WO2018074553A1 - タグ用基板、rfidタグおよびrfidシステム - Google Patents

タグ用基板、rfidタグおよびrfidシステム Download PDF

Info

Publication number
WO2018074553A1
WO2018074553A1 PCT/JP2017/037862 JP2017037862W WO2018074553A1 WO 2018074553 A1 WO2018074553 A1 WO 2018074553A1 JP 2017037862 W JP2017037862 W JP 2017037862W WO 2018074553 A1 WO2018074553 A1 WO 2018074553A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
rfid tag
substrate
electrode
tag
Prior art date
Application number
PCT/JP2017/037862
Other languages
English (en)
French (fr)
Inventor
杉本 好正
周一 山本
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP17851827.0A priority Critical patent/EP3370303B1/en
Priority to CN201780003350.5A priority patent/CN108235792B/zh
Priority to JP2018519505A priority patent/JP6483927B2/ja
Priority to US15/933,872 priority patent/US10943077B2/en
Publication of WO2018074553A1 publication Critical patent/WO2018074553A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10316Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers
    • G06K7/10326Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers the antenna being of the very-near field type, e.g. capacitive
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2225Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/183Components mounted in and supported by recessed areas of the printed circuit board
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6661High-frequency adaptations for passive devices
    • H01L2223/6677High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/1533Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate
    • H01L2924/15333Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate being a land array, e.g. LGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/023Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
    • H05K1/0231Capacitors or dielectric substances
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10098Components for radio transmission, e.g. radio frequency identification [RFID] tag, printed or non-printed antennas

