2つの周期位置信号を発生する位置信号発生部、
     移動体の変位位置が基準位置に達すると、信号の検出幅が前記周期位置信号の周期の0.5倍以上、1.5倍未満となる原点検出用信号を発生する原点検出用信号発生部と、
     一方の前記周期位置信号の極性の反転と非反転とを選択的に行う第1の極性切替部と、
     他方の前記周期位置信号の極性の反転と非反転とを選択的に行う第2の極性切替部と、
     前記第1および第2の極性切替部からの2つの前記周期位置信号から、設定された分解能を有するパルス位置信号を生成する内挿分割部と、
     前記原点検出用信号が検出された期間における、2つの前記周期位置信号の、予め定められた位相位置に基づき、前記パルス位置信号に同期してパルス原点信号を発生する原点信号発生部と、
     を備えた、インクリメンタル型エンコーダのパルス化変換装置。
  12.  前記原点信号発生部の予め定められた位相位置が、2つの前記周期位置信号の一方の値を2次元の直交座標系の横軸方向にとり、他方の値を縦軸方向にとり、前記直交座標系上で、2つの周期位置信号の値によって決まる、移動体の変位に従ったリサージュ波形の中心位置周りの基準回転位置に対する角度位置である、請求項11に記載のインクリメンタル型エンコーダのパルス化変換装置。
  13.  前記予め定められた位相位置は、90度の整数倍(90×N(N:整数))である、請求項12に記載のインクリメンタル型エンコーダのパルス化変換装置。
  14.  前記予め定められた位相位置は、45度に180度の整数倍を加えた値(45+180×N(N:整数))である、請求項12に記載のインクリメンタル型エンコーダのパルス化変換装置。
  15.  移動体の位置又は角度の変位に応じて、位相が90度異なる2つの周期位置信号を発生する位置信号発生部、
     移動体の変位位置が基準位置に達すると、信号の検出幅が前記周期位置信号の周期の0.5倍以上、1.5倍未満となる原点検出用信号を発生する原点検出用信号発生部と、
     一方の前記周期位置信号の極性の反転と非反転とを選択的に行う第1の極性切替部と、
     他方の前記周期位置信号の極性の反転と非反転とを選択的に行う第2の極性切替部と、
     前記第1および第2の極性切替部からの2つの前記周期位置信号から、設定された分解能を有するパルス位置信号を生成する内挿分割部と、
     前記原点検出用信号が検出された期間における、2つの前記周期位置信号の、一方の周期位置信号が振幅の中心値より高いまたは低いレベルであり、他方の周期位置信号が振幅の中心値を増加して超える、または減少して下回る位相位置に基づき、前記パルス位置信号に同期してパルス原点信号を発生する原点信号発生部と、
     を備える、インクリメンタル型エンコーダのパルス化変換装置。
  16.  移動体の位置又は角度の変位に応じて、位相が90度異なる2つの周期位置信号を発生する位置信号発生部、
     移動体の変位位置が基準位置に達すると、信号の検出幅が前記周期位置信号の周期の0.5倍以上、1.5倍未満となる原点検出用信号を発生する原点検出用信号発生部と、
     一方の前記周期位置信号の極性の反転と非反転とを選択的に行う第1の極性切替部と、
     他方の前記周期位置信号の極性の反転と非反転とを選択的に行う第2の極性切替部と、
     前記第1および第2の極性切替部からの2つの前記周期位置信号から、設定された分解能を有するパルス位置信号を生成する内挿分割部と、
     前記原点検出用信号が検出された期間における、2つの前記周期位置信号の、両方の前記周期位置信号も振幅の中心値より高いまたは低いレベルであり、2つの前記周期位置信号が交差する位相位置に基づき、前記パルス位置信号に同期してパルス原点信号を発生する原点信号発生部と、
     を備える、インクリメンタル型エンコーダのパルス化変換装置。
  17.  前記第1および第2の極性切替部はそれぞれ、
     前記周期位置信号の極性を反転させる反転回路と、
     前記周期位置信号の極性を反転させない非反転回路と、
     前記反転回路と非反転回路の出力を切り替える切替選択部と、
     を備える、請求項11から16までのいずれか1項に記載のインクリメンタル型エンコーダのパルス化変換装置。
  18.  前記第1および第2の極性切替部はそれぞれ、
     前記周期位置信号の極性を反転させる反転回路と、
     前記周期位置信号と前記反転回路の出力とを切り替える切替選択部と、
     を備える、請求項11から16までのいずれか1項に記載のインクリメンタル型エンコーダのパルス化変換装置。
  19.  移動体の位置又は角度の変位に応じて、1つの周期位置信号の位相を基準位相として90度ずつ位相の異なる4つの周期位置信号を発生し、
