WO2018066414A1 - Copper alloy plate for heat dissipation component, heat dissipation component, and method for manufacturing heat dissipation component - Google Patents

Copper alloy plate for heat dissipation component, heat dissipation component, and method for manufacturing heat dissipation component Download PDF

Info

Publication number
WO2018066414A1
WO2018066414A1 PCT/JP2017/034774 JP2017034774W WO2018066414A1 WO 2018066414 A1 WO2018066414 A1 WO 2018066414A1 JP 2017034774 W JP2017034774 W JP 2017034774W WO 2018066414 A1 WO2018066414 A1 WO 2018066414A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
heat
copper alloy
heating
dissipation component
Prior art date
Application number
PCT/JP2017/034774
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 橋本
昌泰 西村
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=61831928&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018066414(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201780060263.3A priority Critical patent/CN109790597A/en
Priority to KR1020197008985A priority patent/KR102226988B1/en
Publication of WO2018066414A1 publication Critical patent/WO2018066414A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Abstract

A copper alloy plate for a heat dissipation component, characterized in that: a phosphide including one or more of Fe, Ni, and Co is precipitated; the 0.2% proof stress is at least 100 MPa and the bend workability is excellent; the 0.2% proof stress measured at 850°C is at least 10 MPa; the 0.2% proof stress is at least 100 MPa and the electroconductivity is at least 50% IACS when the copper alloy plate is heated at 850°C for 30 minutes, then water-cooled, then subjected to an aging treatment for two hours at 500°C; and a process of heating to at least 650°C and an aging treatment are included in a part of the process for manufacturing a heat dissipation component.

