WO2018066315A1 - 電解処理治具及び電解処理方法 - Google Patents

電解処理治具及び電解処理方法 Download PDF

Info

Publication number
WO2018066315A1
WO2018066315A1 PCT/JP2017/032675 JP2017032675W WO2018066315A1 WO 2018066315 A1 WO2018066315 A1 WO 2018066315A1 JP 2017032675 W JP2017032675 W JP 2017032675W WO 2018066315 A1 WO2018066315 A1 WO 2018066315A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
terminal
processed
wafer
contact
Prior art date
Application number
PCT/JP2017/032675
Other languages
English (en)
French (fr)
Inventor
智久 星野
正人 ▲濱▼田
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to KR1020197006952A priority Critical patent/KR102416775B1/ko
Priority to US16/330,812 priority patent/US11542627B2/en
Priority to JP2018543803A priority patent/JP6793742B2/ja
Publication of WO2018066315A1 publication Critical patent/WO2018066315A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/005Contacting devices
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/001Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/007Current directing devices
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/06Suspending or supporting devices for articles to be coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/10Agitating of electrolytes; Moving of racks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • H01L21/2885Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/145Indicating the presence of current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means

Definitions

  • the present invention relates to an electrolytic processing jig for performing electrolytic processing on a substrate to be processed, and an electrolytic processing method using the electrolytic processing jig.
  • Electrolytic process is a technique used for various treatments such as plating treatment and etching treatment.
  • electrolytic treatment is also performed in the manufacturing process of a semiconductor device.
  • the above-described plating treatment is conventionally performed by a plating apparatus described in Patent Document 1, for example.
  • the semiconductor wafer disposed facing the anode electrode is disposed such that the plating treatment surface faces downward.
  • the support part which supports a semiconductor wafer comprises the cathode electrode connected to the said semiconductor wafer. Then, the plating treatment of the semiconductor wafer is performed by jetting a plating solution through the anode electrode toward the plating treatment surface of the semiconductor wafer.
  • the plating apparatus described in Patent Document 1 is provided with an ultrasonic vibrator, and the plating liquid is stirred by transmitting ultrasonic waves oscillated from the ultrasonic vibrator to the plating liquid. As a result, the uniformity of the plating process is improved.
  • the present invention has been made in view of such a point, and an object thereof is to efficiently and appropriately perform electrolytic treatment on a substrate to be processed.
  • one embodiment of the present invention is an electrolytic processing jig for performing electrolytic processing on a substrate to be processed, which includes a flat substrate, an electrode provided on the substrate, and three electrodes on the substrate.
  • a terminal that is provided more than one and has elasticity, and that contacts the outer periphery of the substrate to be processed; and a detection unit that electrically detects that at least one of the terminals has contacted the substrate to be processed.
  • the electrolytic processing jig and the substrate to be processed are moved relatively close to each other, and the terminal is brought into contact with the substrate to be processed. At this time, contact between the terminal and the substrate to be processed can be detected by the detection unit, and such contact can be reliably performed. Thereafter, in a state where the processing liquid is supplied between the electrode and the substrate to be processed, a voltage is applied between the electrode and the substrate to be processed, and the substrate to be processed is subjected to electrolytic treatment. Since the terminal is in contact with the outer peripheral portion of the substrate to be processed, and the terminal and the substrate to be processed are in reliable contact as described above, the electrolytic treatment can be performed uniformly. Moreover, in order to improve the uniformity of the electrolytic treatment, there is no need for a large-scale means for stirring the treatment liquid as in the prior art, and the apparatus configuration can be simplified. Therefore, the electrolytic treatment can be efficiently and appropriately manufactured.
  • Another embodiment of the present invention is an electrolytic treatment method for performing electrolytic treatment on a substrate to be processed using an electrolytic treatment jig, wherein the electrolytic treatment jig is provided on a flat substrate and the substrate. And three or more electrodes provided on the substrate and having elasticity and having contact with an outer peripheral portion of the substrate to be processed, and that at least one of the terminals is in contact with the substrate to be processed. And a detecting unit for automatically detecting.