Definitions

  • the present disclosure relates to a tag substrate having an upper surface conductor as a radiation conductor (antenna conductor), an RFID (Radio Frequency Identification) tag, and an RFID system.
  • an RFID tag having an antenna conductor for performing transmission / reception of information by radio waves such as an UHF (Ultra High Frequency) band and a semiconductor element such as an IC (Integrated Circuit) has been used.
  • an RFID tag is configured by a tag substrate in which an upper surface conductor is provided on an insulating substrate as an antenna conductor, and a power feeding unit that is provided on the tag substrate and is electrically connected to the upper surface conductor.
  • the RFID tag is mounted (joined or the like) on an article via various bonding materials.
  • a signal to be transmitted / received is stored or recalled by a semiconductor element.
  • the semiconductor element also functions as a power feeding unit for the antenna conductor (see, for example, Patent Document 1).
  • An RFID tag is provided with an insulating substrate having a lower surface bonded to the outside and an upper surface including a recess, an upper surface conductor provided on the upper surface of the insulating substrate, and provided on a lower surface of the insulating substrate.
  • An RFID tag includes a tag substrate having the above-described configuration and a power feeding unit housed in the recess, and the power feeding unit is electrically connected to the upper surface conductor. 1 electrode and the 2nd electrode electrically connected with the said upper surface conductor.
  • the RFID system includes a reader / writer having an antenna that transmits and receives radio waves to and from the upper surface conductor of the RFID tag configured as described above.
  • (A) is a top view which shows an example of the board
  • (b) is sectional drawing in the BB line of (a).
  • (A) is a top view which shows the modification of the board
  • (b) is sectional drawing in the BB line of (a).
  • (A) And (b) shows the reflective characteristic of the RFID tag of a comparative example.
  • (A) And (b) shows the reflective characteristic of the RFID tag contained in embodiment of this indication. It is sectional drawing which shows an example of the RFID tag of a comparative example.
  • a tag substrate, an RFID tag, and an RFID system according to an embodiment of the present disclosure will be described with reference to the accompanying drawings. Note that the distinction between the upper and lower sides in the following description is for convenience of description, and does not limit the upper and lower sides when the tag substrate, the RFID tag, or the RFID system is actually used.
  • FIG. 1A is a plan view illustrating an example of a tag substrate according to an embodiment of the present disclosure
  • FIG. 1B is a cross-sectional view taken along the line BB in FIG.
  • FIG. 2 is a plan view showing a modification of the tag substrate shown in FIG. 1
  • FIG. 2 (b) is a cross-sectional view taken along the line BB of FIG. 2 (a).
  • FIG. 3 is a cross-sectional view showing an example of an RFID tag according to an embodiment of the present disclosure, and includes the tag substrate shown in FIG.
  • FIG. 4 is a schematic diagram illustrating an RFID system according to an embodiment of the present disclosure, including a cross-sectional view of the RFID tag illustrated in FIG. 3 and a perspective view of a reader / writer.
  • a semiconductor element when a semiconductor element is electrically connected to a power supply terminal as a power supply unit for use as an RFID tag, the semiconductor element needs to be mounted on the outer surface of the tag substrate. For this reason, it is difficult to increase the reliability of bonding of semiconductor elements. That is, it is difficult to manufacture a highly reliable RFID tag.
  • a means may be considered in which a concave portion is provided in the tag substrate, the power feeding portion is accommodated in the concave portion, and the RFID tag is mounted so as to close the concave portion with the surface of the article.
  • the resonance frequency of the RFID tag may deviate from a predetermined range due to the presence of the recess. If the resonance frequency is shifted, there is a possibility that the communication distance as the RFID tag is reduced.
  • the tag substrate a substrate in which an upper surface conductor as an antenna conductor and a grounding conductor are arranged to face each other with an insulating substrate as a dielectric interposed therebetween is used.
  • the ground conductor provided on the lower surface has a shape having an opening in the concave portion.
  • the RFID tag is mounted such that the concave portion is closed with the surface of the article. That is, for example, the RFID tag is used with the lower surface in contact with the surface of the metal article or bonded with a bonding material.
  • the distance between the upper surface conductor and the layer having the ground potential (the ground conductor or the surface of the article) opposite to the upper surface conductor is different between the portion where the concave portion is present and the portion where the concave portion is not present. More specifically, since the ground conductor is not present on the lower surface of the insulating substrate in the portion where the recess is present, the distance between the upper surface conductor and the layer having the ground potential is increased. The above-described shift in the resonance frequency is caused by the variation in the distance between the upper surface conductor and the layer having the ground potential.
  • the tag substrate 10 of the embodiment includes an insulating substrate 1 having an upper surface and a lower surface, an upper surface conductor 2 provided on the upper surface of the insulating substrate 1, and a ground conductor 3 provided on the lower surface of the insulating substrate 1. Yes.
  • the lower surface of the insulating substrate 1 is bonded to the outside (articles to be described later).
  • the upper surface of the insulating substrate 1 includes a recess 1a.
  • the tag substrate 10 includes a short-circuit portion through conductor 4 that penetrates the insulating substrate 1 in the thickness direction.
  • the short-circuiting portion through conductor 4 electrically connects the upper surface conductor 2 and the ground conductor 3.
  • the short-circuit portion through conductor 4 is connected to the upper surface conductor 2 only at a part of the outer peripheral portion of the upper surface conductor 2.
  • the first electrode 11a and the second electrode 11b are arranged on the tag substrate 10, and these are electrically connected to the upper surface conductor 2 to manufacture the RFID tag.
  • the first electrode 11a and the second electrode 11b are, for example, wiring conductors (not indicated as wiring conductors) that are electrically connected to the semiconductor element 12 housed in the recess 1a.
  • the first electrode 11a and the second electrode 11b may be formed integrally with the insulating substrate 1 in advance as in the case of the upper surface conductor 2 or the like, or may be separately bonded with a bonding material or the like.
  • the first electrode 11a, the second electrode 11b, and the semiconductor element 12 constitute a power feeding unit F in the RFID tag 20.
  • connection of the first electrode 11a and the second electrode 11b to the upper surface conductor 2 is schematically shown by a virtual line (two-dot chain line). Details of these electrical connections will be described later.
  • the resonance frequency deviation can be effectively reduced. That is, according to the tag substrate having this configuration, since the concave portion is provided on the upper surface, when the RFID tag is mounted on an article, the upper surface conductor as an antenna conductor and a layer having a ground potential opposite to the upper conductor (grounding) It is possible to effectively reduce the possibility that the distance between the conductor or the surface of the article differs between the portion where the recess is present and the portion where the recess is not present. As described above, the resonance frequency shift is caused by the variation in the distance between the upper surface conductor and the layer having the ground potential, and the resonance frequency shift can be suppressed by reducing the distance variation. Therefore, the tag substrate having this configuration can easily manufacture an RFID tag capable of suppressing the shift of the resonance frequency.
  • the insulating substrate 1 functions as an electrically insulating base for disposing the upper conductor 2 and the ground conductor 3 in such a manner that they are electrically insulated from each other.
  • the insulating substrate 1 also functions as a base for mounting and fixing a member such as a semiconductor element 12 described later.
  • the insulating substrate 1 has, for example, a rectangular flat plate shape such as a square shape.
  • the insulating substrate 1 has a concave portion 1a at a predetermined portion such as a central portion on the upper surface.
  • the concave portion 1a is a portion that accommodates the semiconductor element 12 constituting the power feeding portion F, and the semiconductor element 12 is fixed to the bottom surface of the concave portion 1a.
  • the semiconductor element 12 is fixed to the bottom surface of the recess 1a by a bonding method using a bonding material (not shown) such as a low melting point brazing material such as gold-silicon brazing, a glass composite material, or a resin adhesive. Yes.
  • the insulating substrate 1 is formed of a ceramic sintered body such as an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, or a glass ceramic sintered body. If the insulating substrate 1 is made of, for example, an aluminum oxide sintered body, it can be manufactured as follows. First, raw material powders such as aluminum oxide and silicon oxide are formed into a sheet shape together with an appropriate organic binder and an organic solvent to produce a plurality of ceramic green sheets in the form of a square sheet. Next, these ceramic green sheets are laminated to produce a laminate. Thereafter, the laminate is fired at a temperature of 1300 to 1600 ° C., whereby the insulating substrate 1 can be manufactured.
  • a ceramic sintered body such as an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, or a glass ceramic sintered body. If the insulating substrate 1 is made of, for example, an aluminum oxide sintered body, it can be manufactured as follows. First
  • the insulating substrate 1 is formed by laminating a plurality of insulating layers (not shown) formed by firing the ceramic green sheet.
  • the insulating substrate 1 can be manufactured.
  • the insulating substrate 1 in this case is a laminated body in which a plurality of insulating layers formed by sintering respective ceramic green sheets are laminated with each other.
  • Conductor portions such as the upper surface conductor 2 and the ground conductor 3 are portions that function as antennas (no symbols) when the tag substrate 10 is used as the RFID tag 20.
  • This antenna has an upper surface conductor 2 and a ground conductor 3, and a short-circuit through conductor 4 that electrically connects them, and transmits and receives radio waves to and from an antenna 32 of a reader / writer 31 to be described later (reverse) F antenna).
  • the inverted F antenna is an antenna based on a patch antenna, and can be directly attached to a metal article, and is suitable for an RFID tag in that it can be made smaller than a patch antenna.
  • the upper surface conductor 2 is an antenna conductor that actually transmits and receives radio waves, and is formed of, for example, a square frame-shaped conductor layer. Since the concave portion 1a is provided on the upper surface of the insulating substrate 1, the upper conductor 2 is not provided on the concave portion 1a. Therefore, the upper surface conductor 2 has a frame shape in plan view.
  • the upper surface conductor 2 itself is an antenna conductor, and the upper end of the short-circuiting portion through-conductor 4 at the end portion of the rectangular frame-shaped antenna conductor (in the example shown in FIG. 2, the outer periphery near the center of one side of the upper surface conductor 2).
  • the parts are connected. That is, the short circuit portion through conductor 4 is connected to the upper surface conductor 2 only at a part of the outer peripheral portion of the upper surface conductor 2.
  • an antenna conductor that effectively functions as an inverted F-type antenna together with the ground conductor 3 can be configured.
  • the short circuit part through conductor 4 is comprised only with one through conductor, you may be comprised with several through conductors (not shown). For example, these through conductors are arranged adjacent to each other on a part of the outer peripheral portion of the upper surface conductor.
  • the short-circuiting portion through-conductor 4 is constituted by a plurality of through-conductors, it is advantageous in reducing the conduction resistance of the short-circuiting portion through-conductor 4 and effectively stabilizing the ground potential.
  • Conductor portions such as the upper surface conductor 2, the ground conductor 3, and the short-circuit portion through conductor 4 are made of, for example, a metal material such as tungsten, molybdenum, manganese, copper, silver, palladium, gold, platinum, nickel, or cobalt. Further, these conductor portions may be formed of an alloy material including the above metal material. Such a metal material or the like is provided in a predetermined portion of the insulating substrate 1 as a conductor such as a metallized conductor or a plated conductor. This conductor is, for example, a layer provided between the exposed surface of the insulating layers or between the insulating layers, and a columnar shape filled in a through hole (not indicated) penetrating the insulating layer in the thickness direction. Contains.
  • the conductor portion is, for example, a tungsten metallized layer
  • a metal paste prepared by mixing tungsten powder with an organic solvent and an organic binder is screen-printed at a predetermined position of the ceramic green sheet to be the insulating substrate 1. After printing by a method such as these, they can be formed by a method of co-firing them.
  • a through hole is provided in advance in the ceramic green sheet, and the same metal paste as above is filled in the through hole. Then, it can be formed by firing.
  • the through hole can be provided in the ceramic green sheet by a method such as mechanical drilling or laser processing.
  • the exposed surface of the metallized layer is covered with a plating layer appropriately selected from nickel, cobalt, palladium, gold, and the like to suppress oxidative corrosion and to be described later.
  • the bonding wire 13 may be improved in characteristics such as bondability.
  • FIG. 2 is a cross-sectional view showing a modification of the tag substrate 10 shown in FIG.
  • the tag substrate 10 in the example shown in FIG. 2 has a capacitance conductor 5 provided inside the insulation substrate 1 and facing a part of the ground conductor 3, and the insulation substrate 1 having a thickness from the capacitance conductor 5 to the upper surface conductor 2. It further has a capacitor portion through conductor 6 provided penetrating in the direction.
  • the inverted F antenna can be further downsized. That is, the tag substrate 10 that is effective for downsizing the RFID tag 20 can be obtained. Since the capacitor conductor 5 is opposed to the ground conductor 3 that does not have the opening formed by the recess 1a, the capacitor conductor 5 can be made larger, and the capacitance formed between the capacitor conductor 5 and the ground conductor 3 can be further increased. As a large one, the tag substrate 10 can be further downsized.
  • the capacitive conductor 5 having the above configuration electrically connected to the first electrode 11a is included in the insulating substrate 1, the feeding portion F and the upper surface conductor (antenna conductor) can be obtained without increasing the outer shape of the insulating substrate 1. It is also easy to increase the bandwidth by increasing the wiring length of the electrical connection with 2. That is, it is effective for widening the band while maintaining a small size.
  • the tag substrate 10 of the present embodiment it is possible to provide the tag substrate 10 that is advantageous for manufacturing an RFID tag that can be easily downsized and widened.
  • the capacitor conductor 5 is opposed to the ground conductor 3 with a part of the insulating substrate 1 interposed therebetween, and is electrically connected to the upper surface conductor 2 via the capacitor portion through conductor 6 so that a predetermined electrostatic capacity is applied to the antenna. It has a function of imparting to conductors.
  • the capacitive conductor 5 extends from the end opposite to the end portion to which the short-circuiting portion through conductor 4 is connected toward the center portion. Then, at the end opposite to the end portion to which the short-circuit portion through conductor 4 is connected, the capacitor portion through conductor 6 is electrically connected to the upper surface conductor 2.
  • the capacitive conductor 5 and the ground conductor 3 are mutually connected within a range of about 10 to 90% of the area of the ground conductor 3 in plan view. What is necessary is just to set so that it may oppose.
  • the capacitor conductor 5 and the capacitor portion through conductor 6 can be formed in the same manner as the upper surface conductor 2, the ground conductor 3, and the short circuit portion through conductor 4.
  • the RFID tag includes a tag substrate 10 having the above-described configuration and a power feeding unit F accommodated in the recess 1a.
  • the power supply portion F includes the first electrode 11 a electrically connected to the upper surface conductor 2 at the first connection point 14 a and the short-circuit portion than the first connection point 14 a. It has a second electrode 11b electrically connected to the upper surface conductor 2 at a second connection point 14b close to the through conductor 4.
