WO2018070801A2 - 다층형 캐리어 필름 및 이를 이용한 소자 전사 방법과 이 방법을 이용하여 전자제품을 제조하는 전자제품 제조방법 - Google Patents

다층형 캐리어 필름 및 이를 이용한 소자 전사 방법과 이 방법을 이용하여 전자제품을 제조하는 전자제품 제조방법 Download PDF

Info

Publication number
WO2018070801A2
WO2018070801A2 PCT/KR2017/011242 KR2017011242W WO2018070801A2 WO 2018070801 A2 WO2018070801 A2 WO 2018070801A2 KR 2017011242 W KR2017011242 W KR 2017011242W WO 2018070801 A2 WO2018070801 A2 WO 2018070801A2
Authority
WO
WIPO (PCT)
Prior art keywords
carrier film
hardness
multilayer carrier
strained layer
layer
Prior art date
Application number
PCT/KR2017/011242
Other languages
English (en)
French (fr)
Other versions
WO2018070801A3 (ko
Inventor
김재현
황보윤
장봉균
김광섭
김경식
이학주
최병익
이승모
Original Assignee
한국기계연구원
재단법인 파동에너지 극한제어 연구단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원, 재단법인 파동에너지 극한제어 연구단 filed Critical 한국기계연구원
Priority to JP2019517749A priority Critical patent/JP6807454B2/ja
Publication of WO2018070801A2 publication Critical patent/WO2018070801A2/ko
Publication of WO2018070801A3 publication Critical patent/WO2018070801A3/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/06Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/043Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/951Supplying the plurality of semiconductor or solid-state bodies
    • H01L2224/95115Supplying the plurality of semiconductor or solid-state bodies using a roll-to-roll transfer technique