Description

放熱部品用銅合金板、放熱部品、及び放熱部品の製造方法Copper alloy plate for heat dissipation component, heat dissipation component, and manufacturing method of heat dissipation component
 本開示は、複数の部品を接合してベーパーチャンバー(平板状ヒートパイプ)等の放熱部品を製造する場合に用いられる放熱部品用銅合金板に関する。特に、拡散接合やろう付けなど、650℃以上の温度に加熱するプロセスが含まれる場合に用いられる放熱部品用銅合金板に関する。 This disclosure relates to a copper alloy plate for a heat dissipation component used when a plurality of components are joined to manufacture a heat dissipation component such as a vapor chamber (flat plate heat pipe). In particular, the present invention relates to a copper alloy plate for a heat dissipation component that is used when a process of heating to a temperature of 650 ° C. or higher, such as diffusion bonding or brazing, is included.
 デスク型PC、ノート型PC、タブレット端末、スマートフォンに代表される携帯電話等に搭載されるCPUの動作速度の高速化及び高集積密度化が急速に進展し、これらのCPUからの単位面積当たりの発熱量が一段と増大している。CPUの温度が一定以上の温度に上昇すると、誤作動、熱暴走などの原因となるため、CPU等の半導体装置からの効果的な放熱は切実な問題となっている。
 半導体装置の熱を吸収し、大気中に放散させる放熱部品としてヒートシンクが使われている。ヒートシンクには高熱伝導性が求められることから、素材として熱伝導率の大きい銅、アルミニウムなどが用いられる。デスク型PCにおいては、CPUの熱をヒートシンクに設置した放熱フィンなどに伝え、デスク型PC筐体内に設置した小型ファンで抜熱する方法が用いられている。
The speed of operation and the increase in integration density of CPUs mounted on desk-type PCs, notebook PCs, tablet terminals, mobile phones represented by smartphones, etc. are rapidly progressing. The amount of heat generation is further increasing. When the temperature of the CPU rises above a certain level, it causes malfunctions, thermal runaway, etc., so effective heat dissipation from a semiconductor device such as a CPU is a serious problem.
A heat sink is used as a heat dissipating component that absorbs heat from a semiconductor device and dissipates it into the atmosphere. Since the heat sink is required to have high thermal conductivity, copper, aluminum, or the like having a high thermal conductivity is used as a material. In the desk type PC, a method is used in which the heat of the CPU is transmitted to a heat radiating fin or the like installed on a heat sink and the heat is removed by a small fan installed in the desk type PC casing.
 しかし、ファンを設置するスペースのないノート型PC、タブレット端末等においては、限られた面積でより高い熱輸送能力を持つ放熱部品として、ベーパーチャンバー(平板状ヒートパイプ)が用いられるようになってきた。ヒートパイプは、内部に封入した冷媒の蒸発(CPUからの吸熱)と凝縮(吸収した熱の放出)が循環的に行われることにより、ヒートシンクに比べて高い放熱特性を発揮する。また、ヒートパイプをヒートシンクまたはファンといった放熱部品と組合せることにより、半導体装置の発熱問題を解決することが提案されている。 However, in notebook PCs, tablet terminals, etc. that do not have space for installing fans, vapor chambers (flat plate heat pipes) have come to be used as heat dissipating parts that have a higher heat transport capacity in a limited area. It was. The heat pipe exhibits higher heat dissipation characteristics than the heat sink by cyclically performing evaporation (heat absorption from the CPU) and condensation (release of absorbed heat) of the refrigerant sealed inside. In addition, it has been proposed to solve the heat generation problem of a semiconductor device by combining a heat pipe with a heat dissipation component such as a heat sink or a fan.
 ベーパーチャンバーは、管状ヒートパイプの放熱性能を更に向上させたものである(特許文献1~4参照)。ベーパーチャンバーとして、冷媒の凝縮と蒸発を効率的に行うために、管状ヒートパイプと同様に、内面に粗面化加工、溝加工、粉末焼結による微細孔を形成したもの等が提案されている。
 また、ベーパーチャンバーとして、外部部材(筐体)と、外部部材の内部に収容固定される内部部材とより構成されたものが提案されている。内部部材は、冷媒の凝縮、蒸発、輸送を促進するために、外部部材の内部に一又は複数配置されるもので、種々の形状のフィン、突起、穴、スリット等が加工されている。この形式のベーパーチャンバーは、内部部材を外部部材の内部に配置した後、拡散接合、ろう付け等の方法により外部部材同士及び外部部材と内部部材を接合一体化することにより製造される。ベーパーチャンバーは、内部に冷媒を入れた後、ろう付け等の方法により封止される。
 電子部品の発熱がさらに大きくなり、ベーパーチャンバーの抜熱能力を超える場合、ベーパーチャンバーと同様な内部構造を有し、冷媒を外部から連続的に供給するタイプの放熱部品が用いられる(内部を低圧にする必要がない)。このタイプの放熱部品の筐体に用いられる部材、及び筐体の製造方法はベーパーチャンバーと同じである(特許文献5参照)。
The vapor chamber further improves the heat dissipation performance of the tubular heat pipe (see Patent Documents 1 to 4). In order to efficiently condense and evaporate the refrigerant, a vapor chamber has been proposed in which fine holes are formed on the inner surface by roughening, grooving, or powder sintering, similar to a tubular heat pipe. .
In addition, a vapor chamber has been proposed that includes an external member (housing) and an internal member that is housed and fixed inside the external member. One or a plurality of internal members are arranged inside the external member in order to promote condensation, evaporation, and transport of the refrigerant, and fins, protrusions, holes, slits, and the like having various shapes are processed. This type of vapor chamber is manufactured by disposing the internal member inside the external member, and then joining and integrating the external member and the external member with the internal member by a method such as diffusion bonding or brazing. The vapor chamber is sealed by a method such as brazing after the refrigerant is put inside.
If the heat generation of the electronic components further increases and exceeds the heat removal capacity of the vapor chamber, a heat dissipation component of the type that has the same internal structure as the vapor chamber and continuously supplies the refrigerant from the outside is used (the interior has a low pressure You do n’t have to). The members used for the housing of this type of heat radiation component and the method of manufacturing the housing are the same as those of the vapor chamber (see Patent Document 5).
 ベーパーチャンバーの素材としては、熱伝導率、耐食性、加工性及びエッチング性に優れる無酸素銅(OFC)からなる、例えば板厚0.3~1.0mm程度の軟質材(質別O)~硬質材(質別H)の板材(条を含む)が多用されている。OFC板材を用いたベーパーチャンバーの製作工程の一例を説明すると、次のようなものである。
 まず、OFC板材より切出した矩形の板部材の片面に、エッチング加工又は金型を用いたプレス加工により複数の溝、凹凸等のパターンを形成する。次に、前記パターンを形成した面を内側にして、2枚の板部材を上下に重ね合わせ、その状態で拡散接合する(図1B参照)。拡散接合は、10-2気圧より高真空雰囲気において、接合部位に2~6MPa程度の応力(加圧力)を掛けた状態で、800~900℃の高温に昇温し、所定温度到達後10~120分間程度、同温度に保持することで行われる。なお、上下の板部材の間にノズル(細径管)が嵌め込まれ、このノズルも接合される。
 拡散接合後は、真空又は減圧雰囲気において、前記ノズルを通してベーパーチャンバーの内部に作動流体(水等)を入れ、次いで前記ノズルを封止する。
The material of the vapor chamber is made of oxygen-free copper (OFC), which has excellent thermal conductivity, corrosion resistance, workability, and etching properties. For example, a soft material (type O) of about 0.3 to 1.0 mm thick to hard Plate materials (including strips) made of materials (type H) are frequently used. An example of the manufacturing process of the vapor chamber using the OFC plate material will be described as follows.
First, patterns such as a plurality of grooves and irregularities are formed on one side of a rectangular plate member cut out from the OFC plate material by etching or pressing using a mold. Next, with the surface on which the pattern is formed facing inward, the two plate members are stacked one above the other and diffusion bonded in that state (see FIG. 1B). In diffusion bonding, in a vacuum atmosphere higher than 10 −2 atm, with a stress (pressing force) of about 2 to 6 MPa applied to the bonding portion, the temperature is raised to a high temperature of 800 to 900 ° C. It is carried out by maintaining the same temperature for about 120 minutes. A nozzle (small diameter tube) is fitted between the upper and lower plate members, and this nozzle is also joined.
After diffusion bonding, in a vacuum or reduced pressure atmosphere, working fluid (water or the like) is put into the vapor chamber through the nozzle, and then the nozzle is sealed.
 ベーパーチャンバーをろう付けにより製作する場合、上下に重ね合わせた板部材の間に、接合部の形状の銀銅ろう、りん銅ろう等の薄板又は箔を挟み、その状態で加熱炉に連続的に挿入して加熱し、ろう付け接合する。ろう付けの雰囲気は、10-1気圧程度の真空雰囲気、還元雰囲気、あるいは不活性ガス雰囲気であり、加熱温度は650~900℃である。また、ろう付け加熱工程において、振動などで接合部にずれが生じないよう、接合部位に2~5MPa程度の応力(加圧力)を掛けた状態で、加熱、及びろう付けが行われる。 When the vapor chamber is manufactured by brazing, a thin plate or foil such as a silver-copper braze or phosphor-copper braze in the shape of the joint is sandwiched between the plate members stacked one above the other, and in that state continuously in the heating furnace Insert, heat and braze. The brazing atmosphere is a vacuum atmosphere of about 10 −1 atm, a reducing atmosphere, or an inert gas atmosphere, and the heating temperature is 650 to 900 ° C. Further, in the brazing heating step, heating and brazing are performed in a state where a stress (pressing force) of about 2 to 5 MPa is applied to the joining portion so that the joining portion is not displaced due to vibration or the like.
特開2004-238672号公報Japanese Patent Laid-Open No. 2004-238672 特開2007-315745号公報JP 2007-315745 A 特開2014-134347号公報JP 2014-134347 A 特開2015-121355号公報Japanese Patent Laying-Open No. 2015-121355 国際公開第2014/171276号International Publication No. 2014/171276
 拡散接合又はろう付けにおける加圧力は、一般に、拡散接合又はろう付けの保持温度における材料の0.2%耐力(引張試験において永久伸びが0.2%に達したときの引張強さ)を超えない範囲でなるべく大きい値が選択される。この加圧力が大きいほど、前記保持温度における保持時間を短縮することでき、また、接合部の信頼性(リークが発生しない、未接合箇所がない等)を高めることができる。なお、拡散接合又はろう付けにおいて、0.2%耐力を超える加圧力を付加した場合、接合部の信頼性をより向上させ、保持時間をより短縮することができるが、加圧部に塑性変形が発生し、所期の形状(設計形状)を維持することができない。
 ベーパーチャンバーの拡散接合又はろう付けにおいて、素材がOFC板材である場合にも、加圧力は保持温度におけるOFC板材の0.2%耐力を超えない範囲で決められ、0.2%耐力をσ0.2としたとき、加圧力は通常(0.5~0.8)×σ0.2の範囲とされる。
The pressure applied in diffusion bonding or brazing generally exceeds the 0.2% proof stress of the material at the holding temperature of diffusion bonding or brazing (the tensile strength when the permanent elongation reaches 0.2% in the tensile test). A value that is as large as possible is selected. The larger the applied pressure, the shorter the holding time at the holding temperature, and the higher the reliability of the bonded portion (no leakage, no unbonded portion, etc.). In addition, when a pressing force exceeding 0.2% proof stress is applied in diffusion bonding or brazing, the reliability of the bonded portion can be further improved and the holding time can be further shortened, but plastic deformation is applied to the pressure portion. Occurs, and the desired shape (design shape) cannot be maintained.
In the diffusion bonding or brazing of the vapor chamber, even when the material is an OFC plate, the pressure is determined within a range not exceeding the 0.2% proof strength of the OFC plate at the holding temperature, and the 0.2% proof strength is σ 0. When .2 is applied, the applied pressure is usually in the range of (0.5 to 0.8) × σ 0.2 .
 700~900℃で30分間保持後、その温度で測定したOFC板の0.2%耐力は、700℃で8MPa、800℃で6MPa、900℃で5MPaと小さい。
 板厚が0.45mm、平面形状が60mm×60mmのOFC板の片面を、周囲の枠部を残して一定の深さまでエッチングし、ベーパーチャンバーの筐体を模した板部材1(図1A参照)を作製した。この板部材1は、枠部2の幅が7mm、エッチングされた薄肉部3の肉厚が0.2mmである。続いて、2個の板部材1,1を、図1Bに示すように、エッチングされた面を内側にして重ね合せ、850℃に加熱し、枠部に3MPaの加圧力(0.2%耐力の50%以上)を掛けて30分間保持し、拡散接合した。
The 0.2% yield strength of the OFC plate measured at that temperature after holding at 700 to 900 ° C. for 30 minutes is as low as 8 MPa at 700 ° C., 6 MPa at 800 ° C., and 5 MPa at 900 ° C.
A plate member 1 having a thickness of 0.45 mm and a planar shape of 60 mm × 60 mm, etched on one side to a certain depth, leaving a surrounding frame, and a plate member 1 simulating a casing of a vapor chamber (see FIG. 1A) Was made. In this plate member 1, the width of the frame portion 2 is 7 mm, and the thickness of the etched thin portion 3 is 0.2 mm. Subsequently, as shown in FIG. 1B, the two plate members 1 and 1 are overlapped with the etched surfaces inside, heated to 850 ° C., and a pressure of 3 MPa (0.2% yield strength) is applied to the frame portion. 50% or more) and held for 30 minutes for diffusion bonding.
 拡散接合後の板部材1,1には、薄肉部3の中央部付近に軽微な凹み及び膨らみが観察された。このような変形が発生した原因は、拡散接合において、板部材1が再結晶温度を超える高温に加熱され、材料のヤング率及び耐力(降伏応力)とも著しく低下し、このため薄肉部3の中央部付近に作用する重力により同薄肉部3にクリープ変形が生じたためと推測される。また、拡散接合時の加圧力により、枠部2が横方向へ変形し、これにより枠部2の内側(上下の薄肉部3)に内向きの応力が発生すると考えられるが、この応力も前記変形(凹み及び膨らみ)が発生する原因の1つと推測される。 In the plate members 1 and 1 after diffusion bonding, slight dents and bulges were observed near the center of the thin portion 3. The cause of such deformation is that in diffusion bonding, the plate member 1 is heated to a high temperature exceeding the recrystallization temperature, and the Young's modulus and yield strength (yield stress) of the material are significantly reduced. It is presumed that creep deformation occurred in the thin-walled portion 3 due to gravity acting near the portion. Further, it is considered that the frame portion 2 is deformed in the lateral direction due to the applied pressure at the time of diffusion bonding, thereby generating an inward stress inside the frame portion 2 (upper and lower thin portions 3). This is presumed to be one of the causes of deformation (dents and bulges).
 このような変形が発生したベーパーチャンバーにおいては、チャンバーの内部空間の形状及び容積が変化して、蒸発及び凝縮した冷媒の流れ方(流路)及び流量が変化し、所期の熱的性能を発揮できなくなる。また、ベーパーチャンバーと発熱部(CPUなど)の間に隙間ができて熱伝達性能が低下する。
 さらに、OFC板は、600℃以上の温度に加熱することにより二次再結晶が生じ、結晶粒が粗大化する。例えば800℃に加熱すると、加熱時間が短くても平均結晶粒径が100μm~数100μm程度に粗大化する。粗大化した結晶粒の粒界には、ガス、不純物元素、介在物の密度が高くなることから、粒界は粒内に比べて脆くなっている。
In the vapor chamber in which such deformation has occurred, the shape and volume of the internal space of the chamber changes, and the flow (flow path) and flow rate of the evaporated and condensed refrigerant change, and the desired thermal performance is achieved. Cannot be demonstrated. Further, a gap is formed between the vapor chamber and the heat generating part (CPU or the like), and the heat transfer performance is lowered.
Furthermore, when the OFC plate is heated to a temperature of 600 ° C. or higher, secondary recrystallization occurs and the crystal grains become coarse. For example, when heated to 800 ° C., the average crystal grain size becomes coarser to about 100 μm to several hundred μm even if the heating time is short. Since the density of gas, impurity elements, and inclusions is high at the grain boundaries of the coarsened crystal grains, the grain boundaries are more fragile than in the grains.
 板厚0.3~0.5mmのOFC板を用いて製作したベーパーチャンバーでは、エッチングやプレス加工した部分の板厚は0.1~0.3mm程度に薄くなる。平均結晶粒径が100μm~数100μm程度に粗大化した場合、このような薄肉部には、結晶粒が肉厚方向に1個~3個程度しか存在しない。ベーパーチャンバーでは、使用中に冷媒が蒸発と凝縮を繰り返すため、そのときの圧力変化により、薄肉部に引張及び圧縮応力が繰り返し作用する。平均結晶粒径が粗大であると、粒界を伝播する割れが発生しやすくなり、薄肉部を貫通する割れが発生する場合がある。そうなるとチャンバー内部の冷媒が粒界を通してリークし、ベーパーチャンバーとして使用できない。また、平均結晶粒径が粗大化すると、銅合金板(ベーパーチャンバー)の表面粗さが大きくなり、発熱部(CPU等)との隙間が大きくなり、発熱部からベーパーチャンバーへの熱伝達性能が低下する。
 以上説明した拡散接合の問題点(薄肉部の変形、結晶粒の粗大化等)は、ろう付けによりベーパーチャンバーを製造する場合にも生じる。
In a vapor chamber manufactured using an OFC plate having a thickness of 0.3 to 0.5 mm, the thickness of the etched or pressed portion is reduced to about 0.1 to 0.3 mm. When the average crystal grain size is increased to about 100 μm to several 100 μm, only about 1 to 3 crystal grains are present in the thickness direction in such a thin portion. In the vapor chamber, since the refrigerant repeatedly evaporates and condenses during use, tensile and compressive stresses repeatedly act on the thin wall portion due to the pressure change at that time. If the average crystal grain size is coarse, cracks propagating through the grain boundaries are likely to occur, and cracks that penetrate through the thin portion may occur. Then, the refrigerant inside the chamber leaks through the grain boundary and cannot be used as a vapor chamber. In addition, when the average crystal grain size is increased, the surface roughness of the copper alloy plate (vapor chamber) increases, the gap with the heat generating part (CPU, etc.) increases, and the heat transfer performance from the heat generating part to the vapor chamber increases. descend.
The above-described problems of diffusion bonding (deformation of a thin part, coarsening of crystal grains, etc.) also occur when a vapor chamber is manufactured by brazing.
 ベーパーチャンバーの素材として、高温における強度が大きい材料を用いた場合、拡散接合又はろう付け時の加圧力を大きくして保持時間を短縮し、接合部の信頼性を向上させ、さらに拡散接合又はろう付け時における板部材1の変形を防止することができると考えられる。また、高温における結晶粒の粗大化が抑えられる材料を用いた場合、板部材1の薄肉部にも結晶粒を肉厚方向に多数存在させ、ベーパーチャンバーの冷媒のリークを防止することができ、伝熱性能の低下を防止することができると考えられる。また、このような材料を用いた場合、製造プロセスの一部に高温加熱するプロセスが含まれる他の放熱部品においても、同様の効果が得られると考えられる。
 従って、本発明の実施形態は、ベーパーチャンバー等の放熱部品の素材として、高温における強度(0.2%耐力値)が大きい材料(銅合金板)を提供することを主たる目的とする。また、本発明の実施形態は、ベーパーチャンバー等の放熱部品の素材として、高温における結晶粒の粗大化が抑えられる材料(銅合金板)を提供することを他の目的とする。
When a material with high strength at high temperature is used as the material of the vapor chamber, the pressure applied during diffusion bonding or brazing is increased to shorten the holding time, improve the reliability of the joint, and further diffusion bonding or brazing It is considered that the deformation of the plate member 1 during attachment can be prevented. In addition, when using a material that can suppress the coarsening of crystal grains at high temperature, a large number of crystal grains can be present in the thickness direction in the thin portion of the plate member 1 to prevent leakage of the refrigerant in the vapor chamber. It is considered that the heat transfer performance can be prevented from decreasing. Moreover, when such a material is used, it is thought that the same effect is acquired also in the other thermal radiation components in which the process heated at high temperature is included in a part of manufacturing process.