  • the first electrode 11a and the second electrode 11b are electrically connected to the semiconductor element 12 by a bonding wire 13.
  • the power feeding unit F in the RFID tag 20 of the embodiment includes the first electrode 11a and the second electrode 11b, and the semiconductor element (semiconductor integrated circuit element) 12.
  • the power feeding unit F has a function of feeding power to the upper surface conductor 2 that functions as an antenna conductor.
  • the semiconductor element 12 also has information management functions such as storage and recall for signals transmitted and received between the RFID tag 20 and the outside.
  • the RFID tag 20 since the tag substrate 10 having the above-described configuration is included, the RFID tag 20 in which the possibility that the resonance frequency is shifted from a predetermined range is effectively reduced is provided. be able to.
  • the upper through conductor 7A that penetrates (partially) the insulating substrate 1 in the thickness direction from the first electrode 11a to the upper surface conductor 2 is provided.
  • the through conductor 7A is directly connected to the upper surface conductor 2 at the first connection point 14a.
  • the first electrode 11a and the upper surface conductor 2 are electrically connected to each other by the through conductor 7A.
  • the lower through conductor 7B that penetrates the insulating substrate 1 in the thickness direction from the second electrode 11b to the ground conductor 3 is provided.
  • the second electrode 11b is electrically connected to the upper surface conductor 2 through the lower through conductor 7B, the ground conductor 3, and the short circuit portion through conductor 4. That is, the second electrode 11b is electrically connected to the upper surface conductor 2 at the second connection point 14b where the short-circuit portion through conductor 4 and the upper surface conductor 2 are directly connected. Since the second connection point 14b is closer to the short-circuit portion through conductor 4 than the first connection point 14a, the degree of freedom in matching between the impedance of the semiconductor element 12 and the impedance of the tag substrate 10 can be increased.
  • the first electrode 11a, the second electrode 11b, the through conductor 7A, and the through conductor 7B can also be formed in the same manner as the upper surface conductor 2, the ground conductor 3, and the short-circuit portion through conductor 4.
  • the semiconductor element 12 is fixed to the bottom surface of the recess 1a.
  • the semiconductor element 12 is fixed to the bottom surface of the recess 1a by a bonding method using a low melting point brazing material such as gold-silicon (Au—Si) brazing, a glass composite material, or a bonding material such as a resin adhesive.
  • a low melting point brazing material such as gold-silicon (Au—Si) brazing
  • a glass composite material such as a resin adhesive.
  • a bonding material such as a resin adhesive.
  • the terminal (not shown) of the semiconductor element 12 is electrically connected to the first electrode 11 a and the second electrode 11 b through the bonding wire 13.
  • the electrical connection between the terminal of the semiconductor element 12 and the first electrode 11a and the second electrode 11b is not limited to this.
  • the connection may be made by flip-chip connection using bumps made of metal such as solder balls and gold. it can.
  • the power feeding part F accommodated in the recess 1 a may be sealed with the sealing resin 15.
  • the sealing resin 15 contact with the outside air of the power feeding part F is suppressed, and the reliability of the RFID tag 20 is improved.
  • the sealing resin 15 has a function of covering the semiconductor element 12 and protecting it from, for example, outside air such as moisture or oxygen, and mechanical stress from the outside.
  • the resin material forming the sealing resin 15 include an epoxy resin, a polyimide resin, and a silicone resin. Further, filler particles such as silica particles or glass particles may be added to these resin materials. Filler particles are added, for example, to adjust various properties such as mechanical strength, moisture resistance, or electrical properties of the sealing resin 15.
  • the sealing resin 15 can be appropriately selected and used from such various resin materials according to conditions such as workability (productivity) at the time of production of the RFID tag 20 and economy.
  • the RFID system 30 As described above, the RFID system 30 according to the embodiment shown in FIG. 4 is configured including the RFID tag 20 having the above-described configuration.
  • the RFID system 30 according to the embodiment includes the RFID tag 20 having the above configuration and a reader / writer 31 having an antenna 32 that transmits and receives radio waves between the upper surface conductor 2 of the RFID tag 20.
  • the reader / writer 31 is formed, for example, by providing a rectangular antenna 32 on a base 33 made of an electrically insulating material.
  • the base 33 may be a housing (not shown) that houses the antenna 32.
  • an RFID system effective for increasing the communication distance of information between the article and the reader / writer in a wide band is provided. can do.
  • the article 40 on which the RFID tag 20 is mounted is various kinds of articles that require a use history or the like when used.
  • tools such as jigs or tools used in various industrial processes such as machining, metal processing, and resin processing can be used.
  • This tool includes consumable items such as cutting or polishing.
  • the article 40 includes not only industrial products but also various household items, agricultural products, various prepaid cards for transportation, medical instruments, and the like.
  • the RFID tag 20 is mounted on the article 40, for example, in a form in which the ground conductor 3 is grounded to the metal part of the article 40.
  • the metal part of the article 40 can also function as a ground conductor of the antenna (such as the inverted F antenna) of the RFID tag 20.
  • the gain of the antenna can be improved and the communication range of the RFID tag 20 can be expanded. That is, it is possible to form an RFID system 30 that is advantageous in increasing the distance of information transmission / reception between the article 40 and the reader / writer.
  • an RFID system 30 including the RFID tag 20 of the above embodiment, even an article 40 including a metal part, and even a metal article 40 such as a cutting tool such as a mold or scissors is good.
  • an RFID system 30 capable of transmitting and receiving radio waves to and from the antenna 32 of the reader / writer 31 can be configured. That is, the possibility of being disturbed by electromagnetic induction caused by the article (metal) can be reduced. Therefore, for example, it is possible to easily exchange information (radio waves) between a plurality of metal articles 40 and the reader / writer 31 at the same time, and it is possible to configure an RFID system with improved practicality.
  • FIG. 5 is a cross-sectional view showing a first modification of the RFID tag 20.
  • the first electrode 11 a is electrically connected to the upper surface conductor 2 through the capacitive conductor 5.
  • the RFID tag 20 of this example is, for example, an RFID tag 20 including a tag substrate 10 having a capacitive conductor 5 as shown in FIG. 2, and the first electrode 11a and the capacitive conductor 5 sandwich the insulating substrate 1 between them. It can also be regarded as an example in which the through conductors 7C penetrating in the thickness direction are electrically connected to each other.
  • the capacitor conductor 5 and the upper surface conductor 2 are electrically connected to each other by the capacitor portion through conductor 6. Except for these points, the RFID tag 20 in the example shown in FIG. 5 is the same as the RFID tag 20 in the example shown in FIG. Explanation of these similar points is omitted.
  • the RFID tag 20 in this example can easily form a miniaturized inverted-F antenna as described in the description of the tag substrate 10 having the capacitive conductor 5 described above. That is, the RFID tag 20 effective for miniaturization can be obtained.
  • the capacitive conductor 5 facing the ground conductor layer 3 is included in the insulating substrate 1, the electrical connection between the power feeding portion F and the upper surface conductor (antenna conductor) 2 provided inside and on the lower surface of the insulating substrate 1. Since the wiring length of simple connection can be effectively increased, the RFID tag 20 effective for downsizing and widening the band can be obtained.
  • the RFID tag 20 of this modification it is possible to provide an RFID tag that can be easily downsized and widened.
  • FIG. 6 is a cross-sectional view showing a second modification of the RFID tag.
  • the capacitive conductor 5 is disposed inside the insulating substrate 1, and the capacitive conductor 5 and the upper surface conductor 2 are electrically connected to each other by the capacitive part through conductor 6. It is not interposed between the first electrode 11a and the upper surface conductor 2. Instead, the first electrode 11a is electrically connected to the upper surface conductor 2 directly (that is, with a relatively short connection length) by the through conductor 7A.
  • the RFID tag 20 since the capacitive conductor 5 facing the ground conductor 3 is disposed inside the insulating substrate 1, a miniaturized inverted F antenna can be easily formed. That is, the RFID tag 20 effective for miniaturization can be obtained. In other words, the RFID tag 20 can be reduced in size without interposing the capacitive conductor 5 between the first electrode 11a and the upper surface conductor 2.
  • the path from the first electrode 11a to the through conductor 7A, the upper surface conductor 2, the short-circuit portion through conductor 4, the ground conductor 3, the through conductor 7B, and the second electrode 11b Is shorter than the path (path from the first electrode 11a to the second electrode 11b) shown in FIG. 5, the loss between the first electrode 11a and the second electrode 11b is small, and the Q value of this path is increased. can do. Therefore, the RFID tag 20 effective for effectively increasing the gain can be obtained.
  • the RFID tag 20 of this modification it is possible to provide an RFID tag that can be easily reduced in size, increased in gain, and the like.
  • the electrical connection between the second electrode 11b and the upper surface conductor 2 is the above-described example (form through the through conductor 7B, the ground conductor 3 and the short-circuit portion through conductor 4). ), But may be in other forms. An example will be described below.
  • FIG. 7 is a cross-sectional view showing a third modification of the RFID tag.
  • an internal conductor 8A that is connected to the short-circuiting portion through conductor 4 from the end portion of the second electrode 11b through the insulating layer is provided. That is, the second electrode 11b is electrically connected to the upper surface conductor 2 via the inner conductor 8A and the short-circuiting portion through conductor 4 (without the ground conductor 3 interposed).
  • the inner conductor 8A can also be regarded as the outer end portion of the second electrode 11b extending to the short-circuiting portion through conductor 4.
  • the second electrode 11b When the second electrode 11b is connected to the upper surface conductor 2 through the short-circuiting portion through conductor 4 as in the RFID tag of this modification, it is advantageous in the following points. That is, in the RFID tag of the third modification shown in FIG. 7, the path from the first electrode 11a to the through conductor 7A, the top conductor 2, the short-circuit through conductor 4, the internal conductor 8A, and the second electrode 11b is as shown in FIG. Therefore, the loss between the first electrode 11a and the second electrode 11b is small, and the Q value of this path can be increased. . Therefore, the RFID tag 20 effective for effectively increasing the gain can be obtained.
  • the RFID tag 20 of this modification it is possible to provide an RFID tag that is more effective for increasing the gain and the like.
  • FIG. 8 is a cross-sectional view showing a fourth modification of the RFID tag.
  • an internal conductor 8B is disposed from the outer end portion of the second electrode 11b to the interlayer of the insulating layer, and penetrates the insulating substrate 1 in the thickness direction between the internal conductor 8B and the upper surface conductor 2.
  • a through conductor 7D is disposed.
  • the inner conductor 8B can also be regarded as the outer end portion of the second electrode 11b extending to the interlayer of the insulating layer.
  • the second electrode 11b is electrically connected to the upper surface conductor 2 without the ground conductor 3 and the short-circuiting portion through conductor 4 interposed therebetween.
  • the second connection point in this example is a portion where the upper end of the through conductor 7D is connected to the upper surface conductor 2.
  • the second electrode 11b is directly connected to the upper surface conductor 2 as in the RFID tag of this modification, it is advantageous in the following points. That is, in the RFID tag of the fourth modified example shown in FIG. 8, the paths from the first electrode 11a to the through conductor 7A, the top conductor 2, the through conductor 7D, the internal conductor 8A, and the second electrode 11b are shown in FIG. Since it is shorter than the path (path from the first electrode 11a to the second electrode 11b), the loss between the first electrode 11a and the second electrode 11b is small, and the Q value of this path can be increased. Therefore, the RFID tag 20 effective for effectively increasing the gain can be obtained.
  • the RFID tag 20 of this modification it is possible to provide an RFID tag that is more effective for increasing the gain and the like.
  • the same capacitive conductor 5 as in the example shown in FIG. 6 can be provided. That is, in the example shown in FIGS. 7 and 8, the capacitive conductor 5 may be disposed inside the insulating substrate 1, and the capacitive conductor 5 and the upper conductor 2 may be electrically connected to each other by the capacitive part through conductor 6. . Also in this case, since the first electrode 11a is electrically connected to the upper surface conductor 2 directly (that is, with a relatively short connection length) by the through conductor 7A, the first electrode 11a to the second electrode 11b are electrically connected.
  • the RFID tag 20 is shorter than the path) and is effective in effectively increasing the gain. By providing the capacitor conductor 5, the RFID tag 20 that is effective in reducing the size can be obtained.
  • FIG. 9 shows the reflection characteristics by the electromagnetic field simulation of the RFID tag 200 shown in FIG.
  • FIG. 11 is a cross-sectional view showing an RFID tag 200 of a comparative example.
  • the same parts as those in FIGS. 1 to 8 are denoted by the same reference numerals.
  • a concave portion 1a is provided on the ground conductor 203 side instead of the upper surface conductor 202 side of the insulating substrate 1.
  • the horizontal axis of the graph represents frequency
  • the vertical axis represents the reflection characteristic S11
  • the numerical value represents the resonance frequency.
  • FIG. 9A shows reflection characteristics when the grounding conductor 203 side of the RFID tag 200 is installed on a copper plate with an interval of 0.3 mm, and the resonance frequency is 921 MHz.
  • FIG. 9B shows reflection characteristics when the grounding conductor 203 side of the RFID tag 200 is placed on a copper plate without leaving a space, and the resonance frequency is 993 MHz. That is, in the case of the RFID tag 200 shown in FIG. 11, when the distance between the RFID tag 200 and the copper plate is changed, the resonance frequency is greatly shifted to 72 MHz.
  • FIG. 10 shows the reflection characteristics by the electromagnetic field simulation of the RFID tag 20 of the first modified example included in the embodiment of the present disclosure shown in FIG. Also in FIGS. 10A and 10B, the horizontal axis of the graph is the frequency, the vertical axis is the reflection characteristic S11, and the numerical value indicates the resonance frequency.
  • FIG. 10A shows reflection characteristics when the grounding conductor 3 side of the RFID tag 20 is placed on a copper plate with a spacing of 0.3 mm, and the resonance frequency is 918 MHz.
  • FIG. 10B shows reflection characteristics when the grounding conductor 3 side of the RFID tag 20 is placed on a copper plate without leaving a space, and the resonance frequency is 919 MHz. That is, even if the interval between the RFID tag 20 and the copper plate of the first modified example of the present disclosure shown in FIG. 5 is changed, the resonance frequency is shifted by only 1 MHz.
  • the tag substrate 10 and the RFID tag 20 of the embodiment of the present disclosure it is possible to provide a tag substrate and an RFID tag that are effective in suppressing variations in resonance frequency.
  • this indication is not limited to the example of the above embodiment, A various change is possible if it is in the range of the summary of this indication.
  • the exposed surface such as the upper conductor 2 may be covered with a plating layer such as a gold plating layer.
  • capacitor portion through conductor 4 and through conductors 7A to 7D may be provided side by side. That is, for example, a plurality of capacitor portion through conductors (not shown) may be provided between the capacitor conductor 5 and the upper surface conductor 2 side by side in a plan view. In this case, a plurality of capacitive portion through conductors are combined and function in the same manner as the single capacitive portion through conductor 4 in the tag substrate 10 or the like having the above configuration. At this time, for example, effects such as reduction of conduction resistance between the capacitive conductor 5 and the upper conductor 2 can be obtained.