  • the electrolytic treatment jig and the substrate to be processed are moved so as to be relatively close to each other, and the terminal is brought into contact with the substrate to be processed.
  • the detection unit detects contact between the terminal and the substrate to be processed.
  • FIG. 6 is an explanatory diagram showing a state in which third to eighth terminals are brought into contact with a wafer. It is explanatory drawing which shows a mode that an electrolytic-processing jig
  • FIG. 1 is an explanatory diagram showing an outline of a configuration of a semiconductor device manufacturing apparatus including an electrolytic processing jig according to the present embodiment.
  • a plating process is performed as an electrolytic process on a semiconductor wafer W (hereinafter referred to as “wafer W”) as a substrate to be processed.
  • a seed layer (not shown) used as an electrode is formed on the surface of the wafer W.
  • the dimensions of each component do not necessarily correspond to the actual dimensions in order to prioritize easy understanding of the technology.
  • the manufacturing apparatus 1 has a wafer holding unit 10.
  • the wafer holding unit 10 is a spin chuck that holds and rotates the wafer W.
  • the wafer holder 10 has an upper surface 10a having a diameter larger than the diameter of the wafer W in plan view, and a suction port (not shown) for sucking the wafer W is provided on the upper surface 10a, for example. By suction from this suction port, the wafer W can be sucked and held on the wafer holder 10.
  • the wafer holding unit 10 is provided with a drive mechanism 11 including, for example, a motor, and can be rotated at a predetermined speed by the drive mechanism 11. Further, the drive mechanism 11 is provided with a lifting drive unit (not shown) such as a cylinder, and the wafer holding unit 10 is movable in the vertical direction.
  • a drive mechanism 11 including, for example, a motor, and can be rotated at a predetermined speed by the drive mechanism 11.
  • the drive mechanism 11 is provided with a lifting drive unit (not shown) such as a cylinder, and the wafer holding unit 10 is movable in the vertical direction.
  • An electrolytic processing jig 20 is provided above the wafer holding unit 10 so as to face the wafer holding unit 10.
  • the electrolytic processing jig 20 has a base 21 made of an insulator.
  • the base 21 has a flat plate shape and has a lower surface 21a having a diameter larger than the diameter of the wafer W in plan view.
  • the base 21 is provided with a terminal 22, a direct electrode 23, and an indirect electrode 24.
  • the terminal 22 is provided on the outer peripheral portion of the base body 21 so as to protrude from the lower surface 21a.
  • eight terminals 22 are provided and arranged on the concentric circumference of the base body 21 at equal intervals.
  • the terminal 22 is bent and has elasticity.
  • the plurality of terminals 22 have a virtual surface constituted by the tip portions thereof, that is, a plane formed by the tip portions (points) of the plurality of terminals 22 and the surface of the wafer W held by the wafer holding portion 10. It arrange
  • the terminal 22 contacts the outer periphery of the wafer W (seed layer) and applies a voltage to the wafer W, as will be described later.
  • the number of terminals 22 is not limited to this embodiment, and may be at least three.
  • the shape of the terminal 22 is not limited to this Embodiment, The terminal 22 should just have elasticity.
  • the direct electrode 23 is provided on the lower surface 21 a of the base 21.
  • the direct electrode 23 faces the wafer W held by the wafer holding unit 10 and is arranged substantially in parallel. And when performing a plating process, the electrode 23 contacts the plating solution on the wafer W so that it may mention later.
  • the indirect electrode 24 is provided inside the base body 21. That is, the indirect electrode 24 is not exposed to the outside.
  • a DC power supply 30 is connected to the terminal 22, the direct electrode 23, and the indirect electrode 24.
  • the terminal 22 is connected to the negative electrode side of the DC power supply 30.
