WO2018074429A1 - 医療用ハニカム構造体 - Google Patents

医療用ハニカム構造体 Download PDF

Info

Publication number
WO2018074429A1
WO2018074429A1 PCT/JP2017/037413 JP2017037413W WO2018074429A1 WO 2018074429 A1 WO2018074429 A1 WO 2018074429A1 JP 2017037413 W JP2017037413 W JP 2017037413W WO 2018074429 A1 WO2018074429 A1 WO 2018074429A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb structure
outer peripheral
peripheral side
hole
medical
Prior art date
Application number
PCT/JP2017/037413
Other languages
English (en)
French (fr)
Inventor
邦夫 石川
寛治 都留
享 土谷
悠紀 杉浦
中島 康晴
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to JP2018546332A priority Critical patent/JP7089284B2/ja
Priority to US16/342,338 priority patent/US11246708B2/en
Priority to CN201780077827.4A priority patent/CN110087698B/zh
Priority to EP17861732.0A priority patent/EP3527233B1/en
Publication of WO2018074429A1 publication Critical patent/WO2018074429A1/ja
Priority to US17/552,995 priority patent/US20220117741A1/en
Priority to JP2022002854A priority patent/JP2022050587A/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • B28B3/26Extrusion dies
    • B28B3/269For multi-channeled structures, e.g. honeycomb structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/12Apparatus or processes for treating or working the shaped or preshaped articles for removing parts of the articles by cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/36Inorganic materials not provided for in groups C04B14/022 and C04B14/04 - C04B14/34
    • C04B14/366Phosphates, e.g. apatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30784Plurality of holes
    • A61F2002/30785Plurality of holes parallel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30907Nets or sleeves applied to surface of prostheses or in cement
    • A61F2002/30909Nets
    • A61F2002/30911Nets having a honeycomb structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30968Sintering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • A61F2310/00185Ceramics or ceramic-like structures based on metal oxides
    • A61F2310/00221Ceramics or ceramic-like structures based on metal oxides containing calcia or calcium oxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • A61F2310/00293Ceramics or ceramic-like structures containing a phosphorus-containing compound, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/12Materials or treatment for tissue regeneration for dental implants or prostheses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • B28B2003/203Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded for multi-channelled structures, e.g. honeycomb structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Definitions