Abstract

【解決手段】 外部に接合される下面および凹部1aを含む上面を有する絶縁基板1と、絶縁基板1の上面に設けられた上面導体2と、絶縁基板1の下面に設けられた接地導体3と、絶縁基板1を厚み方向に貫通しており、上面導体2と接地導体3とを電気的に接続している短絡部貫通導体4とを備えており、短絡部貫通導体4は上面導体2の外周部の一部のみにおいて上面導体2と接続しているタグ用基板10等である。

Description

タグ用基板、RFIDタグおよびRFIDシステム
 本開示は、放射導体(アンテナ導体)としての上面導体を有するタグ用基板、RFID(Radio Frequency Identification)タグおよびRFIDシステムに関する。
 各種物品の情報を、物品に実装したRFIDタグで検知し、管理することが広く行なわれるようになってきている。この場合のRFIDタグとして、情報の送受をUHF(Ultra High Frequency)帯等の電波で行なうためのアンテナ導体およびIC(Integrated circuit)等の半導体素子を有するものが用いられるようになってきている。例えば、アンテナ導体として上面導体が絶縁基板に設けられてなるタグ用基板と、タグ用基板に設けられて上面導体と電気的に接続された給電部とによってRFIDタグが構成されている。RFIDタグは、各種の接合材を介して物品に実装(接合等)される。
 RFIDタグのアンテナ導体と、電波の送受信機能を有するリーダライタ等の外部機器との間で情報の送受が行なわれる。送受される信号は半導体素子で記憶または呼び出し等が行なわれる。この場合に、半導体素子は、アンテナ導体に対する給電部としても機能する(例えば特許文献1を参照)。
特開2000-101335号公報
 本開示の1つの態様のRFIDタグは、外部に接合される下面および凹部を含む上面を有する絶縁基板と、該絶縁基板の上面に設けられた上面導体と、前記絶縁基板の下面に設けられた接地導体と、前記絶縁基板を厚み方向に貫通しており、前記上面導体と前記接地導体とを電気的に接続している短絡部貫通導体とを有しており、該短絡部貫通導体は前記上面導体の外周部の一部のみにおいて前記上面導体と接続している。
 本開示の1つの態様のRFIDタグは、上記構成のタグ用基板と、前記凹部に収容されている給電部とを備えており、該給電部が、前記上面導体と電気的に接続された第1電極と、前記上面導体と電気的に接続された第2電極とを有している。
 本開示の1つの態様のRFIDシステムは、上記構成のRFIDタグの上面導体との間で電波を送受するアンテナを有するリーダライタとを有している。
(a)は本開示の実施形態のタグ用基板の一例を示す平面図であり、(b)は(a)のB-B線における断面図である。 (a)は図1に示すタグ用基板の変形例を示す平面図であり、(b)は(a)のB-B線における断面図である。 本開示の実施形態のRFIDタグの一例を示す断面図である。 本開示の実施形態のRFIDシステムの一例を示す模式図である。 RFIDタグの第1の変形例を示す断面図である。 RFIDタグの第2の変形例を示す断面図である。 RFIDタグの第3の変形例を示す断面図である。 RFIDタグの第4の変形例を示す断面図である。 (a)および(b)は比較例のRFIDタグの反射特性を示す。 (a)および(b)は本開示の実施形態に含まれるRFIDタグの反射特性を示す。 比較例のRFIDタグの一例を示す断面図である。
 本開示の実施形態のタグ用基板、RFIDタグおよびRFIDシステムを、添付の図面を参照して説明する。なお、以下の説明における上下の区別は説明上の便宜的なものであり、実際にタグ用基板、RFIDタグまたはRFIDシステムが使用されるときの上下を限定するものではない。
 図1(a)は本開示の実施形態のタグ用基板の一例を示す平面図であり、図1(b)は図1(a)のB-B線における断面図である。図2は図1に示すタグ用基板の変形例を示す平面図であり、図2(b)は図2(a)のB-B線における断面図である。図3は本開示の実施形態のRFIDタグの一例を示す断面図であり、図1に示すタグ用基板を含んでいる。図4は本開示の実施形態のRFIDシステムを示す模式図であり、図3に示すRFIDタグの断面図およびリーダライタの斜視図を含んでいる。
 従来のタグ用基板では、RFIDタグとして用いるために給電部として半導体素子を給電用端子に電気的に接続させる場合、半導体素子をタグ用基板の外表面に実装する必要がある。そのため、半導体素子の接合の信頼性を高めることが難しい。つまり信頼性の高いRFIDタグを作製することが難しい。これに対して、例えばタグ用基板に凹部を設けて、凹部内に給電部を収容し、凹部を物品の表面で塞ぐようにしてRFIDタグを実装するという手段が考えられる。
 しかしながら、このような凹部を設けた場合に、凹部の存在に起因してRFIDタグとしての共振周波数が所定の範囲からずれる可能性があった。そして、共振周波数がずれるとRFIDタグとしての通信距離の低下等を招く可能性があった。
 タグ用基板としては、アンテナ導体としての上面導体と接地導体とが誘電体である絶縁基板を挟んで対向して配置されたものが用いられる。物品への実装面であるタグ用基板の下面に凹部を設けると、下面に設けられた接地導体は凹部の部分に開口を有する形状となる。上述したように、RFIDタグは凹部を物品の表面で塞ぐようにして実装する、すなわち、例えばRFIDタグは、下面を金属製の物品の表面に接触あるいは接合材で接合して用いられる。すると、上面導体と、これに対向する接地電位を有する層(接地導体または物品の表面)との間の距離が、凹部が存在している部分と存在していない部分とで異なることになる。より具体的には、凹部が存在する部分では、絶縁基板の下面に接地導体が存在しないので、上面導体と接地電位を有する層との間の距離が大きくなる。前述した共振周波数のずれは、このような上面導体と接地電位を有する層との間の距離のばらつきに起因するものである。
 (タグ用基板)
 実施形態のタグ用基板10は、上面および下面を有する絶縁基板1と、絶縁基板1の上面に設けられた上面導体2と、絶縁基板1の下面に設けられた接地導体3とを有している。絶縁基板1の下面は外部(後述する物品等)に接合される。絶縁基板1の上面は凹部1aを含んでいる。また、このタグ用基板10は、絶縁基板1を厚み方向に貫通している短絡部貫通導体4を有している。短絡部貫通導体4は、上面導体2と接地導体3とを電気的に接続している。短絡部貫通導体4は上面導体2の外周部の一部のみにおいて上面導体2と接続している。
 例えば図1および図2に示す例のように、タグ用基板10に第1電極11a、第2電極11bが配置され、これらが上面導体2と電気的に接続されてRFIDタグが製作される。第1電極11aおよび第2電極11bは、例えば凹部1a内に収容される半導体素子12と電気的に接続される配線導体(配線導体としては符号なし)である。第1電極11aおよび第2電極11bは、上面導体2等と同様に、あらかじめ絶縁基板1と一体的に形成されているものでもよく、接合材等で別途接合されたものでもよい。第1電極11a、第2電極11bおよび半導体素子12は、RFIDタグ20における給電部Fを構成している。
 なお、図1および図2に示す例では、第1電極11aおよび第2電極11bの上面導体2に対する接続は仮想線(二点鎖線)で模式的に示している。これらの電気的な接続の詳細については後述する。
 本開示の1つの態様のタグ用基板によれば、上記共振周波数のずれを効果的に低減できる。すなわち、この構成のタグ用基板によれば、上面に凹部を有することから、RFIDタグとして物品に実装されるときに、アンテナ導体としての上面導体と、これに対向する接地電位を有する層(接地導体または物品の表面)との間の距離が、凹部が存在している部分と存在していない部分とで異なってしまう可能性を効果的に低減できる。前述したように、共振周波数のずれは、上記上面導体と接地電位を有する層との間の距離のばらつきに起因するものであり、この距離のばらつきの低減によって共振周波数のずれを抑制できる。したがって、この構成のタグ用基板は、共振周波数のずれの抑制が可能なRFIDタグを容易に製作することができる。
 絶縁基板1は、上面導体2および接地導体3等の導体部分を互いに電気的に絶縁させて配置するための電気絶縁性の基体として機能する。また、絶縁基板1は、後述する半導体素子12等の部材を搭載して固定するための基体としても機能する。
 絶縁基板1は、例えば正方形状等の四角形状の平板状である。この絶縁基板1は、上面の中央部等の所定部位に凹部1aを有している。凹部1aは、上記のように、給電部Fを構成する半導体素子12を収容する部分であり、凹部1aの底面に半導体素子12が固定されている。凹部1aの底面への半導体素子12の固定は、例えば金-シリコンろう等の低融点ろう材、ガラス複合材料または樹脂接着剤等の接合材(図示せず)を介した接合法で行なわれている。
 絶縁基板1は、例えば、酸化アルミニウム質焼結体、窒化アルミニウム質焼結体、ムライト質焼結体またはガラスセラミック焼結体等のセラミック焼結体によって形成されている。絶縁基板1は、例えば酸化アルミニウム質焼結体からなる場合であれば、次のようにして製作することができる。まず酸化アルミニウムおよび酸化ケイ素等の原料粉末を適当な有機バインダおよび有機溶剤とともにシート状に成形して四角シート状の複数のセラミックグリーンシートを作製する。次に、これらのセラミックグリーンシートを積層して積層体を作製する。その後、この積層体を1300~1600℃の温度で焼成することによって絶縁基板1を製作することができる。
 実施形態のタグ用基板では、上記セラミックグリーンシートが焼成されてなる複数の絶縁層(符号なし)が互いに積層されて絶縁基板1を形成している。
 このときに、一部のセラミックグリーンシートの中央部等を厚み方向に打ち抜いて枠状に加工しておき、枠状のセラミックグリーンシートを最上層等に積層して焼成すれば、凹部1aを有する絶縁基板1を製作することができる。この場合の絶縁基板1は、それぞれのセラミックグリーンシートが焼結してなる複数の絶縁層が互いに積層された積層体になっている。
 上面導体2および接地導体3といった導体部分は、タグ用基板10がRFIDタグ20として用いられるときにアンテナ(符号なし)として機能する部分である。このアンテナは、上面導体2および接地導体3、ならびにこれらを電気的に接続させる短絡部貫通導体4とを有し、後述するリーダライタ31のアンテナ32との間で電波を送受するアンテナ導体(逆Fアンテナ)を構成している。逆Fアンテナはパッチアンテナをベースにしたアンテナであり、金属製の物品へ直接取り付けることが可能で、またパッチアンテナより小型化ができる点でRFIDタグ用に適している。