  • the direct electrode 23 and the indirect electrode 24 are each connected to the positive electrode side of the DC power supply 30.
  • a detection unit 31 is provided in a circuit connecting the DC power supply 30 and the terminal 22.
  • the detection unit 31 is an ohmmeter that measures a resistance value between one terminal 22 and another terminal 22 among the plurality of terminals 22.
  • the detection part 31 electrically detects the contact of the terminal 22 with respect to the wafer W by measuring this electric current value so that it may mention later.
  • a moving mechanism 40 for moving the base body 21 is provided on the upper surface 21 b side of the base body 21.
  • the moving mechanism 40 has a pressing portion 41 that presses and moves the upper surface 21 b of the base 21.
  • a pressing plate 42, a supporting plate 43, and a supporting column 44 are integrally formed.
  • the pressing plate 42 is provided in contact with the upper surface 21 b of the base 21, and the support plate 43 is provided to face the pressing plate 42.
  • Each of the pressing plate 42 and the support plate 43 is a rigid body, and is not deformed even when a load is applied.
  • the support column 44 is provided by connecting the pressing plate 42 and the support plate 43.
  • the pressing unit 41 is provided with a lifting drive unit 45 that moves the pressing unit 41 up and down.
  • the raising / lowering drive part 45 is an air bearing cylinder, for example, and is attached to the support pillar 44.
  • the structure of the raising / lowering drive part 45 is not limited to this Embodiment, As long as the press part 41 is raised / lowered, it is arbitrary.
  • a load measuring unit 46 is provided between the pressing plate 42 and the support plate 43.
  • a load cell is used for the load measuring unit 46.
  • the load measuring unit 46 is fixed by a support member 47.
  • the pressing part 41 is lowered by the lift drive part 45, the support plate 43 comes into contact with the load measuring part 46, and the load measuring part 46 measures the load.
  • the load measured by the load measuring unit 46 is a load applied to the terminal 22 as described later.
  • the configuration of the load measuring unit 46 is not limited to the present embodiment, and is arbitrary as long as the load applied to the terminal 22 is measured.
  • a nozzle 50 for supplying a plating solution onto the wafer W is provided between the wafer holder 10 and the electrolytic processing jig 20.
  • the nozzle 50 is movable in a horizontal direction and a vertical direction by a moving mechanism 51 and is configured to be movable forward and backward with respect to the wafer holding unit 10.
  • the nozzle 50 communicates with a plating solution supply source (not shown) that stores the plating solution, and the plating solution is supplied from the plating solution supply source to the nozzle 50.
  • a plating solution supply source not shown
  • the plating solution for example, a mixed solution in which copper sulfate and sulfuric acid are dissolved is used. In such a case, the plating solution contains, for example, copper ions.
  • the nozzle 50 is used as the treatment liquid supply unit, but various other means can be used as a mechanism for supplying the plating liquid.
  • a cup (not shown) for receiving and collecting the liquid scattered or dropped from the wafer W may be provided around the wafer holding unit 10.
  • the above manufacturing apparatus 1 is provided with a control unit (not shown).
  • the control unit is, for example, a computer and has a program storage unit (not shown).
  • the program storage unit stores a program for controlling the processing of the wafer W in the manufacturing apparatus 1.
  • the program is recorded on a computer-readable storage medium such as a computer-readable hard disk (HD), flexible disk (FD), compact disk (CD), magnetic optical desk (MO), or memory card. Or installed in the control unit from the storage medium.
  • a computer-readable storage medium such as a computer-readable hard disk (HD), flexible disk (FD), compact disk (CD), magnetic optical desk (MO), or memory card.
  • Table 1 shows the contact state of the terminal 22, the position of the electrolytic processing jig 20, the load measured by the load measuring unit 46, and the resistance value measured by the detecting unit 31 in each step of the plating process.