Definitions

  • the present invention relates to a multilayer carrier film, a device transfer method using the same, and an electronic product manufacturing method for manufacturing an electronic product using the same, and more particularly, a device mounted on a semiconductor, a display, a solar cell, a sensor, and the like.
  • Electronic components are manufactured through a process of mounting various circuit elements on a printed circuit board (PCB).
  • PCB printed circuit board
  • a memory card used in a computer may be manufactured through a process of mounting a plurality of memory elements on a substrate, and recently, a display using a micro LED has been arranged in a plurality of LED elements on a modular substrate. It is manufactured.
  • a method of transferring a device unit by vacuum is used to transfer the device onto the solder of the substrate.
  • the equipment used at this time is called die bonder or flip chip bonder, and a head equipped with a vacuum chuck can transfer 1 to 3 elements per second onto a substrate.
  • the device on the source substrate is primarily adhered to the multilayer carrier film, and the adhesive force between the multilayer carrier film and the device is controlled by changing the hardness of the multilayer carrier film to the multilayer carrier film.
  • the present invention is to provide a multi-layered carrier film capable of transferring a device having a small size to a substrate and easily adjusting the adhesive force.
  • another aspect of the present invention is to provide a device transfer method using the above-described multilayer carrier film.
  • another aspect of the present invention is to provide an electronic product manufacturing method for manufacturing an electronic product using the above-described device transfer method.
  • Multi-layered carrier film the base film; A strained layer formed on one surface of the base film and having a first hardness and changed to have a second hardness higher than the first hardness by energy; And a hard layer formed at a predetermined thickness on one surface of the strained layer and configured to have a hardness higher than the first hardness of the strained layer, and having an adhesive force inversely proportional to the hardness of the strained layer.
  • the thickness of the strained layer may be greater than the thickness of the hard layer.
  • the strained layer is formed of any one of acrylate, silicone rubber, nitrile butadiene rubber (NBR), polyester, and epoxy, and the hard layer is formed of any one of metal, ceramic, polymer, or a composite thereof. Can be.
  • the multilayer carrier film by using the multilayer carrier film, while keeping the deformation layer at the first hardness, the multilayer carrier film is in close contact with the source substrate side of the plurality of elements arranged A peaking step of adhering the device to the multilayer carrier film; Curing the strained layer to transform the hardness of the strained layer from the first hardness to the second hardness; And a placing step of adhering the device to the target substrate by closely contacting the multilayer carrier film to a target substrate while maintaining the deformation layer at the second hardness. Adhesion is inversely proportional to the hardness of the strained layer.
  • the adhesive force between the multilayer carrier film and the device is proportional to a release speed for releasing the multilayer carrier film from the source substrate or the target substrate, and releases the multilayer carrier film from the source substrate in the picking step.
  • the first release speed may be greater than a second release speed of releasing the multilayer carrier film from the target substrate in the placing step.
  • the thickness of the strained layer may be greater than the thickness of the hard layer.
  • a plurality of devices are transferred onto a plate using the device transfer method to manufacture an electronic product.
  • an element having a small size can be easily and simply transferred to a substrate.
  • the device adhered to the multilayer carrier film may be more easily transferred to the target substrate.
  • the thickness of the strained layer larger than the thickness of the hard layer, it is possible to smoothly adhere the elements arranged on the source substrate to the multi-layered carrier film.
  • the device by releasing the release rate of the multi-layered carrier film in the picking step faster than the release rate of the multi-layered carrier film in the placing step, the device more stably adhered from the multi-layered carrier film Can be removed or removed.
  • FIG. 1 is a cross-sectional view schematically showing a multi-layered carrier film according to an embodiment of the present invention.
  • FIG. 2 is a graph showing that the adhesive force of the multilayer carrier film of FIG. 1 is changed according to the hardness of the strained layer.
  • FIG. 3 is a graph showing that a difference occurs in the adhesive force of the multilayer carrier film of FIG. 1 depending on the thickness of the strained layer.
  • FIG. 4 is a view schematically showing a process of performing a device transfer method using a multilayer carrier film according to an embodiment of the present invention.
  • FIG. 5 is a block diagram illustrating a process of performing a device transfer method using the multilayer carrier film of FIG. 4.
  • FIG. 6 is a graph showing that the adhesive force between the multilayer carrier film and the device is changed according to the hardness of the deforming layer in the process of performing the device transfer method using the multilayer carrier film of FIG. 4.
  • FIG. 7 is a view illustrating a process in which a whole product is made by using a device transfer method using a multilayer carrier film according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing a multi-layered carrier film according to an embodiment of the present invention.
  • an element E mounted on a semiconductor, a display, a solar cell, a sensor, or the like is mounted on a target substrate W2 (see FIG. 4) from a source substrate W1. It is used to transfer to the base film 110, and includes a deformation layer 120, the hard layer 130.
  • the transfer process of the device is divided into a picking process of removing the device from the source substrate using a carrier film, and a plating process of transferring the device on the carrier film to the target substrate.
  • these two processes may be performed in one.
  • the base film 110 has sufficient strength and elastic modulus not to be deformed in the process of being in close contact with the device E, and has heat resistance and chemical resistance so that inherent physical properties can be maintained during the formation of the deformation layer 120. It is preferable to be formed of a material. Usually, a PET (polyethylene terephthalate) film or a PI (polyimide) film is mainly used as a material of the base film, but the material is not particularly limited.
  • the base film 110 may be manufactured in the form of a flat plate to individually attach elements E arranged in a predetermined region of the source substrate W1 to be transferred to the target substrate W2.
  • the base film 110 may be manufactured in a cylindrical shape, wound around a general transfer roll, and the elements E arranged on the source substrate W1 may be continuously adhered to be transferred to the target substrate W2.
  • the base film 110 When the base film is in the form of a flat plate, the base film 110 may be coupled to a linear driving means (not shown) and the height may be adjusted, and may be moved back, front, left, and right along the surface of the source substrate W1.
  • the base film 110 When the base film 110 has a cylindrical shape, the base film 110 may be rotated by being coupled to a rotation driving means (not shown), and the rotation driving means may be coupled to a lifting means (not shown) to adjust the height. Can be.
  • the strained layer 120 is formed on one surface of the base film 110 with a predetermined thickness and has a property of changing hardness.
  • the first hardness K1 is maintained during picking of the device E to be transferred, and heat, UV, plasma, electric field, etc., when placing the device E to be transferred.
  • the energy source is changed to a second hardness K2 higher than the first hardness K1.
  • FIG. 2 is a graph showing that the adhesive force of the multilayer carrier film of FIG. 1 is changed according to the hardness of the strained layer.
  • the adhesive force F between the device E and the multilayer carrier film 100 is inversely proportional to the hardness K of the strained layer 120. That is, the harder the deformation layer 120 is, the less the adhesive force is.
  • relatively high adhesion force Fa is required, so that the hardness K of the strained layer 120 is determined by the source substrate W1 and the device E.
  • the adhesive force Fa is greater than the adhesive force Fs, and is maintained at the first hardness K1 at which the adhesive force Fa can be formed, and when the element E to be transferred is placed on the target substrate W2, a relatively low adhesive force ( Fb) is required, so the hardness K of the strained layer 120 is reduced to a second hardness K2 in which adhesion force Fb smaller than the adhesion force Fp between the target substrate W2 and the device E can be formed. Keep it.
  • the deformable layer 120 is made of a viscoelastic material capable of applying attraction force (electromagnetic force or van der Waals attraction force) with the element E, and is made of a flexible material to be wound on a roller.
  • attraction force electromagnettic force or van der Waals attraction force
  • the strained layer 120 may be formed by adding a small amount of particles or chemical additives to a base material such as acrylate, silicone rubber, nitrile butadiene rubber (NBR), polyester, epoxy, or the like.
  • a base material such as acrylate, silicone rubber, nitrile butadiene rubber (NBR), polyester, epoxy, or the like.
  • silicone rubber is excellent in temperature resistance, it can be used in a wide range of temperatures, and has the advantage of obtaining desired adhesive force by changing the ratio of silicone (resin) and rubber (rubber).
  • Acrylate is more excellent in heat resistance and weather resistance than silicone rubber, and has the advantage of being relatively inexpensive.
  • Nitrile butadiene rubber is a non-corrosive and non-oxidizing compound having a stable chemical structure that is incomparable with other elastic materials.
  • Polyester is relatively light and has the advantage of excellent flame retardancy, chemical resistance, weather resistance.
  • Epoxy has no torsion or deformation after curing, and is excellent in heat resistance, chemical
  • Deformation layer 120 may be prepared in advance to a predetermined standard and may be attached to the base film 110 through a known adhesive, supplying the liquid deformation layer 120 in the form of droplets using heat or mechanical vibration Inkjet printing method, E-jet printing method using an electric field to push out the liquid deformation layer 120, the liquid deformation layer 120 to a certain thickness with a tool such as a roll or a slot die (slot die) It may be formed in various ways such as coating on the base film.
  • the thickness t1 of the strained layer 120 is greater than the thickness t2 of the hard layer 130.
  • 3 is a graph showing that the adhesive force of the multilayer carrier film of FIG. 1 varies depending on the thickness of the strained layer. As shown in FIG. 3, the adhesive force between the multilayer carrier film 100 and the device E ( F) increases in proportion to the release rate v of the multi-layered carrier film. When the thickness t1 of the strained layer 120 becomes thin, the release rate dependence of the adhesive force is reduced.