 上面導体2は、実際に電波の送受が行なわれるアンテナ導体であり、例えば正方形枠状の導体層によって形成されている。絶縁基板1の上面には凹部1aが設けられているため、凹部1aの部分には上面導体2は設けられない。そのため、上面導体2は平面視で枠状になっている。
 この上面導体2自体はアンテナ導体であり、四角枠状のアンテナ導体の端部分(図2に示す例では上面導体2の1つの辺の中央部に近い外周部)に短絡部貫通導体4の上端部分が接続されている。すなわち、短絡部貫通導体4は上面導体2の外周部の一部のみにおいて上面導体2と接続している。このように短絡部貫通導体4が上面導体2の中央部ではなく外周部に偏った位置で接続されているため、接地導体3とともに逆F型アンテナとして効果的に機能するアンテナ導体を構成できる。
 なお、図1および図2に示す例では、短絡部貫通導体4は1つの貫通導体のみで構成されているが、複数の貫通導体(図示せず)で構成されていても構わない。これらの貫通導体は、例えば、上面導体の外周部の一部に、互いに隣り合って配置される。複数の貫通導体で短絡部貫通導体4が構成されているときには、短絡部貫通導体4の導通抵抗を低減して接地電位を効果的に安定させること等において有利である。
 上面導体2、接地導体3および短絡部貫通導体4といった導体部分は、例えば、タングステン、モリブデン、マンガン、銅、銀、パラジウム、金、白金、ニッケルまたはコバルト等の金属材料によって形成されている。また、これらの導体部分は上記の金属材料を含む合金材料等によって形成されているものでもよい。このような金属材料等は、メタライズ導体またはめっき導体等の導体として絶縁基板1の所定部位に設けられている。この導体は、例えば絶縁層の露出表面または絶縁層同士の層間に層状に設けられたものと、絶縁層を厚み方向に貫通する貫通孔(符号なし)内に充填された柱状等のものとを含んでいる。
 上記の導体部分は、例えばタングステンのメタライズ層である場合には、タングステンの粉末を有機溶剤および有機バインダと混合して作製した金属ペーストを絶縁基板1となるセラミックグリーンシートの所定位置にスクリーン印刷法等の方法で印刷した後に、これらを同時焼成する方法で形成することができる。
 短絡部貫通導体4等の絶縁基板1(絶縁層)を厚み方向に貫通している部分は、あらかじめセラミックグリーンシートに貫通孔を設けておき、この貫通孔内に上記と同様の金属ペーストを充填して焼成することで形成することができる。貫通孔は、機械的な孔あけ加工またはレーザ加工等の方法でセラミックグリーンシートに設けることができる。
 また、このような導体部分がメタライズ層で形成されるときに、そのメタライズ層の露出表面をニッケル、コバルト、パラジウムおよび金等から適宜選択されためっき層で被覆して、酸化腐食の抑制および後述するボンディングワイヤ13のボンディング性等の特性の向上を行なうようにしてもよい。
 前述したように、図2は、図1に示すタグ用基板10の変形例を示す断面図である。図2において図1と同様の部位には同様の符号を付している。図2に示す例におけるタグ用基板10は、絶縁基板1の内部に設けられて接地導体3の一部と対向している容量導体5と、容量導体5から上面導体2にかけて絶縁基板1を厚み方向に貫通して設けられている容量部貫通導体6とをさらに有している。
 このような容量導体5が配置されているときには、逆Fアンテナをより小型化することができる。つまり、RFIDタグ20の小型化に有効なタグ用基板10とすることができる。容量導体5は、凹部1aによる開口を有していない接地導体3と対向しているので、より大きいものとすることができ、容量導体5と接地導体3との間に形成される容量をより大きいものとして、タグ用基板10をより小型化することが可能である。
 また、第1電極11aと電気的に接続された上記構成の容量導体5を絶縁基板1内に有することから、絶縁基板1の外形を大きくすることなく、給電部Fと上面導体(アンテナ導体)2との電気的な接続の配線長を長くして広帯域化することも容易である。すなわち、小型のままで広帯域化するのに有効である。
 したがって、本実施形態のタグ用基板10によれば、小型化および広帯域化が容易なRFIDタグの製作に有利なタグ用基板10を提供することができる。
 容量導体5は、絶縁基板1の一部を間に挟んで接地導体3と対向し合い、容量部貫通導体6を介して上面導体2と電気的に接続されて、所定の静電容量をアンテナ導体に付与する機能を有している。容量導体5は、短絡部貫通導体4が接続されている端部分とは反対側の端から中央部に向かって伸びている。そして、短絡部貫通導体4が接続されている端部分とは反対側の端において、容量部貫通導体6によって上面導体2と電気的に接続されている。
 容量導体5の接地導体3との対向面積は、小型化の点では大きい方が有利であるが、高利得化の点では小さい方がよい。このような点およびRFIDタグ20としての生産性および経済性等を考慮したときに、平面視において接地導体3の面積の10~90%程度の範囲で、容量導体5と接地導体3とが互いに対向し合うように設定すればよい。
 容量導体5および容量部貫通導体6は、上面導体2、接地導体3および短絡部貫通導体4と同様にして形成することができる。
 (RFIDタグ)
 本開示の実施形態のRFIDタグの一例を示す断面図である。図3において図1および図2と同様の部位には同様の符号を付している。実施形態のRFIDタグは、上記構成のタグ用基板10と、凹部1aに収容されている給電部Fとを備えている。この給電部Fは、上記タグ用基板10に関する説明で述べたように、第1接続点14aにおいて上面導体2と電気的に接続された第1電極11aと、第1接続点14aよりも短絡部貫通導体4に近い第2接続点14bにおいて上面導体2と電気的に接続された第2電極11bとを有している。第1電極11aおよび第2電極11bは、半導体素子12とボンディングワイヤ13によって電気的に接続されている。
 すなわち、実施形態のRFIDタグ20における給電部Fは、第1電極11aおよび第2電極11bと、半導体素子(半導体集積回路素子)12とを含んで構成されている。給電部Fは、アンテナ導体として機能する上面導体2に対する給電の機能を有している。半導体素子12は、RFIDタグ20と外部との間で送受される信号に対して記憶および呼び出し等の、情報管理の機能も有している。
 本開示の1つの態様のRFIDタグによれば、上記構成のタグ用基板10を含んでいることから、共振周波数が所定の範囲からずれる可能性が効果的に低減されたRFIDタグ20を提供することができる。
 また、実施形態のRFIDタグ20では、第1電極11aから上面導体2にかけて絶縁基板1を厚み方向に(部分的に)貫通する上部の貫通導体7Aが設けられている。この貫通導体7Aは、第1接続点14aにおいて上面導体2と直接に接続されている。貫通導体7Aによって、第1電極11aと上面導体2とが互いに電気的に接続されている。
 また、実施形態のRFIDタグ20では、第2電極11bから接地導体3にかけて絶縁基板1を厚み方向に貫通する下部の貫通導体7Bが設けられている。第2電極11bは、下部の貫通導体7Bと接地導体3と短絡部貫通導体4とを介して上面導体2と電気的に接続されている。すなわち、第2電極11bは、短絡部貫通導体4と上面導体2とが直接に接続されている第2接続点14bにおいて上面導体2と電気的に接続されている。第2接続点14bは第1接続点14aよりも短絡部貫通導体4に近いので、半導体素子12のインピーダンスとタグ用基板10のインピーダンスとの整合の自由度を高めることができる。
 第1電極11a、第2電極11b、貫通導体7Aおよび貫通導体7Bもまた、上面導体2、接地導体3および短絡部貫通導体4と同様にして形成することができる。
 半導体素子12は、凹部1aの底面に固定されている。凹部1aの底面への半導体素子12の固定は、例えば金-シリコン(Au-Si)ろう等の低融点ろう材、ガラス複合材料または樹脂接着剤等の接合材を介した接合法で行なわれている。図3に示す例においては、半導体素子12が有する端子(符号なし)は、ボンディングワイヤ13を介して第1電極11aおよび第2電極11bと電気的に接続されている。半導体素子12の端子と第1電極11aおよび第2電極11bとの電気的接続は、これに限られず、例えばはんだボール、金などの金属からなるバンプ等を用いたフリップチップ接続で接続することもできる。
 なお、凹部1a内に収容されている給電部Fは、封止樹脂15で封止されていても構わない。封止樹脂15で給電部Fが封止されているときには、給電部Fの外気との接触が抑制されて、RFIDタグ20としての信頼性が向上する。
 封止樹脂15は、半導体素子12を被覆して、例えば外気の水分または酸素等の外気および外部からの機械的な応力等から保護する機能を有している。このような封止樹脂15を形成する樹脂材料としては、例えば、エポキシ樹脂、ポリイミド樹脂およびシリコーン樹脂等が挙げられる。また、これらの樹脂材料にシリカ粒子またはガラス粒子等のフィラー粒子が添加されていても構わない。フィラー粒子は、例えば、封止樹脂15の機械的な強度、耐湿性または電気特性等の各種の特性を調整するために添加される。封止樹脂15は、このような各種の樹脂材料から、RFIDタグ20の生産時の作業性(生産性)および経済性等の条件に応じて適宜選択して用いることができる。
 (RFIDシステム)
 前述したように、上記構成のRFIDタグ20を含んで、図4に示すような実施形態のRFIDシステム30が構成されている。実施形態のRFIDシステム30は、上記構成のRFIDタグ20と、RFIDタグ20の上面導体2との間で電波を送受するアンテナ32を有するリーダライタ31とを有している。リーダライタ31は、例えば電気絶縁材料からなる基体33に矩形状等のアンテナ32が設けられて形成されている。基体33はアンテナ32を収容する筐体(図示せず)であってもよい。
 本開示の1つの態様のRFIDシステムによれば、上記構成のRFIDタグを含むことから、広帯域で、物品とリーダライタとの間の情報の通信距離の増大等に対して有効なRFIDシステムを提供することができる。
 RFIDタグ20が実装される物品40は、使用に際して、その使用履歴等が必要な各種の物品である。例えば、機械加工、金属加工、樹脂加工等の各種の工業用加工において用いられるジグまたは工具等の用具が挙げられる。この用具には、切削または研磨等の消耗性のものも含まれる。また、工業用に限らず、家庭用の日用品、農産物、交通機関用等の各種のプリペイドカードおよび医療用の器具等も上記の物品40に含まれる。
 RFIDタグ20の物品40への実装は、例えば、接地導体3が物品40の金属部に接地する形態で行なわれる。このような実装の形態とすることで、物品40の金属部がRFIDタグ20のアンテナ(上記逆Fアンテナ等)の接地導体として働くこともできる。これによって、アンテナの利得が向上し、RFIDタグ20の通信範囲を広げることもできる。つまり、物品40とリーダライタとの間の情報の送受の距離を大きくすること等について有利なRFIDシステム30を形成することができる。