  • the nozzle 50 is moved to above the center of the wafer W held by the wafer holding unit 10 by the moving mechanism 51. Thereafter, the plating solution M is supplied from the nozzle 50 to the center of the wafer W while rotating the wafer W by the drive mechanism 11. The supplied plating solution M is diffused over the entire surface of the wafer W by centrifugal force. At this time, as the wafer W rotates, the plating solution M is uniformly diffused within the wafer surface.
  • step S1 in Table 1 When the supply of the plating solution M from the nozzle 50 is stopped and the rotation of the wafer W is stopped, the plating solution M stays on the wafer W due to the surface tension of the plating solution M as shown in FIG. A liquid paddle of the plating liquid M is formed (step S1 in Table 1).
  • step S1 the electrolytic treatment jig 20 is not moved from the normal standby position, and the height position of the electrolytic treatment jig 20 is P1.
  • the distance between the upper surface 10a of the wafer holder 10 and the lower surface 21a of the base 21 of the electrolytic processing jig 20 is about 100 mm.
  • All the terminals 22 are not in contact with the wafer W.
  • the load measuring unit 46 is not in contact with the support plate 43, and the load measured by the load measuring unit 46 is zero. Furthermore, no current flows between the terminals 22, and the resistance value measured by the detection unit 31 is infinite.
  • the electrolytic treatment jig 20 is lowered by the moving mechanism 40.
  • the imaginary plane formed by the tip portions of the plurality of terminals 22 is substantially parallel to the surface of the wafer W held by the wafer holding unit 10, but actually, There is a slight variation in height.
  • the wafer W held on the base 21 of the electrolytic processing jig 20 or the wafer holder 10 has a minute surface roughness and a minute inclination, that is, the surface of the wafer W is completely It is not flat. Due to these factors, when the electrolytic processing jig 20 is lowered and the terminals 22 are brought into contact with the wafer W, the timing at which the terminals 22 come into contact with the wafer W varies.
  • a case will be described in which all of the plurality of terminals 22 are in contact with the wafer W in order to facilitate understanding of the technology.
  • the electrolytic processing jig 20 when the electrolytic processing jig 20 is lowered, first, the first terminal 22a comes into contact with the wafer W (step S2 in Table 1). At this time, the height position of the electrolytic treatment jig 20 is P2.
  • the height position P2 is the origin height when teaching the height adjustment of the electrolytic processing jig 20 by the moving mechanism 40, for example.
  • step S2 as shown in FIG. 6, the load measuring unit 46 contacts the support plate 43, and the load measuring unit 46 measures the load. In other words, the contact of the first terminal 22a is detected by the load measuring unit 46 measuring a predetermined load.
  • step S2 no current flows between the terminals 22 and 22, and the resistance value measured by the detection unit 31 is infinite as in step S1.
  • the electrolytic treatment jig 20 is further lowered as shown in FIG. 7, the second terminal 22b comes into contact with the wafer W (step S3 in Table 1). At this time, the height position of the electrolytic treatment jig 20 is P3.
  • step S3 a current flows through the wafer W between the first terminal 22a and the second terminal 22b. Then, the detection unit 31 measures a predetermined resistance value corresponding to the resistance value of the wafer W. In other words, the contact of the second terminal 22b is detected by the detection unit 31 measuring a predetermined resistance value.
  • step S3 the load is measured by the load measuring unit 46.
  • the load applied to one terminal 22 is 1 ⁇ 2 of the load measured by the load measuring unit 46.
  • the electrolytic treatment jig 20 is further lowered, the third to eighth terminals 22 are sequentially brought into contact with the wafer W, and all the terminals 22 are brought into contact with the wafer W (step S4 in Table 1). ).
  • the height position of the electrolytic treatment jig 20 is P4.
  • the height position P2 at which the first terminal 22a comes into contact with the wafer W is the origin height when performing the height adjustment teaching of the electrolytic processing jig 20, but in this teaching, The position P4 is used as a height at which all the terminals 22 contact the wafer W.