  • the adhesive force Fa when the device E is picked is the source substrate W1.
  • the adhesive force Fa when the device E is picked is the source substrate W1.
  • the adhesive force Fa when the device E is picked is the source substrate W1 and the device E.
  • the device (E) may not be smoothly adhered to the multi-layered carrier film 100.
  • the thickness t1 of the strained layer 120 is thicker than necessary, it is not preferable. This is because the material for forming the strained layer 120 and energy for changing the hardness of the strained layer 120 may be excessively consumed.
  • the energy source 200 (see FIG. 4) for supplying energy required for curing to the strained layer 120 may be applied with various heating means such as a conventional heater method, a laser method, an induction method, or a UV irradiator or a plasma apparatus.
  • An electric field former and the like may be applied, and it is sufficient to increase the hardness K of the strained layer 120.
  • the hard layer 130 is formed to have a predetermined thickness on one surface of the strained layer 120, and is configured to have a higher hardness than the second hardness K2 of the strained layer 120.
  • the hard layer 130 is composed of a material having a relatively high deformation resistance compared to the deformation layer 120, and specifically, may be formed of any one material of a metal, a ceramic, a polymer having a very high modulus of elasticity, or a composite of these materials. Can be.
  • the method of forming the hard layer 130 is advantageously the same as the method of forming the strained layer 120 in terms of manufacturing equipment, but depending on the material of the hard layer, the vacuum deposition method (metal thin film, silicon oxide / silicon nitride, alumina, etc.) Ceramic thin film may be formed by chemical vapor deposition, atomic layer deposition, or physical vapor deposition.
  • the thickness t2 of the hard layer 130 is formed at least thinner than the thickness t1 of the strained layer 120, without affecting the adhesive force F between the multilayer carrier film 100 and the device E. It is preferable to form a thickness that can provide sufficient strength to the surface of the deformation layer 120 facing the device (E). For example, in the case of a metal thin film, a thickness of about 5 to 20 nm is sufficient.
  • the thickness t2 of the hard layer 130 is larger than necessary, the distance between the strained layer 120 and the device E is farther away, so that the adhesive force formed in the strained layer 120 is properly applied to the device E. If the thickness t2 of the hard layer 130 is too thin, the surface strength of the strained layer 120 is lowered, and thus the multilayer carrier film 100 is pressed against the source substrate W1. A portion of the hard layer 130 in close contact with the device E may not be maintained in shape and may be recessed into the strained layer 120 while being recessed into the strained layer 120.
  • the multi-layered carrier film 100 configured as described above is a structure in which materials having different hardness are sequentially stacked on the base film 110, and the adhesive force can be easily adjusted through the change in hardness of the deformation layer 120, and is also easy to manufacture. Has the advantage.
  • FIG. 4 is a view schematically illustrating a process of performing a device transfer method using a multilayer carrier film according to an embodiment of the present invention
  • FIG. 5 is a view illustrating a process of performing a device transfer method using the multilayer carrier film of FIG. 4.
  • the device transfer method using the multi-layered carrier film 100 according to the present invention includes a picking step S1, a curing step S2, and a placement step S3.
  • the multilayer carrier film 100 is closely adhered to the source substrate W1 on which the plurality of elements E are arranged while maintaining the deformation layer 120 at the first hardness K1.
  • a device E in W1) is attached to the multilayer carrier film 100.
  • the thickness t1 of the strained layer 120 is larger than the thickness t2 of the hard layer 130, and specifically, the thickness t1 of the strained layer 120 is determined by the source substrate W1 and the element E.
  • the adhesive force F between the multilayer carrier film 100 and the device E is proportional to the release rate at which the multilayer carrier film 100 is released from the source substrate W1. Therefore, the first release speed v1 for releasing the multilayer carrier film 100 from the source substrate W1 in the picking step S1 is at least the target substrate ( It is preferable to make it larger than the 2nd release speed v2 which releases from W2).
  • the first release speed v1 of the multilayer carrier film 100 is relatively fast, so that the adhesion force Fa between the multilayer carrier film 100 and the device E is increased in the picking step. It should be larger than the adhesive force (Fs) with (E).
  • the device E arranged on the source substrate W1 adheres to the multilayer carrier film 100 in the process of temporarily attaching and detaching the multilayer carrier film 100 to the device E. Regardless of the width or thickness, the device E can be picked easily and simply.
  • the strained layer 120 is hardened by applying energy such as heat and plasma to the strained layer 120, thereby changing the hardness K of the strained layer 120 from the first hardness K1 to the second hardness. Transforming to (K2).
  • the curing step (S2) may supply energy required for direct curing to the strained layer 120 by using the above-described energy source 200, and may indirectly transfer energy through the base film 110 or the hard layer 130. It may be.
  • the adhesive force F between the multilayer carrier film 100 and the device E is lowered in inverse proportion to the hardness K of the strained layer 120.
  • the internal structure of the strained layer 120 shrinks at a predetermined rate, wrinkles occur on the surface of the hard layer 130 on the strained layer 120.
  • wrinkles occur on the surface of the hard layer 130 on the strained layer 120.
  • the contact area between the hard layer 130 and the device E is reduced and the adhesion force F between the multilayer carrier film 100 and the device E is also reduced. Therefore, the device E adhered to the multi-layered carrier film 100 can be more easily transferred to the target substrate W2 in the placing step S3 to be described later.
  • the multilayer carrier film 100 is adhered to the target substrate W2 while the strained layer 120 is maintained at the second hardness K2, and the device adhered to the multilayer carrier film 100.
  • (E) is a step of adhering to the target substrate (W2).
  • the deformed layer 120 is cured to maintain the second hardness K2 so that the device E and the metal electrode Y (see FIG. 4) in the process of closely contacting the multi-layered carrier film 100 with the target substrate W2. Sufficient pressing force can be formed in between.
  • the second release speed v2 for releasing the multilayer carrier film 100 from the target substrate W2 is preferably slower than at least the first release speed v1. Precisely, the second release speed v2 of the multilayer carrier film 100 is relatively slow, so that the adhesive force F between the multilayer carrier film 100 and the device E is reduced in the placement step S3. In this case, the adhesion force Fp between the solder D and the element E applied to the metal electrode Y should be smaller.
  • the device E on the source substrate W1 is primarily adhered to the multilayer carrier film 100, and the hardness K of the strained layer 120 is changed from the first hardness K1 to the second hardness ( By lowering the adhesion force F between the multilayer carrier film 100 and the device E by changing to K2), the device E adhered to the multilayer carrier film 100 can be adhered to the target substrate W2. have.
  • the multilayer carrier film 100 is spaced apart from the target substrate W2 and replaced with a new multilayer carrier film 100 having a strained layer 120 having a first hardness K1 to be used in the transfer process.
  • FIG. 7 is a view illustrating a process in which a whole product is made by using a device transfer method using a multilayer carrier film according to an embodiment of the present invention.
  • the electronic product may be a component-type electronic product such as a circuit board or a completed electronic product in which the circuit board is embedded.
  • the circuit board various known circuit boards such as a printed circuit board, a liquid crystal circuit board, a display panel circuit board, a circuit board in a semiconductor chip, and the like, and the printed circuit board includes all known flexible, rigid or flexible circuit boards. May be included.
  • a manufacturing method of the LED panel for display using the device transfer method using a multilayer carrier film is described as an example, but the electronic product manufacturing method using the device transfer method is not limited to this embodiment.
  • the device E is specifically an RGB (R: red, G: green, B: blue) light emitting diode device
  • the substrate W is a wiring layer Wa and an insulating layer Wb.
  • the electrical connection material for example, solder paste or ACF, etc.
  • the substrate W and the device E are subsequently subjected to a reflow process or thermal pressure. They are joined while they are electrically connected to each other through the process.
  • the LED panel manufactured as described above is installed so as to be exposed to one surface of an enclosure (not shown) equipped with a cooling device or a driving IC element, and one surface of the exposed enclosure is shielded with a transparent glass or a transparent protective film to produce an LED panel for display. do.
  • the multilayer carrier film of the present invention configured as described above and the element transfer method using the same can be easily and simply transferred onto a substrate by transferring the multilayer carrier film to the substrate by temporarily attaching and detaching the multilayer carrier film. You can get the effect.
  • the multilayer carrier film of the present invention configured as described above and the device transfer method using the same, as a structure of sequentially stacking materials having different hardness on the base film, it is possible to easily control the adhesive force through the change in hardness, simply Can produce effects that can be produced.
  • the multilayer carrier film of the present invention configured as described above and the device transfer method using the same, the contact area between the strained layer and the device is reduced during the curing of the strained layer, the adhesion between the multilayer carrier film and the device is also reduced. As a result, the effect of transferring the device adhered to the multilayer carrier film to the target substrate more easily can be obtained.
  • the multilayer carrier film of the present invention configured as described above and the device transfer method using the same, by forming the thickness of the strained layer larger than the thickness of the hard layer, the elements arranged on the source substrate smoothly to the multilayer carrier film The effect which can stick can be obtained.
  • the release rate of the multilayer carrier film in the picking step is faster than the release rate of the multilayer carrier film in the placing step, The effect of more stably sticking or detaching from a multilayer carrier film can be acquired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Supply And Installment Of Electrical Components (AREA)
  • Wire Bonding (AREA)