  • the present invention relates to a medical material and a manufacturing method thereof. More specifically, the present invention relates to a medical material having a honeycomb structure used for tissue regeneration / reconstruction of bones and teeth, scaffolds for regenerative medicine, and the like, and a manufacturing method thereof in the medical field or a field related to medicine.
  • missing tissue may be regenerated and reconstructed with medical materials.
  • the medical material may be expected to bind to the surrounding tissue.
  • An important initial step, such as bonding of medical material to surrounding tissue, is cell attachment to the material surface or tissue bonding. If the medical material is not fixed to the surrounding tissue, tissue conduction and cell migration are unlikely to occur.
  • porous materials often exhibit excellent functions because cells and tissues easily enter the inside.
  • the porous material is classified into an independent porous body and a continuous porous body.
  • a method for producing a continuous porous body by introducing a pore forming material as in Patent Documents 1 and 2 and incinerating has been proposed.
  • Non-Patent Document 1 tissues such as bones are orientated in various ways depending on the site, and it has been found that the function is improved by orienting the tissues.
  • Non-Patent Documents 2 and 3, etc. it has been pointed out that regenerative bone is poor in orientation and poor in functionality, so that orientation induction is necessary.
  • the honeycomb structure manufactured by extrusion molding reported in Patent Documents 8 and 9 shows an ideal orientation continuous porous body.
  • the honeycomb structures manufactured so far do not necessarily exhibit sufficient tissue binding ability and cell adhesion ability, and are not medical materials that are satisfactory for tissue regeneration and reconstruction.
  • Patent Document 10 discloses a technique in which a honeycomb structure is cut along a plane parallel to the through-hole direction to form a plurality of grooves on the surface of a substrate portion formed in a plate shape. Compared to a honeycomb structure having an outer peripheral side wall, the technique disclosed in Patent Document 10 is superior in adhesion or bonding to the material surface of cells or tissues. Since the tissue cannot invade, functions such as binding with surrounding tissues were not sufficient.
  • Patent Document 11 discloses a technique for making a hole penetrating the outer peripheral side wall of the honeycomb structure.
  • the technique disclosed in Patent Document 11 is superior to the honeycomb structure having no holes on the outer peripheral side wall, but is excellent in adhesion or bonding to the material surface of cells or tissues, but the manufacturing cost is extremely high.
  • the bonding ability between the surrounding tissue and the outer peripheral surface was not sufficient.
  • the orientation of the surrounding tissue on the outer peripheral side wall could not be controlled at all.
  • Nakano T. et al “Unique alignment and texture of biological apatite crystallites in typical calcified tissues analyzed by micro-beam X-ray diffractometer system” Bone, 31 [4] (2002) 479-487.
  • Nakano T. et al “Biological apatite (BAp) crystallographic orientation and texture as a new index for assessing the microstructure and function of bone regenerated by tissue engineering” Bone 51 (2012) 741-747.
  • Ishimoto T. et al “Degree of biological apatite c-axis orientation rather than bone mineral density controls mechanical function in bone regenerated using rBMP-2” Journal of Bone and Mineral Research 28 (2013) 1170-1179.
  • the orientation continuous porous body manufactured by applying the principle of the frost column did not have sufficient orientation. Furthermore, strict temperature control is necessary for the growth of frost columns, resulting in poor productivity, high production costs, and a uniaxially oriented continuous porous body having the same form cannot be produced.
  • the honeycomb structure manufactured by extrusion molding or the like is an ideal orientation continuous porous body, it has been expected to provide a medical material with excellent orientation.
  • the honeycomb structure provided so far has been expected. Does not necessarily show sufficient cell adhesion ability, tissue binding ability, and oriented tissue formation ability, and cannot be produced at a production cost that can be put to practical use.
  • the present invention has been made in view of the above-mentioned problems, and the object of the present invention is (1) excellent adhesion or binding to the material surface of cells or tissues, and (2) oriented tissues. Is regenerated and reconstructed, (3) excellent in mechanical strength, (4) when used as a tissue replacement material, it is quickly replaced with a desired tissue, and (5) can be manufactured at low cost.
  • Another object of the present invention is to provide a medical honeycomb structure that satisfies the demands of the present invention and a method for manufacturing the same.
  • the present inventors have found that the side wall of the through-hole constituting the honeycomb structure is formed in the outer peripheral side portion of the honeycomb structure having a plurality of through-holes extending in one direction. It has been found that by forming a hole groove and a through-hole inlet adjacent to the through-hole groove, a medical material that satisfies the above requirements (1) to (5) can be obtained, and the present invention is completed. It came to.
  • the present invention is as follows.
  • a medical honeycomb structure having a plurality of through holes extending in one direction A medical honeycomb structure, comprising a through-hole groove formed by losing a side wall of the through-hole and a through-hole inlet adjacent to the through-hole groove on an outer peripheral side portion thereof.
  • a medical honeycomb structure according to [1] wherein an inclined surface that is inclined with respect to a penetrating direction of the through hole is formed on an outer peripheral side portion.
  • the composition comprising at least one selected from the group consisting of apatite, ⁇ -type tricalcium phosphate, ⁇ -type tricalcium phosphate, and octacalcium phosphate [1] to [15]
  • the method for manufacturing a medical honeycomb structure according to any one of [1] to [18], wherein: [24] A structure manufacturing process with an outer wall for extruding a material through a honeycomb structure forming mold to manufacture a honeycomb structure having an outer peripheral side wall; An outer peripheral side portion processing step of removing at least a part of the outer peripheral side wall of the honeycomb structure having the outer peripheral side wall and forming a through hole groove and a through hole inlet on the outer peripheral side portion; A crushing step of crushing the honeycomb structure in which the through-hole groove and the through-hole inlet are formed to a size of 10 ⁇ 12 m 3 or more and
  • a method for producing a honeycomb structure for medical use comprising: [28] A method for manufacturing a medical honeycomb structure according to [21], Extruding a mixture of calcium sulfate and an organic binder through a honeycomb structure forming mold to produce a honeycomb structure having an outer peripheral side wall, A degreasing step for degreasing the honeycomb structure; An apatite forming step of sequentially applying an aqueous solution containing carbonate
  • the honeycomb structure for medical use of the present invention is (1) excellent in adhesion or bonding of cells or tissues to the material surface, (2) oriented tissue is regenerated and reconstructed, and (3) excellent in mechanical strength. (4) When used as a tissue replacement material, it satisfies the demand for a medical material that can be quickly replaced with a desired tissue and (5) can be manufactured at a low cost. Can be widely used in fields related to
  • FIG. 1a It is a schematic diagram of the honeycomb structure which has an outer peripheral side wall. It is a schematic diagram (an example) of the medical honeycomb structure of the present invention. It is a schematic diagram (an example) which shows the condition where a part of outer peripheral side wall of the medical honeycomb structure of this invention was removed. It is a schematic diagram (an example) which shows the condition from which the several layer of the outer peripheral side wall of the medical honeycomb structure of this invention was removed. It is explanatory drawing of the through-hole groove
  • FIG. 4 is an electron micrograph (SEM photograph) of honeycomb structure granules according to Example 2.
  • FIG. 4 is an electron micrograph (SEM photograph) of a honeycomb structure after a degreasing process according to Example 3.
  • FIG. 4 is an electron micrograph (SEM photograph) of a honeycomb structure after a degreasing process according to Example 3.
  • FIG. 6 is an electron micrograph (SEM photograph) of a honeycomb structure according to Example 4.
  • FIG. 10 is an electron micrograph (SEM photograph) of a honeycomb structure according to Example 6.
  • FIG. 10 is an electron micrograph (SEM photograph) of a honeycomb structure according to Example 7.
  • FIG. 10 is an electron micrograph (SEM photograph) of a honeycomb structure according to Example 9.
  • 10 is an electron micrograph (SEM photograph) of a honeycomb structure according to Example 10.
  • FIG. It is an electron micrograph (SEM photograph) of the honeycomb structure according to Example 11a. It is a weakly enlarged image of a pathological tissue in a histopathological search using the honeycomb structure according to Example 11b.
  • FIG. 14 is a weakly enlarged image of a pathological tissue in a histopathological search using the honeycomb structure according to Example 12.
  • 14 is a strongly magnified image of a pathological tissue of a tissue that has entered a cell in the centrifugal portion of a honeycomb structure from a through hole entrance on an outer peripheral side portion opened in a through hole direction of the honeycomb structure according to Example 12.
  • the medical honeycomb structure of the present invention is a medical honeycomb structure provided with a plurality of through-holes (hollow bodies) extending in one direction, and formed on the outer peripheral side of the side wall of the through-hole. And a through-hole inlet adjacent to the through-hole groove.
  • the medical honeycomb structure of the present invention has a honeycomb structure, and the honeycomb structure of the present invention is a through polygonal hollow column or a through circular hollow column (through hole) penetrating in the long axis direction. This is a lineup without gaps. A space formed by the through hole and both ends of the through hole is called a cell.
  • an oriented continuous porous body manufactured by applying the principle of frost columns as seen in Patent Documents 3 to 7 is connected to the frost columns forming pores during the formation process, or grows by the growth of other frost columns.
  • the honeycomb structure of the present invention cannot be formed. Therefore, the oriented continuous porous body manufactured by applying the principle of frost columns as found in Patent Documents 3 to 7 is not included in the medical honeycomb structure of the present invention.
  • the honeycomb structure of the present invention can usually be formed by extrusion molding or the like. Specifically, for example, a hydroxyapatite powder and an organic binder are mixed and extruded by a method disclosed in Japanese Patent No. 3405536 or Japanese Patent Laid-Open No. 10-59784.
  • a honeycomb structure (a precursor of the honeycomb structure of the present invention) having an outer peripheral side wall with the composition can be manufactured.
  • a honeycomb structure having a peripheral side wall composed of carbonate apatite and collagen (a precursor of the honeycomb structure of the present invention) is produced by extruding and drying carbonate apatite powder using collagen as a binder.
  • the medical honeycomb structure of the present invention can be obtained by removing the outer peripheral side wall of the honeycomb structure having the outer peripheral side wall and forming the through hole groove and the through hole inlet on the outer peripheral side portion.
  • a honeycomb structure 14 having an outer peripheral side wall includes a plurality of through holes 11 extending in one direction, partition walls 12 that divide the through holes, and an outer peripheral side wall 13 that surrounds the honeycomb structure part including the through holes. It is a cylinder provided with.
  • the direction perpendicular to the through direction of the through hole is referred to as a direction
  • the surface of the outer peripheral side wall is referred to as A surface
  • the through direction of the through hole is referred to as c direction
  • the surface formed by the end of the through hole is referred to as C surface.
  • the honeycomb structure is cylindrical
  • the A surface is a cylindrical side surface
  • the C surface is a circle.
  • FIG. 2 shows a schematic diagram (an example) of the medical honeycomb structure of the present invention.
  • the outer peripheral side wall of the honeycomb structure 14 shown in FIG. 1 is removed.
  • the outer peripheral side wall (outer peripheral side portion) of the honeycomb structure having the outer peripheral side wall 13 is removed by polishing or cutting, and through-hole grooves 16 and through-hole inlets 15 are formed on the outer peripheral side portion.
  • FIG. 3 is a schematic view showing a state in which a part of the outer peripheral side wall of the medical honeycomb structure according to another example of the present invention has been removed.
  • a through-hole groove 16 having various lengths is formed, and a through-hole inlet 15 is formed adjacent to the through-hole groove 16.
  • a through-hole inlet 15 is formed adjacent to the through-hole groove 16.
  • an inclined surface is formed on the outer peripheral side by cutting at an angle, and at the same time, the through-hole groove 16 and the through-hole inlet 15 are formed.
  • the inclined surface formed on the outer peripheral side portion of the medical honeycomb structure of the present invention means a surface inclined with respect to the through direction of the through hole, and a plurality of inclined surfaces may be formed in a step shape.
  • the inclination angle is an angle at which the through-hole groove and the through-hole entrance can be formed.
  • the tangent of the angle formed by the inclined surface and the penetration direction is the thickness of the outer peripheral side wall or the partition wall. Is larger than the value obtained by dividing by the length in the through-hole direction of the honeycomb structure.
  • the thickness of the outer peripheral side wall refers to the portion excluding the plurality of through holes 11 extending in one direction and the partition walls 12 dividing the through holes in the honeycomb structure 14 shown in FIG.
  • the thickness of the outer peripheral side wall 13 surrounding the honeycomb structure portion is the thickness of the outer peripheral side wall 13 surrounding the honeycomb structure portion.
  • the thickness of the thickest part is set as the thickness of the outer peripheral side wall.
  • the partition wall thickness is the thickness of the partition wall 12 that divides the through holes in the honeycomb structure 14 shown in FIG.
  • the partition wall thickness is not uniform, the smallest partition wall thickness separating adjacent through holes is set.
  • the inclined surface is provided on the outer peripheral side portion, it is not necessarily provided.
  • the first surface and the second parallel to the penetrating direction of the through hole are formed on a part of the outer peripheral side portion.
  • the difference between the distance between the first surface and the second surface from the center of the honeycomb structure is larger than the thickness of the partition wall.
  • the thickness of the outer peripheral side wall is preferably as thin as possible in a range where extrusion molding or the like can be performed, preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, and even more preferably 150 ⁇ m or less.
  • the uneven surface on which the through hole groove and the through hole inlet are formed on the outer peripheral side surface is preferably 10% or more of the area of the outer peripheral side surface, more preferably 50% or more, further preferably 80% or more, 95 % Or more is particularly preferable, and 100% is most preferable.
  • the outer peripheral side portion of the ordinary extruded honeycomb structure is covered with a smooth outer peripheral side wall 13.
  • the internal through-hole (honeycomb structure portion) is exposed on the outer peripheral side surface.
  • the end inlet of the through hole exposed on the outer peripheral side surface is referred to as a through hole inlet.
  • the through-hole inlet is an end inlet of the through-hole exposed on the outer peripheral side surface and is distinguished from the through-hole end inlet existing on the C plane from the beginning without removing the outer peripheral side wall.
  • a groove formed by losing the side wall of the through hole is formed.
  • this groove is referred to as a through-hole groove.
  • the side wall of the through hole includes both the outer peripheral side wall and the partition wall.
  • the ratio (groove aspect ratio c / a) of the length in the longitudinal direction (c in FIG. 5) to the length in the width direction of the through-hole groove (a in FIG. 5) is the outer peripheral side portion of the honeycomb structure.
  • the groove aspect ratio is preferably 1.5 or more, more preferably 2.0 or more, and further preferably 3.0 or more.
  • channel of this invention includes the groove
  • the honeycomb structure of the present invention not only the structure enters the inside of the honeycomb structure from the C surface, but also, for example, the surrounding structure is inside the honeycomb structure from the through-hole inlet formed in the outer peripheral side portion of the honeycomb structure.
  • the surrounding structure and the honeycomb structure are bonded by the fitting force. Therefore, it is more preferable that the through hole inlet is formed not only in the outermost layer of the honeycomb structure but also in a plurality of layers such as the second outer layer, the third outer layer, and the fourth outer layer inside the honeycomb structure. That is, as shown in FIG.
  • the structure around the honeycomb structure is caused by the intruded oriented structure.
  • the bonding is ensured not only by the orientation structure that has penetrated into the through holes in the outermost layer of the honeycomb structure, but also by the orientation structure that has penetrated into the through holes in the outermost layer of the honeycomb structure. Bondability to the material surface is further ensured.
  • FIG. 4 is a schematic view showing a state in which a plurality of layers on the outer peripheral side wall of the honeycomb structure of the present invention have been removed, and 15-1 is a through-hole in the outermost layer (from the central through hole to the most centrifugal portion).
  • a hole inlet 15-2 is a through hole inlet 15-3 in the second outer layer (the most centrifugal portion next to 15-1 as viewed from the central through hole), and 15-3 is a third outer layer 15 (as viewed from the central through hole).
  • -2 is the through-hole entrance at the next most centrifugal part.
  • Reference numerals 16-1, 16-2, and 16-3 denote through-hole grooves that are continuous with 15-1, 15-2, and 15-3, respectively. Such a configuration can be easily formed by providing an inclined surface on the outer peripheral side portion.
  • the presence ratio of the through hole entrance is preferably 0.05 or more, more preferably 0.1 or more, further preferably 0.4 or more, and 0.5 or more. Is particularly preferred, and most preferred is 1.0 or more.
  • the through hole entrance abundance ratio is preferably 1.0 or more, more preferably 1.3 or more, further preferably 1.6 or more, and 2.0 or more. More preferably it is.
  • the honeycomb structure is ideal for imparting orientation to the structure to be formed, but it has a drawback of poor connectivity between the formed structures, except when using a material that replaces the structure, such as carbonate apatite. There is. Therefore, in order to give orientation to the formed tissue and give three-dimensional continuity to the formed tissue, in addition to the through hole groove and the through hole inlet on the outer peripheral side, the side wall of the through hole In some cases, it is effective to have through holes drilled in the partition wall and the outer peripheral side wall, and it is particularly preferable to provide the through holes in the outer peripheral side wall. Formation of through-holes penetrating through a plurality of side walls (partition walls and outer peripheral side walls) can be performed by, for example, drilling.
  • the cell cross section in the honeycomb structure of the medical honeycomb structure of the present invention is a polygon or a circle.
  • the diameter of the through hole in the medical honeycomb structure of the present invention is preferably 5 ⁇ m or more and 400 ⁇ m or less, more preferably 10 ⁇ m or more and 300 ⁇ m or less, and further preferably 20 ⁇ m or more and 250 ⁇ m or less.
  • the diameter of the through hole is, for example, the length of the diameter of the circle when the cross section is a circle, and the length of a diagonal line when the cross section is a polygon such as a square.
  • the diameter of this cross section is used to calculate the aspect ratio of the cell (through hole).
  • the ratio of the length in the longitudinal direction to the diameter of the through-hole (cell aspect ratio) is preferably 3 or more, more preferably 5 or more, from the viewpoint of cell adhesion or oriented tissue formation. More preferably, it is the above.
  • the thickness of the partition wall of the through hole of the medical honeycomb structure of the present invention is a factor that affects the mechanical strength of the honeycomb structure, the replacement speed of the medical honeycomb structure with the tissue, and the like.
  • the dissolution precipitation type composition conversion reaction is a precursor. Therefore, if the partition wall thickness is large, there is a problem that the reaction takes time or the carbonate apatite honeycomb structure cannot be manufactured unless it is manufactured at a high temperature such as a hydrothermal reaction.
  • a carbonate apatite honeycomb structure manufactured at a high temperature such as hydrothermal conditions has higher crystallinity and poor tissue reaction such as osteoconductivity compared to a carbonate apatite honeycomb structure manufactured at a temperature of 100 ° C. or lower. Therefore, the thickness of the partition wall is extremely important.
  • the thickness of the partition wall of the through hole of the medical honeycomb structure is preferably 10 ⁇ m or more and 300 ⁇ m or less, more preferably 20 ⁇ m or more and 200 ⁇ m or less, and more preferably 30 ⁇ m or more and 150 ⁇ m or less. More preferably it is.
  • the partition wall thickness is 10 ⁇ m or more and 200 ⁇ m or less. It is preferable that it is 20 micrometers or more and 150 micrometers or less, and it is more preferable that they are 30 micrometers or more and 100 micrometers or less.
  • ⁇ Ratio of through-hole diameter to partition wall thickness Factors that affect not only the partition wall thickness of the medical honeycomb structure of the present invention but also the size of the cell through-holes affect the mechanical strength of the honeycomb structure and the replacement rate of the medical honeycomb structure into the tissue. It is.
  • the ratio of the through-hole diameter (diameter in the cross-section of the through-hole) to the partition wall thickness increases, the porosity of the medical honeycomb structure increases, and cells and tissues easily enter the inside, while the medical honeycomb structure The mechanical strength of becomes smaller.
  • the ratio of the through-hole diameter to the partition wall thickness of the honeycomb structure is preferably 0.2 or more and 20 or less, more preferably 0.25 or more and 10 or less. More preferably, it is 5 or more and 5 or less.
  • the external size of the medical honeycomb structure (block) of the present invention is preferably 10 ⁇ 8 m 3 or more and 10 ⁇ 3 m 3 or less, and preferably 7 ⁇ 10 ⁇ 5 m 3 or more and 4 ⁇ 10 ⁇ 4. it is further preferred m 3 or less.
  • the size of the outer shape of the medical honeycomb structure of the present invention is obtained by measuring and calculating the length of the honeycomb structure. For example, when the honeycomb structure has a columnar shape, the length of the diameter of the C plane that is a circle and the length of the C plane in the through-hole direction are measured and calculated from both.
  • the apparent density of the honeycomb structure can be obtained by measuring the weight of the honeycomb structure and dividing the weight by the volume. Thereby, the volume can be calculated from the weight of the crushed honeycomb structure (granules).
  • the crushed material of the medical honeycomb structure of the present invention can be obtained by crushing the block-shaped medical honeycomb structure.
  • the size of such crushed material (outer) preferably less than 10 -12 m 3 or more 10 -8 m 3, more preferably less than 4 ⁇ 10 -12 m 3 or more 10 -8 m 3 More preferably, it is 6 ⁇ 10 ⁇ 12 m 3 or more and less than 10 ⁇ 8 m 3 .
  • the size (outer shape) of the honeycomb structure crushed material (granule) is the same as that of the crushed honeycomb used for manufacturing the honeycomb structure crushed material (granule). It can be determined by dividing by the apparent density of the structure.