 また言い換えれば、上記実施形態のRFIDタグ20を含むRFIDシステム30によれば、金属部を含む物品40、さらには金型、はさみ等の切断用具等の金属製の物品40であっても、良好にリーダライタ31のアンテナ32との間で電波の送受が可能なRFIDシステム30を構成することができる。つまり、物品(金属)による電磁誘導に妨げられる可能性を低減することができる。したがって、例えば複数の金属製の物品40とリーダライタ31との間で同時に情報(電波)の授受が容易になり、実用性が効果的に向上したRFIDシステムを構成することができる。
 (変形例)
 図5は、RFIDタグ20の第1の変形例を示す断面図である。図5において図3と同様の部位には同様の符号を付している。図5に示す例では、第1電極11aが容量導体5を介して上面導体2と電気的に接続されている。この例のRFIDタグ20は、例えば図2に示すような容量導体5を有するタグ用基板10を含むRFIDタグ20において、第1電極11aと容量導体5とが、両者の間で絶縁基板1を厚み方向に貫通している貫通導体7Cによって互いに電気的に接続されている例とみなすこともできる。また、容量導体5と上面導体2とが容量部貫通導体6によって互いに電気的に接続されている。これらの点以外において、図5に示す例のRFIDタグ20は図3に示す例のRFIDタグ20と同様である。これらの同様の点については説明を省略する。
 この例のRFIDタグ20は、前述した容量導体5を有するタグ用基板10に関する説明で述べたように、小型化された逆Fアンテナを容易に形成させることができる。つまり、小型化に有効なRFIDタグ20とすることができる。
 また、接地導体層3と対向する容量導体5を絶縁基板1内に有することから、絶縁基板1の内部および下面に設けられている、給電部Fと上面導体(アンテナ導体)2との電気的な接続の配線長を効果的に長くすることができるため、小型化および広帯域化に有効なRFIDタグ20とすることができる。
 したがって、この変形例のRFIDタグ20によれば、小型化および広帯域化が容易なRFIDタグを提供することができる。
 図6は、RFIDタグの第2の変形例を示す断面図である。図6において図3と同様の部位には同様の符号を付している。図6に示す例では、絶縁基板1の内部に容量導体5が配置され、容量導体5と上面導体2とが容量部貫通導体6によって互いに電気的に接続されているが、この容量導体5は第1電極11aと上面導体2との間に介装されていない。その代わりに、第1電極11aは貫通導体7Aによって上面導体2に直接に(つまり比較的短い接続長さで)電気的に接続されている。
 この第2の変形例のRFIDタグにおいても、接地導体3と対向する容量導体5が絶縁基板1の内部に配置されているため、小型化された逆Fアンテナを容易に形成させることができる。つまり、小型化に有効なRFIDタグ20とすることができる。言い換えれば、第1電極11aと上面導体2との間に容量導体5を介装させることなく、RFIDタグ20を小型化させることもできる。
 また、図6に示す第2の変形例のRFIDタグにおいては、第1電極11aから貫通導体7A、上面導体2、短絡部貫通導体4、接地導体3、貫通導体7B、第2電極11bの経路が、図5に示す当該経路(第1電極11aから、第2電極11bまでの経路)よりも短いため、第1電極11aおよび第2電極11b間のロスが小さく、この経路のQ値を高くすることができる。そのため、効果的に高利得化する上で有効なRFIDタグ20とすることができる。
 したがって、この変形例のRFIDタグ20によれば、小型化、高利得化等が容易なRFIDタグを提供することができる。
 RFIDタグ20およびこれに含まれるタグ用基板10について、第2電極11bと上面導体2との電気的な接続は、前述した例(貫通導体7B、接地導体3および短絡部貫通導体4を介する形態)に限らず、他の形態によるものでもよい。以下に、その例を説明する。
 図7は、RFIDタグの第3の変形例を示す断面図である。図7において図3と同様の部位には同様の符号を付している。図7に示す例では、第2電極11bの端部分から絶縁層の層間を通って短絡部貫通導体4に接続する内部導体8Aが設けられている。つまり、第2電極11bは、内部導体8Aおよび短絡部貫通導体4を介して(接地導体3を介在させることなく)上面導体2に電気的に接続されている。内部導体8Aは、第2電極11bの外側の端部分が短絡部貫通導体4まで延長されたものとみなすこともできる。
 この変形例のRFIDタグのように第2電極11bが短絡部貫通導体4を介して上面導体2と接続されているときには、次のような点で有利である。すなわち、図7に示す第3の変形例のRFIDタグにおいては、第1電極11aから貫通導体7A、上面導体2、短絡部貫通導体4、内部導体8A、第2電極11bの経路が、図5に示す当該経路(第1電極11aから、第2電極11bまでの経路)よりも短いため、第1電極11aおよび第2電極11b間のロスが小さく、この経路のQ値を高くすることができる。そのため、効果的に高利得化する上で有効なRFIDタグ20とすることができる。
 したがって、この変形例のRFIDタグ20によれば、高利得化等についてより有効なRFIDタグを提供することができる。
 図8は、RFIDタグの第4の変形例を示す断面図である。図8において図3と同様の部位には同様の符号を付している。図8に示す例では、第2電極11bの外側の端部分から絶縁層の層間にかけて内部導体8Bが配置され、この内部導体8Bと上面導体2との間で絶縁基板1を厚み方向に貫通している貫通導体7Dが配置されている。内部導体8Bは、第2電極11bの外側の端部分が絶縁層の層間まで延長されたものとみなすこともできる。
 すなわち、この変形例において、第2電極11bは、接地導体3および短絡部貫通導体4のいずれも介在させることなく、上面導体2と電気的に接続されている。この例における第2接続点は、貫通導体7Dの上端が上面導体2と接続している部分である。
 この変形例のRFIDタグのように第2電極11bが上面導体2と直接に接続されているときには、次のような点で有利である。すなわち、図8に示す第4の変形例のRFIDタグにおいては、第1電極11aから貫通導体7A、上面導体2、貫通導体7D、内部導体8A、第2電極11bの経路が、図5に示す当該経路(第1電極11aから、第2電極11bまでの経路)よりも短いため、第1電極11aおよび第2電極11b間のロスが小さく、この経路のQ値を高くすることができる。そのため、効果的に高利得化する上で有効なRFIDタグ20とすることができる。
 したがって、この変形例のRFIDタグ20によれば、高利得化等についてさらに有効なRFIDタグを提供することができる。
 なお、図7および図8に示す例においても、図6に示す例と同様の容量導体5を設けることができる。すなわち、図7および図8に示す例において、絶縁基板1の内部に容量導体5が配置され、容量導体5と上面導体2とが容量部貫通導体6によって互いに電気的に接続されていてもよい。この場合も、第1電極11aが貫通導体7Aによって上面導体2に直接に(つまり比較的短い接続長さで)電気的に接続されているので、第1電極11aから、第2電極11bまでの経路)よりも短く、効果的に高利得化する上で有効なRFIDタグ20とすることができる。そして、容量導体5を備えることで小型化する上で有効なRFIDタグ20とすることができる。
 (シミュレーション例)
 図9に、図11に示すRFIDタグ200の電磁界シミュレーションによる反射特性を示す。なお、図11は比較例のRFIDタグ200を示す断面図である。図11において図1~8と同様の部位には同様の符号を付している。比較例のRFIDタグ200においては絶縁基板1の上面導体202側ではなく接地導体203側に凹部1aが設けられている。図9(a)、(b)において、グラフの横軸は周波数、縦軸は反射特性S11であり、数値は共振周波数を示している。図9(a)はRFIDタグ200の接地導体203側を銅板上に0.3mmの間隔を空けて設置した場合の反射特性であり、共振周波数は921MHzである。一方、図9(b)はRFIDタグ200の接地導体203側を銅板上に空間を空けずに設置した場合の反射特性であり、共振周波数は993MHzである。すなわち、図11に示すRFIDタグ200の事例では、RFIDタグ200と銅板との間隔が変わると共振周波数が72MHzと大きくずれている。
 図10に、図5に示す本開示の実施形態に含まれる第1の変形例のRFIDタグ20の電磁界シミュレーションによる反射特性を示す。図10(a)、(b)においても、グラフの横軸は周波数、縦軸は反射特性S11であり、数値は共振周波数を示している。図10(a)はRFIDタグ20の接地導体3側を銅板上に0.3mmの間隔を空けて設置した場合の反射特性であり、共振周波数は918MHzである。一方、図10(b)はRFIDタグ20の接地導体3側を銅板上に空間を空けずに設置した場合の反射特性であり、共振周波数は919MHzである。すなわち、図5に示す本開示の第1の変形例のRFIDタグ20と銅板との間隔が変わってもと共振周波数は1MHzしかずれない。
 以上のように、本開示の実施形態のタグ用基板10およびRFIDタグ20によれば、共振周波数のばらつき抑制に有効なタグ用基板およびRFIDタグを提供することができる。
 なお、本開示は以上の実施の形態の例に限定されるものではなく、本開示の要旨の範囲内であれば種々の変更は可能である。例えば、上面導体2等の露出表面を金めっき層等のめっき層で被覆してもよい。
 また、短絡部貫通導体4に限らず、他の貫通導体(容量部貫通導体4および貫通導体7A~7D)についても、複数が並んで設けられたものでもよい。すなわち、例えば、容量導体5と上面導体2との間に、複数の容量部貫通導体(図示せず)が、平面視で互いに並んで設けられてもよい。この場合には、複数の容量部貫通導体がまとまって、上記構成のタグ用基板10等における1つの容量部貫通導体4と同様に機能する。このときに、例えば容量導体5と上部導体2との間の導通抵抗の低減等の効果を得ることもできる。
1・・・絶縁基板
1a・・・凹部
2・・・上面導体
3・・・接地導体
4・・・短絡部貫通導体
5・・・容量導体
6・・・容量部貫通導体
7A~7D・・・貫通導体
8A、8B・・・内部導体
10・・・タグ用基板
F・・・給電部
11a・・・第1電極
11b・・・第2電極
12・・・半導体素子
14a・・・第1接続点
14b・・・第2接続点
15・・・封止樹脂
20・・・RFIDタグ
30・・・RFIDシステム
31・・・リーダライタ
32・・・アンテナ
33・・・基体
40・・・物品