Abstract

본 발명의 일 실시예에 따른 다층형 캐리어 필름은, 베이스 필름; 상기 베이스 필름의 일면에 일정 두께로 형성되고, 제1경도를 가지되, 에너지에 의해 상기 제1경도보다 높은 제2경도를 가지도록 변하는 변형층; 및 상기 변형층의 일면에 일정 두께로 형성되고, 상기 변형층의 제1경도보다 높은 경도로 구성되는 경질층;을 포함하고, 상기 변형층의 경도에 반비례하는 점착력을 가진다.

Description

다층형 캐리어 필름 및 이를 이용한 소자 전사 방법과 이 방법을 이용하여 전자제품을 제조하는 전자제품 제조방법
본 발명은 다층형 캐리어 필름 및 이를 이용한 소자 전사 방법과 이 방법을 이용하여 전자제품을 제조하는 전자제품 제조방법에 관한 것으로서, 보다 상세하게는 반도체, 디스플레이, 태양전지, 센서 등에 장착되는 소자를 소스기판에서 타켓 기판으로 전사하기 위한 다층형 캐리어 필름 및 이를 이용한 소자 전사 방법과 이 방법을 이용하여 전자제품을 제조하는 전자제품 제조방법에 관한 것이다.
전자부품은 인쇄회로기판(PCB: Printed Circuit Board)에 다양한 회로소자를 탑재하는 공정을 통하여 제조된다. 예를 들어, 컴퓨터에 사용되는 메모리 카드는 다수의 메모리 소자를 기판에 실장하는 공정을 통하여 제조될 수 있고, 최근 각광받고 있는 마이크로 LED를 사용한 디스플레이는 다수의 LED 소자를 모듈화된 기판에 배열한 형태로 제조되고 있다.
종래에는 소자를 기판의 솔더 위로 전사하기 위해 진공척을 이용하여 낱개 단위로 전사하는 방법을 사용하였다. 이때 사용하는 장비는 die bonder 혹은 flip chip bonder라고 하며, 진공척을 장착한 헤드 하나가 초당 1 ~ 3개의 소자를 기판 위에 전사할 수 있다.
최근 나노 기술이 발전하고, HD, UHD, SUHD 등의 화소수가 매우 많은 디스플레이 패널이 요구됨에 따라 마이크로 LED 소자의 크기는 갈수록 작아지고 소자의 개수는 크게 늘어나고 있다. 따라서 보다 높은 생산성을 위하여 다수의 미소 소자를 한꺼번에 기판에 전사할 수 있는 기술이 요구되는 것이다.
종래의 진공척을 이용한 전사 방법은 소자의 폭이 0.5 mm 미만이거나 소자의 두께가 20 μm 미만인 경우, 진공척의 설계적 한계 및 진공 흡착(suction)에 의한 소자 손상 문제로 인해 소자를 기판에 원활하게 전사하기 어렵다는 문제점이 있었다.
본 발명의 일 측면은, 소스기판에 있는 소자를 다층형 캐리어 필름에 1차적으로 점착시키고, 다층형 캐리어 필름의 경도 변화를 통해 다층형 캐리어 필름과 소자 사이의 점착력을 조절하여 다층형 캐리어 필름에 점착된 소자를 인쇄회로기판과 같은 타켓기판에 2차적으로 점착시킴으로써, 크기가 미소한 소자를 기판에 전사시킬 수 있고, 점착력을 쉽게 조절할 수 있는 다층형 캐리어 필름을 제공하고자 한다.
또한 본 발명의 다른 측면은, 전술한 다층형 캐리어 필름을 이용한 소자 전사 방법을 제공하고자 한다.
또한 본 발명의 또 다른 측면은, 전술한 소자 전사 방법을 이용하여 전자제품을 제조하는 전자제품 제조방법을 제공하고자 한다.
본 발명의 일 실시예에 따른 다층형 캐리어 필름은, 베이스 필름; 상기 베이스 필름의 일면에 일정 두께로 형성되고, 제1경도를 가지되, 에너지에 의해 상기 제1경도보다 높은 제2경도를 가지도록 변하는 변형층; 및 상기 변형층의 일면에 일정 두께로 형성되고, 상기 변형층의 제1경도보다 높은 경도로 구성되는 경질층;을 포함하고, 상기 변형층의 경도에 반비례하는 점착력을 가진다.
상기 변형층의 두께가 상기 경질층의 두께보다 클 수 있다.
상기 변형층은 아크릴레이트, 실리콘 러버, 니트릴 부타디엔 고무(NBR), 폴리에스테르, 에폭시 중 어느 하나의 재질로 형성되고, 상기 경질층은 금속, 세라믹, 폴리머 또는 이들의 복합체 중 어느 하나의 재질로 형성될 수 있다.
본 발명의 일 실시예에 따른 소자 전사 방법은, 상기 다층형 캐리어 필름을 이용하고, 상기 변형층을 상기 제1경도로 유지하면서 상기 다층형 캐리어 필름을 다수의 소자가 배열된 소스기판 측으로 밀착하여 상기 소자를 상기 다층형 캐리어 필름에 점착시키는 피킹 단계; 상기 변형층을 경화시켜 상기 변형층의 경도를 상기 제1경도에서 상기 제2경도로 변형시키는 경화 단계; 및 상기 변형층을 상기 제2경도로 유지하면서 상기 다층형 캐리어 필름을 타겟기판 측으로 밀착하여 상기 소자를 상기 타켓기판에 점착시키는 플레이싱 단계;를 포함하며, 상기 다층형 캐리어 필름과 상기 소자 사이의 점착력은 상기 변형층의 경도에 반비례한다.
상기 다층형 캐리어 필름과 상기 소자와의 점착력은 상기 다층형 캐리어 필름을 상기 소스기판 또는 상기 타겟기판으로부터 이형시키는 이형속도에 비례하고, 상기 피킹 단계에서 상기 다층형 캐리어 필름을 상기 소스기판으로부터 이형시키는 제1이형속도는 상기 플레이싱 단계에서 상기 다층형 캐리어 필름을 상기 타겟기판으로부터 이형시키는 제2이형속도보다 클 수 있다.
상기 변형층의 두께가 상기 경질층의 두께보다 클 수 있다.
본 발명의 일 실시예에 따른 전자제품 제조방법은, 상기 소자 전사 방법을 이용하여 다수의 소자를 평판 상에 전사하여 전자제품을 제조한다.
본 발명의 일 실시예에 따르면, 크기가 미소한 소자를 기판에 쉽고 간단하게 전사시킬 수 있다.
또한, 본 발명의 일 실시예에 따르면, 베이스 필름에 경도가 다른 물질을 순차적으로 적층하는 구조로서 간단하게 제작할 수 있고, 적층된 물질의 경도 변화를 통해 점착력을 쉽게 조절할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 변형층이 경화되는 과정에서 변형층과 소자의 접촉면적이 줄어듦에 따라 다층형 캐리어 필름에 점착된 소자를 타겟기판으로 보다 용이하게 전사시킬 수 있다.
또한, 본 발명의 일 실시예에 따르면, 변형층의 두께를 경질층의 두께보다 크게 형성함으로써, 소스기판에 배열된 소자를 다층형 캐리어 필름에 원활하게 점착시킬 수 있다.
또한, 본 발명의 일 실시예에 따르면, 피킹 단계에서의 다층형 캐리어 필름의 이형속도를 플레이싱 단계에서 다층형 캐리어 필름의 이형속도보다 빠르게 함으로써, 소자를 다층형 캐리어 필름으로부터 보다 안정적으로 점착시키거나 또는 떼어낼 수 있다.
도 1은 본 발명의 일 실시예에 따른 다층형 캐리어 필름을 개략적으로 나타낸 단면도이다.
도 2는 도1의 다층형 캐리어 필름의 점착력이 변형층의 경도에 따라 변화되는 것을 나타낸 그래프이다.
도 3은 도1의 다층형 캐리어 필름의 점착력이 변형층의 두께에 따라 차이가 발생하는 것을 나타낸 그래프이다.
도 4는 본 발명의 일 실시예에 따른 다층형 캐리어 필름을 이용한 소자 전사 방법의 수행과정을 개략적으로 나타낸 도면이다.
도 5는 도 4의 다층형 캐리어 필름을 이용한 소자 전사 방법의 수행과정을 나타낸 블록도이다.
도 6은 도 4의 다층형 캐리어 필름을 이용한 소자 전사 방법의 수행과정에서 다층형 캐리어 필름과 소자 사이의 점착력이 변형층의 경도에 따라 변화되는 것을 나타낸 그래프이다.
도 7은 본 발명의 일 실시예에 따른 다층형 캐리어 필름을 이용한 소자 전사 방법을 이용하여 전제제품이 만들어지는 과정을 나타낸 도면이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 만 아니라, 다른 부재를 사이에 두고 "간접적으로 연결"된 것도 포함한다. 또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
도 1은 본 발명의 일 실시예에 따른 다층형 캐리어 필름을 개략적으로 나타낸 단면도이다.
도 1을 참조하면, 본 실시예에 따른 다층형 캐리어 필름(100)은 반도체, 디스플레이, 태양전지, 센서 등에 장착되는 소자(E)를 소스기판(W1)에서 타겟기판(W2, 도 4 참조)으로 전사하기 위해 사용되는 것으로서, 베이스 필름(110)과, 변형층(120)과, 경질층(130)을 포함한다.
소자의 전사 과정은 소스기판에서 캐리어 필름을 이용하여 소자를 떼어내는 피킹(picking) 공정과, 캐리어 필름 위에 있는 소자를 타겟기판에 옮기는 플레이싱(placing) 공정으로 나뉜다. 캐리어 필름과 타겟기판이 동일한 경우에는 이 두 공정이 하나로 합쳐져 수행될 수 있다.
상기 베이스 필름(110)은 소자(E)에 밀착되는 과정에서 변형되지 않는 충분한 강도 및 탄성계수를 지니고, 변형층(120)의 형성 과정에서 고유의 물성이 유지될 수 있도록 내열성 및 내화학성을 지닌 재질로 형성되는 것이 바람직하며, 보통 PET(Polyethylene Terephthalate) 필름이나 PI(polyimide) 필름 등이 베이스 필름의 재질로 주로 사용되지만 그 재질은 특별히 한정되지 않는다.