  • step S4 a current flows between the terminals 22 and 22 via the wafer W as in step S3. Then, the detection unit 31 measures a predetermined resistance value corresponding to the resistance value of the wafer W. In other words, the contact of each terminal 22b is detected by the detection unit 31 measuring a predetermined resistance value.
  • step S4 the load is measured by the load measuring unit 46.
  • the load applied to one terminal 22 is obtained by dividing the load measured by the load measuring unit 46 by the number of terminals in contact.
  • the electrolytic treatment jig 20 is further lowered by a predetermined distance, for example, 1 mm (step S5 in Table 1).
  • the height position of the electrolytic processing jig 20 is P5
  • the distance between the upper surface 10a of the wafer holder 10 and the lower surface 21a of the base 21 of the electrolytic processing jig 20 is about 1 mm. If all the terminals 22 are in contact with the wafer W in step S4, it is possible to start the subsequent plating process. In this way, the terminal is further lowered by lowering the electrolytic processing jig 20 in step S5. The contact between the wafer 22 and the wafer W can be made more reliable.
  • the load applied to each terminal 22 is appropriately controlled by controlling the moving mechanism 40 based on the load measured by the load measuring unit 46. Maintain the load. Then, an electrical contact can be formed between the terminal 22 and the wafer W even for a thin film such as an oxide film or a material with high hardness that makes contact formation difficult.
  • the electrode 23 is directly brought into contact with the plating solution M on the wafer W.
  • the contact between the direct electrode 23 and the plating solution M may be performed at any stage of the steps S2 to S5, but the electrode 23 needs to be in contact with the plating solution M at least in the step S5.
  • step S5 the surface of the electrolytic processing jig 20, that is, the lower surface 21a of the base 21 and the direct electrode 23 (hereinafter simply referred to as the surface of the electrolytic processing jig 20).
  • the surface of the wafer W is parallel. For this reason, the plating process mentioned later can be performed appropriately.
  • a DC voltage is applied using the indirect electrode 24 as an anode and the wafer W as a cathode to form an electric field (electrostatic field).
  • sulfate ions S which are negatively charged particles, gather on the surface (indirect electrode 24 and direct electrode 23) side of the electrolytic processing jig 20, and are positively charged particles on the surface side of the wafer W.
  • the copper ion C moves (step S6 in Table 1).
  • the direct electrode 23 is not connected to the ground but is in an electrically floating state.
  • charge exchange is suppressed on both surfaces of the electrolytic processing jig 20 and the wafer W, charged particles attracted by the electrostatic field are arranged on the electrode surface.
  • the copper ions C are evenly arranged on the surface of the wafer W.
  • the electric field at the time of applying a voltage between the indirect electrode 24 and the wafer W can be increased.
  • the movement of the copper ion C can be accelerated by this high electric field, and the plating rate of a plating process can be improved. Furthermore, by arbitrarily controlling the electric field, the copper ions C arranged on the surface of the wafer W are also arbitrarily controlled.
  • the copper plating 60 can be uniformly deposited on the surface of the wafer W. As a result, the density of crystals in the copper plating 60 is increased, and a high-quality copper plating 60 can be formed. Further, since the reduction is performed in a state where the copper ions C are uniformly arranged on the surface of the wafer W, the copper plating 60 can be generated uniformly and with high quality.
  • the supply of the plating solution M from the nozzle 50, the movement of the copper ions C by the indirect electrode 24, and the reduction of the copper ions C by the direct electrode 23 and the wafer W are repeatedly performed, so that the copper plating 60 becomes a predetermined film. Grows thick. Thus, a series of plating processes in the manufacturing apparatus 1 is completed.