     前記移動体の変位位置が基準位置に達すると、信号の検出幅が前記4つの周期位置信号の周期の0.5倍以上、1.5倍未満となる原点検出用信号を発生し、
     前記4つの周期位置信号の各信号の極性を選択的に切替え、
     極性が選択的に切替えられた前記4つの周期位置信号から、設定された分解能を有するパルス位置信号を生成し、
     前記原点検出用信号が検出された期間における、位相が90度異なる2つの前記周期位置信号に従った予め定められた位相位置に基づき、前記パルス位置信号に同期してパルス原点信号を発生する、
     ことを含む、インクリメンタル型エンコーダにおけるパルス化変換方法。
  20.  前記予め定められた位相位置が、2つの前記周期位置信号の一方の値を2次元の直交座標系の横軸方向にとり、他方の値を縦軸方向にとり、前記直交座標系上で、2つの周期位置信号の値によって決まる、移動体の変位に従ったリサージュ波形の中心位置周りの基準回転位置に対する角度位置である、請求項19に記載のインクリメンタル型エンコーダにおけるパルス化変換方法。
  21.  前記予め定められた位相位置は、90度の整数倍(90×N(N:整数))である、請求項20に記載のインクリメンタル型エンコーダにおけるパルス化変換方法。
  22.  前記予め定められた位相位置は、45度に180度の整数倍を加えた値(45+180×N(N:整数))である、請求項20に記載のインクリメンタル型エンコーダにおけるパルス化変換方法。
  23.  移動体の位置又は角度の変位に応じて、1つの周期位置信号の位相を基準位相として90度ずつ位相の異なる4つの周期位置信号を発生し、
     前記移動体の変位位置が基準位置に達すると、信号の検出幅が前記4つの周期位置信号の周期の0.5倍以上、1.5倍未満となる原点検出用信号を発生し、
     前記4つの周期位置信号の各信号の極性を選択的に切替え、
     極性が選択的に切替えられた前記4つの周期位置信号から、設定された分解能を有するパルス位置信号を生成し、
     前記原点検出用信号が検出された期間における、位相が90度異なる2つの前記周期位置信号の、一方の周期位置信号が振幅の中心値より高いまたは低いレベルであり、他方の周期位置信号が振幅の中心値を増加して超える、または減少して下回る位相位置に基づき、前記パルス位置信号に同期してパルス原点信号を発生する、
     ことを含む、インクリメンタル型エンコーダにおけるパルス化変換方法。
  24.  移動体の位置又は角度の変位に応じて、1つの周期位置信号の位相を基準位相として90度ずつ位相の異なる4つの周期位置信号を発生し、
     前記移動体の変位位置が基準位置に達すると、信号の検出幅が前記4つの周期位置信号の周期の0.5倍以上、1.5倍未満となる原点検出用信号を発生し、
     前記4つの周期位置信号の各信号の極性を選択的に切替え、
     極性が選択的に切替えられた前記4つの周期位置信号から、設定された分解能を有するパルス位置信号を生成し、
     前記原点検出用信号が検出された期間における、位相が90度異なる2つの前記周期位置信号の、両方の前記周期位置信号も振幅の中心値より高いまたは低いレベルであり、2つの前記周期位置信号が交差する位相位置に基づき、前記パルス位置信号に同期してパルス原点信号を発生する、
     ことを含む、インクリメンタル型エンコーダにおけるパルス化変換方法。
PCT/JP2017/029090 2016-10-25 2017-08-10 インクリメンタル型エンコーダのパルス化変換装置およびパルス化変換方法 WO2018079014A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018547142A JP6625236B2 (ja) 2016-10-25 2017-08-10 インクリメンタル型エンコーダのパルス化変換装置およびパルス化変換方法
CN201780065039.3A CN109844462B (zh) 2016-10-25 2017-08-10 增量型编码器的脉冲化变换装置及脉冲化变换方法
KR1020197011105A KR102113456B1 (ko) 2016-10-25 2017-08-10 증분형 인코더의 펄스화 변환 장치 및 펄스화 변환 방법
TW106131411A TWI650532B (zh) 2016-10-25 2017-09-13 遞增型編碼器之脈衝化變換裝置及脈衝化變換方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016208412 2016-10-25
JP2016-208412 2016-10-25

