WO2017159749A1 - Copper alloy plate for heat-dissipation component - Google Patents

Copper alloy plate for heat-dissipation component Download PDF

Info

Publication number
WO2017159749A1
WO2017159749A1 PCT/JP2017/010493 JP2017010493W WO2017159749A1 WO 2017159749 A1 WO2017159749 A1 WO 2017159749A1 JP 2017010493 W JP2017010493 W JP 2017010493W WO 2017159749 A1 WO2017159749 A1 WO 2017159749A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper alloy
alloy plate
layer
mass
thickness
Prior art date
Application number
PCT/JP2017/010493
Other languages
French (fr)
Japanese (ja)
Inventor
昌泰 西村
靖 真砂
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2017159749A1 publication Critical patent/WO2017159749A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/08Alloys based on copper with lead as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the present disclosure relates to a copper alloy plate material used for heat dissipation components that dissipate heat, such as CPUs and liquid crystals, mounted on electronic devices such as personal computers, tablet terminals, smartphones, mobile phones, and digital cameras.
  • the heat dissipating component is for preventing an excessive temperature rise of the electronic component and preventing a thermal runaway of the electronic component to function normally.
  • processed copper or other materials such as pure copper with high thermal conductivity, stainless steel with excellent strength and corrosion resistance, and white and light aluminum alloys are used. These heat dissipating parts have not only a heat dissipating function but also a role as a structural member for protecting the electronic parts mounted from external force applied to the electronic equipment.
  • a plate material which is a material of the heat dissipation component, is formed into a heat dissipation component through plastic working such as hem bending (adhesion bending), 90 ° bending, and drawing.
  • the width of the bent portion (the length of the bend line) is about several millimeters or less in the lead frame and the terminal, but in some heat dissipation parts, the width of the bent portion is about 20 mm or more. It is known that the bending workability of the plate material is abruptly lowered as the bending width is increased, and the heat dissipation component plate material is required to have strict bending workability as compared with the terminal and lead frame plate material.
  • Patent Documents 1 and 2 disclose Fe—P-based copper alloys for heat dissipation parts, but do not disclose bending workability in bending work with a wide bending part.
  • An object of the embodiment of the present invention is to provide a copper alloy plate for a heat radiating component having high strength, excellent bending workability in bending work with a large bent portion width, and heat dissipation.
  • the copper alloy plate for a heat dissipation component includes Fe: 0.01 to 1.0 mass%, P: 0.01 to 0.20 mass%, Zn: 0.01 to 1.0 mass%, and Sn. : 0.01 to 0.15 mass%, the balance is Cu and inevitable impurities, the tensile strength in the rolling parallel direction is 410 MPa or more, the proof stress is 390 MPa or more, the elongation is 5% or more, the tensile strength in the direction perpendicular to the rolling Is 420 MPa or more, yield strength is 400 MPa or more, elongation is 3% or more, electrical conductivity is 75% IACS or more, the ratio R / t of the bending radius R to the sheet thickness t is 0.5, and the bending line is the direction perpendicular to the rolling direction.
  • the bending limit width when performing 90-degree bending is 70 mm or more, and the bending limit width when performing close contact bending with the bending line being the direction perpendicular to the rolling is 20 mm or more.
  • the copper alloy further comprises one or more of Co, Al, Cr, Mg, Mn, Ca, Pb, Ni, Ti, Zr, Si, and Ag in a total of 0.3 mass% or less (Ni content is Less than 0.1 mass%). If necessary, a surface coating layer can be formed on the surface of the copper alloy plate by plating or the like to improve the corrosion resistance.
  • a plating layer made of any one of Sn layer, Cu—Sn alloy layer, Ni, Co, Fe, Ni—Co alloy and Ni—Fe alloy can be considered.
  • the present invention has strength as a structural member, particularly strength that can withstand deformation and drop impact, bending workability that can withstand processing into a complex shape, and high heat dissipation against heat from semiconductor elements and the like.
  • a copper alloy plate for a heat dissipation component can be provided. Moreover, when the said surface coating layer is formed in this copper alloy plate, corrosion resistance improves and it can prevent that the performance as a heat radiating member falls even in a severe environment.
  • the composition of the copper alloy is Fe: 0.01-1.0 mass%, P: 0.01-0.20 mass%, Zn: 0.01-1.0 mass%, and Sn: 0.01-0.15 mass%.
  • the balance consists of Cu and inevitable impurities.
  • This copper alloy contains 0.3 mass% in total of one or more of Co, Al, Cr, Mg, Mn, Ca, Pb, Ni, Ti, Zr, Si and Ag as subcomponents as necessary. The following may be included (excluding 0 mass%) (however, when Ni is included, the Ni content is less than 0.1 mass% (not including 0 mass%)).
  • Fe increases the strength of the copper alloy by precipitating an intermetallic compound with P described later.
  • the Fe content is less than 0.01 mass%, the precipitation amount of the Fe—P compound is small and the desired strength cannot be obtained.
  • the Fe content exceeds 1.0 mass%, the desired conductivity is obtained. Absent. Therefore, the Fe content is set to 0.01 to 1.0 mass%.
  • the lower limit of the Fe content is preferably 0.03 mass%, more preferably 0.05 mass%, and the upper limit of the Fe content is preferably 0.8 mass%, more preferably 0.6 mass%.
  • the P content forms an intermetallic compound with Fe and precipitates in the parent phase of Cu to improve the strength.
  • the P content is set to 0.01 to 0.20 mass%.
  • the lower limit of the P content is preferably 0.03 mass%, more preferably 0.05 mass%, and the upper limit of the P content is preferably 0.17 mass%, more preferably 0.15 mass%.
  • Zn has the function of improving the heat-resistant peelability of the solder and has the role of maintaining the solder joint reliability during assembly and after aging. However, if the Zn content is less than 0.01 mass%, it is insufficient for satisfying the heat-resistant peelability of the solder, and if it exceeds 1.0 mass%, the conductivity and thermal conductivity of the copper alloy are deteriorated.
  • the lower limit of the Zn content is preferably 0.03 mass%, more preferably 0.05 mass%, and the upper limit of the Zn content is preferably 0.8 mass%, more preferably 0.6 mass%.
  • the Sn content contributes to improving the strength of the copper alloy, but if the Sn content is less than 0.01 mass%, sufficient strength cannot be obtained. Moreover, when content of Sn exceeds 0.15 mass%, the electrical conductivity and thermal conductivity of a copper alloy will be deteriorated. Therefore, the Sn content is set to 0.01 to 0.15 mass%.
  • the lower limit of the Sn content is preferably 0.03 mass%, more preferably 0.05 mass%, and the upper limit of the Sn content is preferably 0.12 mass%, more preferably 0.10 mass%.
  • the total content of one or more of the subcomponents exceeds 0.3 mass%, the strength of the copper alloy is improved, but the electrical conductivity and thermal conductivity are lowered. Therefore, the total content of the subcomponents is set to 0.3 mass% or less (not including 0 mass%). However, when Ni is contained, the Ni content is less than 0.1 mass% (excluding 0 mass%).
  • the heat dissipating component is required to have strength as a structural member, particularly strength that can withstand deformation and drop impact. If the tensile strength in the rolling parallel direction of the copper alloy plate is 410 MPa or more, the proof stress is 390 MPa or more, the tensile strength in the direction perpendicular to the rolling is 420 MPa or more, and the proof strength is 400 MPa or more, even if the heat dissipation member is thinned, the structural member The necessary strength can be secured.
  • the formability when the heat radiating member is formed from the copper alloy plate by bending or drawing is no particular problem.
  • the proof stress is the tensile strength when 0.2% permanent elongation occurs in the tensile test.
  • the copper alloy plate When forming a heat dissipation member using a copper alloy plate as a material, the copper alloy plate generally requires excellent bending workability.
  • the bending limit width When a copper alloy sheet is bent 90 degrees with a ratio R / t of the bending radius R to the sheet thickness t being 0.5 and the bending line being perpendicular to the rolling direction, the bending limit width is 70 mm or more, and the bending line is rolled. If the bending limit width when performing the close contact bending in the right angle direction is 20 mm or more, there is no problem in the manufacture of the heat dissipation component. When the bending limit width of the copper alloy plate does not reach the above value, cracks or breaks occur in the bent portion in the process of manufacturing the heat dissipation component, and it becomes difficult to form a complicated shape.
  • the conductivity of the copper alloy plate for the heat radiating component exceeds 75% IACS and the thermal conductivity exceeds 300 W / m ⁇ K.
  • the thermal conductivity can be converted from the electrical conductivity according to the Wiedemann-Franz rule. If the electrical conductivity is 75% IACS or higher, the thermal conductivity is 300 W / m ⁇ K or higher.
  • the copper alloy sheet according to the embodiment of the present invention can be manufactured by the steps of melt casting, homogenization treatment, hot rolling, cold rolling, recrystallization annealing, cold rolling, age annealing, and cold rolling. .
  • Appropriate conditions for melt casting and hot rolling are as follows, whereby precipitation of coarse Fe, Fe—P, Fe—PO, etc. can be prevented.
  • Fe is added to a molten copper alloy at 1200 ° C. or higher to melt, and thereafter, the molten metal temperature is kept at 1200 ° C. or higher for casting.
  • the ingot is cooled at a cooling rate of 1 ° C./second or more during solidification (when solid-liquid coexists) and after solidification.
  • a cooling rate of 1 ° C./second or more during solidification (when solid-liquid coexists) and after solidification.
  • the ingot is heated to 900 to 1000 ° C. for 0.5 to 5 hours, and hot rolling is started at that temperature.
  • the hot rolling end temperature is set to 650 ° C. or higher, desirably 700 ° C. or higher, and immediately after the hot rolling is finished, rapid cooling (preferably water cooling) is performed at a cooling rate of 20 ° C./second or higher.
  • rapid cooling preferably water cooling
  • the processing rate per pass of hot rolling affects not only hot-rolled materials but also the toughness of the final product, the homogeneity of the structure, and the densification.
  • the average value of the processing rate per pass of hot rolling is 20% or more and the maximum processing rate is 25% or more. . The reason is as described below.
  • a compressive stress is applied in the rolling direction in a region having a constant depth hc from the surface of the rolling ingot, and a rolling direction is applied in the central region of the ingot thickness from the depth hc.
  • compressive stress acts on the surface. In the region where the compressive stress acts, the compressive stress increases as the depth from the surface becomes shallower. In the region where the tensile stress acts, the tensile stress increases as the center of the ingot thickness is closer.
  • the depth hc changing from the compressive stress to the tensile stress can be obtained by calculation based on the rolling roll diameter, the reduction amount (thickness on the rolling roll entering side ⁇ thickness on the rolling roll exit side), etc.
  • the ingot has defects such as a microcavity due to a shrinkage cavity or gas, microsegregation of alloy elements, and inclusions, and these defects increase as the center of the ingot thickness becomes closer. It is industrially difficult to make these defects zero.
  • microsegregation is eliminated by diffusion of alloy elements, but microcavities inside the ingot are not eliminated. Rather, by the homogenization treatment, Kirkendall voids are formed, and the gas components that have been dissolved in the ingot tend to precipitate at the inclusion-base metal interface or grain boundary, which tends to increase the microcavities inside the ingot. It is in.
  • the processing rate per pass of hot rolling is 20% or more on average and the maximum processing rate is 25% or more. More preferably, the average value of the processing rate per pass of hot rolling is 25% or more, and the maximum processing rate is 30% or more. In actual operation, it is preferable that the processing rate per pass of hot rolling is 35% or less on average and the maximum processing rate is 45% or less.
  • the number of hot rolling passes can be reduced, and hot rolling can be completed at a higher temperature. For this reason, rapid cooling (quenching) from a higher temperature is possible, and the amount of alloy elements in the hot rolled material can be increased. As a result, it is possible to improve the uniformity of the structure of the copper alloy sheet (product) after the subsequent cold rolling and heat treatment, and obtain good bending workability, drawing workability and stretch workability.
  • the average processing rate at the initial stage of hot rolling is set to 10% or more and 35% or less. Is preferred.
  • the average processing rate from the first pass to the third pass is more preferably 12% or more and 30% or less, and further preferably 15% or more and 25% or less.
  • Increasing the initial hot rolling ratio tends to cause hot rolling cracks in the ingot.
  • recrystallization annealing heating is performed in a temperature range of 600 ° C. to 850 ° C. for 5 to 30 seconds in a continuous annealing furnace so that the average crystal grain size after recrystallization annealing is less than 20 ⁇ m.
  • This recrystallization annealing is performed in order to improve the elongation and bending workability of the copper alloy sheet (product).
  • the recrystallization annealing temperature is less than 600 ° C. or the holding time is less than 5 seconds, the recrystallization becomes insufficient, and the bending workability of the copper alloy sheet (product) deteriorates.
  • the recrystallization annealing temperature exceeds 850 ° C.
  • the recrystallized grains become coarse (the average crystal grain size becomes coarser to 20 ⁇ m or more), which is sufficient for a copper alloy sheet (product). Strength cannot be obtained. Furthermore, bending workability is inferior in wide bending.
  • the processing rate may be appropriately set within a range of 0 to 40% so that a predetermined processing rate and product sheet thickness can be obtained in finish cold rolling described later.
  • aging annealing is performed.
  • the conditions for aging annealing are preferably 400 to 575 ° C. and 1 to 10 hours.
  • the temperature of the aging treatment is less than 400 ° C. or the holding time is less than 1 hour, precipitation is insufficient and the conductivity of the copper alloy sheet (product) is not improved.
  • the temperature of the aging treatment exceeds 575 ° C. or the holding time exceeds 10 hours, the precipitates become coarse, and sufficient strength cannot be obtained with the copper alloy plate (product).
  • finish cold rolling is performed to the target thickness.
  • the rolling rate is set to 30 to 85% according to the target product strength.
  • annealing is performed for a short time if necessary.
  • the conditions for this short time annealing are 250 to 450 ° C. and 3 to 40 seconds.
  • ⁇ Surface coating layer of copper alloy plate> By forming the surface coating layer on the copper alloy plate by plating or the like, the corrosion resistance of the heat dissipating component is improved, and the performance as the heat dissipating component can be prevented from being deteriorated even in a severe environment.
  • an Sn layer As the surface coating layer formed on the surface of the copper alloy plate, an Sn layer is preferable. If the thickness of the Sn layer is less than 0.2 ⁇ m, the corrosion resistance is not sufficiently improved, and if it exceeds 5 ⁇ m, the productivity is lowered and the cost is increased. Therefore, the thickness of the Sn layer is set to 0.2 to 5 ⁇ m.
  • the Sn layer includes Sn metal and Sn alloy.
  • a Cu—Sn alloy layer can be formed under the Sn layer.
  • the thickness of the Cu—Sn alloy layer is preferably 0.1 ⁇ m or more.
  • the thickness of the Sn layer is 0 to 5 ⁇ m (including the case without the Sn layer), and the total thickness of the Cu—Sn alloy layer and the Sn layer is 0.2 ⁇ m or more.
  • the upper limit of the total thickness is 8 ⁇ m.
  • “the thickness of the Cu—Sn alloy layer” means the Sn equivalent thickness obtained by measuring the amount of Sn in the Cu—Sn alloy layer using a fluorescent X-ray film thickness meter. It is.
  • the Cu—Sn alloy layer may be exposed on the surface (see JP-A-2006-183068, JP-A-2013-185193, etc.). Since the Cu—Sn alloy layer is hard as Hv: 200 to 400, it has a scratch suppressing effect due to handling.
  • the surface exposure rate of the Cu—Sn alloy layer (the value obtained by multiplying the surface area of the Cu—Sn alloy layer exposed per unit area of the material surface by 100) may be 100% or 0%. However, it is preferably 50% or less. Note that when there is no Sn layer on the Cu—Sn alloy layer (the thickness of the Sn layer is zero), the surface exposure rate of the Cu—Sn alloy layer is 100%. When the Cu—Sn alloy layer is not exposed, the surface exposure rate of the Cu—Sn alloy layer is 0%.
  • a plating layer made of any one of Ni, Co, Fe, Ni—Co alloy and Ni—Fe alloy can be further formed as an underlayer.
  • the thickness of the plating layer exceeds 3 ⁇ m, bending workability and the like are deteriorated, so the thickness is set to 3 ⁇ m or less.
  • the thickness of this plating layer is preferably 0.1 ⁇ m or more.
  • the surface coating layer only a plating layer made of any one of Ni, Co, Fe, Ni—Co alloy and Ni—Fe alloy (not including the Cu—Sn alloy layer and / or the Sn layer) is formed. be able to.
  • the thickness of this plating layer is 3 ⁇ m or less from the viewpoint of preventing deterioration of bending workability and the like.
  • the thickness of this plating layer is preferably 0.1 ⁇ m or more.
  • Each of the surface coating layers can be formed by electroplating, reflow plating, electroless plating, sputtering, or the like.
  • the Cu-Sn alloy layer is formed by Sn plating on a copper alloy plate as a base material, or by performing Cu and Sn plating on a copper alloy base material and then performing a reflow process, etc., and reacting Cu and Sn. Can do.
  • the heating conditions for the reflow process are 230 to 600 ° C. ⁇ 5 to 30 seconds.
  • the copper alloys having the compositions shown in 1 to 23 were melted in the air in a small electric furnace and melted into an ingot having a thickness of 50 mm, a length of 80 mm, and a width of 200 mm. Thereafter, the ingot was heated at 950 ° C. for 1 hour, then hot-rolled to a thickness of 12 mm, and immediately immersed in water and rapidly cooled. The hot rolling end temperature was 750 ° C. A hot rolling roll having a roll diameter of 450 mm ⁇ was used.
  • the hot rolling pass schedule is 5 pass finishing, 50 mm ⁇ 42 mm (16.0%) ⁇ 34 mm (19.0%) ⁇ 26 mm (23.5%) ⁇ 18 mm (30.8%) ⁇ 12 mm (33 .3%).
  • the processing rate is shown in parentheses. The average value of the processing rate per pass is 24.5%.
  • No. The copper contents of 1 to 23 had a hydrogen content of 0.5 to 1.0 mass ppm and an oxygen content of 4 to 18 mass ppm.
  • both sides of the hot rolled material were each chamfered by about 1 mm to remove the oxide film, and cold rolled.
  • recrystallization annealing was performed at 720 ° C. for 20 seconds.
  • the plate material after recrystallization annealing was water-cooled.
  • the average crystal grain size (measured in the rolling parallel direction by the cutting method defined in JISH0501) measured on the plate surface after recrystallization annealing was less than 20 ⁇ m.
  • aging annealing was performed under conditions of 500 ° C. ⁇ 2 hours.
  • finish cold rolling was performed at a processing rate of 50% to prepare a copper alloy strip having a thickness of 0.2 mm.
  • annealing was performed at 350 ° C. for 30 seconds for a short time.
  • the 24 pass schedule is a 10 pass finish, 50 mm ⁇ 46 mm (8.0%) ⁇ 41 mm (10.9%) ⁇ 36 mm (12.2%) ⁇ 31 mm (13.9%) ⁇ 26 mm (16.1) %) ⁇ 22 mm (15.4%) ⁇ 19 mm (13.6%) ⁇ 16 mm (15.8%) ⁇ 14 mm (12.5%) ⁇ 12 mm (14.3%).
  • the parentheses indicate the processing rate, and the average value of the processing rate per pass is 13.3%.
  • the temperature was raised again by inserting it into a furnace at 950 ° C., and after 10 passes, it was immersed in water and rapidly cooled.
  • the temperature of the hot rolled material immediately after the end of 10 passes was 810 ° C.
  • No. 24 the conditions of the processes other than hot rolling are No. 24. Same as 1-23.
  • the average crystal grain size measured on the plate surface after recrystallization annealing was less than 20 ⁇ m (the measurement method is the same as the method described above).
  • JIS No. 5 test specimens were collected so that the longitudinal direction was parallel and perpendicular to the rolling direction, and a tensile test was conducted based on the provisions of JISZ2241, and the parallel direction ( ⁇ ) and vertical direction ( The tensile strength, yield strength and elongation of ii) were measured.
  • ⁇ Bending limit width of 90-degree bending> Square specimens with different widths of 30 mm in length and 10 to 100 mm in width (widths of 10, 15, 20, 25 ... and up to 100 mm in width every 5 mm) from the test material (three for each width) was made. The direction of the 30 mm long side of the test piece was made parallel to the rolling direction of the specimen.
  • the V-shaped block 1 and the metal fitting 2 shown in FIG. 1 are set in a hydraulic press, the ratio R / t of the bending radius R to the plate thickness t is set to 0.5, and the bending line (the paper surface of FIG.
  • the direction perpendicular to the width direction of the test piece 3 was set as the width direction of the test piece 3 (Good Way bending), and bending was performed 90 degrees.
  • the width of the V-shaped block 1 and the metal fitting 2 was 120 mm.
  • the load of the hydraulic press was 1000 kgf (9800 N) per 10 mm width of the test piece.
  • the entire outer length of the bent portion of the test piece was observed with a 100 ⁇ optical microscope, and when no crack was observed in any of the three test pieces, it was determined to be acceptable, and the others were determined to be unacceptable. .
  • the maximum width of the test specimen that passed was taken as the bending limit width of the specimen.
  • ⁇ Bending limit width of contact bending> In the same manner as the 90-degree bending test, a rectangular shape with a width of 30 mm and a width of 5 to 50 mm (width 5, 10, 15, 20,. Test pieces (three for each width) were prepared. The direction of the 30 mm long side of the test piece was made parallel to the rolling direction. Using this test piece, the ratio R / t of the bending radius R to the plate thickness t is 2.0, the direction of the bending line is the width direction of the test piece (Good Way), and approximately 170 degrees according to the JISZ2248 specification. After bending to close, bending was performed.
  • solderability evaluation> Using a Sn-3Ag-0.5Cu solder, a solder wetting test by the meniscograph method was performed. An active flux is dip-coated on a test piece processed to a size of 10 mm ⁇ 30 mm, and then immersed in a solder bath having a bath temperature of 265 ° C. (immersion rate: 25 mm / sec, immersion depth: 12 mm, immersion time: 5 0.0 sec), and zero cross time (solder wetting time) was measured. A solder wetting time of less than 1.5 seconds was evaluated as pass ( ⁇ ), and 1.5 seconds or more was evaluated as reject (x).
  • the alloy composition defined in the embodiment of the present invention has a hot rolling pass schedule within a preferable range (average value of processing rate per pass is 20% or more, maximum No. with a processing rate of 25% or more).
  • the tensile limit, proof stress, elongation, electrical conductivity, bending limit width of 90-degree bending and contact bending satisfy the provisions of the embodiment of the present invention.
  • No. No. 15 has an excessive Fe content and low electrical conductivity and thermal conductivity.
  • No. No. 16 has insufficient Fe content, low tensile strength and yield strength, and low electrical conductivity and thermal conductivity.
  • No. No. 17 has an excessive P content and low electrical conductivity and thermal conductivity.
  • No. No. 18 has insufficient P content, and has low tensile strength and yield strength.
  • No. 19 has an excessive Zn content and low electrical conductivity and thermal conductivity.
  • No. No. 20 lacks Zn content and is inferior in solderability.
  • No. No. 21 has an excessive Sn content, low electrical conductivity and low thermal conductivity, and inferior bending limit width for 90-degree bending and contact bending.
  • the copper alloys having the compositions (2 types) shown in Table 3 were melted and melted into an ingot having a thickness of 200 mm, a width of 500 mm, and a length of 5000 mm. Thereafter, the ingot was heated at 950 ° C. for 1 hour, then hot-rolled to a thickness of 12 mm, and immediately immersed in water and rapidly cooled.
  • the hot rolling end temperature was 750 ° C.
  • board thickness becomes thin for every pass of hot rolling, and the temperature fall of a hot rolling material becomes large.
  • the length of the hot rolled material at the end of hot rolling is over 80 m, and the hot rolling end temperature is different at both ends, but the hot rolling end temperature is a temperature measured at the lower end of the hot rolling end temperature.
  • the difference in hot rolling end temperature at both ends was about 20 ° C.
  • the hot rolling pass schedule is 9 pass finishing, 200 mm ⁇ 177 mm (11.5%) ⁇ 156 mm (11.9%) ⁇ 123 mm (21.2%) ⁇ 98 mm (20.3%) ⁇ 72 mm (26 0.5%) ⁇ 46 mm (36.1%) ⁇ 27 mm (41.3%) ⁇ 18 mm (33.3%) ⁇ 12 mm (33.3%).
  • the processing rate is shown in parentheses. The average value of the processing rate per pass is 26.2%.
  • both sides of the hot rolled material were each chamfered by about 1 mm to remove the oxide film, and cold rolled.
  • Each of the two types of cold-rolled material is divided into three (Nos. 25 to 27, 28 to 30).
  • Nos. 25 and 28 were subjected to recrystallization annealing and water cooling at 720 ° C. for 20 seconds.
  • Nos. 26 and 29 were not subjected to recrystallization annealing.
  • Nos. 27 and 30 were subjected to recrystallization annealing and water cooling at 920 ° C. for 30 seconds.
  • the average crystal grain size (measured in the rolling parallel direction by the cutting method defined in JISH0501) of 25 to 30 plate surfaces was measured.
  • No. 1 was recrystallized under proper conditions.
  • No. 25 and No. 27 have an average grain size of 10 ⁇ m, and No.
  • No. 25 to 30 both have the alloy composition defined in the embodiment of the present invention.
  • Table 4 No. 1 was subjected to recrystallization annealing under appropriate conditions.
  • Nos. 25 and 28 satisfy the requirements of the embodiment of the present invention in terms of the bending limit width of tensile strength, proof stress, elongation, electrical conductivity, 90-degree bending, and contact bending.
  • no. Nos. 25 and 28, and the conditions for recrystallization annealing were inappropriate.
  • the bending limit width of 90-degree bending and contact bending does not satisfy the definition of the embodiment of the present invention.
  • the thickness of each plating layer was measured by the following method.
  • ⁇ Sn layer> First, the total thickness of Sn layer (total thickness of Sn layer including Cu—Sn alloy layer) is measured using a fluorescent X-ray film thickness meter (Seiko Electronics Co., Ltd .; model SFT3200). Thereafter, the substrate is immersed in a stripping solution containing p-nitrophenol and caustic soda as main components for 10 minutes, and after the Sn layer is stripped, the amount of Sn in the Cu—Sn alloy layer is measured using a fluorescent X-ray film thickness meter. The Sn layer thickness was calculated by subtracting the Sn amount in the Cu—Sn alloy layer from the Sn layer total thickness thus determined.
  • ⁇ Cu-Sn alloy layer> After dipping in a stripping solution containing p-nitrophenol and caustic soda as main components for 10 minutes and stripping the Sn layer, the amount of Sn in the Cu—Sn alloy layer is measured using a fluorescent X-ray film thickness meter. The thickness of the Cu—Sn alloy layer is the Sn equivalent thickness.
  • ⁇ Ni layer and Ni-Co layer> The thicknesses of the Ni layer and the Ni—Co alloy layer were measured using a fluorescent X-ray film thickness meter.
  • ⁇ Cu-Sn alloy layer exposure rate> The surface of each test material after plating (with a Cu-Sn alloy layer formed) was observed with a SEM (scanning electron microscope), and surface composition images ( ⁇ 200) obtained for any three fields of view were obtained. Binarization processing was performed. Thereafter, the average value of the material surface exposure rate of the Cu—Sn alloy coating layer in the three visual fields was measured by image analysis.
  • Test pieces were prepared from the respective test materials 31 to 43, and the corrosion resistance and bending workability were measured as follows.
  • ⁇ Corrosion resistance> The corrosion resistance of the test material after plating was evaluated by a salt spray test. Using 99.0% deionized water (manufactured by Wako Pure Chemical Industries, Ltd.) containing 5% by mass of NaCl, the test conditions were: test temperature: 35 ° C. ⁇ 1 ° C., spray solution PH: 6.5 to 7.2 Spray pressure: 0.098 ⁇ 0.01 MPa, sprayed for 72 hours, washed and dried. Subsequently, the surface of the test piece was observed with a stereomicroscope, and the presence or absence of corrosion (base metal corrosion and spot corrosion on the plating surface) was observed.
  • the plating layer thickness is different from that of the embodiment of the present invention.
  • base metal corrosion was observed in the salt spray test, or cracking occurred in the plating in the bending workability test.
  • No. In No. 41 the total thickness of the Cu—Sn alloy layer and the Sn layer was insufficient, and the base metal corrosion occurred.
  • No. in Nos. 42 and 43 the Cu—Sn alloy layer or the Ni layer was thick, and cracking occurred in the plating in the bending test.
  • the present invention includes the following aspects.
  • Aspect 1 Fe: 0.01 to 1.0 mass%, P: 0.01 to 0.20 mass%, Zn: 0.01 to 1.0 mass%, and Sn: 0.01 to 0.15 mass%, with the balance being Cu And inevitable impurities,
  • Tensile strength in the rolling parallel direction is 410 MPa or more
  • proof stress is 390 MPa or more
  • elongation is 5% or more
  • the tensile strength in the direction perpendicular to rolling is 420 MPa or more
  • the proof stress is 400 MPa or more
  • the elongation is 3% or more
  • Conductivity is 75% IACS or higher
  • a copper alloy plate for a heat-radiating component characterized in that a bending limit width is 20 mm or more when close
  • Aspect 2 Furthermore, it is described in the aspect 1 characterized by including one or more of Co, Al, Cr, Mg, Mn, Ca, Pb, Ti, Zr, Si, and Ag in a total of 0.3 mass% or less. Copper alloy plate for heat dissipation parts.
  • Aspect 3 Furthermore, it contains one or more of Co, Al, Cr, Mg, Mn, Ca, Pb, Ti, Zr, Si, and Ag, and less than 0.1 mass% of Ni in total of 0.3 mass% or less.
  • Aspect 4 4.
  • the copper alloy plate for heat dissipation component according to any one of aspects 1 to 3, wherein an Sn layer having a thickness of 0.2 to 5 ⁇ m is formed on the surface.
  • Aspect 5 A Cu—Sn alloy layer having a thickness of 3 ⁇ m or less and a Sn layer having a thickness of 0 to 5 ⁇ m are formed in this order on the surface, and the total thickness of the Cu—Sn alloy layer and the Sn layer is 0.2 ⁇ m or more.
  • a copper alloy plate for a heat-radiating component according to any one of aspects 1 to 3.
  • Aspect 7 Any one of aspects 1 to 3, wherein a plating layer made of any one of Ni, Co, Fe, Ni—Co alloy and Ni—Fe alloy having a thickness of 3 ⁇ m or less is formed on the surface. Copper alloy plate for heat dissipation parts.
  • Aspect 8 The copper alloy plate for a heat dissipation component according to aspect 5 or 6, wherein the Cu—Sn alloy layer is exposed on the outermost surface, and the exposed area ratio is 50% or less.
  • Aspect 9 A heat dissipating component comprising the copper alloy plate for heat dissipating component according to any one of aspects 1 to 8.
  • Aspect 10 A coil comprising a copper alloy plate for a heat dissipation component according to any one of aspects 1 to 8.