베이스 필름(110)은 도 1에 도시된 바와 같이 평판 형태로 제작하여 소스기판(W1)의 일정영역에 배열된 소자(E)를 개별적으로 점착하여 타겟기판(W2)에 전사시킬 수도 있고, 도시되지는 않았지만, 원통 형태로 제작하여 일반적인 전사용 롤에 감아 소스기판(W1)에 배열된 소자(E)를 연속적으로 점착하여 타겟기판(W2)에 전사시킬 수도 있다.
베이스 필름이 평판 형태인 경우, 베이스 필름(110)은 선형 구동수단(미도시)에 결합되어 높이가 조절될 수 있고, 소스기판(W1)의 표면을 따라 전후좌우로 이동될 수 있다. 베이스 필름(110)이 원통 형태인 경우, 베이스 필름(110)은 회전 구동수단(미도시)에 결합되어 회전될 수 있고, 상기 회전 구동수단은 승강수단(미도시)에 결합되어 높이가 조절될 수 있다.
상기 변형층(120)은 베이스 필름(110)의 일면에 일정 두께로 형성되고, 경도가 변화하는 성질을 갖는다. 보다 상세히, 전사하고자 하는 소자(E)의 피킹(picking)시에는 제1경도(K1)가 유지되고, 전사하고자 하는 소자(E)의 플레이싱(placing)시에는 열, UV, 플라즈마, 전기장 등의 에너지원에 의해 제1경도(K1)보다 높은 제2경도(K2)로 변한다.
도 2는 도1의 다층형 캐리어 필름의 점착력이 변형층의 경도에 따라 변화되는 것을 나타낸 그래프이다. 도 2를 참조하면, 소자(E)와 다층형 캐리어 필름(100)과의 점착력(F)은 변형층(120)의 경도(K)에 반비례한다. 즉, 변형층(120)이 딱딱할수록 점착력은 감소한다.
전사하고자 하는 소자(E)를 소스기판(W1)에서 피킹할 시에는 상대적으로 높은 점착력(Fa)이 요구되므로, 변형층(120)의 경도(K)를 소스기판(W1)과 소자(E)와의 점착력(Fs)보다 큰 점착력(Fa)이 형성될 수 있는 제1경도(K1)로 유지하고, 전사하고자 하는 소자(E)를 타겟기판(W2)에 플레이싱할 시에는 상대적으로 낮은 점착력(Fb)이 요구되므로, 변형층(120)의 경도(K)를 타겟기판(W2)과 소자(E)와의 점착력(Fp)보다 작은 점착력(Fb)이 형성될 수 있는 제2경도(K2)로 유지한다.
변형층(120)은 소자(E)와의 인력(전자기력 또는 반데르발스 인력)이 작용될 수 있는 점탄성 물질로 구성되며, 롤러에 감길 수 있도록 플레서블(flexible)한 물질로 제작된다.
변형층(120)은 구체적으로 아크릴레이트, 실리콘 러버, 니트릴 부타디엔 고무(NBR), 폴리에스테르, 에폭시 등과 같은 기초 재료에 소량의 입자나 화학첨가제를 넣어서 형성될 수 있다. 실리콘 러버는 온도 저항성이 뛰어나므로 광범위한 온도에서 사용할 수 있고, 실리콘(수지)와 러버(고무)의 비율을 변경하여 원하는 점착력을 얻을 수 있는 장점이 있다. 아크릴레이트는 실리콘 러버보다 내열성 및 내후성이 더 뛰어나고, 비교적 저렴하게 획득할 수 있다는 장점이 있다. 니트릴 부타디엔 고무는 다른 탄성 소재와 비교할 수 없는 안정된 화학구조를 가짐에 따라 부식성이 없고 산화되지 않는 화합물로서, 내열, 내한, 전기절연, 화학적 안전성, 내마모성, 광택성, 풍부한 탄성 등을 지니고 있다. 폴리에스테르는 상대적으로 가볍고, 난연성, 내약품성, 내후성이 우수하다는 장점이 있다. 에폭시는 경화 후 비틀림이나 변형이 없고, 내열성, 내약품성, 내수성, 내마모성이 우수하며, 장기간 보관이 가능하다는 장점이 있다.
변형층(120)은 일정규격으로 미리 제작되어 공지의 접착제를 매개로 베이스 필름(110)에 부착될 수도 있고, 액상의 변형층(120)을 열 또는 기계적인 진동을 이용하여 액적 형태로 공급하는 잉크젯 프린팅 방식, 액상의 변형층(120)을 흘러나오도록 밀어내는 전기장을 사용하는 E-jet 프린팅 방식, 액상의 변형층(120)을 롤이나 슬롯 다이(slot die) 등의 공구로 일정한 두께로 베이스 필름 위에 코팅하는 방식 등 다양한 방식으로 형성될 수도 있다.
변형층(120)의 두께(t1)는 적어도 경질층(130)의 두께(t2)보다 크게 형성되는 것이 바람직하다. 도 3은 도1의 다층형 캐리어 필름의 점착력이 변형층의 두께에 따라 차이가 발생하는 것을 나타낸 그래프이다.도 3에 도시된 바와 같이 다층형 캐리어 필름(100)과 소자(E)와의 점착력(F)은 다층형 캐리어 필름의 이형속도(v)에 비례하여 증가하는데, 변형층(120)의 두께(t1)가 얇아지면, 점착력의 이형속도 의존성이 줄어들게 된다.
즉, 도시된 바와 같이 변형층(120)의 두께(t1)가 경질층(130)의 두께(t2)보다 클 경우, 소자(E)를 피킹할 시의 점착력(Fa)이 소스기판(W1)과 소자(E)와의 점착력(Fs)보다 크게 발생됨으로써, 다층형 캐리어 필름(100)에 소자(E)를 원활하게 점착시킬 수 있다. 반대로, 변형층(120)의 두께(t1)가 경질층(130)의 두께(t2)보다 작을 경우, 소자(E)를 피킹할 시의 점착력(Fa)이 소스기판(W1)과 소자(E)와의 점착력(Fs)보다 작게 발생됨으로써, 소자(E)가 다층형 캐리어 필름(100)에 원활하게 점착되지 않을 수 있다.
변형층(120)의 두께(t1)가 필요 이상으로 두꺼워도 바람직하지 않다. 왜냐하면, 변형층(120)을 형성하는 재료와, 변형층(120)의 경도를 변화시키기 위한 에너지가 과다하게 소요될 수 있기 때문이다.
변형층(120)에 경화에 필요한 에너지를 공급하는 에너지원(200, 도 4 참조)은 통상의 히터 방식, 레이저 방식, 인덕션 방식 등 다양한 방식의 가열수단들이 적용될 수 있고, 또는 UV조사기, 플라즈마 장치, 전기장 형성기 등이 적용될 수 있으며, 변형층(120)의 경도(K)를 높일 수 있으면 충분하다.
상기 경질층(130)은 변형층(120)의 일면에 일정 두께로 형성되고, 변형층(120)의 제2경도(K2)보다 높은 경도로 구성된다. 경질층(130)은 변형층(120)에 비해 상대적으로 변형 저항력이 큰 물질로 구성되는데, 구체적으로 금속, 세라믹, 탄성계수가 매우 큰 폴리머, 또는 이들 재료의 복합체 중 어느 하나의 재질로 형성될 수 있다.
경질층(130)의 형성 방법은 변형층(120)의 형성 방법과 동일하게 하는 것이 제작설비 측면에서 유리하지만, 경질층의 재료에 따라 진공 증착 방법(금속 박막이나 실리콘 산화물/실리콘 질화물, 알루미나 등의 세라믹 박막을 화학기상 증착법이나 원자층 증착법, 스터터닝과 같은 물리적 증착법)을 사용하여 형성할 수도 있다.
경질층(130)의 두께(t2)는 적어도 변형층(120)의 두께(t1)보다 얇게 형성되는데, 다층형 캐리어 필름(100)과 소자(E)와의 점착력(F)에 영향을 주지 않으면서도 소자(E)와 마주보는 변형층(120)의 표면에 충분한 강도를 제공할 수 있는 두께로 형성되는 것이 바람직하다. 예를 들어, 금속 박막의 경우 5 ~ 20 nm 정도의 두께면 충분하다.
만약, 경질층(130)의 두께(t2)가 필요 이상으로 두꺼우면, 변형층(120)과 소자(E) 사이의 거리가 멀어져 변형층(120)에서 형성되는 점착력이 소자(E)에 제대로 전달되지 않을 수 있고, 경질층(130)의 두께(t2)가 너무 얇으면, 변형층(120)의 표면 강도가 낮아지기 때문에 다층형 캐리어 필름(100)을 소스기판(W1)에 가압하는 과정에서 소자(E)와 밀착되는 경질층(130)의 일부분이 제 모양을 유지하지 못하고 변형층(120) 측으로 움푹 들어가면서 소자(E)가 변형층(120)에 박혀 속박될 수 있다.
이와 같이 구성되는 다층형 캐리어 필름(100)은 베이스 필름(110) 위에 경도가 다른 물질을 순차적으로 적층하는 구조로서, 변형층(120)의 경도 변화를 통해 점착력을 쉽게 조절할 수 있고, 제작도 용이하다는 장점이 있다.
지금부터는 상기와 같이 구성된 다층형 캐리어 필름(100)을 이용한 소자 전사 방법을 상세히 설명한다. 도 4는 본 발명의 일 실시예에 따른 다층형 캐리어 필름을 이용한 소자 전사 방법의 수행과정을 개략적으로 나타낸 도면이고, 도 5는 도 4의 다층형 캐리어 필름을 이용한 소자 전사 방법의 수행과정을 나타낸 블록도이다. 도 4 및 도 5를 참조하면, 본 발명에 따른 다층형 캐리어 필름(100)을 이용한 소자 전사 방법은 피킹 단계(S1)와, 경화 단계(S2)와, 플레이싱 단계(S3)를 포함한다.
상기 피킹 단계(S1)는 변형층(120)을 제1경도(K1)로 유지하면서 다층형 캐리어 필름(100)을 다수의 소자(E)가 배열된 소스기판(W1) 측으로 밀착하여 소스기판(W1)에 있는 소자(E)를 다층형 캐리어 필름(100)에 점착시키는 단계이다.
