WO2018070470A1 - 繊維強化複合材料用樹脂組成物及びそれを用いた繊維強化複合材料 - Google Patents

繊維強化複合材料用樹脂組成物及びそれを用いた繊維強化複合材料 Download PDF

Info

Publication number
WO2018070470A1
WO2018070470A1 PCT/JP2017/036979 JP2017036979W WO2018070470A1 WO 2018070470 A1 WO2018070470 A1 WO 2018070470A1 JP 2017036979 W JP2017036979 W JP 2017036979W WO 2018070470 A1 WO2018070470 A1 WO 2018070470A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
reinforced composite
resin composition
composite material
meth
Prior art date
Application number
PCT/JP2017/036979
Other languages
English (en)
French (fr)
Inventor
裕一 谷口
恭兵 狩野
Original Assignee
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社 filed Critical 新日鉄住金化学株式会社
Priority to KR1020197011192A priority Critical patent/KR102399500B1/ko
Priority to US16/339,161 priority patent/US11597829B2/en
Priority to JP2018545047A priority patent/JP7012654B2/ja
Priority to EP17860269.4A priority patent/EP3527605B1/en
Priority to CN201780063008.4A priority patent/CN109843968B/zh
Publication of WO2018070470A1 publication Critical patent/WO2018070470A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • C08G59/58Amines together with other curing agents with polycarboxylic acids or with anhydrides, halides, or low-molecular-weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/10Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. casting around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5026Amines cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/02Polyglycidyl ethers of bis-phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking

Definitions

  • the present invention relates to a matrix resin material for a fiber-reinforced composite material that is a resin composition having a low viscosity and excellent curability in a short time and that has a high heat resistance when cured, and a molding method thereof.
  • fiber reinforced composite materials are made of glass fiber, aramid fiber, carbon fiber and other reinforcing fibers, and unsaturated polyester resin, vinyl ester resin, epoxy resin, phenol resin, benzoxazine resin, cyanate resin, bismaleimide resin, etc. Since it is composed of a curable matrix resin and is lightweight and excellent in mechanical properties such as strength, corrosion resistance and fatigue resistance, it is widely applied as a structural material for aircraft, automobiles, civil engineering and sports equipment.
  • the fiber reinforced composite material manufacturing method includes an autoclave molding method or a press molding method using a prepreg in which a reinforcing fiber is impregnated with a thermosetting matrix resin in advance, a step of impregnating a reinforcing matrix with a liquid matrix resin, and heat.
  • a resin transfer molding method including a molding step by curing, a liquid compression molding method, a wet lay-up molding method, a pultrusion molding method, or a filament winding molding method is performed.
  • a molding method such as resin transfer, which performs impregnation and molding without using a prepreg, uses a low-viscosity matrix resin in order to quickly impregnate reinforcing fibers.
  • the resin transfer molding method and the liquid compression molding method require a matrix resin having a high curing speed after impregnating the resin with reinforcing fibers in order to ensure high productivity.
  • thermosetting resins such as unsaturated polyester resins, vinyl ester resins, urethane resins and epoxy resins have been used in resin transfer molding methods and liquid compression molding methods.
  • Unsaturated polyester resins and vinyl ester resins having radical polymerizability are low in viscosity and excellent in fast curability, but have large curing shrinkage during molding and have relatively high mechanical properties such as heat resistance, strength and toughness of the molding. There is a problem that it is low.
  • Urethane resins are excellent in fast curability and can provide a molded product having high strength and toughness, but there are problems that the molded product has low heat resistance and high water absorption.
  • an epoxy resin can obtain a molded product having high heat resistance, strength and toughness, there is a problem that the resin viscosity is relatively high.
  • a bisphenol A type epoxy resin is generally used because it is excellent in economic efficiency and physical properties.
  • a low viscosity bisphenol F type is used to improve the impregnation property of fibers.
  • Epoxy resins are also used.
  • Patent Document 1 proposes a low-viscosity fiber-reinforced composite material resin composition using a bisphenol F-type epoxy resin.
  • the bisphenol F type epoxy resin becomes a cured product having a glass transition temperature lower than that of the bisphenol A type epoxy resin, and thus is not desirable in applications requiring heat resistance.
  • Patent Documents 2, 3, and 4 propose resin compositions comprising an epoxy resin, a polyfunctional acrylate compound, and a curing agent.
  • an invention that uses concrete repair materials and adhesives, and has a low glass transition temperature and insufficient heat resistance.
  • Patent Document 5 Although efforts have been made to impart fast curability of a resin composition by a combination of an epoxy resin and a specific phenol compound, the time until gelation is still long and the rapid curability is insufficient. .
  • Patent Documents 6 and 7 efforts are made to impart fast curability by adding a specific catalyst to a resin composition comprising an epoxy resin and polyethylene polyamine.
  • a specific catalyst for impart fast curability by adding a specific catalyst to a resin composition comprising an epoxy resin and polyethylene polyamine.
  • bisphenol A type epoxy resin is used as the main agent, there is a problem that the viscosity of the main agent is high.
  • JP 2006-265434 A JP 2002-256139 A JP 2002-275242 A JP 2012-2111244 A JP 2016-098322 A Special table 2015-535022 gazette Special table 2015-536373 gazette
  • the present invention shows good impregnation into reinforcing fibers by reducing the viscosity of the resin composition by lowering the viscosity of the main agent, has fast curability, and is heat resistant of a molded product obtained by curing. It aims at providing the resin composition with high property. Furthermore, it aims at providing the resin composition which can obtain a fiber reinforced composite material with sufficient productivity.
  • the present inventors have obtained a molded product having high heat resistance by using a specific epoxy resin, an acrylate compound and an amine compound, thereby solving the above problems. As a result, the present invention has been completed.
  • the present invention includes an epoxy resin (A), a main agent containing a (meth) acrylate compound (B) having three or more (meth) acryloyl groups in one molecule, and an amine represented by the following general formula (1).
  • a two-component curable resin composition comprising a curing agent containing a compound (C) and having a mass ratio of the main agent and the curing agent in the range of 85:15 to 65:35, the epoxy resin (A)
  • a bisphenol A type epoxy resin is contained in an amount of 75 to 100% by mass, the viscosity at 25 ° C.
  • X is preferably an n-valent hydrocarbon group having an alicyclic structure having 6 or more carbon atoms, an n-valent hydrocarbon group having an aromatic ring structure, or an aliphatic hydrocarbon group. Or an aliphatic hydrocarbon group may have a secondary amine structure therein.
  • a preferable amine compound (C) there is a diamine represented by the following formula (2) or (3).
  • the (meth) acrylate compound (B) is trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, or dipentaerythritol hexa (meth) acrylate. It is preferably at least one selected from
  • the mass ratio of the epoxy resin (A) and the (meth) acrylate compound (B) in the main agent is preferably in the range of 96: 4 to 70:30.
  • the main component containing the epoxy resin (A) and the (meth) acrylate compound (B) has a viscosity increase rate of 16% or less after 24 hours at 60 ° C. under a vacuum degree of 1.0 kPa. It is preferable.
  • the glass transition temperature of a cured product obtained by curing the resin composition for fiber-reinforced composite material by heat treatment at 130 ° C. for 5 minutes is 110 ° C. or higher.
  • Another embodiment of the present invention is a fiber-reinforced composite material obtained by blending reinforcing fibers with the resin composition for fiber-reinforced composite materials.
  • the volume content of the reinforcing fiber is preferably 45 to 70%.
  • it is the hardened
  • the present invention is a method for producing a molded body, wherein the fiber reinforced composite material is molded by a resin transfer molding method or a liquid compression molding method.
  • Another embodiment of the present invention comprises an epoxy resin (A) containing 75 to 100% by mass of a bisphenol A type epoxy resin and a (meth) acrylate compound (B) having three or more (meth) acryloyl groups in one molecule. Including a main agent having a viscosity at 25 ° C.
  • a method for producing a molded article comprising: forming a resin composition; blending reinforcing fibers therein to form a fiber-reinforced composite material; and then heat-curing and molding the fiber-reinforced composite material in a mold. is there.
  • the resin composition for a fiber-reinforced composite material of the present invention includes an epoxy resin (A), a main agent composed of a (meth) acrylate compound (B) having three or more (meth) acryloyl groups in one molecule, and the above general formula ( It is a two-component curable resin composition composed of a curing agent comprising the amine compound (C) represented by 1).
  • the epoxy resin (A) used as the component (A) needs to be 75 to 100% by mass of a bisphenol A type epoxy resin.
  • a bisphenol A type epoxy resin By using a bisphenol A type epoxy resin, the thermal stability of the main agent can be increased, and the viscosity can be reduced by heating. Moreover, the heat resistance of the molded object obtained by heat-curing is excellent.
  • a bisphenol F-type epoxy resin when used as the main component, the heat resistance of the resulting molded article is reduced although the viscosity can be reduced.
  • the phenol novolac type epoxy resin is used, the heat resistance of the molded body can be increased, but the viscosity is increased and the impregnation property to the reinforcing fiber is impaired.
  • the epoxy resin (A) used in the present invention can contain other epoxy resins as long as it is less than 25% by mass within the range in which the main agent viscosity does not increase.
  • it is a compound having two or more epoxy groups in one molecule, for example, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, bisphenol Z type epoxy resin, isophorone bisphenol type epoxy resin.
  • Novolak type epoxy resins such as novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, and 3,4-epoxy-6-methylcyclohexylmethyl-3,4-epoxy-6-methyl Cycloaliphatic epoxy resins such as cyclohexanecarboxylate, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 1-epoxyethyl-3,4-epoxycyclohexane, trimethylolpropane polyglycidyl ether, Aliphatic epoxy resins such as pentaerythritol polyglycidyl ether, polyoxyalkylene diglycidyl ether, glycidyl esters such as phthalic acid diglycidyl ester, tetrahydrophthalic acid diglycidyl ester, dimer acid glycidyl ester, tetraglycidyl diamin
  • epoxy resins may be used alone or in combination of two or more.
  • an epoxy resin having a viscosity at 25 ° C. of 30000 mPa ⁇ s or less measured with an E-type viscometer having two or more epoxy groups in one molecule is preferable from the viewpoint of viscosity.
  • the (meth) acrylate compound (B) used in the present invention has three or more (meth) acryloyl groups in one molecule as a functional group.
  • the number of functional groups in one molecule is less than 2, the heat resistance is also lowered with a decrease in the crosslinking density of the molded product obtained at the time of heat curing.
  • the (meth) acrylate compound (B) preferably has a viscosity at 50 ° C. measured by an E-type viscometer of 1000 mPa ⁇ s or less because the viscosity of the main agent can be reduced.
  • the (meth) acrylate compound (B) refers to a compound having three or more acryloyl groups (CH 2 ⁇ CHCO—) or methacryloyl groups (CH 2 ⁇ C (CH 3 ) CO—). However, in addition to the (meth) acrylate compound (B), 10% or less of a compound having two or less (meth) acryloyl groups in one molecule may be included.
  • the (meth) acrylate compound (B) does not substantially contain an acid group such as a carboxyl group, a phosphoric acid group, or a sulfonic acid group. Since these acid groups have reactivity with epoxy groups even at room temperature, they increase the viscosity increase rate of molecular weight when mixed with epoxy resins, and impair the stable fiber impregnation property. For the same reason, it is desirable not to have a reactive group (OH group, NH 2 group, etc.) with an epoxy group. For example, it is desirable that the hydroxyl group value does not exceed 10 mgKOH / g.
  • the (meth) acrylate compound (B) include acrylate or methacrylate compounds of polyols such as glycerin, trimethylolpropane, ditrimethylolpropane, pentaerythritol and dipentaerythritol.
  • Two or more types may be used as necessary.
  • trimethylolpropane tri (meth) acrylate ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, or the like is preferably used.
  • the compounding ratio (A: B mass ratio) of the epoxy resin (A) and the (meth) acrylate compound (B) is preferably in the range of 96: 4 to 70:30.
  • the compounding ratio of the epoxy resin exceeds 96, the viscosity becomes too high and sufficient impregnation is not performed, and the fast curability is lowered.
  • the compounding ratio is less than 70, the heat resistance is lowered.
  • the above main agent has a viscosity at 25 ° C. measured by an E-type viscometer of 10,000 mPa ⁇ s or less, more preferably 8000 mPa ⁇ s or less. Moreover, the viscosity increase rate after 24 hours at 80 ° C. is preferably within 16%, more preferably within 8%. When the viscosity exceeds 10,000 mPa ⁇ s, it is difficult to sufficiently impregnate the reinforcing fibers, and the difference in viscosity from the curing agent becomes large, so that uniform mixing becomes difficult.
  • the rate of increase in viscosity exceeds 16%, when the tank for storing the main agent is heated to perform injection impregnation at a lower viscosity, the increase in viscosity is large, resulting in poor molding and deterioration of continuous production stability. This is not preferable because problems such as solidification occur.
  • the lower limit of the viscosity is not particularly limited, and the lower the viscosity, the easier the injection impregnation of the composition at the time of molding becomes.
  • a polymerization inhibitor can be used in order to increase its thermal stability.