  • composition (material) of the honeycomb structure for medical use is not particularly limited, but preferably contains at least a calcium compound having excellent cell affinity and tissue affinity.
  • a composition of a honeycomb structure for medical use a preferable mechanism of a calcium-containing compound has not been sufficiently elucidated, but it is preferable to use a calcium-containing compound as a composition because calcium shows an important role in cell adhesion. it is conceivable that.
  • At least one selected from the group consisting of calcium phosphate, calcium carbonate, calcium sulfate and calcium-containing glass is preferable.
  • Calcium phosphate preferably contains a phosphate component in addition to calcium, and the phosphate component also plays an important role in cell adhesion and the like.
  • Calcium carbonate and calcium sulfate have a solubility suitable for supplying calcium to cells. Is preferable.
  • the calcium phosphate in the present invention is a salt of phosphoric acid and calcium, and examples thereof include calcium orthophosphate, calcium metaphosphate, and condensed calcium phosphate.
  • calcium phosphates calcium orthophosphate is preferable because it shows relatively excellent osteoconductivity and tissue affinity.
  • the orthophosphoric acid calcium in the present invention refers to a salt of orthophosphoric acid and calcium.
  • apatite including tetracalcium phosphate, hydroxyapatite and carbonate apatite, ⁇ -type tricalcium phosphate, ⁇ -type tricalcium phosphate, phosphorus
  • An example is octacalcium acid.
  • apatite such as carbonate apatite, ⁇ -type tricalcium phosphate ( ⁇ -TCP), ⁇ -type tricalcium phosphate, and octacalcium phosphate is more preferable.
  • apatite such as carbonate apatite, ⁇ -type tricalcium phosphate ( ⁇ -TCP), ⁇ -type tricalcium phosphate, and octacalcium phosphate is more preferable.
  • the carbonate apatite in the present invention is apatite in which a part or all of the phosphate group or hydroxyl group of apatite is substituted with a carbonate group.
  • Apatite whose hydroxyl group is substituted with carbonate group is called A-type carbonate apatite
  • apatite whose phosphate group is substituted with carbonate group is called B-type carbonate apatite
  • apatite whose both are substituted with carbonate group is called AB-type carbonate apatite.
  • phosphate group is substituted with a carbonate group
  • Na, K, and the like are often contained in the crystal structure, and a compound in which a part of the carbonate apatite is substituted with another element or void is also included in the present invention. Included in carbonate apatite.
  • the honeycomb structure made of carbonate apatite has an advantage that a relatively large size can be manufactured.
  • the carbonate apatite block is produced by immersing in a precursor calcium carbonate block phosphate aqueous solution. .
  • This reaction is a dissolution precipitation reaction, and calcium carbonate as a precursor is dissolved in an aqueous solution to release Ca 2+ and CO 3 2 ⁇ into the aqueous solution.
  • the aqueous solution in which Ca 2+ , CO 3 2- and PO 4 3- coexist is supersaturated with carbonate apatite and precipitates on the surface of the precursor.
  • the composition is converted into carbonate apatite by the dissolution precipitation reaction while maintaining the basic composition of the calcium carbonate as the precursor. Since the dissolution and precipitation reaction proceeds from the surface of the precursor to the inside, when the precursor is a dense body, the reaction time becomes remarkably longer as the depth of the precursor from the surface increases.
  • the porous body has a honeycomb structure
  • the honeycomb is a porous body having through holes in a uniaxial direction
  • disappearance from the material surface due to diffusion of Ca 2+ and CO 3 2 ⁇ eluted from the honeycomb partition walls is extremely limited. Therefore, if a honeycomb structure precursor is used, a large-sized carbonate apatite block can be prepared.
  • the apatite in the present invention is a compound having A 10 (BO 4 ) 6 C 2 as a basic structure.
  • A Ca 2+ , Cd 2+ , Sr 2+ , Ba 2+ , Pb 2+ , Zn 2+ , Mg 2+ , Mn 2+ , Fe 2+ , Ra 2+ , H + , H 3 O + , Na + , K + , AL 3+ , Y 3+ , Ce 3+ , Nd 3+ , La 3+ , C 4+ , voids and the like can be mentioned as BO 4 Are PO 4 3 ⁇ , CO 3 2 ⁇ , CrO 4 3 ⁇ , AsO 4 3 ⁇ , VO 4 3 ⁇ , UO 4 3 ⁇ , SO 4 2 ⁇ , SiO 4 4 ⁇ , GeO 4 4 ⁇ , voids, etc.
  • Examples of C include OH ⁇ , OD ⁇ , F ⁇ , Br ⁇ , BO 2 ⁇ , CO 3
  • a 10 (BO 4 ) 6 C 2 is a basic structural formula of apatite
  • Ca 10 (PO 4 ) 6 (OH) 2 is a basic structural formula of calcium phosphate apatite. It is not limited to the basic structural formula.
  • Ca deficient apatite Ca 10-x (HPO 4 ) x (PO 4 ) 6-x (OH) 2-x carbonate apatite, substituted apatite, etc. are known, all of which are Included in the apatite of the invention.
  • the tricalcium phosphate in the present invention is a calcium phosphate compound having Ca 3 (PO 4 ) 2 as a representative composition, and includes one in which a part of calcium is substituted with another metal ion such as sodium.
  • Tricalcium phosphate includes ⁇ '-type tricalcium phosphate and ⁇ -type tricalcium phosphate having a high temperature stable phase and ⁇ -type tricalcium phosphate having a low-temperature stable phase. Calcium and ⁇ -type tricalcium phosphate are referred to as ⁇ -type tricalcium phosphate.
  • ⁇ -type tricalcium phosphate and ⁇ -type tricalcium phosphate have the same composition, but have greatly different solubility and completely different behavior in vivo. Since ⁇ -type tricalcium phosphate has low solubility and is clinically applied as a bone substitute, ⁇ -type tricalcium phosphate is generally preferable to ⁇ -type tricalcium phosphate. On the other hand, ⁇ -type tricalcium phosphate has high solubility and is used as a component of bioactive cement. However, when the bone defect is not large or a porous body is used, it may be preferable to use ⁇ -type tricalcium phosphate as the core portion rather than ⁇ -type tricalcium phosphate.
  • the octacalcium phosphate in the present invention is also referred to as octacalcium phosphate or octacalcium phosphate, and is calcium phosphate having a representative composition of Ca 8 H 2 (PO 4 ) 6 ⁇ 5H 2 O.
  • the calcium carbonate in the present invention is one of calcium components having CaCO 3 as a basic composition.
  • a compound in which a part of Ca is substituted with another element such as Mg is also included in the calcium carbonate of the present invention.
  • the calcium sulfate referred to in the present invention is one of calcium components having CaSO 4 as a basic composition, and hemihydrate and dihydrate are also known. These hydrates are also calcium sulfate of the present invention. include.
  • the calcium-containing glass in the present invention is one of calcium components and is a glass or glass ceramic containing calcium.
  • a glass component containing calcium can be melted and rapidly cooled to produce by a known method.
  • Calcium-containing crystallized glass obtained by pulverizing, firing and crystallizing calcium-containing glass is also included in the calcium-containing glass of the present invention.
  • Na 2 O—CaO—SiO 2 —P 2 O 5 glass called Bioglass® (typical composition is 24.5 mass% Na 2 O, 24.5 mass% CaO, SiO 2 Is 45% by mass, P 2 O 5 is 6% by mass), crystallized glass called Cerabone (registered trademark) A-W (typical composition is 4.6% by mass for MgO, 44.7% by mass for CaO, SiO 2 is 34.0 wt%, P 2 O 5 is 16.2% by mass, CaF 2 can be cited, such as 0.5 wt%).
  • These calcium-containing glasses can be produced by a known method.
  • the polymer material in the present invention refers to an organic material having a molecular weight exceeding 10,000.
  • polymer materials include biopolymers such as collagen, gelatin, chitin, and chitosan, absorbent polymers such as polylactic acid, polyglycolic acid, lactic acid-glycolic acid copolymer, polycaprolactone, and polyether ether. Examples thereof include ketone (PEEK), polyether ketone (PEK), polyether ether ketone ketone (PEEKK), polyether ketone ester, polyimide, polysulfone, polyethylene, polypropylene, and polyethylene terephthalate.
  • the polymer materials may be used alone or in combination of two or more.
  • a flexible medical honeycomb structure can be manufactured by mixing the calcium compound and the like with a polymer material. That is, in order to impart flexibility to the medical honeycomb structure, a high heat treatment such as a degreasing treatment described later is not performed, and the polymer material is present in the composition.
  • the method for producing a medical honeycomb structure of the present invention includes a step of producing a structure with an outer wall for extruding a material through a honeycomb structure forming mold to produce a honeycomb structure having an outer peripheral side wall, and a honeycomb structure having the outer peripheral side wall.
  • the outer peripheral side wall is removed, and an outer peripheral side portion forming step for forming a through hole groove and a through hole inlet is formed on the outer peripheral side portion, and preferably includes a degreasing step.
  • the medical honeycomb structure of the present invention made of hydroxyapatite for example, first, hydroxyapatite powder and an organic binder are mixed, and then, Japanese Patent No. 3405536 and Japanese Patent Laid-Open No. 10-59784 are mixed.
  • a honeycomb structure having an outer peripheral side wall as shown in FIG. 1 having a composition of hydroxyapatite and an organic binder is produced by extrusion molding by a method disclosed in a publication (such as a structure with an outer wall).
  • degreasing means removing an organic binder.
  • the organic binder is removed from a structure having a honeycomb structure prepared from a hydroxyapatite powder and an organic binder.
  • a general method conventionally used can be used.
  • the organic binder can be degreased by incineration by heating.
  • baking may be performed as necessary.
  • the organic binder is used for imparting the viscosity necessary for extrusion to the ceramic powder particles.
  • the organic binder known ones such as a wax binder and an acrylic binder can be used without limitation.
  • degreasing is necessary when manufacturing a honeycomb structure composed only of ceramics, but a degreasing process is not necessary when manufacturing a honeycomb structure made of ceramics and a polymer with priority given to flexibility. .
  • the hydroxyapatite honeycomb structure is stable even at high temperatures, and is sintered without being decomposed by high-temperature firing at 800 ° C. to 1300 ° C., so that the honeycomb structure can be easily manufactured.
  • a carbonate apatite honeycomb structure excellent in cell adhesion and tissue adhesion is subject to thermal decomposition due to high-temperature firing and cell adhesion and tissue adhesion are reduced.
  • converting the composition into carbonate apatite by dissolution precipitation type composition conversion reaction while maintaining the macro form of the honeycomb structure is exemplified as an effective manufacturing method.
  • calcium carbonate honeycomb structure As precursors having different compositions of the carbonate apatite honeycomb structure, calcium carbonate honeycomb structure, calcium sulfate honeycomb structure, ⁇ -type tricalcium phosphate honeycomb structure and the like are effective from the viewpoint of solubility.
  • Calcium carbonate honeycombs are particularly useful as precursors when they are immersed in a phosphate aqueous solution, because only a carbonate apatite exists as a stable phase compared to calcium carbonate.
  • a method using calcium hydroxide is useful. That is, a structure with an outer wall for producing a honeycomb structure having an outer peripheral side wall by extruding a mixture of calcium hydroxide and an organic binder through a honeycomb structure forming mold, and a degreasing process for degreasing the honeycomb structure And a carbonation step in which the honeycomb structure is carbonized simultaneously with or after the degreasing step, and an apatite step in which a phosphate aqueous solution is applied to the honeycomb structure that has undergone the carbonation step, At any stage after the outer wall-attached structure manufacturing step, at least a part of the outer peripheral side wall of the honeycomb structure having the outer peripheral side wall is removed, and the outer peripheral side portion is formed with the through hole groove and the through hole inlet on the outer peripheral side portion.
  • a method having a processing step is preferred.
  • the outer peripheral side processing step may be performed at any stage
  • the honeycomb structure In order to carbonize the honeycomb structure during degreasing, it is preferable to degrease the honeycomb structure under conditions where carbon dioxide and oxygen coexist when the honeycomb structure is heated.
  • Oxygen is essential to degrease, ie incinerate, the binder. Theoretically, if oxygen is present, it is degreased, but if the oxygen partial pressure is low, it is difficult to degrease, so the volume percentage of oxygen in the environment for degreasing the honeycomb structure is preferably 10% or more, It is more preferably 20% or more, and further preferably 30% or more.
  • the volume percentage of carbon dioxide in the environment where the honeycomb structure is degreased is preferably 10% or more, more preferably 20% or more, and further preferably 30% or more.
  • the degreasing temperature varies depending on the volume percentage of oxygen and carbon dioxide in the environment in which the honeycomb is degreased and the degree of whiteness required for the calcium carbonate honeycomb structure to be manufactured, but it is 400 ° C. or higher and 900 ° C. or lower. Is preferably 450 ° C. or higher and 800 ° C. or lower, and more preferably 500 ° C. or higher and 700 ° C. or lower.
  • the honeycomb structure In the case of the dry type, the honeycomb structure is brought into contact with carbon dioxide at a temperature of 920 ° C. or less at which calcium carbonate is thermally decomposed. In the case of wet, the honeycomb structure is brought into contact with carbon dioxide at a humidity of 50% or more.
  • the manufactured calcium carbonate honeycomb is immersed in a phosphate aqueous solution, and the composition is converted to carbonate apatite while maintaining the honeycomb structure by a dissolution precipitation type composition conversion reaction, thereby manufacturing a carbonate apatite honeycomb structure.
  • a dissolution precipitation type composition conversion reaction thereby manufacturing a carbonate apatite honeycomb structure.
  • an immersion process is preferable, the process etc. which spray continuously may be sufficient.
  • a production method for producing a carbonate apatite honeycomb structure using a calcium sulfate honeycomb structure as a precursor is also useful. Since calcium sulfate is thermally stable, it can be manufactured by a method similar to the method for manufacturing a hydroxyapatite honeycomb structure.
  • the method which has a processing process can be mentioned.
  • the degreasing step can be performed before or after the outer peripheral side portion processing step.
  • the outer peripheral side processing step may be performed at any stage before or after the degreasing step or before or after the apatite forming step.
  • a calcium sulfate powder and an organic binder are mixed and extruded by the method disclosed in Japanese Patent No. 3405536 or Japanese Patent Laid-Open No. 10-59784, etc., and calcium sulfate and an organic binder are used as a composition.
  • a honeycomb structure having an outer peripheral side wall as shown in FIG. 1 is produced (outer wall attached structure production process).
  • the binder is degreased, that is, removed by incineration by a known degreasing process.
  • This calcium sulfate honeycomb structure is immersed in an aqueous solution containing both phosphate and carbonate, for example, and the composition is converted to carbonate apatite while maintaining the honeycomb structure by a solution precipitation type composition conversion reaction.
  • a carbonate apatite honeycomb structure is produced.
  • This manufacturing method is simple, but sulfate groups may be detected as the composition of the carbonate apatite honeycomb structure. This is presumed to be due to the limited diffusion of the solution inside the cell structure because the honeycomb structure exhibits a cell structure.
  • the calcium sulfate honeycomb structure is immersed in a solution containing a carbonate, and the composition is converted to calcium carbonate while maintaining the honeycomb structure by a dissolution precipitation type composition conversion reaction to produce a calcium carbonate honeycomb structure. Thereafter, the calcium carbonate honeycomb structure is immersed in a phosphate-containing solution, and the composition is converted to carbonate apatite while maintaining the honeycomb structure by a dissolution-precipitation type composition conversion reaction to produce a carbonate apatite honeycomb structure.
  • a manufacturing method may be more preferable.
  • the method for producing a pulverized medical honeycomb structure according to the present invention includes a step of producing a structure with an outer wall for extruding a material through a honeycomb structure forming mold to produce a honeycomb structure having an outer peripheral side wall, and a honeycomb structure having the outer peripheral side wall.
  • At least a part of the outer peripheral side wall of the body is removed, and on the outer peripheral side portion, an outer peripheral side portion processing step for forming a through hole groove and a through hole inlet, and a honeycomb structure in which the through hole groove and the through hole inlet are formed, And a crushing step of crushing to a size of 10 ⁇ 12 m 3 or more and less than 10 ⁇ 8 m 3, and may include a degreasing step, a firing step, and the like.
  • Crushing can be performed after the extrusion process, after the degreasing process, and after the firing process.
  • the honeycomb structure manufactured after the degreasing process and after the firing process is brittle.
  • the crushing can be performed using a known crusher such as a cutting mill or a crusher. After crushing, if necessary, classification is performed using a sieve or the like to produce a honeycomb structure crushed material having a desired size.
  • a second medical honeycomb structure of the present invention is a medical honeycomb structure having a plurality of through-holes extending in one direction, and is characterized by being composed of a composition containing carbonate apatite. That is, it includes both the above-described medical honeycomb structure from which the outer peripheral side wall has been removed (for example, the structure shown in FIG. 2) and the one that has not been removed (for example, the structure shown in FIG. 1). The description of each structure can be applied to the medical honeycomb structure described above as it is.
  • the crushed material of the second medical honeycomb structure of the present invention is obtained by crushing the second medical honeycomb structure.
  • the description of each configuration can be applied to the above-described crushed medical honeycomb structure.
  • the manufacturing method itself of the medical honeycomb structure of the present invention including the carbonate apatite described above (removal of outer peripheral side wall) or the outer peripheral side
  • the method (with an outer peripheral side wall) which does not perform a partial process process can be mentioned.
  • an outer wall for producing a honeycomb structure having an outer peripheral side wall by extruding a mixture of calcium hydroxide and an organic binder through a honeycomb structure forming mold A structure manufacturing step, a degreasing step for degreasing the honeycomb structure, a carbonation step for carbonizing the honeycomb structure simultaneously with or after the degreasing step, and a honeycomb structure that has undergone the carbonation step
  • the manufacturing process, the degreasing process for degreasing the honeycomb structure, and the honeycomb structure that has undergone the degreasing process include carbonate and phosphoric acid. Or imparting an aqueous solution
  • the honeycomb structure for medical use of the present invention is (1) excellent in adhesion or bonding of cells or tissues to the material surface, (2) oriented tissue is regenerated and reconstructed, and (3) excellent in mechanical strength. (4) When used as a tissue replacement material, it satisfies the demand for a medical material that it is quickly replaced with a desired tissue and (5) can be manufactured at low cost.
  • the mechanism of the medical honeycomb structure of the present invention that satisfies such a requirement is considered as follows.
  • the surface (the C surface in FIG. 1) formed from the end portion of the through-hole of the honeycomb structure has no problem because it is an open structure, but generally there is an outer peripheral side wall on the outer peripheral side surface (A surface in FIG. 1). Difficult to bind to surrounding tissues.
  • a through-hole groove and a through-hole inlet opening in the through-hole direction are formed on the A surface. Therefore, for example, bone tissue enters the inside of the honeycomb structure from the portion, and the surrounding bone and the honeycomb structure are strongly bonded.
  • the carbonate apatite When carbonate apatite is contained in the composition of the honeycomb structure, the carbonate apatite is absorbed by osteoclasts and the like, so even if the initial carbonate apatite honeycomb structure has an outer peripheral side wall, As a result, a through hole inlet opening in the direction of the through hole is formed, and, for example, bone tissue enters the inside of the honeycomb structure from the portion, and the surrounding bone and the honeycomb structure are strongly bonded. That is, when carbonate apatite is contained, it is not necessary to have a through-hole groove and a through-hole inlet on the outer peripheral side portion.
  • a medical honeycomb structure having a through-hole groove and a through-hole inlet on the outer peripheral side and containing carbonate apatite in the composition is extremely excellent in bonding with surrounding bones and the like.
  • the inside of the honeycomb structure of the present invention is an orientation-connected porous body, and tissue regeneration / reconstruction is performed along the surface of the through-hole of the honeycomb structure, so that tissue orientation induction can be ideally performed. Further, since there are through-hole grooves and through-hole inlets that open in the direction of the through-holes also on the outer peripheral side portion of the honeycomb structure of the present invention, tissue regeneration / reconstruction is made along this, ideally. Tissue orientation induction can be performed.
  • the carbonate apatite When carbonate apatite is contained in the composition of the honeycomb structure, the carbonate apatite is absorbed by osteoclasts and the like, so even if the initial carbonate apatite honeycomb structure has an outer peripheral side wall, As a result, a through-hole inlet opening in the direction of the through-hole is formed, and tissue orientation induction can be performed ideally. That is, when carbonate apatite is contained, it is not necessary to have a through-hole groove and a through-hole inlet on the outer peripheral side portion.
  • a medical honeycomb structure having a through-hole groove and a through-hole inlet on the outer peripheral side portion and containing carbonate apatite in the composition is an extremely excellent honeycomb structure that forms an oriented structure on the outer peripheral side surface.
  • the medical honeycomb structure of the present invention has a honeycomb structure, and is excellent in mechanical strength as compared with other porous materials, so this requirement is satisfied.
  • the mechanical strength of a honeycomb structure is generally evaluated by measuring the compressive strength in the cell direction and the direction perpendicular to the cell, but the porosity is the same depending on the honeycomb structure. It shows mechanical strength over other porous materials.
  • tissue replacement material When used as a tissue replacement material, it is quickly replaced with a desired tissue> Depending on the composition of the medical material, the material is replaced with tissue. From this viewpoint, carbonated apatite, tricalcium phosphate, calcium sulfate, and calcium carbonate are excellent materials. Among them, apatite carbonate and tricalcium phosphate are more excellent materials, and carbonate apatite is an even better material. . Material is replaced by tissue by the cells. For example, in the case of carbonate apatite, the material is replaced with tissue by a mechanism similar to bone remodeling in which osteoclasts absorb the material and osteoblasts form bone.
  • the medical honeycomb structure of the present invention can use the ideal material as described above, and the cells can penetrate into the cells exhibiting connectivity, and the specific surface area is extremely large. .
  • the honeycomb structure of the present invention is manufactured by a simple method such as extruding the material through a honeycomb forming mold and removing the outer peripheral side wall, or if necessary, degreasing or immersing in an aqueous solution. It can be manufactured by the method. From this, the medical honeycomb structure of the present invention can be manufactured at low cost.
  • Example 1 Honeycomb structure (block) made of calcium carbonate ⁇ Structure manufacturing process with outer wall> Calcium hydroxide powder manufactured by Nacalai Tesque Co., Ltd. was pulverized with a jet mill to an average particle size of 1 ⁇ m, and calcium hydroxide and wax binder manufactured by Nagamine Manufacturing Co., Ltd. were mixed at a weight ratio of 75:25. Thereafter, a honeycomb molding die was attached to a laboratory plast mill manufactured by Toyo Seiki Seisakusho Co., Ltd., and extrusion molding was performed.