Abstract

The copper alloy plate for a heat dissipation component pertaining to the present invention includes 0.01-1.0 mass% Fe, 0.01-0.20 mass% P, 0.01-1.0 mass% Zn, and 0.01-0.15 mass% Sn, the remainder comprising Cu and unavoidable impurities. The copper alloy plate has a tensile strength of 410 MPa or greater, a yield strength of 390 MPa or greater, and an elongation of 5% or greater in the direction parallel to a rolling direction thereof, and has a tensile strength of 420 MPa or greater, a yield strength of 400 MPa or greater, and an elongation of 3% or greater in the direction perpendicular to the rolling direction thereof, the copper alloy plate has an electrical conductivity of 75% IACS or greater, the ratio R/t of the bend radius R and the plate thickness t thereof is set to 0.5, the bending limit width thereof is 70 mm or greater when the copper alloy plate is bent at 90 degrees at a bend line in the direction perpendicular to the rolling direction, and the bending limit width thereof is 20 mm or greater when the copper alloy plate is close-contact bent at a bend line in the direction perpendicular to the rolling direction.

Description

放熱部品用銅合金板Copper alloy plate for heat dissipation parts
 本開示は、パソコン、タブレット端末、スマートフォン、携帯電話、デジタルカメラ等の電子機器に搭載されているCPU、液晶等の熱を放散させる放熱部品に用いる銅合金板材に関する。 The present disclosure relates to a copper alloy plate material used for heat dissipation components that dissipate heat, such as CPUs and liquid crystals, mounted on electronic devices such as personal computers, tablet terminals, smartphones, mobile phones, and digital cameras.
 パソコン、タブレット端末、スマートフォン、携帯電話、デジタルカメラ、デジタルビデオカメラ等の電子機器には、搭載されているCPU、液晶、撮像素子等の電子部品から発生する熱を放散させる放熱部品が使用されている。放熱部品は、電子部品の過度の温度上昇を防止し、電子部品の熱暴走を防止して正常に機能させるためのものである。放熱部品として、熱伝導性の高い純銅、強度と耐食性に優れるステンレス鋼及び洋白、軽量のアルミニウム合金等の素材を加工したものが使用されている。これらの放熱部品は放熱機能だけでなく、電子機器に加わる外力から搭載された電子部品を保護する構造部材としての役割も担っている。 Electronic devices such as personal computers, tablet terminals, smartphones, mobile phones, digital cameras, and digital video cameras use heat dissipation components that dissipate heat generated from electronic components such as CPUs, liquid crystals, and image sensors. Yes. The heat dissipating component is for preventing an excessive temperature rise of the electronic component and preventing a thermal runaway of the electronic component to function normally. As heat-dissipating parts, processed copper or other materials such as pure copper with high thermal conductivity, stainless steel with excellent strength and corrosion resistance, and white and light aluminum alloys are used. These heat dissipating parts have not only a heat dissipating function but also a role as a structural member for protecting the electronic parts mounted from external force applied to the electronic equipment.
 電子機器に搭載される電子部品には高速化、高機能化が求められ、電子部品の高密度化が常に進展している。そのため、電子部品の発熱量は急速に増大している。また、電子機器の小型化、薄型化、軽量化の要求の下で、放熱部品にも薄肉化が要求されている。しかし、放熱部品を薄肉化した場合でも、放熱性能及び構造強度の維持が求められている。
 放熱部品の素材である板材は、ヘム曲げ(密着曲げ)、90°曲げ、絞り等の塑性加工を経て放熱部品に成形される。曲げ加工において、リードフレーム及び端子では曲げ部の幅(曲げ線の長さ)は数ミリ程度以下であるが、放熱部品においては曲げ部の幅が20mm程度以上の大きいものもある。曲げ幅が大きくなるほど、板材の曲げ加工性が急激に低下することが知られており、放熱部品用板材には端子及びリードフレーム用板材と比べて、厳しい曲げ加工性が要求される。
Electronic components mounted on electronic devices are required to have high speed and high functionality, and the density of electronic components is constantly increasing. For this reason, the amount of heat generated by electronic components is rapidly increasing. In addition, heat sink parts are also required to be thin in response to demands for smaller, thinner, and lighter electronic devices. However, even when the heat dissipation component is thinned, it is required to maintain heat dissipation performance and structural strength.
A plate material, which is a material of the heat dissipation component, is formed into a heat dissipation component through plastic working such as hem bending (adhesion bending), 90 ° bending, and drawing. In bending, the width of the bent portion (the length of the bend line) is about several millimeters or less in the lead frame and the terminal, but in some heat dissipation parts, the width of the bent portion is about 20 mm or more. It is known that the bending workability of the plate material is abruptly lowered as the bending width is increased, and the heat dissipation component plate material is required to have strict bending workability as compared with the terminal and lead frame plate material.
 放熱部品の素材として純銅は、熱伝導性には優れるものの強度が小さく、放熱部品を薄肉化することができない。ステンレス鋼及び洋白は熱伝導率が低く(2~3%IACS)、放熱量が大きい電子部品用放熱部品として適用できない。アルミニウム合金は、強度と熱伝導性がともに不十分である。一方、銅合金は、特許文献1,2に放熱部品用Fe-P系銅合金が開示されているが、曲げ部の幅の大きい曲げ加工における曲げ加工性については開示されていない。 Although pure copper is excellent in thermal conductivity as a material for the heat dissipation component, its strength is small and the heat dissipation component cannot be thinned. Stainless steel and Western white have low thermal conductivity (2 to 3% IACS) and cannot be applied as heat dissipation parts for electronic parts with large heat dissipation. Aluminum alloys have insufficient strength and thermal conductivity. On the other hand, as the copper alloy, Patent Documents 1 and 2 disclose Fe—P-based copper alloys for heat dissipation parts, but do not disclose bending workability in bending work with a wide bending part.
特開2003-277853号公報JP 2003-277853 A 特開2014-189816号公報JP 2014-189816 A
 本発明の実施形態は、高強度、曲げ部の幅の大きい曲げ加工における優れた曲げ加工性、及び放熱性を有する放熱部品用銅合金板を提供することを目的とする。 An object of the embodiment of the present invention is to provide a copper alloy plate for a heat radiating component having high strength, excellent bending workability in bending work with a large bent portion width, and heat dissipation.
 本発明の実施形態に係る放熱部品用銅合金板は、Fe:0.01~1.0mass%、P:0.01~0.20mass%、Zn:0.01~1.0mass%、及びSn:0.01~0.15mass%を含み、残部がCu及び不可避不純物からなり、圧延平行方向の引張強さが410MPa以上、耐力が390MPa以上、伸びが5%以上、圧延直角方向の引張強さが420MPa以上、耐力が400MPa以上、伸びが3%以上であり、導電率が75%IACS以上、曲げ半径Rと板厚tの比R/tを0.5とし曲げ線を圧延直角方向とした90度曲げを行ったときの曲げ加工限界幅が70mm以上、曲げ線を圧延直角方向とした密着曲げを行ったときの曲げ加工限界幅が20mm以上であることを特徴とする。
 上記銅合金は、さらに、Co、Al、Cr、Mg、Mn、Ca、Pb、Ni、Ti、Zr、Si及びAgの1種又は2種以上を合計で0.3mass%以下(Ni含有量は0.1mass%未満)、含有することができる。
 上記銅合金板の表面に、必要に応じてめっき等により表面被覆層を形成し、耐食性を向上させることができる。表面被覆層として、Sn層、Cu-Sn合金層、Ni、Co、Fe、Ni-Co合金及びNi-Fe合金のいずれか1種からなるめっき層が考えられる。
The copper alloy plate for a heat dissipation component according to the embodiment of the present invention includes Fe: 0.01 to 1.0 mass%, P: 0.01 to 0.20 mass%, Zn: 0.01 to 1.0 mass%, and Sn. : 0.01 to 0.15 mass%, the balance is Cu and inevitable impurities, the tensile strength in the rolling parallel direction is 410 MPa or more, the proof stress is 390 MPa or more, the elongation is 5% or more, the tensile strength in the direction perpendicular to the rolling Is 420 MPa or more, yield strength is 400 MPa or more, elongation is 3% or more, electrical conductivity is 75% IACS or more, the ratio R / t of the bending radius R to the sheet thickness t is 0.5, and the bending line is the direction perpendicular to the rolling direction. The bending limit width when performing 90-degree bending is 70 mm or more, and the bending limit width when performing close contact bending with the bending line being the direction perpendicular to the rolling is 20 mm or more.
The copper alloy further comprises one or more of Co, Al, Cr, Mg, Mn, Ca, Pb, Ni, Ti, Zr, Si, and Ag in a total of 0.3 mass% or less (Ni content is Less than 0.1 mass%).
If necessary, a surface coating layer can be formed on the surface of the copper alloy plate by plating or the like to improve the corrosion resistance. As the surface coating layer, a plating layer made of any one of Sn layer, Cu—Sn alloy layer, Ni, Co, Fe, Ni—Co alloy and Ni—Fe alloy can be considered.
 本発明の実施形態によれば、構造部材としての強度、特に変形及び落下衝撃性に耐える強度、複雑形状への加工に耐えうる曲げ加工性、及び半導体素子等からの熱に対する高放熱性を有する放熱部品用銅合金板を提供することができる。また、この銅合金板に前記表面被覆層を形成した場合、耐食性が向上し、過酷な環境下においても放熱部材としての性能が低下するのを防止できる。 According to the embodiment of the present invention, it has strength as a structural member, particularly strength that can withstand deformation and drop impact, bending workability that can withstand processing into a complex shape, and high heat dissipation against heat from semiconductor elements and the like. A copper alloy plate for a heat dissipation component can be provided. Moreover, when the said surface coating layer is formed in this copper alloy plate, corrosion resistance improves and it can prevent that the performance as a heat radiating member falls even in a severe environment.
実施例の90度曲げ試験の試験方法を説明する図である。It is a figure explaining the test method of the 90 degree | times bending test of an Example.
 以下、本発明の実施形態に係る放熱部品用銅合金板について、詳細に説明する。
<銅合金板の組成>
 銅合金の組成は、Fe:0.01~1.0mass%、P:0.01~0.20mass%、Zn:0.01~1.0mass%、及びSn:0.01~0.15mass%を含み、残部がCu及び不可避不純物からなる。この銅合金は、必要に応じて副成分として、Co、Al、Cr、Mg、Mn、Ca、Pb、Ni、Ti、Zr、Si及びAgの1種又は2種以上を合計で0.3mass%以下(0mass%を含まない)を含んでいてもよい(ただし、Niが含まれる場合、Ni含有量は0.1mass%未満(0mass%を含まない))。
Hereinafter, the copper alloy plate for heat dissipation components according to the embodiment of the present invention will be described in detail.
<Composition of copper alloy plate>
The composition of the copper alloy is Fe: 0.01-1.0 mass%, P: 0.01-0.20 mass%, Zn: 0.01-1.0 mass%, and Sn: 0.01-0.15 mass%. The balance consists of Cu and inevitable impurities. This copper alloy contains 0.3 mass% in total of one or more of Co, Al, Cr, Mg, Mn, Ca, Pb, Ni, Ti, Zr, Si and Ag as subcomponents as necessary. The following may be included (excluding 0 mass%) (however, when Ni is included, the Ni content is less than 0.1 mass% (not including 0 mass%)).
 Feは、後述するPとの金属間化合物を析出することで、銅合金を高強度化する。Fe含有量が0.01mass%未満では、Fe-P化合物の析出量が少なく、所望の強度が得られず、一方、Fe含有量が1.0mass%を超えると、所望の導電率が得られない。従って、Fe含有量は0.01~1.0mass%とする。Fe含有量の下限は、好ましくは0.03mass%、より好ましくは0.05mass%であり、Fe含有量の上限は、好ましくは0.8mass%、より好ましくは0.6mass%である。 Fe increases the strength of the copper alloy by precipitating an intermetallic compound with P described later. When the Fe content is less than 0.01 mass%, the precipitation amount of the Fe—P compound is small and the desired strength cannot be obtained. On the other hand, when the Fe content exceeds 1.0 mass%, the desired conductivity is obtained. Absent. Therefore, the Fe content is set to 0.01 to 1.0 mass%. The lower limit of the Fe content is preferably 0.03 mass%, more preferably 0.05 mass%, and the upper limit of the Fe content is preferably 0.8 mass%, more preferably 0.6 mass%.
 Pは、Feとの金属間化合物を形成し、Cuの母相に析出して、強度を向上させる。P含有量が0.01mass%未満では、Fe-P化合物の析出が十分でなく、所望の強度が得られない。一方、P含有量が0.20mass%を超えると、所望の導電率が得られない。従って、P含有量は0.01~0.20mass%とする。P含有量の下限は、好ましくは0.03mass%、より好ましくは0.05mass%であり、P含有量の上限は、好ましくは0.17mass%、より好ましくは0.15mass%である。 P forms an intermetallic compound with Fe and precipitates in the parent phase of Cu to improve the strength. When the P content is less than 0.01 mass%, the Fe—P compound is not sufficiently precipitated, and the desired strength cannot be obtained. On the other hand, if the P content exceeds 0.20 mass%, the desired conductivity cannot be obtained. Therefore, the P content is set to 0.01 to 0.20 mass%. The lower limit of the P content is preferably 0.03 mass%, more preferably 0.05 mass%, and the upper limit of the P content is preferably 0.17 mass%, more preferably 0.15 mass%.
 Znは、はんだの耐熱剥離性を向上させる働きがあり、部品組み立て時及び経時後のはんだ接合信頼性を維持する役割がある。しかし、Znの含有量が0.01mass%未満では、はんだの耐熱剥離性を満足させるには不十分であり、1.0mass%を超えると、銅合金の導電率及び熱伝導率を劣化させる。Zn含有量の下限は、好ましくは0.03mass%、より好ましくは0.05mass%であり、Zn含有量の上限は、好ましくは0.8mass%、より好ましくは0.6mass%である。 Zn has the function of improving the heat-resistant peelability of the solder and has the role of maintaining the solder joint reliability during assembly and after aging. However, if the Zn content is less than 0.01 mass%, it is insufficient for satisfying the heat-resistant peelability of the solder, and if it exceeds 1.0 mass%, the conductivity and thermal conductivity of the copper alloy are deteriorated. The lower limit of the Zn content is preferably 0.03 mass%, more preferably 0.05 mass%, and the upper limit of the Zn content is preferably 0.8 mass%, more preferably 0.6 mass%.
 Snは、銅合金の強度の向上に寄与するが、Snの含有量が0.01mass%未満では、十分な強度が得られない。また、Snの含有量が0.15mass%を超えると、銅合金の導電率及び熱伝導率を劣化させてしまう。従って、Snの含有量は0.01~0.15mass%とする。Sn含有量の下限は、好ましくは0.03mass%、より好ましくは0.05mass%であり、Sn含有量の上限は、好ましくは0.12mass%、より好ましくは0.10mass%である。 Sn contributes to improving the strength of the copper alloy, but if the Sn content is less than 0.01 mass%, sufficient strength cannot be obtained. Moreover, when content of Sn exceeds 0.15 mass%, the electrical conductivity and thermal conductivity of a copper alloy will be deteriorated. Therefore, the Sn content is set to 0.01 to 0.15 mass%. The lower limit of the Sn content is preferably 0.03 mass%, more preferably 0.05 mass%, and the upper limit of the Sn content is preferably 0.12 mass%, more preferably 0.10 mass%.