Claims (6)

  1. 外部に接合される下面および凹部を含む上面を有する絶縁基板と、
    該絶縁基板の上面の上面導体と、
    前記絶縁基板の下面の接地導体と、
    前記絶縁基板を厚み方向に貫通しており、前記上面導体と前記接地導体とを電気的に接続している短絡部貫通導体とを備えており、
    該短絡部貫通導体は前記上面導体の外周部の一部のみにおいて前記上面導体と接続しているタグ用基板。
  2. 前記絶縁基板の内部にあり、前記接地導体の一部と対向している容量導体と、
    前記絶縁基板を厚み方向に貫通しており、前記容量導体と前記上面導体とを電気的に接続している容量部貫通導体とをさらに備える請求項1に記載のタグ用基板。
  3. 請求項1または請求項2に記載のタグ用基板と、
    前記凹部に収容されている給電部とを備えており、
    該給電部が、第1接続点において前記上面導体と電気的に接続されている第1電極と、
    前記第1接続点よりも前記短絡部貫通導体に近い第2接続点において前記上面導体と電気的に接続された第2電極とを有しているRFIDタグ。
  4. 前記第1電極が前記容量導体を介して前記上面導体と電気的に接続されている請求項2を引用する請求項3に記載のRFIDタグ。
  5. 前記第1電極と前記容量導体とが直接に接続されている請求項3に記載のRFIDタグ。
  6. 請求項3~請求項5のいずれかに記載のRFIDタグと、
    該RFIDタグの前記上面導体との間で電波を送受するアンテナを有するリーダライタとを備えるRFIDシステム。
PCT/JP2017/037862 2016-10-21 2017-10-19 タグ用基板、rfidタグおよびrfidシステム WO2018074553A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17851827.0A EP3370303B1 (en) 2016-10-21 2017-10-19 Substrate for tags, rfid tag and rfid system
CN201780003350.5A CN108235792B (zh) 2016-10-21 2017-10-19 标签用基板、rfid标签以及rfid系统
JP2018519505A JP6483927B2 (ja) 2016-10-21 2017-10-19 タグ用基板、rfidタグおよびrfidシステム
US15/933,872 US10943077B2 (en) 2016-10-21 2018-03-23 Tag board, RFID tag, and RFID system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-207009 2016-10-21
JP2016207009 2016-10-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/933,872 Continuation US10943077B2 (en) 2016-10-21 2018-03-23 Tag board, RFID tag, and RFID system

Publications (1)

Publication Number Publication Date
WO2018074553A1 true WO2018074553A1 (ja) 2018-04-26

Family

ID=62018690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037862 WO2018074553A1 (ja) 2016-10-21 2017-10-19 タグ用基板、rfidタグおよびrfidシステム

Country Status (5)

Country Link
US (1) US10943077B2 (ja)
EP (1) EP3370303B1 (ja)
JP (1) JP6483927B2 (ja)
CN (1) CN108235792B (ja)
WO (1) WO2018074553A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020017142A (ja) * 2018-07-26 2020-01-30 京セラ株式会社 ケーブル及び電子装置
EP3490067A4 (en) * 2016-07-22 2020-02-19 KYOCERA Corporation SUBSTRATE FOR RFID TAGS, RFID TAGS AND RFID SYSTEM
WO2020040202A1 (ja) * 2018-08-22 2020-02-27 京セラ株式会社 Rfidタグ用基板、rfidタグ及びrfidシステム
JP2020072464A (ja) * 2018-10-29 2020-05-07 京セラ株式会社 Rfidタグ用基板、rfidタグおよびrfidシステム
US20220121898A1 (en) * 2018-11-29 2022-04-21 Kyocera Corporation Rfid tag

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020174285A (ja) * 2019-04-10 2020-10-22 株式会社Soken アンテナ装置
TWI750703B (zh) * 2020-06-18 2021-12-21 辰晧電子股份有限公司 射頻識別裝置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229400A (ja) * 1983-06-10 1984-12-22 共同印刷株式会社 Icカ−ド
JP2000101335A (ja) 1998-02-13 2000-04-07 Murata Mfg Co Ltd チップアンテナ、アンテナ装置及び移動体通信機器
JP2002074299A (ja) * 2000-08-31 2002-03-15 Denso Corp Icカード
WO2012070540A1 (ja) * 2010-11-24 2012-05-31 日立金属株式会社 電子部品