Therefore, the main object of the embodiment of the present invention is to provide a material (copper alloy plate) having a high strength (0.2% proof stress value) at a high temperature as a material for a heat dissipation component such as a vapor chamber. Another object of the embodiment of the present invention is to provide a material (copper alloy plate) that suppresses the coarsening of crystal grains at a high temperature as a material for a heat dissipation component such as a vapor chamber.
 本発明の実施形態に係る放熱部品用銅合金板は、放熱部品を製造するプロセスの一部として、650℃以上に加熱するプロセスと時効処理が含まれる場合に用いられ、Fe,Ni,Coの1種又は2種以上を含むリン化物が析出し、100MPa以上の0.2%耐力及び優れた曲げ加工性を有し、850℃で測定した0.2%耐力が10MPa以上であり、かつ850℃で30分加熱後水冷し、次いで500℃で2時間の時効処理した後の0.2%耐力が100MPa以上、導電率が50%IACS以上であることを特徴とする。この銅合金板は、850℃で30分加熱後の平均結晶粒径が100μm以下であることが好ましい。なお、本発明の実施形態でいう板は条を含む。
 この銅合金板は、例えば、Fe、Co、Niの1種又は2種以上とP:0.01~0.2質量%を含み、Fe、Co、Niの合計含有量[Fe+Co+Ni]が0.2~2.3質量%であり、残部がCu及び不可避不純物からなる。この銅合金は、必要に応じてさらにMg,Al,Si,Cr,Ti,Zr,Zn,Sn,Mnの1種又は2種以上を、合計で0.01~0.3質量%含む。
The copper alloy plate for a heat dissipation component according to the embodiment of the present invention is used when a process of heating to 650 ° C. or more and an aging treatment are included as a part of the process of manufacturing the heat dissipation component. The phosphide containing 1 type or 2 types or more precipitates, has 0.2% yield strength of 100 MPa or more and excellent bending workability, 0.2% yield measured at 850 ° C. is 10 MPa or more, and 850 It is characterized by 0.2% proof stress of 100 MPa or more and conductivity of 50% IACS or more after heating at 50 ° C. for 30 minutes and then water cooling and then aging treatment at 500 ° C. for 2 hours. The copper alloy sheet preferably has an average crystal grain size of 100 μm or less after heating at 850 ° C. for 30 minutes. In addition, the board as used in the embodiment of the present invention includes a strip.
This copper alloy plate includes, for example, one or more of Fe, Co, and Ni and P: 0.01 to 0.2% by mass, and the total content [Fe + Co + Ni] of Fe, Co, and Ni is 0.00. It is 2 to 2.3% by mass, and the balance consists of Cu and inevitable impurities. This copper alloy further contains 0.01 to 0.3 mass% of one or more of Mg, Al, Si, Cr, Ti, Zr, Zn, Sn, and Mn as required.
 また、本発明の実施形態に係る別の放熱部品用銅合金板は、Ni,Coの1種又は2種を含む珪化物が析出し、200MPa以上の0.2%耐力及び優れた曲げ加工性を有し、850℃で測定した0.2%耐力が10MPa以上であり、かつ850℃で30分加熱後水冷し、次いで500℃で2時間の時効処理した後の0.2%耐力が300MPa以上、導電率が50%IACS以上であることを特徴とする。この銅合金板は、850℃で30分加熱後の平均結晶粒径が100μm以下であることが好ましい。
 この銅合金板は、例えば、NiとCoの1種又は2種とSiを含み、NiとCoの合計含有量[Ni+Co]が1.6~3.5質量%であり、NiとCoの合計含有量[Ni+Co]とSi含有量[Si]の比[Ni+Co]/[Si]が3.5~5.5であり、残部がCu及び不可避不純物からなる。この銅合金は、必要に応じてさらにMg,Al,Cr,Ti,Zr,Zn,Sn,Mnの1種又は2種以上を、合計で0.01~0.3質量%含む。
In addition, another copper alloy plate for heat dissipation component according to the embodiment of the present invention deposits silicide containing one or two of Ni and Co, 0.2% proof stress of 200 MPa or more, and excellent bending workability. 0.2% proof stress measured at 850 ° C. is 10 MPa or more, and 0.2% proof stress after heating at 850 ° C. for 30 minutes, water cooling, and then aging treatment at 500 ° C. for 2 hours is 300 MPa. As described above, the electrical conductivity is 50% IACS or more. The copper alloy sheet preferably has an average crystal grain size of 100 μm or less after heating at 850 ° C. for 30 minutes.
This copper alloy plate contains, for example, one or two of Ni and Co and Si, and the total content of Ni and Co [Ni + Co] is 1.6 to 3.5% by mass, and the total of Ni and Co The ratio [Ni + Co] / [Si] of the content [Ni + Co] to the Si content [Si] is 3.5 to 5.5, with the balance being Cu and inevitable impurities. This copper alloy further contains 0.01 to 0.3% by mass in total of one or more of Mg, Al, Cr, Ti, Zr, Zn, Sn, and Mn as required.
 本発明の実施形態に係る放熱部品用銅合金板は、リン化物又は珪化物を含む析出硬化型銅合金からなり、従来のOFCに比べて高温での強度が高い。このため、拡散接合時の加圧力を大きくして保持時間を短縮し、接合部の信頼性を向上させることができ、かつ拡散接合時における板部材(例えばベーパーチャンバーの筐体部品)の変形を防止することができる。
 また、高温における結晶粒の粗大化を抑えた場合、板部材(例えばベーパーチャンバーの筐体)の薄肉部にも結晶粒を肉厚方向に多数存在させ、内部からの冷媒のリークを防止することができる。
 また、本発明の実施形態に係る放熱部品用銅合金板は時効硬化型であり、高温加熱後時効処理することにより強度及び導電率が向上する。従って、650℃以上に加熱するプロセス(拡散接合、ろう付け、レーザー溶接等)の後、時効処理することで、高強度で放熱性能の優れた放熱部品を得ることができる。
The copper alloy plate for heat radiating components according to the embodiment of the present invention is made of a precipitation hardening type copper alloy containing a phosphide or a silicide, and has a higher strength at a higher temperature than a conventional OFC. For this reason, the pressurizing force at the time of diffusion bonding can be increased, the holding time can be shortened, the reliability of the joint can be improved, and the deformation of the plate member (for example, the casing part of the vapor chamber) at the time of diffusion bonding can be prevented. Can be prevented.
In addition, when suppressing the coarsening of crystal grains at high temperatures, a large number of crystal grains are also present in the thickness direction in the thin part of the plate member (for example, the casing of the vapor chamber) to prevent leakage of the refrigerant from the inside. Can do.
Moreover, the copper alloy plate for heat radiating components which concerns on embodiment of this invention is an age hardening type, and an intensity | strength and electrical conductivity improve by performing an aging treatment after high temperature heating. Therefore, a heat radiation component having high strength and excellent heat radiation performance can be obtained by performing an aging treatment after a process of heating to 650 ° C. or more (diffusion bonding, brazing, laser welding, etc.).
ベーパーチャンバーの拡散接合を説明するもので、パターン形成した板部材の斜視図である。It is a perspective view of the plate member by which the diffusion bonding of the vapor chamber was demonstrated, and the pattern was formed. ベーパーチャンバーの拡散接合を説明するもので、2枚の板部材(ベーパーチャンバーの筐体部品)を接合のため重ね合わせた状態の断面図である。FIG. 10 is a cross-sectional view illustrating a vapor chamber diffusion bonding in which two plate members (a casing component of the vapor chamber) are overlapped for bonding. 850℃で行う引張試験に用いた試験片の形状と寸法を示す図である。It is a figure which shows the shape and dimension of a test piece used for the tensile test performed at 850 degreeC.
 以下、本発明の実施形態に係る放熱部品用銅合金板について、より詳細に説明する。
[合金組成]
 ベーパーチャンバーの筐体等の放熱部品に適用される析出硬化型銅合金として、それ自体公知のCu-(Fe,Co,Ni)-P系合金、及びCu-(Ni,Co)-Si系合金が挙げられる。
Hereinafter, the copper alloy plate for heat dissipation components according to the embodiment of the present invention will be described in more detail.
[Alloy composition]
Known precipitation-hardening type copper alloys applied to heat-radiating parts such as vapor chamber housings are known Cu- (Fe, Co, Ni) -P alloys and Cu- (Ni, Co) -Si alloys. Is mentioned.
(Cu-(Fe,Co,Ni)-P系合金)
 この系の銅合金は、Fe,Ni,Coの1種又は2種以上とPを含有し、Fe,Ni,CoとPは化合物(リン化物)を形成する。
 この銅合金は、好ましくはFe、Co、Niの合計含有量[Fe+Co+Ni]が0.2~2.3質量%、P含有量が0.01~0.2質量%であり、残部がCu及び不可避不純物からなる。
 この銅合金は、必要に応じてさらにMg,Al,Si,Cr,Ti,Zr,Zn,Sn,Mnの1種又は2種以上を合計で0.01~0.3質量%含む。
(Cu- (Fe, Co, Ni) -P alloy)
This type of copper alloy contains one or more of Fe, Ni and Co and P, and Fe, Ni, Co and P form a compound (phosphide).
This copper alloy preferably has a total content of Fe, Co, and Ni [Fe + Co + Ni] of 0.2 to 2.3 mass%, a P content of 0.01 to 0.2 mass%, with the balance being Cu and Consists of inevitable impurities.
This copper alloy further contains 0.01 to 0.3 mass% of one or more of Mg, Al, Si, Cr, Ti, Zr, Zn, Sn, and Mn as required.
 Fe、Co及びNiはPと化合物(リン化物)を形成し、時効処理後の銅合金板の強度及び導電率を向上させ、かつ高温加熱時の結晶粒の粗大化を抑制する作用を有する。リン化物を形成しないFe、Coは単体で析出して上記リン化物と同様の作用を有し、一方、リン化物を形成しないNiはCu中に固溶して、銅合金板の強度を向上させる。しかし、[Fe+Co+Ni]が0.2質量%未満では、850℃における0.2%耐力が10MPa未満となる。一方、[Fe+Co+Ni]が2.3質量%を超えると、導電率が低下し、また、合金の溶解鋳造工程で粗大な化合物が晶出して、曲げ加工性、スタンピング加工性及び耐食性が低下する。従って、[Fe+Co+Ni]は0.2~2.3質量%の範囲内が好ましい。なお、この銅合金において、Niは、含有量が0.1質量%未満では上記効果が十分でなく、一方、1質量%を超えると上記効果が飽和する。従って、Niを含む場合、Ni含有量は0.1~1.0質量%の範囲内とする。[Fe+Co+Ni]の好ましい下限値は0.25%、好ましい上限値は2.1%であり、またNiの好ましい下限値は0.15%、好ましい上限値は0.9%である。
 上記銅合金は、Fe、Co、NiのうちFeとCoの1種又は2種を含み、FeとCoの合計含有量[Fe+Co]が0.2~2.3質量%であることが好ましい。この場合、必要に応じて0.1~1.0質量%のNiを含むことができる。この組成であれば、850℃×30分加熱後の平均結晶粒径を100μm以下に抑えることができる。
Fe, Co, and Ni form a compound (phosphide) with P, have the effect of improving the strength and conductivity of the copper alloy sheet after aging treatment, and suppressing the coarsening of crystal grains during high-temperature heating. Fe and Co that do not form phosphide precipitate as a single substance and have the same action as the above phosphide, while Ni that does not form phosphide dissolves in Cu and improves the strength of the copper alloy plate. . However, when [Fe + Co + Ni] is less than 0.2% by mass, the 0.2% yield strength at 850 ° C. is less than 10 MPa. On the other hand, when [Fe + Co + Ni] exceeds 2.3 mass%, the electrical conductivity is lowered, and a coarse compound is crystallized in the melting and casting process of the alloy, so that bending workability, stamping workability and corrosion resistance are lowered. Therefore, [Fe + Co + Ni] is preferably in the range of 0.2 to 2.3 mass%. In this copper alloy, the effect of Ni is not sufficient when the content of Ni is less than 0.1% by mass, while the effect is saturated when the content exceeds 1% by mass. Therefore, when Ni is included, the Ni content is in the range of 0.1 to 1.0 mass%. A preferable lower limit value of [Fe + Co + Ni] is 0.25% and a preferable upper limit value is 2.1%, and a preferable lower limit value of Ni is 0.15% and a preferable upper limit value is 0.9%.
The copper alloy preferably includes one or two of Fe and Co among Fe, Co and Ni, and the total content [Fe + Co] of Fe and Co is preferably 0.2 to 2.3 mass%. In this case, 0.1 to 1.0% by mass of Ni can be included as necessary. With this composition, the average crystal grain size after heating at 850 ° C. for 30 minutes can be suppressed to 100 μm or less.
 Pは、脱酸作用により銅合金に含まれる酸素量を低減し、放熱部品を水素を含む還元雰囲気で加熱したときの水素脆性を防止する作用を有する。水素脆化防止のために必要なP含有量は0.01質量%以上である。また、固溶したPは銅合金の導電率を低下させるが、析出温度に加熱することによりFe、Co、Niとリン化物を形成し、これにより銅合金の強度、耐熱性、及び導電率が向上する。しかし、Pの含有量が0.2質量%を超えると固溶するPの量が増加し、導電率が低下する。このため、Pの含有量は0.01~0.2質量%とする。主として上記リン化物の析出により強度、耐熱性及び導電率の向上を図る場合、[Fe+Co+Ni]とP含有量[P]の比[Fe+Co+Ni]/[P]は2~5程度が好ましい。Pの好ましい下限値は0.013%、好ましい上限値は0.17%であり、[Fe+Co+Ni]/[P]のより好ましい下限値は2.3であり、より好ましい上限値は4.5である。 P has an action of reducing the amount of oxygen contained in the copper alloy by a deoxidation action and preventing hydrogen embrittlement when the heat dissipating part is heated in a reducing atmosphere containing hydrogen. The P content necessary for preventing hydrogen embrittlement is 0.01% by mass or more. In addition, solid solution P lowers the conductivity of the copper alloy, but when heated to the deposition temperature, Fe, Co, Ni and phosphide are formed, thereby reducing the strength, heat resistance, and conductivity of the copper alloy. improves. However, when the content of P exceeds 0.2% by mass, the amount of P that is dissolved is increased, and the electrical conductivity is lowered. Therefore, the P content is set to 0.01 to 0.2% by mass. When the strength, heat resistance and electrical conductivity are improved mainly by precipitation of the phosphide, the ratio [Fe + Co + Ni] / [P] of [Fe + Co + Ni] to P content [P] is preferably about 2 to 5. The preferable lower limit value of P is 0.013%, the preferable upper limit value is 0.17%, the more preferable lower limit value of [Fe + Co + Ni] / [P] is 2.3, and the more preferable upper limit value is 4.5. is there.
 Mg,Al,Si,Cr,Ti,Zr,Zn,Sn,Mnは、銅合金の強度及び耐熱性を向上させる作用を有するため、これらの1種又は2種以上が必要に応じて添加される。しかし、これらの元素の1種又は2種以上の合計含有量が0.005質量%未満ではその効果が小さく、一方、0.3質量%を超えると導電率が低下する。従って、これらの元素の1種又は2種以上の合計含有量は、0.005~0.3質量%の範囲内とする。これらの元素の1種又は2種以上の合計含有量は、好ましくは下限値が0.01、より好ましくは下限値が0.02質量%であり、好ましくは上限値が0.25質量%である。
 このうちSi、Al、Mn、Tiは、少量含有させても銅合金の導電率を低下させることから、各元素とも上限値を0.1質量%とすることが好ましい。Cr、Zrは、銅に対する固溶量が少なく、比較的高温領域でも析出しているため、高温に加熱したときの結晶粒の粗大化抑制効果が大きい元素である。このため、銅合金板の結晶粒を微細化したい場合は、CrとZrを1種又は2種の合計で0.03質量%以上、好ましくは0.06質量%以上含有させるとよい。CrとZrを1種又は2種の合計で0.03質量%以上含有させた場合、[Fe+Co]が0.2質量%未満(ただし、[Fe+Co+Ni]は0.2質量%以上)でも、850℃×30分加熱後の平均結晶粒径を100μm以下に抑えることができる。一方、CrとZrは導電率を低下させるため、これらの元素の1種又は2種の合計含有量は0.2質量%以下であることが好ましい。
 強度及び耐応力緩和特性向上の効果に加え、Sn,Mgは、耐応力緩和特性を向上させる効果を有する。放熱部品の温度又は使用環境が80℃又はそれ以上となると、クリ-プ変形が生じてCPU等の熱源との接触面積が小さくなり、放熱性が低下するが、耐応力緩和特性を向上させることで、この現象を抑制できる。この効果を得るため、Sn含有量は0.01質量%以上、Mg含有量は0.005質量%以上であることが好ましい。一方、銅合金板の導電率の低下を防止するとの観点から、Sn含有量は0.2質量%以下とすることが好ましく、Mg含有量は0.2質量%以下とすることが好ましい。
 Znは、はんだの耐熱剥離性及びSnめっきの耐熱剥離性を改善する。ベーパーチャンバーは放熱部である電子部品にはんだ付けすることがあり、また、耐食性改善のためベーパーチャンバーにSnめっきを行う場合がある。そのような場合に、ベーパーチャンバーの筐体の素材としてZnを含有する銅合金板が好適に用いられる。Znは少量の添加でも上記耐熱剥離性を改善する効果を有するが、Znを0.3質量%を超えて含有させてもその効果は飽和することから、Znの含有量は0.3%以下とすることが好ましい。Zn含有量の下限値はより好ましくは0.005質量%、さらに好ましくは0.01質量%である。
Since Mg, Al, Si, Cr, Ti, Zr, Zn, Sn, and Mn have an effect of improving the strength and heat resistance of the copper alloy, one or more of these are added as necessary. . However, if the total content of one or more of these elements is less than 0.005% by mass, the effect is small, while if it exceeds 0.3% by mass, the conductivity decreases. Therefore, the total content of one or more of these elements is within the range of 0.005 to 0.3% by mass. The total content of one or more of these elements is preferably a lower limit of 0.01, more preferably a lower limit of 0.02% by mass, and preferably an upper limit of 0.25% by mass. is there.
Of these, Si, Al, Mn, and Ti reduce the electrical conductivity of the copper alloy even if contained in small amounts, and therefore the upper limit value of each element is preferably 0.1% by mass. Cr and Zr are elements having a large effect of suppressing the coarsening of crystal grains when heated to a high temperature because they have a small solid solution amount with respect to copper and are precipitated even in a relatively high temperature region. For this reason, when it is desired to refine the crystal grains of the copper alloy plate, Cr and Zr may be contained in an amount of 0.03 mass% or more, preferably 0.06 mass% or more in total of one or two kinds. When Cr and Zr are contained in a total of 0.03% by mass or more of one or two types, 850 even if [Fe + Co] is less than 0.2% by mass (however, [Fe + Co + Ni] is 0.2% by mass or more). The average grain size after heating at 30 ° C. for 30 minutes can be suppressed to 100 μm or less. On the other hand, since Cr and Zr lower the electrical conductivity, the total content of one or two of these elements is preferably 0.2% by mass or less.
In addition to the effect of improving the strength and the stress relaxation resistance, Sn and Mg have the effect of improving the stress relaxation resistance. When the temperature or operating environment of the heat dissipating component is 80 ° C or higher, creep deformation occurs and the contact area with a heat source such as a CPU is reduced, reducing heat dissipation, but improving stress relaxation resistance. Thus, this phenomenon can be suppressed. In order to acquire this effect, it is preferable that Sn content is 0.01 mass% or more, and Mg content is 0.005 mass% or more. On the other hand, the Sn content is preferably 0.2% by mass or less, and the Mg content is preferably 0.2% by mass or less from the viewpoint of preventing a decrease in conductivity of the copper alloy plate.
Zn improves the heat release resistance of the solder and the heat release resistance of the Sn plating. The vapor chamber may be soldered to an electronic component that is a heat dissipation part, and Sn plating may be performed on the vapor chamber to improve corrosion resistance. In such a case, a copper alloy plate containing Zn is suitably used as a material for the casing of the vapor chamber. Even if Zn is added in a small amount, it has the effect of improving the heat-resistant peelability, but even if Zn is contained in an amount exceeding 0.3% by mass, the effect is saturated, so the Zn content is 0.3% or less. It is preferable that The lower limit of the Zn content is more preferably 0.005% by mass, and still more preferably 0.01% by mass.