 また、副成分として必要に応じて添加されるCo、Al、Cr、Mg、Mn、Ca、Pb、Ni、Ti、Zr、Si及びAgは、銅合金の強度を向上させ、さらに製造時の熱間圧延性を向上させる作用がある。しかし、上記副成分の1種又は2種以上の合計含有量が0.3mass%を超えると、銅合金の強度は向上するものの、導電率及び熱伝導性が低下する。従って、上記副成分の合計含有量は、0.3mass%以下(0mass%を含まない)とする。ただし、Niが含まれる場合、Ni含有量は0.1mass%未満(0mass%を含まない)とする。 Further, Co, Al, Cr, Mg, Mn, Ca, Pb, Ni, Ti, Zr, Si, and Ag, which are added as subcomponents as necessary, improve the strength of the copper alloy and further increase the heat during production. It has the effect of improving the hot rolling property. However, when the total content of one or more of the subcomponents exceeds 0.3 mass%, the strength of the copper alloy is improved, but the electrical conductivity and thermal conductivity are lowered. Therefore, the total content of the subcomponents is set to 0.3 mass% or less (not including 0 mass%). However, when Ni is contained, the Ni content is less than 0.1 mass% (excluding 0 mass%).
<銅合金板の特性>
 放熱部品には、構造部材としての強度、特に変形及び落下衝撃に耐える強度が必要とされる。銅合金板の圧延平行方向の引張強さが410MPa以上、耐力が390MPa以上、かつ圧延直角方向の引張強さが420MPa以上、耐力が400MPa以上であれば、放熱部材を薄肉化しても、構造部材として必要な強度が確保できる。また、銅合金板の圧延平行方向の伸びが5%以上、かつ圧延直角方向の伸びが3%以上であれば、銅合金板から放熱部材を曲げ加工又は絞り加工で成形する場合の成形加工性に特に問題が生じない。なお、耐力は、引張試験において0.2%の永久伸びが生じたときの引張強さである。
<Characteristics of copper alloy sheet>
The heat dissipating component is required to have strength as a structural member, particularly strength that can withstand deformation and drop impact. If the tensile strength in the rolling parallel direction of the copper alloy plate is 410 MPa or more, the proof stress is 390 MPa or more, the tensile strength in the direction perpendicular to the rolling is 420 MPa or more, and the proof strength is 400 MPa or more, even if the heat dissipation member is thinned, the structural member The necessary strength can be secured. Further, if the elongation in the rolling parallel direction of the copper alloy plate is 5% or more and the elongation in the direction perpendicular to the rolling is 3% or more, the formability when the heat radiating member is formed from the copper alloy plate by bending or drawing. There is no particular problem. The proof stress is the tensile strength when 0.2% permanent elongation occurs in the tensile test.
 銅合金板を素材として放熱部材を成形する場合、一般に銅合金板には優れた曲げ加工性が必要とされる。銅合金板を、曲げ半径Rと板厚tの比R/tを0.5とし曲げ線を圧延直角方向とした90度曲げを行ったときの曲げ加工限界幅が70mm以上、曲げ線を圧延直角方向とした密着曲げを行ったときの曲げ加工限界幅が20mm以上であれば、放熱部品の製造に支障が生じない。銅合金板の曲げ加工限界幅が上記の値に達しない場合、放熱部品を製造するプロセスで曲げ加工部にクラック又は破断が発生し、複雑形状への成形が困難となる。 When forming a heat dissipation member using a copper alloy plate as a material, the copper alloy plate generally requires excellent bending workability. When a copper alloy sheet is bent 90 degrees with a ratio R / t of the bending radius R to the sheet thickness t being 0.5 and the bending line being perpendicular to the rolling direction, the bending limit width is 70 mm or more, and the bending line is rolled. If the bending limit width when performing the close contact bending in the right angle direction is 20 mm or more, there is no problem in the manufacture of the heat dissipation component. When the bending limit width of the copper alloy plate does not reach the above value, cracks or breaks occur in the bent portion in the process of manufacturing the heat dissipation component, and it becomes difficult to form a complicated shape.
 半導体素子等から発生する熱を吸収し、外部に放散させるには、放熱部品用銅合金板の導電率が75%IACSを超え、熱伝導率が300W/m・Kを超えることが好ましい。なお、熱伝導率は、Wiedemann-Franz則より、導電率から換算でき、導電率が75%IACS以上であれば、熱伝導率は300W/m・K以上となる。 In order to absorb the heat generated from the semiconductor element and dissipate it to the outside, it is preferable that the conductivity of the copper alloy plate for the heat radiating component exceeds 75% IACS and the thermal conductivity exceeds 300 W / m · K. The thermal conductivity can be converted from the electrical conductivity according to the Wiedemann-Franz rule. If the electrical conductivity is 75% IACS or higher, the thermal conductivity is 300 W / m · K or higher.
<銅合金板の製造方法>
 本発明の実施形態に係る銅合金板は、溶解鋳造、均質化処理、熱間圧延、冷間圧延、再結晶焼鈍、冷間圧延、時効焼鈍、及び冷間圧延の工程で製造することができる。
 適切な溶解鋳造及び熱間圧延の条件は下記のとおりであり、これにより、粗大なFe、Fe-P、Fe-P-O等の析出を防止できる。
 溶解鋳造では、1200℃以上の銅合金溶湯にFeを添加して溶解し、以後も溶湯温度を1200℃以上に保って鋳造する。鋳塊の冷却は、凝固時(固液共存時)及び凝固後とも、1℃/秒以上の冷却速度で行う。そのためには、連続鋳造又は半連続鋳造の場合、鋳型内の一次冷却、鋳型直下の二次冷却を十分効かせる必要がある。
<Method for producing copper alloy plate>
The copper alloy sheet according to the embodiment of the present invention can be manufactured by the steps of melt casting, homogenization treatment, hot rolling, cold rolling, recrystallization annealing, cold rolling, age annealing, and cold rolling. .
Appropriate conditions for melt casting and hot rolling are as follows, whereby precipitation of coarse Fe, Fe—P, Fe—PO, etc. can be prevented.
In the melt casting, Fe is added to a molten copper alloy at 1200 ° C. or higher to melt, and thereafter, the molten metal temperature is kept at 1200 ° C. or higher for casting. The ingot is cooled at a cooling rate of 1 ° C./second or more during solidification (when solid-liquid coexists) and after solidification. For that purpose, in the case of continuous casting or semi-continuous casting, it is necessary to sufficiently effect the primary cooling in the mold and the secondary cooling directly under the mold.
 均質化処理では、鋳塊を900~1000℃に0.5~5時間加熱し、その温度で熱間圧延を開始する。熱間圧延終了温度は650℃以上、望ましくは700℃以上とし、熱間圧延終了後直ちに、20℃/秒以上の冷却速度で急冷(好ましくは水冷)する。
 熱間圧延の1パスあたりの加工率は、熱延材のみならず、最終製品の靭性、組織の均質性、緻密化に影響する。本発明の実施形態に係る放熱部品用銅合金板を製造するには、熱間圧延の1パスあたりの加工率の平均値を20%以上とし、最大加工率を25%以上とすることが好ましい。
 その理由は以下に記載するとおりである。
In the homogenization treatment, the ingot is heated to 900 to 1000 ° C. for 0.5 to 5 hours, and hot rolling is started at that temperature. The hot rolling end temperature is set to 650 ° C. or higher, desirably 700 ° C. or higher, and immediately after the hot rolling is finished, rapid cooling (preferably water cooling) is performed at a cooling rate of 20 ° C./second or higher.
The processing rate per pass of hot rolling affects not only hot-rolled materials but also the toughness of the final product, the homogeneity of the structure, and the densification. In order to manufacture the copper alloy plate for heat dissipation component according to the embodiment of the present invention, it is preferable that the average value of the processing rate per pass of hot rolling is 20% or more and the maximum processing rate is 25% or more. .
The reason is as described below.
 圧延ロールによる圧下が加わったとき、圧延出側鋳塊の表面から一定の深さhcの領域には圧延方向に圧縮応力が、深さhcから鋳塊厚さの中央部の領域には圧延方向に圧縮応力が作用することが知られている。圧縮応力が作用する領域においては、表面からの深さが浅いほど圧縮応力が大きく、引張り応力が作用する領域においては、鋳塊厚さの中心に近いほど引張り応力が大きくなる。
 圧縮応力から引張り応力に変わる深さhcは、圧延ロール径、圧下量(圧延ロール入り側の厚さ-圧延ロール出側の板厚)等により計算で求めることができる(O.G.Muzalevskii:Stal in English,June(1970),p.455)。この計算式によれば、圧延ロール径が一定の場合、圧下率が大きくなるほどhcは大きくなる。すなわち、鋳塊内部の引張り応力の作用する領域が小さくなる。
When rolling by a rolling roll is applied, a compressive stress is applied in the rolling direction in a region having a constant depth hc from the surface of the rolling ingot, and a rolling direction is applied in the central region of the ingot thickness from the depth hc. It is known that compressive stress acts on the surface. In the region where the compressive stress acts, the compressive stress increases as the depth from the surface becomes shallower. In the region where the tensile stress acts, the tensile stress increases as the center of the ingot thickness is closer.
The depth hc changing from the compressive stress to the tensile stress can be obtained by calculation based on the rolling roll diameter, the reduction amount (thickness on the rolling roll entering side−thickness on the rolling roll exit side), etc. (OG Muzalevskii: Stal in English, June (1970), p.455). According to this calculation formula, when the rolling roll diameter is constant, hc increases as the rolling reduction increases. That is, the region where the tensile stress inside the ingot acts is reduced.
 鋳塊には引け巣又はガスによるミクロキャビティ、合金元素のミクロ偏析及び介在物等の欠陥が存在し、これらの欠陥は鋳塊厚さの中央部に近いほど多くなる。これらの欠陥をゼロにすることは工業的には難しい。
 均質化処理のために鋳塊を加熱すると、合金元素の拡散によりミクロ偏析は解消されるが、鋳塊内部のミクロキャビティは解消されることがない。むしろ、均質化処理により、カーケンダルボイドが形成され、鋳塊に固溶していたガス成分が介在物-母材界面又は粒界へ析出し、このため鋳塊内部のミクロキャビティは増加する傾向にある。
The ingot has defects such as a microcavity due to a shrinkage cavity or gas, microsegregation of alloy elements, and inclusions, and these defects increase as the center of the ingot thickness becomes closer. It is industrially difficult to make these defects zero.
When the ingot is heated for homogenization, microsegregation is eliminated by diffusion of alloy elements, but microcavities inside the ingot are not eliminated. Rather, by the homogenization treatment, Kirkendall voids are formed, and the gas components that have been dissolved in the ingot tend to precipitate at the inclusion-base metal interface or grain boundary, which tends to increase the microcavities inside the ingot. It is in.
 このように、鋳塊内部にミクロキャビティ及び介在物が存在するから、熱間圧延材の内部品質を高くするには、熱間圧延の1パスあたりの加工率を高くすることが好ましい。このため、熱間圧延の1パスあたりの加工率は、平均で20%以上とし、最大加工率は25%以上とすることが好ましい。より好ましくは、熱間圧延の1パスあたりの加工率の平均値は25%以上、最大加工率は30%以上である。なお、実操業においては、熱間圧延の1パスあたりの加工率は、平均で35%以下、最大加工率は45%以下とすることが好ましい。 Thus, since microcavities and inclusions are present inside the ingot, in order to increase the internal quality of the hot rolled material, it is preferable to increase the processing rate per pass of hot rolling. For this reason, it is preferable that the processing rate per pass of hot rolling is 20% or more on average and the maximum processing rate is 25% or more. More preferably, the average value of the processing rate per pass of hot rolling is 25% or more, and the maximum processing rate is 30% or more. In actual operation, it is preferable that the processing rate per pass of hot rolling is 35% or less on average and the maximum processing rate is 45% or less.
 また、熱間圧延の1パス当たりの加工率を大きくすることにより、熱延パス回数を減らすことができ、より高温で熱間圧延を終了できる。このため、より高温からの急冷(焼き入れ)が可能となり、熱延材における合金元素の固溶量を増やすことができる。その結果、続いて行われる冷間圧延及び熱処理後の銅合金板(製品)の組織の均一性を改善し、良好な曲げ加工性、絞り加工性及び張出し加工性を得ることができる。 Also, by increasing the processing rate per pass of hot rolling, the number of hot rolling passes can be reduced, and hot rolling can be completed at a higher temperature. For this reason, rapid cooling (quenching) from a higher temperature is possible, and the amount of alloy elements in the hot rolled material can be increased. As a result, it is possible to improve the uniformity of the structure of the copper alloy sheet (product) after the subsequent cold rolling and heat treatment, and obtain good bending workability, drawing workability and stretch workability.
 一方、熱間圧延の初期に、鋳塊に大きな圧下を加えると、鋳塊の端面近傍の圧延面において割れが発生することがある。このため、実操業では、熱間圧延の1パス目から3パス目くらいまでは、一般的に軽加工率の圧延が行われている。
 しかし、熱間圧延の初期に軽加工率の圧延パスを続けると、圧延パスごとに、前記hcから鋳塊中央までの領域において引っ張り応力が作用し、鋳塊内部のミクロキャビティ又は介在物-母材界面の隙間が拡大し、微細な割れが発生する。その後、1パスあたりの加工率を大きくしても、いったん発生した割れの圧着は遅れ、熱延材の内部品質が低下する。このような熱延材に冷間圧延及び熱処理を行って製造した銅合金板は、曲げRの小さい広幅曲げ、ヘム曲げ、絞り加工及び張り出し加工などの厳しい加工が難しくなる。
On the other hand, if a large reduction is applied to the ingot at the initial stage of hot rolling, cracks may occur on the rolled surface near the end face of the ingot. For this reason, in actual operation, rolling at a light working rate is generally performed from the first pass to the third pass of hot rolling.
However, if a rolling pass with a light working rate is continued at the initial stage of hot rolling, a tensile stress acts in the region from hc to the center of the ingot for each rolling pass, and the microcavity or inclusion-mother inside the ingot. The gap at the material interface expands and fine cracks occur. After that, even if the processing rate per pass is increased, the crimping of the crack once generated is delayed, and the internal quality of the hot rolled material is deteriorated. Copper alloy sheets produced by cold rolling and heat treatment of such hot-rolled materials are difficult to be subjected to severe processing such as wide bending, hem bending, drawing and overhanging with a small bending radius.
 従って、本発明の実施形態に係る銅合金板を製造するには、熱間圧延の初期、具体的には1パス目から3パス目の平均の加工率を10%以上、35%以下とするのが好ましい。1パス目から3パス目の平均の加工率はより好ましくは12%以上、30%以下とし、さらに好ましくは15%以上、25%以下とする。
 熱間圧延の初期の加工率を大きくすると、鋳塊の熱延割れが発生しやすくなるが、これを避けるには、1パス目開始前、エッジャにより鋳塊端面を圧延することが好ましい。エッジャを活用することにより、圧延初期の加工率を大きくし、圧延初期の内部割れ発生を防止、あるいは軽減することが可能になる。
 熱間圧延後、両面を面削し、適宜の圧延率で冷間圧延を行う。
Therefore, in order to manufacture the copper alloy sheet according to the embodiment of the present invention, the average processing rate at the initial stage of hot rolling, specifically, the first to third passes is set to 10% or more and 35% or less. Is preferred. The average processing rate from the first pass to the third pass is more preferably 12% or more and 30% or less, and further preferably 15% or more and 25% or less.