  • FIG. 6 shows a photograph of the cylindrical binder-containing calcium hydroxide honeycomb structure having the produced outer peripheral side wall.
  • the binder-containing calcium hydroxide honeycomb structure was degreased at 700 ° C. in an oxygen stream containing 50% carbon dioxide.
  • FIG. 8 shows an electron micrograph (SEM photograph) of the honeycomb structure (honeycomb structure according to Example 1a) after the degreasing process. It was confirmed that the cells were retained after degreasing and that a cylindrical calcium carbonate honeycomb structure block without an outer peripheral side wall could be manufactured and that a through hole inlet was formed on the outer peripheral side portion. Further, it was confirmed that there was a through-hole groove and a groove aspect ratio of 30 or more. Furthermore, it was confirmed that a part of the through hole entrance was not only in the outermost layer but also in the second outer layer. The outer peripheral side wall removal rate (ratio of the uneven surface on which the through hole groove and the through hole inlet were formed on the outer peripheral side portion) was 100%.
  • the through-hole diameter was 210 ⁇ m
  • the partition wall thickness was 150 ⁇ m
  • the through-hole length was 30 mm.
  • the volume of the manufactured honeycomb structure was 2 ⁇ 10 ⁇ 6 m 3 .
  • the ratio of the through-hole diameter to the partition wall thickness was about 1.4, and the through-hole aspect ratio was about 140.
  • Example 1a A calcium carbonate honeycomb structure (diameter: 7.2 mm, height: 4.5 mm) according to Example 1b manufactured in the same manner as above was implanted, and one month after implantation, it was extracted into a lump with the surrounding tissue, and histopathologically searched. did.
  • FIG. 9 shows a weakly enlarged image of a pathological tissue stained with hematoxylin and eosin.
  • FIG. 9A is an image cut in a vertical direction with respect to the through holes (cells) of the honeycomb structure
  • FIG. 9B is an image cut in parallel to the through holes (cells) of the honeycomb structure. It is. From the results of the histopathological search, the calcium carbonate honeycomb structure block is very well bonded to the surrounding tissue including the outer peripheral side surface, and the bone tissue has completely penetrated into the calcium carbonate honeycomb structure block. I understood it. It was also found that the regenerated and reconstructed bone tissue was oriented in the long axis direction of the cells of the calcium carbonate honeycomb structure granules. Furthermore, osteoblasts and osteoclasts were observed on the surface of the calcium carbonate honeycomb structure granules. From these results, it was found that the calcium carbonate honeycomb structure block was replaced with bone tissue.
  • Example 2 Honeycomb structure crushed material (granule) made of calcium carbonate
  • the cylindrical binder-containing calcium hydroxide honeycomb structure produced in Example 1 was crushed with a cutting mill (Fritz Japan, P-15) equipped with a 2.0 mm sieve. Then, the degreasing process was performed on the same conditions as Example 1.
  • the composition of the honeycomb structure granules after the degreasing step was analyzed by a powder X-ray diffractometer, it was calcium carbonate.
  • An electron micrograph of the produced honeycomb structure granules is shown in FIG. It was confirmed that the cells were retained after degreasing.
  • An example of the diameter of the through hole was 210 ⁇ m
  • the thickness of the partition wall was 150 ⁇ m
  • an example of the length of the through hole was 2 mm.
  • the volume of the manufactured honeycomb structure granules was 9 ⁇ 10 ⁇ 10 m 3 .
  • the ratio of the through hole diameter to the partition wall thickness was about 1.4.
  • An example of the aspect ratio of the through hole was about 10.
  • Example 3 Honeycomb structure (block) made of calcium carbonate having different cell sizes
  • a cylindrical calcium carbonate honeycomb structure without an outer peripheral side wall was manufactured by the same manufacturing method as in Example 1 except that a honeycomb molding die different from that in Example 1 was used.
  • the composition of the honeycomb structure after the degreasing process was calcium carbonate.
  • An electron micrograph after the degreasing step is shown in FIG. It was confirmed that the cells were retained after degreasing and that a cylindrical calcium carbonate honeycomb structure block without an outer peripheral side wall could be manufactured and that a through hole inlet was formed on the outer peripheral side portion. Further, it was confirmed that there was a through-hole groove and a groove aspect ratio of 30 or more. Furthermore, it was confirmed that a part of the through hole entrance was not only in the outermost layer but also in the second outer layer.
  • the outer peripheral side wall removal rate ratio of the uneven surface on which the through hole groove and the through hole inlet were formed on the outer peripheral side portion was 100%.
  • the through-hole diameter was 170 ⁇ m
  • the partition wall thickness was 70 ⁇ m
  • the through-hole length was 30 mm.
  • the volume of the manufactured honeycomb structure was 1.5 ⁇ 10 ⁇ 6 m 3 .
  • the ratio of the through-hole diameter to the partition wall thickness was about 2.4, and the through-hole aspect ratio was about 180.
  • Example 4 Honeycomb structure (block) made of hydroxyapatite In place of calcium hydroxide powder, Taihei Chemical Hydroxyapatite was used, and the outer wall structure manufacturing step and the outer peripheral side processing step were performed in the same manner as in Example 1.
  • ⁇ Degreasing process> the binder-containing hydroxyapatite honeycomb structure was degreased in the air and fired at 900 ° C.
  • FIG. 12 shows an electron micrograph (SEM photograph) of the honeycomb structure after the degreasing process. After degreasing, the cells were retained, and it was confirmed that a cylindrical hydroxyapatite honeycomb structure block without an outer peripheral side wall could be manufactured and that a through-hole inlet was formed on the outer peripheral side. Further, it was confirmed that there was a through-hole groove and a groove aspect ratio of 30 or more. Furthermore, it was confirmed that a part of the through hole entrance was not only in the outermost layer but also in the second outer layer.
  • the outer peripheral side wall removal rate ratio of the uneven surface on which the through hole groove and the through hole inlet were formed on the outer peripheral side portion was 100%.
  • the through-hole diameter was 210 ⁇ m
  • the partition wall thickness was 150 ⁇ m
  • the through-hole length was 40 mm.
  • the volume of the manufactured honeycomb structure was about 1.1 ⁇ 10 ⁇ 6 m 3 .
  • the ratio of the through-hole diameter to the partition wall thickness was about 1.4, and the through-hole aspect ratio was about 190.
  • Example 5 A honeycomb structure crushed material (granule) made of hydroxyapatite
  • the cylindrical binder-containing hydroxyapatite honeycomb structure produced in Example 4 with the outer peripheral side portion removed was pulverized and sieved, and classified into granules that passed through the 1000 ⁇ m sieve but did not pass through the 850 ⁇ m sieve.
  • the obtained granules were subjected to a degreasing step under the same conditions as in Example 4.
  • the through hole diameter was 210 ⁇ m
  • the partition wall thickness was 150 ⁇ m
  • an example of the length of the through hole was 0.9 mm.
  • An example of the volume of the manufactured honeycomb structure granule was about 5 ⁇ 10 ⁇ 10 m 3 .
  • the ratio of the through hole diameter to the partition wall thickness was about 1.4.
  • An example of the aspect ratio of the through hole was about 4.
  • Example 6 Honeycomb structure (block) made of gypsum (calcium sulfate) ⁇ Structure manufacturing process with outer wall> Hemihydrate gypsum manufactured by Wako Pure Chemical Industries, Ltd. was heat-treated at 1000 ° C. to obtain anhydrous gypsum (anhydrous calcium sulfate). The prepared anhydrous gypsum and a wax binder manufactured by Nagamine Manufacturing Co., Ltd. were mixed at a weight ratio of 80:20. Thereafter, a honeycomb molding die was attached to a laboratory plast mill manufactured by Toyo Seiki Seisakusho Co., Ltd., and extrusion molding was performed. As a result of the extrusion molding, a cylindrical binder-containing anhydrous gypsum honeycomb structure having a mixture of anhydrous gypsum and a binder and having an outer peripheral side wall was produced as an intermediate.
  • gypsum calcium sulfate
  • FIG. 13 shows an electron micrograph (SEM photograph) of the honeycomb structure after the degreasing process. It was confirmed that the cells were retained after degreasing, and that a cylindrical anhydrous gypsum honeycomb structure block without an outer peripheral side wall could be manufactured and that a through-hole inlet was formed on the outer peripheral side portion. Further, it was confirmed that there was a through-hole groove and the groove aspect ratio was 10 or more. Furthermore, it was confirmed that a part of the through hole entrance was not only in the outermost layer but also in the second outer layer. The outer peripheral side wall removal rate (ratio of the uneven surface on which the through hole groove and the through hole inlet were formed on the outer peripheral side portion) was 100%.
  • the through-hole diameter was 210 ⁇ m
  • the partition wall thickness was 150 ⁇ m
  • the through-hole length was 21 mm.
  • the volume of the manufactured honeycomb structure was about 6 ⁇ 10 ⁇ 7 m 3 .
  • the ratio of the through-hole diameter to the partition wall thickness was about 1.4, and the through-hole aspect ratio was about 100.
  • Example 7 Honeycomb structure (block) made of ⁇ -type tricalcium phosphate ⁇ Structure manufacturing process with outer wall> Taihei Chemical Industrial Co., Ltd. ⁇ -type tricalcium phosphate powder ( ⁇ -TCP-A) and Nagamine Seisakusho Co., Ltd. wax-based binder were mixed at a weight ratio of 75:25. Thereafter, a honeycomb molding die was attached to a laboratory plast mill manufactured by Toyo Seiki Seisakusho Co., Ltd., and extrusion molding was performed.
  • FIG. 14 shows an electron micrograph (SEM photograph) of the honeycomb structure after the degreasing process. It was confirmed that the cells were retained even after degreasing, and that a cylindrical ⁇ -type tricalcium phosphate honeycomb structure block without an outer peripheral side wall could be manufactured and that a through-hole inlet was formed on the outer peripheral side portion. Further, it was confirmed that there was a through-hole groove and a groove aspect ratio of 30 or more. Furthermore, it was confirmed that a part of the through hole entrance was not only in the outermost layer but also in the second outer layer. The outer peripheral side wall removal rate (ratio of the uneven surface on which the through hole groove and the through hole inlet were formed on the outer peripheral side portion) was 100%.
  • the through hole diameter was 210 ⁇ m
  • the partition wall thickness was 150 ⁇ m
  • the through hole length was 18 mm.
  • the volume of the manufactured honeycomb structure was about 5 ⁇ 10 ⁇ 7 m 3 .
  • the ratio of the through-hole diameter to the partition wall thickness was about 1.4, and the through-hole aspect ratio was about 90.
  • Example 8 Crushed honeycomb structure (granule) made of ⁇ -type tricalcium phosphate
  • the columnar binder-containing ⁇ -type tricalcium phosphate honeycomb structure after the outer wall side portion processing step of Example 7 was pulverized using a cutter and a mortar.
  • the pulverized binder-containing ⁇ -type tricalcium phosphate honeycomb structure was screened, and classified into granules that passed through the 1000 ⁇ m sieve but did not pass through the 850 ⁇ m sieve.
  • the obtained granules were subjected to a degreasing step under the same conditions as in Example 7.
  • the through hole diameter was 210 ⁇ m
  • the partition wall thickness was 150 ⁇ m
  • an example of the length of the through hole was 0.9 mm.
  • An example of the volume of the manufactured honeycomb structure granule was about 5 ⁇ 10 ⁇ 10 m 3 .
  • the ratio of the through hole diameter to the partition wall thickness was about 1.4.
  • An example of the aspect ratio of the through hole was about 4.
  • Fig. 15 shows an electron micrograph (SEM photograph) of the honeycomb structure after the composition conversion step. It was confirmed that the cells were retained after the composition conversion step, a cylindrical ⁇ -type tricalcium phosphate honeycomb structure block without an outer peripheral side wall was manufactured, and a through hole inlet was formed on the outer peripheral side. . Further, it was confirmed that there was a through-hole groove and a groove aspect ratio of 30 or more. Furthermore, it was confirmed that a part of the through hole entrance was not only in the outermost layer but also in the second outer layer. The outer peripheral side wall removal rate (ratio of the uneven surface on which the through hole groove and the through hole inlet were formed on the outer peripheral side portion) was 100%.
  • the through-hole diameter was 210 ⁇ m
  • the partition wall thickness was 150 ⁇ m
  • the through-hole length was 21 mm.
  • the volume of the manufactured honeycomb structure was about 6 ⁇ 10 ⁇ 7 m 3 .
  • the ratio of the through-hole diameter to the partition wall thickness was about 1.4, and the through-hole aspect ratio was about 100.
  • Example 10 Honeycomb structure made of polymer material ⁇ Outer wall structure manufacturing process> A mold for forming a honeycomb was attached to a lab plast mill manufactured by Toyo Seiki Seisakusho Co., Ltd., and Tuffmer MY-2, a polyolefin resin manufactured by Mitsui Chemicals, Inc. was extruded. As a result of extrusion molding, a tougher honeycomb structure having a composition of toughmer and a cylindrical outer peripheral side wall was produced as an intermediate. The obtained tougher honeycomb structure was flexible and could be bent easily by hand.
  • FIG. 16 shows an electron micrograph (SEM photograph) of the honeycomb structure after the outer peripheral side wall is removed. It was confirmed that the cells were retained after the outer peripheral side wall was removed, that a tougher honeycomb structure block without an outer peripheral side wall could be manufactured, and that a through hole inlet was formed on the outer peripheral side portion. Further, it was confirmed that there was a through-hole groove and a groove aspect ratio of 30 or more. Furthermore, it was confirmed that a part of the through hole entrance was not only in the outermost layer but also in the second outer layer.
  • the outer peripheral side wall removal rate ratio of the uneven surface on which the through hole groove and the through hole inlet were formed on the outer peripheral side portion was 100%.
  • the through hole diameter was 210 ⁇ m
  • the partition wall thickness was 100 ⁇ m
  • the through hole length was 30 mm.
  • the volume of the manufactured honeycomb structure was about 2 ⁇ 10 ⁇ 7 m 3 .
  • the ratio of the through-hole diameter to the partition wall thickness was about 2.1, and the through-hole aspect ratio was about 140.
  • Example 11 Honeycomb structure (block) made of carbonate apatite
  • the calcium carbonate honeycomb block produced in Example 1 was immersed in a 1 molar aqueous solution of disodium hydrogen phosphate at 80 ° C. for 7 days.
  • FIG. 17 shows an electron micrograph of the produced carbonate apatite honeycomb structure (honeycomb structure according to Example 11a). It was confirmed that a carbonate apatite honeycomb structure block without an outer peripheral side wall could be manufactured. It was confirmed that a cylindrical calcium carbonate honeycomb structure block having cells held therein and having no outer peripheral side wall was manufactured, and that a through hole inlet was formed on the outer peripheral side portion.
  • the outer peripheral side wall removal rate ratio of the uneven surface on which the through hole groove and the through hole inlet were formed on the outer peripheral side portion was 100%.
  • the through-hole diameter was 210 ⁇ m
  • the partition wall thickness was 150 ⁇ m
  • the through-hole length was 30 mm.
  • the volume of the manufactured honeycomb structure was 2 ⁇ 10 ⁇ 6 m 3 .
  • the ratio of the through-hole diameter to the partition wall thickness was about 1.4, and the through-hole aspect ratio was about 140.
  • the compression strength of the produced carbonate apatite honeycomb block in the penetration direction was 90 MPa
  • the compression strength in the direction perpendicular to the penetration direction was 2 MPa.
  • Example 11a was applied to the bone defect formed in the femur of Japanese white rabbit.
  • a carbonate apatite honeycomb (diameter 6 mm, height 5 mm) according to Example 11b manufactured in the same manner as above was implanted, and one month after the implantation, it was excised into a lump with the surrounding tissue and searched for histopathologically.
  • FIG. 18 shows a weakly enlarged image of the pathological tissue stained with hematoxylin and eosin. It was found that the carbonate apatite honeycomb structure block was very well bonded to the surrounding structure including the outer peripheral side surface, and that the bone structure had completely penetrated into the carbonate apatite honeycomb structure block.
  • FIG. 19 shows a strongly magnified image of a pathological tissue of a tissue that has entered a cell in the mesial portion of the honeycomb structure from the through hole entrance on the outer peripheral side that opens in the through hole direction.
  • the formed bone tissue is highly oriented in the long axis direction of the cells of the carbonate apatite honeycomb structure block.
  • multinucleated osteoclasts and osteoblasts are observed on the surface of oriented bone formed on the partition wall surface of the carbonate apatite honeycomb structure block, and bone cells are observed inside the formed bone.
  • Example 12 A honeycomb structure crushed material (granule) made of carbonate apatite
  • the calcium carbonate honeycomb structure granules produced in Example 2 were immersed in a 1 molar aqueous solution of disodium hydrogen phosphate at 80 ° C. for 7 days.
  • the composition of the honeycomb structure granules was analyzed by a powder X-ray diffractometer and a Fourier transform infrared spectrophotometer, it was carbonate apatite.
  • the carbonate group content was analyzed by a CHN elemental analyzer and found to be 10.8 weight percent.
  • FIG. 1 An electron micrograph of the produced carbonate apatite honeycomb structure granules is shown in FIG.
  • the structure was basically maintained after the composition conversion.
  • the diameter of the through hole was 210 ⁇ m
  • the thickness of the partition wall was 150 ⁇ m
  • an example of the length of the through hole was 1 mm.
  • an example of the volume of the manufactured honeycomb structured granule was 8 ⁇ 10 ⁇ 10 m 3 .
  • the ratio of the through hole diameter to the partition wall thickness was about 1.4.
  • the aspect ratio of the through hole was about 5.
  • the carbonate apatite honeycomb was applied to the bone defect formed in the femur of Japanese white rabbit. After embedding, one month after the implantation, it was excised in a lump with the surrounding tissue and examined histopathologically.
  • FIG. 21 shows a weakly enlarged image of the pathological tissue stained with hematoxylin and eosin. It was found that the carbonate apatite honeycomb structure granules were very well bonded to the surrounding structure, and that the bone structure had completely penetrated into the carbonate apatite honeycomb structure granules.
  • FIG. 22 shows a strongly magnified image of a pathological tissue of a tissue that has entered a cell in the mesial portion of the honeycomb structure from the through hole entrance on the outer peripheral side that opens in the through hole direction. It can be seen that the regenerated and reconstructed bone tissue is oriented in the major axis direction of the cells of the carbonate apatite honeycomb structure granules. In addition, osteoclasts are observed on the surface of the carbonate apatite honeycomb structure granules. From this, it was found that the carbonate apatite honeycomb structure granules were replaced with bone tissue.
  • Example 13 Carbonate apatite honeycomb block with outer peripheral side wall Without performing the outer peripheral side wall processing in the same manner as in Example 1, a calcium carbonate honeycomb structure with an outer peripheral side wall was produced as an intermediate, and 1 mol at 80 ° C It was immersed in a dibasic sodium phosphate aqueous solution for 7 days.
  • the composition of the honeycomb structure block was analyzed with a powder X-ray diffractometer and a Fourier transform infrared spectrophotometer, it was carbonate apatite.
  • the carbonate group content was analyzed by a CHN elemental analyzer and found to be 10.5 weight percent.
  • the manufactured carbonate apatite honeycomb structure basically maintained the structure of the calcium carbonate honeycomb structure, which is an intermediate, and it was confirmed that a carbonate apatite honeycomb structure block having an outer peripheral side wall could be manufactured.
  • the carbonate apatite honeycomb was applied to the bone defect formed in the femur of Japanese white rabbit. After embedding, one month after the implantation, it was excised in a lump with the surrounding tissue and examined histopathologically.
  • Hydroxyapatite powder was pulverized with a jet mill to an average particle size of 1 ⁇ m, and the hydroxyapatite powder and wax binder were mixed at a weight ratio of 75:25. Thereafter, a honeycomb molding die was attached to a lab plast mill, and extrusion molding was performed. As a result of extrusion molding, a cylindrical binder-containing hydroxyapatite powder honeycomb structure having a mixture of hydroxyapatite powder and binder and having an outer peripheral side wall was produced as an intermediate.
  • the binder-containing hydroxyapatite powder honeycomb structure was degreased at 700 ° C. in the air. Furthermore, it baked at 1200 degreeC for 6 hours.
  • the composition of the fired honeycomb structure was analyzed with a BRUKER D8 ADVANCE type powder X-ray diffractometer. As a result, it was found to be hydroxyapatite.
  • a hydroxyapatite honeycomb structure having an outer peripheral wall was embedded, and one month after the implantation, it was excised in a lump with the surrounding tissue, and searched for histopathologically.
  • the surface formed by the end portion of the through hole of the hydroxyapatite honeycomb structure having the outer peripheral side wall was well bonded to the surrounding structure, but the extent was similar to that of the carbonate apatite honeycomb of Example 13. It was inferior compared. Also, the outer peripheral side wall surface has limited connectivity with the surrounding tissue. Further, the penetration of the bone structure into the hydroxyapatite honeycomb structure was limited as compared with the bone structure inside the carbonate apatite honeycomb structure block. From this, it was found that the penetration of bone tissue into the cells of the carbonate apatite honeycomb structure was superior to that of hydroxyapatite. In addition, when the honeycomb structure does not contain carbonate apatite, it has been found that there is a problem in the bonding between the surrounding structure and the honeycomb structure if there is an outer peripheral side wall.
  • the macrophage recognizes the biological material as a foreign substance and tries to phagocytose.
  • the carbonate apatite honeycomb and the hydroxyapatite honeycomb are partially dissolved, and calcium ions and phosphate ions are supplied to the body fluid.
  • Macrophages recognize calcium ions and phosphate ions with Ca-sensing receptor (CaSR) and are activated to release cytokines and growth factors.
  • CaSR Ca-sensing receptor
  • Carbonate apatite has the same composition as living bone, and the ratio of eluted calcium ions and phosphate ions is the same as that of living bone, and the solubility in acidic environment during macrophage phagocytosis is higher than that of hydroxyapatite.
  • the amount of cytokines and growth factors released by macrophage activation is considered to be large.
  • carbonate apatite does not hold through-holes extending in one direction due to the honeycomb structure, for example, in the case of dense bodies, cytokines and growth factors released by macrophages are diffused, so activation of osteoblasts is limited. is there. Even if the carbonate apatite is a porous body, it does not retain a through-hole extending in one direction, that is, in the case of a foam-like porous body, the diffusion of cytokines and growth factors released by macrophages compared to the dense carbonate apatite surface Although limited, the localization of cytokines and growth factors released by macrophages is also limited due to the three-dimensional diffusion.
  • the carbonate apatite honeycomb holds a through-hole extending in one direction, and is thought to localize cytokines and growth factors released by macrophages.
  • osteoblasts and the like are highly activated to form a blood vessel essential for bone formation and maintenance of the function of the formed bone.
  • the honeycomb structure for medical use of the present invention is (1) excellent in adhesion or bonding of cells or tissues to the material surface, (2) oriented tissue is regenerated and reconstructed, and (3) excellent in mechanical strength. (4) When used as a tissue replacement material, it satisfies the demand for a medical material that can be quickly replaced with a desired tissue and (5) can be manufactured at a low cost. Can be widely used in fields related to