Publications (1)

Publication Number Publication Date
WO2018079014A1 true WO2018079014A1 (ja) 2018-05-03

Family

ID=62024718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029090 WO2018079014A1 (ja) 2016-10-25 2017-08-10 インクリメンタル型エンコーダのパルス化変換装置およびパルス化変換方法

Country Status (5)

Country Link
JP (1) JP6625236B2 (ja)
KR (1) KR102113456B1 (ja)
CN (1) CN109844462B (ja)
TW (1) TWI650532B (ja)
WO (1) WO2018079014A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11512983B2 (en) 2019-09-17 2022-11-29 Fanuc Corporation Encoder and encoder control method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000161992A (ja) * 1998-11-30 2000-06-16 Futaba Corp 光学式リニヤスケール
JP2002071385A (ja) * 2000-08-28 2002-03-08 Futaba Corp 原点信号発生装置
JP2002116060A (ja) * 2000-10-11 2002-04-19 Futaba Corp リニヤスケールにおける原点信号の設定装置及び設定方法
JP2002162253A (ja) * 2000-11-27 2002-06-07 Futaba Corp リニヤスケールにおける原点信号の自動設定装置
JP2004177281A (ja) * 2002-11-27 2004-06-24 Mitsutoyo Corp 変位測定装置
JP2005024451A (ja) * 2003-07-04 2005-01-27 Olympus Corp 変位センサ、変位センサの最適な原点位置候補の検知方法、及び、変位センサの原点検出の安定度判断方法
JP2015038443A (ja) * 2013-08-19 2015-02-26 キヤノン株式会社 エンコーダ及びエンコーダの原点リセット方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01248020A (ja) 1988-03-29 1989-10-03 Omron Tateisi Electron Co エンコーダの基準原点信号処理回路
JP2558287Y2 (ja) 1992-08-28 1997-12-24 新東工業株式会社 装飾体材料クランプ装置
JP3506613B2 (ja) * 1998-09-21 2004-03-15 株式会社ミツトヨ 原点検出方式
JP2000213925A (ja) 1999-01-26 2000-08-04 Takashi Katagiri 位置検出装置
JP4274751B2 (ja) * 2001-07-03 2009-06-10 オリンパス株式会社 エンコーダ
JP4498024B2 (ja) * 2004-06-15 2010-07-07 キヤノン株式会社 光学式エンコーダ
JP4953589B2 (ja) * 2005-05-25 2012-06-13 株式会社ミツトヨ エンコーダの原点信号生成方法及び装置
US9568338B2 (en) * 2012-05-30 2017-02-14 Nikon Corporation Encoder and drive device
US9484060B2 (en) * 2013-08-19 2016-11-01 Canon Kabushiki Kaisha Encoder
JP6158682B2 (ja) * 2013-10-25 2017-07-05 エスアイアイ・セミコンダクタ株式会社 磁気センサ回路
JP6437802B2 (ja) * 2014-11-28 2018-12-12 株式会社ミツトヨ 光学式エンコーダ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000161992A (ja) * 1998-11-30 2000-06-16 Futaba Corp 光学式リニヤスケール
JP2002071385A (ja) * 2000-08-28 2002-03-08 Futaba Corp 原点信号発生装置
JP2002116060A (ja) * 2000-10-11 2002-04-19 Futaba Corp リニヤスケールにおける原点信号の設定装置及び設定方法
JP2002162253A (ja) * 2000-11-27 2002-06-07 Futaba Corp リニヤスケールにおける原点信号の自動設定装置
JP2004177281A (ja) * 2002-11-27 2004-06-24 Mitsutoyo Corp 変位測定装置
JP2005024451A (ja) * 2003-07-04 2005-01-27 Olympus Corp 変位センサ、変位センサの最適な原点位置候補の検知方法、及び、変位センサの原点検出の安定度判断方法
JP2015038443A (ja) * 2013-08-19 2015-02-26 キヤノン株式会社 エンコーダ及びエンコーダの原点リセット方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11512983B2 (en) 2019-09-17 2022-11-29 Fanuc Corporation Encoder and encoder control method