이때, 변형층(120)의 두께(t1)는 경질층(130)의 두께(t2)보다 크게, 구체적으로 변형층(120)의 두께(t1)를 소스기판(W1)과 소자(E)와의 점착력(Fs)에 대응하는 기준 두께(to)보다 크게 하여 소자(E)가 다층형 캐리어 필름(100)에 원활하게 점착되게 하는 것이 바람직하다.
도 6은 도 4의 다층형 캐리어 필름을 이용한 소자 전사 방법의 수행과정에서 다층형 캐리어 필름과 소자 사이의 점착력이 변형층의 경도에 따라 변화되는 것을 나타낸 그래프이다. 도 6을 참조하면, 다층형 캐리어 필름(100)과 소자(E) 사이의 점착력(F)은, 다층형 캐리어 필름(100)을 상기 소스기판(W1)으로부터 이형시키는 이형속도에도 비례한다. 그러므로 피킹 단계(S1)에서 다층형 캐리어 필름(100)을 소스기판(W1)으로부터 이형시키는 제1이형속도(v1)는 적어도 플레이싱 단계(S3)에서 다층형 캐리어 필름(100)을 타겟기판(W2)으로부터 이형시키는 제2이형속도(v2)보다 크게 하는 것이 바람직하다.
정확히는 다층형 캐리어 필름(100)의 제1이형속도(v1)를 상대적으로 빠르게하여, 피킹 단계에서 다층형 캐리어 필름(100)과 소자(E)와의 점착력(Fa)이 소스기판(W1)과 소자(E)와의 점착력(Fs)보다 크게 해야 한다.
이와 같이 다층형 캐리어 필름(100)을 소자(E)에 잠시 붙였다 떼어내는 과정에서 소스기판(W1)에 배열된 소자(E)가 다층형 캐리어 필름(100)에 점착되므로, 소자(E)의 폭 또는 두께에 구애받지 않고 소자(E)를 쉽고 간단하게 피킹할 수 있게 된다.
상기 경화 단계(S2)는 변형층(120)에 열, 플라즈마 등과 같은 에너지를 가하여 변형층(120)을 경화시켜 변형층(120)의 경도(K)를 제1경도(K1)에서 제2경도(K2)로 변형시키는 단계이다.
경화 단계(S2)는 상술한 에너지원(200)을 이용하여 변형층(120)에 직접 경화에 필요한 에너지를 공급할 수도 있고, 베이스 필름(110) 또는 경질층(130)을 통해 간접적으로 에너지를 전달할 수도 있다.
변형층(120)이 경화되면서 다층형 캐리어 필름(100)과 소자(E) 사이의 점착력(F)은 변형층(120)의 경도(K)에 반비례하여 낮아지게 된다.
이때, 변형층(120)의 내부 조직이 일정비율로 수축되면서 변형층(120) 위에 있는 경질층(130)의 표면에 주름이 발생하게 된다. 이렇게 주름이 발생하게 되면, 경질층(130)과 소자(E) 사이의 접촉면적이 줄어들면서 다층형 캐리어 필름(100)과 소자(E)와의 점착력(F)도 감소하게 된다. 따라서, 후술되는 플레이싱 단계(S3)에서 다층형 캐리어 필름(100)에 점착된 소자(E)가 타겟기판(W2)으로 보다 용이하게 전사될 수 있게 된다.
상기 플레이싱 단계(S3)는 변형층(120)을 제2경도(K2)로 유지하면서 다층형 캐리어 필름(100)을 타겟기판(W2) 측으로 밀착하여 다층형 캐리어 필름(100)에 점착된 소자(E)를 타겟기판(W2)으로 점착시키는 단계이다.
변형층(120)이 경화되어 제2경도(K2)를 유지함으로써, 다층형 캐리어 필름(100)을 타겟기판(W2)에 밀착하는 과정에서 소자(E)와 금속전극(Y, 도 4 참조) 사이에 충분한 가압력이 형성될 수 있다.
다층형 캐리어 필름(100)을 타겟기판(W2)에서 이형시키는 제2이형속도(v2)는 적어도 제1이형속도(v1)보다 느리게 하는 것이 바람직하다. 정확히는 다층형 캐리어 필름(100)의 제2이형속도(v2)를 상대적으로 느리게 하여, 플레이싱 단계(S3)에서 다층형 캐리어 필름(100)과 소자(E)와의 점착력(F)이 타겟기판(여기서는 금속전극(Y)에 도포된 솔더(D))과 소자(E)와의 점착력(Fp)보다 작게 해야 한다.
만약, 변형층(120)의 경화가 충분히 진행된 경우에는 다층형 캐리어 필름(100)과 소자(E)와의 점착력(F)이 제2이형속도(v2)에 의존하는 특성이 약해지거나 없어지는 경우가 자주 발생하며, 이런 경우에는 생산성 향상을 위하여 제2이형속도(v2)를 느리게 할 필요는 없다.
이와 같이 소스기판(W1)에 있는 소자(E)를 다층형 캐리어 필름(100)에 1차적으로 점착시키고, 변형층(120)의 경도(K)를 제1경도(K1)에서 제2경도(K2)로 변화시켜 다층형 캐리어 필름(100)과 소자(E)와의 점착력(F)을 낮춤으로써, 다층형 캐리어 필름(100)에 점착된 소자(E)를 타겟기판(W2)에 점착시킬 수 있다.
이후, 다층형 캐리어 필름(100)을 타겟기판(W2)으로부터 이격시켜 제1경도(K1)의 변형층(120)을 갖는 새로운 다층형 캐리어 필름(100)으로 교체하여 전사공정에 사용하게 된다.
지금부터는 다층형 캐리어 필름을 이용한 소자 전사 방법을 이용하여 다수의 소자를 평판 상에 전사하여 전자제품을 제조하는 전자제품 제조방법에 대하여 상세하게 설명한다. 도 7은 본 발명의 일 실시예에 따른 다층형 캐리어 필름을 이용한 소자 전사 방법을 이용하여 전제제품이 만들어지는 과정을 나타낸 도면이다.
여기서 전자제품은 구체적으로 회로기판과 같은 부품형 전자제품이거나 또는 이 회로기판이 내장되는 완성형 전자제품일 수 있다. 회로기판으로는 인쇄회로기판, 액정회로기판, 디스플레이패널 회로기판, 반도체칩 내의 회로기판 등의 공지의 다양한 회로기판이 이에 해당하며, 인쇄회로기판으로는 공지의 연성, 경성 또는 연경성 회로기판이 모두 포함될 수 있다.
본 실시예에서는 다층형 캐리어 필름을 이용한 소자 전사 방법을 이용하여 디스플레이용 LED 패널을 제작하는 것을 예로 들어 설명하나, 소자 전사 방법을 이용한 전자제품 제조방법은 본 실시예에 한정되지 않는다.
도 7을 참조하면, 본 실시예에서 소자(E)는 구체적으로 RGB(R: 적색, G: 녹색, B: 청색) 발광 다이오드 소자이고, 기판(W)은 배선층(Wa) 및 절연층(Wb)을 포함하는 평판 형태의 인쇄회로기판(PCB)이며, 다층형 캐리어 필름(100)이 롤(R)에 감겨 일정속도로 회전하면서 소자(E)를 기판(W)에 연속적으로 전사시킨다. 전사되는 과정 중에 기판(W) 위에 있는 전기적 연결소재(예를 들어 솔더 페이스트나 ACF 등)와 소자(E)가 접촉하게 되고, 기판(W)과 소자(E)가 이후 리플로우 공정이나 열가압 공정을 통하여 상호 전기적으로 연결되면서 접합된다.
이와 같이 제작된 LED 패널을 냉각장치 혹은 구동 IC소자가 갖춰진 함체(미도시)의 일면에 노출되도록 설치하고, 노출된 함체의 일면을 투명 글래스 혹은 투명 보호 필름으로 차폐함으로써, 디스플레이용 LED 패널이 제작된다.
상술한 바와 같이 구성된 본 발명의 다층형 캐리어 필름 및 이를 이용한 소자 전사 방법은, 다층형 캐리어 필름을 소자에 잠시 붙였다 떼어내는 방식으로 전사시킴으로써, 크기가 미소한 소자를 기판에 쉽고 간단하게 전사시킬 수 있는 효과를 얻을 수 있다.
또한, 상술한 바와 같이 구성된 본 발명의 다층형 캐리어 필름 및 이를 이용한 소자 전사 방법은, 베이스 필름에 경도가 다른 물질을 순차적으로 적층하는 구조로서, 경도 변화를 통해 점착력을 쉽게 조절할 수 있고, 간단하게 제작할 수 있는 효과를 얻을 수 있다.
또한, 상술한 바와 같이 구성된 본 발명의 다층형 캐리어 필름 및 이를 이용한 소자 전사 방법은, 변형층이 경화되는 과정에서 변형층과 소자의 접촉면적이 줄어들면서 다층형 캐리어 필름과 소자와의 점착력도 감소됨에 따라 다층형 캐리어 필름에 점착된 소자를 타겟기판으로 보다 용이하게 전사시킬 수 있는 효과를 얻을 수 있다.
또한, 상술한 바와 같이 구성된 본 발명의 다층형 캐리어 필름 및 이를 이용한 소자 전사 방법은, 변형층의 두께를 경질층의 두께보다 크게 형성함으로써, 소스기판에 배열된 소자를 다층형 캐리어 필름에 원활하게 점착시킬 수 있는 효과를 얻을 수 있다.
또한, 상술한 바와 같이 구성된 본 발명의 다층형 캐리어 필름 및 이를 이용한 소자 전사 방법은, 피킹 단계에서의 다층형 캐리어 필름의 이형속도를 플레이싱 단계에서 다층형 캐리어 필름의 이형속도보다 빠르게 함으로써, 소자를 다층형 캐리어 필름으로부터 보다 안정적으로 점착시키거나 또는 떼어낼 수 있는 효과를 얻을 수 있다.
본 발명의 권리범위는 상술한 실시예 및 변형례에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.
- 부호의 설명 -
100 : 다층형 캐리어 필름
110 : 베이스 필름
120 : 변형층
130 : 경질층
200 : 에너지원
D : 솔더
E : 소자
Y : 금속전극
W1 : 소스기판
W2 : 타겟기판