  • Polymerization inhibitors include hydroquinone, methylhydroquinone, pt-butylcatechol, 2-t-butylhydroquinone, 2,5-di-t-butylhydroquinone, trimethylhydroquinone, methoxyhydroquinone, p-benzoquinone, 2,5- Di-t-butylbenzoquinone, naphthoquinone, 4-methoxy-1-naphthol, phenothiazine, N-oxyl compound and the like can be used.
  • the content of the polymerization inhibitor is preferably 0.0005 to 0.5 parts by mass, more preferably 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the (meth) acrylic compound (B).
  • the amine compound (C) used in the present invention is a compound represented by the following general formula (1).
  • X- (CH 2 NH 2 ) n (1)
  • X represents an n-valent organic group having 1 to 16 carbon atoms, and n represents 2 or 3.
  • the amine compound (C) has 2 or 3 aminomethyl groups in one molecule.
  • the aminomethyl group has a high reactivity with an epoxy group or an acryloyl group and is excellent in fast curability. Further, by having two or more aminomethyl groups in one molecule, a molded product having a high crosslink density and excellent heat resistance can be obtained during heat curing.
  • amine compound (C) examples include acyclic aliphatic polyamines such as iminobispropylamine, triethylenetetramine, and bis (hexamethylene) triamine having a secondary amine represented by the formula (4) in the molecular structure.
  • Bis (aminomethyl) cyclohexane, 1,3,6-trisaminomethylcyclohexane, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraoxaspiro (5.5) undecane bis Examples thereof include cycloaliphatic polyamines such as (aminomethyl) norbornane, polyamines containing aromatic rings such as metaxylylenediamine (MXDA), and derivatives in which alkyl groups are substituted on these alicyclic rings and aromatic rings.
  • cycloaliphatic polyamines such as (aminomethyl) norbornane
  • polyamines containing aromatic rings such as metaxylylenediamine (MXDA)
  • MXDA metaxylylenediamine
  • bis (aminomethyl) norbornane represented by the following formula (2) or bis (aminomethyl) cyclohexane represented by the following formula (3) is excellent in fluidity, fast curability, and heat resistance. This is preferable.
  • the curing agent contains the amino compound (C) as an epoxy resin curing agent.
  • the amino compound (C) is preferably contained in an amount of 70% by mass or more, and other epoxy resin curing agents are preferably not included, but may be blended if the amount is less than 30% by mass.
  • examples of other epoxy resin curing agents that can be blended in addition to the component (C) include phenolic and thiol epoxy resin curing agents.
  • a hardening accelerator, a viscosity modifier, an internal mold release agent, etc. can be included.
  • the phenolic curing agent used as the other epoxy resin curing agent is not particularly limited, but bisphenol A, bisphenol F, substituted or unsubstituted biphenol, phenol novolac resin, triazine skeleton-containing phenol novolak resin, naphthol novolak resin, naphthol Examples include aralkyl type resins, triazine skeleton-containing naphthol resins, and biphenyl aralkyl type phenol resins.
  • curing agent may use together 1 type, or 2 or more types.
  • Curing agents include tertiary amines, carboxylic acids, Lewis acid complexes, onium salts, imidazoles as curing catalysts or curing accelerators in addition to amino compounds (C) and other epoxy resin curing agents.
  • the curing agent containing the amine compound (C) has a viscosity at 25 ° C. measured by an E-type viscometer of 800 mPa ⁇ s or less, preferably 400 mPa ⁇ s or less.
  • the viscosity exceeds 800 mPa ⁇ s, it is difficult to sufficiently impregnate the reinforcing fibers.
  • the lower limit of the viscosity is not particularly limited, and the lower the viscosity, the easier the injection impregnation of the composition at the time of molding becomes.
  • the resin composition of the present invention is a two-part curable type of a main agent and a curing agent, and is composed of an epoxy resin (A) and a (meth) acrylate compound (B), and an amine represented by the general formula (1)
  • a curing agent containing the compound (C) By mixing a curing agent containing the compound (C) at a suitable predetermined ratio, heat curing is possible.
  • the mixing ratio of the main agent and the curing agent is determined by the types of the epoxy resin (A) and the amine compound (C) to be used.
  • the mass ratio is adjusted by calculating the ratio of the number of epoxy groups contained in all epoxy resins in component (A) and the number of active hydrogens contained in all amine compounds in component (C). It is in the range of 85:15 to 65:35, preferably in the range of 83:17 to 73:27. If the mass ratio is out of the range, the heat resistance and elastic modulus of the obtained cured resin may be lowered.
  • a radical polymerizable initiator (D) to the curing agent in order to promote polymerization of the component (B).
  • a radical polymerizable initiator (D) an azo compound or an organic peroxide that generates a radical by heating can be used.
  • the preferred radical polymerizable initiator (D) for obtaining the effect of the present invention is a compound having a 10-hour half-life temperature of 120 to 160 ° C., more preferably a 10-hour half-life temperature of 120 to 140 ° C. It is a compound at ° C.
  • the amount of the radical polymerizable initiator (D) used is 0.005 to 5.0 parts by weight, particularly 0.1 to 2.0 parts by weight, based on 100 parts by weight of the (meth) acrylate compound (B). Is preferred.
  • the addition amount is less than 0.005 parts by mass, the curing rate of the radical polymerizable monomer is lowered, the productivity is lowered, and in some cases, the curing is insufficient, and the heat resistance and toughness of the molded product are impaired.
  • the addition amount exceeds 5.0 parts by mass, the curing rate of the radical polymerizable monomer is too high, and a resin composition having a high viscosity increase rate is obtained, and the impregnation property to the stable fiber is impaired. This is also added to the curing agent.
  • a plasticizer, a dye, an organic pigment, an inorganic filler, a polymer compound, a coupling agent, a surfactant, a solvent, and the like can be appropriately blended with the main agent and the curing agent.
  • other curable resin can also be mix
  • curable resins include unsaturated polyester resins, curable acrylic resins, curable amino resins, curable melamine resins, curable urea resins, curable cyanate ester resins, curable urethane resins, curable oxetane resins, Examples include, but are not limited to, curable epoxy / oxetane composite resins. These can be blended in any of them considering the reactivity with the components contained in the main agent and the curing agent, the viscosity, and the like. Formulations that react with components contained in the base or curing agent will be avoided.
  • the reinforcing fiber used in the fiber-reinforced composite material of the present invention is selected from glass fiber, aramid fiber, carbon fiber, boron fiber, etc., but carbon fiber is used to obtain a fiber-reinforced composite material having excellent strength. Is preferred.
  • the volume content of the reinforcing fiber in the fiber-reinforced composite material obtained from the fiber-reinforced composite material resin composition of the present invention and the reinforcing fiber is preferably in the range of 45 to 70%, more preferably 48 to 62%. By setting the amount within this range, a molded article having few voids and a high volume content of reinforcing fibers can be obtained, so that a molding material having excellent strength can be obtained.
  • the resin composition for fiber-reinforced composite material of the present invention is a two-component type of a main agent and a curing agent
  • the main agent and the curing agent are accommodated in separate tanks, and both are mixed during use.
  • the resin composition for fiber-reinforced composite material is preferably cured by injecting the main agent into a mold or the like in which fibers are arranged in advance at a temperature in the range of 50 to 90 ° C. and a curing agent in the range of 20 to 60 ° C. It can be carried out by heating and curing at a temperature of 0 ° C., preferably 100 to 140 ° C., for a time of 15 seconds to 360 seconds, preferably 25 to 150 seconds.
  • the main agent and the curing agent may be injected at the same time. However, in order to improve the uniformity, it is desirable that the main agent and the curing agent are mixed immediately before being injected into a mold or the like where the fibers are arranged. However, you may mix in presence of a fiber. If the pouring temperature is low, the fluidity is lowered and poor filling of the mold and fibers is not preferable. Further, when the injection temperature is high, burrs are generated, or the resin is cured at the time of injection, and the resin in the tank or the mold is cured, resulting in poor filling. On the other hand, if the molding time is too short, the resin is not sufficiently filled.
  • the resin composition for fiber-reinforced composite material of the present invention is a cured product that can be injected and impregnated into a mold at a relatively low injection temperature as described above, and can be released from the mold in a short curing time. Obtainable.
  • the cured product of the resin composition for fiber-reinforced composite material of the present invention has a glass transition temperature (Tg) of preferably 100 ° C. or higher, more preferably 110 ° C. or higher.
  • Tg glass transition temperature
  • the method for producing the fiber-reinforced composite material from the resin composition of the present invention is not particularly limited, but the RTM (Resin Transfer Molding) method or the LCM (Liquid Compression® Molding) method is preferable.
  • RTM Resin Transfer Molding
  • LCM Liquid Compression® Molding
  • a fiber substrate or preform made of reinforcing fibers is placed in a mold, and a liquid resin composition for fiber-reinforced composite material is injected into the mold to impregnate the reinforcing fibers.
  • a reinforced composite material is obtained and then heated to cure the fiber reinforced composite material to obtain a molded body.
  • the curing conditions the conditions described above for curing the resin composition for fiber-reinforced composite materials are suitable.
  • a fiber base or preform made of reinforcing fibers pre-fitted with a resin is placed in the mold with the molding pressure released, and the mold is clamped to perform impregnation and molding simultaneously.
  • the mold is heated to cure the fiber reinforced composite material to obtain a molded body.
  • the part which shows a compounding quantity is a mass part unless there is particular notice.
  • YD-128 Bisphenol A type epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., viscosity (25 ° C.) 12000 mPa ⁇ s)
  • YDF-170 Bisphenol F epoxy resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., viscosity (25 ° C) 2500 mPa ⁇ s)
  • YDPN-6300 Phenol novolac type epoxy resin (manufactured by Nippon Steel & Sumikin Chemical)
  • TMPTA trimethylolpropane triacrylate (viscosity (50 ° C.) 19 mPa ⁇ s)
  • DTMPTA Ditrimethylolpropane tetraacrylate (viscosity (50 ° C.) 55 mPa ⁇ s)
  • PETTA Pentaerythritol tetra
  • the measurement or test method for each physical property is as follows.
  • the resin composition is added onto a plate of a gelation tester (Nisshin Kagaku) heated to 120 ° C., and stirred at a speed of 2 revolutions per second using a fluororesin rod.
  • the time required for curing to lose plasticity was defined as the gel time.
  • Example 1 Using 95 parts of YD-128 as the component (A) and 5 parts of TETTA as the component (B), these were put into a 150 mL plastic container, and using a vacuum mixer “Awatori Netaro” (manufactured by Shinky) The mixture was mixed with stirring at room temperature for 5 minutes to obtain the main agent.
  • component (C) 21.8 parts of NBDA and 2.2 parts of resorcinol were placed in a 150 mL plastic container and mixed using a vacuum mixer while stirring for 5 minutes at room temperature to obtain a curing agent. After cooling the obtained main agent and curing agent to 10 ° C. or less, 50 parts of the main agent and 12 parts of the curing agent are put into a 150 mL plastic container, and stirred for 20 seconds at room temperature using a vacuum mixer for a fiber-reinforced composite material. A resin composition was obtained.
  • This fiber-reinforced composite material resin composition was poured into a 60 mm long ⁇ 80 mm wide mold provided with a 4 mm thick spacer cut into a flat plate shape, cured for 5 minutes at 130 ° C., and then 50 mm using a tabletop band saw. It cut
  • Example 2 to 10 Comparative Examples 1 to 6
  • a resin composition for a fiber-reinforced composite material was prepared under the same mixing conditions as in Example 1 except that the raw materials were used in the compositions described in Tables 1 and 2 as the components (A) to (C).
  • a test piece for measuring a glass transition temperature was produced by the same molding technique as in Example 1.
  • the resin composition for fiber-reinforced composite material of the present invention has a low viscosity and good impregnation into reinforcing fibers and exhibits curability in a short time.
  • the molded product obtained by curing has a glass transition temperature. It will be expensive.
  • it is suitable as a resin composition for a fiber reinforced composite material used for forming a molded product by subjecting the fiber reinforced composite material to a resin transfer molding method or a liquid compression molding method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