Increasing the initial hot rolling ratio tends to cause hot rolling cracks in the ingot. To avoid this, it is preferable to roll the ingot end face with an edger before starting the first pass. By utilizing the edger, it is possible to increase the processing rate at the initial stage of rolling and to prevent or reduce the occurrence of internal cracks at the initial stage of rolling.
After hot rolling, both sides are chamfered and cold rolling is performed at an appropriate rolling rate.
 再結晶焼鈍は、連続焼鈍炉において600℃~850℃の温度範囲に5~30秒加熱し、再結晶焼鈍後の平均結晶粒径が20μm未満となるようにする。この再結晶焼鈍は、銅合金板(製品)の伸び及び曲げ加工性を改善するために行われる。再結晶焼鈍の温度が600℃未満又は保持時間が5秒未満では、再結晶が不十分となり、銅合金板(製品)の曲げ加工性が劣化する。一方、再結晶焼鈍の温度が850℃を超え又は保持時間が30秒を超えると、再結晶粒が粗大化し(平均結晶粒径が20μm以上に粗大化)、銅合金板(製品)において十分な強度が得られない。さらに、広幅の曲げにおいて曲げ加工性が劣る。 In recrystallization annealing, heating is performed in a temperature range of 600 ° C. to 850 ° C. for 5 to 30 seconds in a continuous annealing furnace so that the average crystal grain size after recrystallization annealing is less than 20 μm. This recrystallization annealing is performed in order to improve the elongation and bending workability of the copper alloy sheet (product). When the recrystallization annealing temperature is less than 600 ° C. or the holding time is less than 5 seconds, the recrystallization becomes insufficient, and the bending workability of the copper alloy sheet (product) deteriorates. On the other hand, when the recrystallization annealing temperature exceeds 850 ° C. or the holding time exceeds 30 seconds, the recrystallized grains become coarse (the average crystal grain size becomes coarser to 20 μm or more), which is sufficient for a copper alloy sheet (product). Strength cannot be obtained. Furthermore, bending workability is inferior in wide bending.
 再結晶焼鈍後、必要に応じて冷間圧延を行う。この冷間圧延を行う場合、その加工率は、後述する仕上げ冷間圧延において所定の加工率及び製品板厚が得られるように、0~40%の範囲内で適宜設定すればよい。
 続いて時効焼鈍を行う。時効焼鈍の条件は、400~575℃で1~10時間の範囲内であることが好ましい。時効処理の温度が400℃未満又は保持時間が1時間未満では、析出が不十分であり、銅合金板(製品)の導電率が向上しない。一方、時効処理の温度が575℃を超え又は保持時間が10時間を超えると、析出物が粗大化し、銅合金板(製品)で十分な強度が得られない。
After recrystallization annealing, cold rolling is performed as necessary. When this cold rolling is performed, the processing rate may be appropriately set within a range of 0 to 40% so that a predetermined processing rate and product sheet thickness can be obtained in finish cold rolling described later.
Subsequently, aging annealing is performed. The conditions for aging annealing are preferably 400 to 575 ° C. and 1 to 10 hours. When the temperature of the aging treatment is less than 400 ° C. or the holding time is less than 1 hour, precipitation is insufficient and the conductivity of the copper alloy sheet (product) is not improved. On the other hand, when the temperature of the aging treatment exceeds 575 ° C. or the holding time exceeds 10 hours, the precipitates become coarse, and sufficient strength cannot be obtained with the copper alloy plate (product).
 時効焼鈍後、目標板厚まで仕上げの冷間圧延を行う。圧延率は目標とする製品強度に応じて、30~85%に設定する。
 仕上げ冷間圧延後、必要に応じて短時間焼鈍を行う。この短時間焼鈍の条件は、250~450℃で3~40秒間とする。この条件で短時間焼鈍を行うことにより、仕上げ冷間圧延で導入された歪みが除去される。また、この条件であれば材料の軟化がなく強度の低下が少ない。
After aging annealing, finish cold rolling is performed to the target thickness. The rolling rate is set to 30 to 85% according to the target product strength.
After finish cold rolling, annealing is performed for a short time if necessary. The conditions for this short time annealing are 250 to 450 ° C. and 3 to 40 seconds. By performing the annealing for a short time under these conditions, the distortion introduced in the finish cold rolling is removed. Further, under these conditions, there is no softening of the material and there is little decrease in strength.
<銅合金板の表面被覆層>
 銅合金板にめっき等により表面被覆層を形成することにより、放熱部品の耐食性が向上し、過酷な環境下においても放熱部品としての性能が低下するのを防止できる。
 銅合金板の表面に形成する表面被覆層として、Sn層が好ましい。Sn層の厚さが0.2μm未満では、耐食性の改善が十分ではなく、5μmを超えると生産性が低下し、コストアップとなる。従って、Sn層の厚さは0.2~5μmとする。Sn層は、Sn金属及びSn合金を含む。
<Surface coating layer of copper alloy plate>
By forming the surface coating layer on the copper alloy plate by plating or the like, the corrosion resistance of the heat dissipating component is improved, and the performance as the heat dissipating component can be prevented from being deteriorated even in a severe environment.
As the surface coating layer formed on the surface of the copper alloy plate, an Sn layer is preferable. If the thickness of the Sn layer is less than 0.2 μm, the corrosion resistance is not sufficiently improved, and if it exceeds 5 μm, the productivity is lowered and the cost is increased. Therefore, the thickness of the Sn layer is set to 0.2 to 5 μm. The Sn layer includes Sn metal and Sn alloy.
 表面被覆層として、Sn層の下に、Cu-Sn合金層を形成することもできる。Cu-Sn合金層の厚さが3μmを超えると、曲げ加工性等が低下するため、Cu-Sn合金層の厚さは3μm以下とする。また、Cu-Sn合金層の厚さは0.1μm以上とするのが好ましい。この場合、Sn層の厚さは0~5μm(Sn層なしの場合を含む)とし、Cu-Sn合金層とSn層の合計厚さを0.2μm以上とする。当該合計厚さの上限は8μmとする。
 なお、本明細書において「Cu-Sn合金層の厚さ」は、蛍光X線膜厚計を用いて、Cu-Sn合金層中のSn量を測定して得られたSn換算厚さのことである。
As the surface coating layer, a Cu—Sn alloy layer can be formed under the Sn layer. When the thickness of the Cu—Sn alloy layer exceeds 3 μm, the bending workability and the like deteriorate, so the thickness of the Cu—Sn alloy layer is set to 3 μm or less. The thickness of the Cu—Sn alloy layer is preferably 0.1 μm or more. In this case, the thickness of the Sn layer is 0 to 5 μm (including the case without the Sn layer), and the total thickness of the Cu—Sn alloy layer and the Sn layer is 0.2 μm or more. The upper limit of the total thickness is 8 μm.
In this specification, “the thickness of the Cu—Sn alloy layer” means the Sn equivalent thickness obtained by measuring the amount of Sn in the Cu—Sn alloy layer using a fluorescent X-ray film thickness meter. It is.
 前記Cu-Sn合金層は、表面に露出していてもよい(特開2006-183068号公報、特開2013-185193号公報等参照)。Cu-Sn合金層は、Hv:200~400と硬いため、ハンドリングによるキズ抑制効果を有する。Cu-Sn合金層の表面露出率(材料表面の単位面積あたりに露出するCu-Sn合金層の表面積に100を掛けた値)は、100%であってもよく、0%であってもよいが、好ましくは50%以下である。なお、Cu-Sn合金層の上にSn層がない場合(Sn層の厚さがゼロ)、Cu-Sn合金層の表面露出率は100%である。Cu-Sn合金層は露出していない場合、Cu-Sn合金層の表面露出率は0%である。 The Cu—Sn alloy layer may be exposed on the surface (see JP-A-2006-183068, JP-A-2013-185193, etc.). Since the Cu—Sn alloy layer is hard as Hv: 200 to 400, it has a scratch suppressing effect due to handling. The surface exposure rate of the Cu—Sn alloy layer (the value obtained by multiplying the surface area of the Cu—Sn alloy layer exposed per unit area of the material surface by 100) may be 100% or 0%. However, it is preferably 50% or less. Note that when there is no Sn layer on the Cu—Sn alloy layer (the thickness of the Sn layer is zero), the surface exposure rate of the Cu—Sn alloy layer is 100%. When the Cu—Sn alloy layer is not exposed, the surface exposure rate of the Cu—Sn alloy layer is 0%.
 Cu-Sn合金層の下に、下地層としてさらにNi、Co、Fe、Ni-Co合金及びNi-Fe合金のいずれか1種からなるめっき層を形成することができる。このめっき層の厚さが3μmを超えると、曲げ加工性等が低下するため、その厚さは3μm以下とする。このめっき層の厚さは0.1μm以上であることが好ましい。 Under the Cu—Sn alloy layer, a plating layer made of any one of Ni, Co, Fe, Ni—Co alloy and Ni—Fe alloy can be further formed as an underlayer. When the thickness of the plating layer exceeds 3 μm, bending workability and the like are deteriorated, so the thickness is set to 3 μm or less. The thickness of this plating layer is preferably 0.1 μm or more.
 また、表面被覆層として、Ni、Co、Fe、Ni-Co合金及びNi-Fe合金のいずれか1種からなるめっき層のみ(Cu-Sn合金層又は/及びSn層を含まない)を形成することができる。このめっき層の厚さは、曲げ加工性等の劣化を防止するとの観点から、いずれも3μm以下とする。このめっき層の厚さは0.1μm以上であることが好ましい。
 上記各表面被覆層は、電気めっき、リフローめっき、無電解めっき、スパッタ等により形成することができる。Cu-Sn合金層は、母材である銅合金板にSnめっきをし、又は銅合金母材にCuめっき及びSnめっきをした後リフロー処理等を行い、CuとSnを反応させて形成することができる。リフロー処理の加熱条件は、230~600℃×5~30秒とする。
Further, as the surface coating layer, only a plating layer made of any one of Ni, Co, Fe, Ni—Co alloy and Ni—Fe alloy (not including the Cu—Sn alloy layer and / or the Sn layer) is formed. be able to. The thickness of this plating layer is 3 μm or less from the viewpoint of preventing deterioration of bending workability and the like. The thickness of this plating layer is preferably 0.1 μm or more.
Each of the surface coating layers can be formed by electroplating, reflow plating, electroless plating, sputtering, or the like. The Cu-Sn alloy layer is formed by Sn plating on a copper alloy plate as a base material, or by performing Cu and Sn plating on a copper alloy base material and then performing a reflow process, etc., and reacting Cu and Sn. Can do. The heating conditions for the reflow process are 230 to 600 ° C. × 5 to 30 seconds.
 表1のNo.1~23に示す組成の銅合金を小型電気炉で大気中にて溶解し、厚さ50mm、長さ80mm、幅200mmの鋳塊に溶製した。その後、この鋳塊を950℃で1時間加熱した後、厚さ12mmまで熱間圧延し、直ちに水中に浸漬して急冷した。熱間圧延終了温度は750℃であった。熱間圧延ロールには、ロール径:450mmφのものを用いた。熱間圧延のパススケジュールは、5パス仕上げとし、50mm→42mm(16.0%)→34mm(19.0%)→26mm(23.5%)→18mm(30.8%)→12mm(33.3%)とした。カッコ内は加工率を示す。1パスあたりの加工率の平均値は24.5%である。なお、No.1~23の銅合金の水素含有量は0.5~1.0質量ppm、酸素含有量は4~18質量ppmであった。 No. in Table 1. The copper alloys having the compositions shown in 1 to 23 were melted in the air in a small electric furnace and melted into an ingot having a thickness of 50 mm, a length of 80 mm, and a width of 200 mm. Thereafter, the ingot was heated at 950 ° C. for 1 hour, then hot-rolled to a thickness of 12 mm, and immediately immersed in water and rapidly cooled. The hot rolling end temperature was 750 ° C. A hot rolling roll having a roll diameter of 450 mmφ was used. The hot rolling pass schedule is 5 pass finishing, 50 mm → 42 mm (16.0%) → 34 mm (19.0%) → 26 mm (23.5%) → 18 mm (30.8%) → 12 mm (33 .3%). The processing rate is shown in parentheses. The average value of the processing rate per pass is 24.5%. In addition, No. The copper contents of 1 to 23 had a hydrogen content of 0.5 to 1.0 mass ppm and an oxygen content of 4 to 18 mass ppm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次に、熱間圧延材の両面をそれぞれ約1mm面削して酸化膜を除去し、冷間圧延を行った。
 続いて、720℃×20秒間の再結晶焼鈍を行った。再結晶焼鈍後の板材は水冷した。なお、再結晶焼鈍後に板表面で測定した平均結晶粒径(JISH0501に規定された切断法で圧延平行方向に測定)は、いずれも20μm未満であった。
 次いで加工率35%の冷間圧延を行った後、500℃×2時間の条件で時効焼鈍を行った。続いて、希硫酸液で表面酸化物を除去した後、加工率50%で仕上げ冷間圧延を行い、厚さ0.2mmの銅合金条を作製した。仕上げ冷間圧延後、350℃で30秒間の短時間焼鈍を行った。
Next, both sides of the hot rolled material were each chamfered by about 1 mm to remove the oxide film, and cold rolled.
Subsequently, recrystallization annealing was performed at 720 ° C. for 20 seconds. The plate material after recrystallization annealing was water-cooled. The average crystal grain size (measured in the rolling parallel direction by the cutting method defined in JISH0501) measured on the plate surface after recrystallization annealing was less than 20 μm.
Next, after cold rolling with a processing rate of 35%, aging annealing was performed under conditions of 500 ° C. × 2 hours. Subsequently, the surface oxide was removed with a dilute sulfuric acid solution, and then finish cold rolling was performed at a processing rate of 50% to prepare a copper alloy strip having a thickness of 0.2 mm. After the finish cold rolling, annealing was performed at 350 ° C. for 30 seconds for a short time.
 また、No.1と同じ組成の銅合金(No.24)について、熱間圧延を異なるパススケジュールで実施した。
 No.24のパススケジュールは、10パス仕上げとし、50mm→46mm(8.0%)→41mm(10.9%)→36mm(12.2%)→31mm(13.9%)→26mm(16.1%)→22mm(15.4%)→19mm(13.6%)→16mm(15.8%)→14mm(12.5%)→12mm(14.3%)で実施した。カッコ内は加工率を示し、1パス当たりの加工率の平均値は13.3%である。なお、5パス終了後、再度950℃の炉に挿入して昇温し、10パス終了後、水中に浸漬して急冷した。10パス終了直後の熱延材の温度は810℃であった。No.24において、熱間圧延以外の工程の条件は、No.1~23と同じである。なお、No.24において、再結晶焼鈍後に板表面で測定した平均結晶粒径は、20μm未満であった(測定方法は先に説明した方法と同じ)。
No. About the copper alloy (No. 24) of the same composition as No. 1, hot rolling was implemented by a different pass schedule.
No. The 24 pass schedule is a 10 pass finish, 50 mm → 46 mm (8.0%) → 41 mm (10.9%) → 36 mm (12.2%) → 31 mm (13.9%) → 26 mm (16.1) %) → 22 mm (15.4%) → 19 mm (13.6%) → 16 mm (15.8%) → 14 mm (12.5%) → 12 mm (14.3%). The parentheses indicate the processing rate, and the average value of the processing rate per pass is 13.3%. After 5 passes, the temperature was raised again by inserting it into a furnace at 950 ° C., and after 10 passes, it was immersed in water and rapidly cooled. The temperature of the hot rolled material immediately after the end of 10 passes was 810 ° C. No. 24, the conditions of the processes other than hot rolling are No. 24. Same as 1-23. In addition, No. 24, the average crystal grain size measured on the plate surface after recrystallization annealing was less than 20 μm (the measurement method is the same as the method described above).
 以上の工程で得られた銅合金条(製品板)を供試材として、機械的特性、導電率、曲げ限界幅、及びはんだ付け性を下記要領で測定し、かつ評価した。また、Wiedemann-Franz則により、導電率から熱伝導率を算出した。
 これらの結果を表2に示す。