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Structural Engineering (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Civil Engineering (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

【課題】(1)細胞あるいは組織の材料表面への接着性あるいは結合性に優れ、(2)配向した組織が再生・再建され、(3)機械的強さに優れ、(4)組織置換材料として用いられる場合においては、迅速に所望の組織に置換され、(5)安価に製造できる、という医療用材料に望まれる要求を満足する医療用ハニカム構造体を提供すること。 【解決手段】一方向に延びる複数の貫通孔を備えた医療用ハニカム構造体であって、その外周側部に、前記貫通孔の側壁が欠損して形成された貫通孔溝と、該貫通孔溝に隣接する貫通孔入口とを備えている医療用ハニカム構造体である。

Description

医療用ハニカム構造体
 本発明は、医療用材料及びその製造方法に関する。より詳しくは、医療分野又は医療に関係する分野で、骨・歯などの組織再生・再建術式や、再生医療のスキャッフォールドなどに用いられるハニカム構造を有する医療用材料及びその製造方法に関する。
 医科臨床及び歯科臨床においては、欠損した組織を医療材料で再生・再建する場合がある。また、その際に、医療材料が周囲組織と結合することを期待される場合がある。医療材料と周囲組織の結合などの重要な初期ステップは材料表面への細胞の接着や組織の結合である。医療材料が周囲組織に固定されないと組織の伝導や細胞の遊走は起こりにくい。
 医療材料の中でも、多孔性材料は、細胞や組織が内部に侵入しやすいため優れた機能を示すことが多い。多孔性材料は、独立気孔性多孔体と連通多孔体に分類されるが、医療材料の組織への置換を期待するなどの場合、細胞が材料内部に侵入できる連通多孔体の有用性が高い。そのため、特許文献1や2に見られるような気孔形成材を導入して焼却することによって連通多孔体を製造する方法が提案されている。
 一方、非特許文献1で報告されているように、骨などの組織は部位に応じて様々に配向しており、組織が配向することによって機能が向上することがわかってきている。しかしながら、非特許文献2や3などで指摘されているように、再生骨は配向性に乏しく機能性に乏しいため、配向化誘導が必要であることが指摘されている。
 配向性連通多孔体については、特許文献3~7に見られるような霜柱の原理を応用して製造する方法が提案されている。しかしながら、霜柱の原理を応用して製造する配向性の連通多孔体の配向性は必ずしも十分ではない。また、霜柱成長のために厳密な温度管理が必要であり、生産性に乏しく、製造コストが高い。また、形態が完全に同じである配向性連通多孔体が製造できないなどの大きな問題がある。
 一方、特許文献8や9などで報告されている押出成形などによって製造されるハニカム構造体は、理想的な配向性連通多孔体を示す。しかしながら、これまでに製造されたハニカム構造体は必ずしも十分な組織結合能や細胞接着能を示さず、組織再生・再建に満足できる医療材料ではなかった。
 そのため、特許文献10では、ハニカム構造体を貫通孔方向に平行な平面で切断して板状に形成された基板部の表面に、複数の溝を形成させる技術が開示されている。外周側壁を保ったハニカム構造体に比較して、特許文献10で開示した技術は、細胞あるいは組織の材料表面への接着性あるいは結合性に優れるが、外周側壁からハニカム構造体内部には細胞や組織が侵入できないため、周囲組織との結合などの機能は十分とはいえなかった。
 また、特許文献11では、ハニカム構造体の外周側壁を貫通する穴をあける技術が開示されている。このことによって、外周側壁からハニカム構造体内部に細胞や組織が侵入できる。そのため、外周側壁に穴がないハニカム構造体に比較して、特許文献11で開示された技術は、細胞あるいは組織の材料表面への接着性あるいは結合性に優れるが、製造コストが極めて高い。さらに、周囲組織と外周面との結合能力は十分ではなかった。また、外周側壁における周囲組織の配向性が全く制御できないものであった。
特許第3470759号公報 特許第4802317号公報 特許第3858069号公報 特許第3940770号公報 特開2008-230910号公報 特開2010-18459号公報 特開2012-148929号公報 特開2004-298407号公報 特開2005-152006号公報 特開2004-298545号公報 特開2005-110709号公報
 上記のような気孔形成材を導入して焼却することによって連通多孔体を製造する方法では、配向性がない多孔体、配向性に乏しい多孔体、連通性のない気孔が存在する多孔体が製造されていた。
 また、霜柱の原理を応用して製造する配向性連通多孔体は、配向性が十分ではなかった。さらに、霜柱成長のために厳密な温度管理が必要であり、生産性に乏しく、製造コストが高い、形態が完全に同じである一軸配向性の連通多孔体が製造できないといった問題があった。
 また、押出成形などによって製造されるハニカム構造体は、理想的な配向性連通多孔体であるため、配向性に優れる医療材料の提供が期待されていたが、これまでに提供されたハニカム構造体は必ずしも十分な細胞接着能や組織結合能力、配向組織形成能を示すものではなく、また、実用化可能な製造コストで製造できるものではなかった。
 本発明は、上記のような問題点に鑑みてなされたものであり、本発明の課題は、(1)細胞あるいは組織の材料表面への接着性あるいは結合性に優れ、(2)配向した組織が再生・再建され、(3)機械的強さに優れ、(4)組織置換材料として用いられる場合においては、迅速に所望の組織に置換され、(5)安価に製造できる、という医療用材料に望まれる要求を満足する医療用ハニカム構造体及びその製造方法を提供することにある。
 本発明者らは、鋭意検討を重ねた結果、一方向に延びる複数の貫通孔を備えたハニカム構造体の外周側部に、ハニカム構造を構成する貫通孔の側壁が欠損して形成された貫通孔溝と、該貫通孔溝に隣接する貫通孔入口とを形成することにより、上記(1)~(5)の要求を満足する医療用材料とすることができることを見いだし、本発明を完成するに至った。
 すなわち、本発明は、以下のとおりのものである。
 [1]一方向に延びる複数の貫通孔を備えた医療用ハニカム構造体であって、
 その外周側部に、前記貫通孔の側壁が欠損して形成された貫通孔溝と、該貫通孔溝に隣接する貫通孔入口とを備えていることを特徴とする医療用ハニカム構造体。
 [2]外周側部に貫通孔の貫通方向に対して傾斜する傾斜面が形成されていることを特徴とする[1]記載の医療用ハニカム構造体。
 [3]貫通孔溝の幅方向の長さに対する長手方向の長さの比が1.5以上であることを特徴とする[1]又は[2]記載の医療用ハニカム構造体。
 [4]最外層の貫通孔の数に対する貫通孔入口の数の比が0.05以上であることを特徴とする[1]~[3]のいずれか記載の医療用ハニカム構造体。
 [5]貫通孔溝及び貫通孔入口が、少なくとも最外層及びその内側の第2外層に設けられていることを特徴とする[1]~[4]のいずれか記載の医療用ハニカム構造体。
 [6]外周側面における貫通孔溝及び貫通孔入口が形成された凹凸面の割合が、10%以上であることを特徴とする[1]~[5]のいずれか記載の医療用ハニカム構造体。
 [7]貫通孔の側壁に貫穿された貫穿孔が設けられていることを特徴とする[1]~[6]のいずれか記載の医療用ハニカム構造体。
 [8]貫通孔の径が5μm以上400μm以下であることを特徴とする[1]~[7]のいずれか記載の医療用ハニカム構造体。
 [9]貫通孔の隔壁の厚さが10μm以上300μm以下であることを特徴とする[1]~[8]のいずれか記載の医療用ハニカム構造体。
 [10]貫通孔の隔壁の厚さに対する貫通孔の径の比が0.2以上20以下であることを特徴とする[1]~[9]のいずれか記載の医療用ハニカム構造体。
 [11]外周側部の外周側壁の厚さが300μm以下であることを特徴とする[1]~[10]のいずれか記載の医療用ハニカム構造体。
 [12]貫通孔の径に対する長手方向の長さの比が3以上であることを特徴とする[1]~[11]のいずれか記載の医療用ハニカム構造体。
 [13]10-8以上10-3以下のブロックであることを特徴とする[1]~[12]のいずれか記載の医療用ハニカム構造体。
 [14]少なくともカルシウム化合物を含有する組成物からなることを特徴とする[1]~[13]のいずれか記載の医療用ハニカム構造体。
 [15]カルシウム化合物が、リン酸カルシウム、炭酸カルシウム、硫酸カルシウム及びカルシウム含有ガラスからなる群より選ばれる少なくとも1種であることを特徴とする[14]記載の医療用ハニカム構造体。
 [16]アパタイト、β型リン酸三カルシウム、α型リン酸三カルシウム及びリン酸八カルシウムからなる群より選ばれる少なくとも1種を含有する組成物からなることを特徴とする[1]~[15]のいずれか記載の医療用ハニカム構造体。
 [17]炭酸アパタイトを含有する組成物からなることを特徴とする[1]~[16]のいずれか記載の医療用ハニカム構造体。
 [18]高分子材料を含有する組成物からなることを特徴とする[1]~[17]のいずれか記載の医療用ハニカム構造体。
 [19][1]~[18]のいずれか記載の医療用ハニカム構造体の破砕物。
 [20]10-12以上10-8未満の大きさであることを特徴とする[19]記載の破砕物。
 [21]一方向に延びる複数の貫通孔を備えた医療用ハニカム構造体であって、
 炭酸アパタイトを含有する組成物からなることを特徴とする医療用ハニカム構造体。
 [22][21]記載の医療用ハニカム構造体の破砕物。
 [23]材料をハニカム構造形成用型を通して押し出し、外周側壁を有するハニカム構造体を作製する外壁付構造体作製工程と、
 該外周側壁を有するハニカム構造体の外周側壁の少なくとも一部を除去し、外周側部に、貫通孔溝及び貫通孔入口を形成する外周側部加工工程と、
を有することを特徴とする[1]~[18]のいずれか記載の医療用ハニカム構造体の製造方法。
 [24]材料をハニカム構造形成用型を通して押し出し、外周側壁を有するハニカム構造体を作製する外壁付構造体作製工程と、
 該外周側壁を有するハニカム構造体の外周側壁の少なくとも一部を除去し、外周側部に、貫通孔溝及び貫通孔入口を形成する外周側部加工工程と、
 前記貫通孔溝及び貫通孔入口を形成したハニカム構造体を、10-12以上10-8未満の大きさに破砕する破砕工程と、
を有することを特徴とする[19]又は[20]記載の医療用ハニカム構造体破砕物の製造方法。
 [25]炭酸アパタイトを組成に含む[1]~[17]のいずれか記載の医療用ハニカム構造体の製造方法であって、
 水酸化カルシウムと有機バインダーとを混合した混合物を、ハニカム構造形成用型を通して押し出し、外周側壁を有するハニカム構造体を作製する外壁付構造体作製工程と、
 ハニカム構造体の脱脂を行う脱脂工程と、
 前記脱脂工程と同時又はその後にハニカム構造体の炭酸化処理を行う炭酸化工程と、
 前記炭酸化工程を経たハニカム構造体にリン酸塩水溶液を付与するアパタイト化工程とを有し、
 前記外壁付構造体作製工程後のいずれかの段階において、外周側壁を有するハニカム構造体の外周側壁の少なくとも一部を除去し、外周側部に、貫通孔溝及び貫通孔入口を形成する外周側部加工工程を有することを特徴とする医療用ハニカム構造体の製造方法。
 [26]炭酸アパタイトを組成に含む[1]~[17]のいずれか記載の医療用ハニカム構造体の製造方法であって、
 硫酸カルシウムと有機バインダーとを混合した混合物を、ハニカム構造形成用型を通して押し出し、外周側壁を有するハニカム構造体を作製する外壁付構造体作製工程と、
 ハニカム構造体の脱脂を行う脱脂工程と、
 前記脱脂工程を経たハニカム構造体に、炭酸塩及びリン酸塩を含む水溶液を付与するか、炭酸塩を含む水溶液及びリン酸塩を含む水溶液を順次付与するアパタイト化工程とを有し、
 前記外壁付構造体作製工程後のいずれかの段階において、外周側壁を有するハニカム構造体の外周側壁の少なくとも一部を除去し、外周側部に、貫通孔溝及び貫通孔入口を形成する外周側部加工工程を有することを特徴とする医療用ハニカム構造体の製造方法。
 [27][21]記載の医療用ハニカム構造体の製造方法であって、
 水酸化カルシウムと有機バインダーとを混合した混合物を、ハニカム構造形成用型を通して押し出し、外周側壁を有するハニカム構造体を作製する外壁付構造体作製工程と、
 ハニカム構造体の脱脂を行う脱脂工程と、
 前記脱脂工程と同時又はその後にハニカム構造体の炭酸化処理を行う炭酸化工程と、
 前記炭酸化工程を経たハニカム構造体にリン酸塩水溶液を付与するアパタイト化工程と、
を有することを特徴とする医療用ハニカム構造体の製造方法。
 [28][21]記載の医療用ハニカム構造体の製造方法であって、
 硫酸カルシウムと有機バインダーとを混合した混合物を、ハニカム構造形成用型を通して押し出し、外周側壁を有するハニカム構造体を作製する外壁付構造体作製工程と、
 ハニカム構造体の脱脂を行う脱脂工程と、
 前記脱脂工程を経たハニカム構造体に、炭酸塩及びリン酸塩を含む水溶液を付与するか、炭酸塩を含む水溶液及びリン酸塩を含む水溶液を順次付与するアパタイト化工程と、
を有することを特徴とする医療用ハニカム構造体の製造方法。
 本発明の医療用ハニカム構造体は、(1)細胞あるいは組織の材料表面への接着性あるいは結合性に優れ、(2)配向した組織が再生・再建され、(3)機械的強さに優れ、(4)組織置換材料として用いられる場合においては、迅速に所望の組織に置換され、(5)安価に製造できる、という医療用材料に望まれる要求を満足するものであり、医療分野又は医療に関係する分野での広い利用が可能となる。
外周側壁を有するハニカム構造体の模式図である。 本発明の医療用ハニカム構造体の模式図(一例)である。 本発明の医療用ハニカム構造体の外周側壁の一部が除去された状況を示す模式図(一例)である。 本発明の医療用ハニカム構造体の外周側壁の複数の層が除去された状況を示す模式図(一例)である。 本発明の医療用ハニカム構造体における貫通孔溝及び貫通孔入口の説明図である。 実施例1aに係る中間体として作製された外周側壁を有する円柱状のバインダー含有水酸化カルシウムハニカム構造体の写真である。 実施例1aに係る脱脂工程前のハニカム構造体の写真である。 実施例1aに係る脱脂工程の後のハニカム構造体の電子顕微鏡写真(SEM写真)である。 実施例1bに係るハニカム構造体を用いた病理組織学的検索における病理組織の弱拡大像であり、(a)は貫通孔(セル)に鉛直方向で切断した像であり、(b)は貫通孔(セル)に平行に切断した像である。 実施例2に係るハニカム構造体顆粒の電子顕微鏡写真(SEM写真)である。 実施例3に係る脱脂工程の後のハニカム構造体の電子顕微鏡写真(SEM写真)である。 実施例4に係るハニカム構造体の電子顕微鏡写真(SEM写真)である。 実施例6に係るハニカム構造体の電子顕微鏡写真(SEM写真)である。 実施例7に係るハニカム構造体の電子顕微鏡写真(SEM写真)である。 実施例9に係るハニカム構造体の電子顕微鏡写真(SEM写真)である。 実施例10に係るハニカム構造体の電子顕微鏡写真(SEM写真)である。 実施例11aに係るハニカム構造体の電子顕微鏡写真(SEM写真)である。 実施例11bに係るハニカム構造体を用いた病理組織学的検索における病理組織の弱拡大像である。 実施例11bに係るハニカム構造体を用いた病理組織学的検索における、外周側部の貫通孔入口からハニカム構造体近心部にあるセルに侵入した組織の病理組織の強拡大像である。 実施例12に係るハニカム構造体顆粒の電子顕微鏡写真(SEM写真)である。 実施例12に係るハニカム構造体を用いた病理組織学的検索における病理組織の弱拡大像である。 実施例12に係るハニカム構造体の貫通孔方向に開口した外周側部の貫通孔入口からハニカム構造体近心部にあるセルに侵入した組織の病理組織の強拡大像である。
[本発明の医療用ハニカム構造体]
 本発明の医療用ハニカム構造体は、一方向に延びる複数の貫通孔(中空体)を備えた医療用ハニカム構造体であって、その外周側部に、前記貫通孔の側壁が欠損して形成された貫通孔溝と、該貫通孔溝に隣接する貫通孔入口とを備えていることを特徴とする。
 以下、各構成について説明する。
<本発明の医療用ハニカム構造体におけるハニカム構造>
 本発明の医療用ハニカム構造体は、ハニカム構造を有するものであるが、本発明におけるハニカム構造とは、長軸方向に貫通している貫通多角形中空柱あるいは貫通円形中空柱(貫通孔)を隙間なく並べたものをいう。この貫通孔および貫通孔の両端部によって形成される空間をセルという。
 なお、特許文献3~7に見られるような霜柱の原理を応用して製造した配向性の連通多孔体は、気孔を形成する霜柱が形成過程で連結したり、他の霜柱の成長によって成長が阻害されたりするため、上記本発明のハニカム構造を形成できない。したがって、特許文献3~7に見られるような霜柱の原理を応用して製造した配向性の連通多孔体は、本発明の医療用ハニカム構造体には含まれない。
 本発明のハニカム構造は、通常、押出成形などによって形成することができる。具体的に、例えば、水酸アパタイト粉末と有機バインダーを混合し、特許第3405536号公報や特開平10-59784号公報に開示されている方法等によって押出成形することにより、水酸アパタイトと有機バインダーを組成とする外周側壁を有するハニカム構造体(本発明のハニカム構造体の前駆体)を製造することができる。また、炭酸アパタイト粉末を、コラーゲンをバインダーとして押し出し成形し、乾燥することにより、炭酸アパタイトとコラーゲンを組成とする外周側壁を有するハニカム構造体(本発明のハニカム構造体の前駆体)を製造することができる。なお、この外周側壁を有するハニカム構造体の外周側壁を除去し、その外周側部に貫通孔溝及び貫通孔入口を形成することにより、本発明の医療用ハニカム構造体を得ることができる。
 ここで、図1を用いて本発明のハニカム構造体の前駆体である外周側壁を有するハニカム構造体の一例について説明する。図1に示すように、外周側壁を有するハニカム構造体14は、一方向に延びる複数の貫通孔11と、貫通孔を区分する隔壁12と、貫通孔からなるハニカム構造部を包囲する外周側壁13とを備えた円柱体である。以下、必要に応じて、貫通孔の貫通方向に垂直な方向をa方向、外周側壁の表面をA面、貫通孔の貫通方向をc方向、貫通孔端部により形成される面をC面という場合がある。例えば、図1に示すように、ハニカム構造体が円柱形の場合、A面は円柱形の側面であり、C面は円である。
 <ハニカム構造体外周側壁>
 図2に、本発明の医療用ハニカム構造体の模式図(一例)を示す。図1で示したハニカム構造体14の外周側壁を除去した状態である。かかる医療用ハニカム構造体10は、上記外周側壁13を有するハニカム構造体の外周側壁(外周側部)を研磨や切削などで除去し、その外周側部に貫通孔溝16及び貫通孔入口15を形成したものである。ここで、図3は、本発明の他の例に係る医療用ハニカム構造体の外周側壁の一部が除去された状況を示す模式図である。様々な長さの貫通孔溝16が形成され、その貫通孔溝16に隣接して貫通孔入口15が形成されている。なお、例えば、図4に示すように、角度をつけて切削等することにより外周側部に傾斜面が形成され、これと同時に貫通孔溝16及び貫通孔入口15が形成される。このような傾斜面を設けることにより、ハニカム構造体の最外層のみならず、最外層と共により内側の複数の層に対して貫通孔溝及び貫通孔入口を形成することができる。
 なお、本発明の医療用ハニカム構造体の外周側部に形成される傾斜面とは、貫通孔の貫通方向に対して傾斜した面をいい、段状に複数の傾斜面を形成してもよい。なお、傾斜角度としては、貫通孔溝及び貫通孔入口が形成可能な角度であり、そのような条件としては、例えば、傾斜面と貫通方向がなす角の正接が、外周側壁あるいは隔壁の厚さをハニカム構造体の貫通孔方向の長さで除した値より大きい値である。
 本発明において、外周側壁の厚さとは、図1で示したハニカム構造体14において、一方向に延びる複数の貫通孔11と、貫通孔を区分する隔壁12を除いた部分、すなわち、貫通孔からなるハニカム構造部を包囲する外周側壁13の厚さである。外周側壁の厚さが均一でない場合には最も厚い部分の厚さを外周側壁の厚さとする。
 本発明において、隔壁の厚さとは、図1で示したハニカム構造体14において、貫通孔を区分する隔壁12の厚さである。隔壁の厚さが均一でない場合には、隣接する貫通孔を区分する隔壁の厚さにおいて、最も小さい厚さとする。
 また、外周側部に傾斜面が設けられることが好ましいが、必ずしも設けられる必要はなく、例えば、外周側部の一部に、貫通孔の貫通方向に対して平行な第1の面と第2の面を形成する際に、ハニカム構造体中心部からの第1の面と第2の面の距離の差が隔壁の厚さより大きい値となるように第1の面と第2の面を形成することにより、貫通孔溝及び貫通孔入口を形成することができる。
 外周側壁の厚さとしては、押出成形等の成形が可能な範囲で薄い方が好ましく、300μm以下であることが好ましく、200μm以下であることがより好ましく、150μm以下であることがさらに好ましい。
 本発明の医療用ハニカム構造体においては、ハニカム構造体周囲の組織からハニカム構造体内部への組織侵入を容易にする観点から、外周側面における貫通孔溝及び貫通孔入口が形成される凹凸面(研磨や切削を行っている箇所の表面)の割合が、外周側面の面積の10%以上であることが好ましく、50%以上であることがより好ましく、80%以上であることがさらに好ましく、95%以上であることが特に好ましく、100%であることが最も好ましい。
 <貫通孔入口>
 押出成形された通常のハニカム構造体は、図1に示すように、その外周側部は、平滑な外周側壁13で覆われているが、本発明においては、外周側壁の少なくとも一部を除去して、内部の貫通孔(ハニカム構造部)を外周側面に露出させる。本発明においては、外周側面に露出した貫通孔の端部入口を貫通孔入口という。なお、貫通孔入口は、外周側面に露出した貫通孔の端部入口であり、外周側壁を除去しなくても当初よりC面に存在する貫通孔末端入口とは区分される。
 <貫通孔溝>
 上記貫通孔入口と同様に、外周側壁の少なくとも一部を除去することにより、貫通孔の側壁が欠損して形成された溝が形成される。本発明においては、この溝を貫通孔溝という。なお、貫通孔の側壁には、外周側壁、隔壁の両者が含まれる。本発明においては、貫通孔溝の幅方向の長さ(図5のa)に対する長手方向の長さ(図5のc)の比(溝アスペクト比c/a)はハニカム構造体の外周側部に配向した組織を形成するために重要であり、溝アスペクト比が1.5以上であることが好ましく、2.0以上であることがより好ましく、3.0以上であることがさらに好ましく、4.0以上であることが特に好ましい。なお、本発明の貫通孔溝には、貫通孔の全長にわたってその側部が欠損された溝(貫通孔全長にわたる溝)を含む。
 <本発明の医療用ハニカム構造体における貫通孔入口及び貫通孔溝の位置>
 本発明のハニカム構造体の場合、C面から組織がハニカム構造体内部に侵入するだけでなく、ハニカム構造体の外周側部に形成される貫通孔入口から、例えば、周囲組織がハニカム構造体内部に侵入して、嵌合力によって周囲組織とハニカム構造体が結合する。そのため、貫通孔入口は、ハニカム構造体の最外層にだけでなく、その内側の第2外層、第3外層、第4外層等、複数層に形成することがより好ましい。すなわち、図4に示すように、貫通孔入口がハニカム構造体の最外層だけでなく、さらに内部の層にも形成されている場合は、侵入される配向された組織によってハニカム構造体周囲の組織とハニカム構造体の最外層にある貫通孔内に侵入した配向組織だけでなく、ハニカム構造体の最外層の内部にある貫通孔内に侵入した配向組織によっても結合が確保されるため、組織の材料表面への結合性がさらに確保される。
 なお、図4は、本発明のハニカム構造体の外周側壁の複数の層が除去された状況を示す模式図であり、15-1は、最外層(中心貫通孔から最も遠心部)にある貫通孔入口、15-2は、第2外層(中心貫通孔から見て15-1の次の最遠心部)にある貫通孔入口、15-3は、第3外層(中心貫通孔から見て15-2の次の最遠心部)にある貫通孔入口である。また、16-1、16-2、16-3はそれぞれ15-1、15-2、15-3に連続する貫通孔溝である。このような構成は、外周側部に傾斜面を設けることにより容易に形成することができる。
 <貫通孔入口の存在比率>
 本発明の医療用ハニカム構造体においては、貫通孔入口の数は多いほどよい。好ましい貫通孔入口の数はハニカム構造体の大きさに依存することから、貫通孔入口の存在比率は、最外層の貫通孔の数に対する貫通孔入口の数の比として表す。本発明においては、かかる貫通孔入口存在比率としては、0.05以上であることが好ましく、0.1以上であることがより好ましく、0.4以上であることがさらに好ましく、0.5以上であることが特に好ましく、1.0以上であることが最も好ましい。
 貫通孔入口の数は、外周側部に複数の傾斜面あるいは複数の除去面を設けるなどの方法によって、一つの貫通孔に対して複数の貫通孔入口を設けることが可能であり、当該手法は極めて有用である。このような場合には、貫通孔入口存在比率が1.0以上であることが好ましく、1.3以上であることがより好ましく、1.6以上であることがさらに好ましく、2.0以上であることがさらに好ましい。
<貫通孔の側壁(隔壁及び外周側壁)に貫穿された貫穿孔>
 形成される組織に配向性を付与するためにはハニカム構造は理想的であるが、炭酸アパタイトなど、組織に置換される材料を用いる場合以外は、形成される組織間の結合性に乏しいという欠点がある。そのため、形成される組織に配向性を付与しつつ、形成される組織に三次元的な連続性を付与するために、外周側部の貫通孔溝及び貫通孔入口に加えて、貫通孔の側壁(隔壁及び外周側壁)に貫穿された貫穿孔が設けられていることが有効である場合があり、特に外周側壁に貫穿孔を設けることが好ましい。複数の側壁(隔壁及び外周側壁)に貫穿される貫穿孔の形成は、例えば、ドリル加工などで行うことができる。
<ハニカム構造におけるセル断面(貫通孔断面)の形状及びセル(貫通孔)の径>
 本発明の医療用ハニカム構造体のハニカム構造におけるセル断面は、多角形あるいは円である。
 本発明の医療用ハニカム構造体における貫通孔の径としては、5μm以上400μm以下であることが好ましく、10μm以上300μm以下であることがより好ましく、20μm以上250μm以下であることがさらに好ましい。なお、貫通孔の径とは、例えば、断面が円である場合には円の直径の長さであり、断面が正方形等の多角形である場合には対角線の長さである。
 また、この断面の径をセル(貫通孔)のアスペクト比の計算に用いる。貫通孔の径に対する長手方向の長さの比(セルアスペクト比)としては、細胞の接着や配向した組織形成の観点から、3以上であることが好ましく、5以上であることがより好ましく、10以上であることがさらに好ましい。
<貫通孔の隔壁の厚さ>
 本発明の医療用ハニカム構造体の貫通孔の隔壁の厚さは、ハニカム構造体の機械的強さや医療用ハニカム構造体の組織への置換速度などに影響を及ぼす因子である。
 すなわち、隔壁の厚さが大きいと、医療用ハニカム構造体の機械的強さが大きくなる一方で、骨に置換される炭酸アパタイトを組成とする医療用ハニカム構造体の場合などは医療用ハニカム構造体の組織への置換が遅くなる。
 また、例えば、炭酸カルシウムハニカム構造体を、リン酸塩水溶液に浸漬して、溶解析出型の組成変換反応によって医療用炭酸アパタイトハニカム構造体に変換する場合、溶解析出型の組成変換反応は前駆体の表面から進行するため、隔壁の厚さが大きいと、反応に時間がかかったり、水熱反応など高い温度で製造したりしないと炭酸アパタイトハニカム構造体が製造できないなどの問題がある。例えば、水熱条件など、高い温度で製造した炭酸アパタイトハニカム構造体は、100℃以下の温度で製造した炭酸アパタイトハニカム構造体と比較して結晶性が高く、骨伝導性などの組織反応が劣るため、隔壁の厚さは極めて重要である。
 これらのバランスが重要であるため、医療用ハニカム構造体の貫通孔の隔壁の厚さは、10μm以上300μm以下であることが好ましく、20μm以上200μm以下であることがより好ましく、30μm以上150μm以下であることがさらに好ましい。