良好な強化繊維への含浸性を示した上で速硬化性も有し、かつ成形物の耐熱性が高い繊維強化複合材料用として好適な樹脂組成物を提供すること。 エポキシ樹脂(A)と一分子中に(メタ)アクリロイル基を三つ以上有する(メタ)アクリレート化合物(B)を含む主剤と、下記一般式(1)で表されるアミン化合物(C)を含む硬化剤で構成され、主剤と硬化剤の質量比が85:15~65:35の範囲である二液硬化型の樹脂組成物であって、エポキシ樹脂(A)中にビスフェノールA型エポキシ樹脂が75~100質量%含有され、前記主剤の粘度が10000mPa・s以下であり、前記硬化剤の粘度が800mPa・s以下であることを特徴とする繊維強化複合材料用樹脂組成物。 X-(CHNH (1) (式中、Xは炭素数1~16のn価の有機基を表し、nは2又は3を表す。)

Description

繊維強化複合材料用樹脂組成物及びそれを用いた繊維強化複合材料
 本発明は、低粘度かつ短時間での硬化性に優れる樹脂組成物であり、かつ硬化時に高い耐熱性を有する成形物が得られる繊維強化複合材料のマトリクス樹脂材料およびその成形方法に関する。
 繊維強化複合材料は、一般に、ガラス繊維、アラミド繊維や炭素繊維等の強化繊維と、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、フェノール樹脂、ベンゾオキサジン樹脂、シアネート樹脂、ビスマレイミド樹脂等の熱硬化性マトリクス樹脂から構成され、軽量かつ、強度、耐食性や耐疲労性等の機械物性に優れることから、航空機、自動車、土木建築およびスポーツ用品等の構造材料として幅広く適応されている。
 繊維強化複合材料の製造方法には、熱硬化性のマトリクス樹脂が予め強化繊維へ含浸されたプリプレグを用いたオートクレーブ成形法またはプレス成形法や、強化繊維へ液状のマトリクス樹脂を含浸させる工程と熱硬化による成形工程を含むレジントランスファー成形法、リキッドコンプレッション成形法、ウェットレイアップ成形法、引き抜き成形法またはフィラメントワインディング成形法等の手法によって実施される。このうちプリプレグを用いずに含浸と成形を行うレジントランスファー等の成形法は、速やかに強化繊維に含浸させるため、低粘度のマトリクス樹脂が用いられる。
 加えて、この中でレジントランスファー成形法、リキッドコンプレッション成形法では、高い生産性を確保するため樹脂を強化繊維に含浸させた後、硬化速度が速いマトリクス樹脂が求められている。
 従来、レジントランスファー成形法、リキッドコンプレッション成形法では、不飽和ポリエステル樹脂、ビニルエステル樹脂、ウレタン樹脂やエポキシ樹脂等の熱硬化性樹脂が用いられてきた。ラジカル重合性を有する不飽和ポリエステル樹脂、ビニルエステル樹脂は低粘度であり速硬化性に優れるものの、成形時の硬化収縮が大きく、成形物の耐熱性、強度や靱性等の機械物性が相対的に低いという課題がある。ウレタン樹脂は速硬化性に優れ、強度や靱性の高い成形物が得られるものの、成形物の耐熱性が低い、吸水率が高いという課題がある。エポキシ樹脂は耐熱性、強度や靱性の高い成形物が得られるものの、樹脂粘度が相対的に高いという課題がある。
 繊維強化複合材料のマトリクス樹脂としてエポキシ樹脂を使用する場合、一般に、経済性と物性に優れることからビスフェノールA型エポキシ樹脂が用いられるが、繊維への含浸性を向上させるべく低粘度なビスフェノールF型エポキシ樹脂も用いられる。
 特許文献1には、ビスフェノールF型エポキシ樹脂を用いた低粘度の繊維強化複合材料用樹脂組成物が提案されている。しかし、ビスフェノールF型エポキシ樹脂は、ビスフェノールA型エポキシ樹脂よりもガラス転移温度が低い硬化物となるため、耐熱性が求められる用途では望ましくない。
 低粘度化や低温での硬化性を図るため、特許文献2、3、4には、エポキシ樹脂、多官能アクリレート化合物と硬化剤からなる樹脂組成物が提案されている。しかし、コンクリート補修材や接着剤を用途においた発明であり、ガラス転移温度が低く耐熱性が不足している。
 特許文献5には、エポキシ樹脂と特定のフェノール化合物の組み合わせにより樹脂組成物の速硬化性を付与させた取り組みがなされているものの、依然としてゲル化までの時間が長く速硬化性が不足している。
 特許文献6、7には、エポキシ樹脂とポリエチレンポリアミンからなる樹脂組成物に、特定の触媒を添加することにより、速硬化性を付与させた取り組みがなされている。しかし、主剤にビスフェノールA型エポキシ樹脂を用いているため、主剤の粘度が高いという課題がある。
 繊維強化複合材料のマトリクス樹脂に関し、樹脂組成物の低粘度化による含浸性向上と成形物の速硬化性を付与させる試みは成されているものの、これらに加えてさらに成形物の耐熱性の改善が望まれている。
特開2006-265434号公報 特開2002-256139号公報 特開2002-275242号公報 特開2012-211244号公報 特開2016-098322号公報 特表2015-535022号公報 特表2015-536373号公報
 本発明は、主剤の低粘度化により樹脂組成物としての低粘度化を図ることで良好な強化繊維への含浸性を示し、速硬化性も有し、かつ硬化して得られる成形物の耐熱性が高い樹脂組成物を提供することを目的とする。更に、繊維強化複合材料を生産性良く得ることができる樹脂組成物を提供することを目的とする。
 本発明者らは、前述の課題を解決するため検討を行った結果、特定のエポキシ樹脂、アクリレート化合物とアミン化合物を用いることにより、高い耐熱性を有する成形物が得られ、前記課題を解決することを見出し、本発明を完成させるに至った。
 すなわち、本発明は、エポキシ樹脂(A)と一分子中に(メタ)アクリロイル基を三つ以上有する(メタ)アクリレート化合物(B)を含む主剤と、下記一般式(1)で表されるアミン化合物(C)を含む硬化剤で構成され、主剤と硬化剤の質量比が85:15~65:35の範囲である二液硬化型の樹脂組成物であって、エポキシ樹脂(A)中にビスフェノールA型エポキシ樹脂が75~100質量%含有され、前記主剤のE型粘度計により測定した25℃における粘度が10000mPa・s以下であり、前記硬化剤のE型粘度計により測定した25℃における粘度が800mPa・s以下であることを特徴とする繊維強化複合材料用樹脂組成物である。
   X-(CHNH    (1)
(式中、Xは炭素数1~16のn価の有機基を表し、nは2又は3を表す。)
 上記Xは、炭素数6以上の脂環構造を有するn価の炭化水素基、芳香族環構造を有するn価の炭化水素基、又は脂肪族炭化水素基であることがよく、上記脂環構造、又は脂肪族炭化水素基は、その内部に二級アミン構造を有し得る。
 好ましいアミン化合物(C)としては、下記式(2)または(3)で表されるジアミンがある。
Figure JPOXMLDOC01-appb-C000002
 