Using the copper alloy strip (product plate) obtained in the above process as a test material, mechanical properties, electrical conductivity, bending limit width, and solderability were measured and evaluated in the following manner. Further, the thermal conductivity was calculated from the electrical conductivity according to the Wiedemann-Franz rule.
These results are shown in Table 2.
<機械的特性>
 各供試材から、長手方向が圧延方向に平行及び垂直となるようにJIS5号試験片を採取し、JISZ2241の規定に基づいて引張試験を行い、圧延方向に平行方向(∥)及び垂直方向(⊥)の引張強さ、耐力及び伸びを測定した。
<導電率>
 導電率は、JISH0505の規定に基づいて測定した。電気抵抗の測定は、ダブルブリッジを用いた四端子法で行った。
<Mechanical properties>
From each specimen, JIS No. 5 test specimens were collected so that the longitudinal direction was parallel and perpendicular to the rolling direction, and a tensile test was conducted based on the provisions of JISZ2241, and the parallel direction (∥) and vertical direction ( The tensile strength, yield strength and elongation of ii) were measured.
<Conductivity>
The conductivity was measured based on the provisions of JISH0505. The electrical resistance was measured by a four-terminal method using a double bridge.
<90度曲げの曲げ限界幅>
 供試材から、長さ30mm、幅10~100mm(幅10、15、20、25・・・と5mmおきに100mm幅まで)の幅の異なる4角形の試験片(各幅ごとに3個)を作製した。試験片の長さ30mmの辺の方向が供試材の圧延方向に平行となるようにした。この試験片を用い、図1に示すV字ブロック1及び押し金具2を油圧プレスにセットし、曲げ半径Rと板厚tの比R/tを0.5とし、曲げ線(図1の紙面に垂直方向)の方向を試験片3の幅方向とし(Good Way曲げ)、90度曲げを行った。V字ブロック1及び押し金具2の幅(図1の紙面に垂直方向の厚み)は120mmとした。また、油圧プレスの荷重は、試験片の幅10mmあたり1000kgf(9800N)とした。
 曲げ試験後、試験片の曲げ部外側全長を100倍の光学顕微鏡で観察し、3個の試験片の全てで1箇所も割れが観察されなかった場合を合格、それ以外を不合格と判定した。合格した試験片の最大幅を、その供試材の曲げ限界幅とした。
<Bending limit width of 90-degree bending>
Square specimens with different widths of 30 mm in length and 10 to 100 mm in width (widths of 10, 15, 20, 25 ... and up to 100 mm in width every 5 mm) from the test material (three for each width) Was made. The direction of the 30 mm long side of the test piece was made parallel to the rolling direction of the specimen. Using this test piece, the V-shaped block 1 and the metal fitting 2 shown in FIG. 1 are set in a hydraulic press, the ratio R / t of the bending radius R to the plate thickness t is set to 0.5, and the bending line (the paper surface of FIG. The direction perpendicular to the width direction of the test piece 3 was set as the width direction of the test piece 3 (Good Way bending), and bending was performed 90 degrees. The width of the V-shaped block 1 and the metal fitting 2 (thickness in the direction perpendicular to the paper surface of FIG. 1) was 120 mm. The load of the hydraulic press was 1000 kgf (9800 N) per 10 mm width of the test piece.
After the bending test, the entire outer length of the bent portion of the test piece was observed with a 100 × optical microscope, and when no crack was observed in any of the three test pieces, it was determined to be acceptable, and the others were determined to be unacceptable. . The maximum width of the test specimen that passed was taken as the bending limit width of the specimen.
<密着曲げの曲げ限界幅>
 90度曲げ試験と同様の方法で、供試材から、長さ30mm、幅5~50mm(幅5、10、15、20・・・と5mmおきに50mm幅まで)の幅の異なる4角形の試験片(各幅ごとに3個)を作製した。試験片の長さ30mmの辺の方向が圧延方向に平行となるようにした。この試験片を用い、曲げ半径Rと板厚tの比R/tを2.0とし、曲げ線の方向を試験片の幅方向とし(Good Way)、JISZ2248の規定に倣って、おおよそ170度まで曲げた後、密着曲げを行った。
 曲げ試験後、曲げ部における割れの有無を100倍の光学顕微鏡で観察し、3個の試験片の全てで1箇所も割れが観察されなかった場合を合格、それ以外を不合格と判定した。合格した試験片の最大幅を、その供試材の曲げ限界幅とした。
<Bending limit width of contact bending>
In the same manner as the 90-degree bending test, a rectangular shape with a width of 30 mm and a width of 5 to 50 mm (width 5, 10, 15, 20,. Test pieces (three for each width) were prepared. The direction of the 30 mm long side of the test piece was made parallel to the rolling direction. Using this test piece, the ratio R / t of the bending radius R to the plate thickness t is 2.0, the direction of the bending line is the width direction of the test piece (Good Way), and approximately 170 degrees according to the JISZ2248 specification. After bending to close, bending was performed.
After the bending test, the presence or absence of cracks in the bent part was observed with a 100-fold optical microscope, and the case where no crack was observed in any of the three test pieces was determined to be acceptable, and the others were determined to be unacceptable. The maximum width of the test specimen that passed was taken as the bending limit width of the specimen.
<はんだ付け性評価>
 Sn-3Ag-0.5Cuはんだを用いてメニスコグラフ法によるはんだ濡れ試験を実施した。10mm×30mmの大きさに加工した試験片に活性フラックスを浸漬塗布した後、浴温265℃としたはんだ浴中に浸漬し(浸漬速度:25mm/sec、浸漬深さ:12mm、浸漬時間:5.0sec)、ゼロクロスタイム(はんだ濡れ時間)を測定した。はんだ濡れ時間が1.5秒未満を合格(○)、1.5秒以上を不合格(×)と評価した。
<Solderability evaluation>
Using a Sn-3Ag-0.5Cu solder, a solder wetting test by the meniscograph method was performed. An active flux is dip-coated on a test piece processed to a size of 10 mm × 30 mm, and then immersed in a solder bath having a bath temperature of 265 ° C. (immersion rate: 25 mm / sec, immersion depth: 12 mm, immersion time: 5 0.0 sec), and zero cross time (solder wetting time) was measured. A solder wetting time of less than 1.5 seconds was evaluated as pass (◯), and 1.5 seconds or more was evaluated as reject (x).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1,2に示すように、本発明の実施形態に規定された合金組成を有し、熱間圧延のパススケジュールが好ましい範囲内(1パス当たりの加工率の平均値が20%以上、最大加工率が25%以上)であるNo.1~14は、引張強度、耐力、伸び、導電率、90度曲げ及び密着曲げの曲げ限界幅が本発明の実施形態の規定を満たす。
 一方、本発明の実施形態に規定された合金組成を有しないNo.15~23、及び熱間圧延のパススケジュールが好ましい範囲を外れるNo.24は、引張強さ、耐力、伸び、導電率、90度曲げ及び密着曲げの曲げ限界幅、及びはんだ付け性のいずれか1以上が本発明の実施形態の規定を満たさない。
As shown in Tables 1 and 2, the alloy composition defined in the embodiment of the present invention has a hot rolling pass schedule within a preferable range (average value of processing rate per pass is 20% or more, maximum No. with a processing rate of 25% or more). In Nos. 1 to 14, the tensile limit, proof stress, elongation, electrical conductivity, bending limit width of 90-degree bending and contact bending satisfy the provisions of the embodiment of the present invention.
On the other hand, No. having no alloy composition defined in the embodiment of the present invention. 15 to 23 and No. in which the hot rolling pass schedule is out of the preferred range. 24, any one or more of tensile strength, yield strength, elongation, conductivity, bending limit width of 90-degree bending and contact bending, and solderability do not satisfy the definition of the embodiment of the present invention.
 No.15は、Fe含有量が過剰で、導電率及び熱伝導率が低い。
 No.16は、Fe含有量が不足し、引張強さ及び耐力が低く、また導電率及び熱伝導率が低い。
 No.17は、P含有量が過剰で、導電率及び熱伝導率が低い。
 No.18は、P含有量が不足し、引張強さ及び耐力が低い。
 No.19は、Zn含有量が過剰で、導電率及び熱伝導率が低い。
 No.20は、Zn含有量が不足し、はんだ付け性が劣る。
 No.21は、Sn含有量が過剰で、導電率及び熱伝導率が低く、90度曲げ及び密着曲げの曲げ限界幅も劣る。
 No.22は、Sn含有量が不足し、引張強さ及び耐力が低い。
 No.23は、副成分の合計含有量が過剰で、導電率及び熱伝導率が低い。
 No.24は、熱間圧延のパススケジュールが好ましい範囲を外れるため、90度曲げ及び密着曲げの曲げ限界幅が小さい。
No. No. 15 has an excessive Fe content and low electrical conductivity and thermal conductivity.
No. No. 16 has insufficient Fe content, low tensile strength and yield strength, and low electrical conductivity and thermal conductivity.
No. No. 17 has an excessive P content and low electrical conductivity and thermal conductivity.
No. No. 18 has insufficient P content, and has low tensile strength and yield strength.
No. No. 19 has an excessive Zn content and low electrical conductivity and thermal conductivity.
No. No. 20 lacks Zn content and is inferior in solderability.
No. No. 21 has an excessive Sn content, low electrical conductivity and low thermal conductivity, and inferior bending limit width for 90-degree bending and contact bending.
No. No. 22 has a short Sn content and a low tensile strength and yield strength.
No. In No. 23, the total content of subcomponents is excessive, and the electrical conductivity and thermal conductivity are low.
No. No. 24 has a small bending limit width for 90-degree bending and contact bending because the hot rolling pass schedule is out of the preferred range.
 表3に示す組成(2種)の銅合金を溶解し、厚さ200mm、幅500mm、長さ5000mmの鋳塊に溶製した。その後、この鋳塊を950℃で1時間加熱した後、厚さ12mmまで熱間圧延し、直ちに水中に浸漬して急冷した。熱間圧延終了温度は750℃であった。なお、熱間圧延のパスごとに板厚が薄くなり、熱間圧延材の温度低下は大きくなっていく。熱間圧延終了時の熱間圧延材の長さは80mを超える長さとなり、両端で熱間圧延終了温度が異なるが、前記熱間圧延終了温度はそのうち低い方の端部において測定した温度である。本実施例において、両端部における熱間圧延終了温度の差は約20℃であった。熱間圧延のパススケジュールは、9パス仕上げとし、200mm→177mm(11.5%)→156mm(11.9%)→123mm(21.2%)→98mm(20.3%)→72mm(26.5%)→46mm(36.1%)→27mm(41.3%)→18mm(33.3%)→12mm(33.3%)で実施した。カッコ内は加工率を示す。1パスあたりの加工率の平均値は26.2%である。
 次に、熱間圧延材の両面をそれぞれ約1mm面削して酸化膜を除去し、冷間圧延を行った。
The copper alloys having the compositions (2 types) shown in Table 3 were melted and melted into an ingot having a thickness of 200 mm, a width of 500 mm, and a length of 5000 mm. Thereafter, the ingot was heated at 950 ° C. for 1 hour, then hot-rolled to a thickness of 12 mm, and immediately immersed in water and rapidly cooled. The hot rolling end temperature was 750 ° C. In addition, a plate | board thickness becomes thin for every pass of hot rolling, and the temperature fall of a hot rolling material becomes large. The length of the hot rolled material at the end of hot rolling is over 80 m, and the hot rolling end temperature is different at both ends, but the hot rolling end temperature is a temperature measured at the lower end of the hot rolling end temperature. is there. In this example, the difference in hot rolling end temperature at both ends was about 20 ° C. The hot rolling pass schedule is 9 pass finishing, 200 mm → 177 mm (11.5%) → 156 mm (11.9%) → 123 mm (21.2%) → 98 mm (20.3%) → 72 mm (26 0.5%) → 46 mm (36.1%) → 27 mm (41.3%) → 18 mm (33.3%) → 12 mm (33.3%). The processing rate is shown in parentheses. The average value of the processing rate per pass is 26.2%.
Next, both sides of the hot rolled material were each chamfered by about 1 mm to remove the oxide film, and cold rolled.
 2種の冷間圧延材をそれぞれ3つに分け(No.25~27,28~30)、No.25,28は720℃×20秒間の再結晶焼鈍及び水冷を行い、No.26,29は再結晶焼鈍を行わず、No.27,30は920℃×30秒間の再結晶焼鈍及び水冷を行った。この段階で、No.25~30の板表面の平均結晶粒径(JISH0501に規定された切断法で圧延平行方向に測定)を測定した。適正な条件で再結晶焼鈍を行ったNo.25、27の平均結晶粒径は10μmであり、再結晶焼鈍を行っていないNo.26,29はファイバー組織のままであったため、平均結晶粒径が測定できなかった。また、再結晶焼鈍の温度が高すぎたNo.27,30の平均結晶粒径は30μmで、適正水準(20μm未満)より大きかった。
 続いて、No.25~30の板材について、[実施例1]と同じ工程及び条件で、冷間圧延、時効焼鈍、酸洗、仕上げ冷間圧延及び短時間焼鈍を行った。
Each of the two types of cold-rolled material is divided into three (Nos. 25 to 27, 28 to 30). Nos. 25 and 28 were subjected to recrystallization annealing and water cooling at 720 ° C. for 20 seconds. Nos. 26 and 29 were not subjected to recrystallization annealing. Nos. 27 and 30 were subjected to recrystallization annealing and water cooling at 920 ° C. for 30 seconds. At this stage, no. The average crystal grain size (measured in the rolling parallel direction by the cutting method defined in JISH0501) of 25 to 30 plate surfaces was measured. No. 1 was recrystallized under proper conditions. No. 25 and No. 27 have an average grain size of 10 μm, and No. no recrystallization annealing. Since Nos. 26 and 29 remained in the fiber structure, the average crystal grain size could not be measured. In addition, the recrystallization annealing temperature was too high. The average grain size of 27 and 30 was 30 μm, which was larger than the appropriate level (less than 20 μm).
Subsequently, no. The plate materials 25 to 30 were subjected to cold rolling, aging annealing, pickling, finish cold rolling and short-time annealing in the same steps and conditions as in [Example 1].
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 No.25~30の銅合金条(製品板)を供試材として、機械的特性、導電率、曲げ限界幅、及びはんだ付け性を実施例1と同じ要領で測定し、かつ評価した。また、Wiedemann-Franz則により、導電率から熱伝導率を算出した。これらの結果を表4に示す。 No. Using 25 to 30 copper alloy strips (product plates) as test materials, mechanical properties, electrical conductivity, bending limit width, and solderability were measured and evaluated in the same manner as in Example 1. Further, the thermal conductivity was calculated from the electrical conductivity according to the Wiedemann-Franz rule. These results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 No.25~30は共に本発明の実施形態に規定された合金組成を有する。表4に示すように、適正な条件で再結晶焼鈍を行ったNo.25,28は、引張強度、耐力、伸び、導電率、90度曲げ及び密着曲げの曲げ限界幅が本発明の実施形態の規定を満たす。一方、再結晶焼鈍を行わなかったNo.25,28、及び再結晶焼鈍の条件が不適正であったNo.26,29は、90度曲げ及び密着曲げの曲げ限界幅が本発明の実施形態の規定を満たしていない。 No. 25 to 30 both have the alloy composition defined in the embodiment of the present invention. As shown in Table 4, No. 1 was subjected to recrystallization annealing under appropriate conditions. Nos. 25 and 28 satisfy the requirements of the embodiment of the present invention in terms of the bending limit width of tensile strength, proof stress, elongation, electrical conductivity, 90-degree bending, and contact bending. On the other hand, no. Nos. 25 and 28, and the conditions for recrystallization annealing were inappropriate. In Nos. 26 and 29, the bending limit width of 90-degree bending and contact bending does not satisfy the definition of the embodiment of the present invention.