 本発明の医療用ハニカム構造体の組成が炭酸アパタイトであり、より骨伝導性などの組織親和性に優れる医療用炭酸アパタイトハニカム構造体を製造する場合には、隔壁の厚さは10μm以上200μm以下であることが好ましく、20μm以上150μm以下であることがより好ましく、30μm以上100μm以下であることがさらに好ましい。
<隔壁の厚さに対する貫通孔径の比>
 本発明の医療用ハニカム構造体の隔壁の厚さだけでなく、セルの貫通孔の大きさも、ハニカム構造体の機械的強さや医療用ハニカム構造体の組織への置換速度などに影響を及ぼす因子である。
 隔壁の厚さに対する貫通孔径(貫通孔断面における径)の比が大きくなると、医療用ハニカム構造体の気孔率は大きくなり、細胞や組織は内部に侵入しやすくなる一方で、医療用ハニカム構造体の機械的強さは小さくなる。これらのバランスを考慮し、ハニカム構造体の隔壁の厚さに対する貫通孔径の比としては、0.2以上20以下であることが好ましく、0.25以上10以下であることがより好ましく、0.5以上5以下であることがさらに好ましい。
<ハニカム構造体の大きさ(体積)>
 本発明の医療用ハニカム構造体(ブロック)の外形の大きさとしては、10-8以上10-3以下であることが好ましく、7×10-5以上4×10-4以下であることがさらに好ましい。
 本発明の医療用ハニカム構造体の外形の大きさは、ハニカム構造体の長さを測定して計算して求める。例えば、ハニカム構造体が円柱状である場合、円であるC面の直径の長さおよびC面の貫通孔方向の長さを測定し、両者から計算する。なお、この際にハニカム構造体の重さを測定し、重さを体積で除することによってハニカム構造体の見掛け密度を求めることができる。これによって、ハニカム構造体破砕物(顆粒)の重量から体積を計算することができる。
<ハニカム構造体破砕物(顆粒)>
 本発明の医療用ハニカム構造体の破砕物は、上記ブロック状の医療用ハニカム構造体を破砕することによって得られる。かかる破砕物の大きさ(外形)としては、10-12以上10-8未満であることが好ましく、4×10-12以上10-8未満であることがより好ましく、6×10-12以上10-8未満であることがさらに好ましい。
 上記のように、ハニカム構造体破砕物(顆粒)の大きさ(外形)は、ハニカム構造体破砕物(顆粒)の重量をハニカム構造体破砕物(顆粒)の製造に用いた破砕していないハニカム構造体の見かけ密度で除することによって求めることができる。
<組成>
 医療用ハニカム構造体の組成(材料)としては、特に限定されるものではないが、細胞親和性や組織親和性に優れるカルシウム化合物を少なくとも含むことが好ましい。医療用ハニカム構造体の組成として、カルシウム含有化合物が好ましい機序は十分に解明されていないが、細胞接着にはカルシウムが重要な役割を示していることからカルシウム含有化合物を組成とすることが好ましいと考えられる。
 本発明においては、カルシウム化合物の中でも、リン酸カルシウム、炭酸カルシウム、硫酸カルシウム及びカルシウム含有ガラスからなる群より選ばれる少なくとも1種が好ましい。リン酸カルシウムは、カルシウム以外にリン酸成分が含有されており、リン酸成分も細胞接着等に重要な役割を担っていることから好ましく、炭酸カルシウムおよび硫酸カルシウムは、細胞へのカルシウム供給に適切な溶解度を示すため好ましい。
 本発明におけるリン酸カルシウムとは、リン酸とカルシウムの塩であり、オルソリン酸カルシウム、メタリン酸カルシウム、縮合リン酸カルシウムなどを例示することができる。比較的優れた骨伝導性と組織親和性を示すことからリン酸カルシウムの中でもオルソリン酸カルシウムが好ましい。本発明におけるオルソリン酸カルシウムとは、オルソリン酸とカルシウムの塩をいい、例えば、リン酸四カルシウム、水酸アパタイト及び炭酸アパタイトを含めたアパタイト、α型リン酸三カルシウム、β型リン酸三カルシウム、リン酸八カルシウムなどを例示することができる。
 また、リン酸カルシウムの中でも、炭酸アパタイト等のアパタイト、β型リン酸三カルシウム(β-TCP)及びα型リン酸三カルシウム、リン酸八カルシウムからなる群より選ばれる少なくとも1種がさらに好ましい。
 本発明における炭酸アパタイトとは、アパタイトのリン酸基又は水酸基の一部又は全部が炭酸基に置換されているアパタイトである。水酸基が炭酸基に置換されているアパタイトをAタイプ炭酸アパタイト、リン酸基が炭酸基に置換されているアパタイトをBタイプ炭酸アパタイト、両者が炭酸基に置換されているアパタイトをABタイプ炭酸アパタイトという。なお、リン酸基が炭酸基に置換されるに伴い、NaやKなどが結晶構造に含有される場合が多く、炭酸アパタイトの一部が他の元素又は空隙で置換された化合物も本発明の炭酸アパタイトに含まれる。
 この炭酸アパタイトからなるハニカム構造体は、比較的大きいサイズのものも製造可能であるという利点がある。
 例えば、特許第4854300号公報に開示された炭酸アパタイトを主成分とする医療用骨補填材の製造方法では、前駆体である炭酸カルシウムブロックリン酸塩水溶液に浸漬して、炭酸アパタイトブロックを製造する。この反応は、溶解析出反応であり、前駆体である炭酸カルシウムが水溶液に溶解して、Ca2+とCO 2-を水溶液中に遊離する。水溶液中にリン酸塩が存在する場合、Ca2+、CO 2-とPO 3-は三者が共存する水溶液は、炭酸アパタイトに対して過飽和となり前駆体の表面に析出する。このように溶解析出反応によって、前駆体である炭酸カルシウムが基本的組成を維持したまま、組成は炭酸アパタイトに変換される。溶解析出反応は、前駆体の表面から内部に進行するため、前駆体が緻密体である場合、反応時間は前駆体における表面からの深さが大きくなるにつれ、著しく長くなる。
 特許第4854300号公報に開示されているフォームなどの多孔体は全体の見かけの大きさが大きい場合においても、内部にリン酸塩水溶液が侵入し、材料の内部表面から溶解析出反応が進行するため、比較的短時間で溶解析出反応による組成変換が終了する。
 この反応メカニズムからわかるように、析出反応においては材料表面においてCa2+、CO 2-とPO 3-の三者が共存する必要がある。炭酸カルシウムブロックが緻密体である場合、材料表面から溶出したCa2+とCO 2-は拡散によって材料表面から消失するため、析出反応が比較的起こりにくい。一方、フォームなどは多孔体であるため、フォームの骨梁表面から溶出したCa2+とCO 2-の拡散による材料表面からの消失は連通気孔のないブロック状の場合と比較して少なくなる。
 多孔体がハニカム構造の場合、ハニカムは一軸方向に貫通孔がある多孔体であるため、ハニカム隔壁から溶出したCa2+とCO 2-の拡散による材料表面からの消失は極めて限定的である。そのため、ハニカム構造の前駆体を用いれば、大きいサイズの炭酸アパタイトブロックの調製が可能となる。
 本発明におけるアパタイトとは、A10(BOを基本構造として有する化合物であり、Aとしては、Ca2+、Cd2+、Sr2+、Ba2+、Pb2+、Zn2+、Mg2+、Mn2+、Fe2+、Ra2+、H、H、Na、K、AL3+、Y3+、Ce3+、Nd3+、La3+、C4+、空隙などが挙げられ、BOとしては、PO 3-、CO 2-、CrO 3-、AsO 3-、VO 3-、UO 3-、SO 2-、SiO 4-、GeO 4-、空隙などが挙げられ、Cとしては、OH、OD、F、Br、BO2-、CO 2-、O2-、空隙などが挙げられる。
 なお、A10(BOは、アパタイトの基本構造式であり、Ca10(PO(OH)はリン酸カルシウム系アパタイトの基本構造式であるが、本発明のアパタイトは当該基本構造式に限定されるものではない。例えば、リン酸カルシウム系アパタイトの場合、Ca欠損アパタイトCa10-x(HPO(PO6-x(OH)2-xや、炭酸アパタイト、置換アパタイトなど知られており、これらすべてが本発明のアパタイトに含まれる。
 本発明におけるリン酸三カルシウムとは、Ca(POを代表的組成とするリン酸カルシウム化合物であり、カルシウムの一部がナトリウムなど他の金属イオンで置換されたものを含む。リン酸三カルシウムには、高温安定相のα’型リン酸三カルシウム、α型リン酸三カルシウムと、低温安定相のβ型リン酸三カルシウムがあるが、本発明ではα’型リン酸三カルシウム、α型リン酸三カルシウムをα型リン酸三カルシウムという。
 α型リン酸三カルシウムとβ型リン酸三カルシウムは、組成が同じであるが溶解度が大きく異なり、生体内の挙動が全く異なる。β型リン酸三カルシウムは、溶解度が小さく、骨置換材として臨床応用されていることから、一般的にはβ型リン酸三カルシウムの方がα型リン酸三カルシウムより好ましい。一方、α型リン酸三カルシウムは、溶解度が大きく生体活性セメントの成分などとして用いられている。しかしながら、骨欠損が大きくない場合や多孔体とした場合には、β型リン酸三カルシウムよりα型リン酸三カルシウムをコア部として用いた方が好ましい場合がある。
 本発明におけるリン酸八カルシウムとは、リン酸第八カルシウム、リン酸オクタカルシウムとも呼ばれ、Ca(PO・5HOを代表的組成とするリン酸カルシウムである。
 本発明における炭酸カルシウムとは、CaCOを基本組成とするカルシウム成分の一つである。また、Caの一部が、Mgなどの他の元素に置換された化合物も本発明の炭酸カルシウムに含まれる。
 本発明でいう硫酸カルシウムとは、CaSOを基本組成とするカルシウム成分の一つであり、半水和物及び二水和物も知られており、これらの水和物も本発明の硫酸カルシウムに含まれる。
 本発明におけるカルシウム含有ガラスは、カルシウム成分の一つで、カルシウムを含むガラス又はガラスセラミックスである。カルシウムを含むガラス成分を溶融、急冷し公知の方法で製造することができる。カルシウム含有ガラスを粉砕、焼成し、結晶化させたカルシウム含有結晶化ガラスも、本発明のカルシウム含有ガラスに含まれる。例えば、Bioglass(登録商標)とよばれるNaO-CaO-SiO-P系ガラス(代表的組成はNaOが24.5質量%、CaOが24.5質量%、SiOが45質量%、Pが6質量%)、Cerabone(登録商標)A-Wとよばれる結晶化ガラス(代表的組成はMgOが4.6質量%、CaOが44.7質量%、SiOが34.0質量%、Pが16.2質量%、CaFが0.5質量%)などを挙げることができる。これらのカルシウム含有ガラスは、公知の方法で製造することができる。
 本発明における高分子材料とは、分子量が10000を超える有機材料をいう。具体的に、高分子材料としては、コラーゲン、ゼラチン、キチン、キトサンなどの生体高分子、ポリ乳酸、ポリグリコール酸、乳酸-グリコール酸共重合体、ポリカプロラクトンなどの吸収性高分子、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトンケトン(PEEKK)やポリエーテルケトンエステル、ポリイミド、ポリスルホン、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレートなどを例示することができる。高分子材料は単独で用いてもよいし、2種以上組み合わせて用いてもよい。特に、上記カルシウム化合物などと高分子材料とを混合することによって、柔軟性を持つ医療用ハニカム構造体を製造することができる。すなわち、医療用ハニカム構造体に柔軟性を付与する場合には、後述の脱脂処理のような高熱処理を行わず、組成中に高分子材料が存在するようにする。
<ハニカム構造体の製造法>
 本発明の医療用ハニカム構造体の製造方法は、材料をハニカム構造形成用型を通して押し出し、外周側壁を有するハニカム構造体を作製する外壁付構造体作製工程と、該外周側壁を有するハニカム構造体の外周側壁を除去し、外周側部に、貫通孔溝及び貫通孔入口を形成する外周側部加工工程とを有することを特徴とし、好ましくは脱脂工程を有する。さらに、焼成工程等の他の工程を有していてもよい。なお、脱脂工程と焼成工程は、同時に行ってもよい。
 具体的に、水酸アパタイトからなる本発明の医療用ハニカム構造体を製造するには、例えば、まず、水酸アパタイト粉末と有機バインダーを混合し、特許第3405536号公報や特開平10-59784号公報等に開示されている方法によって押出成形して、水酸アパタイトと有機バインダーを組成とする図1に示すような外周側壁を有するハニカム構造体を作製する(外壁付構造体作製工程)。次に、外周側壁を有するハニカム構造体の外周側壁の少なくとも一部を研磨や切削などで除去し、外周側部に、貫通孔溝及び貫通孔入口が形成されるよう加工する(外周側部加工工程)。外周側壁の除去は、脱脂工程の後で行ってもよいが、一般的に脱脂工程の前に行う方が、加工性が良好である。ここで、脱脂とは、有機バインダーを除去することをいう。例えば、水酸アパタイト粉末と有機バインダーから作製したハニカム構造を有する構造体から有機バインダーを除去することをいう。脱脂には、従来から行われている一般的な方法を用いることができ、例えば、有機バインダーを加熱焼却して脱脂することができる。脱脂工程の後に、必要に応じて焼成を行ってもよい。これらの工程によって、水酸アパタイトからなる本発明の医療用ハニカム構造体が製造できる。
 有機バインダーは、セラミックス粉末粒子に押出に必要な粘性を付与するために用いられる。有機バインダーは、ワックス系バインダー、アクリル系バインダーなど公知のものを制限なく用いることができる。
 なお、セラミックスのみを組成とするハニカム構造体を製造する場合には脱脂が必要であるが、柔軟性を優先してセラミックスと高分子からなるハニカム構造体を製造する場合には脱脂工程は必要ない。
 水酸アパタイトハニカム構造体は、高温でも安定であり、800℃から1300℃の高温焼成によって分解されることなく焼結されるため、ハニカム構造体の製造が容易である。
 一方、細胞接着性や組織接着性に優れる炭酸アパタイトハニカム構造体は、高温焼成によって熱分解を受けたり、細胞接着性や組織接着性が低下したりするため、組成の異なるハニカム構造体(前駆体)を製造して、当該ハニカム構造体のマクロ形態を保ったまま、溶解析出型の組成変換反応によって、炭酸アパタイトに組成変換する方法が有効な製造法として例示される。
 炭酸アパタイトハニカム構造体の組成の異なる前駆体としては、炭酸カルシウムハニカム構造体、硫酸カルシウムハニカム構造体、α型リン酸三カルシウムハニカム構造体などが溶解度の観点から有効であるが、これらの中でも、炭酸カルシウムハニカムはリン酸塩水溶液に浸漬した際に、炭酸カルシウムに比較した安定相が炭酸アパタイトしか存在しないため、特に前駆体として有用である。
 しかしながら、炭酸カルシウムは焼結性に乏しく、高温においては熱分解されるため、水酸化カルシウムを用いた方法が有用である。
 すなわち、水酸化カルシウムと有機バインダーとを混合した混合物を、ハニカム構造形成用型を通して押し出し、外周側壁を有するハニカム構造体を作製する外壁付構造体作製工程と、ハニカム構造体の脱脂を行う脱脂工程と、前記脱脂工程と同時又はその後にハニカム構造体の炭酸化処理を行う炭酸化工程と、前記炭酸化工程を経たハニカム構造体にリン酸塩水溶液を付与するアパタイト化工程とを有し、前記外壁付構造体作製工程後のいずれかの段階において、外周側壁を有するハニカム構造体の外周側壁の少なくとも一部を除去し、外周側部に、貫通孔溝及び貫通孔入口を形成する外周側部加工工程を有する方法が好ましい。外周側部加工工程は、脱脂工程の前後、炭酸化工程の前後、アパタイト化工程の前後のいずれの段階に行ってもよい。
 ハニカム構造体を脱脂中に炭酸化するには、当該ハニカム構造体を加熱する際に二酸化炭素と酸素が共存する条件で脱脂することが好ましい。酸素は、バインダーを脱脂、すなわち、焼却するために必須である。理論的には酸素が存在すれば脱脂されるが、酸素分圧が少ないと脱脂されにくいため、当該ハニカム構造体を脱脂する環境中における酸素の体積パーセントは、10%以上であることが好ましく、20%以上であることがより好ましく、30%以上であることがさらに好ましい。
 一方、水酸化カルシウムを炭酸化するには二酸化炭素が必要である。有機バインダー(高分子材料)には炭素が含まれており、有機バインダーの脱脂によって二酸化炭素が発生するため、必ずしも二酸化炭素を供給する必要はない。しかしながら、脱脂された後には二酸化炭素は存在せず、そのような環境においては炭酸カルシウムが熱分解を受けやすい。そのため、当該ハニカム構造体を脱脂する環境中における二酸化炭素の体積パーセントは、10%以上であることが好ましく、20%以上であることがより好ましく、30%以上であることがさらに好ましい。
 脱脂温度は、当該ハニカムを脱脂する環境中における酸素および二酸化炭素の体積パーセントや製造する炭酸カルシウムハニカム構造体にどの程度の白色度を求めるかなどによって異なるが、400℃以上900℃以下であることが好ましく、450℃以上800℃以下であることが好ましく、500℃以上700℃以下であることがさらに好ましい。
 脱脂と同時に炭酸化処理し、炭酸カルシウムハニカムを製造する方が、工程が少なく経済的であるが、脱脂後に炭酸化することも可能である。酸素と二酸化炭素の同時供給が困難である場合には酸素のみで、あるいは酸素の供給も困難である場合には大気中で高温脱脂する。この手法では、炭酸カルシウムあるいは水酸化カルシウム、あるいは、その両方が熱分解され、酸化カルシウムが形成される。ハニカム構造体に酸化カルシウムが存在すると消化の原因となり、水に浸漬すると形態を保てず崩れたり、機械的強さが弱くなったりする。そのため、酸化カルシウムが形成された場合には、炭酸化処理を改めて行う。炭酸化処理は、ハニカム構造体を二酸化炭素に接触させて行う。乾式の場合、炭酸カルシウムが熱分解する920℃以下の温度でハニカム構造体を二酸化炭素に接触させる。湿式の場合、湿度50%以上でハニカム構造体を二酸化炭素に接触させる。
 次に、製造された炭酸カルシウムハニカムをリン酸塩水溶液に浸漬して溶解析出型の組成変換反応によってハニカム構造を維持したまま、組成を炭酸アパタイトに変換して炭酸アパタイトハニカム構造体を製造する。なお、浸漬処理が好ましいが、連続的に噴霧する処理等であってもよい。
 硫酸カルシウムハニカム構造体を前駆体として用いて、炭酸アパタイトハニカム構造体を製造する製造方法も有用である。硫酸カルシウムは熱的に安定であるため、水酸アパタイトハニカム構造体の製造法と同様な手法で製造できる。
 すなわち、硫酸カルシウムと有機バインダーとを混合した混合物を、ハニカム構造形成用型を通して押し出し、外周側壁を有するハニカム構造体を作製する外壁付構造体作製工程と、ハニカム構造体の脱脂を行う脱脂工程と、前記脱脂工程を経たハニカム構造体に、炭酸塩及びリン酸塩を含む水溶液を付与するか、炭酸塩を含む水溶液及びリン酸塩を含む水溶液を順次付与するアパタイト化工程とを有し、前記外壁付構造体作製工程後のいずれかの段階において、外周側壁を有するハニカム構造体の外周側壁の少なくとも一部を除去し、外周側部に、貫通孔溝及び貫通孔入口を形成する外周側部加工工程を有する方法を挙げることができる。脱脂工程は、外周側部加工工程の前又は後に行うことができる。外周側部加工工程は、脱脂工程の前後、アパタイト化工程の前後のいずれの段階に行ってもよい。
 具体的に、硫酸カルシウム粉末と有機バインダーを混合し、特許第3405536号公報や特開平10-59784号公報に開示されている方法等によって押出成形して、硫酸カルシウムと有機バインダーを組成とする図1に示すような外周側壁を有するハニカム構造体を作製する(外壁付構造体作製工程)。
 次に、公知の脱脂工程によって、バインダーを脱脂、すなわち、焼却除去する。
 この硫酸カルシウムハニカム構造体を、例えば、リン酸塩および炭酸塩の両者を含有する水溶液に浸漬して、溶解析出型の組成変換反応によってハニカム構造を維持したまま、組成を炭酸アパタイトに変換して炭酸アパタイトハニカム構造体を製造する。この製造方法は簡便であるが、炭酸アパタイトハニカム構造体の組成として硫酸基が検出される場合がある。これは、ハニカム構造体がセル構造を示すため、セル構造内部における溶液の拡散が限定的となるためであると推察される。
 そのため、硫酸カルシウムハニカム構造体を、炭酸塩を含む溶液に浸漬し、溶解析出型の組成変換反応によってハニカム構造を維持したまま、組成を炭酸カルシウムに変換して炭酸カルシウムハニカム構造体を製造し、その後、炭酸カルシウムハニカム構造体を、リン酸塩を含む溶液に浸漬し、溶解析出型の組成変換反応によってハニカム構造を維持したまま、組成を炭酸アパタイトに変換して炭酸アパタイトハニカム構造体を製造する製造方法がより好ましい場合がある。
<ハニカム構造体破砕物の製造法>
 本発明の医療用ハニカム構造体破砕物の製造方法は、材料をハニカム構造形成用型を通して押し出し、外周側壁を有するハニカム構造体を作製する外壁付構造体作製工程と、該外周側壁を有するハニカム構造体の外周側壁の少なくとも一部を除去し、外周側部に、貫通孔溝及び貫通孔入口を形成する外周側部加工工程と、前記貫通孔溝及び貫通孔入口を形成したハニカム構造体を、10-12以上10-8未満の大きさに破砕する破砕工程とを有することを特徴とし、脱脂工程、焼成工程等を備えていてもよい。
 破砕は、押出工程の後、脱脂行程の後、焼成工程の後で行うことができるが、セラミックスハニカム構造体の場合、脱脂行程の後、および焼成工程の後に製造されるハニカム構造体は脆性であり、破砕によって所望の顆粒を製造することが困難であったり、収率が低かったりする。そのため、脱脂行程の前に破砕を行うことが好ましい。破砕は、カッティングミルなど公知の破砕機や粉砕機を用いて行うことができる。破砕後、必要に応じて、ふるいなどを用いて分級を行い、所望のサイズのハニカム構造体破砕物を製造する。
[本発明の第2の医療用ハニカム構造体]
 本発明の第2の医療用ハニカム構造体は、一方向に延びる複数の貫通孔を備えた医療用ハニカム構造体であって、炭酸アパタイトを含有する組成物から構成されることを特徴とする。すなわち、上記説明した医療用ハニカム構造体の外周側壁を除去したもの(例えば、図2で示す構造体)と除去しないもの(例えば、図1で示す構造体)の両者を含む。各構成の説明は、上記説明した医療用ハニカム構造体のものがそのまま適用できる。
 また、本発明の第2の医療用ハニカム構造体の破砕物は、上記第2の医療用ハニカム構造体を破砕して得られる。各構成の説明は、上記説明した医療用ハニカム構造体破砕物のものがそのまま適用できる。
 上記のような本発明の第2の医療用ハニカム構造体の製造方法としては、上記説明した炭酸アパタイトを組成に含む本発明の医療用ハニカム構造体の製法そのもの(外周側壁除去)や、外周側部加工工程を行わない方法(外周側壁あり)を挙げることができる。
 具体的に、第2の医療用ハニカム構造体の製造方法としては、水酸化カルシウムと有機バインダーとを混合した混合物を、ハニカム構造形成用型を通して押し出し、外周側壁を有するハニカム構造体を作製する外壁付構造体作製工程と、ハニカム構造体の脱脂を行う脱脂工程と、前記脱脂工程と同時又はその後にハニカム構造体の炭酸化処理を行う炭酸化工程と、前記炭酸化工程を経たハニカム構造体にリン酸塩水溶液を付与するアパタイト化工程とを有する方法や、硫酸カルシウムと有機バインダーとを混合した混合物を、ハニカム構造形成用型を通して押し出し、外周側壁を有するハニカム構造体を作製する外壁付構造体作製工程と、ハニカム構造体の脱脂を行う脱脂工程と、前記脱脂工程を経たハニカム構造体に、炭酸塩及びリン酸塩を含む水溶液を付与するか、炭酸塩を含む水溶液及びリン酸塩を含む水溶液を順次付与するアパタイト化工程とを有する方法を挙げることができる。
[本発明の医療用ハニカム構造体の作用効果]
 本発明の医療用ハニカム構造体は、(1)細胞あるいは組織の材料表面への接着性あるいは結合性に優れ、(2)配向した組織が再生・再建され、(3)機械的強さに優れ、(4)組織置換材料として用いられる場合においては、迅速に所望の組織に置換され、(5)安価に製造できる、という医療用材料に望まれる要求を満足するものである。このような要求を満足する本発明の医療用ハニカム構造体の機序は次のように考えられる。
<(1)細胞あるいは組織の材料表面への接着性あるいは結合性に優れること>
 医療用材料を生体内に埋植した場合に、周囲組織と結合することが求められる場合が多い。ハニカム構造体の貫通孔端部から構成される面(図1のC面)は開口構造であるので問題がないが、一般的に外周側面(図1のA面)には外周側壁があり、周囲組織と結合しにくい。本発明のハニカム構造体においては、A面には、貫通孔溝、及び貫通孔方向に開口した貫通孔入口を形成している。そのため、当該部位から、例えば骨組織がハニカム構造体内部に侵入し、周囲骨とハニカム構造体は強く結合される。
 ハニカム構造体の組成に炭酸アパタイトを含有している場合、炭酸アパタイトは破骨細胞などによって吸収されるため、当初の炭酸アパタイトハニカム構造体に外周側壁がある場合でも、破骨細胞がA面を吸収し、結果として、貫通孔方向に開口した貫通孔入口が形成され、当該部位から、例えば骨組織がハニカム構造体内部に侵入し、周囲骨とハニカム構造体は強く結合される。すなわち、炭酸アパタイトを含有している場合、外周側部に貫通孔溝及び貫通孔入口を有している必要はない。
 なお、外周側部に貫通孔溝及び貫通孔入口を有し、かつ組成に炭酸アパタイトを含む医療用ハニカム構造体は、周囲骨などとの結合性に極めて優れる。
<(2)配向した組織が再生・再建されること>
 配向した組織の形成については、再生・再建組織の機能性の観点から重要である。非特許文献1で報告されているように、骨などの組織は部位に応じて様々な配向している。しかしながら、非特許文献2や3などで指摘されているように、再生骨は配向性に乏しく機能性に乏しいため、配向化誘導が必要であることが指摘されている。
 本発明のハニカム構造体内部は配向連通多孔体であり、ハニカム構造体の貫通孔表面に沿って組織再生・再建がなされるため、理想的に組織配向化誘導を行うことができる。また、本発明のハニカム構造体の外周側部にも、貫通孔溝や、貫通孔方向に開口した貫通孔入口が存在するため、これに沿って組織再生・再建がなされるため、理想的に組織配向化誘導を行うことができる。
 ハニカム構造体の組成に炭酸アパタイトを含有している場合、炭酸アパタイトは破骨細胞などによって吸収されるため、当初の炭酸アパタイトハニカム構造体に外周側壁がある場合でも、破骨細胞がA面を吸収し、結果として、貫通孔方向に開口した貫通孔入口が形成され、理想的に組織配向化誘導を行うことができる。すなわち、炭酸アパタイトを含有している場合、外周側部に貫通孔溝及び貫通孔入口を有している必要はない。
 なお、外周側部に貫通孔溝及び貫通孔入口を有し、かつ組成に炭酸アパタイトを含む医療用ハニカム構造体は、外周側面に配向性組織を形成させる極めて優れるハニカム構造体である。
<(3)機械的強さに優れること>
 医療用材料が埋植された部位で破壊されずに機能することは必須条件である。本発明の医療用ハニカム構造体は、ハニカム構造を有しており、他の多孔性材料と比較して機械的強さに優れるため、この要求は満たされる。ハニカム構造体の機械的強さは、セル方向およびセルに垂直な方向に対する圧縮強さなどを測定して評価することが一般的であるが、ハニカム構造体であることによって気孔率が同じである他の多孔体以上の機械的強さを示す。
<(4)組織置換材料として用いられる場合においては、迅速に所望の組織に置換されること>
 医療用材料の組成によっては、材料が組織に置換される。この観点から、炭酸アパタイト、リン酸三カルシウム、硫酸カルシウム、炭酸カルシウムは優れた材料であり、その中でも炭酸アパタイト、リン酸三カルシウムはより優れた材料であり、炭酸アパタイトはさらに優れた材料である。材料は、細胞によって組織に置換される。例えば、炭酸アパタイトの場合、破骨細胞が材料を吸収し、骨芽細胞によって骨が形成されるという骨リモデリングと同様な機序で材料が組織に置換される。このため、組成要因だけでなく、細胞が材料内部に侵入できることや、比表面積が大きいことが必要とされる。この点、本発明の医療用ハニカム構造体は、上記のような理想的な材料を用いることができ、また、連通性を示すセルに細胞が内部にまで侵入でき、かつ、比表面積は極めて大きい。
<(5)安価に製造できること>
 本発明のハニカム構造体は、ハニカム形成用の型を通し、材料を押出成形し、外周側壁を除去するだけ、あるいは、必要に応じて、脱脂したり、水溶液に浸漬するなどの極めて簡便な製造方法で製造できる。このことから本発明の医療用ハニカム構造体は安価に製造できる。