  • the electrolytic processing jig 20 when the electrolytic processing jig 20 is lowered, the contact between the first terminal 22 and the wafer W is first detected by the load measuring unit 46, and then the second to eighth pieces. The contact between the terminal 22 and the wafer W is detected by the detection unit 31. After the contact between the terminal 22 and the wafer W is detected by the load measuring unit 46 and the detection unit 31 as described above, the electrolytic processing jig 20 is further lowered, so that all the terminals 22 and the wafer W are reliably contacted. Can do. Then, by ensuring that all the terminals 22 are in contact with the wafer W, the subsequent plating process can be performed uniformly.
  • the terminals 22 and the wafer W are in reliable contact as described above, the plurality of terminals 22 are in contact with the outer peripheral portion of the wafer W, so that the region surrounded by the plurality of terminals 22 is uniform. Plating treatment can be performed.
  • the contact between the terminal 22 and the wafer W may be controlled by the moving distance of the electrolytic processing jig 20.
  • the accuracy of contact detection is higher when the actual contact is detected using the load measurement unit 46 and the detection unit 31 as in the present embodiment.
  • the direct electrode 23 of the electrolytic processing jig 20 needs to contact the plating solution on the wafer W, but the distance between the surface of the electrolytic processing jig 20 and the surface of the wafer W is very small. For this reason, the surface of the electrolytic processing jig 20 and the surface of the wafer W inevitably need to be parallel.
  • the virtual plane constituted by the tip portions of the plurality of terminals 22 is arranged so as to be substantially parallel to the surface of the wafer W, the electrolytic processing jig 20 is brought into contact with the terminals 22 and the wafer W. And the surface of the wafer W are parallel to each other.
  • the amount of the plating solution M between the electrolytic processing jig 20 and the wafer W affects the film thickness (film formation amount) and uniformity of the copper plating 60
  • the surface of the electrolytic processing jig 20 and the wafer W The surface distance is important.
  • the surface of the electrolytic processing jig 20 and the surface of the wafer W can be made parallel and a minute distance can be maintained. Therefore, the amount of the plating solution M can be appropriately controlled and stabilized, and the plating process can be performed uniformly.
  • the detection unit 31 is an ohmmeter that measures the resistance value between one terminal 22 and the other terminal 22, but instead of this, the presence or absence of current flowing through one terminal 22 It may be an ammeter that detects.
  • the detection unit 31 detects a current flowing through the first terminal 22, that is, detects an open / short circuit in the first terminal 22. Thereby, the contact of the first terminal 22 is detected. At this time, detection of the contact of the first terminal 22 using the load measuring unit 46 may be omitted.
  • the detection unit 31 detects the current flowing through each of the second to eighth terminals 22 and contacts the terminals 22. Is detected.
  • the same effect as the above embodiment can be enjoyed. That is, the contact of all the terminals 22 and the wafer W can be ensured, and the plating process can be performed uniformly.
  • the electrolytic processing jig 20 of the above embodiment further includes a warning unit (not shown) that issues a warning when the contact of the terminal 22 with the wafer W is poor based on the detection result by the detection unit 31. It may be provided. For example, when one of the plurality of terminals 22 becomes non-conductive (for example, when the resistance value detected by the detection unit 31 changes), the terminal 22 may be broken or damaged. . In such a case, the contact of the terminal 22 with the wafer W becomes defective, and as a result, the plating process cannot be performed properly.
  • steps S2 to S4 when the contact failure of the terminal 22 is detected by the detection portion 31, a warning is issued from the warning portion, and the contact failure terminal 22 is replaced. Thereby, the plating process in subsequent process S6, S7 can be performed appropriately, and the yield of the wafer W as a product can be improved.
  • the plating process is performed after all the terminals 22 have contacted the wafer W.
  • a predetermined number of terminals 22 are not all but the wafer 22.
  • the plating process in steps S6 and S7 may be performed.
  • the terminal 22 played both roles of contact detection and electrolytic treatment, but part of the terminal 22 is for contact detection and part is for electrolytic treatment. May be assigned.