 次に、表1のNo.7の銅合金条(製品板)を供試材とし、表面にNiめっき、Cuめっき、Snめっき、及びNi-Co合金めっきの1種又は2種以上を、それぞれ所定の厚さで施した。いずれも電気めっきであり、各めっきのめっき浴組成及びめっき条件を表5に、各めっき層の厚さを表6に示す。
 表6のNo.31~33,36,37,39~42は、Niめっき又はNi-Coめっきを行った後(又は行わずに)、Cuめっき及びSnめっきを行い、次いでリフロー処理を施したもので、各めっき層の厚さはリフロー処理後のものである。リフロー処理は、450℃×15秒で実施し、リフロー処理に続く冷却は水冷とした。これは、リフロー処理条件として通常のものである。No.31~33,36,37,39~42のCu-Sn層は、リフロー処理により、CuめっきのCuとSnめっきのSnが反応して形成されたものである。Cuめっきはリフロー処理により消滅した。
 表6のNo.38は、Niめっき、Cuめっき及びSnめっきを行ったもので、時間経過によりCuめっきのCuとSnめっきのSnが反応してCu-Sn合金層が形成され、Cuめっきが消滅した。Snめっき層の厚さはCuめっき消滅後のものである。
Next, no. No. 7 copper alloy strip (product plate) was used as a test material, and one or more of Ni plating, Cu plating, Sn plating, and Ni—Co alloy plating were applied to each surface at a predetermined thickness. All are electroplating, Table 5 shows the plating bath composition and plating conditions of each plating, and Table 6 shows the thickness of each plating layer.
No. in Table 6 31 to 33, 36, 37 and 39 to 42 are obtained by performing Cu plating and Sn plating after performing (or without) Ni plating or Ni—Co plating, and then performing reflow treatment. The layer thickness is that after reflow treatment. The reflow treatment was performed at 450 ° C. for 15 seconds, and the cooling following the reflow treatment was water cooling. This is a normal reflow processing condition. No. The Cu—Sn layers 31 to 33, 36, 37, and 39 to 42 are formed by reaction of Cu of Cu plating and Sn of Sn plating by a reflow process. Cu plating disappeared by reflow treatment.
No. in Table 6 No. 38 was obtained by performing Ni plating, Cu plating, and Sn plating. As time passed, Cu of Cu plating and Sn of Sn plating reacted to form a Cu—Sn alloy layer, and the Cu plating disappeared. The thickness of the Sn plating layer is that after Cu plating disappears.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 各めっき層の厚さ測定は下記方法にて行った。
<Sn層>
 まず、蛍光X線膜厚計(セイコー電子工業株式会社;型式SFT3200)を用いてSn層合計厚さ(Cu-Sn合金層を含むSn層合計厚さ)を測定する。その後、p-ニトロフェノール及び苛性ソーダを主成分とする剥離液に10分間浸漬し、Sn層を剥離後、蛍光X線膜厚計を用いて、Cu-Sn合金層中のSn量を測定する。このようにして求めたSn層合計厚さからCu-Sn合金層中のSn量を引くことにより、Sn層厚さを算出した。
The thickness of each plating layer was measured by the following method.
<Sn layer>
First, the total thickness of Sn layer (total thickness of Sn layer including Cu—Sn alloy layer) is measured using a fluorescent X-ray film thickness meter (Seiko Electronics Co., Ltd .; model SFT3200). Thereafter, the substrate is immersed in a stripping solution containing p-nitrophenol and caustic soda as main components for 10 minutes, and after the Sn layer is stripped, the amount of Sn in the Cu—Sn alloy layer is measured using a fluorescent X-ray film thickness meter. The Sn layer thickness was calculated by subtracting the Sn amount in the Cu—Sn alloy layer from the Sn layer total thickness thus determined.
<Cu-Sn合金層>
 p-ニトロフェノール及び苛性ソーダを主成分とする剥離液に10分間浸漬し、Sn層を剥離後、蛍光X線膜厚計を用いて、Cu-Sn合金層中のSn量を測定する。Cu-Sn合金層の厚さはSn換算厚さである。
<Ni層及びNi-Co層>
 Ni層、Ni-Co合金層の厚さは、蛍光X線膜厚計を用いて測定した。
<Cu-Sn alloy layer>
After dipping in a stripping solution containing p-nitrophenol and caustic soda as main components for 10 minutes and stripping the Sn layer, the amount of Sn in the Cu—Sn alloy layer is measured using a fluorescent X-ray film thickness meter. The thickness of the Cu—Sn alloy layer is the Sn equivalent thickness.
<Ni layer and Ni-Co layer>
The thicknesses of the Ni layer and the Ni—Co alloy layer were measured using a fluorescent X-ray film thickness meter.
<Cu-Sn合金層露出率>
 めっき後の各供試材(Cu-Sn合金層が形成されたもの)の表面を、SEM(走査型電子顕微鏡)で観察し、任意の3視野について得られた表面組成像(×200)を二値化処理した。その後、画像解析により、前記3視野におけるCu-Sn合金被覆層の材料表面露出率の平均値を測定した。
<Cu-Sn alloy layer exposure rate>
The surface of each test material after plating (with a Cu-Sn alloy layer formed) was observed with a SEM (scanning electron microscope), and surface composition images (× 200) obtained for any three fields of view were obtained. Binarization processing was performed. Thereafter, the average value of the material surface exposure rate of the Cu—Sn alloy coating layer in the three visual fields was measured by image analysis.
 No.31~43の各供試材から試験片を作成し、耐食性及び曲げ加工性を下記要領で測定した。
<耐食性>
 めっき後の供試材の耐食性は、塩水噴霧試験にて評価した。5質量%のNaClを含む99.0%脱イオン水(和光純薬工業株式会社製)を用い、試験条件は、試験温度:35℃±1℃、噴霧液PH:6.5~7.2、噴霧圧力:0.098±0.01MPaとし、72時間噴霧後に水洗及び乾燥した。続いて実体顕微鏡にて試験片の表面を観察し、腐食(母材腐食とめっき表面の点状腐食)の有無を観察した。
No. Test pieces were prepared from the respective test materials 31 to 43, and the corrosion resistance and bending workability were measured as follows.
<Corrosion resistance>
The corrosion resistance of the test material after plating was evaluated by a salt spray test. Using 99.0% deionized water (manufactured by Wako Pure Chemical Industries, Ltd.) containing 5% by mass of NaCl, the test conditions were: test temperature: 35 ° C. ± 1 ° C., spray solution PH: 6.5 to 7.2 Spray pressure: 0.098 ± 0.01 MPa, sprayed for 72 hours, washed and dried. Subsequently, the surface of the test piece was observed with a stereomicroscope, and the presence or absence of corrosion (base metal corrosion and spot corrosion on the plating surface) was observed.
<めっき材の曲げ加工性評価>
 めっき後の各供試材から、長さ30mm、幅20mmの4角形の試験片(各供試材ごとに3個)を作製した。試験片の長さ30mmの辺の方向が供試材(母材)の圧延方向に平行となるようにした。この試験片を用い、図1に示すV字ブロック1及び押し金具2を油圧プレスにセットし、曲げ半径Rと板厚tの比R/tを2.0とし、曲げ線の方向を母材の圧延方向に垂直方向に向け、90度曲げを行った。油圧プレスの荷重は、試験片の幅10mmあたり1000kgf(9800N)とした。
 曲げ試験後、試験片の曲げ部外側全長を100倍の光学顕微鏡で観察し、3個の試験片の全てで1箇所も割れが観察されなかった場合を割れ無し、1箇所でも割れが観察された場合を割れ有りと判定した。
<Bending workability evaluation of plating material>
From each test material after plating, a rectangular test piece having a length of 30 mm and a width of 20 mm (three for each test material) was prepared. The direction of the 30 mm long side of the test piece was made parallel to the rolling direction of the specimen (base material). Using this test piece, the V-shaped block 1 and the metal fitting 2 shown in FIG. 1 are set in a hydraulic press, the ratio R / t of the bending radius R and the plate thickness t is 2.0, and the direction of the bending line is the base material. The film was bent 90 degrees in the direction perpendicular to the rolling direction. The load of the hydraulic press was 1000 kgf (9800 N) per 10 mm width of the test piece.
After the bending test, the entire outer length of the bent portion of the test piece was observed with a 100 × optical microscope. No crack was observed in any of the three test pieces, and no crack was observed even in one place. The case was determined to be cracked.
 表6に示すように、本発明の実施形態に規定されためっき構成及び各めっき層厚さを有するNo.31~40は、塩水噴霧試験で母材腐食が観察されず、曲げ加工性試験で割れが発生しなかった。なお、Ni層又はNi-Co合金層からなる下地層が形成されていないNo.33、及びSn層が残留せずCu-Sn合金層が表面に露出したNo.37は、母材腐食は観察されなかったが、点状腐食(被覆層表面が点状に腐食する現象)が観察された。 As shown in Table 6, No. having the plating configuration and each plating layer thickness defined in the embodiment of the present invention. In Nos. 31 to 40, no base metal corrosion was observed in the salt spray test, and no cracks occurred in the bending workability test. It should be noted that No. 2 in which an underlayer composed of a Ni layer or a Ni—Co alloy layer is not formed. No. 33 and No. 33 in which no Sn layer remained and the Cu—Sn alloy layer was exposed on the surface. In No. 37, no base metal corrosion was observed, but spot corrosion (a phenomenon in which the surface of the coating layer corrodes in the form of dots) was observed.
 一方、めっき層厚さが本発明の実施形態の規定を外れるNo.41~43は、塩水噴霧試験で母材腐食が観察されたか、曲げ加工性試験でめっきに割れが発生した。
 No.41は、Cu-Sn合金層とSn層の合計厚さが不足し、母材腐食が発生した。
 No.42,43は、Cu-Sn合金層又はNi層の厚さが厚く、曲げ加工試験でめっきに割れが発生した。
On the other hand, the plating layer thickness is different from that of the embodiment of the present invention. In Nos. 41 to 43, base metal corrosion was observed in the salt spray test, or cracking occurred in the plating in the bending workability test.
No. In No. 41, the total thickness of the Cu—Sn alloy layer and the Sn layer was insufficient, and the base metal corrosion occurred.
No. In Nos. 42 and 43, the Cu—Sn alloy layer or the Ni layer was thick, and cracking occurred in the plating in the bending test.
 本発明は以下の態様を含む。
態様1:
 Fe:0.01~1.0mass%、P:0.01~0.20mass%、Zn:0.01~1.0mass%、及びSn:0.01~0.15mass%を含み、残部がCu及び不可避不純物からなり、
 圧延平行方向の引張強さが410MPa以上、耐力が390MPa以上、伸びが5%以上、
 圧延直角方向の引張強さが420MPa以上、耐力が400MPa以上、伸びが3%以上であり、
 導電率が75%IACS以上、
 曲げ半径Rと板厚tの比R/tを0.5とし曲げ線を圧延直角方向とした90度曲げを行ったときの曲げ加工限界幅が70mm以上、
 曲げ線を圧延直角方向とした密着曲げを行ったときの曲げ加工限界幅が20mm以上であることを特徴とする放熱部品用銅合金板。
態様2:
 さらに、Co、Al、Cr、Mg、Mn、Ca、Pb、Ti、Zr、Si及びAgの1種又は2種以上を合計で0.3mass%以下含むことを特徴とする態様1に記載された放熱部品用銅合金板。
態様3:
 さらに、Co、Al、Cr、Mg、Mn、Ca、Pb、Ti、Zr、Si及びAgの1種又は2種以上と0.1mass%未満のNiを合計で0.3mass%以下含むことを特徴とする態様1に記載された放熱部品用銅合金板。
態様4:
 表面に厚さ0.2~5μmのSn層が形成されていることを特徴とする態様1~3のいずれかに記載された放熱部品用銅合金板。
態様5:
 表面に厚さ3μm以下のCu-Sn合金層と厚さ0~5μmのSn層がこの順に形成され、Cu-Sn合金層とSn層の合計厚さが0.2μm以上であることを特徴とする態様1~3のいずれかに記載された放熱部品用銅合金板。
態様6:
 表面に厚さ3μm以下のNi、Co、Fe、Ni-Co合金及びNi-Fe合金のいずれか1種からなるめっき層、厚さ3μm以下のCu-Sn合金層、及び厚さ0~5μmのSn層がこの順に形成され、Cu-Sn合金層とSn層の合計厚さが0.2μm以上であることを特徴とする態様1~3のいずれかに記載された放熱部品用銅合金板。
態様7:
 表面に厚さ3μm以下のNi、Co、Fe、Ni-Co合金及びNi-Fe合金のいずれか1種からなるめっき層が形成されていることを特徴とする態様1~3のいずれかに記載された放熱部品用銅合金板。
態様8:
 Cu-Sn合金層が最表面に露出し、その露出面積率が50%以下であることを特徴とする態様5又は6に記載された放熱部品用銅合金板。
態様9:
 態様1~8のいずれかに記載された放熱部品用銅合金板からなる放熱部品。
態様10:
 態様1~8のいずれかに記載された放熱部品用銅合金板からなるコイル。
The present invention includes the following aspects.
Aspect 1:
Fe: 0.01 to 1.0 mass%, P: 0.01 to 0.20 mass%, Zn: 0.01 to 1.0 mass%, and Sn: 0.01 to 0.15 mass%, with the balance being Cu And inevitable impurities,
Tensile strength in the rolling parallel direction is 410 MPa or more, proof stress is 390 MPa or more, elongation is 5% or more,
The tensile strength in the direction perpendicular to rolling is 420 MPa or more, the proof stress is 400 MPa or more, and the elongation is 3% or more,
Conductivity is 75% IACS or higher,
The bending limit width when bending 90 degrees with the ratio R / t of the bending radius R and the sheet thickness t being 0.5 and the bending line being perpendicular to the rolling direction is 70 mm or more,
A copper alloy plate for a heat-radiating component, characterized in that a bending limit width is 20 mm or more when close bending is performed with a bending line as a direction perpendicular to rolling.
Aspect 2:
Furthermore, it is described in the aspect 1 characterized by including one or more of Co, Al, Cr, Mg, Mn, Ca, Pb, Ti, Zr, Si, and Ag in a total of 0.3 mass% or less. Copper alloy plate for heat dissipation parts.
Aspect 3:
Furthermore, it contains one or more of Co, Al, Cr, Mg, Mn, Ca, Pb, Ti, Zr, Si, and Ag, and less than 0.1 mass% of Ni in total of 0.3 mass% or less. The copper alloy plate for heat radiating components described in the aspect 1.
Aspect 4:
4. The copper alloy plate for heat dissipation component according to any one of aspects 1 to 3, wherein an Sn layer having a thickness of 0.2 to 5 μm is formed on the surface.
Aspect 5:
A Cu—Sn alloy layer having a thickness of 3 μm or less and a Sn layer having a thickness of 0 to 5 μm are formed in this order on the surface, and the total thickness of the Cu—Sn alloy layer and the Sn layer is 0.2 μm or more. A copper alloy plate for a heat-radiating component according to any one of aspects 1 to 3.
Aspect 6:
A plating layer made of any one of Ni, Co, Fe, Ni—Co alloy and Ni—Fe alloy having a thickness of 3 μm or less on the surface, a Cu—Sn alloy layer having a thickness of 3 μm or less, and a thickness of 0 to 5 μm 4. The copper alloy plate for a heat dissipation component according to any one of aspects 1 to 3, wherein the Sn layer is formed in this order, and the total thickness of the Cu—Sn alloy layer and the Sn layer is 0.2 μm or more.
Aspect 7:
Any one of aspects 1 to 3, wherein a plating layer made of any one of Ni, Co, Fe, Ni—Co alloy and Ni—Fe alloy having a thickness of 3 μm or less is formed on the surface. Copper alloy plate for heat dissipation parts.
Aspect 8:
The copper alloy plate for a heat dissipation component according to aspect 5 or 6, wherein the Cu—Sn alloy layer is exposed on the outermost surface, and the exposed area ratio is 50% or less.
Aspect 9:
A heat dissipating component comprising the copper alloy plate for heat dissipating component according to any one of aspects 1 to 8.
Aspect 10:
A coil comprising a copper alloy plate for a heat dissipation component according to any one of aspects 1 to 8.
 本出願は、出願日が2016年3月17日である日本国特許出願、特願第2016-054204号を基礎出願とする優先権主張を伴う。特願第2016-054204号は参照することにより本明細書に取り込まれる。 This application is accompanied by a priority claim based on Japanese Patent Application No. 2016-054204, whose application date is March 17, 2016. Japanese Patent Application No. 2016-054204 is incorporated herein by reference.
1 V字ブロック
2 押し金具
3 試験片
1 V-shaped block 2 Press fitting 3 Test piece

Claims (20)

  1.  Fe:0.01~1.0mass%、P:0.01~0.20mass%、Zn:0.01~1.0mass%、及びSn:0.01~0.15mass%を含み、残部がCu及び不可避不純物からなり、
     圧延平行方向の引張強さが410MPa以上、耐力が390MPa以上、伸びが5%以上、
     圧延直角方向の引張強さが420MPa以上、耐力が400MPa以上、伸びが3%以上であり、
     導電率が75%IACS以上、
     曲げ半径Rと板厚tの比R/tを0.5とし曲げ線を圧延直角方向とした90度曲げを行ったときの曲げ加工限界幅が70mm以上、
     曲げ線を圧延直角方向とした密着曲げを行ったときの曲げ加工限界幅が20mm以上であることを特徴とする放熱部品用銅合金板。
    Fe: 0.01 to 1.0 mass%, P: 0.01 to 0.20 mass%, Zn: 0.01 to 1.0 mass%, and Sn: 0.01 to 0.15 mass%, with the balance being Cu And inevitable impurities,
    Tensile strength in the rolling parallel direction is 410 MPa or more, proof stress is 390 MPa or more, elongation is 5% or more,
    The tensile strength in the direction perpendicular to rolling is 420 MPa or more, the proof stress is 400 MPa or more, and the elongation is 3% or more,
    Conductivity is 75% IACS or higher,
    The bending limit width when bending 90 degrees with the ratio R / t of the bending radius R and the sheet thickness t being 0.5 and the bending line being perpendicular to the rolling direction is 70 mm or more,
    A copper alloy plate for a heat-radiating component, characterized in that a bending limit width is 20 mm or more when close bending is performed with a bending line as a direction perpendicular to rolling.
  2.  さらに、Co、Al、Cr、Mg、Mn、Ca、Pb、Ti、Zr、Si及びAgの1種又は2種以上を合計で0.3mass%以下含むことを特徴とする請求項1に記載された放熱部品用銅合金板。 Furthermore, the total content of one or more of Co, Al, Cr, Mg, Mn, Ca, Pb, Ti, Zr, Si, and Ag is 0.3 mass% or less. Copper alloy plate for heat dissipation parts.
  3.  さらに、Co、Al、Cr、Mg、Mn、Ca、Pb、Ti、Zr、Si及びAgの1種又は2種以上と0.1mass%未満のNiを合計で0.3mass%以下含むことを特徴とする請求項1に記載された放熱部品用銅合金板。 Furthermore, it contains one or more of Co, Al, Cr, Mg, Mn, Ca, Pb, Ti, Zr, Si, and Ag, and less than 0.1 mass% of Ni in total of 0.3 mass% or less. The copper alloy plate for heat radiating components according to claim 1.
  4.  表面に厚さ0.2~5μmのSn層が形成されていることを特徴とする請求項1~3のいずれかに記載された放熱部品用銅合金板。 4. The copper alloy plate for a heat-radiating component according to claim 1, wherein a Sn layer having a thickness of 0.2 to 5 μm is formed on the surface.
  5.  表面に厚さ3μm以下のCu-Sn合金層と厚さ0~5μmのSn層がこの順に形成され、Cu-Sn合金層とSn層の合計厚さが0.2μm以上であることを特徴とする請求項1~3のいずれかに記載された放熱部品用銅合金板。 A Cu—Sn alloy layer having a thickness of 3 μm or less and a Sn layer having a thickness of 0 to 5 μm are formed in this order on the surface, and the total thickness of the Cu—Sn alloy layer and the Sn layer is 0.2 μm or more. The copper alloy plate for a heat radiation component according to any one of claims 1 to 3.
  6.  表面に厚さ3μm以下のNi、Co、Fe、Ni-Co合金及びNi-Fe合金のいずれか1種からなるめっき層、厚さ3μm以下のCu-Sn合金層、及び厚さ0~5μmのSn層がこの順に形成され、Cu-Sn合金層とSn層の合計厚さが0.2μm以上であることを特徴とする請求項1~3のいずれかに記載された放熱部品用銅合金板。 A plating layer made of any one of Ni, Co, Fe, Ni—Co alloy and Ni—Fe alloy having a thickness of 3 μm or less on the surface, a Cu—Sn alloy layer having a thickness of 3 μm or less, and a thickness of 0 to 5 μm 4. The copper alloy plate for a heat dissipation component according to claim 1, wherein the Sn layer is formed in this order, and the total thickness of the Cu—Sn alloy layer and the Sn layer is 0.2 μm or more. .
  7.  表面に厚さ3μm以下のNi、Co、Fe、Ni-Co合金及びNi-Fe合金のいずれか1種からなるめっき層が形成されていることを特徴とする請求項1~3のいずれかに記載された放熱部品用銅合金板。 4. The plating layer of any one of Ni, Co, Fe, Ni—Co alloy and Ni—Fe alloy having a thickness of 3 μm or less is formed on the surface. The described copper alloy plate for heat dissipation parts.
  8.  Cu-Sn合金層が最表面に露出し、その露出面積率が50%以下であることを特徴とする請求項5に記載された放熱部品用銅合金板。 6. The copper alloy plate for a heat radiating component according to claim 5, wherein the Cu—Sn alloy layer is exposed on the outermost surface, and the exposed area ratio is 50% or less.
  9.  Cu-Sn合金層が最表面に露出し、その露出面積率が50%以下であることを特徴とする請求項6に記載された放熱部品用銅合金板。 The copper alloy plate for a heat-radiating component according to claim 6, wherein the Cu-Sn alloy layer is exposed on the outermost surface and the exposed area ratio is 50% or less.
  10.  請求項1~3のいずれかに記載された放熱部品用銅合金板からなる放熱部品。 A heat dissipating part comprising the copper alloy plate for a heat dissipating part according to any one of claims 1 to 3.
  11.  請求項4に記載された放熱部品用銅合金板からなる放熱部品。 A heat dissipating component comprising the copper alloy plate for heat dissipating component according to claim 4.
  12.  請求項5に記載された放熱部品用銅合金板からなる放熱部品。 A heat dissipating component comprising the copper alloy plate for heat dissipating component according to claim 5.
  13.  請求項6に記載された放熱部品用銅合金板からなる放熱部品。 A heat dissipating component comprising the copper alloy plate for heat dissipating component according to claim 6.
  14.  請求項7に記載された放熱部品用銅合金板からなる放熱部品。 A heat dissipating component comprising the copper alloy plate for heat dissipating component according to claim 7.
  15.  請求項8に記載された放熱部品用銅合金板からなる放熱部品。 A heat dissipating component comprising the copper alloy plate for heat dissipating component according to claim 8.
  16.  請求項9に記載された放熱部品用銅合金板からなる放熱部品。 A heat dissipating component comprising the copper alloy plate for heat dissipating component according to claim 9.
  17.  請求項1~3のいずれかに記載された放熱部品用銅合金板からなるコイル。 A coil comprising a copper alloy plate for a heat dissipation component according to any one of claims 1 to 3.
  18.  請求項4に記載された放熱部品用銅合金板からなるコイル。 A coil made of a copper alloy plate for a heat dissipation component according to claim 4.
  19.  請求項5に記載された放熱部品用銅合金板からなるコイル。 A coil made of a copper alloy plate for a heat dissipation component according to claim 5.
  20.  請求項6に記載された放熱部品用銅合金板からなるコイル。 A coil made of a copper alloy plate for a heat dissipation component according to claim 6.
PCT/JP2017/010493 2016-03-17 2017-03-15 Copper alloy plate for heat-dissipation component WO2017159749A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-054204 2016-03-17
JP2016054204A JP6283046B2 (en) 2016-03-17 2016-03-17 Copper alloy plate for heat dissipation parts