 本発明においては、(メタ)アクリレート化合物(B)が、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、またはジペンタエリスリトールヘキサ(メタ)アクリレートから選ばれる少なくとも1種であることが好ましい。
 本発明においては、主剤中のエポキシ樹脂(A)と(メタ)アクリレート化合物(B)の質量比が、96:4~70:30の範囲であることが好ましい。
 本発明においては、エポキシ樹脂(A)と(メタ)アクリレート化合物(B)を含む主剤について、1.0kPaの真空度にて60℃で24時間経過後の粘度上昇率が、16%以下であることが好ましい。
 本発明においては、繊維強化複合材料用樹脂組成物を、130℃で5分間熱処理して硬化させた硬化物のガラス転移温度が110℃以上を示すことが好ましい。
 本発明の他の形態は、上記繊維強化複合材料用樹脂組成物に、強化繊維を配合してなることを特徴とする繊維強化複合材料である。この場合、強化繊維の体積含有率が45~70%であることが好ましい。
 また、上記繊維強化複合材料の硬化物である。さらに、上記繊維強化複合材料を、レジントランスファー成形法、またはリキッドコンプレッション成形法で成形することを特徴とする成形体の製造方法である。
 本発明の他の形態は、ビスフェノールA型エポキシ樹脂を75~100質量%含有するエポキシ樹脂(A)と一分子中に(メタ)アクリロイル基を三つ以上有する(メタ)アクリレート化合物(B)を含み、E型粘度計により測定した25℃における粘度が10000mPa・s以下である主剤と、上記一般式(1)で表されるアミン化合物(C)を含む硬化剤を用意すること、主剤を50~90℃に加温し、硬化剤を20~60℃に加温し、主剤と硬化剤の質量比が85:15~65:35の範囲となるよう二液硬化型の繊維強化複合材料用樹脂組成物とすること、これに強化繊維を配合して繊維強化複合材料とすること、次いでこの繊維強化複合材料を金型にて加熱硬化、成形することを特徴とする成形体の製造方法である。
 以下、本発明の実施の形態について詳細に説明する。
 本発明の繊維強化複合材料用樹脂組成物は、エポキシ樹脂(A)、一分子中に(メタ)アクリロイル基を三つ以上有する(メタ)アクリレート化合物(B)からなる主剤と、上記一般式(1)で表されるアミン化合物(C)からなる硬化剤で構成される二液硬化型の樹脂組成物である。ここで、上記エポキシ樹脂(A)、一分子中に(メタ)アクリロイル基を三つ以上有する(メタ)アクリレート化合物(B)、アミン化合物(C)を、それぞれ(A)成分、(B)成分、及び(C)成分ともいう。
 (A)成分として使用するエポキシ樹脂(A)は、その75~100質量%がビスフェノールA型エポキシ樹脂であることが必要である。ビスフェノールA型エポキシ樹脂を用いることにより、主剤の熱安定性を高めることができ、加熱により低粘度化することができる。また加熱硬化により得られる成形体の耐熱性が優れる。他方、主成分としてビスフェノールF型エポキシ樹脂を用いると、低粘度化できるものの得られる成形体の耐熱性が低下する。フェノールノボラック型エポキシ樹脂を用いると、成形体の耐熱性を高められるが、粘度が増大するため強化繊維への含浸性を損なう。
 本発明で使用するエポキシ樹脂(A)は、主剤粘度の増大が無い範囲で、25質量%未満であれば、他のエポキシ樹脂を含むことが出来る。好ましくは、1分子中に2つ以上のエポキシ基を有する化合物であり、例えば、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂、イソホロンビスフェノール型エポキシ樹脂等のビスフェノール型エポキシ樹脂や、これらビスフェノール型エポキシ樹脂のハロゲン、アルキル置換体、水添品、単量体に限らず複数の繰り返し単位を有する高分子量体、アルキレンオキサイド付加物のグリシジルエーテルや、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂や、3,4-エポキシ-6-メチルシクロヘキシルメチル-3,4-エポキシ-6-メチルシクロヘキサンカルボキシレ-ト、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、1-エポキシエチル-3,4-エポキシシクロヘキサン等の脂環式エポキシ樹脂や、トリメチロールプロパンポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ポリオキシアルキレンジグリシジルエーテル等の脂肪族エポキシ樹脂や、フタル酸ジグリシジルエステルや、テトラヒドロフタル酸ジグリシジルエステルや、ダイマー酸グリシジルエステル等のグリシジルエステルや、テトラグリシジルジアミノジフェニルメタン、テトラグリシジルジアミノジフェニルスルホン、トリグリシジルアミノフェノール、トリグリシジルアミノクレゾール、テトラグリシジルキシリレンジアミン等のグリシジルアミン類等を用いることができる。これらは1種を単独で用いても2種以上を組み合わせて用いてもよい。
 これらのエポキシ樹脂のうち、粘度の観点から、1分子中に2つ以上のエポキシ基を有するE型粘度計により測定した25℃における粘度が30000mPa・s以下のエポキシ樹脂が好ましい。
 本発明で使用する(メタ)アクリレート化合物(B)は、官能基として一分子中に(メタ)アクリロイル基を三つ以上有する。一分子中の官能基数が二つ未満であると、加熱硬化時に得られる成形物の架橋密度低下に伴い耐熱性も低下する。
 (メタ)アクリレート化合物(B)は、E型粘度計により測定した50℃における粘度が1000mPa・s以下であることが、主剤の低粘度化を図れるため好ましい。
 (メタ)アクリレート化合物(B)は、アクリロイル基(CH=CHCO-)またはメタクリロイル基(CH=C(CH)CO-)を3つ以上有する化合物をいう。ただし、(メタ)アクリレート化合物(B)の他に、一分子中に(メタ)アクリロイル基を2つ以下有する化合物を10%以下含んでもよい。
 (メタ)アクリレート化合物(B)は、カルボキシル基、リン酸基、スルホン酸基等の酸基を実質的に含有しない。これらの酸基は室温でもエポキシ基との反応性を有しているため、エポキシ樹脂との混合時において分子量の粘度増加率を上昇させてしまい、安定した繊維への含浸性を損なう。同様な理由で、エポキシ基と反応性の基(OH基、NH2基等)を有しないことが望ましい。例えば、ヒドロキシル基価が10mgKOH/gを超えないことが望ましい。
 (メタ)アクリレート化合物(B)の具体例としては、グリセリン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等のポリオールのアクリレートまたはメタクリレート化合物が挙げられる。また、グリセリン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等のポリオール1モルに対し、2モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加させて分子量を高めたポリオールのアクリレートまたはメタクリレート化合物が挙げられる。必要に応じて2種類以上を用いてもよい。
 より具体的には、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、またはジペンタエリスリトールヘキサ(メタ)アクリレート等が好ましく用いられる。
 エポキシ樹脂(A)と(メタ)アクリレート化合物(B)の配合比(A:B質量比)は、96:4~70:30の範囲であることが好ましい。エポキシ樹脂の配合比が96を超えると粘度が高くなりすぎ十分な含浸がなされない他、速硬化性が低下する。一方、配合比が70を下回ると耐熱性が低下する。
 上記主剤は、E型粘度計により測定した25℃における粘度が10000mPa・s以下であり、更には8000mPa・s以下が好ましい。また、80℃にて24時間経過後の粘度上昇率が16%以内、更には8%以内のものが好ましい。粘度が10000mPa・sを超えると強化繊維への十分な含浸が困難となり、硬化剤との粘度差が大きくなるため均一に混合することが困難となる。粘度上昇率が16%を超えるとより低粘度での注入含浸を行うために主剤を保管するタンクを加温するような場合において、粘度上昇が大きく成形不良や連続生産安定性の悪化、タンク内での固化といった問題が発生するため好ましくない。粘度の下限は特に制限なく、粘度が低いほど成形時の組成物の注入含浸が容易になり好ましい。
 主剤には、その熱安定性を高めるため、重合禁止剤を用いることができる。重合禁止剤としては、ハイドロキノン、メチルハイドロキノン、p-t-ブチルカテコール、2-t-ブチルハイドロキノン、2,5-ジ-t-ブチルハイドロキノン、トリメチルハイドロキノン、メトキシハイドロキノン、p-ベンゾキノン、2,5-ジ-t-ブチルベンゾキノン、ナフトキノン、4-メトキシ-1-ナフトール、フェノチアジン、N-オキシル化合物等を用いることができる。重合禁止剤の含有量は、(メタ)アクリル化合物(B)100質量部に対し、0.0005~0.5質量部、特に0.001~0.1質量部とすることが好ましい。
 本発明で使用するアミン化合物(C)は、下記一般式(1)で表される化合物である。
   X-(CHNH    (1)
(式中、Xは炭素数1~16のn価の有機基を表し、nは2又は3を表す。)
 アミン化合物(C)は、アミノメチル基を一分子中に2又は3個有する。アミノメチル基は、エポキシ基やアクリロイル基との反応性が高く速硬化性に優れる。また、一分子中にアミノメチル基を二つ以上有することで、加熱硬化時に架橋密度の高い耐熱性に優れた成形物が得られる。
 アミン化合物(C)の具体例としては、式(4)で表される二級アミンを分子構造に有するイミノビスプロピルアミン、トリエチレンテトラミン、ビス(ヘキサメチレン)トリアミン等の非環式脂肪族ポリアミン、ビス(アミノメチル)シクロヘキサン、1,3,6-トリスアミノメチルシクロヘキサン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ(5.5)ウンデカン、ビス(アミノメチル)ノルボルナン等の環状脂肪族ポリアミン、メタキシリレンジアミン(MXDA)等の芳香環を含むポリアミン、およびこれらの脂環や芳香環にアルキル基が置換した誘導体が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 
 これらの中で特に、下記式(2)で表されるビス(アミノメチル)ノルボルナン、または下記式(3)で表されるビス(アミノメチル)シクロヘキサンが、流動性、速硬化性、耐熱性の点で好ましい。
Figure JPOXMLDOC01-appb-C000004
 
 硬化剤は、上記アミノ化合物(C)をエポキシ樹脂用硬化剤として含む。アミノ化合物(C)を70質量%以上含むことが好ましく、それ以外のエポキシ樹脂用硬化剤は含まないことが好ましいが、30質量%未満であれば配合しても良い。これら(C)成分以外に配合できる他のエポキシ樹脂用硬化剤としては、例えば、フェノール系、チオール系等のエポキシ樹脂用硬化剤が挙げられる。その他、硬化促進剤、粘度調整剤、内部離型剤などを含むことができる。
 上記他のエポキシ樹脂用硬化剤として用いるフェノール系硬化剤は、特に制限はないがビスフェノールA、ビスフェノールF、置換又は非置換のビフェノール、フェノールノボラック樹脂、トリアジン骨格含有フェノールノボラック樹脂、ナフトールノボラック樹脂、ナフトールアラルキル型樹脂、トリアジン骨格含有ナフトール樹脂、ビフェニルアラルキル型フェノール樹脂等が挙げられる。フェノール系硬化剤は1種または2種以上を併用してもよい。
 硬化剤には、アミノ化合物(C)及び他のエポキシ樹脂用硬化剤以外に硬化反応を促進するため硬化触媒、または硬化促進剤として、三級アミン、カルボン酸、ルイス酸錯体、オニウム塩、イミダゾール、アルコール類や、フェノール、クレゾール、アリルフェノール、ニトロフェノール、パラアミノフェノール、メタアミノフェノール、モノ-t-ブチルフェノール、ジ-t-ブチルフェノール、ハイドロキノン、メチルハイドロキノン、ジメチルハイドロキノン、トリメチルハイドロキノン、テトラメチルハイドロキノン、イソプロピルハイドロキノン、メチル-イソプロピルハイドロキノン、モノ-t-ブチルハイドロキノン、ジ-t-ブチルハイドロキノン、モノ-t-アミルハイドロキノン、ジ-t-アミルハイドロキノン、ニトロハイドロキノン、フェニルハイドロキノン、ジフェニルハイドロキノン、クロロハイドロキノン、ジクロロハイドロキノン、トリクロロハイドロキノン、テトラクロロハイドロキノン、ブロムハイドロキノン、ジブロムハイドロキノン、トリブロムハイドロキノン、テトラブロムハイドロキノン、カテコール、t-ブチルカテコール、レゾルシノール、ピロガロール、ジニトロピロガロール、1,2,4-ベンゼントリオールなどのフェノール化合物などの硬化促進剤を用いることができ、これら硬化促進剤を1種または2種以上を併用してもよい。
 アミン化合物(C)を含む硬化剤は、E型粘度計により測定した25℃における粘度が800mPa・s以下であり、好ましくは400mPa・s以下である。粘度が800mPa・sを超えると強化繊維への十分な含浸が困難となる。粘度の下限は特に制限なく、粘度が低いほど成形時の組成物の注入含浸が容易になり好ましい。
 本発明の樹脂組成物は、主剤と硬化剤との二液硬化型であり、エポキシ樹脂(A)、(メタ)アクリレート化合物(B)からなる主剤と、一般式(1)で表されるアミン化合物(C)を含む硬化剤を好適な所定の割合で混合することにより、加熱硬化可能となる。この主剤と硬化剤の混合比率は、使用するエポキシ樹脂(A)とアミン化合物(C)の種類によって決定される。具体的には、(A)成分中の全エポキシ樹脂に含まれるエポキシ基の数と(C)成分中の全アミン化合物に含まれる活性水素の数の比率を計算して調整され、質量比が85:15~65:35の範囲、好ましくは83:17~73:27の範囲である。質量比が範囲を外れると、得られた樹脂硬化物の耐熱性や弾性率が低下する可能性がある。
 また、硬化剤には、(B)成分の重合を促進させるため、ラジカル重合性開始剤(D)を配合することが好ましい。ラジカル重合性開始剤(D)としては、加熱によりラジカルを発生するアゾ化合物や有機過酸化が使用できる。例えば、2,2’-アゾビスイソブチロニトリル、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、メチルエチルケトンパーオキサイド、メチルシクロヘキサノンパーオキサイド、メチルアセトアセテートパーオキサイド、アセチルアセトンパーオキサイド、1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、n-ブチル4,4-ビス(t-ブチルパーオキシ)バレレート、2,2-ビス(t-ブチルパーオキシ)ブタン、1,1-ビス(t-ブチルパーオキシ)-2-メチルシクロヘキサン、t-ブチルハイドロパーオキサイド、P-メンタンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、t-ヘキシルハイドロパーオキサイド、ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、α、α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3、イソブチリルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、桂皮酸パーオキサイド、m-トルオイルパーオキサイド、ベンゾイルパーオキサイド、ジイソプロピルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-3-メトキシブチルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジ-sec-ブチルパーオキシジカーボネート、ジ(3-メチル-3-メトキシブチル)パーオキシジカーボネート、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、α、α’-ビス(ネオデカノイルパーオキシ)ジイソプロピルベンゼン、クミルパーオキシネオデカノエート、1,1,3,3,-テトラメチルブチルパーオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルへキサノエート、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシマレイックアシッド、t-ブチルパーオキシラウレート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、t-ヘキシルパーオキシベンゾエート、t-ブチルパーオキシ-m-トルオイルベンゾエート、t-ブチルパーオキシベンゾエート、ビス(t-ブチルパーオキシ)イソフタレート、t-ブチルパーオキシアリルモノカーボネート、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン等が挙げられる。特に、本発明の効果を得るための好ましいラジカル重合性開始剤(D)は、10時間の半減期温度が120~160℃の化合物であり、より好ましくは10時間の半減期温度が120~140℃の化合物である。これらを使用することにより混合時における速硬化性が改善し、加熱硬化時に耐熱性と靱性に優れた成形物が得られる。
 ラジカル重合性開始剤(D)の使用量は、(メタ)アクリレート化合物(B)100質量部に対し、0.005~5.0質量部、特に0.1~2.0質量部とすることが好ましい。添加量が0.005質量部未満であるとラジカル重合性モノマーの硬化速度が低下し、生産性が低下し、場合によっては硬化が不十分となって、成形物の耐熱性と靱性が損なわれる。添加量が5.0質量部を超えるとラジカル重合性モノマーの硬化速度が速過ぎ、粘度増加率の高い樹脂組成物となり安定した繊維への含浸性を損なう。また、これは硬化剤に添加する。
 上記主剤および硬化剤には、その他の成分として、可塑剤、染料、有機顔料や無機充填剤、高分子化合物、カップリング剤、界面活性剤および溶剤など適宜配合することもできる。また、他の硬化性樹脂を配合することもできる。このような硬化性樹脂としては、不飽和ポリエステル樹脂、硬化性アクリル樹脂、硬化性アミノ樹脂、硬化性メラミン樹脂、硬化性ウレア樹脂、硬化性シアネートエステル樹脂、硬化性ウレタン樹脂、硬化性オキセタン樹脂、硬化性エポキシ/オキセタン複合樹脂等が挙げられるがこれらに限定されない。
 これらは、主剤および硬化剤に含まれる成分との反応性や粘度等を考慮して、いずれかに配合することができる。主剤又は硬化剤に含まれる成分と反応する配合は、避けることになる。
 本発明の繊維強化複合材料に用いられる強化繊維としては、ガラス繊維、アラミド繊維、炭素繊維、ボロン繊維等から選ばれるが、強度に優れた繊維強化複合材料を得るためには炭素繊維を使用するのが好ましい。
 本発明の繊維強化複合材料用樹脂組成物と強化繊維から得られる繊維強化複合材料における強化繊維の体積含有率は、好ましくは45~70%、より好ましくは48~62%の範囲である。この範囲にすることにより、空隙が少なく、かつ強化繊維の体積含有率が高い成形体が得られるため、優れた強度の成形材料が得られる。
 本発明の繊維強化複合材料用樹脂組成物は、主剤と硬化剤の二液型であるから、主剤と硬化剤を別個のタンク等に収容しておき、使用時に両者を混合する。繊維強化複合材料用樹脂組成物の硬化は、好ましくは主剤を50~90℃の範囲、硬化剤を20~60℃の範囲の温度で予め繊維を配置した金型等に注入し、90~160℃の温度、好ましくは100~140℃で、15秒~360秒の時間、好ましくは25~150秒、加熱硬化することにより行うことができる。主剤と硬化剤は同時に注入してもよいが、均一性を高めるため、直前に混合してから、繊維が配置される金型等に注入することが望ましい。ただし、繊維の存在下で混合してもよい。
 注入温度が低いと流動性が低下し、成形型及び繊維への充填不良が起こり好ましくない。また、注入温度が高いとバリが発生したり、注入時に樹脂の硬化が始まりタンク内や成形型内での樹脂が硬化し充填不良が発生するため好ましくない。また、成形時間は短すぎると十分に充填されず、長すぎると型内での樹脂が硬化し成形不良が起こるとともに生産性の低下が起こるため好ましくない。本発明の繊維強化複合材料用樹脂組成物は、上記のような比較的低い注入温度にて成形型への注入、含浸が可能となり、また短い硬化時間で型からの離形ができる硬化物を得ることができる。
 本発明の繊維強化複合材料用樹脂組成物の硬化物は、ガラス転移温度(Tg)が、好ましくは100℃以上であり、より好ましくは110℃以上である。Tgが100℃より低い場合、得られた繊維強化複合材料を金型から離型する際に変形しやすい。
 本発明の樹脂組成物から繊維強化複合材料を作製する方法は、特に限定されないが、RTM(Resin Transfer M olding)法又はLCM(Liquid Compression M olding)法が好適である。RTM法とは、強化繊維からなる繊維基材あるいはプリフォームを成形型内に設置し、その成形型内に液状の繊維強化複合材料用樹脂組成物を注入して強化繊維に含浸させて、繊維強化複合材料とし、その後に加熱して繊維強化複合材料を硬化させて、成形体を得る方法である。硬化条件は、上記繊維強化複合材料用樹脂組成物の硬化で説明した条件が適する。LCM法とは、あらかじめ樹脂をなじませた強化繊維からなる繊維基材あるいはプリフォームを成形型内に成形圧力を解放した状態で設置し、成形型を型締めすることで含浸と成形を同時に行い繊維強化複合材料とした後に金型を加熱して繊維強化複合材料を硬化させて、成形体を得る方法である。
 次に、本発明を実施例に基づいて具体的に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。配合量を示す部は、特に断りがない限り質量部である。
 実施例で使用した各成分の略号は、以下の通りである。
YD-128:ビスフェノールA型エポキシ樹脂(新日鉄住金化学製、粘度(25℃)12000mPa・s)
YDF-170:ビスフェノールF型エポキシ樹脂(新日鉄住金化学製、粘度(25℃)2500mPa・s)
YDPN-6300:フェノールノボラック型エポキシ樹脂(新日鉄住金化学製)
TMPTA:トリメチロールプロパントリアクリレート(粘度(50℃)19mPa・s)
DTMPTA:ジトリメチロールプロパンテトラアクリレート(粘度(50℃)55mPa・s)
PETTA:ペンタエリスリトールテトラアクリレート(粘度(50℃)130mPa・s)
PETA:ペンタエリスリトールトリアクリレート(粘度(25℃)180~800mPa・s)
DPETTA:ジペンタエリスリトールヘキサアクリレート(粘度(50℃)940mPa・s)
PEGDA:ポリエチレングリコールジアクリレート(粘度(25℃)13mPa・s)
TETA:トリエチレンテトラミン
CDA:ビス(アミノメチル)シクロヘキサン
NBDA:ビス(アミノメチル)ノルボルナン
IPDA:イソホロンジアミン
PACM:4,4-メチレンビス(シクロヘキシルアミン)
 各物性の測定または試験方法は、以下のとおりである。
(主剤粘度、硬化剤粘度、主剤粘度増加率の測定)
 混合する前の主剤および硬化剤についてE型粘度計コーンプレートタイプ(東機産業株式会社:RE80H)を用いて25℃で測定した。測定開始から60秒経過後の値を、初期粘度の値とした。
 また、主剤については、60℃に加熱された真空オーブンの中に入れ真空度1.0kPaにて24時間静置させてから、E型粘度計を用いて同様に粘度の測定を実施し、測定開始から60秒経過後の値を、24時間経過後の粘度の値とした。そして、主剤の粘度増加率を、下記式を用いて算出した。
主剤の粘度増加率=100×(24時間経過後の粘度/初期粘度)-100
(ゲルタイムの測定)
 120℃に加熱しておいたゲル化試験機(日新科学製)のプレート上に樹脂組成物を添加し、フッ素樹脂棒を用いて一秒間に2回転の速度で攪拌し、樹脂組成物の硬化が進行し可塑性を失うまでに要した時間をゲル化時間とした。
(ガラス転移温度の測定)
 動的粘弾性試験機を用いて、ガラス転移温度測定用試験片を昇温速度5℃/分、曲げモード、測定周波数10Hzの条件で測定し、損失弾性率(E’’)の最大値をガラス転移温度とした。
実施例1
 (A)成分としてYD-128を95部、(B)成分としてTETTAを5部使用し、これらを150mLのポリ容器へ入れ、真空ミキサー「あわとり練太郎」(シンキー社製)を用いて、室温下で5分間攪拌しながら混合し、主剤を得た。(C)成分としてNBDAを21.8部、レゾルシノール2.2部を150mLのポリ容器へ入れ、真空ミキサーを用いて、室温下で5分間攪拌しながら混合し、硬化剤を得た。
 得られた主剤と硬化剤を10℃以下まで冷却した後、主剤50部と硬化剤12部を150mLのポリ容器へ入れ、真空ミキサーを用いて、室温下で20秒攪拌し繊維強化複合材料用樹脂組成物を得た。
 この繊維強化複合材料用樹脂組成物を、平板形状にくり抜かれた4mm厚のスペーサーを設けた縦60mm×横80mmの金型へ流し込み、130℃で5分硬化した後、卓上バンドソーを用いて50mm×10mmの大きさに切削し、ガラス転移温度の測定に用いた。
実施例2~10、比較例1~6
 (A)~(C)成分として表1および表2に記載された組成にて各原料を使用した以外は、実施例1と同様の混合条件にて繊維強化複合材料用樹脂組成物を作製し、加えて実施例1と同様の成形手法にてガラス転移温度測定用試験片を作製した。
 実施例および比較例の試験結果を、それぞれ表1、表2に示す。
 
Figure JPOXMLDOC01-appb-T000005
 
 
Figure JPOXMLDOC01-appb-T000006
   
産業上の利用分野
 本発明の繊維強化複合材料用樹脂組成物は、低粘度で良好な強化繊維への含浸性を有し、かつ短時間での硬化性を示し、硬化して得られる成形物はガラス転移温度が高いものとなる。特に、繊維強化複合材料をレジントランスファー成形法またはリキッドコンプレッション成形法に付して成形体とするために使用される繊維強化複合材料用樹脂組成物として適する。
 
 

Claims (12)

  1.  エポキシ樹脂(A)と一分子中に(メタ)アクリロイル基を三つ以上有する(メタ)アクリレート化合物(B)を含む主剤と、下記一般式(1)で表されるアミン化合物(C)を含む硬化剤で構成され、主剤と硬化剤の質量比が85:15~65:35の範囲である二液硬化型の樹脂組成物であって、エポキシ樹脂(A)中にビスフェノールA型エポキシ樹脂が75~100質量%含有され、前記主剤のE型粘度計により測定した25℃における粘度が10000mPa・s以下であり、前記硬化剤のE型粘度計により測定した25℃における粘度が800mPa・s以下であることを特徴とする繊維強化複合材料用樹脂組成物。
       X-(CHNH    (1)
    (式中、Xは炭素数1~16のn価の有機基を表し、nは2又は3を表す。)
  2.  一般式(1)のXが、炭素数6以上の脂環構造を有するn価の炭化水素基、芳香環構造を有するn価の炭化水素基、又は脂肪族炭化水素基であり、上記脂環構造、又は脂肪族炭化水素基は、その内部に二級アミン構造を有し得るものである請求項1に記載の繊維強化複合材料用樹脂組成物。
  3.  アミン化合物(C)が、下記式(2)または(3)で表されることを特徴とする請求項1または2に記載の繊維強化複合材料用樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     
  4.  (メタ)アクリレート化合物(B)が、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、またはジペンタエリスリトールヘキサ(メタ)アクリレートから選ばれる少なくとも1種であることを特徴とする請求項1~3のいずれか一項に記載の繊維強化複合材料用樹脂組成物。
  5.  主剤中のエポキシ樹脂(A)と(メタ)アクリレート化合物(B)の質量比が、96:4~70:30の範囲であることを特徴とする請求項1~4のいずれか一項に記載の繊維強化複合材料用樹脂組成物。
  6.  主剤について、1.0kPaの真空度にて60℃で24時間経過後の粘度上昇率が、16%以下であることを特徴とする請求項1~5のいずれか一項に記載の繊維強化複合材料用樹脂組成物。
  7.  繊維強化複合材料用樹脂組成物を、130℃で5分間熱処理して硬化させた硬化物のガラス転移温度が110℃以上を示すことを特徴とする請求項1~6のいずれか一項に記載の繊維強化複合材料用樹脂組成物。
  8.  請求項1~7のいずれかに記載の繊維強化複合材料用樹脂組成物に、強化繊維を配合してなることを特徴とする繊維強化複合材料。
  9.  強化繊維の体積含有率が45~70%である請求項8に記載の繊維強化複合材料。
  10.  請求項8または9に記載の繊維強化複合材料の硬化物。
  11.  請求項8または7に記載の繊維強化複合材料を、レジントランスファー成形法、またはリキッドコンプレッション成形法で成形することを特徴とする成形体の製造方法。
  12.  ビスフェノールA型エポキシ樹脂を75~100質量%含有するエポキシ樹脂(A)と一分子中に(メタ)アクリロイル基を三つ以上有する(メタ)アクリレート化合物(B)を含み、E型粘度計により測定した25℃における粘度が10000mPa・s以下である主剤と、下記一般式(1)
       X-(CHNH    (1)
    (式中、Xは炭素数1~16のn価の有機基を表し、nは2又は3を表す。)
    で表されるアミン化合物(C)を含む硬化剤を用意すること、
    主剤を50~90℃に加温し、硬化剤を20~60℃に加温し、主剤と硬化剤の質量比が85:15~65:35の範囲となるように二液硬化型の繊維強化複合材料用樹脂組成物とすること、これに強化繊維を配合して繊維強化複合材料とすること、次いでこの繊維強化複合材料を金型にて加熱硬化、成形することを特徴とする成形体の製造方法。
     
PCT/JP2017/036979 2016-10-14 2017-10-12 繊維強化複合材料用樹脂組成物及びそれを用いた繊維強化複合材料 WO2018070470A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197011192A KR102399500B1 (ko) 2016-10-14 2017-10-12 섬유 강화 복합 재료용 수지 조성물 및 그것을 이용한 섬유 강화 복합 재료
US16/339,161 US11597829B2 (en) 2016-10-14 2017-10-12 Resin composition for fiber-reinforced composite materials and fiber-reinforced composite material using same
JP2018545047A JP7012654B2 (ja) 2016-10-14 2017-10-12 繊維強化複合材料用樹脂組成物及びそれを用いた繊維強化複合材料
EP17860269.4A EP3527605B1 (en) 2016-10-14 2017-10-12 Resin composition for fiber-reinforced composite materials and fiber-reinforced composite material using same
CN201780063008.4A CN109843968B (zh) 2016-10-14 2017-10-12 纤维强化复合材料用树脂组合物和使用它的纤维强化复合材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-202660 2016-10-14
JP2016202660 2016-10-14

Publications (1)

Publication Number Publication Date
WO2018070470A1 true WO2018070470A1 (ja) 2018-04-19

Family

ID=61906419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036979 WO2018070470A1 (ja) 2016-10-14 2017-10-12 繊維強化複合材料用樹脂組成物及びそれを用いた繊維強化複合材料

Country Status (7)

Country Link
US (1) US11597829B2 (ja)
EP (1) EP3527605B1 (ja)
JP (1) JP7012654B2 (ja)
KR (1) KR102399500B1 (ja)
CN (1) CN109843968B (ja)
TW (1) TWI734846B (ja)
WO (1) WO2018070470A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065248A1 (ja) * 2017-09-29 2019-04-04 日鉄ケミカル&マテリアル株式会社 繊維強化複合材料用樹脂組成物及びそれを用いた繊維強化複合材料
WO2019171991A1 (ja) * 2018-03-09 2019-09-12 日鉄ケミカル&マテリアル株式会社 繊維強化複合材料用樹脂組成物及びそれを用いた繊維強化複合材料

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110240693B (zh) * 2019-07-10 2021-12-17 深圳市前海博扬研究院有限公司 多胺固化剂及制备方法和环氧树脂组合物
CN114213607A (zh) * 2021-09-02 2022-03-22 道生天合材料科技(上海)股份有限公司 热固树脂组合物、环氧树脂材料及其复合材料和制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208838A (ja) * 1995-11-27 1997-08-12 Toray Ind Inc 樹脂組成物、プリプレグおよびプリプレグの製造方法
JP2016017110A (ja) * 2014-07-07 2016-02-01 三菱レイヨン株式会社 圧力容器の製造方法
JP2016153490A (ja) * 2015-02-18 2016-08-25 積水フーラー株式会社 エポキシ樹脂組成物、ポッティング剤及び中空糸膜モジュール用ポッティング剤

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310770A (en) * 1992-12-30 1994-05-10 Hi-Tek Polymers, Inc. Water reducible epoxy-amine adducts based on the diglycidyl ether of cyclohexane dimethanol
JP2002256139A (ja) 2001-03-01 2002-09-11 Toray Ind Inc 二液型エポキシ樹脂組成物およびコンクリート構造体の補修・補強方法
JP2002275242A (ja) * 2001-03-21 2002-09-25 Yokohama Rubber Co Ltd:The 低温硬化性エポキシ樹脂組成物およびそれを用いた接着剤
JP2006265434A (ja) 2005-03-25 2006-10-05 Toray Ind Inc エポキシ樹脂組成物、および繊維強化複合材料
ES2901199T3 (es) 2007-02-02 2022-03-21 Toray Industries Material de base preimpregnado, material de base laminado y plástico reforzado con fibra
JP4872139B2 (ja) * 2009-09-18 2012-02-08 Dic株式会社 繊維強化複合材料用樹脂組成物、その硬化物、繊維強化複合材料、繊維強化樹脂成形品、及びその製造方法
JP2012211244A (ja) 2011-03-31 2012-11-01 Aica Kogyo Co Ltd エポキシ樹脂接着剤組成物
CN103917574B (zh) * 2011-10-31 2017-09-22 东丽株式会社 纤维强化复合材料用二液型环氧树脂组合物和纤维强化复合材料
WO2014078219A1 (en) 2012-11-13 2014-05-22 Dow Global Technologies Llc Epoxy resin system containing polyethylene tetraamines for resin transfer molding processes
JP6320403B2 (ja) 2012-11-13 2018-05-09 ダウ グローバル テクノロジーズ エルエルシー 樹脂移送成形プロセスのためのポリエチレンテトラアミンおよびトリエチレンジアミン触媒を含有するエポキシ樹脂系
US20170158829A1 (en) * 2014-07-31 2017-06-08 Toray Industries, Inc. Two-pack type epoxy resin composition for fiber-reinforced composite material, and fiber-reinforced composite material
JP6593620B2 (ja) 2014-11-21 2019-10-23 Dic株式会社 エポキシ樹脂組成物、硬化物、繊維強化複合材料、繊維強化樹脂成形品、及び繊維強化樹脂成形品の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208838A (ja) * 1995-11-27 1997-08-12 Toray Ind Inc 樹脂組成物、プリプレグおよびプリプレグの製造方法
JP2016017110A (ja) * 2014-07-07 2016-02-01 三菱レイヨン株式会社 圧力容器の製造方法
JP2016153490A (ja) * 2015-02-18 2016-08-25 積水フーラー株式会社 エポキシ樹脂組成物、ポッティング剤及び中空糸膜モジュール用ポッティング剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3527605A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065248A1 (ja) * 2017-09-29 2019-04-04 日鉄ケミカル&マテリアル株式会社 繊維強化複合材料用樹脂組成物及びそれを用いた繊維強化複合材料
WO2019171991A1 (ja) * 2018-03-09 2019-09-12 日鉄ケミカル&マテリアル株式会社 繊維強化複合材料用樹脂組成物及びそれを用いた繊維強化複合材料
US11390708B2 (en) 2018-03-09 2022-07-19 Nippon Steel Chemical & Material Co., Ltd. Resin composition for fiber-reinforced composite materials, and fiber-reinforced composite material using same

Also Published As

Publication number Publication date
EP3527605A1 (en) 2019-08-21
TW201827519A (zh) 2018-08-01
EP3527605B1 (en) 2021-12-01
KR102399500B1 (ko) 2022-05-19
CN109843968B (zh) 2022-03-25
JPWO2018070470A1 (ja) 2019-08-08
JP7012654B2 (ja) 2022-01-28
US20190233633A1 (en) 2019-08-01
EP3527605A4 (en) 2020-04-15
US11597829B2 (en) 2023-03-07
TWI734846B (zh) 2021-08-01
CN109843968A (zh) 2019-06-04
KR20190068552A (ko) 2019-06-18

Similar Documents

Publication Publication Date Title
JP7221871B2 (ja) 繊維強化複合材料用樹脂組成物及びそれを用いた繊維強化複合材料
JP7012654B2 (ja) 繊維強化複合材料用樹脂組成物及びそれを用いた繊維強化複合材料
JP7075351B2 (ja) 硬化性エポキシ樹脂組成物、それを用いた繊維強化複合材料及び成形体
JPWO2011021516A1 (ja) 繊維強化複合材料用樹脂組成物、その硬化物、繊維強化複合材料、繊維強化樹脂成形品、及びその製造方法
JPWO2018123454A1 (ja) 硬化性エポキシ樹脂組成物、及びそれを用いた繊維強化複合材料
JP2019048954A (ja) エポキシ樹脂組成物および繊維強化複合材料
EP3357952B1 (en) Curable epoxy resin composition, and fiber-reinforced composite material obtained using same
JP7307050B2 (ja) 繊維強化複合材料用樹脂組成物及びそれを用いた繊維強化複合材料
JP7424990B2 (ja) 繊維強化複合材料用樹脂組成物及びそれを用いた繊維強化複合材料
JP2022156912A (ja) 硬化性樹脂組成物、およびこれを用いた繊維強化複合材料
JP2024047178A (ja) プリプレグ及び繊維強化プラスチック
JP2020070336A (ja) エポキシ樹脂組成物、成形材料及び繊維強化複合材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17860269

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018545047

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197011192

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017860269

Country of ref document: EP

Effective date: 20190514