 以下、本発明を実施例に基づきさらに詳細に説明するが、本発明の範囲は実施例に限定されるものではない。
(実施例1)炭酸カルシウムからなるハニカム構造体(ブロック)
<外壁付構造体作製工程>
 株式会社ナカライテスク製水酸化カルシウム粉末をジェットミルで平均粒径1μmに粉砕し、水酸化カルシウムと株式会社長峰製作所製ワックス系バインダーを重量比で75:25に混合した。その後、株式会社東洋精機製作所製ラボプラストミルにハニカム成形用金型を取り付け、押出成形を行った。押出成形の結果、水酸化カルシウムとバインダーの混合物を組成とし、外周側壁を有する円柱状のバインダー含有水酸化カルシウムハニカム構造体を中間体として作製した。作製された外周側壁を有する円柱状のバインダー含有水酸化カルシウムハニカム構造体の写真を図6に示す。
<外周側部加工工程>
 次に、円柱状のバインダー含有水酸化カルシウムハニカム構造体の外周側壁を電動カンナで除去し、外周側部に貫通孔入口、溝アスペクト比が1.5以上である貫通孔溝を貫通孔入口に連続して形成した。その写真を図7に示す。
<脱脂工程>
 次に、当該バインダー含有水酸化カルシウムハニカム構造体を、二酸化炭素を50%含有する酸素の気流下で、700℃で脱脂した。脱脂後のハニカム構造体の組成を、BRUKER製D8 ADVANCE型粉末X線回折装置を用い、出力は40kV、40mA、X線源はCuKα(λ=0.15418nm)の条件で分析したところ、炭酸カルシウムであることがわかった。
 脱脂工程の後のハニカム構造体(実施例1aに係るハニカム構造体)の電子顕微鏡写真(SEM写真)を図8に示す。脱脂後もセルが保持されており、外周側壁のない円柱状炭酸カルシウムハニカム構造体ブロックが製造できていること、外周側部に貫通孔入口が形成されたことを確認した。また、貫通孔溝があり、溝アスペクト比が30以上のものが確認された。さらに、一部には、貫通孔入口が最外層だけでなく、第2外層にもあることを確認した。外周側壁除去率(外周側部における貫通孔溝及び貫通孔入口が形成された凹凸面の割合)は100%であった。
 貫通孔径は210μmであり、隔壁の厚さは150μm、貫通孔の長さは30mmであった。また、製造したハニカム構造体の体積は、2×10-6であった。隔壁の厚さに対する貫通孔径の比は約1.4であり、貫通孔のアスペクト比は約140であった。
 次に、炭酸カルシウムハニカム構造体ブロックの組織親和性、再生・再建組織の配向性、骨への置換性を解析するために、日本白色兎の頭蓋骨に形成した骨欠損部に、上記実施例1aと同様に製造した実施例1bに係る炭酸カルシウムハニカム構造体(直径7.2mm、高さ4.5mm)を埋植し、埋植1ヶ月後に周囲組織と一塊に摘出、病理組織学的に検索した。
 図9にヘマトキシリン・エオジン染色した病理組織の弱拡大像を示す。図9(a)はハニカム構造体の貫通孔(セル)に対して鉛直方向で切断した像であり、図9(b)はハニカム構造体の貫通孔(セル)に対して平行に切断した像である。
 病理組織学的検索の結果から、炭酸カルシウムハニカム構造体ブロックが外周側面も含めて周囲組織と極めて良好に結合していること、炭酸カルシウムハニカム構造体ブロック内部に骨組織が完全に侵入していることがわかった。また、再生・再建された骨組織が炭酸カルシウムハニカム構造体顆粒のセルの長軸方向に配向していることがわかった。さらに、炭酸カルシウムハニカム構造体顆粒の表面に骨芽細胞および破骨細胞が認められた。これらのことから、炭酸カルシウムハニカム構造体ブロックは骨組織に置換されることがわかった。
(実施例2)炭酸カルシウムからなるハニカム構造体破砕物(顆粒)
 実施例1で製造した円柱状のバインダー含有水酸化カルシウムハニカム構造体を、2.0mmのふるいを取り付けたカッティングミル(フリッツジャパン、P-15)で破砕した。その後、実施例1と同じ条件で脱脂工程を行った。
 脱脂工程後のハニカム構造体顆粒の組成を粉末X線回折装置で分析したところ、炭酸カルシウムであった。製造されたハニカム構造体顆粒の電子顕微鏡写真を図10に示す。脱脂後もセルが保持されていることが確認された。
 また、貫通孔径の一例は210μmであり、隔壁の厚さは150μm、貫通孔の長さの一例は2mmであった。また、製造したハニカム構造体顆粒の体積は、9×10-10であった。隔壁の厚さに対する貫通孔径の比は約1.4であった。貫通孔のアスペクト比の一例は約10であった。
(実施例3)セルサイズの異なる炭酸カルシウムからなるハニカム構造体(ブロック)
 実施例1とは異なるハニカム成形用金型を用いた以外は、実施例1と同じ製造方法で外周側壁のない円柱状の炭酸カルシウムハニカム構造体を製造した。
 脱脂工程後のハニカム構造体の組成が炭酸カルシウムであることは粉末X線回折装置で確認した。脱脂工程の後の電子顕微鏡写真を図11に示す。脱脂後もセルが保持されており、外周側壁のない円柱状炭酸カルシウムハニカム構造体ブロックが製造できていること、外周側部に貫通孔入口が形成されたことを確認した。また、貫通孔溝があり、溝アスペクト比が30以上のものが確認された。さらに、一部には、貫通孔入口が最外層だけでなく、第2外層にもあることを確認した。外周側壁除去率(外周側部における貫通孔溝及び貫通孔入口が形成された凹凸面の割合)は100%であった。
 貫通孔径は170μmであり、隔壁の厚さは70μm、貫通孔の長さは30mmであった。また、製造したハニカム構造体の体積は1.5×10-6であった。隔壁の厚さに対する貫通孔径の比は約2.4であり、貫通孔のアスペクト比は約180であった。
(実施例4)水酸アパタイトからなるハニカム構造体(ブロック)
 水酸化カルシウム粉末に代えて、太平化学製水酸アパタイトを用い、実施例1と同様に、外壁付構造体作製工程、及び外周側部加工工程を行った。
<脱脂工程>
 次に、当該バインダー含有水酸アパタイトハニカム構造体を、大気中にて脱脂し、900℃で焼成した。脱脂後のハニカム構造体の組成を、BRUKER製D8 ADVANCE型粉末X線回折装置を用い、出力は40kV、40mA、特性X線源としてCuのKα線(λ=0.15418nm)の条件で分析したところ、水酸アパタイトであることがわかった。
 脱脂工程の後のハニカム構造体の電子顕微鏡写真(SEM写真)を図12に示す。脱脂後もセルが保持されており、外周側壁のない円柱状水酸アパタイトハニカム構造体ブロックが製造できていること、外周側部に貫通孔入口が形成されたことを確認した。また、貫通孔溝があり、溝アスペクト比が30以上のものが確認された。さらに、一部には、貫通孔入口が最外層だけでなく、第2外層にもあることを確認した。外周側壁除去率(外周側部における貫通孔溝及び貫通孔入口が形成された凹凸面の割合)は100%であった。
 貫通孔径は210μmであり、隔壁の厚さは150μm、貫通孔の長さは40mmであった。また、製造したハニカム構造体の体積は、約1.1×10-6であった。隔壁の厚さに対する貫通孔径の比は約1.4であり、貫通孔のアスペクト比は約190であった。
(実施例5)水酸アパタイトからなるハニカム構造体破砕物(顆粒)
 実施例4で製造した、外周側部を除去した円柱状のバインダー含有水酸アパタイトハニカム構造体を粉砕、ふるい分けし、1000μmのふるいは通過するが、850μmのふるいは通過しない顆粒に分級した。得られた顆粒は、実施例4と同じ条件で脱脂工程を行った。
 脱脂工程後のハニカム構造体顆粒の組成を粉末X線回折装置で分析したところ、水酸アパタイトであった。脱脂後もセルが保持されていることが確認された。また、貫通孔径は210μmであり、隔壁の厚さは150μm、貫通孔の長さの一例は0.9mmであった。また、製造したハニカム構造体顆粒の体積の一例は、約5×10-10であった。隔壁の厚さに対する貫通孔径の比は約1.4であった。貫通孔のアスペクト比の一例は約4であった。
 (実施例6)石膏(硫酸カルシウム)からなるハニカム構造体(ブロック)
<外壁付構造体作製工程>
 和光純薬株式会社製半水石膏を、1000℃で加熱処理し、無水石膏(無水硫酸カルシウム)とした。調製した無水石膏と、株式会社長峰製作所製ワックス系バインダーを重量比で80:20に混合した。その後、株式会社東洋精機製作所製ラボプラストミルにハニカム成形用金型を取り付け、押出成形を行った。押出成形の結果、無水石膏とバインダーの混合物を組成とし、外周側壁を有する円柱状のバインダー含有無水石膏ハニカム構造体を中間体として作製した。
<外壁側部加工工程>
 次に、円柱状のバインダー含有無水石膏ハニカム構造体の外周側壁を電動カンナで除去し、外周側部に貫通孔入口、溝アスペクト比が1.5以上である貫通孔溝を貫通孔入口に連続して形成した。
<脱脂工程>
 次に、当該バインダー含有無水石膏ハニカム構造体を、大気中にて、脱脂し、1000℃で焼成した。脱脂後のハニカム構造体の組成を、BRUKER製D8 ADVANCE型粉末X線回折装置を用い、出力は40kV、40mA、特性X線源としてCuのKα線(λ=0.15418nm)の条件で分析したところ、無水石膏であることがわかった。
 脱脂工程の後のハニカム構造体の電子顕微鏡写真(SEM写真)を図13に示す。脱脂後もセルが保持されており、外周側壁のない円柱状無水石膏ハニカム構造体ブロックが製造できていること、外周側部に貫通孔入口が形成されたことを確認した。また、貫通孔溝があり、溝アスペクト比が10以上のものが確認された。さらに、一部には、貫通孔入口が最外層だけでなく、第2外層にもあることを確認した。外周側壁除去率(外周側部における貫通孔溝及び貫通孔入口が形成された凹凸面の割合)は100%であった。
 貫通孔径は210μmであり、隔壁の厚さは150μm、貫通孔の長さは21mmであった。また、製造したハニカム構造体の体積は、約6×10-7であった。隔壁の厚さに対する貫通孔径の比は約1.4であり、貫通孔のアスペクト比は約100であった。
(実施例7)β型リン酸三カルシウムからなるハニカム構造体(ブロック)
<外壁付構造体作製工程>
 太平化学産業株式会社製β型リン酸三カルシウム粉末(β-TCP-A)と、株式会社長峰製作所製ワックス系バインダーを重量比で75:25に混合した。その後、株式会社東洋精機製作所製ラボプラストミルにハニカム成形用金型を取り付け、押出成形を行った。押出成形の結果、β型リン酸三カルシウムとバインダーの混合物を組成とし、外周側壁を有する円柱状のバインダー含有β型リン酸三カルシウムハニカム構造体を中間体として作製した。
<外壁側部加工工程>
 次に、円柱状のバインダー含有β型リン酸三カルシウムハニカム構造体の外周側壁を電動カンナで除去し、外周側部に貫通孔入口、溝アスペクト比が1.5以上である貫通孔溝を貫通孔入口に連続して形成した。
<脱脂工程>
 次に、当該バインダー含有β型リン酸三カルシウムハニカム構造体を、大気中にて、脱脂し、1050℃で焼成した。脱脂後のハニカム構造体の組成を、BRUKER製D8 ADVANCE型粉末X線回折装置を用い、出力は40kV、40mA、特性X線源としてCuのKα線(λ=0.15418nm)の条件で分析したところ、β型リン酸三カルシウムであることがわかった。
 脱脂工程の後のハニカム構造体の電子顕微鏡写真(SEM写真)を図14に示す。脱脂後もセルが保持されており、外周側壁のない円柱状β型リン酸三カルシウムハニカム構造体ブロックが製造できていること、外周側部に貫通孔入口が形成されたことを確認した。また、貫通孔溝があり、溝アスペクト比が30以上のものが確認された。さらに、一部には、貫通孔入口が最外層だけでなく、第2外層にもあることを確認した。外周側壁除去率(外周側部における貫通孔溝及び貫通孔入口が形成された凹凸面の割合)は100%であった。
 貫通孔径は210μmであり、隔壁の厚さは150μm、貫通孔の長さは18mmであった。また、製造したハニカム構造体の体積は、約5×10-7であった。隔壁の厚さに対する貫通孔径の比は約1.4であり、貫通孔のアスペクト比は約90であった。
(実施例8)β型リン酸三カルシウムからなるハニカム構造体破砕物(顆粒)
 実施例7の外壁側部加工工程後の円柱状バインダー含有β型リン酸三カルシウムハニカム構造体を、カッターと、乳鉢を用いて粉砕した。粉砕したバインダー含有β型リン酸三カルシウムハニカム構造体をふるい分けし、1000μmのふるいは通過するが、850μmのふるいは通過しない顆粒に分級した。得られた顆粒は、実施例7と同じ条件で脱脂工程を行った。
 脱脂工程後のハニカム構造体顆粒の組成を粉末X線回折装置で分析したところ、β型リン酸三カルシウムであった。脱脂後もセルが保持されていることが確認された。また、貫通孔径は210μmであり、隔壁の厚さは150μm、貫通孔の長さの一例は0.9mmであった。また、製造したハニカム構造体顆粒の体積の一例は、約5×10-10であった。隔壁の厚さに対する貫通孔径の比は約1.4であった。貫通孔のアスペクト比の一例は約4であった。
(実施例9)α型リン酸三カルシウムからなるハニカム構造体(ブロック)
<組成変換工程>
 実施例7にて調製したβ型リン酸三カルシウムハニカム構造体を、大気中にて、1500℃で焼成し、α型リン酸三カルシウムに組成変換した。焼成後のハニカム構造体の組成を、BRUKER製D8 ADVANCE型粉末X線回折装置を用い、出力は40kV、40mA、特性X線源としてCuのKα線(λ=0.15418nm)の条件で分析したところ、α型リン酸三カルシウムであることがわかった。
 組成変換工程後のハニカム構造体の電子顕微鏡写真(SEM写真)を図15に示す。組成変換工程後もセルが保持されており、外周側壁のない円柱状α型リン酸三カルシウムハニカム構造体ブロックが製造できていること、外周側部に貫通孔入口が形成されたことを確認した。また、貫通孔溝があり、溝アスペクト比が30以上のものが確認された。さらに、一部には、貫通孔入口が最外層だけでなく、第2外層にもあることを確認した。外周側壁除去率(外周側部における貫通孔溝及び貫通孔入口が形成された凹凸面の割合)は100%であった。
 貫通孔径は210μmであり、隔壁の厚さは150μm、貫通孔の長さは21mmであった。また、製造したハニカム構造体の体積は、約6×10-7であった。隔壁の厚さに対する貫通孔径の比は約1.4であり、貫通孔のアスペクト比は約100であった。
(実施例10)高分子材料からなるハニカム構造体
<外壁付構造体作製工程>
 株式会社東洋精機製作所製ラボプラストミルにハニカム成形用金型を取り付け、三井化学株式会社製ポリオレフィン系樹脂であるタフマーMY-2の押出成形を行った。押出成形の結果、タフマーを組成とし、円柱状の外周側壁を有するタフマーハニカム構造体を中間体として作製した。得られたタフマーハニカム構造体は柔軟性を持ち、手で容易に曲げることができた。
<外壁側部加工工程>
 次に、円柱状の外周側壁を有するタフマーハニカム構造体の外周側壁をカッターで除去し、外周側部に貫通孔入口、溝アスペクト比が1.5以上である貫通孔溝を貫通孔入口に連続して形成した。
 外周側壁除去後のハニカム構造体の電子顕微鏡写真(SEM写真)を図16に示す。外周側壁除去後もセルが保持されており、外周側壁のないタフマーハニカム構造体ブロックが製造できていること、外周側部に貫通孔入口が形成されたことを確認した。また、貫通孔溝があり、溝アスペクト比が30以上のものが確認された。さらに、一部には、貫通孔入口が最外層だけでなく、第2外層にもあることを確認した。外周側壁除去率(外周側部における貫通孔溝及び貫通孔入口が形成された凹凸面の割合)は100%であった。
 貫通孔径は210μmであり、隔壁の厚さは100μm、貫通孔の長さは30mmであった。また、製造したハニカム構造体の体積は、約2×10-7であった。隔壁の厚さに対する貫通孔径の比は約2.1であり、貫通孔のアスペクト比は約140であった。
(実施例11)炭酸アパタイトからなるハニカム構造体(ブロック)
 実施例1で製造した炭酸カルシウムハニカムブロックを80℃の1モル濃度リン酸水素二ナトリウム水溶液に7日間浸漬した。
 製造されたハニカム構造体の組成を粉末X線回折装置およびフーリエ変換赤外分光光度計で分析したところ、炭酸アパタイトであった。炭酸基含有量をCHN元素分析装置で分析したところ、10.8重量パーセントであった。製造された炭酸アパタイトハニカム構造体(実施例11aに係るハニカム構造体)の電子顕微鏡写真を図17に示す。外周側壁のない炭酸アパタイトハニカム構造体ブロックが製造できていることが確認された。セルが保持されており、外周側壁のない円柱状炭酸カルシウムハニカム構造体ブロックが製造できていること、外周側部に貫通孔入口が形成されたことを確認した。また、貫通孔溝があり、貫通孔溝アスペクト比が30以上のものが確認された。さらに、一部には、貫通孔入口が最外層だけでなく、第2外層にもあることを確認した。外周側壁除去率(外周側部における貫通孔溝及び貫通孔入口が形成された凹凸面の割合)は100%であった。
 貫通孔径は210μmであり、隔壁の厚さは150μm、貫通孔の長さは30mmであった。また、製造したハニカム構造体の体積は2×10-6であった。隔壁の厚さに対する貫通孔径の比は約1.4であり、貫通孔のアスペクト比は約140であった。
 また、製造した炭酸アパタイトハニカムブロックの貫通方向(図1のc方向)圧縮強さは90MPaであり、貫通方向に垂直な方向(図1のa方向)の圧縮強さは2MPaであった。
 次に、炭酸アパタイトハニカム構造体ブロックの組織親和性、再生・再建組織の配向性、骨への置換性を解析するために、日本白色兎の大腿骨に形成した骨欠損部に上記実施例11aと同様に製造した実施例11bに係る炭酸アパタイトハニカム(直径6mm、高さ5mm)を埋植し、埋植1ヶ月後に周囲組織と一塊に摘出、病理組織学的に検索した。
 図18にヘマトキシリン・エオジン染色した病理組織の弱拡大像を示す。炭酸アパタイトハニカム構造体ブロックが外周側面も含めて周囲組織と極めて良好に結合していること、炭酸アパタイトハニカム構造体ブロック内部に骨組織が完全に侵入していることがわかった。
 図19に、貫通孔方向に開口した外周側部の貫通孔入口からハニカム構造体近心部にあるセルに侵入した組織の病理組織の強拡大像を示す。炎症性所見は認められない。形成された骨組織が炭酸アパタイトハニカム構造体ブロックのセルの長軸方向に高度に配向していることがわかる。また、炭酸アパタイトハニカム構造体ブロックの隔壁表面に形成された配向骨の表面に、多核の破骨細胞および骨芽細胞、形成された骨内部に骨細胞が認められる。このことから、ハニカム構造体内部に形成された骨が活発に骨リモデリングしていること、そのため、炭酸アパタイトハニカム構造体ブロックは骨組織に置換されることがわかった。また、炭酸アパタイトハニカムのセルの内部に血管内皮細胞が認められ、血管内皮細胞の中に赤血球が確認された。このことから、炭酸アパタイトハニカム内部に血管が形成されていることがわかった。血管形成によって形成された骨には酸素と栄養が供給されるため、炭酸アパタイトハニカム構造体によって極めて高度に骨が再生されることがわかった。
(実施例12)炭酸アパタイトからなるハニカム構造体破砕物(顆粒)
 実施例2で製造した炭酸カルシウムハニカム構造体顆粒を80℃の1モル濃度リン酸水素二ナトリウム水溶液に7日間浸漬した。ハニカム構造体顆粒の組成を粉末X線回折装置およびフーリエ変換赤外分光光度計で分析したところ、炭酸アパタイトであった。炭酸基含有量をCHN元素分析装置で分析したところ、10.8重量パーセントであった。
 製造された炭酸アパタイトハニカム構造体顆粒の電子顕微鏡写真を図20に示す。組成変換後も基本的に構造が保持されていた。
 貫通孔径は210μmであり、隔壁の厚さは150μm、貫通孔の長さの一例は1mmであった。また、製造したハニカム構造体顆粒の体積の一例は8×10-10であった。隔壁の厚さに対する貫通孔径の比は約1.4であった。貫通孔のアスペクト比は約5であった。
 次に、炭酸アパタイトハニカム構造体顆粒の組織親和性、再生・再建組織の配向性、骨への置換性を解析するために、日本白色兎の大腿骨に形成した骨欠損部に炭酸アパタイトハニカムを埋植し、埋植1ヶ月後に周囲組織と一塊に摘出、病理組織学的に検索した。
 図21にヘマトキシリン・エオジン染色した病理組織の弱拡大像を示す。炭酸アパタイトハニカム構造体顆粒が周囲組織と極めて良好に結合していること、炭酸アパタイトハニカム構造体顆粒内部に骨組織が完全に侵入していることがわかった。
 図22に、貫通孔方向に開口した外周側部の貫通孔入口からハニカム構造体近心部にあるセルに侵入した組織の病理組織の強拡大像を示す。再生・再建された骨組織が炭酸アパタイトハニカム構造体顆粒のセルの長軸方向に配向していることがわかる。また、炭酸アパタイトハニカム構造体顆粒の表面に破骨細胞が認められる。このことから、炭酸アパタイトハニカム構造体顆粒は骨組織に置換されることがわかった。
(実施例13)外周側壁のある炭酸アパタイトハニカムブロック
 実施例1と同様な方法で外周側壁加工を行わずに、外周側壁のある炭酸カルシウムハニカム構造体を中間体として製造し、80℃の1モル濃度リン酸水素二ナトリウム水溶液に7日間浸漬した。
 ハニカム構造体ブロックの組成を粉末X線回折装置およびフーリエ変換赤外分光光度計で分析したところ、炭酸アパタイトであった。炭酸基含有量をCHN元素分析装置で分析したところ、10.5重量パーセントであった。製造された炭酸アパタイトハニカム構造体は基本的に中間体である炭酸カルシウムハニカム構造体の構造が維持されており、外周側壁のある炭酸アパタイトハニカム構造体ブロックが製造できていることが確認された。
 次に、炭酸アパタイトハニカム構造体ブロックの組織親和性、再生・再建組織の配向性、骨への置換性を解析するために、日本白色兎の大腿骨に形成した骨欠損部に炭酸アパタイトハニカムを埋植し、埋植1ヶ月後に周囲組織と一塊に摘出、病理組織学的に検索した。
 炭酸アパタイトハニカム構造体ブロックが外周側壁面も含めて周囲組織と極めて良好に結合していること、炭酸アパタイトハニカム構造体ブロック内部に骨組織が完全に侵入していることがわかった。炭酸アパタイトハニカムの外周側壁の一部は吸収されており、外周側壁からもハニカム構造体の内部に配向した骨組織が侵入していることがわかった。
(比較例1)外周側壁のある水酸アパタイトハニカムブロック
 実施例13に示した炭酸アパタイトハニカムの有用性を検証する目的で、実施例13の炭酸アパタイトと構造が同じで組成が水酸アパタイトである水酸アパタイトハニカムを調製した。
 水酸アパタイト粉末をジェットミルで平均粒径1μmに粉砕し、水酸アパタイト粉末とワックス系バインダーを重量比で75:25に混合した。その後、ラボプラストミルにハニカム成形用金型を取り付け、押出成形を行った。押出成形の結果、水酸アパタイト粉末とバインダーの混合物を組成とし、外周側壁を有する円柱状のバインダー含有水酸アパタイト粉末ハニカム構造体を中間体として製造した。
 次に、当該バインダー含有水酸アパタイト粉末ハニカム構造体を、空気中、700℃で脱脂した。さらに、1200℃で6時間焼成した。
 焼成後のハニカム構造体の組成を、BRUKER製D8 ADVANCE型粉末X線回折装置で分析したところ、水酸アパタイトであることがわかった。
 次に、外周側壁のある水酸アパタイトハニカム構造体ブロックの組織親和性、再生・再建組織の配向性、骨への置換性を解析するために、日本白色兎の大腿骨に形成した骨欠損部に外周側壁のある水酸アパタイトハニカム構造体を埋植し、埋植1ヶ月後に周囲組織と一塊に摘出、病理組織学的に検索した。
 外周側壁のある水酸アパタイトハニカム構造体の貫通孔端部で構成される面(図1のC面)は周囲組織と良好に結合していたが、その程度は実施例13の炭酸アパタイトハニカムに比べて劣っていた。また、外周側壁面も周囲組織との結合性は限定的であった。また、炭酸アパタイトハニカム構造体ブロック内部への骨組織と比較して、水酸アパタイトハニカム構造体への骨組織の侵入は限定的であった。このことから、炭酸アパタイトハニカム構造体のセルへの骨組織の侵入は水酸アパタイトに比較しても優れることがわかった。また、炭酸アパタイトを含むハニカム構造体でない場合には、外周側壁があると周囲組織とハニカム構造体の結合に問題があることがわかった。
<貫通孔への骨侵入確認試験>
 次に、炭酸アパタイトハニカムと水酸アパタイトハニカムにおける貫通孔への骨の侵入の程度を比較した。
 実施例13及び比較例1に示したように、外周側壁がある炭酸アパタイトと水酸アパタイトを比べた場合、同じ気孔サイズでも貫通孔端部で構成される面(図1のC面)からの骨の侵入量が異なることがわかった。そこで、外周側壁のある炭酸アパタイトハニカム及び外周側壁のある水酸アパタイトハニカムについて、C面からの骨の侵入の程度を確認した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 気孔内部への組織侵入は気孔径が小さくなるほど起こりにくいことが一般的に知られている。また、気孔内部に侵入した組織が機能しつづけるためには血管形成が必須である。表1に示したように、炭酸アパタイトハニカムは少なくとも貫通孔径が280μm以下の場合には水酸アパタイトに比較してC面からの骨侵入に優れることがわかった。特に、貫通孔径が70μmの場合および170μmの場合、組成が水酸カルシウムであるとハニカム構造体内部への骨の侵入が極めて限定的あるいは限定的であるのに対し、炭酸アパタイトはC面全面からハニカム構造体内部に骨侵入が認められた。すなわち、貫通孔径が170μm以下の場合、水酸アパタイトとの顕著な効果の差がみられる。
 また、水酸アパタイトの場合は、埋入4週目の段階で最大貫通気孔径が280μmのものでも血管形成が認められなかった。それに対して、炭酸アパタイトハニカムは最大貫通気孔径が70μmのものでも、骨組織が侵入し、当該骨組織の中に血管形成が認められることがわかった。
 炭酸アパタイトハニカムが、他の組成のハニカムと著しく異なる機能を発現し、ハニカム構造を持たない炭酸アパタイトブロックなどとも著しく異なる機能を発現するメカニズムは不明であるが、マクロファージなどの細胞による組成認識とハニカム構造による微小環境の形成によるシナジー効果が発生したと考えられる。
 すなわち、医療材料を生体組織に埋入するとマクロファージが生体材料を異物として認識し、貪食しようとする。その結果、炭酸アパタイトハニカムや水酸アパタイトハニカムは一部溶解され、カルシウムイオンやリン酸イオンが体液に供給される。マクロファージはCa-sensing receptor(CaSR)などでカルシウムイオンやリン酸イオンを認識し、活性化されてサイトカインや増殖因子を放出する。炭酸アパタイトは、生体骨と同じ組成であり、溶出されるカルシウムイオンやリン酸イオンの比率が生体骨と同じであったり、マクロファージによる貪食過程における酸性環境での溶解度が水酸アパタイトに比較して大きかったりするので、マクロファージの活性化によるサイトカインや増殖因子の放出量が多いと考えられる。
 一方、炭酸アパタイトがハニカム構造によって一方向に伸びる貫通孔を保持しない場合、例えば緻密体の場合、マクロファージが放出したサイトカインや増殖因子は拡散されるため、骨芽細胞などの活性化は限定的である。炭酸アパタイトが多孔体であっても一方向に伸びる貫通孔を保持しない場合、すなわち、フォーム状多孔体などの場合は、緻密体炭酸アパタイト表面と比較するとマクロファージが放出したサイトカインや増殖因子の拡散は限定的であるが、三次元的に拡散されるため、やはりマクロファージが放出したサイトカインや増殖因子の局在化は限定的である。一方、炭酸アパタイトハニカムは一方向に伸びる貫通孔を保持しており、マクロファージが放出したサイトカインや増殖因子を局在化させると考えられる。その結果、骨芽細胞などが高度に活性化されて骨形成や、形成された骨の機能維持に必須である血管が形成されると考えられる。
 本発明の医療用ハニカム構造体は、(1)細胞あるいは組織の材料表面への接着性あるいは結合性に優れ、(2)配向した組織が再生・再建され、(3)機械的強さに優れ、(4)組織置換材料として用いられる場合においては、迅速に所望の組織に置換され、(5)安価に製造できる、という医療用材料に望まれる要求を満足するものであり、医療分野又は医療に関係する分野での広い利用が可能となる。
 10  本発明の医療用ハニカム構造体
 11  貫通孔
 12  隔壁
 13  外周側壁
 14  外周側壁を有するハニカム構造体
 15  貫通孔入口
 16  貫通孔溝