(Cu-(Ni,Co)-Si系合金)
 この系の銅合金は、Ni,Coの1種又は2種とSiを含有し、Ni,CoとSiは化合物(珪化物)を形成する。
 この銅合金は、好ましくはNiとCoの合計含有量[Ni+Co]が1.6~3.5質量%であり、NiとCoの合計含有量[Ni+Co]とSi含有量[Si]の比[Ni+Co]/[Si]が3.5~5.5であり、残部がCu及び不可避不純物からなる。
 この銅合金は、必要に応じてさらにMg,Al,Cr,Ti,Zr,Zn,Sn,Mnの1種又は2種以上を、合計で0.01~0.3質量%含む。
(Cu- (Ni, Co) -Si alloy)
This type of copper alloy contains one or two of Ni and Co and Si, and Ni, Co and Si form a compound (silicide).
This copper alloy preferably has a total content of Ni and Co [Ni + Co] of 1.6 to 3.5% by mass, and a ratio of the total content of Ni and Co [Ni + Co] to the Si content [Si] [ Ni + Co] / [Si] is 3.5 to 5.5, with the balance being Cu and inevitable impurities.
This copper alloy further contains 0.01 to 0.3% by mass in total of one or more of Mg, Al, Cr, Ti, Zr, Zn, Sn, and Mn as required.
 NiとCoは、Siと化合物(珪化物)を形成し、時効処理後の銅合金の強度及び導電率を向上させ、かつ高温加熱時の結晶粒の粗大化を抑制する作用を有する。しかし、[Ni+Co]が1.6質量%未満では850℃における0.2%耐力が10MPa未満となり、また、結晶粒の粗大化を抑制する作用が小さい。一方、[Ni+Co]が3.5質量%を超えると、導電率が低下し、粗大な化合物が晶出又は析出して熱間加工性が低下する。従って、[Ni+Co]は1.6~3.5質量%の範囲内とする。
 また、[Ni+Co]/[Si]が3.5未満では、過剰となったSiが固溶し、5.5を超えると、過剰となったNi又はCoが固溶して、導電率が低下する。従って、[Ni+Co]/[Si]は3.5~5.5の範囲内とする。
 850℃×30分加熱後の平均結晶粒径を100μm以下に抑えるには、[Ni+Co]を2.4質量%以上とすることが好ましい。
Ni and Co have a function of forming a compound (silicide) with Si, improving the strength and electrical conductivity of the copper alloy after aging treatment, and suppressing the coarsening of crystal grains during high-temperature heating. However, when [Ni + Co] is less than 1.6% by mass, the 0.2% proof stress at 850 ° C. is less than 10 MPa, and the action of suppressing the coarsening of crystal grains is small. On the other hand, when [Ni + Co] exceeds 3.5% by mass, the electrical conductivity decreases, and a coarse compound crystallizes or precipitates, resulting in a decrease in hot workability. Accordingly, [Ni + Co] is set in the range of 1.6 to 3.5 mass%.
Further, when [Ni + Co] / [Si] is less than 3.5, excess Si is dissolved, and when it exceeds 5.5, excess Ni or Co is dissolved and conductivity is lowered. To do. Therefore, [Ni + Co] / [Si] is set in the range of 3.5 to 5.5.
In order to suppress the average crystal grain size after heating at 850 ° C. for 30 minutes to 100 μm or less, it is preferable to set [Ni + Co] to 2.4 mass% or more.
 Mg,Al,Cr,Ti,Zr,Zn,Sn,Mnは、銅合金の強度を高める作用を有するため、これらの1種又は2種以上が必要に応じて添加される。しかし、これらの元素の1種又は2種以上の合計含有量が0.005質量%未満では、その効果が小さく、一方、0.3質量%を超えると導電率が低下する。従って、これらの元素の1種又は2種以上の合計含有量は、0.005~0.3質量%の範囲内とする。これらの元素の1種又は2種以上の合計含有量は、好ましくは下限値が0.01質量%、より好ましくは下限値が0.02質量%であり、好ましくは上限値が0.25質量%である。
 このうちAl、Mn、Tiは、少量含有させても銅合金の導電率を低下させることから、それぞれ上限値を、0.1質量%とすることが好ましい。Cr、Zrは、高温に加熱したときの結晶粒の粗大化抑制効果が大きい元素であり、結晶粒を微細化したい場合は、CrとZrの1種又は2種の合計で0.03%以上、好ましくは0.06質量%以上含有させるとよい。CrとZrの1種又は2種を合計で0.03%以上含有させた場合、[Ni+Co]が2.4質量%未満(1.6質量%以上)でも、850℃×30分加熱後の平均結晶粒径を100μm以下に抑えることができる。しかし、CrとZrは導電率を低下させるため、これらの元素の1種又は2種の合計の含有量は0.2質量%以下であることが好ましい。
 強度及び耐応力緩和特性向上の効果に加え、Sn,Mgは、耐応力緩和特性を向上させる効果を有する。放熱部品の温度又は使用環境が80℃又はそれ以上となると、クリ-プ変形が生じてCPU等の熱源との接触面積が小さくなり、放熱性が低下するが、耐応力緩和特性を向上させることで、この現象を抑制できる。この効果を得るため、Sn含有量は0.01質量%以上、Mg含有量は0.005質量%以上であることが好ましい。一方、銅合金板の導電率の低下を防止するとの観点から、Sn含有量は0.2質量%以下とすることが好ましく、Mg含有量は0.2質量%以下とすることが好ましい。
 Znは、はんだの耐熱剥離性及びSnめっきの耐熱剥離性を改善する。ベーパーチャンバーは放熱部である電子部品にはんだ付けすることがあり、また、耐食性改善のためベーパーチャンバーにSnめっきを行う場合がある。そのような場合に、ベーパーチャンバーの筐体の素材としてZnを含有する銅合金板が好適に用いられる。Znは少量の添加でも上記耐熱剥離性を改善する効果を有するが、Znを0.3質量%を超えて含有させてもその効果は飽和することから、Znの含有量は0.3%以下とすることが好ましい。Zn含有量の下限値はより好ましくは0.005質量%、さらに好ましくは0.01質量%である。
Since Mg, Al, Cr, Ti, Zr, Zn, Sn, and Mn have the effect of increasing the strength of the copper alloy, one or more of these are added as necessary. However, if the total content of one or more of these elements is less than 0.005% by mass, the effect is small, while if it exceeds 0.3% by mass, the electrical conductivity decreases. Therefore, the total content of one or more of these elements is within the range of 0.005 to 0.3% by mass. The total content of one or more of these elements is preferably a lower limit of 0.01% by mass, more preferably a lower limit of 0.02% by mass, and preferably an upper limit of 0.25% by mass. %.
Among these, since Al, Mn, and Ti are contained in a small amount, the electrical conductivity of the copper alloy is lowered, so the upper limit value is preferably 0.1% by mass. Cr and Zr are elements that have a large effect of suppressing the coarsening of crystal grains when heated to a high temperature. When the crystal grains are desired to be refined, the total of one or two of Cr and Zr is 0.03% or more. However, it is preferable to contain 0.06% by mass or more. When one or two of Cr and Zr are contained in a total of 0.03% or more, even when [Ni + Co] is less than 2.4% by mass (1.6% by mass or more), after heating at 850 ° C. for 30 minutes. The average crystal grain size can be suppressed to 100 μm or less. However, since Cr and Zr lower the electrical conductivity, the total content of one or two of these elements is preferably 0.2% by mass or less.
In addition to the effect of improving the strength and the stress relaxation resistance, Sn and Mg have the effect of improving the stress relaxation resistance. When the temperature or operating environment of the heat dissipating component is 80 ° C or higher, creep deformation occurs and the contact area with a heat source such as a CPU is reduced, reducing heat dissipation, but improving stress relaxation resistance. Thus, this phenomenon can be suppressed. In order to acquire this effect, it is preferable that Sn content is 0.01 mass% or more, and Mg content is 0.005 mass% or more. On the other hand, the Sn content is preferably 0.2% by mass or less, and the Mg content is preferably 0.2% by mass or less from the viewpoint of preventing a decrease in conductivity of the copper alloy plate.
Zn improves the heat release resistance of the solder and the heat release resistance of the Sn plating. The vapor chamber may be soldered to an electronic component that is a heat dissipation part, and Sn plating may be performed on the vapor chamber to improve corrosion resistance. In such a case, a copper alloy plate containing Zn is suitably used as a material for the casing of the vapor chamber. Even if Zn is added in a small amount, it has the effect of improving the heat-resistant peelability, but even if Zn is contained in an amount exceeding 0.3% by mass, the effect is saturated, so the Zn content is 0.3% or less. It is preferable that The lower limit of the Zn content is more preferably 0.005% by mass, and still more preferably 0.01% by mass.
[銅合金板の製造方法]
 本発明の実施形態に係る銅合金板は、鋳塊を均熱処理後、(1)熱間圧延-冷間圧延-焼鈍、(2)熱間圧延-冷間圧延-焼鈍-冷間圧延、(3)熱間圧延-冷間圧延-焼鈍-冷間圧延-低温焼鈍、等の工程で製造できる。上記(1)~(3)において、冷間圧延-焼鈍の工程を複数回行ってもよい。
 前記焼鈍には、軟化焼鈍、再結晶焼鈍又は析出焼鈍(時効処理)が含まれる。軟化焼鈍又は再結晶焼鈍の場合は、加熱温度を600~950℃の範囲から、加熱時間を5秒~1時間の範囲から選定するとよい。軟化焼鈍又は再結晶焼鈍が溶体化処理を兼ねる場合は、650~950℃で5秒~3分加熱する連続焼鈍を行うとよい。析出焼鈍の場合、350~600℃程度の温度範囲に0.5~10時間保持する条件で行うとよい。軟化焼鈍又は再結晶焼鈍が溶体化処理を兼ねる場合、後工程で析出焼鈍を行うことができる。
[Method for producing copper alloy sheet]
The copper alloy sheet according to the embodiment of the present invention comprises (1) hot rolling-cold rolling-annealing, (2) hot rolling-cold rolling-annealing-cold rolling after soaking the ingot. 3) It can be produced by processes such as hot rolling, cold rolling, annealing, cold rolling, and low temperature annealing. In the above (1) to (3), the cold rolling-annealing step may be performed a plurality of times.
The annealing includes softening annealing, recrystallization annealing, or precipitation annealing (aging treatment). In the case of softening annealing or recrystallization annealing, the heating temperature may be selected from the range of 600 to 950 ° C., and the heating time may be selected from the range of 5 seconds to 1 hour. When softening annealing or recrystallization annealing also serves as a solution treatment, continuous annealing is preferably performed by heating at 650 to 950 ° C. for 5 seconds to 3 minutes. In the case of precipitation annealing, it is preferable that the annealing is performed under the condition that the temperature is maintained at about 350 to 600 ° C. for 0.5 to 10 hours. When softening annealing or recrystallization annealing also serves as a solution treatment, precipitation annealing can be performed in a subsequent step.
 最終冷間圧延は、目標とする0.2%耐力と曲げ加工性に合わせて、加工率5~80%の範囲から選定するとよい。
 低温焼鈍は、銅合金板の延性の回復のため、銅合金板を再結晶させることなく軟化させるもので、連続焼鈍による場合は300~650℃の雰囲気に1秒~5分程度保持されるように定めるとよい。また、バッチ式焼鈍の場合は、銅合金板の実体温度が250℃~400℃に5分~1時間程度保持されるように定めるとよい。
The final cold rolling is preferably selected from a range of a processing rate of 5 to 80% in accordance with the target 0.2% proof stress and bending workability.
Low temperature annealing softens the copper alloy plate without recrystallization in order to restore the ductility of the copper alloy plate. In the case of continuous annealing, it is maintained at 300 to 650 ° C. for about 1 second to 5 minutes. It is good to set in. In the case of batch-type annealing, it is preferable that the solid temperature of the copper alloy plate is maintained at 250 ° C. to 400 ° C. for about 5 minutes to 1 hour.
 Cu-(Fe,Co,Ni)-P系合金の場合、以上の製造方法により、0.2%耐力が100MPa以上で、優れた曲げ加工性を有する銅合金板を製造することができる。この銅合金板は、850℃で測定した(850℃に30分保持後測定)した0.2%耐力が10MPa以上であり、850℃で30分加熱後水冷し、次いで500℃で2時間加熱する時効処理をしたとき、100MPa以上の0.2%耐力、50%IACS以上の導電率を有する。
 Cu-(Ni,Co)-Si系合金の場合、以上の製造方法により、0.2%耐力が200MPa以上で、優れた曲げ加工性を有する銅合金板を製造することができる。この銅合金板は、850℃で測定(850℃に30分保持後測定)した0.2%耐力が10MPa以上であり、850℃で30分加熱後水冷し、次いで500℃で2時間加熱する時効処理をしたとき、300MPa以上の0.2%耐力、50%IACS以上の導電率を有する。
In the case of a Cu— (Fe, Co, Ni) —P alloy, a copper alloy plate having an excellent bending workability with a 0.2% proof stress of 100 MPa or more can be produced by the above production method. This copper alloy sheet had a 0.2% proof stress measured at 850 ° C. (measured after holding at 850 ° C. for 30 minutes) of 10 MPa or more, heated at 850 ° C. for 30 minutes, then cooled with water, and then heated at 500 ° C. for 2 hours. When the aging treatment is performed, it has a 0.2% proof stress of 100 MPa or more and a conductivity of 50% IACS or more.
In the case of a Cu— (Ni, Co) —Si alloy, a copper alloy sheet having an excellent bending workability with a 0.2% proof stress of 200 MPa or more can be produced by the above production method. This copper alloy sheet has a 0.2% yield strength measured at 850 ° C. (measured after holding at 850 ° C. for 30 minutes) is 10 MPa or more, heated at 850 ° C. for 30 minutes, then water-cooled, and then heated at 500 ° C. for 2 hours. When subjected to aging treatment, it has a 0.2% proof stress of 300 MPa or more and a conductivity of 50% IACS or more.
 前記曲げ加工においては、曲げ部で割れが発生しないことが求められる。さらに、曲げ線及びその近傍において、肌荒れが発生しないことが好ましい。同一材質の銅合金板であっても、曲げによる割れ及び肌荒れの発生しやすさは、曲げ半径Rと板厚tの比率R/tに依存する。銅合金板を用いてベーパーチャンバー等の放熱部品を製造する場合、銅合金板の曲げ加工性として、通常、圧延平行方向、直角方向共にR/t≦2の曲げを行った場合に割れが発生しないことが求められる。銅合金板の曲げ加工性として、R/t≦1.5の曲げで割れが発生しないことが好ましく、R/t≦1.0の曲げで割れが発生しないことがより好ましい。銅合金板の曲げ加工性は、一般に板幅10mmの試験片で試験される(後述する実施例の曲げ加工性試験を参照)。銅合金板材を曲げ加工する場合、曲げ幅が大きいほど割れが発生しやすくなることから、特に曲げ幅が大きい場合には、板幅10mmの試験片で試験したとき、R/t=1.0の曲げで割れが発生しないことが好ましく、さらにR/t=0.5の曲げで割れが発生しないことが好ましい。また、曲げ線及びその近傍で肌荒れを発生させないためには、銅合金板の表面において板幅方向に測定した平均結晶粒径(切断法)が20μm以下であることが好ましく、15μm以下であることがより好ましい。 In the bending process, it is required that no cracks occur in the bent part. Furthermore, it is preferable that rough skin does not occur at the bend line and its vicinity. Even in the case of copper alloy plates of the same material, the ease of occurrence of cracking and rough skin due to bending depends on the ratio R / t of the bending radius R and the plate thickness t. When manufacturing heat-radiating parts such as vapor chambers using copper alloy sheets, the cracking of copper alloy sheets usually occurs when bending is performed with R / t ≦ 2 in both the rolling parallel direction and the perpendicular direction. It is required not to. As the bending workability of the copper alloy plate, it is preferable that no crack is generated by bending of R / t ≦ 1.5, and it is more preferable that no crack is generated by bending of R / t ≦ 1.0. The bending workability of a copper alloy plate is generally tested with a test piece having a plate width of 10 mm (see the bending workability test in Examples described later). When a copper alloy sheet is bent, cracks are more likely to occur as the bending width increases. Therefore, when the bending width is particularly large, when a test piece having a sheet width of 10 mm is used, R / t = 1.0. It is preferable that no crack is generated by bending, and it is preferable that no crack is generated by bending at R / t = 0.5. In order not to cause rough skin at the bend line and the vicinity thereof, the average crystal grain size (cutting method) measured in the plate width direction on the surface of the copper alloy plate is preferably 20 μm or less, and 15 μm or less. Is more preferable.
 ベーパーチャンバー等の放熱部品を製造する場合、銅合金板は、650℃以上の温度に高温加熱される前に、プレス成形、打抜き加工、切削、エッチング、曲げ加工などにより所定形状に加工され、高温加熱(脱ガス、接合(ろう付け、拡散接合、溶接(TIG、MIG、レーザー等)、焼結等のための加熱)を経て、放熱部品に加工される。本発明の実施形態に係る銅合金板は、上記特性を有することにより、前記加工に際しての搬送及びハンドリングにおいて容易に変形せず、かつ前記加工を実施する上で支障が生じない。また、高温(850℃)で測定される0.2%耐力が10MPa以上であり、拡散接合時又はろう付け時の加圧力を大きくして保持時間を短縮し、接合部の信頼性を向上させ、さらに拡散接合時又はろう付け時における銅合金板の変形を防止することができる。さらに、650℃以上に加熱するプロセスの後、時効処理を行うことにより、高い0.2%耐力及び導電率を有する放熱部品を得ることができる。 When manufacturing heat-radiating parts such as a vapor chamber, the copper alloy plate is processed into a predetermined shape by press molding, punching, cutting, etching, bending, etc. before being heated to a temperature of 650 ° C. or higher. Heating (degassing, joining (brazing, diffusion joining, welding (TIG, MIG, laser, etc.), heating for sintering), etc.) is processed into a heat radiating component.Copper alloy according to an embodiment of the present invention Since the plate has the above characteristics, it is not easily deformed in the conveyance and handling during the processing, and does not cause any trouble in performing the processing, and is measured at a high temperature (850 ° C.). 2% proof stress is 10MPa or more, increasing the pressure during diffusion bonding or brazing to shorten the holding time, improving the reliability of the joint, and further during diffusion bonding or brazing Further, it is possible to prevent the deformation of the copper alloy sheet, and to obtain a heat radiating component having a high 0.2% proof stress and conductivity by performing an aging treatment after the process of heating to 650 ° C. or higher. .
 本発明の実施形態に係る銅合金板を用いて製造された放熱部品は、650℃以上に加熱する上記プロセスの後、必要に応じて、耐食性及びはんだ付け性の向上を主目的として、少なくとも外表面の一部にSn被覆層が形成される。Sn被覆層には、電気めっき、無電解めっき、あるいはこれらのめっき後、Snの融点以下又は融点以上に加熱して形成されたものが含まれる。Sn被覆層には、Sn金属とSn合金が含まれ、Sn合金としては、Sn以外に合金元素としてBi,Ag,Cu,Ni,In,Znのうち1種以上を合計で5質量%以下含むものが挙げられる。 The heat-radiating component manufactured using the copper alloy plate according to the embodiment of the present invention is at least an external component mainly for the purpose of improving corrosion resistance and solderability after the above-described process of heating to 650 ° C. or higher. An Sn coating layer is formed on a part of the surface. The Sn coating layer includes electroplating, electroless plating, or those formed by heating to a melting point of Sn or lower or higher than the melting point of Sn. The Sn coating layer includes Sn metal and an Sn alloy, and the Sn alloy includes one or more of Bi, Ag, Cu, Ni, In, and Zn as alloy elements in addition to Sn in a total amount of 5% by mass or less. Things.
 Sn被覆層の下に、Ni,Co,Fe等の下地めっきを形成することができる。これらの下地めっきは、母材からのCu及び合金元素の拡散を防止するバリアとしての機能、及び放熱部品の表面硬さを大きくすることによる傷つき防止の機能を有する。前記下地めっきの上にCuをめっきし、さらにSnをめっき後、Snの融点以下又は融点以上に加熱する熱処理を行ってCu-Sn合金層を形成し、下地めっき、Cu-Sn合金層及びSn被覆層の3層構成とすることもできる。Cu-Sn合金層は、母材からのCu及び合金元素の拡散を防止するバリアとしての機能、及び放熱部品の表面硬さを大きくすることによる傷つき防止の機能を有する。 A base plating such as Ni, Co, Fe or the like can be formed under the Sn coating layer. These undercoats have a function as a barrier for preventing diffusion of Cu and alloy elements from the base material, and a function for preventing damage by increasing the surface hardness of the heat dissipation component. A Cu-Sn alloy layer is formed by plating Cu on the base plating, further plating Sn, and then performing a heat treatment to heat to a temperature lower than or higher than the melting point of Sn to form a Cu-Sn alloy layer and Sn A three-layer structure of the coating layer can also be used. The Cu—Sn alloy layer has a function as a barrier for preventing the diffusion of Cu and alloy elements from the base material, and a function for preventing damage by increasing the surface hardness of the heat dissipation component.