Also Published As

Publication number Publication date
KR20190047081A (ko) 2019-05-07
JP6625236B2 (ja) 2019-12-25
KR102113456B1 (ko) 2020-06-02
CN109844462A (zh) 2019-06-04
TW201829983A (zh) 2018-08-16
TWI650532B (zh) 2019-02-11
CN109844462B (zh) 2021-05-25
JPWO2018079014A1 (ja) 2019-02-07

Similar Documents

Publication Publication Date Title
TWI471531B (zh) Encoder system, signal processing method
TWI650528B (zh) 旋轉角度檢測裝置及旋轉角度檢測方法
US20110187355A1 (en) Method of processing encoder signals
WO2011074103A1 (ja) ロータリエンコーダ及びそれを有する回転機構
JP4835606B2 (ja) 回転体の位相・速度検出装置
JP5893360B2 (ja) インクリメンタル位置測定機構の位置信号を監視するための監視ユニットおよび方法
JP2014155356A (ja) 交流電動機の制御装置及び制御方法
JP5402313B2 (ja) エンコーダおよび信号処理方法
US8271221B2 (en) Phase detection device and position detection device
WO2018079014A1 (ja) インクリメンタル型エンコーダのパルス化変換装置およびパルス化変換方法
CN112434254B (zh) 针对正余弦编码器实现增量脉冲计数值校正处理的方法、系统、装置、处理器及其存储介质
JPH04279817A (ja) アブソリュートエンコーダ
JP2012503760A (ja) 位置測定装置用の基準パルスを発生するための配列および方法
JP2005315764A (ja) 回転角速度検出装置
CN110375788B (zh) 一种四路正交差动信号解调仪表校准方法及系统
JPH04524B2 (ja)
JP6507347B2 (ja) 静電容量式角度検出装置
JP6652075B2 (ja) 回転角度検出装置
JP2013047693A (ja) エンコーダ及びエンコーダのパターン検出方法
JP2019070644A (ja) 変調波レゾルバ装置
JP2003035569A (ja) 光学式エンコーダ
JP2013156062A (ja) 光学式エンコーダ
JP2003161644A (ja) 光学式エンコーダおよび光学式エンコーダ校正装置
JP2010014410A (ja) 回転体の回転位置検出装置
JP2003262649A (ja) 速度検出装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018547142

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863360

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197011105

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17863360

Country of ref document: EP

Kind code of ref document: A1