 

Claims (28)

  1.  一方向に延びる複数の貫通孔を備えた医療用ハニカム構造体であって、
     その外周側部に、前記貫通孔の側壁が欠損して形成された貫通孔溝と、該貫通孔溝に隣接する貫通孔入口とを備えていることを特徴とする医療用ハニカム構造体。
  2.  外周側部に貫通孔の貫通方向に対して傾斜する傾斜面が形成されていることを特徴とする請求項1記載の医療用ハニカム構造体。
  3.  貫通孔溝の幅方向の長さに対する長手方向の長さの比が1.5以上であることを特徴とする請求項1又は2記載の医療用ハニカム構造体。
  4.  最外層の貫通孔の数に対する貫通孔入口の数の比が0.05以上であることを特徴とする請求項1~3のいずれか記載の医療用ハニカム構造体。
  5.  貫通孔溝及び貫通孔入口が、少なくとも最外層及びその内側の第2外層に設けられていることを特徴とする請求項1~4のいずれか記載の医療用ハニカム構造体。
  6.  外周側面における貫通孔溝及び貫通孔入口が形成された凹凸面の割合が、10%以上であることを特徴とする請求項1~5のいずれか記載の医療用ハニカム構造体。
  7.  貫通孔の側壁に貫穿された貫穿孔が設けられていることを特徴とする請求項1~6のいずれか記載の医療用ハニカム構造体。
  8.  貫通孔の径が5μm以上400μm以下であることを特徴とする請求項1~7のいずれか記載の医療用ハニカム構造体。
  9.  貫通孔の隔壁の厚さが10μm以上300μm以下であることを特徴とする請求項1~8のいずれか記載の医療用ハニカム構造体。
  10.  貫通孔の隔壁の厚さに対する貫通孔の径の比が0.2以上20以下であることを特徴とする請求項1~9のいずれか記載の医療用ハニカム構造体。
  11.  外周側部の外周側壁の厚さが300μm以下であることを特徴とする請求項1~10のいずれか記載の医療用ハニカム構造体。
  12.  貫通孔の径に対する長手方向の長さの比が3以上であることを特徴とする請求項1~11のいずれか記載の医療用ハニカム構造体。
  13.  10-8以上10-3以下のブロックであることを特徴とする請求項1~12のいずれか記載の医療用ハニカム構造体。
  14.  少なくともカルシウム化合物を含有する組成物からなることを特徴とする請求項1~13のいずれか記載の医療用ハニカム構造体。
  15.  カルシウム化合物が、リン酸カルシウム、炭酸カルシウム、硫酸カルシウム及びカルシウム含有ガラスからなる群より選ばれる少なくとも1種であることを特徴とする請求項14記載の医療用ハニカム構造体。
  16.  アパタイト、β型リン酸三カルシウム、α型リン酸三カルシウム及びリン酸八カルシウムからなる群より選ばれる少なくとも1種を含有する組成物からなることを特徴とする請求項1~15のいずれか記載の医療用ハニカム構造体。
  17.  炭酸アパタイトを含有する組成物からなることを特徴とする請求項1~16のいずれか記載の医療用ハニカム構造体。
  18.  高分子材料を含有する組成物からなることを特徴とする請求項1~17のいずれか記載の医療用ハニカム構造体。
  19.  請求項1~18のいずれか記載の医療用ハニカム構造体の破砕物。
  20.  10-12以上10-8未満の大きさであることを特徴とする請求項19記載の破砕物。
  21.  一方向に延びる複数の貫通孔を備えた医療用ハニカム構造体であって、
     炭酸アパタイトを含有する組成物からなることを特徴とする医療用ハニカム構造体。
  22.  請求項21記載の医療用ハニカム構造体の破砕物。
  23.  材料をハニカム構造形成用型を通して押し出し、外周側壁を有するハニカム構造体を作製する外壁付構造体作製工程と、
     該外周側壁を有するハニカム構造体の外周側壁の少なくとも一部を除去し、外周側部に、貫通孔溝及び貫通孔入口を形成する外周側部加工工程と、
    を有することを特徴とする請求項1~18のいずれか記載の医療用ハニカム構造体の製造方法。
  24.  材料をハニカム構造形成用型を通して押し出し、外周側壁を有するハニカム構造体を作製する外壁付構造体作製工程と、
     該外周側壁を有するハニカム構造体の外周側壁の少なくとも一部を除去し、外周側部に、貫通孔溝及び貫通孔入口を形成する外周側部加工工程と、
     前記貫通孔溝及び貫通孔入口を形成したハニカム構造体を、10-12以上10-8未満の大きさに破砕する破砕工程と、
    を有することを特徴とする請求項19又は20記載の医療用ハニカム構造体破砕物の製造方法。
  25.  炭酸アパタイトを組成に含む請求項1~17のいずれか記載の医療用ハニカム構造体の製造方法であって、
     水酸化カルシウムと有機バインダーとを混合した混合物を、ハニカム構造形成用型を通して押し出し、外周側壁を有するハニカム構造体を作製する外壁付構造体作製工程と、
     ハニカム構造体の脱脂を行う脱脂工程と、
     前記脱脂工程と同時又はその後にハニカム構造体の炭酸化処理を行う炭酸化工程と、
     前記炭酸化工程を経たハニカム構造体にリン酸塩水溶液を付与するアパタイト化工程とを有し、
     前記外壁付構造体作製工程後のいずれかの段階において、外周側壁を有するハニカム構造体の外周側壁の少なくとも一部を除去し、外周側部に、貫通孔溝及び貫通孔入口を形成する外周側部加工工程を有することを特徴とする医療用ハニカム構造体の製造方法。
  26.  炭酸アパタイトを組成に含む請求項1~17のいずれか記載の医療用ハニカム構造体の製造方法であって、
     硫酸カルシウムと有機バインダーとを混合した混合物を、ハニカム構造形成用型を通して押し出し、外周側壁を有するハニカム構造体を作製する外壁付構造体作製工程と、
     ハニカム構造体の脱脂を行う脱脂工程と、
     前記脱脂工程を経たハニカム構造体に、炭酸塩及びリン酸塩を含む水溶液を付与するか、炭酸塩を含む水溶液及びリン酸塩を含む水溶液を順次付与するアパタイト化工程とを有し、
     前記外壁付構造体作製工程後のいずれかの段階において、外周側壁を有するハニカム構造体の外周側壁の少なくとも一部を除去し、外周側部に、貫通孔溝及び貫通孔入口を形成する外周側部加工工程を有することを特徴とする医療用ハニカム構造体の製造方法。
  27.  請求項21記載の医療用ハニカム構造体の製造方法であって、
     水酸化カルシウムと有機バインダーとを混合した混合物を、ハニカム構造形成用型を通して押し出し、外周側壁を有するハニカム構造体を作製する外壁付構造体作製工程と、
     ハニカム構造体の脱脂を行う脱脂工程と、
     前記脱脂工程と同時又はその後にハニカム構造体の炭酸化処理を行う炭酸化工程と、
     前記炭酸化工程を経たハニカム構造体にリン酸塩水溶液を付与するアパタイト化工程と、
    を有することを特徴とする医療用ハニカム構造体の製造方法。
  28.  請求項21記載の医療用ハニカム構造体の製造方法であって、
     硫酸カルシウムと有機バインダーとを混合した混合物を、ハニカム構造形成用型を通して押し出し、外周側壁を有するハニカム構造体を作製する外壁付構造体作製工程と、
     ハニカム構造体の脱脂を行う脱脂工程と、
     前記脱脂工程を経たハニカム構造体に、炭酸塩及びリン酸塩を含む水溶液を付与するか、炭酸塩を含む水溶液及びリン酸塩を含む水溶液を順次付与するアパタイト化工程と、
    を有することを特徴とする医療用ハニカム構造体の製造方法。
PCT/JP2017/037413 2016-10-17 2017-10-16 医療用ハニカム構造体 WO2018074429A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018546332A JP7089284B2 (ja) 2016-10-17 2017-10-16 医療用ハニカム構造体
US16/342,338 US11246708B2 (en) 2016-10-17 2017-10-16 Medical use honeycomb structure
CN201780077827.4A CN110087698B (zh) 2016-10-17 2017-10-16 医疗用蜂窝结构体
EP17861732.0A EP3527233B1 (en) 2016-10-17 2017-10-16 Medical use honeycomb structure
US17/552,995 US20220117741A1 (en) 2016-10-17 2021-12-16 Medical use honeycomb structure
JP2022002854A JP2022050587A (ja) 2016-10-17 2022-01-12 医療用ハニカム構造体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016203318 2016-10-17
JP2016-203318 2016-10-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/342,338 A-371-Of-International US11246708B2 (en) 2016-10-17 2017-10-16 Medical use honeycomb structure
US17/552,995 Division US20220117741A1 (en) 2016-10-17 2021-12-16 Medical use honeycomb structure

Publications (1)

Publication Number Publication Date
WO2018074429A1 true WO2018074429A1 (ja) 2018-04-26

Family

ID=62018647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037413 WO2018074429A1 (ja) 2016-10-17 2017-10-16 医療用ハニカム構造体

Country Status (5)

Country Link
US (2) US11246708B2 (ja)
EP (1) EP3527233B1 (ja)
JP (2) JP7089284B2 (ja)
CN (1) CN110087698B (ja)
WO (1) WO2018074429A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039892A1 (ja) 2019-08-27 2021-03-04 邦夫 石川 医療用炭酸カルシウム組成物、および関連医療用組成物、ならびにこれらの製造方法
WO2021177457A1 (ja) 2020-03-05 2021-09-10 邦夫 石川 医用ハニカム構造体およびその製造方法、医用組織再建袋、成形型

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584713A (ja) * 1991-09-30 1993-04-06 Sodick Co Ltd セラミツクスハニカム構造体の製造方法
JPH1059784A (ja) 1996-08-13 1998-03-03 Ishikawajima Harima Heavy Ind Co Ltd セラミックス製ハニカム構造体
JP3405536B2 (ja) 2000-11-09 2003-05-12 日立金属株式会社 多孔質セラミックハニカム構造体
JP2003320515A (ja) * 2002-05-07 2003-11-11 Ngk Spark Plug Co Ltd リン酸カルシウム多孔体の製造方法及びリン酸カルシウム多孔体製造器具
JP3470759B2 (ja) 2000-10-13 2003-11-25 東芝セラミックス株式会社 生体用セラミックス多孔質部材
JP2004298545A (ja) 2003-04-01 2004-10-28 Olympus Corp 生体組織補填材及びその製造方法
JP2004298407A (ja) 2003-03-31 2004-10-28 Olympus Corp 生体組織補填材及びその製造方法
WO2004112856A1 (ja) * 2003-06-24 2004-12-29 Kyushu Tlo Company Limited 医療用骨補填材およびその製造方法
JP2005110709A (ja) 2003-10-02 2005-04-28 Olympus Corp 生体組織補填材
JP2005152006A (ja) 2003-11-20 2005-06-16 Teijin Ltd 軟骨組織再生用基材および軟骨細胞との複合体とその製造方法
JP3858069B2 (ja) 2003-03-12 2006-12-13 独立行政法人物質・材料研究機構 多孔質セラミックスインプラント材料およびその製造方法
JP3940770B2 (ja) 2003-06-12 2007-07-04 独立行政法人物質・材料研究機構 多孔質セラミックスインプラント材料の製造方法及びその方法によって製造される多孔質セラミックスインプラント材料
WO2008041563A1 (fr) * 2006-09-26 2008-04-10 National Institute Of Advanced Industrial Science And Technology Biomatériau, procédé de construction de celui-ci et son utilisation
JP2008230910A (ja) 2007-03-20 2008-10-02 Kuraray Co Ltd 多孔質セラミックス材料の製造方法
JP2010018459A (ja) 2008-07-09 2010-01-28 Kyoto Univ 多孔質セラミックス材料の製造方法
JP4802317B2 (ja) 2002-03-12 2011-10-26 独立行政法人産業技術総合研究所 リン酸カルシウム系セラミックスビーズ集積体及びその構築方法
JP2012148929A (ja) 2011-01-19 2012-08-09 Kyoto Univ 多孔質セラミックス材料製造用スラリー

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7147666B1 (en) 1997-11-26 2006-12-12 Bernard Francis Grisoni Monolithic implants with openings
KR100497362B1 (ko) * 2002-08-22 2005-06-23 삼성전자주식회사 전자 프로그램 가이드 정보 변환 장치 및 방법
SE525236C2 (sv) 2002-10-31 2005-01-11 Cerbio Tech Ab Förfarande för framställning av strukturerade keramiska beläggningar och belagda anordningar framställda med detta förfarande
NL1030364C2 (nl) * 2005-11-07 2007-05-08 Ft Innovations Fti B V Implantaat en werkwijze voor het vervaardigen van een dergelijk implantaat.
US20080097618A1 (en) * 2006-10-18 2008-04-24 Kevin Charles Baker Deposition of calcium-phosphate (CaP) and calcium-phosphate with bone morphogenic protein (CaP+BMP) coatings on metallic and polymeric surfaces
WO2009034876A1 (ja) * 2007-09-12 2009-03-19 Kuraray Co., Ltd. 人工骨
WO2012023617A1 (ja) 2010-08-19 2012-02-23 日立金属株式会社 セラミックハニカム構造体の製造方法
US9155819B2 (en) * 2012-02-09 2015-10-13 Mx Orthopedics, Corp. Dynamic porous coating for orthopedic implant
CN103113129A (zh) * 2013-01-31 2013-05-22 华南理工大学 一种多级孔生物活性陶瓷的制备方法和应用
CN103961746A (zh) * 2014-05-18 2014-08-06 赵全明 一种生物型脊柱椎间融合器
EP3190089A4 (en) * 2014-09-01 2018-06-20 Kyushu University, National University Corporation Method for manufacturing product inorganic compound and product inorganic compound
EP2995278A1 (en) * 2014-09-09 2016-03-16 Klinikum rechts der Isar der Technischen Universität München Medical/surgical implant
US10392259B2 (en) * 2014-09-30 2019-08-27 Gc Corporation Method for manufacturing calcium carbonate block
CN104710188B (zh) * 2015-03-02 2016-06-08 浙江大学 一种钙硅酸盐生物陶瓷多孔材料、制备方法及应用
CN106518143A (zh) * 2016-10-21 2017-03-22 华南理工大学 一种三维连通的蜂窝状多孔磷酸钙陶瓷人工骨材料及其制备方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584713A (ja) * 1991-09-30 1993-04-06 Sodick Co Ltd セラミツクスハニカム構造体の製造方法
JPH1059784A (ja) 1996-08-13 1998-03-03 Ishikawajima Harima Heavy Ind Co Ltd セラミックス製ハニカム構造体
JP3470759B2 (ja) 2000-10-13 2003-11-25 東芝セラミックス株式会社 生体用セラミックス多孔質部材
JP3405536B2 (ja) 2000-11-09 2003-05-12 日立金属株式会社 多孔質セラミックハニカム構造体
JP4802317B2 (ja) 2002-03-12 2011-10-26 独立行政法人産業技術総合研究所 リン酸カルシウム系セラミックスビーズ集積体及びその構築方法
JP2003320515A (ja) * 2002-05-07 2003-11-11 Ngk Spark Plug Co Ltd リン酸カルシウム多孔体の製造方法及びリン酸カルシウム多孔体製造器具
JP3858069B2 (ja) 2003-03-12 2006-12-13 独立行政法人物質・材料研究機構 多孔質セラミックスインプラント材料およびその製造方法
JP2004298407A (ja) 2003-03-31 2004-10-28 Olympus Corp 生体組織補填材及びその製造方法
JP2004298545A (ja) 2003-04-01 2004-10-28 Olympus Corp 生体組織補填材及びその製造方法
JP3940770B2 (ja) 2003-06-12 2007-07-04 独立行政法人物質・材料研究機構 多孔質セラミックスインプラント材料の製造方法及びその方法によって製造される多孔質セラミックスインプラント材料
WO2004112856A1 (ja) * 2003-06-24 2004-12-29 Kyushu Tlo Company Limited 医療用骨補填材およびその製造方法
JP4854300B2 (ja) 2003-06-24 2012-01-18 国立大学法人九州大学 医療用骨補填材およびその製造方法
JP2005110709A (ja) 2003-10-02 2005-04-28 Olympus Corp 生体組織補填材
JP2005152006A (ja) 2003-11-20 2005-06-16 Teijin Ltd 軟骨組織再生用基材および軟骨細胞との複合体とその製造方法
WO2008041563A1 (fr) * 2006-09-26 2008-04-10 National Institute Of Advanced Industrial Science And Technology Biomatériau, procédé de construction de celui-ci et son utilisation
JP2008230910A (ja) 2007-03-20 2008-10-02 Kuraray Co Ltd 多孔質セラミックス材料の製造方法
JP2010018459A (ja) 2008-07-09 2010-01-28 Kyoto Univ 多孔質セラミックス材料の製造方法
JP2012148929A (ja) 2011-01-19 2012-08-09 Kyoto Univ 多孔質セラミックス材料製造用スラリー

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ISHIMOTO T. ET AL.: "Degree of biological apatite c-axis orientation rather than bone mineral density controls mechanical function in bone regenerated using rBMP-2", JOURNAL OF BONE AND MINERAL RESEARCH, vol. 28, 2013, pages 1170 - 1179
NAKANO T. ET AL.: "Biological apatite (BAp) crystallographic orientation and texture as a new index for assessing the microstructure and function of bone regenerated by tissue engineering", BONE, vol. 51, 2012, pages 741 - 747
NAKANO T. ET AL.: "Unique alignment and texture of biological apatite crystallites in typical calcified tissues analyzed by micro-beam X-ray diffractometer system", BONE, vol. 31, no. 4, 2002, pages 479 - 487

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039892A1 (ja) 2019-08-27 2021-03-04 邦夫 石川 医療用炭酸カルシウム組成物、および関連医療用組成物、ならびにこれらの製造方法
WO2021177457A1 (ja) 2020-03-05 2021-09-10 邦夫 石川 医用ハニカム構造体およびその製造方法、医用組織再建袋、成形型

Also Published As

Publication number Publication date
CN110087698B (zh) 2022-06-24
EP3527233B1 (en) 2023-11-29
US20220117741A1 (en) 2022-04-21
EP3527233A4 (en) 2020-05-20
EP3527233A1 (en) 2019-08-21
US11246708B2 (en) 2022-02-15
CN110087698A (zh) 2019-08-02
EP3527233C0 (en) 2023-11-29
US20200046503A1 (en) 2020-02-13
JP2022050587A (ja) 2022-03-30
JPWO2018074429A1 (ja) 2019-08-08
JP7089284B2 (ja) 2022-06-22

Similar Documents

Publication Publication Date Title
Bohner et al. β-tricalcium phosphate for bone substitution: Synthesis and properties
US11730856B2 (en) Method of producing product inorganic compound and product inorganic compound
AU2002343337B2 (en) Machinable preformed calcium phosphate bone substitute material implants
ES2527692T3 (es) Agente de osteogénesis y procedimiento de producción
JP5565721B2 (ja) 多孔質セラミックス材料およびその製造方法
Ishikawa et al. Fabrication of low crystalline B-type carbonate apatite block from low crystalline calcite block
Sánchez-Salcedo et al. Upgrading calcium phosphate scaffolds for tissue engineering applications
US20220117741A1 (en) Medical use honeycomb structure
Sunouchi et al. Fabrication of solid and hollow carbonate apatite microspheres as bone substitutes using calcite microspheres as a precursor
JPWO2003035576A1 (ja) リン酸カルシウム多孔質焼結体、その製造方法及びそれを用いた人工骨及び組織工学スキャフォールド
WO2006130998A1 (en) Shaped article
WO2021039892A1 (ja) 医療用炭酸カルシウム組成物、および関連医療用組成物、ならびにこれらの製造方法
KR100957543B1 (ko) 비정질 칼슘 포스페이트를 함유하는 골대체용 조성물
JP6061415B2 (ja) β型リン酸三カルシウムからなる生体材料セラミックス及びその製造方法
KR20170038134A (ko) 다공성 골이식재 제조방법
JP5045933B2 (ja) 多孔質リン酸三カルシウム系焼結体及びその製造方法
KR101517691B1 (ko) 인산칼슘 세라믹 다공체 제조방법
KR100759718B1 (ko) 수열 열간 가압법을 이용한 인산칼슘계 다공체 및 그 제조방법
Aizawa et al. Syntheses of various aptites and pouros coating of biocompatible calcium-phosphate films via spray-pyrolysis technique
Qi et al. Microstructure and mechanical properties of calcium phosphate cement/gelatine composite scaffold with oriented pore structure for bone tissue engineering
KR100493396B1 (ko) 생분해성 칼슘 포스페이트 글라스, 및 이를 이용한 다공성블록
Tram et al. Fabrication of calcite block with interconnecting porous structure for bone substitutes
RO131943A0 (ro) Procedeu de obţinere a unui produs tip scaffold pe bază de hidroxiapatită, pentru reconstrucţia defectelor osoase majore, cu proprietăţi fizico-chimice predeterminate
de Oliveira et al. Obtaining Tetracalcium Pohosphate and Hydroxyapatite in Powder Form by Wet Method
JP2007229048A (ja) リン酸三カルシウム系骨補填材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861732

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018546332

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017861732

Country of ref document: EP