 また、本発明の実施形態に係る銅合金板を用いて製造された放熱部品は、650℃以上に加熱する上記プロセスの後、必要に応じて、少なくとも外表面の一部にNi被覆層が形成される。Ni被覆層は、母材からのCu及び合金元素の拡散を防止するバリア、放熱部品の表面硬さを大きくすることによる傷つき防止、及び耐食性を向上させる機能を有する。 Further, in the heat radiating component manufactured using the copper alloy plate according to the embodiment of the present invention, a Ni coating layer is formed on at least a part of the outer surface as necessary after the above process of heating to 650 ° C. or higher. Is done. The Ni coating layer has a barrier that prevents the diffusion of Cu and alloy elements from the base material, a damage prevention by increasing the surface hardness of the heat dissipation component, and a function of improving corrosion resistance.
 本発明の実施形態に係る銅合金板は、好ましくは、鋳塊を均熱処理し、熱間圧延した後、冷間圧延、溶体化を伴う再結晶処理、冷間圧延、時効処理の工程で製造される。溶体化を伴う再結晶処理後、冷間圧延を行うことなく時効処理を行い、続いて冷間圧延を行ってもよい。
 溶解、鋳造は、連続鋳造、半連続鋳造などの通常の方法によって行うことができる。なお、銅溶解原料として、S、Pb、Bi、Se、As含有量の少ないものを使用することが好ましい。また、銅合金溶湯に被覆する木炭の赤熱化(水分除去)、地金、スクラップ原料、鋳造樋、鋳型の乾燥、及び溶湯の脱酸等に注意し、O、Hを低減することが好ましい。
The copper alloy plate according to the embodiment of the present invention is preferably manufactured in the steps of cold rolling, recrystallization treatment with solution, cold rolling, and aging treatment after soaking and hot rolling the ingot. Is done. An aging treatment may be performed without performing cold rolling after the recrystallization treatment with solution treatment, and then cold rolling may be performed.
Melting and casting can be performed by ordinary methods such as continuous casting and semi-continuous casting. In addition, it is preferable to use what has little S, Pb, Bi, Se, As content as a copper melt | dissolution raw material. In addition, it is preferable to reduce O and H by paying attention to red heat (removal of water) of charcoal coated on the molten copper alloy, metal, scrap raw material, cast iron, drying of the mold, deoxidation of the molten metal, and the like.
 均質化処理は、鋳塊内部の温度が800℃以上の温度に到達後、30分以上保持することが好ましい。均質化処理の保持時間は1時間以上がより好ましく、2時間以上がさらに好ましい。
 均質化処理後、熱間圧延を800℃以上の温度で開始する。熱間圧延材に粗大な(Fe,Ni,Co)-P析出物、または(Ni,Co)-Si析出物が形成されないように、熱間圧延は650℃以上の温度で終了し、その温度から水冷等の方法により急冷することが好ましい。熱間圧延後の急冷開始温度が650℃より低いと、粗大な(Fe,Ni,Co)-P析出物、または(Ni,Co)-Si析出物が形成され、組織が不均一になりやすく、銅合金板(製品板)の強度が低下する。熱間圧延の終了温度(急冷開始温度)は700℃以上の温度であることが好ましく、750℃以上の温度であることがさらに好ましい。なお、熱間圧延後急冷した熱間圧延材の組織は再結晶組織となる。後述の溶体化を伴う再結晶処理は熱間圧延後の急冷を行うことで兼ねることができる。
The homogenization treatment is preferably held for 30 minutes or more after the temperature inside the ingot reaches a temperature of 800 ° C. or higher. The holding time of the homogenization treatment is more preferably 1 hour or more, and further preferably 2 hours or more.
After the homogenization treatment, hot rolling is started at a temperature of 800 ° C. or higher. The hot rolling is finished at a temperature of 650 ° C. or higher so that coarse (Fe, Ni, Co) —P precipitates or (Ni, Co) —Si precipitates are not formed on the hot rolled material. It is preferable to cool rapidly by a method such as water cooling. If the quenching start temperature after hot rolling is lower than 650 ° C., coarse (Fe, Ni, Co) —P precipitates or (Ni, Co) —Si precipitates are formed, and the structure tends to be non-uniform. The strength of the copper alloy plate (product plate) decreases. The end temperature of hot rolling (quenching start temperature) is preferably 700 ° C. or higher, and more preferably 750 ° C. or higher. In addition, the structure of the hot-rolled material rapidly cooled after hot rolling becomes a recrystallized structure. The recrystallization process accompanied by solutionization described later can also be performed by performing rapid cooling after hot rolling.
 熱間圧延後の冷間圧延により、銅合金板に一定の歪みを加えることで、続く再結晶処理後に、所望の再結晶組織(微細な再結晶組織)を有する銅合金板が得られる。
 溶体化を伴う再結晶処理は、650~950℃、好ましくは670~900℃で3分以下の保持の条件で行う。銅合金中の合金元素の含有量が少ない場合は、上記温度範囲内のより低温領域で再結晶処理を行い、前記元素の含有量が多い場合は、上記温度範囲内のより高温領域で再結晶処理を行うことが好ましい。この再結晶処理により、合金元素を銅合金母材に固溶させると共に、曲げ加工性が良好となる再結晶組織(結晶粒径が1~20μm)を形成することができる。この再結晶処理の温度が650℃より低いと、Ni、Fe、Co、P又はNi、Co、Siの固溶量が少なくなり、強度が低下する。一方、再結晶処理の温度が950℃を超え又は処理時間が3分を超えると、再結晶粒が粗大化する。
By applying a certain strain to the copper alloy sheet by cold rolling after hot rolling, a copper alloy sheet having a desired recrystallized structure (fine recrystallized structure) is obtained after the subsequent recrystallization process.
The recrystallization treatment with solution treatment is performed at a temperature of 650 to 950 ° C., preferably 670 to 900 ° C. for 3 minutes or less. When the content of the alloy element in the copper alloy is small, recrystallization treatment is performed in a lower temperature range within the above temperature range, and when the content of the element is large, recrystallization is performed at a higher temperature range within the above temperature range. It is preferable to carry out the treatment. By this recrystallization treatment, it is possible to dissolve the alloy element in the copper alloy base material and to form a recrystallized structure (crystal grain size of 1 to 20 μm) with good bending workability. When the temperature of this recrystallization process is lower than 650 ° C., the amount of Ni, Fe, Co, P or Ni, Co, Si is decreased and the strength is lowered. On the other hand, when the temperature of the recrystallization treatment exceeds 950 ° C. or the treatment time exceeds 3 minutes, the recrystallized grains become coarse.
 溶体化を伴う再結晶処理後は、(a)冷間圧延-時効処理、(b)冷間圧延-時効処理-冷間圧延、(c)冷間圧延-時効処理-冷間圧延-低温焼鈍、(d)時効処理-冷間圧延、(e)時効処理-冷間圧延-低温焼鈍、のいずれかの工程が選択できる。
 時効処理(析出焼鈍)は、加熱温度300~600℃程度で0.5~10時間保持する条件で行う。この加熱温度が300℃未満では析出量が少なく、600℃を超えると析出物が粗大化しやすい。加熱温度の下限は、好ましくは350℃とし、上限は好ましくは580℃、より好ましくは560℃とする。時効処理の保持時間は、加熱温度により適宜選択し、0.5~10時間の範囲内で行う。この保持時間が0.5時間未満では析出が不十分となり、10時間を越えても析出量が飽和し、生産性が低下する。保持時間の下限は、好ましくは1時間、より好ましくは2時間とする。
After recrystallization treatment with solution, (a) cold rolling-aging treatment, (b) cold rolling-aging treatment-cold rolling, (c) cold rolling-aging treatment-cold rolling-low temperature annealing (D) Aging treatment—cold rolling, (e) Aging treatment—cold rolling—low temperature annealing can be selected.
The aging treatment (precipitation annealing) is performed under the condition of holding at a heating temperature of about 300 to 600 ° C. for 0.5 to 10 hours. When the heating temperature is less than 300 ° C., the amount of precipitation is small, and when it exceeds 600 ° C., the precipitate tends to be coarsened. The lower limit of the heating temperature is preferably 350 ° C, and the upper limit is preferably 580 ° C, more preferably 560 ° C. The holding time for the aging treatment is appropriately selected depending on the heating temperature, and is carried out within the range of 0.5 to 10 hours. If this holding time is less than 0.5 hours, precipitation is insufficient, and if it exceeds 10 hours, the amount of precipitation is saturated and productivity is lowered. The lower limit of the holding time is preferably 1 hour, more preferably 2 hours.
 Cu-(Fe,Co,Ni)-P系合金の場合、以上の好ましい工程及び条件で製造した銅合金板は、0.2%耐力が300MPa以上で、かつ優れた曲げ加工性を有する。
 Cu-(Ni,Co)-Si系合金の場合も、以上の好ましい工程及び条件で製造した銅合金板は、0.2%耐力が300MPa以上で、優れた曲げ加工性を有する。
 また、650℃以上の温度で拡散接合、ろう付などの方法により良好な接合(接合不良がない、接合強度が高い等)を可能にするには銅合金板(製品)の表面粗さが、算術平均粗さRaで0.3μm以下、最大高さ粗さRzで1.5μm以下であり、内部酸化深さが0.5μm以下、望ましくは0.3μm以下であることが望ましい。
 銅合金板(製品)の表面粗さをRa:0.3μm、Rz:1.5μm以下とするには最終冷間圧延に用いる圧延ロールのロール軸方向の表面粗さを例えばRa:0.15μm、Rz:1.0μm以下にする、または最終冷間圧延後の銅合金板にバフ研磨、電解研磨等の研磨を行えばよい。また、銅合金板(製品)の内部酸化深さを0.5μm以下とするには、焼鈍雰囲気を還元性とすると共に露点を-5℃以下とする、または焼鈍後の銅合金板を機械研磨(バフ、ブラシなど)若しくは電解研磨することにより、生成した内部酸化層を除去する、あるいは薄くしてやればよい。
In the case of a Cu- (Fe, Co, Ni) -P-based alloy, the copper alloy sheet manufactured by the above preferred steps and conditions has a 0.2% proof stress of 300 MPa or more and excellent bending workability.
Also in the case of a Cu— (Ni, Co) —Si based alloy, the copper alloy plate manufactured by the above preferred steps and conditions has a 0.2% proof stress of 300 MPa or more and excellent bending workability.
In order to enable good bonding (no bonding failure, high bonding strength, etc.) by a method such as diffusion bonding or brazing at a temperature of 650 ° C. or higher, the surface roughness of the copper alloy plate (product) is The arithmetic average roughness Ra is 0.3 μm or less, the maximum height roughness Rz is 1.5 μm or less, and the internal oxidation depth is 0.5 μm or less, preferably 0.3 μm or less.
To make the surface roughness of the copper alloy plate (product) Ra: 0.3 μm, Rz: 1.5 μm or less, the surface roughness in the roll axis direction of the rolling roll used for the final cold rolling is, for example, Ra: 0.15 μm Rz: 1.0 μm or less, or polishing such as buffing or electrolytic polishing may be performed on the copper alloy plate after the final cold rolling. In order to reduce the internal oxidation depth of the copper alloy sheet (product) to 0.5 μm or less, the annealing atmosphere should be reducible and the dew point should be −5 ° C. or less, or the annealed copper alloy sheet should be mechanically polished The generated internal oxide layer may be removed or thinned by electrolytic polishing (buffing, brushing, etc.).
[放熱部品の製造方法]
 本発明の実施形態に係る銅合金板は、例えばベーパーチャンバーの筐体の素材として用いられる。ベーパーチャンバーの製作工程は、従来材のOFC板材を用いたものと同じであり、溝や凹凸等のパターンが形成された2枚の板部材が、拡散接合又はろう付けにより接合され、ベーパーチャンバーの筐体となる。銅合金板はこの接合工程において650℃以上に高温加熱される。
[Manufacturing method of heat dissipation parts]
The copper alloy plate according to the embodiment of the present invention is used, for example, as a material for a casing of a vapor chamber. The manufacturing process of the vapor chamber is the same as that using the conventional OFC plate material. Two plate members on which patterns such as grooves and irregularities are formed are joined by diffusion bonding or brazing, and the vapor chamber It becomes a housing. The copper alloy plate is heated to a high temperature of 650 ° C. or higher in this joining step.
 本発明の実施形態に係る銅合金板は、850℃においても10MPa以上の0.2%耐力を有するため、拡散接合時又はろう付け時の加圧力を従来材であるOFC板材を素材とした場合に比べて大きくすることができる。このため拡散接合部又はろう付け部の信頼性を向上させ、かつ拡散接合又はろう付けの保持時間を短縮できる。また、高温時の0.2%耐力が大きいことにより、例えば拡散接合時又はろう付け時の加熱過程において、板部材に凹み及び膨らみ等の変形が生じるのを防止できる。850℃における0.2%耐力は好ましくは12MPa以上であり、この値は本発明の実施形態に係る銅合金板において達成できる。 Since the copper alloy plate according to the embodiment of the present invention has a 0.2% proof stress of 10 MPa or more even at 850 ° C., the pressure applied at the time of diffusion bonding or brazing is made from a conventional OFC plate material. Can be larger than For this reason, the reliability of a diffusion bonding part or a brazing part can be improved, and the holding time of a diffusion bonding or brazing can be shortened. Further, since the 0.2% proof stress at a high temperature is large, it is possible to prevent the plate member from being deformed such as a dent and a bulge during a heating process during diffusion bonding or brazing, for example. The 0.2% proof stress at 850 ° C. is preferably 12 MPa or more, and this value can be achieved in the copper alloy sheet according to the embodiment of the present invention.
 本発明の実施形態に係る銅合金板において、高温加熱(850℃×30分)後の平均結晶粒径が100μm以下に抑えられた場合、ベーパーチャンバー等の放熱部品の薄肉部を貫通する割れの発生及び冷媒のリーク、を防止することができる。また、放熱部品の表面粗さが大きくなるのを防止して、発熱部(CPU等)との間の隙間の増大、及びこれに伴う熱伝達性能の低下を防止できる。 In the copper alloy plate according to the embodiment of the present invention, when the average crystal grain size after high-temperature heating (850 ° C. × 30 minutes) is suppressed to 100 μm or less, cracks penetrating through thin portions of heat-radiating components such as a vapor chamber Generation and leakage of refrigerant can be prevented. Further, it is possible to prevent the surface roughness of the heat dissipating component from increasing, and to prevent an increase in the gap between the heat generating part (CPU and the like) and a decrease in heat transfer performance associated therewith.
 高温加熱(650℃以上の加熱)後の放熱部品は軟化しているが、本発明の実施形態に係る銅合金は析出硬化型であるので、続いて先に示した条件(300~600℃×0.5~10時間)で時効処理を行うことにより、強度を向上させることができる。また、この時効処理により、高温加熱により低下していた導電率が回復する。なお、本発明の実施形態に係る銅合金板に対し、850℃×30分加熱(拡散接合条件に相当)後、前記条件で時効処理を行った場合、Cu-(Fe,Co,Ni)-P系合金では100MPa以上、Cu-(Ni,Co)-Si系合金では300MPa以上の0.2%耐力を示す。また、この時効処理により、本発明の実施形態に係る銅合金板の導電率は、どちらの合金系でも50%IACS以上となる。本発明の実施形態に係る銅合金板は、時効処理後の導電率がOFCより低いが、強度が高いためOFCより薄肉化することができ、それにより比較的低い導電率を補うことができる。 Although the heat dissipating component after high temperature heating (heating at 650 ° C. or higher) is softened, the copper alloy according to the embodiment of the present invention is a precipitation hardening type, so that the following conditions (300 to 600 ° C. × The strength can be improved by performing an aging treatment for 0.5 to 10 hours. In addition, this aging treatment restores the conductivity that has been reduced by high-temperature heating. When the copper alloy plate according to the embodiment of the present invention is heated at 850 ° C. for 30 minutes (corresponding to diffusion bonding conditions) and then subjected to aging treatment under the above conditions, Cu— (Fe, Co, Ni) — The P-type alloy has a 0.2% proof stress of 100 MPa or more, and the Cu— (Ni, Co) —Si based alloy has a 0.2% proof stress of 300 MPa or more. In addition, due to this aging treatment, the conductivity of the copper alloy plate according to the embodiment of the present invention is 50% IACS or more in either alloy system. The copper alloy sheet according to the embodiment of the present invention has a conductivity after aging treatment lower than that of OFC. However, since the strength is high, it can be made thinner than OFC, thereby making up for a relatively low conductivity.
 高温加熱後(接合工程後)、すなわち、650℃以上に加熱し、接合した後の時効処理は、例えば次のように行うことができる。
(1)高温加熱後の放熱部品を300℃以下の温度まで冷却した後、前記温度範囲に再加熱し、同範囲内に一定時間保持し、析出硬化させる。この場合、高温加熱後の放熱部品がまだ高温である間に水冷等で急冷し、あるいは高温加熱後の放熱部品を溶体化温度に再加熱後急冷して、銅合金を予め溶体化しておくことが好ましい。
(2)高温加熱後の放熱部品を、高温からの冷却途中で前記温度範囲内に一定時間保持し、析出硬化させる。放熱部品は、前記析出温度範囲内の一定温度に保持しても、前記析出温度範囲内で冷却を続けてもよい。
(3)上記(2)の工程後、さらに上記(1)の再加熱を行い、析出硬化型銅合金を析出硬化させる。
 本発明の実施形態において、接合工程後、塑性加工を加えることなく時効処理を行う。高温加熱後(接合工程後)の接合材に、時効処理前に塑性加工を加えると、放熱部品の内部構造および寸法が変化するため、冷媒流路の形状および寸法が設計値通りにならず、その結果、放熱部品として目標の伝熱性能を発揮できなくなる。
 一般に、析出型合金においては、塑性加工してから時効処理する方が強度および導電率の向上の度合いは大きくなるが、本発明の実施形態に係るCuFeP系、及びCuNiSi系合金では塑性加工せずに時効処理した場合でも、塑性加工した場合と同程度の強度および導電率の向上を達成することが可能である。
The aging treatment after high-temperature heating (after the bonding step), that is, heating to 650 ° C. or higher and bonding can be performed, for example, as follows.
(1) After cooling the heat dissipating component after high-temperature heating to a temperature of 300 ° C. or lower, it is reheated to the above temperature range, kept in the same range for a certain time, and precipitation hardened. In this case, the heat-radiating component after high-temperature heating is rapidly cooled by water cooling or the like while it is still at high temperature, or the heat-radiating component after high-temperature heating is reheated to the solution temperature and then rapidly cooled to pre-solution the copper alloy Is preferred.
(2) The heat-radiating component after high-temperature heating is kept in the temperature range for a certain time during cooling from high temperature, and is precipitated and cured. The heat dissipating component may be kept at a constant temperature within the deposition temperature range or may be continuously cooled within the deposition temperature range.
(3) After the step (2), the reheating of (1) is further performed to precipitate and harden the precipitation hardening type copper alloy.
In the embodiment of the present invention, after the joining step, aging treatment is performed without applying plastic working. When plastic processing is applied to the bonding material after high-temperature heating (after the bonding process) before aging treatment, the internal structure and dimensions of the heat-dissipating parts change, so the shape and dimensions of the refrigerant flow path do not match the design values. As a result, the target heat transfer performance cannot be exhibited as a heat dissipation component.