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352206A (ja) * 2000-06-07 2001-12-21 Mitsubishi Electric Corp 高周波回路装置
FI115339B (fi) * 2001-06-29 2005-04-15 Filtronic Lk Oy Järjestely radiopuhelimen antennipään integroimiseksi
JP3896285B2 (ja) * 2002-01-24 2007-03-22 三菱電機株式会社 半導体装置の製造方法
US7230574B2 (en) * 2002-02-13 2007-06-12 Greg Johnson Oriented PIFA-type device and method of use for reducing RF interference
US6741214B1 (en) * 2002-11-06 2004-05-25 Centurion Wireless Technologies, Inc. Planar Inverted-F-Antenna (PIFA) having a slotted radiating element providing global cellular and GPS-bluetooth frequency response
JP2004214249A (ja) * 2002-12-27 2004-07-29 Renesas Technology Corp 半導体モジュール
US6850200B2 (en) * 2003-06-13 2005-02-01 Motorola, Inc. Compact PIFA antenna for automated manufacturing
JP2005086603A (ja) * 2003-09-10 2005-03-31 Tdk Corp 電子部品モジュールおよびその製造方法
EP1542309A1 (fr) * 2003-12-08 2005-06-15 EM Microelectronic-Marin SA Dispositif d'identification pour système RFID comprenant une antenne UHF, notamment une antenne PIFA
US7504998B2 (en) * 2004-12-08 2009-03-17 Electronics And Telecommunications Research Institute PIFA and RFID tag using the same
FR2882174B1 (fr) * 2005-02-11 2007-09-07 Smart Packaging Solutions Sps Procede de fabrication d'un dispositif microelectronique a fonctionnement sans contact notamment pour passeport electronique
US7183985B2 (en) * 2005-07-08 2007-02-27 Universal Scientific Industrial Co., Ltd. Planar inverted-F antenna
JP2007036571A (ja) * 2005-07-26 2007-02-08 Shinko Electric Ind Co Ltd 半導体装置及びその製造方法
JP2007124328A (ja) * 2005-10-28 2007-05-17 Shinko Electric Ind Co Ltd アンテナおよび配線基板
KR100732666B1 (ko) * 2005-12-16 2007-06-27 삼성전자주식회사 복수의 안테나가 장착된 이동통신 단말기
US7446712B2 (en) * 2005-12-21 2008-11-04 The Regents Of The University Of California Composite right/left-handed transmission line based compact resonant antenna for RF module integration
CN101351924A (zh) * 2006-01-19 2009-01-21 株式会社村田制作所 无线ic器件以及无线ic器件用零件
CN101901955B (zh) * 2006-01-19 2014-11-26 株式会社村田制作所 供电电路
EP2002508A1 (en) * 2006-03-17 2008-12-17 Nxp B.V. Antenna device and rf communication equipment
KR100793524B1 (ko) * 2006-04-19 2008-01-14 엘지이노텍 주식회사 Rfid 안테나, rfid 태그 및 rfid 시스템
WO2007119992A1 (en) 2006-04-19 2007-10-25 Lg Innotek Co., Ltd Rfid antenna and rfid tag
EP2041701B1 (en) * 2006-07-13 2012-08-29 Confidex OY A radio frequency identification tag
JP4874035B2 (ja) * 2006-09-05 2012-02-08 均 北吉 キャビティ付き薄型スロットアンテナ及びアンテナ給電方法並びにこれらを用いたrfidタグ装置
US20080143608A1 (en) * 2006-12-13 2008-06-19 Alps Electric Co., Ltd. Antenna-integrated module
JP5592053B2 (ja) * 2007-12-27 2014-09-17 新光電気工業株式会社 半導体装置及びその製造方法
WO2009087755A1 (ja) * 2008-01-07 2009-07-16 Fujitsu Limited 電子装置、アンテナおよび物品
US7692590B2 (en) * 2008-02-20 2010-04-06 International Business Machines Corporation Radio frequency (RF) integrated circuit (IC) packages with integrated aperture-coupled patch antenna(s)
EP2256673B1 (de) * 2009-05-29 2013-11-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. RFID-Transponder zur Montage auf Metall und Herstellungsverfahren für denselben
TW201134332A (en) * 2010-03-16 2011-10-01 Ind Tech Res Inst Printed circuit board with embedded antenna for RFID tag and method for manufacturing the same
JP5456598B2 (ja) * 2010-06-25 2014-04-02 富士通株式会社 無線タグ、及びその製造方法
US8639194B2 (en) * 2011-09-28 2014-01-28 Motorola Mobility Llc Tunable antenna with a conductive, physical component co-located with the antenna
US8786060B2 (en) * 2012-05-04 2014-07-22 Advanced Semiconductor Engineering, Inc. Semiconductor package integrated with conformal shield and antenna
US10205239B1 (en) * 2014-05-07 2019-02-12 Energous Corporation Compact PIFA antenna
CN103280631A (zh) * 2013-04-28 2013-09-04 嘉兴微感电子科技有限公司 Rfid特种标签用pifa天线
JP6167745B2 (ja) 2013-08-13 2017-07-26 富士通株式会社 アンテナ装置
WO2015088486A1 (en) * 2013-12-09 2015-06-18 Intel Corporation Antenna on ceramics for a packaged die
WO2015133541A1 (ja) * 2014-03-06 2015-09-11 シチズンホールディングス株式会社 ワイヤレス温度センサ
CN104979621A (zh) * 2014-04-08 2015-10-14 神讯电脑(昆山)有限公司 天线结构与其电子装置
TWI661607B (zh) * 2015-02-10 2019-06-01 日商鳳凰解決方案股份有限公司 Rf標籤用天線、rf標籤、附rf標籤之導體、及附盒體之rf標籤
US10157297B2 (en) * 2016-07-22 2018-12-18 Kyocera Corporation RFID tag board, RFID tag, and RFID system
WO2019116758A1 (ja) * 2017-12-15 2019-06-20 株式会社村田製作所 Rfidタグ、および、rfidタグが取り付けられた物品
US10734703B2 (en) * 2018-02-12 2020-08-04 Afero, Inc. System and method for integrating and internet of things (IoT) radio module in an appliance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229400A (ja) * 1983-06-10 1984-12-22 共同印刷株式会社 Icカ−ド
JP2000101335A (ja) 1998-02-13 2000-04-07 Murata Mfg Co Ltd チップアンテナ、アンテナ装置及び移動体通信機器
JP2002074299A (ja) * 2000-08-31 2002-03-15 Denso Corp Icカード
WO2012070540A1 (ja) * 2010-11-24 2012-05-31 日立金属株式会社 電子部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3370303A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3490067A4 (en) * 2016-07-22 2020-02-19 KYOCERA Corporation SUBSTRATE FOR RFID TAGS, RFID TAGS AND RFID SYSTEM
JP2020017142A (ja) * 2018-07-26 2020-01-30 京セラ株式会社 ケーブル及び電子装置
WO2020040202A1 (ja) * 2018-08-22 2020-02-27 京セラ株式会社 Rfidタグ用基板、rfidタグ及びrfidシステム
CN112602093A (zh) * 2018-08-22 2021-04-02 京瓷株式会社 Rfid标签用基板、rfid标签以及rfid系统
JPWO2020040202A1 (ja) * 2018-08-22 2021-08-26 京セラ株式会社 Rfidタグ用基板、rfidタグ及びrfidシステム
JP7062772B2 (ja) 2018-08-22 2022-05-06 京セラ株式会社 Rfidタグ用基板、rfidタグ及びrfidシステム
CN112602093B (zh) * 2018-08-22 2023-07-21 京瓷株式会社 Rfid标签用基板、rfid标签以及rfid系统
JP7379580B2 (ja) 2018-08-22 2023-11-14 京セラ株式会社 Rfidタグ用基板、rfidタグ及びrfidシステム
JP2020072464A (ja) * 2018-10-29 2020-05-07 京セラ株式会社 Rfidタグ用基板、rfidタグおよびrfidシステム
JP7120941B2 (ja) 2018-10-29 2022-08-17 京セラ株式会社 Rfidタグ用基板、rfidタグおよびrfidシステム
US20220121898A1 (en) * 2018-11-29 2022-04-21 Kyocera Corporation Rfid tag

Also Published As

Publication number Publication date
EP3370303B1 (en) 2021-12-08
US20180218182A1 (en) 2018-08-02
EP3370303A1 (en) 2018-09-05
JPWO2018074553A1 (ja) 2018-10-18
JP6483927B2 (ja) 2019-03-13
CN108235792B (zh) 2021-01-26
US10943077B2 (en) 2021-03-09
EP3370303A4 (en) 2019-06-26
CN108235792A (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
JP6360264B2 (ja) Rfidタグ用基板、rfidタグおよびrfidシステム
JP6483927B2 (ja) タグ用基板、rfidタグおよびrfidシステム
JP6489182B2 (ja) アンテナ一体型無線モジュール
JP6888999B2 (ja) Rfid用基板およびrfidタグ
JP2019008596A (ja) 配線基板およびrfidタグ
WO2020110930A1 (ja) Rfidタグ
JP6953557B2 (ja) Rfidタグ用基板、rfidタグおよびrfidシステム
JP6807809B2 (ja) Rfidタグ用基板、rfidタグおよびrfidシステム
JP7120941B2 (ja) Rfidタグ用基板、rfidタグおよびrfidシステム
JP6789172B2 (ja) Rfidタグ用基板、rfidタグおよびrfidシステム
JP6913622B2 (ja) Rfidタグ用基板、rfidタグおよびrfidシステム
JP2020017122A (ja) Rfidタグ用基板、rfidタグおよびrfidシステム
JP2018041866A (ja) コイル基板、rfidタグおよびrfidシステム
JP2018120956A (ja) 配線基板およびrfidタグ
JP2018186488A (ja) 配線基板およびrfidモジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018519505

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE