WO2018074584A1 - 冷凍機油及び冷凍機用作動流体組成物 - Google Patents

冷凍機油及び冷凍機用作動流体組成物 Download PDF

Info

Publication number
WO2018074584A1
WO2018074584A1 PCT/JP2017/037994 JP2017037994W WO2018074584A1 WO 2018074584 A1 WO2018074584 A1 WO 2018074584A1 JP 2017037994 W JP2017037994 W JP 2017037994W WO 2018074584 A1 WO2018074584 A1 WO 2018074584A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylate
meth
poly
refrigerant
refrigerating machine
Prior art date
Application number
PCT/JP2017/037994
Other languages
English (en)
French (fr)
Inventor
健太郎 山口
亜喜良 多田
達貴 中島
武 大城戸
英俊 尾形
Original Assignee
Jxtgエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxtgエネルギー株式会社 filed Critical Jxtgエネルギー株式会社
Priority to JP2018545768A priority Critical patent/JPWO2018074584A1/ja
Priority to US16/343,226 priority patent/US11208608B2/en
Priority to CN201780064182.0A priority patent/CN109844076B/zh
Publication of WO2018074584A1 publication Critical patent/WO2018074584A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/042Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising compounds containing carbon and hydrogen only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/22Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/28Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/008Lubricant compositions compatible with refrigerants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/106Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/128Perfluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/0806Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • C10M2209/0845Acrylate; Methacrylate used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/09Characteristics associated with water
    • C10N2020/097Refrigerants
    • C10N2020/101Containing Hydrofluorocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/09Characteristics associated with water
    • C10N2020/097Refrigerants
    • C10N2020/103Containing Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/09Characteristics associated with water
    • C10N2020/097Refrigerants
    • C10N2020/106Containing Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants

Definitions

  • the present invention relates to a refrigerating machine oil and a working fluid composition for a refrigerating machine.
  • CFC chlorofluorocarbon
  • HCFC hydrochlorofluorocarbon
  • refrigeration oils are compatible and lubricated with refrigerants depending on the type of refrigerant that coexists. Refrigerating machine oil needs to be developed for each refrigerant in order to show unpredictable behavior such as properties, melt viscosity with refrigerant, and thermal and chemical stability.
  • Patent Document 1 discloses a refrigerating machine oil mainly composed of a predetermined acrylate polymer as a refrigerating machine oil having excellent compatibility with a refrigerant such as Freon 134a and having excellent lubricating performance.
  • an object of the present invention is to provide a refrigerating machine oil and a working fluid composition for a refrigerating machine that are excellent in compatibility with a predetermined refrigerant.
  • the present invention is a refrigerating machine oil containing poly (meth) acrylate as a base oil, wherein the poly (meth) acrylate includes a hydrogenated product of poly (meth) acrylate,
  • the content ratio of the unit having a carbon-carbon double bond located at the terminal of the poly (meth) acrylate is 6 mol% or less with respect to all the units constituting the poly (meth) acrylate.
  • a kinematic viscosity at 1 to 1000 mm 2 / s difluoromethane, a mixture of difluoromethane and pentafluoroethane, a mixture of difluoromethane, pentafluoroethane and 1,1,1,2-tetrafluoroethane, penta Mixture of fluoroethane, 1,1,1,2-tetrafluoroethane and 1,1,1-trifluoroethane Things, unsaturated fluorinated hydrocarbon, a hydrocarbon, and is used together with the refrigerant containing refrigerant selected from carbon dioxide, to provide a refrigerating machine oil.
  • the present invention is a refrigerating machine oil containing poly (meth) acrylate as a base oil, wherein the poly (meth) acrylate includes a hydrogenated product of poly (meth) acrylate,
  • the content ratio of the unit having a carbon-carbon double bond located at the terminal in the (meth) acrylate is 6 mol% or less with respect to all units constituting the poly (meth) acrylate, and the hydrogen of the poly (meth) acrylate
  • the refrigerant is a mixture of difluoromethane, pentafluoroethane, and 1,1,1,2-tetrafluoroethane, pentafluoroethane, 1,1,1,2-tetrafluoroethane, and 1,1. , Mixtures with 1-trifluoroethane, unsaturated fluorinated hydrocarbons, and hydrocarbons selected from hydrocarbons, and may include unsaturated fluorinated hydrocarbons.
  • the hydrogenated product of poly (meth) acrylate may have a structural unit represented by the following formula (1).
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or a hydrocarbon group
  • R 4 represents a hydrocarbon group or an oxygen-containing organic group.
  • the hydrocarbon group represented by R 4 in the formula (1) may have 1 to 10 carbon atoms.
  • the hydrocarbon group represented by R 4 in the formula (1) may be an alkyl group having 1 to 4 carbon atoms or an alkyl group having 2 carbon atoms.
  • the refrigerating machine oil according to this embodiment contains poly (meth) acrylate as a base oil.
  • the poly (meth) acrylate includes at least a hydrogenated product of poly (meth) acrylate, and may further include a non-hydrogenated product of poly (meth) acrylate.
  • poly (meth) acrylate subjected to hydrogenation treatment is referred to as “hydrogenated product of poly (meth) acrylate”
  • poly (meth) acrylate not subjected to hydrogenation treatment is referred to as “non-poly (meth) acrylate”.
  • Hydrogenated product poly (meth) acrylate that has been subjected to hydrogenation treatment, and poly (meth) acrylate that has not been subjected to hydrogenation treatment are collectively referred to simply as “poly (meth) acrylate”, respectively.
  • the poly (meth) acrylate has, for example, a structural unit represented by the following formula (1).
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or a hydrocarbon group
  • R 4 represents a hydrocarbon group or an oxygen-containing organic group.
  • the hydrocarbon group represented by R 1 , R 2 and R 3 in Formula (1) may be, for example, an alkyl group.
  • the number of carbon atoms of the hydrocarbon group or alkyl group is preferably 1 to 8, more preferably 1 to 5, and still more preferably 1 to 3.
  • R 1 and R 2 are preferably hydrogen atoms
  • R 3 is preferably a hydrogen atom or a methyl group.
  • the hydrocarbon group represented by R 4 in Formula (1) may be, for example, an alkyl group.
  • the number of carbon atoms of the hydrocarbon group or alkyl group is preferably 1 to 10, more preferably 1 to 5, further preferably 1 to 4, and particularly preferably 2.
  • the average value of the carbon number of the hydrocarbon group represented by R 4 in all structural units constituting the poly (meth) acrylate is preferably 1 to 10, more preferably 1 to 5, still more preferably 1 to 4, particularly Preferably it is 2.
  • the oxygen-containing organic group represented by R 4 include a linear or branched hydrocarbon group containing an oxygen atom that forms an ether bond, and a hydrocarbon group having a glycidyl group.
  • —OR 4 may be, for example, a structure represented by the following formula (2).
  • R 5 represents a divalent hydrocarbon group or a divalent ether bond oxygen-containing hydrocarbon group
  • R 6 represents a hydrocarbon group
  • m represents an integer of 0 or more.
  • the plurality of R 5 may be the same as or different from each other.
  • the carbon number of the divalent hydrocarbon group and the ether bond oxygen-containing hydrocarbon group represented by R 5 in the formula (2) is preferably 1 to 10, more preferably 1 to 5, and still more preferably 1 to 3. .
  • the divalent ether bond oxygen-containing hydrocarbon group may be, for example, a hydrocarbon group having an oxygen atom forming an ether bond in the side chain.
  • R 6 in the formula (2) is preferably a hydrocarbon group having 1 to 20 carbon atoms.
  • the hydrocarbon group include an alkyl group, a cycloalkyl group, a phenyl group, an aryl group, and an arylalkyl group. This hydrocarbon group is preferably an alkyl group, more preferably an alkyl group having 1 to 5 carbon atoms.
  • M in Formula (2) is preferably an integer of 0 or more, more preferably 1 or more, preferably 20 or less, more preferably 10 or less, and even more preferably 5 or less.
  • the average value of m in all structural units constituting the poly (meth) acrylate is preferably 0 to 10.
  • the poly (meth) acrylate may be a homopolymer composed of one kind selected from the structural unit represented by the formula (1), or two kinds selected from the structural unit represented by the formula (1).
  • the copolymer comprised by the above may be sufficient and the copolymer comprised by the structural unit represented by Formula (1) and another structural unit may be sufficient.
  • the copolymer may be either a block copolymer or a random copolymer.
  • the copolymer is preferably at least one structure selected from structural units in which R 4 in formula (1) is an alkyl group having 1 to 4 carbon atoms.
  • the copolymer may have two or more structural units which R 4 in the formula (1) is selected from the structural units is an alkyl group having 1 to 4 carbon atoms, R 4 in the formula (1) One or more structural units selected from structural units in which is an alkyl group having 1 to 4 carbon atoms, and a structural unit in which R 4 in the formula (1) is an alkyl group having 5 to 8 carbon atoms or an oxygen-containing organic group
  • One or more selected structural units may be included.
  • This copolymer has a structural unit in which R 4 in the formula (1) is an alkyl group having 2 carbon atoms (that is, an ethyl group) because it is extremely excellent in compatibility with a predetermined refrigerant.
  • the content of the structural unit in which R 4 in the formula (1) is an alkyl group having 1 to 4 carbon atoms (particularly preferably an ethyl group) is preferably 30 mol% based on the total amount of the structural unit constituting the copolymer. More preferably, it is 50 mol% or more, more preferably 70 mol% or more, particularly preferably 80 mol% or more, and most preferably 90 mol% or more.
  • R 1 to R 4 in (A) to (G) mean R 1 to R 4 in the formula (1), respectively.
  • R 1 ⁇ R 3 is a hydrogen atom, has a structural unit R 4 is an ethyl group, an R 1 ⁇ R 3 is a hydrogen atom, a structural unit R 4 is n- butyl group Copolymer.
  • R 1 ⁇ R 3 is a hydrogen atom
  • a structural unit R 4 is an ethyl radical
  • R 1 ⁇ R 3 is a hydrogen atom
  • a structural unit R 4 is n- butyl radical
  • C a copolymer having a structural unit in which R 1 to R 3 are hydrogen atoms and R 4 is an ethyl group, and a structural unit in which R 1 to R 3 are hydrogen atoms and R 4 is a propyl group Coalescence.
  • R 1 ⁇ R 3 is a hydrogen atom
  • a structural unit R 4 is an ethyl group
  • R 1 ⁇ R 3 is a hydrogen atom
  • R 4 is i- octyl group (e.g. 2-ethylhexyl group)
  • a copolymer having a structural unit e.g. 2-ethylhexyl group
  • a copolymer having a structural unit in which R 4 is a methoxyethyl group is a structural unit in which R 4 is a methoxyethyl group.
  • the hydrogenated product of poly (meth) acrylate is a product obtained by hydrogenating poly (meth) acrylate (non-hydrogenated product of poly (meth) acrylate) having a carbon-carbon double bond at the end of its main chain. Thus, a part or all of the carbon-carbon double bond at the end of the main chain is hydrogenated.
  • the hydrogenated poly (meth) acrylate has at least one of a terminal structure represented by the following formula (3) and a terminal structure represented by the following formula (4) in addition to the above-described poly (meth) acrylate structure. And preferably has both of these terminal structures.
  • R 1 to R 4 have the same meanings as R 1 to R 4 in formula (1), respectively.
  • the content ratio of the unit (structural unit) having a carbon-carbon double bond (hereinafter also referred to as “terminal double bond”) located at the terminal of poly (meth) acrylate is excellent in compatibility with a predetermined refrigerant.
  • a predetermined refrigerant preferably 0.01 mol% or less.
  • the content ratio of the unit having a terminal double bond is 0.1 mol% or more or 1 with respect to all units constituting the poly (meth) acrylate. Mole% or more may be sufficient.
  • the unit having a carbon-carbon double bond located at the terminal in poly (meth) acrylate means a unit represented by the following formula (5) or formula (6).
  • Examples of the unit include a unit having a vinylidene group in which R 1 and R 2 in formula (5) are hydrogen, and a vinylene group in which any of R 1 and R 2 in formula (6) and R 3 are hydrogen.
  • the unit which has is mentioned.
  • R 1 to R 4 have the same meanings as R 1 to R 4 in formula (1), respectively.
  • the content ratio of the unit having a terminal double bond in poly (meth) acrylate is a peak derived from a hydrogen atom bonded to a carbon atom constituting the terminal double bond, and an ester peak (i.e. derived from a hydrogen atom bonded to the oxygen atom nearest carbon atom of the single bonds in the structure, a peak derived from H n in -O-CH n R 3-n , where n is an integer of 1 to 3, -CH n R 3-n corresponds to R 4 in formula (1)) and is calculated by calculating the average ratio of the molar ratio of units having terminal double bonds to all units. It is done.
  • the content ratio V of the unit having a terminal double bond in the poly (meth) acrylate is calculated by the following formula, for example.
  • V Hv / Hm ⁇ 100 here
  • V Content ratio (mol%) of units having terminal double bonds in poly (meth) acrylate
  • Hv integrated value of peaks derived from hydrogen atoms bonded to carbon atoms constituting terminal double bonds in poly (meth) acrylate / 2 (for example, integrated value of peaks derived from hydrogen atoms constituting vinylidene groups and vinylene groups / 2)
  • Hm poly (meth) peak derived from the hydrogen atom bonded to the oxygen atom nearest carbon atom of the single bonds in the ester structure in acrylates (e.g., peak derived from H n in -O-CH n R 3-n , wherein N is an integer of 1 to 3, and —CH n R 3-n corresponds to R 4 in the formula (1)) / n It is.
  • a peak derived from a hydrogen atom bonded to a carbon atom constituting a terminal double bond in poly (meth) acrylate appears, for example, in the vicinity of about 5.5 to 6.2 ppm, and an ester structure in poly (meth) acrylate
  • the 1 H-NMR measurement was performed using VNMRS 600 MHz NMR spectrometer manufactured by Agilent Technologies as a device and deuterated chloroform as a solvent, but other devices may be used as long as the same results are obtained. .
  • the content of the residual monomer in the hydrogenated product of poly (meth) acrylate is preferably 5% by mass or less, based on the total amount of the hydrogenated product of poly (meth) acrylate, from the viewpoint of excellent thermal stability and the like. % By mass or less or 1% by mass or less, more preferably 0.5% by mass or less, 0.2% by mass or less or 0.1% by mass or less, and still more preferably 0.05% by mass or less. Especially preferably, it is less than 0.01 mass%.
  • the residual monomer content can be measured, for example, by gas chromatography with the following apparatus and conditions, but may be measured under other conditions as long as similar results are obtained.
  • Device SHIMADZU GC-2014 Column: Inert Cap 1 (length 30 m, inner diameter 0.25 mm, film thickness 0.25 ⁇ m)
  • Injection volume 1.0 ⁇ L
  • Injection method Split ratio 15.0
  • Inlet temperature 300 ° C
  • Oven 40 ° C (5min) -10 ° C / min-310 ° C (10min) -330 ° C (8min)
  • Carrier gas He, linear velocity, 30.8 cm / s Detector: FID, 350 ° C
  • the non-hydrogenated product of poly (meth) acrylate is produced by a known method as described in, for example, International Publication No. 01/083619.
  • various properties of the refrigerating machine oil can be made desired by appropriately selecting the kind of raw material monomer, the kind of initiator, the ratio of structural units in the copolymer, and the like.
  • the hydrogenated product of poly (meth) acrylate is hydrogenated by a known method, for example, the method described in JP-A-2016-098284. It is obtained by.
  • the method of hydrogenation is not particularly limited, for example, the following method may be used.
  • the hydrogenation catalyst is preferably a titanocene compound, a reducing organometallic compound, or a mixture of a titanocene compound and a reducing organometallic compound.
  • a titanocene compound a compound having at least one ligand having a (substituted) cyclopentadienyl skeleton, an indenyl skeleton, or a fluorenyl skeleton such as biscyclopentadienyl titanium dichloride and monopentamethylcyclopentadienyl titanium trichloride Is mentioned.
  • the reducing organometallic compound include organoalkali metal compounds such as organolithium, organomagnesium compounds, organoaluminum compounds, organoboron compounds, and organozinc compounds.
  • the hydrogenation reaction (hydrogenation reaction) is performed, for example, in a temperature range of 0 to 200 ° C, preferably 30 to 150 ° C.
  • the pressure of hydrogen during the hydrogenation reaction is, for example, 0.1 to 15 MPa, preferably 0.2 to 10 MPa, more preferably 0.3 to 5 MPa.
  • the duration of the hydrogenation reaction is, for example, 3 minutes to 10 hours, preferably 10 minutes to 5 hours.
  • the hydrogenation reaction can be performed either by a batch process, a continuous process, or a combination thereof.
  • the number average molecular weight (Mn) of the hydrogenated product of poly (meth) acrylate is preferably 300 or more, more preferably 400 or more, still more preferably 500 or more, particularly preferably 600 or more, and preferably 3000 or less, more preferably Is 2000 or less, more preferably 1500 or less, and particularly preferably 1000 or less.
  • Mn number average molecular weight
  • lubricity particularly wear resistance
  • compatibility with a predetermined refrigerant is further improved.
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is preferably 1.10 or more, more preferably 1.11 or more. More preferably 1.12 or more, particularly preferably 1.13 or more, preferably 2.00 or less, more preferably 1.90 or less, further preferably 1.80 or less, particularly preferably 1.70 or less. It is.
  • Mw / Mn is 1.10 or more, compatibility with a predetermined refrigerant is improved.
  • Mw / Mn is 2.00 or less, poor lubrication of the refrigerant compressor and inhibition of heat exchange in the evaporator can be suppressed.
  • the weight average molecular weight (Mw) of the hydrogenated product of poly (meth) acrylate is appropriately selected so that Mn and Mw / Mn satisfy the above conditions.
  • the weight average molecular weight (Mw), the number average molecular weight (Mn), and the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) are Mw, Mn and It means Mw / Mn (polystyrene (standard sample) conversion value).
  • Mw, Mn, and Mw / Mn can be measured, for example, as follows.
  • tetrahydrofuran as a solvent and prepare a solution diluted to a sample concentration of 1% by mass.
  • the sample solution is analyzed using a GPC apparatus (Waters Alliance 2695).
  • the analysis is performed using a column having a solvent flow rate of 1 ml / min and an analyzable molecular weight of 100 to 10,000, and a refractive index as a detector.
  • the relationship between the column retention time and the molecular weight is determined using a polystyrene standard with a clear molecular weight, a calibration curve is separately prepared, and the molecular weight is determined from the obtained retention time.
  • the average degree of polymerization of the hydrogenated product of poly (meth) acrylate is not particularly limited as long as the effects of the present invention can be obtained, but preferably 3 or more from the viewpoint of obtaining an appropriate kinematic viscosity as a base oil for refrigerating machine oil. More preferably, it is 5 or more, More preferably, it is 6 or more, Preferably it is 20 or less, More preferably, it is 15 or less, More preferably, it is 10 or less. From the same viewpoint, the average degree of polymerization of the hydrogenated poly (meth) acrylate is preferably 3 to 20, 3 to 15, 3 to 10, 5 to 20, 5 to 15, 5 to 10, 6 to 20 6 to 15 or 6 to 10. The average degree of polymerization here is obtained, for example, as a value obtained by dividing the number average molecular weight (Mn) obtained by the above GPC analysis by the apparent average molecular weight according to the molar ratio of the constituent monomers.
  • Mn number average molecular weight
  • the flash point of the hydrogenated poly (meth) acrylate is preferably 195 ° C. or higher, more preferably 200 ° C. or higher, and still more preferably 205 ° C. or higher.
  • the flash point in the present invention means a value measured in accordance with JIS K2265-4: 2007 “How to obtain a flash point—Part 4: Cleveland open method”.
  • the kinematic viscosity at 40 ° C. of the hydrogenated poly (meth) acrylate is 1 to 1000 mm 2 / s, preferably 10 mm 2 / s or more, more preferably 20 mm 2 / s or more, and still more preferably 30 mm 2 / s. s or more, particularly preferably 50 mm 2 / s or more, most preferably 70 mm 2 / s or more, preferably 900 mm 2 / s or less, more preferably 500 mm 2 / s or less, still more preferably 400 mm 2 / s or less. Particularly preferably, it is 300 mm 2 / s or less.
  • the kinematic viscosity at 40 ° C. is 10 mm 2 / s or more, since the lubricity and the hermeticity of the compressor tend to be improved.
  • the kinematic viscosity at 40 ° C. exceeds 1000 mm 2 / s, the effect of hydrogenation tends to be relatively small, and when it is 900 mm 2 / s or less, the compatibility improvement effect with the refrigerant is excellent. Insufficient lubrication of the refrigerant compressor and inhibition of heat exchange in the evaporator can be suppressed.
  • the hydrogenated poly (meth) acrylate is 10 to 900 mm 2 / s, 10 to 500 mm 2 / s, 10 to 400 mm 2 / s, 10 to 300 mm 2 / s, 20 to 900 mm 2 / s, 20 to 500 mm 2 / s, 20 to 400 mm 2 / s, 20 to 300 mm 2 / s, 30 to 900 mm 2 / s, 30 to 500 mm 2 / s, 30 to 400 mm 2 / s, 30 to 300 mm 2 / s 50 to 900 mm 2 / s, 50 to 500 mm 2 / s, 50 to 400 mm 2 / s, 50 to 300 mm 2 / s, 70 to 900 mm 2 / s, 70 to 500 mm 2 / s, 70 to 400 mm 2 / s, 50 to 300 mm 2 / s, 70 to 900 mm 2 / s, 70 to 500 mm 2
  • Kinematic viscosity at 100 ° C. for poly (meth) hydrogenated product of acrylate is preferably 1 mm 2 / s or more, more preferably 2 mm 2 / s or more, more preferably 3 mm 2 / s or more, and preferably 50mm 2 / s or less, More preferably, it is 40 mm ⁇ 2 > / s or less, More preferably, it is 30 mm ⁇ 2 > / s or less.
  • the kinematic viscosity at 100 ° C. is 1 mm 2 / s or more, the lubricity in the presence of a refrigerant is improved.
  • the kinematic viscosity at 100 ° C. is 50 mm 2 / s or less, poor lubrication of the refrigerant compressor and inhibition of heat exchange in the evaporator can be suppressed.
  • the viscosity index of the hydrogenated product of poly (meth) acrylate is preferably 80 or more, more preferably 90 or more, still more preferably 100 or more, and preferably 200 or less, more preferably 180 or less, still more preferably 150. It is as follows. When the viscosity index is 80 or more, lubricity (particularly wear resistance) at a high temperature in the presence of a predetermined refrigerant is improved. When the viscosity index is 200 or less, the lubricity (particularly wear resistance) at low temperatures in the presence of a predetermined refrigerant is improved.
  • the kinematic viscosity at 40 ° C., the kinematic viscosity at 100 ° C., and the viscosity index in the present invention mean values measured according to JIS K-2283: 1993.
  • the pour point of the hydrogenated product of poly (meth) acrylate is preferably ⁇ 10 ° C. or lower, more preferably ⁇ 20 ° C. or lower, and preferably ⁇ 50 ° C. or higher.
  • a hydrogenated poly (meth) acrylate having a pour point of ⁇ 10 ° C. or lower is used, the refrigerating machine oil tends to be prevented from solidifying in the refrigerant circulation system at low temperatures.
  • the pour point in the present invention means a value measured according to JIS K2269: 1987.
  • the refrigerating machine oil may contain only a hydrogenated product of poly (meth) acrylate, or may further contain a base oil and / or an additive other than a hydrogenated product of poly (meth) acrylate.
  • the content of the hydrogenated poly (meth) acrylate in the refrigerating machine oil is, for example, 30% by mass or more or 40% by mass or more, preferably 50% by mass or more, more preferably 70% by mass, based on the total amount of the refrigerating machine oil. More preferably, it is 80% by mass or more, and particularly preferably 90% by mass or more.
  • the poly (meth) acrylate as the base oil may consist only of a hydrogenated product of poly (meth) acrylate, and consists of a hydrogenated product of poly (meth) acrylate and a non-hydrogenated product of poly (meth) acrylate. It may be.
  • the non-hydrogenated product of poly (meth) acrylate may have the same structure and properties as those of the hydrogenated product of poly (meth) acrylate described above (except for those related to terminal double bonds). That is, “hydrogenated product of poly (meth) acrylate” in the description of the structure and properties (excluding those related to terminal double bonds) is read as “non-hydrogenated product of poly (meth) acrylate”.
  • poly (meth) acrylate It may also be read as “poly (meth) acrylate”.
  • the content of the hydrogenated product of poly (meth) acrylate in poly (meth) acrylate is, for example, 30% by mass or more or 40% by mass or more, preferably 50% by mass or more, based on the total amount of poly (meth) acrylate. More preferably, it is 70 mass% or more, More preferably, it is 80 mass% or more, Most preferably, it is 90 mass% or more.
  • Base oils other than poly (meth) acrylate hydrogenates include non-hydrogenated poly (meth) acrylates, mineral oils, olefin polymers, naphthalene compounds, hydrocarbon oils such as alkylbenzenes, and ester oils.
  • Synthetic oils comprising oxygen-containing compounds such as base oils (monoesters, diesters, polyol esters, etc.), polyalkylene glycols, polyvinyl ethers, ketones, polyphenyl ethers, silicones, polysiloxanes, perfluoroethers) Oxygen oil
  • oxygen-containing oil polyol ester, polyalkylene glycol, and polyvinyl ether are preferably used.
  • the content of the base oil is preferably 80% by mass or more, more preferably 90% by mass or more, and still more preferably 95% by mass or more, based on the total amount of refrigerating machine oil.
  • Additives include acid scavengers, antioxidants, extreme pressure agents, oily agents, antifoaming agents, metal deactivators, antiwear agents, viscosity index improvers, pour point depressants, cleaning dispersants, friction modifiers. Agents, rust inhibitors and the like.
  • the content of the additive may be, for example, 5% by mass or less or 2% by mass or less based on the total amount of the refrigerating machine oil.
  • the refrigerating machine oil preferably further contains an acid scavenger from the viewpoint of improving thermal and chemical stability among the above-mentioned additives.
  • the acid scavenger include epoxy compounds and carbodiimide compounds.
  • the epoxy compound is not particularly limited, and examples thereof include glycidyl ether type epoxy compounds, glycidyl ester type epoxy compounds, oxirane compounds, alkyl oxirane compounds, alicyclic epoxy compounds, epoxidized fatty acid monoesters, and epoxidized vegetable oils. These epoxy compounds can be used individually by 1 type or in combination of 2 or more types.
  • the refrigerating machine oil preferably further contains an antiwear agent among the above-mentioned additives.
  • Suitable antiwear agents include, for example, phosphate esters, thiophosphate esters, sulfide compounds, and zinc dialkyldithiophosphates.
  • phosphate esters triphenyl phosphate (TPP) and tricresyl phosphate (TCP) are preferable.
  • TPP triphenyl phosphate
  • TCP tricresyl phosphate
  • thiophosphates triphenyl phosphorothioate
  • sulfide compound a monosulfide compound is preferable from the viewpoint of ensuring the stability of the refrigerating machine oil and suppressing the deterioration of copper frequently used in the refrigeration equipment.
  • the refrigerating machine oil preferably further contains an antioxidant among the above-mentioned additives.
  • Antioxidants include di-tert. Examples thereof include phenolic antioxidants such as butyl-p-cresol and amine antioxidants such as alkyldiphenylamine.
  • the refrigerator oil preferably contains 0.02% by mass or more and 0.5% by mass or less of a phenolic compound as an antioxidant based on the total amount of the refrigerator oil.
  • the refrigerating machine oil preferably further contains a friction modifier, an extreme pressure agent, a rust inhibitor, a metal deactivator, and an antifoaming agent among the above-mentioned additives.
  • the friction modifier include aliphatic amines, aliphatic amides, aliphatic imides, alcohols, esters, phosphate ester amine salts, phosphite ester amine salts, and the like.
  • extreme pressure agents include sulfurized olefins and sulfurized fats and oils.
  • the rust preventive agent include esters or partial esters of alkenyl succinic acid.
  • the metal deactivator include benzotriazole and benzotriazole derivatives.
  • antifoaming agents include silicone compounds and polyester compounds.
  • Kinematic viscosity at 40 ° C. of the refrigerating machine oil is not particularly limited, preferably 3 mm 2 / s or more, more preferably 4 mm 2 / s or more, more preferably 5 mm 2 / s or more, and preferably 1000 mm 2 / s or less, more preferably 500 mm 2 / s or less, and still more preferably 400 mm 2 / s or less.
  • the refrigerating machine oil is not particularly limited, preferably 1 mm 2 / s or more, more preferably 2 mm 2 / s or more, still more preferably 3 mm 2 / s or more, and preferably 100 mm 2 / s or less, more preferably 50 mm 2 / s or less, and further preferably 30 mm 2 / s or less.
  • the water content of the refrigerating machine oil is not particularly limited, but is preferably 500 ppm or less, more preferably 300 ppm or less, and even more preferably 200 ppm or less, based on the total amount of refrigerating machine oil.
  • the acid value of the refrigerating machine oil is not particularly limited, but is preferably 1.0 mgKOH / g or less, more preferably 0.1 mgKOH / g or less.
  • the acid value in the present invention means a value measured according to JIS K2501: 2003 “Petroleum products and lubricants—neutralization number test method”.
  • the ash content of the refrigerating machine oil is not particularly limited, but is preferably 100 ppm or less, more preferably 50 ppm or less.
  • the ash content in the present invention means a value measured according to JIS K2272: 1998 “Crude oil and petroleum products—Ash and sulfate ash test methods”.
  • the refrigerating machine oil includes difluoromethane, a mixture of difluoromethane and pentafluoroethane, a mixture of difluoromethane, pentafluoroethane and 1,1,1,2-tetrafluoroethane, pentafluoroethane and 1, Used with a refrigerant comprising a refrigerant selected from a mixture of 1,1,2-tetrafluoroethane and 1,1,1-trifluoroethane, unsaturated fluorinated hydrocarbons, hydrocarbons, and carbon dioxide.
  • the working fluid composition for a refrigerator includes the above-described refrigerator oil and difluoromethane, a mixture of difluoromethane and pentafluoroethane, difluoromethane, pentafluoroethane, and 1,1,1,2-tetrafluoro.
  • a mixture with ethane selected from a mixture of pentafluoroethane, 1,1,1,2-tetrafluoroethane and 1,1,1-trifluoroethane, unsaturated fluorinated hydrocarbons, hydrocarbons, and carbon dioxide And a refrigerant containing a refrigerant.
  • the refrigerant is preferably difluoromethane, pentafluoroethane, 1,1,1,2-tetrafluoroethane, from the viewpoint of easily obtaining excellent compatibility when used with the refrigerating machine oil according to the present embodiment.
  • the mass ratio (R32 / R125) may be, for example, 40 to 70/60 to 30.
  • a mixture having a mass ratio (R32 / R125) of 60/40, a mixture of 50/50 (R410A), and a mixture of 45/55 (R410B) are preferably used.
  • the mass ratio (R32 / R125 / R134a) is, for example, 15 to 35/5 to It may be 40 / 40-70.
  • the mixture whose mass ratio (R32 / R125 / R134a) is 30/10/60, the mixture (R407C) which is 23/25/52, and the mixture (R407E) which is 25/15/60 are preferably used. It is done.
  • the mass ratio (R125 / R134a / R143a) is: For example, it may be 35 to 55/1 to 15/40 to 60.
  • a mixture (R404A) having a mass ratio (R125 / R134a / R143a) of 44/4/52 is preferably used.
  • the unsaturated fluorinated hydrocarbon (HFO) refrigerant is preferably a fluoropropene having 3 to 5 fluorine atoms, more preferably 1,2,3,3,3-pentafluoropropene (HFO-1225ye), 1 , 3,3,3-tetrafluoropropene (HFO-1234ze), 2,3,3,3-tetrafluoropropene (HFO-1234yf), 1,2,3,3-tetrafluoropropene (HFO-1234ye), And a mixture of two or more selected from 3,3,3-trifluoropropene (HFO-1243zf), more preferably one selected from HFO-1225ye, HFO-1234ze, and HFO-1234yf or It is a mixture of two or more.
  • HFO-1243zf 3,3,3-trifluoropropene
  • the hydrocarbon refrigerant is preferably a hydrocarbon having 1 to 5 carbon atoms, specifically, for example, methane, ethylene, ethane, propylene, propane (R290), cyclopropane, normal butane, isobutane, cyclobutane, methylcyclopropane. 2-methylbutane, normal pentane, or a mixture of two or more thereof.
  • the hydrocarbon refrigerant is preferably a hydrocarbon that is gaseous at 25 ° C. and 1 atm, and more preferably propane, normal butane, isobutane, 2-methylbutane, or a mixture thereof.
  • the refrigerant may be a refrigerant containing only the above refrigerant, or may be a refrigerant further containing another refrigerant in addition to the above refrigerant.
  • Other refrigerants include, for example, other saturated fluorinated hydrocarbon refrigerants, fluorinated ether refrigerants such as perfluoroethers, bis (trifluoromethyl) sulfide refrigerant, trifluoroiodomethane refrigerant, and ammonia. Natural refrigerants.
  • saturated fluorinated hydrocarbon refrigerants include saturated fluorinated hydrocarbons having 1 to 3, preferably 1 to 2 carbon atoms. Specific examples include pentafluoroethane (R125), 1,1,2, , 2-tetrafluoroethane (R134), 1,1-difluoroethane (R152a), fluoroethane (R161), 1,1,1,2,3,3,3-heptafluoropropane (R227ea), 1,1, 1,2,3,3-hexafluoropropane (R236ea), 1,1,1,3,3,3-hexafluoropropane (R236fa), 1,1,1,3,3-pentafluoropropane (R245fa) 1,1,1,3,3-pentafluorobutane (R365mfc) and the like.
  • the content of the refrigerating machine oil in the working fluid composition for a refrigerating machine is not particularly limited, but is preferably 1 part by mass or more, more preferably 2 parts by mass or more, and preferably 500 parts per 100 parts by mass of the refrigerant. It is 400 parts by mass or less, more preferably 400 parts by mass or less.
  • Refrigerating machine oil and working fluid composition for refrigerating machines are air conditioners having reciprocating or rotating hermetic compressors, refrigerators, open or sealed car air conditioners, dehumidifiers, water heaters, freezers, refrigerator / freezer warehouses, It is suitably used for a vending machine, a showcase, a cooling device such as a chemical plant, or a device having a centrifugal compressor.
  • ⁇ 70 means that phase separation and white turbidity were not observed even after cooling to ⁇ 70 ° C.
  • > +20 represents a phase in the temperature range of + 20 ° C. to ⁇ 70 ° C. It means that the low temperature side two-layer separation temperature was higher than + 20 ° C. without melting.
  • Compatibility test 2 Two layers as in the compatibility test 1 except that the refrigerant was changed to a mixed refrigerant of difluoromethane / pentafluoroethane / 1,1,1,2-tetrafluoroethane (mass ratio 23/25/52, R407C). The separation temperature was evaluated.
  • the low temperature side two-layer separation temperature is ⁇ 60 ° C.
  • the high temperature side two-layer separation temperature is + 11 ° C.
  • the temperature range is higher than ⁇ 60 ° C. and less than + 11 ° C.
  • the temperature range is higher than ⁇ 60 ° C. and less than + 11 ° C.
  • Example 3 hydrogenated polyacrylate having an ethyl acrylate (EA) ratio of 100 mol% (average degree of polymerization: 8.1, content ratio of terminal double bond units: ⁇ 0.01 mol%, residual monomer amount: ⁇ 0.01 mass%, 40 ° C. kinematic viscosity: 260.2 mm 2 / s, 100 ° C. kinematic viscosity: 19.4 mm 2 / s, viscosity index: 84).
  • EA ethyl acrylate
  • Example 4 the polyacrylate hydrogenated product of Example 1 described above and the non-hydrogenated product of the polyacrylate of Comparative Example 1 before the hydrogenation were mixed at a ratio of 3: 7 (mass ratio). A polyacrylate having a terminal double bond unit content of 5.8 mol% was obtained. Using this polyacrylate as a base oil, a refrigerating machine oil comprising the base oil was prepared. When the compatibility test 3 was performed on the refrigerating machine oil of Example 4, it was confirmed that the refrigerant compatibility was improved as compared with the case where the non-hydrogenated polyacrylate of Comparative Example 1 was used.
  • Example 5 the hydrogenated product of the polyacrylate of Example 2 described above and the non-hydrogenated product of the polyacrylate of Comparative Example 2 before the hydrogenation were mixed at a ratio of 5: 5 (mass ratio). A polyacrylate having a terminal double bond unit content of 5.5 mol% was obtained. Using this polyacrylate as a base oil, a refrigerating machine oil comprising the base oil was prepared. When the compatibility test 8 was performed on the refrigerating machine oil of Example 5, it was confirmed that the refrigerant compatibility was improved as compared with the case where the non-hydrogenated polyacrylate of Comparative Example 2 was used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Lubricants (AREA)

Abstract

本発明は、一態様において、ポリ(メタ)アクリレートを基油として含有する冷凍機油であって、ポリ(メタ)アクリレートは、ポリ(メタ)アクリレートの水素添加物を含み、ポリ(メタ)アクリレート中の末端に位置する炭素-炭素二重結合を有するユニットの含有割合が、ポリ(メタ)アクリレートを構成する全ユニットに対して6モル%以下であり、ポリ(メタ)アクリレートの水素添加物の40℃における動粘度が1~1000mm/sであり、ジフルオロメタン、ジフルオロメタンとペンタフルオロエタンとの混合物、ジフルオロメタンとペンタフルオロエタンと1,1,1,2-テトラフルオロエタンとの混合物、ペンタフルオロエタンと1,1,1,2-テトラフルオロエタンと1,1,1-トリフルオロエタンとの混合物、不飽和フッ化炭化水素、炭化水素、及び二酸化炭素から選ばれる冷媒を含む冷媒と共に用いられる、冷凍機油を提供する。

Description

冷凍機油及び冷凍機用作動流体組成物
 本発明は、冷凍機油及び冷凍機用作動流体組成物に関する。
 近年のオゾン層破壊の問題から、冷凍機器の冷媒として従来使用されてきたCFC(クロロフルオロカーボン)及びHCFC(ハイドロクロロフルオロカーボン)が規制の対象となり、これらに代わってHFC(ハイドロフルオロカーボン)が冷媒として使用されつつある。さらに、HFC冷媒よりも地球温暖化係数(GWP)が低い冷媒の開発がなされている。
 ところで、従来のCFCやHCFCを冷媒とする場合は、冷凍機油として鉱油やアルキルベンゼンなどの炭化水素油が好適に使用されてきたが、冷凍機油は共存する冷媒の種類によって冷媒との相溶性、潤滑性、冷媒との溶解粘度、熱・化学的安定性など予想し得ない挙動を示すため、冷媒ごとに冷凍機油の開発が必要となる。
 例えば、特許文献1には、フロン134a等の冷媒との相溶性に優れるとともに、潤滑性能に優れる冷凍機油として、所定のアクリル酸エステル系ポリマーを主成分とする冷凍機油が開示されている。
特開平4-275397号公報
 しかし、特許文献1に記載されているアクリル酸エステル系ポリマーを主成分とする冷凍機油を用いた場合、特定の冷媒に対する相溶性の点で未だ改善の余地がある。
 そこで、本発明は、所定の冷媒に対する相溶性に優れる冷凍機油及び冷凍機用作動流体組成物を提供することを目的とする。
 本発明は、一態様において、ポリ(メタ)アクリレートを基油として含有する冷凍機油であって、ポリ(メタ)アクリレートは、ポリ(メタ)アクリレートの水素添加物を含み、ポリ(メタ)アクリレート中の末端に位置する炭素-炭素二重結合を有するユニットの含有割合が、ポリ(メタ)アクリレートを構成する全ユニットに対して6モル%以下であり、ポリ(メタ)アクリレートの水素添加物の40℃における動粘度が1~1000mm/sであり、ジフルオロメタン、ジフルオロメタンとペンタフルオロエタンとの混合物、ジフルオロメタンとペンタフルオロエタンと1,1,1,2-テトラフルオロエタンとの混合物、ペンタフルオロエタンと1,1,1,2-テトラフルオロエタンと1,1,1-トリフルオロエタンとの混合物、不飽和フッ化炭化水素、炭化水素、及び二酸化炭素から選ばれる冷媒を含む冷媒と共に用いられる、冷凍機油を提供する。
 また、本発明は、他の一態様において、ポリ(メタ)アクリレートを基油として含有する冷凍機油であって、ポリ(メタ)アクリレートは、ポリ(メタ)アクリレートの水素添加物を含み、ポリ(メタ)アクリレート中の末端に位置する炭素-炭素二重結合を有するユニットの含有割合が、ポリ(メタ)アクリレートを構成する全ユニットに対して6モル%以下であり、ポリ(メタ)アクリレートの水素添加物の40℃における動粘度が1~1000mm/sである、冷凍機油と、ジフルオロメタン、ジフルオロメタンとペンタフルオロエタンとの混合物、ジフルオロメタンとペンタフルオロエタンと1,1,1,2-テトラフルオロエタンとの混合物、ペンタフルオロエタンと1,1,1,2-テトラフルオロエタンと1,1,1-トリフルオロエタンとの混合物、不飽和フッ化炭化水素、炭化水素、及び二酸化炭素から選ばれる冷媒を含む冷媒と、を含有する冷凍機用作動流体組成物を提供する。
 上記の各態様において、冷媒は、ジフルオロメタンとペンタフルオロエタンと1,1,1,2-テトラフルオロエタンとの混合物、ペンタフルオロエタンと1,1,1,2-テトラフルオロエタンと1,1,1-トリフルオロエタンとの混合物、不飽和フッ化炭化水素、及び炭化水素から選ばれる冷媒を含んでよく、不飽和フッ化炭化水素を含んでよい。
 上記の各態様において、ポリ(メタ)アクリレートの水素添加物は、下記式(1)で表される構造単位を有していてよい。
Figure JPOXMLDOC01-appb-C000003
式中、R、R及びRは、それぞれ独立に、水素原子又は炭化水素基を表し、Rは、炭化水素基又は酸素含有有機基を表す。
 式(1)におけるRで表される炭化水素基の炭素数は、1~10であってよい。式(1)におけるRで表される炭化水素基は、炭素数1~4のアルキル基であってよく、炭素数2のアルキル基であってよい。
 本発明によれば、所定の冷媒に対する相溶性に優れる冷凍機油及び冷凍機用作動流体組成物を提供することができる。
 以下、本発明の実施形態について詳細に説明する。
 本実施形態に係る冷凍機油は、ポリ(メタ)アクリレートを基油として含有する。当該ポリ(メタ)アクリレートは、少なくともポリ(メタ)アクリレートの水素添加物を含んでおり、ポリ(メタ)アクリレートの非水素添加物を更に含んでいてもよい。なお、本明細書では、水素添加処理されたポリ(メタ)アクリレートを「ポリ(メタ)アクリレートの水素添加物」、水素添加処理されていないポリ(メタ)アクリレートを「ポリ(メタ)アクリレートの非水素添加物」、水素添加処理されたポリ(メタ)アクリレート及び水素添加処理されていないポリ(メタ)アクリレートを総称して単に「ポリ(メタ)アクリレート」とそれぞれ呼ぶ。
 ポリ(メタ)アクリレートは、例えば、下記式(1)で表される構造単位を有している。
Figure JPOXMLDOC01-appb-C000004
式中、R、R及びRは、それぞれ独立に、水素原子又は炭化水素基を表し、Rは、炭化水素基又は酸素含有有機基を表す。
 式(1)におけるR、R及びRで表される炭化水素基は、例えばアルキル基であってよい。該炭化水素基又はアルキル基の炭素数は、好ましくは1~8、より好ましくは1~5、更に好ましくは1~3である。式(1)におけるR及びRが水素原子であり、かつRが水素原子又はメチル基であることが好ましい。
 式(1)におけるRで表される炭化水素基は、例えばアルキル基であってよい。該炭化水素基又はアルキル基の炭素数は、好ましくは1~10、より好ましくは1~5、更に好ましくは1~4、特に好ましくは2である。ポリ(メタ)アクリレートを構成する全構造単位におけるRで表される炭化水素基の炭素数の平均値は、好ましくは1~10、より好ましくは1~5、更に好ましくは1~4、特に好ましくは2である。Rで表される酸素含有有機基としては、例えばエーテル結合を形成する酸素原子を含有する直鎖又は分岐の炭化水素基、グリシジル基を有する炭化水素基などが挙げられる。
 式(1)における-ORは、例えば下記式(2)で表される構造であってもよい。
Figure JPOXMLDOC01-appb-C000005
式中、Rは二価の炭化水素基又は二価のエーテル結合酸素含有炭化水素基を表し、Rは炭化水素基を表し、mは0以上の整数を表す。mが2以上である場合には、複数のRは互いに同一でも異なっていてもよい。
 式(2)におけるRで示される二価の炭化水素基及びエーテル結合酸素含有炭化水素基の炭素数は、好ましくは1~10、より好ましくは1~5、更に好ましくは1~3である。二価のエーテル結合酸素含有炭化水素基は、例えばエーテル結合を形成する酸素原子を側鎖に有する炭化水素基であってもよい。
 式(2)におけるRは、好ましくは炭素数1~20の炭化水素基である。この炭化水素基としては、アルキル基、シクロアルキル基、フェニル基、アリール基、アリールアルキル基などが挙げられる。この炭化水素基は、好ましくはアルキル基、より好ましくは炭素数1~5のアルキル基である。
 式(2)におけるmは、好ましくは0以上、より好ましくは1以上の整数であり、また、好ましくは20以下、より好ましくは10以下、更に好ましくは5以下の整数である。ポリ(メタ)アクリレートを構成する全構造単位におけるmの平均値は、好ましくは0~10である。
 ポリ(メタ)アクリレートは、式(1)で表される構造単位から選ばれる1種で構成される単独重合体であってもよく、式(1)で表される構造単位から選ばれる2種以上で構成される共重合体であってもよく、式(1)で表される構造単位と他の構造単位とで構成される共重合体であってもよい。共重合体は、ブロック共重合体又はランダム共重合体のいずれであってもよい。
 ポリ(メタ)アクリレートが共重合体である場合、当該共重合体は、好ましくは、式(1)におけるRが炭素数1~4のアルキル基である構造単位から選ばれる少なくとも1種の構造単位を有する。この共重合体は、式(1)におけるRが炭素数1~4のアルキル基である構造単位から選ばれる2種以上の構造単位を有していてもよく、式(1)におけるRが炭素数1~4のアルキル基である構造単位から選ばれる1種以上の構造単位と、式(1)におけるRが炭素数5~8のアルキル基又は酸素含有有機基である構造単位から選ばれる1種以上の構造単位とを有していてもよい。この共重合体は、所定の冷媒との相溶性に格別に優れることから、特に好ましくは、式(1)におけるRが炭素数2のアルキル基(すなわちエチル基)である構造単位を有する。式(1)におけるRが炭素数1~4のアルキル基(特に好ましくはエチル基)である構造単位の含有量は、共重合体を構成する構造単位全量を基準として、好ましくは30モル%以上、より好ましくは50モル%以上、更に好ましくは70モル%以上、特に好ましくは80モル%以上、最も好ましくは90モル%以上である。
 上記の共重合体のうち、例えば下記(A)~(G)の共重合体が好適である。なお、(A)~(G)中のR~Rは、それぞれ式(1)におけるR~Rを意味する。
(A)R~Rが水素原子であり、Rがエチル基である構造単位と、R~Rが水素原子であり、Rがn-ブチル基である構造単位とを有する共重合体。
(B)R~Rが水素原子であり、Rがエチル基である構造単位と、R~Rが水素原子であり、Rがn-ブチル基である構造単位と、R~Rが水素原子であり、Rがi-ブチル基(2-メチルプロピル基)である構造単位とを有する共重合体。
(C)R~Rが水素原子であり、Rがエチル基である構造単位と、R~Rが水素原子であり、Rがプロピル基である構造単位とを有する共重合体。
(D)R~Rが水素原子であり、Rがエチル基である構造単位と、R~Rが水素原子であり、Rがi-オクチル基(例えば2-エチルヘキシル基)である構造単位とを有する共重合体。
(E)R及びRが水素原子であり、R及びRがメチル基である構造単位と、R~Rが水素原子であり、Rがi-オクチル基(例えば2-エチルヘキシル基)である構造単位とを有する共重合体。
(F)R~Rが水素原子であり、Rがエチル基である構造単位と、R及びRが水素原子であり、Rがメチル基であり、Rがグリシジル基である構造単位とを有する共重合体。
(G)R~Rが水素原子であり、Rがi-ブチル基(2-メチルプロピル基)である構造単位と、R及びRが水素原子であり、Rがメチル基であり、Rがメトキシエチル基である構造単位とを有する共重合体。
 ポリ(メタ)アクリレートの水素添加物は、その主鎖の末端に炭素-炭素二重結合を有するポリ(メタ)アクリレート(ポリ(メタ)アクリレートの非水素添加物)を水素添加処理したものであって、その主鎖の末端にある炭素-炭素二重結合の一部又は全部が水素添加された構造を有している。ポリ(メタ)アクリレートの末端炭素-炭素二重結合を水素添加処理することで、所定の多くの冷媒に対して相溶性が向上する。ポリ(メタ)アクリレートの水素添加物は、上述したポリ(メタ)アクリレートの構造に加えて、下記式(3)で表される末端構造及び下記式(4)で表される末端構造の少なくとも一方を有しており、好ましくはこれらの末端構造の両方を有している。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
式中、R~Rは、それぞれ式(1)におけるR~Rと同義である。
 ポリ(メタ)アクリレートの末端に位置する炭素-炭素二重結合(以下、「末端二重結合」ともいう)を有するユニット(構造単位)の含有割合は、所定の冷媒との相溶性に優れる観点から、ポリ(メタ)アクリレートを構成する全ユニットに対して6モル%以下であり、好ましくは3モル%以下であり、より好ましくは1モル%以下であり、更に好ましくは0.5モル%以下であり、特に好ましくは0.01モル%以下である。ただし、冷凍機油が所望の冷媒相溶性を有するのであれば、末端二重結合を有するユニットの含有割合は、ポリ(メタ)アクリレートを構成する全ユニットに対して、0.1モル%以上又は1モル%以上であってもよい。
 ポリ(メタ)アクリレート中の末端に位置する炭素-炭素二重結合を有するユニットとは、下記式(5)又は式(6)で表されるユニットを意味する。該ユニットとしては、例えば、式(5)におけるR及びRが水素であるビニリデン基を有するユニット、式(6)におけるR及びRのいずれか並びにRが水素であるビニレン基を有するユニットが挙げられる。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
式中、R~Rは、それぞれ式(1)におけるR~Rと同義である。
 ポリ(メタ)アクリレート中の末端二重結合を有するユニットの含有割合は、H-NMR測定の結果に基づいて、末端二重結合を構成する炭素原子に結合する水素原子由来のピークと、エステル構造における単結合の酸素原子直近の炭素原子に結合する水素原子に由来するピーク(すなわち、-O-CH3-nにおけるHに由来するピーク、ここでnは1~3の整数、-CH3-nは式(1)におけるRに対応する)との強度の関係から、全ユニットに対する末端二重結合を有するユニットのモル比を平均的な数値として算出することにより求められる。
 ポリ(メタ)アクリレートにおける末端二重結合を有するユニットの含有割合Vは、より具体的には、例えば、以下の式で算出される。
 V=Hv/Hm×100
ここで、
 V:ポリ(メタ)アクリレートにおける末端二重結合を有するユニットの含有割合(mol%)
 Hv:ポリ(メタ)アクリレートにおける末端二重結合を構成する炭素原子に結合する水素原子由来のピークの積算値/2(例えば、ビニリデン基及びビニレン基を構成する水素原子由来のピークの積算値/2)
 Hm:ポリ(メタ)アクリレートにおけるエステル構造における単結合の酸素原子直近の炭素原子に結合する水素原子に由来するピーク(例えば、-O-CH3-nにおけるHに由来するピーク、ここでnは1~3の整数、-CH3-nは式(1)におけるRに対応する)の積算値/n
である。
 ここで、ポリ(メタ)アクリレートにおける末端二重結合を構成する炭素原子に結合する水素原子由来のピークは、例えば約5.5~6.2ppm付近に出現し、ポリ(メタ)アクリレートにおけるエステル構造における単結合の酸素原子直近の炭素原子に結合する水素原子に由来するピークは、例えば約4ppm付近に出現するが、いずれも測定対象の構造によってピーク位置がシフトすることがあるので、都度確認が必要となることは言うまでもない。なお、上記H-NMR測定は、装置としてAgilentTechnologies社製VNMRS 600 MHz NMR spectrometerを、溶媒として重クロロホルムを用いて行ったが、同様の結果が得られるならば、他の装置を用いてもよい。
 ポリ(メタ)アクリレートの水素添加物における残存モノマーの含有量は、熱安定性等に優れる観点から、ポリ(メタ)アクリレートの水素添加物の全量に対して、好ましくは、5質量%以下、2質量%以下又は1質量%以下であり、より好ましくは、0.5質量%以下、0.2質量%以下又は0.1質量%以下であり、更に好ましくは0.05質量%以下であり、特に好ましくは0.01質量%未満である。
 残存モノマーの含有量は、例えば、以下の装置及び条件でガスクロマトグラフィーにより測定することができるが、同様の結果が得られるならば、他の条件で測定して差し支えない。
装置:SHIMADZU GC-2014
カラム:Inert Cap 1(長さ30m、内径0.25mm、膜厚0.25μm)
注入量:1.0μL
注入法:スプリット比 15.0
注入口温度:300℃
オーブン:40℃(5min)-10℃/min-310℃(10min)-330℃(8min)
キャリアガス:He、線速度、30.8cm/s
検出器:FID、350℃
 ポリ(メタ)アクリレートの非水素添加物は、例えば国際公開01/083619号に記載されているような公知の方法により製造される。この際、原料となるモノマーの種類、開始剤の種類、共重合体における構造単位の比率等を適宜選択することにより、冷凍機油の諸特性を所望のものとすることが可能となる。
 ポリ(メタ)アクリレートの水素添加物は、上記のようにして得られるポリ(メタ)アクリレートの非水素添加物を公知の方法、例えば特開2016-098284号公報に記載の方法により水素添加することで得られる。水素添加の方法は、特に制限されないが、例えば以下の方法であってよい。
(I)Ti、Co、Niなどの有機酸塩又はアセチルアセトン塩と、Li、Mg、Al、Snなどの有機金属化合物を組み合わせてなる、いわゆるチグラータイプの均一系触媒を用いて水素添加する方法
(II)Pd、Pt、Ru、Rhなどの貴金属をカーボン、アルミナ、シリカ・アルミナ、ケイソウ土などの担体に担持してなる担持型貴金属系触媒を用いて水素添加する方法
(III)Niなどの卑金属を用いた固体触媒を用いて水素添加する方法
(IV)Rh、Ruなどの貴金属錯体触媒を用いて水素添加する方法
これらの方法は、必要に応じて適宜変形して用いられてもよい。
 より具体的には、水素添加触媒は、好ましくは、チタノセン化合物、還元性有機金属化合物、又はチタノセン化合物と還元性有機金属化合物との混合物である。チタノセン化合物としては、ビスシクロペンタジエニルチタンジクロライド、モノペンタメチルシクロペンタジエニルチタントリクロライド等の(置換)シクロペンタジエニル骨格、インデニル骨格又はフルオレニル骨格を有する配位子を少なくとも1つ有する化合物が挙げられる。還元性有機金属化合物としては、有機リチウム等の有機アルカリ金属化合物、有機マグネシウム化合物、有機アルミニウム化合物、有機ホウ素化合物又は有機亜鉛化合物が挙げられる。
 水素添加反応(水添反応)は、例えば0~200℃、好ましくは30~150℃の温度範囲で実施される。水添反応の際の水素の圧力は、例えば0.1~15MPa、好ましくは0.2~10MPa、より好ましくは0.3~5MPaである。水添反応の時間は、例えば3分間~10時間、好ましくは10分間~5時間である。水添反応は、バッチプロセス、連続プロセス、又はこれらの組合せのいずれによっても実施できる。
 ポリ(メタ)アクリレートの水素添加物の数平均分子量(Mn)は、好ましくは300以上、より好ましくは400以上、更に好ましくは500以上、特に好ましくは600以上であり、また、好ましくは3000以下、より好ましくは2000以下、更に好ましくは1500以下、特に好ましくは1000以下である。数平均分子量が300以上であると、所定の冷媒共存下での潤滑性(特に耐摩耗性)が向上する。数平均分子量が3000以下であると、所定の冷媒に対する相溶性が更に向上する。
 ポリ(メタ)アクリレートの水素添加物においては、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、好ましくは1.10以上、より好ましくは1.11以上、更に好ましくは1.12以上、特に好ましくは1.13以上であり、また、好ましくは2.00以下、より好ましくは1.90以下、更に好ましくは1.80以下、特に好ましくは1.70以下である。Mw/Mnが1.10以上であると、所定の冷媒に対する相溶性が向上する。Mw/Mnが2.00以下であると、冷媒圧縮機の潤滑不良や蒸発器における熱交換の阻害を抑制できる。ポリ(メタ)アクリレートの水素添加物の重量平均分子量(Mw)は、Mn及びMw/Mnが上記の条件を満たすように適宜選定される。
 本発明における重量平均分子量(Mw)、数平均分子量(Mn)、及び重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、GPC分析により得られるMw、Mn及びMw/Mn(ポリスチレン(標準試料)換算値)を意味する。Mw、Mn及びMw/Mnは、例えば以下のように測定することができる。
 溶剤としてテトラヒドロフランを使用し、希釈して試料濃度を1質量%とした溶液を調製する。その試料溶液を、GPC装置(Waters Alliance2695)を用いて分析を行う。溶剤の流速は1ml/min、分析可能分子量100から10000のカラムを使用し、屈折率を検出器として分析を実施する。なお、分子量が明確なポリスチレン標準を用いてカラム保持時間と分子量との関係を求め、検量線を別途作成した上で、得られた保持時間から分子量を決定する。
 ポリ(メタ)アクリレートの水素添加物の平均重合度は、本発明の効果が得られる限りにおいて特に制限はないが、冷凍機油の基油として適正な動粘度が得られる観点から、好ましくは3以上、より好ましくは5以上、更に好ましくは6以上であり、また、好ましくは20以下、より好ましくは15以下、更に好ましくは10以下である。ポリ(メタ)アクリレートの水素添加物の平均重合度は、同様の観点から、好ましくは、3~20、3~15、3~10、5~20、5~15、5~10、6~20、6~15又は6~10である。ここでいう平均重合度は、例えば、上述のGPC分析により得られる数平均分子量(Mn)を構成モノマーのモル比に応じた見かけの平均分子量で割った値として得られる。
 ポリ(メタ)アクリレートの水素添加物の引火点は、好ましくは195℃以上、より好ましくは200℃以上、更に好ましくは205℃以上である。本発明における引火点は、JIS K2265-4:2007「引火点の求め方-第4部:クリーブランド開放法」に準拠して測定される値を意味する。
 ポリ(メタ)アクリレートの水素添加物の40℃における動粘度は、1~1000mm/sであるが、好ましくは10mm/s以上、より好ましくは20mm/s以上、更に好ましくは30mm/s以上、特に好ましくは50mm/s以上、最も好ましくは70mm/s以上であり、また、好ましくは900mm/s以下、より好ましくは500mm/s以下、更に好ましくは400mm/s以下、特に好ましくは300mm/s以下である。40℃における動粘度が10mm/s以上であると、潤滑性や圧縮機の密閉性が向上する傾向にあるため、より好ましい。40℃における動粘度が1000mm/sを超えると、水素添加の効果が相対的に小さくなる傾向にあり、また、900mm/s以下であると、冷媒との相溶性向上効果に優れると共に、冷媒圧縮機の潤滑不良や蒸発器における熱交換の阻害を抑制できる。ポリ(メタ)アクリレートの水素添加物の40℃における動粘度は、10~900mm/s、10~500mm/s、10~400mm/s、10~300mm/s、20~900mm/s、20~500mm/s、20~400mm/s、20~300mm/s、30~900mm/s、30~500mm/s、30~400mm/s、30~300mm/s、50~900mm/s、50~500mm/s、50~400mm/s、50~300mm/s、70~900mm/s、70~500mm/s、70~400mm/s、又は70~300mm/sであってもよい。
 ポリ(メタ)アクリレートの水素添加物の100℃における動粘度は、好ましくは1mm/s以上、より好ましくは2mm/s以上、更に好ましくは3mm/s以上であり、また、好ましくは50mm/s以下、より好ましくは40mm/s以下、更に好ましくは30mm/s以下である。100℃における動粘度が1mm/s以上であると、冷媒共存下での潤滑性が向上する。100℃における動粘度が50mm/s以下であると、冷媒圧縮機の潤滑不良や蒸発器における熱交換の阻害を抑制できる。
 ポリ(メタ)アクリレートの水素添加物の粘度指数は、好ましくは80以上、より好ましくは90以上、更に好ましくは100以上であり、また、好ましくは200以下、より好ましくは180以下、更に好ましくは150以下である。粘度指数が80以上であると、所定の冷媒共存下での高温での潤滑性(特に耐摩耗性)が向上する。粘度指数が200以下であると、所定の冷媒共存下での低温での潤滑性(特に耐摩耗性)が向上する。
 本発明における40℃における動粘度及び100℃における動粘度、並びに粘度指数は、JIS K-2283:1993に準拠して測定される値を意味する。
 ポリ(メタ)アクリレートの水素添加物の流動点は、好ましくは-10℃以下、より好ましくは-20℃以下であり、また、好ましくは-50℃以上である。流動点が-10℃以下のポリ(メタ)アクリレートの水素添加物を用いると、低温時に冷媒循環システム内で冷凍機油が固化するのを抑制できる傾向にある。本発明における流動点は、JIS K2269:1987に準拠して測定される値を意味する。
 冷凍機油は、ポリ(メタ)アクリレートの水素添加物のみを含有していてもよく、ポリ(メタ)アクリレートの水素添加物以外の基油及び/又は添加剤を更に含有していてもよい。冷凍機油中のポリ(メタ)アクリレートの水素添加物の含有量は、冷凍機油全量基準で、例えば30質量%以上又は40質量%以上であり、好ましくは50質量%以上、より好ましくは70質量%以上、更に好ましくは80質量%以上、特に好ましくは90質量%以上である。
 基油としてのポリ(メタ)アクリレートは、ポリ(メタ)アクリレートの水素添加物のみからなっていてもよく、ポリ(メタ)アクリレートの水素添加物及びポリ(メタ)アクリレートの非水素添加物からなっていてもよい。ポリ(メタ)アクリレートの非水素添加物は、上述したポリ(メタ)アクリレートの水素添加物と同様の構造及び性状(ただし、末端二重結合に関するものは除く)を有していてよい。すなわち、上記の構造及び性状(ただし、末端二重結合に関するものは除く)に関する説明における「ポリ(メタ)アクリレートの水素添加物」は、「ポリ(メタ)アクリレートの非水素添加物」と読み替えてよく、また、「ポリ(メタ)アクリレート」と読み替えてもよい。ポリ(メタ)アクリレート中のポリ(メタ)アクリレートの水素添加物の含有量は、ポリ(メタ)アクリレート全量基準で、例えば30質量%以上又は40質量%以上であり、好ましくは50質量%以上、より好ましくは70質量%以上、更に好ましくは80質量%以上、特に好ましくは90質量%以上である。
 ポリ(メタ)アクリレートの水素添加物以外の基油としては、ポリ(メタ)アクリレートの非水素添加物の他、鉱油、オレフィン重合体、ナフタレン化合物、アルキルベンゼン等の炭化水素系油、及び、エステル系基油(モノエステル、ジエステル、ポリオールエステル等)、ポリアルキレングリコール、ポリビニルエーテル、ケトン、ポリフェニルエーテル、シリコーン、ポリシロキサン、パーフルオロエーテル等の構成元素として酸素を含有する化合物からなる合成油(含酸素油)を用いることができる。含酸素油としては、ポリオールエステル、ポリアルキレングリコール、ポリビニルエーテルが好ましく用いられる。
 基油の含有量は、冷凍機油全量基準で、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは95質量%以上である。
 添加剤としては、酸捕捉剤、酸化防止剤、極圧剤、油性剤、消泡剤、金属不活性化剤、摩耗防止剤、粘度指数向上剤、流動点降下剤、清浄分散剤、摩擦調整剤、防錆剤などが挙げられる。添加剤の含有量は、冷凍機油全量基準で、例えば、5質量%以下又は2質量%以下であってよい。
 冷凍機油は、上記の添加剤の中でも、熱・化学的安定性を向上させる観点から、好ましくは酸捕捉剤を更に含有する。酸捕捉剤としては、エポキシ化合物、カルボジイミド化合物が例示される。
 エポキシ化合物としては、特に制限されないが、グリシジルエーテル型エポキシ化合物、グリシジルエステル型エポキシ化合物、オキシラン化合物、アルキルオキシラン化合物、脂環式エポキシ化合物、エポキシ化脂肪酸モノエステル、エポキシ化植物油などが挙げられる。これらのエポキシ化合物は、1種を単独で、又は2種以上を組み合わせて用いることができる。
 冷凍機油は、上記の添加剤の中でも、好ましくは摩耗防止剤を更に含有する。好適な摩耗防止剤としては、例えばリン酸エステル、チオリン酸エステル、スルフィド化合物、ジアルキルジチオリン酸亜鉛が挙げられる。リン酸エステルの中でも、トリフェニルフォスフェート(TPP)、トリクレジルフォスフェート(TCP)が好ましい。チオリン酸エステルの中でも、トリフェニルホスフォロチオネート(TPPT)が好ましい。スルフィド化合物としては、冷凍機油の安定性を確保し、冷凍機器内部に多く使用されている銅の変質を抑制できる点から、モノスルフィド化合物が好ましい。
 冷凍機油は、上記の添加剤の中でも、好ましくは酸化防止剤を更に含有する。酸化防止剤としては、ジ-tert.ブチル-p-クレゾール等のフェノール系酸化防止剤、アルキルジフェニルアミン等のアミン系酸化防止剤などが挙げられる。冷凍機油は、好ましくは、酸化防止剤として、冷凍機油全量基準で0.02質量%以上0.5質量%以下のフェノール系化合物を含有する。
 冷凍機油は、上記の添加剤の中でも、好ましくは、摩擦調整剤、極圧剤、防錆剤、金属不活性化剤、消泡剤を更に含有する。摩擦調整剤としては、脂肪族アミン、脂肪族アミド、脂肪族イミド、アルコール、エステル、リン酸エステルアミン塩、亜リン酸エステルアミン塩などが挙げられる。極圧剤としては、硫化オレフィン、硫化油脂などが挙げられる。防錆剤としては、アルケニルコハク酸のエステル又は部分エステルなどが挙げられる。金属不活性化剤としては、ベンゾトリアゾール、ベンゾトリアゾール誘導体などが挙げられる。消泡剤としては、シリコーン化合物、ポリエステル化合物などが挙げられる。
 冷凍機油の40℃における動粘度は、特に限定されないが、好ましくは3mm/s以上、より好ましくは4mm/s以上、更に好ましくは5mm/s以上であり、また、好ましくは1000mm/s以下、より好ましくは500mm/s以下、更に好ましくは400mm/s以下である。冷凍機油の100℃における動粘度は、特に限定されないが、好ましくは1mm/s以上、より好ましくは2mm/s以上、更に好ましくは3mm/s以上であり、また、好ましくは100mm/s以下、より好ましくは50mm/s以下、更に好ましくは30mm/s以下である。
 冷凍機油の水分含有量は、特に限定されないが、冷凍機油全量基準で、好ましくは500ppm以下、より好ましくは300ppm以下、更に好ましくは200ppm以下である。
 冷凍機油の酸価は、特に限定されないが、好ましくは1.0mgKOH/g以下、より好ましくは0.1mgKOH/g以下である。本発明における酸価は、JIS K2501:2003「石油製品及び潤滑油-中和価試験方法」に準拠して測定される値を意味する。
 冷凍機油の灰分は、特に限定されないが、好ましくは100ppm以下、より好ましくは50ppm以下である。本発明における灰分は、JIS K2272:1998「原油及び石油製品-灰分及び硫酸灰分試験方法」に準拠して測定される値を意味する。
 本実施形態に係る冷凍機油は、ジフルオロメタン、ジフルオロメタンとペンタフルオロエタンとの混合物、ジフルオロメタンとペンタフルオロエタンと1,1,1,2-テトラフルオロエタンとの混合物、ペンタフルオロエタンと1,1,1,2-テトラフルオロエタンと1,1,1-トリフルオロエタンとの混合物、不飽和フッ化炭化水素、炭化水素、及び二酸化炭素から選ばれる冷媒を含む冷媒と共に用いられる。
 本実施形態に係る冷凍機用作動流体組成物は、上述した冷凍機油と、ジフルオロメタン、ジフルオロメタンとペンタフルオロエタンとの混合物、ジフルオロメタンとペンタフルオロエタンと1,1,1,2-テトラフルオロエタンとの混合物、ペンタフルオロエタンと1,1,1,2-テトラフルオロエタンと1,1,1-トリフルオロエタンとの混合物、不飽和フッ化炭化水素、炭化水素、及び二酸化炭素から選ばれる冷媒を含む冷媒と、を含有する。
 冷媒は、本実施形態に係る冷凍機油と共に用いられた場合の優れた相溶性がより得られやすい観点から、好ましくは、ジフルオロメタンとペンタフルオロエタンと1,1,1,2-テトラフルオロエタンとの混合物、ペンタフルオロエタンと1,1,1,2-テトラフルオロエタンと1,1,1-トリフルオロエタンとの混合物、不飽和フッ化炭化水素、及び炭化水素から選ばれる冷媒を含み、より好ましくは、不飽和フッ化炭化水素を含む。
 ジフルオロメタン(R32)とペンタフルオロエタン(R125)との混合物において、質量比(R32/R125)は、例えば40~70/60~30であってよい。これらの中でも、質量比(R32/R125)が60/40である混合物、50/50である混合物(R410A)、45/55である混合物(R410B)が好適に用いられる。
 ジフルオロメタン(R32)とペンタフルオロエタン(R125)と1,1,1,2-テトラフルオロエタン(R134a)との混合物において、質量比(R32/R125/R134a)は、例えば15~35/5~40/40~70であってよい。これらの中でも、質量比(R32/R125/R134a)が30/10/60である混合物、23/25/52である混合物(R407C)、25/15/60である混合物(R407E)が好適に用いられる。
 ペンタフルオロエタン(R125)と1,1,1,2-テトラフルオロエタン(R134a)と1,1,1-トリフルオロエタン(R143a)との混合物において、質量比(R125/R134a/R143a)は、例えば35~55/1~15/40~60であってよい。これらの中でも、質量比(R125/R134a/R143a)が44/4/52である混合物(R404A)が好適に用いられる。
 不飽和フッ化炭化水素(HFO)冷媒は、好ましくはフッ素数が3~5のフルオロプロペンであり、より好ましくは、1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye)、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)、1,2,3,3-テトラフルオロプロペン(HFO-1234ye)、及び3,3,3-トリフルオロプロペン(HFO-1243zf)から選ばれる1種又は2種以上の混合物であり、更に好ましくは、HFO-1225ye、HFO-1234ze及びHFO-1234yfから選ばれる1種又は2種以上の混合物である。
 炭化水素冷媒は、好ましくは炭素数1~5の炭化水素であり、具体的には例えば、メタン、エチレン、エタン、プロピレン、プロパン(R290)、シクロプロパン、ノルマルブタン、イソブタン、シクロブタン、メチルシクロプロパン、2-メチルブタン、ノルマルペンタン又はこれらの2種以上の混合物である。炭化水素冷媒は、これらの中でも、好ましくは25℃、1気圧で気体の炭化水素であり、より好ましくは、プロパン、ノルマルブタン、イソブタン、2-メチルブタン又はこれらの混合物である。
 冷媒は、上記の冷媒のみを含む冷媒であってもよく、上記の冷媒に加えて、その他の冷媒を更に含む冷媒であってもよい。その他の冷媒としては、例えば、その他の飽和フッ化炭化水素冷媒、パーフルオロエーテル類等の含フッ素エーテル系冷媒、ビス(トリフルオロメチル)サルファイド冷媒、3フッ化ヨウ化メタン冷媒、及び、アンモニア等の自然系冷媒が挙げられる。
 その他の飽和フッ化炭化水素冷媒としては、炭素数1~3、好ましくは1~2の飽和フッ化炭化水素が挙げられ、具体的には例えば、ペンタフルオロエタン(R125)、1,1,2,2-テトラフルオロエタン(R134)、1,1-ジフルオロエタン(R152a)、フルオロエタン(R161)、1,1,1,2,3,3,3-ヘプタフルオロプロパン(R227ea)、1,1,1,2,3,3-ヘキサフルオロプロパン(R236ea)、1,1,1,3,3,3-ヘキサフルオロプロパン(R236fa)、1,1,1,3,3-ペンタフルオロプロパン(R245fa)、1,1,1,3,3-ペンタフルオロブタン(R365mfc)等が挙げられる。
 冷凍機用作動流体組成物における冷凍機油の含有量は、特に制限されないが、冷媒100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上であり、また、好ましくは500質量部以下、より好ましくは400質量部以下である。
 冷凍機油及び冷凍機用作動流体組成物は、往復動式や回転式の密閉型圧縮機を有するエアコン、冷蔵庫、開放型又は密閉型のカーエアコン、除湿機、給湯器、冷凍庫、冷凍冷蔵倉庫、自動販売機、ショーケース、化学プラント等の冷却装置、遠心式の圧縮機を有するもの等に好適に用いられる。
 以下、実施例に基づき本発明を更に具体的に説明するが、本発明は以下に実施例に限定されるものではない。
 特開2016-098284号公報に記載の実施例1と同等の方法により、モノマーの種類及び比率を調整して、表1,2に示すポリアクリレートの水素添加物又はポリアクリレートの非水素添加物を合成した。なお、水素添加「無」のポリアクリレートは、水素添加処理前のものであり、その水素添加物と同様に、重合体以外の低沸点成分及び触媒を可能な限り除去したものである。これらを基油として用い、各基油からなる冷凍機油を調製した。表1,2中、EAはエチルアクリレートを、BAはn-ブチルアクリレートをそれぞれ表す。表1,2には、ポリアクリレートの水素添加物又はポリアクリレートの非水素添加物(基油)の性状も併せて示す。
 実施例1及び比較例1の各冷凍機油について、以下に示す相溶性試験1~4を実施した。結果を表1に示す。また、実施例2及び比較例2の各冷凍機油について、以下に示す相溶性試験1,5~8を実施した。結果を表2に示す。
(相溶性試験1)
 JIS K2211:2009「冷凍機油」の「冷媒との相溶性試験方法」に準拠して、冷凍機油と、ジフルオロメタン/ペンタフルオロエタンの混合冷媒(質量比50/50、R410A)とを質量比15/85(冷凍機油/冷媒)で配合して、作動流体組成物を調製した。この作動流体組成物を20℃から徐々に冷却していき、作動流体組成物が相分離又は白濁した温度を二層分離温度として評価した。表1中、「<-70」は、-70℃まで冷却しても相分離及び白濁が観察されなかったことを意味し、「>+20」は、+20℃~-70℃の温度領域で相溶せず、低温側二層分離温度が+20℃超であったことを意味する。
(相溶性試験2)
 冷媒をジフルオロメタン/ペンタフルオロエタン/1,1,1,2-テトラフルオロエタンの混合冷媒(質量比23/25/52、R407C)に変更した以外は、相溶性試験1と同様にして二層分離温度を評価した。
(相溶性試験3)
 冷媒を2,3,3,3-テトラフルオロプロペン単独冷媒(HFO-1234yf)に変更した以外は、相溶性試験1と同様にして二層分離温度を評価した。
(相溶性試験4)
 冷媒をプロパン単独冷媒(R290)に変更し、冷凍機油と冷媒との質量比(冷凍機油/冷媒)を30/70に変更した以外は、相溶性試験1と同様にして二層分離温度を評価した。
(相溶性試験5)
 冷媒をジフルオロメタン単独冷媒(R32)に変更した以外は、相溶性試験1と同様にして二層分離温度を評価した。
(相溶性試験6)
 冷媒をペンタフルオロエタン/1,1,1,2-テトラフルオロエタン/1,1,1-トリフルオロエタンジフルオロメタンの混合冷媒(質量比44/4/52、R404A)に変更し、冷凍機油と冷媒との質量比(冷凍機油/冷媒)を10/90に変更した以外は、相溶性試験1と同様にして二層分離温度を評価した。ただし、作動流体組成物が20℃付近で相分離又は白濁している場合もあったため、必要に応じて高温側の二層分離温度も測定した。例えば、表2中、「-60~+11」であれば、低温側二層分離温度が-60℃、高温側二層分離温度が+11℃であり、-60℃超、+11℃未満の温度領域が、冷凍機油と冷媒との相溶領域であることを意味する。また、表2中、「<-70~>+20」であれば、-70℃~+20℃の温度領域で相分離又は白濁が観察されない、すなわち、この温度領域全体が相溶領域であることを意味する。
(相溶性試験7)
 冷媒をジフルオロメタン/ペンタフルオロエタン/1,1,1,2-テトラフルオロエタンの混合冷媒(質量比23/25/52、R407C)に変更した以外は、相溶性試験6と同様にして二層分離温度を評価した。
(相溶性試験8)
 冷媒を2,3,3,3-テトラフルオロプロペン単独冷媒(HFO-1234yf)に変更した以外は、相溶性試験6と同様にして二層分離温度を評価した。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 実施例3として、上述したのと同様に、エチルアクリレート(EA)の比率が100モル%であるポリアクリレートの水素添加物(平均重合度:8.1、末端二重結合ユニットの含有割合:<0.01モル%、残存モノマー量:<0.01質量%、40℃動粘度:260.2mm/s、100℃動粘度:19.4mm/s、粘度指数:84)を合成した。このポリアクリレートの水素添加物を基油として用い、該基油からなる冷凍機油を調製した。実施例3の冷凍機油について相溶性試験1を実施したところ、二層分離温度は<-70℃であった。
 実施例4として、上述の実施例1のポリアクリレートの水素添加物とその水素添加前のものである比較例1のポリアクリレートの非水素添加物とを3:7(質量比)で混合し、末端二重結合ユニットの含有割合が5.8モル%のポリアクリレートを得た。このポリアクリレートを基油として用い、該基油からなる冷凍機油を調製した。実施例4の冷凍機油について相溶性試験3を実施したところ、比較例1のポリアクリレートの非水素添加物を用いた場合よりも冷媒相溶性が改善されることが確認された。
 実施例5として、上述の実施例2のポリアクリレートの水素添加物とその水素添加前のものである比較例2のポリアクリレートの非水素添加物とを5:5(質量比)で混合し、末端二重結合ユニットの含有割合が5.5モル%のポリアクリレートを得た。このポリアクリレートを基油として用い、該基油からなる冷凍機油を調製した。実施例5の冷凍機油について相溶性試験8を実施したところ、比較例2のポリアクリレートの非水素添加物を用いた場合よりも冷媒相溶性が改善されることが確認された。

Claims (14)

  1.  ポリ(メタ)アクリレートを基油として含有する冷凍機油であって、
     前記ポリ(メタ)アクリレートは、ポリ(メタ)アクリレートの水素添加物を含み、
     前記ポリ(メタ)アクリレート中の末端に位置する炭素-炭素二重結合を有するユニットの含有割合が、前記ポリ(メタ)アクリレートを構成する全ユニットに対して6モル%以下であり、
     前記ポリ(メタ)アクリレートの水素添加物の40℃における動粘度が1~1000mm/sであり、
     ジフルオロメタン、ジフルオロメタンとペンタフルオロエタンとの混合物、ジフルオロメタンとペンタフルオロエタンと1,1,1,2-テトラフルオロエタンとの混合物、ペンタフルオロエタンと1,1,1,2-テトラフルオロエタンと1,1,1-トリフルオロエタンとの混合物、不飽和フッ化炭化水素、炭化水素、及び二酸化炭素から選ばれる冷媒を含む冷媒と共に用いられる、冷凍機油。
  2.  前記冷媒が、ジフルオロメタンとペンタフルオロエタンと1,1,1,2-テトラフルオロエタンとの混合物、ペンタフルオロエタンと1,1,1,2-テトラフルオロエタンと1,1,1-トリフルオロエタンとの混合物、不飽和フッ化炭化水素、及び炭化水素から選ばれる冷媒を含む、請求項1に記載の冷凍機油。
  3.  前記冷媒が不飽和フッ化炭化水素を含む、請求項1又は2に記載の冷凍機油。
  4.  前記ポリ(メタ)アクリレートの水素添加物が、下記式(1)で表される構造単位を有する、請求項1~3のいずれか一項に記載の冷凍機油。
    Figure JPOXMLDOC01-appb-C000001
    [式中、R、R及びRは、それぞれ独立に、水素原子又は炭化水素基を表し、Rは、炭化水素基又は酸素含有有機基を表す。]
  5.  前記式(1)におけるRで表される炭化水素基の炭素数が1~10である、請求項4に記載の冷凍機油。
  6.  前記式(1)におけるRで表される炭化水素基が、炭素数1~4のアルキル基である、請求項4又は5に記載の冷凍機油。
  7.  前記式(1)におけるRで表される炭化水素基が、炭素数2のアルキル基である、請求項4~6のいずれか一項に記載の冷凍機油。
  8.  ポリ(メタ)アクリレートを基油として含有する冷凍機油であって、前記ポリ(メタ)アクリレートは、ポリ(メタ)アクリレートの水素添加物を含み、前記ポリ(メタ)アクリレート中の末端に位置する炭素-炭素二重結合を有するユニットの含有割合が、前記ポリ(メタ)アクリレートを構成する全ユニットに対して6モル%以下であり、前記ポリ(メタ)アクリレートの水素添加物の40℃における動粘度が1~1000mm/sである、冷凍機油と、
     ジフルオロメタン、ジフルオロメタンとペンタフルオロエタンとの混合物、ジフルオロメタンとペンタフルオロエタンと1,1,1,2-テトラフルオロエタンとの混合物、ペンタフルオロエタンと1,1,1,2-テトラフルオロエタンと1,1,1-トリフルオロエタンとの混合物、不飽和フッ化炭化水素、炭化水素、及び二酸化炭素から選ばれる冷媒を含む冷媒と、を含有する冷凍機用作動流体組成物。
  9.  前記冷媒が、ジフルオロメタンとペンタフルオロエタンと1,1,1,2-テトラフルオロエタンとの混合物、ペンタフルオロエタンと1,1,1,2-テトラフルオロエタンと1,1,1-トリフルオロエタンとの混合物、不飽和フッ化炭化水素、及び炭化水素から選ばれる冷媒を含む、請求項8に記載の冷凍機用作動流体組成物。
  10.  前記冷媒が不飽和フッ化炭化水素を含む、請求項8又は9に記載の冷凍機用作動流体組成物。
  11.  前記ポリ(メタ)アクリレートの水素添加物が、下記式(1)で表される構造単位を有する、請求項8~10のいずれか一項に記載の冷凍機用作動流体組成物。
    Figure JPOXMLDOC01-appb-C000002
    [式中、R、R及びRは、それぞれ独立に、水素原子又は炭化水素基を表し、Rは、炭化水素基又は酸素含有有機基を表す。]
  12.  前記式(1)におけるRで表される炭化水素基の炭素数が1~10である、請求項11に記載の冷凍機用作動流体組成物。
  13.  前記式(1)におけるRで表される炭化水素基が、炭素数1~4のアルキル基である、請求項11又は12に記載の冷凍機用作動流体組成物。
  14.  前記式(1)におけるRで表される炭化水素基が、炭素数2のアルキル基である、請求項11~13のいずれか一項に記載の冷凍機用作動流体組成物。
PCT/JP2017/037994 2016-10-20 2017-10-20 冷凍機油及び冷凍機用作動流体組成物 WO2018074584A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018545768A JPWO2018074584A1 (ja) 2016-10-20 2017-10-20 冷凍機油及び冷凍機用作動流体組成物
US16/343,226 US11208608B2 (en) 2016-10-20 2017-10-20 Refrigerator oil and working fluid composition for refrigerator
CN201780064182.0A CN109844076B (zh) 2016-10-20 2017-10-20 冷冻机油和冷冻机用工作流体组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016205957 2016-10-20
JP2016-205957 2016-10-20

Publications (1)

Publication Number Publication Date
WO2018074584A1 true WO2018074584A1 (ja) 2018-04-26

Family

ID=62019527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037994 WO2018074584A1 (ja) 2016-10-20 2017-10-20 冷凍機油及び冷凍機用作動流体組成物

Country Status (4)

Country Link
US (1) US11208608B2 (ja)
JP (1) JPWO2018074584A1 (ja)
CN (1) CN109844076B (ja)
WO (1) WO2018074584A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048658A1 (ja) * 2022-08-31 2024-03-07 Eneos株式会社 冷凍機油、作動流体組成物、及び冷媒溶解粘度改良剤

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7282746B2 (ja) * 2018-04-02 2023-05-29 Eneos株式会社 冷凍機、冷凍機油及び冷凍機用作動流体組成物
CN117946785A (zh) * 2020-04-30 2024-04-30 引能仕株式会社 冷冻机油
US20230250354A1 (en) * 2020-07-08 2023-08-10 Eneos Corporation Refrigerator oil, and working fluid composition for refrigerator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209181A (ja) * 1990-01-31 1993-08-20 Tonen Corp 冷凍機用潤滑油
JP2001107066A (ja) * 1999-10-08 2001-04-17 New Japan Chem Co Ltd 冷凍機用潤滑油
JP2011513538A (ja) * 2008-02-29 2011-04-28 アーケマ・インコーポレイテッド ブロックコポリマー油リターン剤
JP2012530186A (ja) * 2009-06-15 2012-11-29 ハネウェル・インターナショナル・インコーポレーテッド トリフルオロニトロメタンを含む組成物及び方法
WO2015178233A1 (ja) * 2014-05-22 2015-11-26 Jx日鉱日石エネルギー株式会社 冷凍機油及び冷凍機用作動流体組成物
JP2016098284A (ja) * 2014-11-20 2016-05-30 株式会社日本触媒 アクリル重合体及びその製法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04275397A (ja) 1991-03-01 1992-09-30 Idemitsu Kosan Co Ltd 圧縮型冷凍機用潤滑油及びその製造方法
JPH06116579A (ja) * 1992-10-07 1994-04-26 Tonen Corp 冷凍機用潤滑油
JP2007204568A (ja) * 2006-01-31 2007-08-16 Sanyo Chem Ind Ltd 冷凍機油組成物
JP5421514B2 (ja) 2006-03-15 2014-02-19 Jx日鉱日石エネルギー株式会社 潤滑油基油
RU2015113314A (ru) * 2012-09-13 2016-11-10 Эвоник Ойл Эддитивс ГмбХ Композиция для улучшения низкотемпературных свойств и устойчивости к окислению растительных масел и животных жиров
JP6010492B2 (ja) * 2013-03-15 2016-10-19 出光興産株式会社 冷凍機油組成物及び冷凍機システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209181A (ja) * 1990-01-31 1993-08-20 Tonen Corp 冷凍機用潤滑油
JP2001107066A (ja) * 1999-10-08 2001-04-17 New Japan Chem Co Ltd 冷凍機用潤滑油
JP2011513538A (ja) * 2008-02-29 2011-04-28 アーケマ・インコーポレイテッド ブロックコポリマー油リターン剤
JP2012530186A (ja) * 2009-06-15 2012-11-29 ハネウェル・インターナショナル・インコーポレーテッド トリフルオロニトロメタンを含む組成物及び方法
WO2015178233A1 (ja) * 2014-05-22 2015-11-26 Jx日鉱日石エネルギー株式会社 冷凍機油及び冷凍機用作動流体組成物
JP2016098284A (ja) * 2014-11-20 2016-05-30 株式会社日本触媒 アクリル重合体及びその製法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048658A1 (ja) * 2022-08-31 2024-03-07 Eneos株式会社 冷凍機油、作動流体組成物、及び冷媒溶解粘度改良剤

Also Published As

Publication number Publication date
CN109844076A (zh) 2019-06-04
US11208608B2 (en) 2021-12-28
CN109844076B (zh) 2022-12-13
US20200199476A1 (en) 2020-06-25
JPWO2018074584A1 (ja) 2019-08-29

Similar Documents

Publication Publication Date Title
JP7062027B2 (ja) 冷凍機油及び冷凍機用作動流体組成物
EP2243818B1 (en) Use of a refrigerant and lubricating oil composition
US8460571B2 (en) Lubricant composition for refrigerator and compressor using the same
JP5972640B2 (ja) 冷凍機用潤滑油組成物
WO2018097173A1 (ja) 冷凍機油、及び冷凍機用組成物
US11208608B2 (en) Refrigerator oil and working fluid composition for refrigerator
EP2832837B1 (en) Lubricating oil composition for refrigerating machines
JP5986778B2 (ja) 冷媒組成物およびフッ化炭化水素の分解抑制方法
JP5893478B2 (ja) 冷凍機用潤滑油組成物
JP7488929B2 (ja) 冷凍機油
JPWO2016190286A1 (ja) 冷凍機油、冷凍機用組成物、及び冷凍機
KR20190095243A (ko) 냉동기유, 및 냉동기용 조성물
CN108291172B (zh) 冷冻机用润滑油组合物、冷冻机用组合物、润滑方法和冷冻机
WO2020166272A1 (ja) 冷凍機用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861473

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018545768

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17861473

Country of ref document: EP

Kind code of ref document: A1