Generally, in precipitation type alloys, the degree of improvement in strength and electrical conductivity is greater when aging treatment is performed after plastic working, but the plastic working is not performed in CuFeP-based and CuNiSi-based alloys according to embodiments of the present invention. Even in the case of aging treatment, it is possible to achieve the same improvement in strength and conductivity as in the case of plastic working.
 表1,2に示す組成の銅合金を、木炭被覆雰囲気(No.1~16,18~29)又は真空雰囲気(No.17)で溶解し、溶湯温度1200℃で黒鉛製のブックモールドに鋳造して、厚さ50mm、幅200mm、長さ70mmの鋳塊を製作した。各鋳塊を950℃(No.1~16,18~29)又は800℃(No.17)に加熱し、1時間保持後、厚さ16mmまで熱間圧延し、熱間圧延終了後直ちに水冷し、厚さ16mm、幅200mm、長さ215mmの熱間圧延材を得た。No.1~16,18~29の熱間圧延材については、さらに850℃に加熱し、850℃到達後30分間保持した後、水焼き入れした。なお、板厚16mmの各熱間圧延材で分析した組成も表1、2の値と同じであった。また、いずれの熱間圧延材についても、その表面粗さは、Ra:0.08~0.15μm、Rz:0.8~1.2μmであり、板厚断面を研磨して走査電子顕微鏡(観察倍率15000倍)により測定した内部酸化深さは0.1μm以下であった。
 表1のNo.1~16はCu-(Fe,Co,Ni)-P系、No.17はOFC、表2のNo.18~29はCu-(Ni,Co)-Si系の銅合金である。
The copper alloys having the compositions shown in Tables 1 and 2 were melted in a charcoal coating atmosphere (No. 1 to 16, 18 to 29) or a vacuum atmosphere (No. 17), and cast into a graphite book mold at a molten metal temperature of 1200 ° C. An ingot having a thickness of 50 mm, a width of 200 mm, and a length of 70 mm was manufactured. Each ingot is heated to 950 ° C. (No. 1-16, 18-29) or 800 ° C. (No. 17), held for 1 hour, hot-rolled to a thickness of 16 mm, and water-cooled immediately after the hot rolling is completed. Thus, a hot rolled material having a thickness of 16 mm, a width of 200 mm, and a length of 215 mm was obtained. No. The hot rolled materials of 1 to 16 and 18 to 29 were further heated to 850 ° C., held for 30 minutes after reaching 850 ° C., and then water quenched. In addition, the composition analyzed with each hot-rolled material having a plate thickness of 16 mm was also the same as the values in Tables 1 and 2. Moreover, the surface roughness of any hot-rolled material is Ra: 0.08 to 0.15 μm, Rz: 0.8 to 1.2 μm, and the thickness cross section is polished to obtain a scanning electron microscope ( The internal oxidation depth measured by an observation magnification of 15000 times was 0.1 μm or less.
No. in Table 1 1 to 16 are Cu— (Fe, Co, Ni) —P, No. 17 is OFC, No. in Table 2. 18 to 29 are Cu— (Ni, Co) —Si based copper alloys.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 No.1~16,18~29の熱間圧延材は、両面を各1mm面削し、厚さ1.25mm(幅200mm、長さ2400mm)まで冷間圧延し、これを長さ1900mmのA材と長さ500mmのB材に切り分けた。
 上記A材については、厚さ0.75mmまで冷間圧延し、500℃で2時間加熱する時効処理を施し、さらに厚さ0.3mmまで冷間圧延した後(加工率:60%)、硝石炉において350℃で30秒間加熱する歪み取り焼鈍を行った。得られた銅合金板を供試材として、室温(20℃)における0.2%耐力と伸び、及び曲げ加工性を測定した。また、各供試材を用い、850℃×30分加熱後の平均結晶粒径、及びさらに時効処理した後の0.2%耐力及び導電率を、下記要領で測定した。その結果を表3,4に示す。
 上記B材については、500℃で2時間加熱する時効処理を施した後、厚さ0.5mmまで冷間圧延し(加工率:60%)、硝石炉において350℃で30秒間加熱する歪み取り焼鈍を行った。得られた銅合金板を供試材として、850℃における0.2%耐力を、下記要領で測定した。その結果を表3,4に示す。
No. The hot rolled materials 1 to 16 and 18 to 29 are each 1 mm chamfered on both sides and cold-rolled to a thickness of 1.25 mm (width 200 mm, length 2400 mm). It cut into B material of length 500mm.
About said A material, after cold-rolling to thickness 0.75mm, performing the aging treatment which heats at 500 degreeC for 2 hours, and also cold-rolling to thickness 0.3mm (working rate: 60%), a glass stone Strain relief annealing was performed in a furnace at 350 ° C. for 30 seconds. Using the obtained copper alloy sheet as a test material, 0.2% proof stress and elongation at room temperature (20 ° C.) and bending workability were measured. Moreover, using each test material, the average crystal grain size after heating at 850 ° C. for 30 minutes and the 0.2% proof stress and conductivity after further aging treatment were measured as follows. The results are shown in Tables 3 and 4.
About the above-mentioned B material, after giving an aging treatment heated at 500 ° C. for 2 hours, cold rolling to a thickness of 0.5 mm (processing rate: 60%), and removing distortion by heating at 350 ° C. for 30 seconds in a glass stone furnace Annealing was performed. Using the obtained copper alloy plate as a test material, 0.2% proof stress at 850 ° C. was measured as follows. The results are shown in Tables 3 and 4.
 No.17の熱間圧延材は、両面を各1mm面削し、厚さ0.71mm(幅200mm、長さ4200mm)まで冷間圧延し、これを長さ3700mmのC材と長さ500mmのD材に切り分けた。
 上記C材については、厚さ0.43mmまで冷間圧延し、350℃で2時間加熱する焼鈍を行い、さらに厚さ0.3mmまで冷間圧延した後(加工率:30%)、硝石炉において350℃で30秒間加熱する歪み取り焼鈍を行った。得られた銅板を供試材として、室温(20℃)における0.2%耐力と伸び、及び曲げ加工性を測定した。また、各供試材を用い、850℃×30分加熱後の平均結晶粒径、及びさらに時効処理した後の0.2%耐力及び導電率を、下記要領で測定した。その結果を表3に示す。
 上記D材については、350℃で2時間加熱する焼鈍を行った後、厚さ0.5mmまで冷間圧延し(加工率:30%)、硝石炉において350℃で30秒間加熱する歪み取り焼鈍を行った。得られた銅板を供試材として、850℃における0.2%耐力を、下記要領で測定した。その結果を表3に示す。
No. The 17 hot-rolled materials were each 1 mm chamfered on both sides and cold-rolled to a thickness of 0.71 mm (width 200 mm, length 4200 mm), which were 3700 mm long C material and 500 mm long D material. Carved into.
The C material is cold-rolled to a thickness of 0.43 mm, annealed at 350 ° C. for 2 hours, and further cold-rolled to a thickness of 0.3 mm (processing rate: 30%). Was subjected to strain relief annealing by heating at 350 ° C. for 30 seconds. Using the obtained copper plate as a test material, 0.2% proof stress and elongation at room temperature (20 ° C.) and bending workability were measured. Moreover, using each test material, the average crystal grain size after heating at 850 ° C. for 30 minutes and the 0.2% proof stress and conductivity after further aging treatment were measured as follows. The results are shown in Table 3.
The material D was annealed at 350 ° C. for 2 hours, then cold-rolled to a thickness of 0.5 mm (processing rate: 30%), and heated at 350 ° C. for 30 seconds in a glass furnace. Went. Using the obtained copper plate as a test material, 0.2% proof stress at 850 ° C. was measured as follows. The results are shown in Table 3.
(0.2%耐力と伸び(室温))
 各供試材(A材とC材)から、長手方向が圧延平行方向となるようにJIS5号引張り試験片を切り出し、JIS-Z2241に準拠して引張り試験を実施して、耐力と延びを測定した。耐力は永久伸び0.2%に相当する引張強さである。
(0.2% proof stress and elongation (room temperature))
Cut out JIS No. 5 tensile test piece from each sample material (A material and C material) so that the longitudinal direction is parallel to the rolling direction, and conduct tensile test according to JIS-Z2241 to measure proof stress and elongation. did. The yield strength is a tensile strength corresponding to a permanent elongation of 0.2%.
(曲げ加工性(室温))
 曲げ加工性の測定は、伸銅協会標準JBMA-T307に規定されるW曲げ試験方法に従い実施した。各供試材(A材とC材)から幅10mm、長さ30mmの試験片を切り出し、R/t=0.5となる冶具を用いて、G.W.(Good Way(曲げ軸が圧延方向に垂直))及びB.W.(Bad Way(曲げ軸が圧延方向に平行))の曲げを行った。次いで、曲げ部における割れの有無を100倍の光学顕微鏡により目視観察し、G.W.又はB.W.の双方で割れの発生がないものをP(P:Pass、合格)、G.W.又はB.W.のいずれか一方又は双方で割れが発生したものをF(F:Fail、不合格)、と評価した。
(Bending workability (room temperature))
The measurement of the bending workability was carried out according to the W bending test method specified in JBMA-T307 standard of the copper elongation association. A test piece having a width of 10 mm and a length of 30 mm was cut out from each of the test materials (A material and C material), and a jig with R / t = 0.5 was used. W. (Good Way (bending axis is perpendicular to rolling direction)) and B.I. W. (Bad Way (bending axis is parallel to the rolling direction)) was performed. Next, the presence or absence of cracks in the bent portion was visually observed with a 100 × optical microscope. W. Or B. W. P (P: Pass, pass), G. W. Or B. W. Those in which cracks occurred in one or both of these were evaluated as F (F: Fail, rejected).
(平均結晶粒径(850℃×30分加熱後))
 各供試材(A材とC材)から、長手方向が圧延平行方向となるように、3個ずつの試験片(幅10mm、長さ250mm)を切り出した。各試験片を真空炉に入れ、室温からの平均昇温速度を約90℃/分として850℃に加熱し、850℃到達後、同温度に30分間保持した。次いで、真空雰囲気を維持したまま試験片を炉から出し、250℃まで240秒で冷却した後、真空雰囲気から取り出し、水冷した。各試験片から長さ20mmの試料を3個ずつ採取し、各試料の圧延方向に平行な断面において切断法により平均結晶粒径を測定した(測定方向は圧延平行方向)。各供試材について9個(3×3)の試料のデータの平均値を平均結晶粒径とした。
(Average crystal grain size (after heating at 850 ° C. for 30 minutes))
Three test pieces (width 10 mm, length 250 mm) were cut out from each test material (material A and material C) so that the longitudinal direction was the rolling parallel direction. Each test piece was placed in a vacuum furnace, heated to 850 ° C. at an average temperature increase rate from room temperature of about 90 ° C./min, and held at the same temperature for 30 minutes after reaching 850 ° C. Next, the test piece was taken out of the furnace while maintaining the vacuum atmosphere, cooled to 250 ° C. in 240 seconds, taken out from the vacuum atmosphere, and cooled with water. Three samples each having a length of 20 mm were taken from each test piece, and the average crystal grain size was measured by a cutting method in a cross section parallel to the rolling direction of each sample (measurement direction was the rolling parallel direction). The average value of the data of 9 (3 × 3) samples for each specimen was taken as the average crystal grain size.
(0.2%耐力及び導電率(850℃×30分加熱及び時効処理後))
 各供試材(A材とC材)から、長手方向が圧延平行方向となるようにJIS5号引張試験片、及び導電率試験片(幅10mm、長さ250mm)を切り出した。各試験片を真空炉に入れ、室温からの平均昇温速度を約90℃/分として850℃に加熱し、850℃到達後、同温度に30分間保持した。次いで、真空雰囲気を維持したまま試験片を炉から出し、250℃まで240秒で冷却した後、真空雰囲気から取り出し、水冷した。続いて各試験片を500℃に加熱し、同温度に2時間保持した後、室温まで90分掛けて冷却した。
 引張試験片を用い、JIS-Z2241に準拠して引張り試験を実施して、0.2%耐力と延びを測定した。
 導電率試験片を用い、JIS-H0505に規定されている非鉄金属材料導電率測定法に準拠し,ダブルブリッジを用いた四端子法で導電率を測定した。
(0.2% yield strength and electrical conductivity (after 850 ° C. × 30 minutes heating and aging treatment))
A JIS No. 5 tensile test piece and a conductivity test piece (width 10 mm, length 250 mm) were cut out from each sample material (material A and material C) so that the longitudinal direction was the rolling parallel direction. Each test piece was placed in a vacuum furnace, heated to 850 ° C. at an average temperature increase rate from room temperature of about 90 ° C./min, and held at the same temperature for 30 minutes after reaching 850 ° C. Next, the test piece was taken out of the furnace while maintaining the vacuum atmosphere, cooled to 250 ° C. in 240 seconds, taken out from the vacuum atmosphere, and cooled with water. Subsequently, each test piece was heated to 500 ° C., held at the same temperature for 2 hours, and then cooled to room temperature over 90 minutes.
Using a tensile test piece, a tensile test was performed according to JIS-Z2241, and 0.2% yield strength and elongation were measured.
Using a conductivity test piece, the conductivity was measured by a four-terminal method using a double bridge in accordance with the nonferrous metal material conductivity measurement method defined in JIS-H0505.
(0.2%耐力(850℃))
 各供試材(B材とD材)から、図2に示す形状及び寸法(単位:mm)の引張試験片を3個ずつ製作した。引張試験片はJISZ2241(2011)に規定された13B試験片を基本形状とし、標点距離の両端に相当する箇所に伸び計装着用の突起(高さ1.2mm)を形成した。引張試験片は平面視で2軸対称形状で、標点距離(突起の頂点間距離)が50mm、平行部の長さが70mm、平行部の突起間の幅が12.5mm、平行部の突起の両側の幅が12.8mmで、突起の頂点が半径0.1mmに仕上げられている。試験片の長手方向は圧延方向に平行とした。
 精密万能試験機(株式会社島津製作所製、AG100kNG/XR型)を用い、Ar雰囲気下で各試験片を850℃に加熱し、850℃に到達後30分間保持してから、引張試験を行った。試験片の昇温速度は実体温度で30℃/分、引張速度は0.2%耐力測定まで1.0mm/分、それ以降は5.0mm/分とした。各供試材について各3個の試験片による0.2%耐力の測定値のうち最小値を、各供試材の0.2%耐力とした。
 850℃における引張試験は、試験可能な最小板厚が0.5mm程度である。A材とB材は時効処理前(C材とD材は焼鈍前)の冷間圧延の加工率が少し異なるが、その後の時効処理(C材とD材は焼鈍)の条件、冷間圧延の加工率及び歪み取り焼鈍の条件が同じであるから、A材とB材(C材とD材)の特性はほぼ同じと考えられる。しかも、850℃で30分加熱することにより、それまでの加工履歴の影響がほぼ解消される。従って、850℃におけるA材とB材(C材とD材)の0.2%耐力はほぼ同じと考えられるから、この実施例では、850℃における0.2%耐力の測定を厚さ0.5mmのB材及びD材で行った。
(0.2% yield strength (850 ° C))
Three tensile test pieces each having the shape and dimensions (unit: mm) shown in FIG. 2 were produced from each test material (B material and D material). The tensile test piece was a 13B test piece defined in JISZ2241 (2011) as a basic shape, and protrusions (height 1.2 mm) for attaching an extensometer were formed at locations corresponding to both ends of the gauge distance. The tensile specimen is biaxially symmetric in plan view, the gauge distance (distance between the vertices of the protrusions) is 50 mm, the length of the parallel part is 70 mm, the width between the protrusions of the parallel part is 12.5 mm, and the protrusion of the parallel part The width of both sides of the projection is 12.8 mm, and the apex of the protrusion is finished to a radius of 0.1 mm. The longitudinal direction of the test piece was parallel to the rolling direction.
Using a precision universal testing machine (manufactured by Shimadzu Corporation, AG100kNG / XR type), each specimen was heated to 850 ° C. in an Ar atmosphere, and after reaching 850 ° C., held for 30 minutes, a tensile test was performed. . The temperature increase rate of the test piece was 30 ° C./min at the actual temperature, the tensile rate was 1.0 mm / min until 0.2% proof stress measurement, and thereafter 5.0 mm / min. The minimum value among the measured values of 0.2% proof stress by each of the three test pieces for each specimen was defined as the 0.2% proof stress of each specimen.
In the tensile test at 850 ° C., the minimum plate thickness that can be tested is about 0.5 mm. A and B materials are slightly different in cold rolling ratio before aging treatment (before C and D materials are annealed), but the conditions for subsequent aging treatment (C and D materials are annealed), cold rolling Therefore, it is considered that the characteristics of the A material and the B material (C material and D material) are almost the same. In addition, by heating at 850 ° C. for 30 minutes, the influence of the processing history so far is almost eliminated. Therefore, since the 0.2% proof stress of the A material and the B material (C material and D material) at 850 ° C. is considered to be almost the same, in this example, the measurement of the 0.2% proof stress at 850 ° C. The test was carried out with 5 mm B material and D material.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1~4をみると、従来例のOFCであるNo.17は、ベーパーチャンバーの接合工程の加熱温度に相当する850℃での0.2%耐力が5.4MPaしかない。また、850℃で30分加熱後の平均結晶粒径が125μmと、結晶粒が粗大化しており、板厚を貫通する粒界ができている可能性が推測できる。さらに、850℃×30分加熱及び350℃×2時間加熱後の耐力は40MPaと低い。 Referring to Tables 1 through 4, the conventional OFC No. No. 17 has a 0.2% proof stress at 850 ° C. corresponding to the heating temperature in the vapor chamber joining step, which is only 5.4 MPa. Moreover, the average crystal grain size after heating at 850 ° C. for 30 minutes is 125 μm, and the crystal grains are coarsened, and it can be estimated that a grain boundary penetrating the plate thickness is formed. Furthermore, the yield strength after heating at 850 ° C. × 30 minutes and 350 ° C. × 2 hours is as low as 40 MPa.
 これに対し、No.1~12,18~26は、室温での0.2%耐力が300MPa以上で、曲げ加工性に優れ、850℃での0.2%耐力が10MPa以上である。
 850℃×30分加熱及び500℃×2時間時効処理後の耐力は、No.1~12が100MPa以上、No.18~26が300MPa以上であり、どちらも導電率が50%IACS以上である。
 No.1~12のうち、FeとCoの合計含有量[Fe+Co]が0.2~2.3質量%のNo.1,3~9,11,12及びCrとZrを合計で0.09質量%含むNo.10は、850℃で30分加熱後の平均結晶粒径が100μm以下である。また、No.18~26のうち、NiとCoの合計含有量[Ni+Co]が2.4~3.5質量%のNo.19~22,24、CrとZrを合計で0.04質量%含むNo.23、及びTiを0.07質量%含むNo.26は、850℃で30分加熱後の平均結晶粒径が100μm以下である。
In contrast, no. Nos. 1 to 12 and 18 to 26 have a 0.2% yield strength at room temperature of 300 MPa or more, excellent bending workability, and a 0.2% yield strength at 850 ° C. of 10 MPa or more.
The yield strength after heating at 850 ° C. for 30 minutes and aging treatment at 500 ° C. for 2 hours is No. Nos. 1 to 12 are 100 MPa or more. 18 to 26 are 300 MPa or more, and both have a conductivity of 50% IACS or more.
No. No. 1 to No. 12 in which the total content of Fe and Co [Fe + Co] is 0.2 to 2.3 mass%. 1, 3 to 9, 11, 12, and No. 1 containing 0.09% by mass in total of Cr and Zr. No. 10 has an average crystal grain size of 100 μm or less after heating at 850 ° C. for 30 minutes. No. 18 to 26, the total content of Ni and Co [Ni + Co] is 2.4 to 3.5% by mass. 19 to 22, 24, No. containing 0.04% by mass in total of Cr and Zr. 23 and No. containing 0.07% by mass of Ti. No. 26 has an average crystal grain size of 100 μm or less after heating at 850 ° C. for 30 minutes.
 一方、No.13,14は[Fe+Co+Ni]が不足し、No.27は[Ni+Co]が不足するため、850℃での0.2%耐力が10MPa未満である。また、No.15は[Fe+Co+Ni]が過剰で、No.28は[Ni+Co]が過剰で、No.16,29はその他元素が過剰であるため、850℃×30分加熱及び500℃×2時間時効処理後の耐力導電率が50%IACS未満である。 On the other hand, No. Nos. 13 and 14 lack [Fe + Co + Ni]. No. 27 has a shortage of [Ni + Co], so the 0.2% yield strength at 850 ° C. is less than 10 MPa. No. No. 15 is excessive in [Fe + Co + Ni]. No. 28 is excessive in [Ni + Co]. Since No. 16 and 29 are excessive other elements, the proof stress conductivity after heating at 850 ° C. × 30 minutes and aging treatment at 500 ° C. × 2 hours is less than 50% IACS.
 本明細書の開示内容は、以下の態様を含む。

態様1:
 Fe,Ni,Coの1種又は2種以上を含むリン化物が析出し、100MPa以上の0.2%耐力及び優れた曲げ加工性を有し、850℃で測定した0.2%耐力が10MPa以上であり、850℃で30分加熱後水冷し、次いで500℃で2時間の時効処理をした後の0.2%耐力が100MPa以上、導電率が50%IACS以上であり、放熱部品を製造するプロセスの一部に650℃以上に加熱するプロセスと時効処理が含まれることを特徴とすることを特徴とする放熱部品用銅合金板。

態様2:
 Ni,Coの1種又は2種を含む珪化物が析出し、200MPa以上の0.2%耐力及び優れた曲げ加工性を有し、850℃で測定した0.2%耐力が10MPa以上であり、850℃で30分加熱後水冷し、次いで500℃で2時間の時効処理をした後の0.2%耐力が300MPa以上、導電率が50%IACS以上であり、放熱部品を製造するプロセスの一部に650℃以上に加熱するプロセスと時効処理が含まれることを特徴とする放熱部品用銅合金板。

態様3:
 FeとCoの1種又は2種とP:0.01~0.2質量%を含み、FeとCoの合計含有量[Fe+Co]が0.2~2.3質量%であり、残部がCu及び不可避不純物からなることを特徴とする態様1に記載された放熱部品用銅合金板。

態様4:
 さらにNi:0.1~1.0質量%を含み、FeとCo及びNiの含有量[Fe+Co+Ni]が0.2~2.3質量%であることを特徴とする態様3に記載された放熱部品用銅合金板。

態様5:
 Mg,Al,Si,Cr,Ti,Zr,Zn,Sn,Mnの1種又は2種以上を合計で0.01~0.3質量%含むことを特徴とする態様3又は4に記載された放熱部品用銅合金板。

態様6:
 NiとCoの1種又は2種とSiを含み、NiとCoの合計含有量[Ni+Co]が1.6~3.5質量%であり、NiとCoの合計含有量[Ni+Co]とSi含有量[Si]の比[Ni+Co]/[Si]が3.5~5.5であり、残部がCu及び不可避不純物からなることを特徴とする態様2に記載された放熱部品用銅合金板。

態様7:
 Mg,Al,Cr,Ti,Zr,Zn,Sn,Mnの1種又は2種以上を合計で0.01~0.3質量%含むことを特徴とする態様6に記載された放熱部品用銅合金板。

態様8:
 850℃で30分加熱後の平均結晶粒径が100μm以下であることを特徴とする態様
1および3~5のいずれかに記載された放熱部品用銅合金板。

態様9:
 850℃で30分加熱後の平均結晶粒径が100μm以下であることを特徴とする態様2、6および7のいずれかに記載された放熱部品用銅合金板。

態様10:
 拡散接合又はろう付けにより互いに接合された態様1、3~5および8のいずれかに記載された複数の放熱部品用銅合金板からなることを特徴とする放熱部品。

態様11:
 拡散接合又はろう付けにより互いに接合された態様2、6、7および9のいずれかに記載された複数の放熱部品用銅合金板からなることを特徴とする放熱部品。

態様12:
 外表面の少なくとも一部にSn被覆層が形成されていることを特徴とする態様10または11に記載された放熱部品。

態様13:
 外表面の少なくとも一部にNi被覆層が形成されていることを特徴とする態様10または11に記載された放熱部品。

態様14:
 態様1、3~5および8のいずれかに記載された放熱部品用銅合金板を所定形状に加工した後、650℃以上に加熱、及び接合するプロセスを施し、続いて塑性加工を加えることなく時効処理を行い、100MPa以上の0.2%耐力及び50%IACS以上の導電率を有する放熱部品を得ることを特徴とする放熱部品の製造方法。

態様15:
 態様2、6、7および9のいずれかに記載された放熱部品用銅合金板を所定形状に加工した後、650℃以上に加熱、及び接合するプロセスを施し、続いて塑性加工を加えることなく時効処理を行い、300MPa以上の0.2%耐力及び50%IACS以上の導電率を有する放熱部品を得ることを特徴とする放熱部品の製造方法。

態様16:
 650℃以上に加熱するプロセスの後、放熱部品の外表面の少なくとも一部にSn被覆層を形成することを特徴とする態様14または15に記載された放熱部品の製造方法。

態様17:
 650℃以上に加熱するプロセスの後、放熱部品の外表面の少なくとも一部にNi被覆層を形成することを特徴とする態様14または15に記載された放熱部品の製造方法。
The disclosure of the present specification includes the following aspects.

Aspect 1:
A phosphide containing one or more of Fe, Ni, and Co is precipitated, has 0.2% proof stress of 100 MPa or more and excellent bending workability, and 0.2% proof stress measured at 850 ° C. is 10 MPa. This is the above, after heating for 30 minutes at 850 ° C., water cooling, then after aging treatment at 500 ° C. for 2 hours, 0.2% proof stress is 100 MPa or more, conductivity is 50% IACS or more, and manufactures heat dissipation parts A copper alloy sheet for a heat-radiating component, characterized in that a part of the process includes a process of heating to 650 ° C. or more and an aging treatment.

Aspect 2:
A silicide containing one or two of Ni and Co is precipitated, has 0.2% proof stress of 200 MPa or more and excellent bending workability, and 0.2% proof stress measured at 850 ° C. is 10 MPa or more. In the process of manufacturing a heat dissipation component, the 0.2% proof stress is 300 MPa or more and the conductivity is 50% IACS or more after aging at 850 ° C. for 30 minutes and then water cooling and then aging treatment at 500 ° C. for 2 hours. A copper alloy plate for a heat-radiating component, characterized in that a part thereof includes a process of heating to 650 ° C. or more and an aging treatment.

Aspect 3:
One or two of Fe and Co and P: 0.01 to 0.2% by mass, the total content of Fe and Co [Fe + Co] is 0.2 to 2.3% by mass, and the balance is Cu And a copper alloy plate for a heat-dissipating component described in the first aspect.

Aspect 4:
In addition, the heat dissipation described in aspect 3 is characterized in that Ni: 0.1 to 1.0% by mass, and the content of Fe, Co, and Ni [Fe + Co + Ni] is 0.2 to 2.3% by mass. Copper alloy sheet for parts.

Aspect 5:
Aspect 3 or 4 characterized in that it contains one or more of Mg, Al, Si, Cr, Ti, Zr, Zn, Sn, and Mn in a total of 0.01 to 0.3% by mass. Copper alloy plate for heat dissipation parts.

Aspect 6:
It contains one or two of Ni and Co and Si, and the total content of Ni and Co [Ni + Co] is 1.6 to 3.5 mass%, and the total content of Ni and Co [Ni + Co] and Si is contained The copper alloy plate for a heat dissipation component according to aspect 2, wherein the ratio [Ni + Co] / [Si] of the amount [Si] is 3.5 to 5.5, and the balance is made of Cu and inevitable impurities.

Aspect 7:
The copper for heat-dissipating parts described in the aspect 6, characterized by containing 0.01 to 0.3% by mass in total of one or more of Mg, Al, Cr, Ti, Zr, Zn, Sn, and Mn Alloy plate.

Aspect 8:
6. The copper alloy plate for a heat-radiating component according to any one of embodiments 1 and 3 to 5, wherein the average crystal grain size after heating at 850 ° C. for 30 minutes is 100 μm or less.

Aspect 9:
8. The copper alloy plate for heat-radiating component according to any one of aspects 2, 6 and 7, wherein the average crystal grain size after heating at 850 ° C. for 30 minutes is 100 μm or less.

Aspect 10:
A heat dissipating part comprising a plurality of copper alloy plates for heat dissipating parts described in any one of aspects 1, 3 to 5 and 8 joined together by diffusion joining or brazing.

Aspect 11:
A heat dissipating component comprising a plurality of copper alloy plates for heat dissipating components described in any one of aspects 2, 6, 7, and 9 joined by diffusion bonding or brazing.

Aspect 12:
The heat radiating component according to aspect 10 or 11, wherein an Sn coating layer is formed on at least a part of the outer surface.

Aspect 13:
The heat dissipating component according to aspect 10 or 11, wherein a Ni coating layer is formed on at least a part of the outer surface.

Aspect 14:
Without processing the copper alloy plate for heat-dissipating parts described in any of the aspects 1, 3 to 5 and 8 into a predetermined shape, then heating and joining to 650 ° C. or higher, and subsequently applying plastic processing A method for manufacturing a heat-radiating component, characterized by performing an aging treatment to obtain a heat-radiating component having a 0.2% proof stress of 100 MPa or more and a conductivity of 50% IACS or more.

Aspect 15:
After processing the copper alloy plate for heat radiating parts described in any of the aspects 2, 6, 7, and 9 into a predetermined shape, the process of heating and joining to 650 ° C. or higher is performed, and then plastic processing is not performed. A method for manufacturing a heat dissipation component, characterized by performing an aging treatment to obtain a heat dissipation component having a 0.2% proof stress of 300 MPa or more and a conductivity of 50% IACS or more.

Aspect 16:
16. The method for manufacturing a heat dissipation component according to aspect 14 or 15, wherein an Sn coating layer is formed on at least a part of the outer surface of the heat dissipation component after the process of heating to 650 ° C. or higher.

Aspect 17:
16. The method for manufacturing a heat dissipation component according to aspect 14 or 15, wherein a Ni coating layer is formed on at least a part of the outer surface of the heat dissipation component after the process of heating to 650 ° C. or higher.
 本出願は、出願日が2016年10月5日である日本国特許出願、特願第2016-196884号を基礎出願とする優先権主張を伴う。特願第2016-196884号は参照することにより本明細書に取り込まれる。 This application is accompanied by a priority claim based on a Japanese patent application, Japanese Patent Application No. 2016-19684, filed on October 5, 2016. Japanese Patent Application No. 2016-196884 is incorporated herein by reference.
1 板部材 1 Plate member

Claims (34)

  1.  Fe,Ni,Coの1種又は2種以上を含むリン化物が析出し、100MPa以上の0.2%耐力及び優れた曲げ加工性を有し、850℃で測定した0.2%耐力が10MPa以上であり、850℃で30分加熱後水冷し、次いで500℃で2時間の時効処理をした後の0.2%耐力が100MPa以上、導電率が50%IACS以上であり、放熱部品を製造するプロセスの一部に650℃以上に加熱するプロセスと時効処理が含まれることを特徴とすることを特徴とする放熱部品用銅合金板。 A phosphide containing one or more of Fe, Ni, and Co is precipitated, has 0.2% proof stress of 100 MPa or more and excellent bending workability, and 0.2% proof stress measured at 850 ° C. is 10 MPa. This is the above, after heating for 30 minutes at 850 ° C., water cooling, then after aging treatment at 500 ° C. for 2 hours, 0.2% proof stress is 100 MPa or more, conductivity is 50% IACS or more, and manufactures heat dissipation parts A copper alloy sheet for a heat-radiating component, characterized in that a part of the process includes a process of heating to 650 ° C. or more and an aging treatment.
  2.  Ni,Coの1種又は2種を含む珪化物が析出し、200MPa以上の0.2%耐力及び優れた曲げ加工性を有し、850℃で測定した0.2%耐力が10MPa以上であり、850℃で30分加熱後水冷し、次いで500℃で2時間の時効処理をした後の0.2%耐力が300MPa以上、導電率が50%IACS以上であり、放熱部品を製造するプロセスの一部に650℃以上に加熱するプロセスと時効処理が含まれることを特徴とする放熱部品用銅合金板。 A silicide containing one or two of Ni and Co is precipitated, has 0.2% proof stress of 200 MPa or more and excellent bending workability, and 0.2% proof stress measured at 850 ° C. is 10 MPa or more. In the process of manufacturing a heat dissipation component, the 0.2% proof stress is 300 MPa or more and the conductivity is 50% IACS or more after aging at 850 ° C. for 30 minutes and then water cooling and then aging treatment at 500 ° C. for 2 hours. A copper alloy sheet for heat dissipation parts, characterized in that a part of the process includes heating to 650 ° C. and aging treatment.
  3.  FeとCoの1種又は2種とP:0.01~0.2質量%を含み、FeとCoの合計含有量[Fe+Co]が0.2~2.3質量%であり、残部がCu及び不可避不純物からなることを特徴とする請求項1に記載された放熱部品用銅合金板。 One or two of Fe and Co and P: 0.01 to 0.2% by mass, the total content of Fe and Co [Fe + Co] is 0.2 to 2.3% by mass, and the balance is Cu The copper alloy plate for a heat radiating component according to claim 1, wherein the copper alloy plate is made of unavoidable impurities.
  4.  さらにNi:0.1~1.0質量%を含み、FeとCo及びNiの含有量[Fe+Co+Ni]が0.2~2.3質量%であることを特徴とする請求項3に記載された放熱部品用銅合金板。 Further, Ni: 0.1 to 1.0% by mass, and the content of Fe, Co, and Ni [Fe + Co + Ni] is 0.2 to 2.3% by mass. Copper alloy plate for heat dissipation parts.
  5.  Mg,Al,Si,Cr,Ti,Zr,Zn,Sn,Mnの1種又は2種以上を合計で0.01~0.3質量%含むことを特徴とする請求項3に記載された放熱部品用銅合金板。 The heat dissipation according to claim 3, comprising one or more of Mg, Al, Si, Cr, Ti, Zr, Zn, Sn, and Mn in a total of 0.01 to 0.3% by mass. Copper alloy sheet for parts.
  6.  Mg,Al,Si,Cr,Ti,Zr,Zn,Sn,Mnの1種又は2種以上を合計で0.01~0.3質量%含むことを特徴とする請求項4に記載された放熱部品用銅合金板。 5. The heat dissipation according to claim 4, comprising one or more of Mg, Al, Si, Cr, Ti, Zr, Zn, Sn, and Mn in a total of 0.01 to 0.3% by mass. Copper alloy sheet for parts.
  7.  NiとCoの1種又は2種とSiを含み、NiとCoの合計含有量[Ni+Co]が1.6~3.5質量%であり、NiとCoの合計含有量[Ni+Co]とSi含有量[Si]の比[Ni+Co]/[Si]が3.5~5.5であり、残部がCu及び不可避不純物からなることを特徴とする請求項2に記載された放熱部品用銅合金板。 It contains one or two of Ni and Co and Si, and the total content of Ni and Co [Ni + Co] is 1.6 to 3.5 mass%, and the total content of Ni and Co [Ni + Co] and Si is contained 3. The copper alloy plate for a heat dissipation component according to claim 2, wherein the ratio [Ni + Co] / [Si] of the amount [Si] is 3.5 to 5.5, and the balance is made of Cu and inevitable impurities. .
  8.  Mg,Al,Cr,Ti,Zr,Zn,Sn,Mnの1種又は2種以上を合計で0.01~0.3質量%含むことを特徴とする請求項7に記載された放熱部品用銅合金板。 The heat-radiating component according to claim 7, comprising one or more of Mg, Al, Cr, Ti, Zr, Zn, Sn, and Mn in a total amount of 0.01 to 0.3% by mass. Copper alloy plate.
  9.  850℃で30分加熱後の平均結晶粒径が100μm以下であることを特徴とする請求項1および3~6のいずれかに記載された放熱部品用銅合金板。 The copper alloy plate for heat-radiating parts according to any one of claims 1 and 3 to 6, wherein an average crystal grain size after heating at 850 ° C for 30 minutes is 100 µm or less.
  10.  850℃で30分加熱後の平均結晶粒径が100μm以下であることを特徴とする請求項2、7および8のいずれかに記載された放熱部品用銅合金板。 The copper alloy plate for a heat-radiating component according to any one of claims 2, 7, and 8, wherein an average crystal grain size after heating at 850 ° C for 30 minutes is 100 µm or less.
  11.  拡散接合又はろう付けにより互いに接合された請求項1および3~6のいずれかに記載された複数の放熱部品用銅合金板からなることを特徴とする放熱部品。 A heat radiating component comprising a plurality of copper alloy plates for a heat radiating component according to any one of claims 1 and 3 to 6, which are bonded to each other by diffusion bonding or brazing.
  12.  拡散接合又はろう付けにより互いに接合された請求項9に記載された複数の放熱部品用銅合金板からなることを特徴とする放熱部品。 A heat dissipating component comprising a plurality of copper alloy plates for heat dissipating components described in claim 9 joined together by diffusion bonding or brazing.
  13.  拡散接合又はろう付けにより互いに接合された請求項2、7および8のいずれかに記載された複数の放熱部品用銅合金板からなることを特徴とする放熱部品。 A heat dissipating part comprising a plurality of copper alloy plates for heat dissipating parts described in any one of claims 2, 7, and 8 joined together by diffusion bonding or brazing.
  14.  拡散接合又はろう付けにより互いに接合された請求項10に記載された複数の放熱部品用銅合金板からなることを特徴とする放熱部品。 A heat dissipating component comprising a plurality of copper alloy plates for heat dissipating components described in claim 10 joined to each other by diffusion bonding or brazing.
  15.  外表面の少なくとも一部にSn被覆層が形成されていることを特徴とする請求項11に記載された放熱部品。 The heat-radiating component according to claim 11, wherein an Sn coating layer is formed on at least a part of the outer surface.
  16.  外表面の少なくとも一部にSn被覆層が形成されていることを特徴とする請求項12に記載された放熱部品。 The heat dissipating component according to claim 12, wherein an Sn coating layer is formed on at least a part of the outer surface.
  17.  外表面の少なくとも一部にSn被覆層が形成されていることを特徴とする請求項13に記載された放熱部品。 14. The heat dissipating component according to claim 13, wherein an Sn coating layer is formed on at least a part of the outer surface.
  18.  外表面の少なくとも一部にSn被覆層が形成されていることを特徴とする請求項14に記載された放熱部品。 The heat-radiating component according to claim 14, wherein a Sn coating layer is formed on at least a part of the outer surface.
  19.  外表面の少なくとも一部にNi被覆層が形成されていることを特徴とする請求項11に記載された放熱部品。 The heat-radiating component according to claim 11, wherein a Ni coating layer is formed on at least a part of the outer surface.
  20.  外表面の少なくとも一部にNi被覆層が形成されていることを特徴とする請求項12に記載された放熱部品。 13. The heat dissipating component according to claim 12, wherein a Ni coating layer is formed on at least a part of the outer surface.
  21.  外表面の少なくとも一部にNi被覆層が形成されていることを特徴とする請求項13に記載された放熱部品。 The heat dissipating component according to claim 13, wherein a Ni coating layer is formed on at least a part of the outer surface.
  22.  外表面の少なくとも一部にNi被覆層が形成されていることを特徴とする請求項14に記載された放熱部品。 The heat dissipating component according to claim 14, wherein a Ni coating layer is formed on at least a part of the outer surface.
  23.  請求項1および3~6のいずれかに記載された放熱部品用銅合金板を所定形状に加工した後、650℃以上に加熱、及び接合するプロセスを施し、続いて塑性加工を加えることなく時効処理を行い、100MPa以上の0.2%耐力及び50%IACS以上の導電率を有する放熱部品を得ることを特徴とする放熱部品の製造方法。 After the copper alloy plate for heat-dissipating parts according to any one of claims 1 and 3 to 6 is processed into a predetermined shape, it is heated to 650 ° C or higher, and subjected to a joining process, and then aging without applying plastic processing. A method of manufacturing a heat dissipation component, characterized in that a heat dissipation component having a 0.2% proof stress of 100 MPa or more and a conductivity of 50% IACS or more is obtained by performing a treatment.
  24.  請求項9に記載された放熱部品用銅合金板を所定形状に加工した後、650℃以上に加熱、及び接合するプロセスを施し、続いて塑性加工を加えることなく時効処理を行い、100MPa以上の0.2%耐力及び50%IACS以上の導電率を有する放熱部品を得ることを特徴とする放熱部品の製造方法。 After processing the copper alloy plate for heat radiating components according to claim 9 into a predetermined shape, a process of heating and joining to 650 ° C. or higher is performed, and then an aging treatment is performed without adding plastic processing, A method of manufacturing a heat dissipation component, comprising obtaining a heat dissipation component having a 0.2% proof stress and a conductivity of 50% IACS or higher.
  25.  請求項2、7および8のいずれかに記載された放熱部品用銅合金板を所定形状に加工した後、650℃以上に加熱、及び接合するプロセスを施し、続いて塑性加工を加えることなく時効処理を行い、300MPa以上の0.2%耐力及び50%IACS以上の導電率を有する放熱部品を得ることを特徴とする放熱部品の製造方法。 After the copper alloy plate for a heat-dissipating component according to any one of claims 2, 7, and 8 is processed into a predetermined shape, it is heated to 650 ° C or more and subjected to a joining process, and then aging without applying plastic processing. A method of manufacturing a heat dissipation component, characterized in that a heat dissipation component having a 0.2% proof stress of 300 MPa or more and a conductivity of 50% IACS or more is obtained by performing a treatment.
  26.  請求項10に記載された放熱部品用銅合金板を所定形状に加工した後、650℃以上に加熱、及び接合するプロセスを施し、続いて塑性加工を加えることなく時効処理を行い、300MPa以上の0.2%耐力及び50%IACS以上の導電率を有する放熱部品を得ることを特徴とする放熱部品の製造方法。 After processing the copper alloy plate for a heat-radiating component according to claim 10 into a predetermined shape, a process of heating and joining to 650 ° C. or higher is performed, and then an aging treatment is performed without adding plastic processing, A method of manufacturing a heat dissipation component, comprising obtaining a heat dissipation component having a 0.2% proof stress and a conductivity of 50% IACS or higher.
  27.  650℃以上に加熱するプロセスの後、放熱部品の外表面の少なくとも一部にSn被覆層を形成することを特徴とする請求項23に記載された放熱部品の製造方法。 The method for manufacturing a heat dissipation component according to claim 23, wherein an Sn coating layer is formed on at least a part of the outer surface of the heat dissipation component after the process of heating to 650 ° C or higher.
  28.  650℃以上に加熱するプロセスの後、放熱部品の外表面の少なくとも一部にSn被覆層を形成することを特徴とする請求項24に記載された放熱部品の製造方法。 The method for manufacturing a heat dissipation component according to claim 24, wherein an Sn coating layer is formed on at least a part of the outer surface of the heat dissipation component after the process of heating to 650 ° C or higher.
  29.  650℃以上に加熱するプロセスの後、放熱部品の外表面の少なくとも一部にSn被覆層を形成することを特徴とする請求項25に記載された放熱部品の製造方法。 The method for manufacturing a heat dissipation component according to claim 25, wherein an Sn coating layer is formed on at least a part of the outer surface of the heat dissipation component after the process of heating to 650 ° C or higher.
  30.  650℃以上に加熱するプロセスの後、放熱部品の外表面の少なくとも一部にSn被覆層を形成することを特徴とする請求項26に記載された放熱部品の製造方法。 27. The method of manufacturing a heat dissipation component according to claim 26, wherein an Sn coating layer is formed on at least a part of the outer surface of the heat dissipation component after the process of heating to 650 ° C. or higher.
  31.  650℃以上に加熱するプロセスの後、放熱部品の外表面の少なくとも一部にNi被覆層を形成することを特徴とする請求項23に記載された放熱部品の製造方法。 The method for manufacturing a heat dissipation component according to claim 23, wherein a Ni coating layer is formed on at least a part of the outer surface of the heat dissipation component after the process of heating to 650 ° C or higher.
  32.  650℃以上に加熱するプロセスの後、放熱部品の外表面の少なくとも一部にNi被覆層を形成することを特徴とする請求項24に記載された放熱部品の製造方法。 The method for manufacturing a heat dissipation component according to claim 24, wherein a Ni coating layer is formed on at least a part of the outer surface of the heat dissipation component after the process of heating to 650 ° C or higher.
  33.  650℃以上に加熱するプロセスの後、放熱部品の外表面の少なくとも一部にNi被覆層を形成することを特徴とする請求項25に記載された放熱部品の製造方法。 The method for manufacturing a heat dissipation component according to claim 25, wherein a Ni coating layer is formed on at least a part of the outer surface of the heat dissipation component after the process of heating to 650 ° C or higher.
  34.  650℃以上に加熱するプロセスの後、放熱部品の外表面の少なくとも一部にNi被覆層を形成することを特徴とする請求項26に記載された放熱部品の製造方法。 27. The method for manufacturing a heat dissipation component according to claim 26, wherein after the process of heating to 650 ° C. or higher, a Ni coating layer is formed on at least a part of the outer surface of the heat dissipation component.
PCT/JP2017/034774 2016-10-05 2017-09-26 Copper alloy plate for heat dissipation component, heat dissipation component, and method for manufacturing heat dissipation component WO2018066414A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780060263.3A CN109790597A (en) 2016-10-05 2017-09-26 The manufacturing method of heat dissipation element copper alloy plate, heat dissipation element and heat dissipation element
KR1020197008985A KR102226988B1 (en) 2016-10-05 2017-09-26 Copper alloy plate for heat dissipation parts, heat dissipation parts, and manufacturing method of heat dissipation parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-196884 2016-10-05
JP2016196884 2016-10-05

Publications (1)

Publication Number Publication Date
WO2018066414A1 true WO2018066414A1 (en) 2018-04-12

Family

ID=61831928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034774 WO2018066414A1 (en) 2016-10-05 2017-09-26 Copper alloy plate for heat dissipation component, heat dissipation component, and method for manufacturing heat dissipation component

Country Status (5)

Country Link
JP (1) JP6850233B2 (en)
KR (1) KR102226988B1 (en)
CN (1) CN109790597A (en)
TW (1) TWI683012B (en)
WO (1) WO2018066414A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7312825B2 (en) 2019-07-04 2023-07-21 日本碍子株式会社 Beryllium-copper alloy joined body and manufacturing method thereof
CN110267506B (en) * 2019-07-19 2020-11-20 赤峰埃晶电子科技有限公司 High-efficient radiating display screen module
JP6907282B2 (en) * 2019-09-25 2021-07-21 Jx金属株式会社 Titanium-copper alloy plate for vapor chamber and vapor chamber
JP7345795B2 (en) 2020-01-27 2023-09-19 日本碍子株式会社 Joining method and heat exchange member
EP4275826A1 (en) * 2021-01-08 2023-11-15 Kyushu University, National University Corporation Copper alloy assembly and production method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152648A1 (en) * 2015-03-23 2016-09-29 株式会社神戸製鋼所 Copper alloy sheet for heat dissipating component and heat dissipating component
WO2016158391A1 (en) * 2015-03-27 2016-10-06 株式会社神戸製鋼所 Copper alloy sheet for heat dissipation component, and heat dissipation component
WO2016158390A1 (en) * 2015-03-27 2016-10-06 株式会社神戸製鋼所 Copper alloy sheet for heat dissipation component, and heat dissipation component
JP6151813B1 (en) * 2016-03-23 2017-06-21 株式会社神戸製鋼所 Vapor chamber manufacturing method
WO2017110759A1 (en) * 2015-12-25 2017-06-29 株式会社神戸製鋼所 Copper alloy plate for heat-dissipation component

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3465108B2 (en) * 2000-05-25 2003-11-10 株式会社神戸製鋼所 Copper alloy for electric and electronic parts
JP4090302B2 (en) * 2001-07-31 2008-05-28 株式会社神戸製鋼所 Conductive material plate for forming connecting parts
JP4848539B2 (en) * 2001-08-23 2011-12-28 Dowaメタルテック株式会社 Heat sink, power semiconductor module, IC package
JP2004238672A (en) 2003-02-05 2004-08-26 Fujikura Ltd Method for manufacturing plate-type heat pipe
WO2006019035A1 (en) * 2004-08-17 2006-02-23 Kabushiki Kaisha Kobe Seiko Sho Copper alloy plate for electric and electronic parts having bending workability
WO2006132317A1 (en) * 2005-06-08 2006-12-14 Kabushiki Kaisha Kobe Seiko Sho Copper alloy, copper alloy plate, and process for producing the same
JP4112602B2 (en) 2005-09-01 2008-07-02 株式会社渕上ミクロ heat pipe
JP4950584B2 (en) * 2006-07-28 2012-06-13 株式会社神戸製鋼所 Copper alloy with high strength and heat resistance
JP2008266787A (en) * 2007-03-28 2008-11-06 Furukawa Electric Co Ltd:The Copper alloy material and its manufacturing method
JP4799701B1 (en) * 2011-03-29 2011-10-26 Jx日鉱日石金属株式会社 Cu-Co-Si based copper alloy strip for electronic materials and method for producing the same
JP5773929B2 (en) * 2012-03-28 2015-09-02 株式会社神戸製鋼所 Copper alloy sheet for electrical and electronic parts with excellent bending workability and stress relaxation resistance
JP6176433B2 (en) * 2013-01-10 2017-08-09 株式会社Welcon Vapor chamber
JP5979311B2 (en) 2013-04-16 2016-08-24 日産自動車株式会社 Heating element cooling device
JP5960672B2 (en) * 2013-11-25 2016-08-02 株式会社神戸製鋼所 High strength copper alloy tube
JP6121893B2 (en) 2013-12-24 2017-04-26 東芝ホームテクノ株式会社 Sheet type heat pipe
JP2016014165A (en) * 2014-07-01 2016-01-28 株式会社Shカッパープロダクツ Copper alloy material, method for producing copper alloy material, lead frame and connector
JP6207539B2 (en) * 2015-02-04 2017-10-04 Jx金属株式会社 Copper alloy strip, and electronic component for high current and heat dissipation provided with the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152648A1 (en) * 2015-03-23 2016-09-29 株式会社神戸製鋼所 Copper alloy sheet for heat dissipating component and heat dissipating component
WO2016158391A1 (en) * 2015-03-27 2016-10-06 株式会社神戸製鋼所 Copper alloy sheet for heat dissipation component, and heat dissipation component
WO2016158390A1 (en) * 2015-03-27 2016-10-06 株式会社神戸製鋼所 Copper alloy sheet for heat dissipation component, and heat dissipation component
WO2017110759A1 (en) * 2015-12-25 2017-06-29 株式会社神戸製鋼所 Copper alloy plate for heat-dissipation component
JP6151813B1 (en) * 2016-03-23 2017-06-21 株式会社神戸製鋼所 Vapor chamber manufacturing method

Also Published As

Publication number Publication date
TWI683012B (en) 2020-01-21
KR20190043583A (en) 2019-04-26
CN109790597A (en) 2019-05-21
JP6850233B2 (en) 2021-03-31
JP2018059198A (en) 2018-04-12
TW201827614A (en) 2018-08-01
KR102226988B1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
WO2018066414A1 (en) Copper alloy plate for heat dissipation component, heat dissipation component, and method for manufacturing heat dissipation component
WO2018066413A1 (en) Copper alloy plate for heat dissipation components, heat dissipation component, and method for producing heat dissipation component
JP6031549B2 (en) Copper alloy plate for heat dissipation parts
JP6151813B1 (en) Vapor chamber manufacturing method
JP6031548B2 (en) Copper alloy plate for heat dissipation parts
WO2016152648A1 (en) Copper alloy sheet for heat dissipating component and heat dissipating component
WO2017159749A1 (en) Copper alloy plate for heat-dissipation component
WO2018062255A1 (en) Copper alloy sheet for heat dissipation component, heat dissipation component, and method for producing heat dissipation component
JP6031576B2 (en) Copper alloy plate for heat dissipation parts
JP6446007B2 (en) Copper alloy plate for heat dissipation parts
JP2018162518A (en) Copper alloy sheet for vapor chamber and vapor chamber
WO2017110759A1 (en) Copper alloy plate for heat-dissipation component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858252

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197008985

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17858252

Country of ref document: EP

Kind code of ref document: A1