Publications (1)

Publication Number Publication Date
WO2017159749A1 true WO2017159749A1 (en) 2017-09-21

Family

ID=59850758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010493 WO2017159749A1 (en) 2016-03-17 2017-03-15 Copper alloy plate for heat-dissipation component

Country Status (3)

Country Link
JP (1) JP6283046B2 (en)
TW (1) TWI628407B (en)
WO (1) WO2017159749A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111373199A (en) * 2017-11-28 2020-07-03 日酸田中株式会社 Gas cutting nozzle
CN111809079A (en) * 2020-07-23 2020-10-23 郑州恒天铜业有限公司 High-strength high-conductivity copper alloy wire material and preparation method thereof
WO2022126723A1 (en) * 2020-12-16 2022-06-23 苏州森诺扬机械有限公司 Adjustable stamping apparatus for machining of hardware products
WO2022126726A1 (en) * 2020-12-16 2022-06-23 苏州森诺扬机械有限公司 Corner folding device for machining hardware product

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113122755A (en) * 2021-04-16 2021-07-16 江西富鸿金属有限公司 Tinned alloy wire for medical data transmission and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045204A (en) * 2006-07-21 2008-02-28 Kobe Steel Ltd Copper alloy sheet for electrical/electronic part with excellent oxide film adhesion
JP2014234534A (en) * 2013-05-31 2014-12-15 Jx日鉱日石金属株式会社 Copper alloy sheet excellent in conductivity and deflection coefficient
JP5851000B1 (en) * 2014-08-22 2016-02-03 株式会社神戸製鋼所 Copper alloy strip for LED lead frame
JP2016188406A (en) * 2015-03-30 2016-11-04 株式会社神戸製鋼所 Copper alloy sheet for heat radiation component

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3344700B2 (en) * 1998-06-01 2002-11-11 株式会社神戸製鋼所 High-strength, high-conductivity copper alloy sheet for leadframes with excellent heat treatment during press punching
JP4872577B2 (en) * 2006-09-29 2012-02-08 日立電線株式会社 Copper alloy backing plate and copper alloy manufacturing method for backing plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045204A (en) * 2006-07-21 2008-02-28 Kobe Steel Ltd Copper alloy sheet for electrical/electronic part with excellent oxide film adhesion
JP2014234534A (en) * 2013-05-31 2014-12-15 Jx日鉱日石金属株式会社 Copper alloy sheet excellent in conductivity and deflection coefficient
JP5851000B1 (en) * 2014-08-22 2016-02-03 株式会社神戸製鋼所 Copper alloy strip for LED lead frame
JP2016188406A (en) * 2015-03-30 2016-11-04 株式会社神戸製鋼所 Copper alloy sheet for heat radiation component

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111373199A (en) * 2017-11-28 2020-07-03 日酸田中株式会社 Gas cutting nozzle
CN111809079A (en) * 2020-07-23 2020-10-23 郑州恒天铜业有限公司 High-strength high-conductivity copper alloy wire material and preparation method thereof
CN111809079B (en) * 2020-07-23 2021-12-17 郑州恒天铜业有限公司 High-strength high-conductivity copper alloy wire material and preparation method thereof
WO2022126723A1 (en) * 2020-12-16 2022-06-23 苏州森诺扬机械有限公司 Adjustable stamping apparatus for machining of hardware products
WO2022126726A1 (en) * 2020-12-16 2022-06-23 苏州森诺扬机械有限公司 Corner folding device for machining hardware product

Also Published As

Publication number Publication date
TW201809581A (en) 2018-03-16
JP6283046B2 (en) 2018-02-21
TWI628407B (en) 2018-07-01
JP2017166044A (en) 2017-09-21

Similar Documents

Publication Publication Date Title
KR101979533B1 (en) Copper alloy plate and heat dissipation parts for heat dissipation parts
WO2017159749A1 (en) Copper alloy plate for heat-dissipation component
WO2017078013A1 (en) Copper alloy plate for heat dissipation component
JPWO2010016428A1 (en) Copper alloy material for electrical and electronic parts
WO2018066413A1 (en) Copper alloy plate for heat dissipation components, heat dissipation component, and method for producing heat dissipation component
WO2018066414A1 (en) Copper alloy plate for heat dissipation component, heat dissipation component, and method for manufacturing heat dissipation component
WO2016158390A1 (en) Copper alloy sheet for heat dissipation component, and heat dissipation component
WO2016152648A1 (en) Copper alloy sheet for heat dissipating component and heat dissipating component
JP4567906B2 (en) Copper alloy plate or strip for electronic and electrical parts and method for producing the same
WO2018062255A1 (en) Copper alloy sheet for heat dissipation component, heat dissipation component, and method for producing heat dissipation component
TWI605139B (en) A copper alloy sheet for a heat radiating component and a heat radiating component
TWI697652B (en) Copper alloy plate for heat dissipation parts, heat dissipation parts, and method for manufacturing heat dissipation parts
KR101688300B1 (en) Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDING WORKABILITY
JP2010285671A (en) High-strength and high-electrical conductivity copper alloy and method of producing the same
JP2018162518A (en) Copper alloy sheet for vapor chamber and vapor chamber
WO2017110759A1 (en) Copper alloy plate for heat-dissipation component
JP2672241B2 (en) Method for producing copper alloy material excellent in strength and bendability
JP2018070919A (en) Copper alloy sheet for heat radiation part
JP2023032936A (en) Copper plate material and method for producing the same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766745

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766745

Country of ref document: EP

Kind code of ref document: A1