Claims (7)

  1. 베이스 필름;
    상기 베이스 필름의 일면에 일정 두께로 형성되고, 제1경도를 가지되, 에너지에 의해 상기 제1경도보다 높은 제2경도를 가지도록 변하는 변형층; 및
    상기 변형층의 일면에 일정 두께로 형성되고, 상기 변형층의 제1경도보다 높은 경도로 구성되는 경질층;
    을 포함하고,
    상기 변형층의 경도에 반비례하는 점착력을 가지는 다층형 캐리어 필름.
  2. 제1항에 있어서,
    상기 변형층의 두께가 상기 경질층의 두께보다 큰 다층형 캐리어 필름.
  3. 제1항에 있어서,
    상기 변형층은 아크릴레이트, 실리콘 러버, 니트릴 부타디엔 고무(NBR), 폴리에스테르, 에폭시 중 어느 하나의 재질로 형성되고,
    상기 경질층은 금속, 세라믹, 폴리머 또는 이들의 복합체 중 어느 하나의 재질로 형성되는 다층형 캐리어 필름.
  4. 제1항에 기재된 다층형 캐리어 필름을 이용하고,
    상기 변형층을 상기 제1경도로 유지하면서 상기 다층형 캐리어 필름을 다수의 소자가 배열된 소스기판 측으로 밀착하여 상기 소자를 상기 다층형 캐리어 필름에 점착시키는 피킹 단계;
    상기 변형층을 경화시켜 상기 변형층의 경도를 상기 제1경도에서 상기 제2경도로 변형시키는 경화 단계; 및
    상기 변형층을 상기 제2경도로 유지하면서 상기 다층형 캐리어 필름을 타겟기판 측으로 밀착하여 상기 소자를 상기 타켓기판에 점착시키는 플레이싱 단계;
    를 포함하며,
    상기 다층형 캐리어 필름과 상기 소자 사이의 점착력은 상기 변형층의 경도에 반비례하는 다층형 캐리어 필름을 이용한 소자 전사 방법.
  5. 제4항에 있어서,
    상기 다층형 캐리어 필름과 상기 소자와의 점착력은 상기 다층형 캐리어 필름을 상기 소스기판 또는 상기 타겟기판으로부터 이형시키는 이형속도에 비례하고,
    상기 피킹 단계에서 상기 다층형 캐리어 필름을 상기 소스기판으로부터 이형시키는 제1이형속도는 상기 플레이싱 단계에서 상기 다층형 캐리어 필름을 상기 타겟기판으로부터 이형시키는 제2이형속도보다 큰 다층형 캐리어 필름을 이용한 소자 전사 방법.
  6. 제4항에 있어서,
    상기 변형층의 두께가 상기 경질층의 두께보다 큰 다층형 캐리어 필름을 이용한 소자 전사 방법.
  7. 제4항에 기재된 다층형 캐리어 필름을 이용한 소자 전사 방법을 이용하여 다수의 소자를 평판 상에 전사하여 전자제품을 제조하는 전자제품 제조방법.
PCT/KR2017/011242 2016-10-12 2017-10-12 다층형 캐리어 필름 및 이를 이용한 소자 전사 방법과 이 방법을 이용하여 전자제품을 제조하는 전자제품 제조방법 WO2018070801A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019517749A JP6807454B2 (ja) 2016-10-12 2017-10-12 多層型キャリアフィルムおよびこれを用いた素子の転写方法とこの方法を用いて電子製品を製造する電子製品の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0132250 2016-10-12
KR1020160132250A KR101866901B1 (ko) 2016-10-12 2016-10-12 다층형 캐리어 필름 및 이를 이용한 소자 전사 방법과 이 방법을 이용하여 전자제품을 제조하는 전자제품 제조방법

Publications (2)

Publication Number Publication Date
WO2018070801A2 true WO2018070801A2 (ko) 2018-04-19
WO2018070801A3 WO2018070801A3 (ko) 2018-08-09

Family

ID=61906388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011242 WO2018070801A2 (ko) 2016-10-12 2017-10-12 다층형 캐리어 필름 및 이를 이용한 소자 전사 방법과 이 방법을 이용하여 전자제품을 제조하는 전자제품 제조방법

Country Status (3)

Country Link
JP (1) JP6807454B2 (ko)
KR (1) KR101866901B1 (ko)
WO (1) WO2018070801A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109321160A (zh) * 2018-12-07 2019-02-12 昆山摩建电子科技有限公司 电子产品用组装贴膜

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102385376B1 (ko) * 2019-07-05 2022-05-11 한국과학기술원 마이크로 진공모듈을 이용한 마이크로 led 어레이 전사를 위한 기판, 마이크로 led 어레이, 마이크로 진공모듈 간의 배치 구조 및 이를 이용한 마이크로 led 디스플레이 제작 방법
KR102283056B1 (ko) * 2019-10-11 2021-07-29 숭실대학교 산학협력단 목표체의 배열을 변화시켜 전사하는 점탈착 전사 장치
KR102279643B1 (ko) * 2019-11-15 2021-07-20 한국기계연구원 캐리어 기판 및 이를 이용한 소자 전사방법
KR102334577B1 (ko) 2019-11-22 2021-12-03 한국기계연구원 소자 전사방법 및 이를 이용한 전자패널 제조방법
KR102409849B1 (ko) * 2020-04-29 2022-06-16 최지훈 마이크로 엘이디 제조시스템 및 마이크로 엘이디 제조방법
JP6978129B1 (ja) * 2021-03-18 2021-12-08 株式会社写真化学 デバイスチップの移載機構
JP7011745B1 (ja) 2021-04-20 2022-02-10 ナカンテクノ株式会社 デバイス実装装置及びそれを用いたデバイス実装方法
WO2024106572A1 (ko) * 2022-11-18 2024-05-23 엘지전자 주식회사 전사 기판

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012673A (ja) * 1996-06-27 1998-01-16 Japan Synthetic Rubber Co Ltd 半導体素子実装用シートおよび半導体装置
JP3617504B2 (ja) * 1996-10-08 2005-02-09 日立化成工業株式会社 半導体素子搭載用接着フィルム
JP3707516B2 (ja) * 1997-09-17 2005-10-19 富士通株式会社 半導体素子の実装方法、およびこれに使用する素子実装用シート
JP3932689B2 (ja) * 1998-09-11 2007-06-20 凸版印刷株式会社 Tab用フィルムキャリアテープ
JP2005248088A (ja) * 2004-03-05 2005-09-15 Jsr Corp 部品実装用フィルム及びこれを用いた実装基板
JP4618723B2 (ja) * 2005-05-24 2011-01-26 セイコーインスツル株式会社 加圧粘着シート、粘着シート製造システム、および粘着シート製造方法
WO2008149772A1 (ja) * 2007-06-08 2008-12-11 Mitsui Mining & Smelting Co., Ltd. 電子部品実装用積層フィルム、電子部品実装用フィルムキャリアテープ及び半導体装置
JP5466852B2 (ja) * 2008-12-01 2014-04-09 出光ユニテック株式会社 表面保護フィルム
CN102667895A (zh) * 2010-09-06 2012-09-12 三菱树脂株式会社 图像显示装置构成用叠层体的制造方法、以及使用该叠层体构成的图像显示装置
KR101673580B1 (ko) 2014-12-29 2016-11-07 광주과학기술원 마이크로 디바이스의 전사장치, 마이크로 디바이스의 전사방법, 및 그 전사장치의 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109321160A (zh) * 2018-12-07 2019-02-12 昆山摩建电子科技有限公司 电子产品用组装贴膜

Also Published As

Publication number Publication date
KR101866901B1 (ko) 2018-06-14
KR20180040770A (ko) 2018-04-23
WO2018070801A3 (ko) 2018-08-09
JP2019521530A (ja) 2019-07-25
JP6807454B2 (ja) 2021-01-06

Similar Documents

Publication Publication Date Title
WO2018070801A2 (ko) 다층형 캐리어 필름 및 이를 이용한 소자 전사 방법과 이 방법을 이용하여 전자제품을 제조하는 전자제품 제조방법
US7255919B2 (en) Mold release layer transferring film and laminate film
WO2015163527A1 (ko) 반도체 소자들을 패키징하는 방법 및 이를 수행하기 위한 장치
WO2021045482A1 (en) Micro led display and method for manufacturing the same
KR100649711B1 (ko) Cof용 플렉서블 프린트배선판 및 그 제조방법
WO2016137056A1 (ko) 투명 전광 장치
TW200305355A (en) COF flexible printed wiring board and method of producing the wiring board
WO2013094950A1 (en) Heat radiation printed circuit board, method of manufacturing the same, backlight unit including the same, and liquid crystal display device
WO2015076457A1 (ko) 씨오에프형 반도체 패키지 및 그 제조 방법
WO2019039848A1 (ko) 시인성 및 작업성이 개선된 그라파이트 라미네이트 칩온필름형 반도체 패키지
WO2015170792A1 (ko) 반도체 소자들을 패키징하는 방법 및 이를 수행하기 위한 장치
WO2013032277A2 (en) Method of manufacturing substrate for chip packages and method of manufacturing chip package
WO2018016829A1 (ko) 연성 회로 기판 및 그 제조 방법
WO2015170800A1 (ko) 반도체 소자들을 패키징하는 방법 및 이를 수행하기 위한 장치
WO2018074841A1 (ko) 캐리어 필름, 이를 이용한 소자 전사방법 및 소자 전사방법을 이용한 전자제품 제조방법
WO2018182353A1 (ko) 고분자 나노무기입자 복합체 및 이를 제조하는 방법
WO2021101341A1 (ko) 소자 전사방법 및 이를 이용한 전자패널 제조방법
WO2019151574A1 (ko) 마이크로 소자를 타겟 오브젝트에 전사하는 방법 및 장치
JP2004260146A (ja) 回路基板の製造方法および製造装置
WO2019066344A2 (ko) 디스플레이 화소 전사용 패턴 필름 및 이를 이용한 디스플레이의 제조방법
JP4626139B2 (ja) 回路基板の製造方法
WO2018186654A1 (ko) 인쇄회로기판 및 이의 제조 방법
WO2018043897A1 (ko) 반도체 패키지 리플로우 공정용 폴리이미드 필름 및 그 제조 방법
WO2020013622A1 (ko) Led 소자 및 그 제조 방법
JP2008243899A (ja) 回路基板の製造方法および回路基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17860852

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2019517749

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17860852

Country of ref document: EP

Kind code of ref document: A2