  • the electrolytic processing jig 20 is lowered by the moving mechanism 40 and the terminal 22 is brought into contact with the wafer W.
  • the wafer holding unit 10 is raised by the driving mechanism 11. Also good.
  • both the electrolytic processing jig 20 and the wafer holding unit 10 may be moved. Further, the arrangement of the electrolytic treatment jig 20 and the wafer holding unit 10 may be reversed, and the electrolytic treatment jig 20 may be arranged below the wafer holding unit 10.
  • the terminals 22 are brought into contact with the wafer W in the steps S2 to S5.
  • the steps S1 and S2 to S5 are performed. May be reversed. That is, the liquid paddle of the plating solution M may be formed on the wafer W after the terminal 22 is brought into contact with the wafer W.
  • a liquid supply path (not shown) for supplying the plating solution M may be formed in the electrolytic processing jig 20.
  • the indirect electrode 24 is provided in the electrolytic processing jig 20 of the above embodiment, the indirect electrode 24 may be omitted. In such a case, step S6 is omitted, and after step S5, plating in step S7 is performed.
  • the wafer holding unit 10 is a spin chuck, but instead of this, a cup having an upper surface opened and storing the plating solution M therein may be used.
  • the present invention can be applied to various electrolytic processes such as an etching process.
  • the present invention can also be applied to the case where the ions to be processed are oxidized on the surface side of the wafer W.
  • the ion to be processed is an anion, and the same electrolytic treatment may be performed with the anode and the cathode reversed in the above embodiment.
  • the same effects as those in the above embodiment can be obtained regardless of the difference between oxidation and reduction of ions to be processed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

被処理基板に電解処理を行う電解処理治具は、平板状の基体と、当該基体に設けられた電極と、当該基体に3本以上設けられた弾性を有し、かつ被処理基板の外周部に接触する端子と、これらの端子のうち少なくとも1本の端子が、被処理基板に接触したことを電気的に検知する検知部と、を有している。

Description

電解処理治具及び電解処理方法
(関連出願の相互参照)
 本願は、2016年10月7日に日本国に出願された特願2016-198729号に基づき、優先権を主張し、その内容をここに援用する。
 本発明は、被処理基板に電解処理を行う電解処理治具、及び当該電解処理治具を用いた電解処理方法に関する。
 電解プロセス(電解処理)は、めっき処理やエッチング処理等の種々の処理に用いられる技術である。例えば半導体装置の製造工程においても、電解処理は行われる。
 上述しためっき処理は、従来、例えば特許文献1に記載されためっき装置で行われる。めっき装置では、アノード電極に対面配置された半導体ウェハが、そのめっき処理面が下方に向くように配置される。また、半導体ウェハを支持する支持部は、当該半導体ウェハに接続されるカソード電極を構成している。そして半導体ウェハのめっき処理面に向けて、前記アノード電極を通してめっき液を噴流させることにより半導体ウェハのめっき処理を行う。
 また、特許文献1に記載されためっき装置には超音波振動子が設けられており、かかる超音波振動子から発振される超音波をめっき液に伝えることで、めっき液を攪拌している。これより、めっき処理の均一性の向上を図っている。
日本国特開2004-250747号公報
 しかしながら、特許文献1に記載されためっき装置を用いた場合、めっき処理の均一性向上を実現するためには、めっき液を攪拌するための超音波振動子が必要となり、大掛かりな攪拌手段が必要となる。そして装置構成上、このような撹拌手段を設けることができない場合もある。
 本発明は、かかる点に鑑みてなされたものであり、被処理基板に対する電解処理を効率よく且つ適切に行うことを目的とする。
 前記の目的を達成するため、本発明の一態様は、被処理基板に電解処理を行う電解処理治具であって、平板状の基体と、前記基体に設けられた電極と、前記基体に3本以上設けられ、且つ弾性を有し、前記被処理基板の外周部に接触する端子と、前記端子の少なくとも1本が前記被処理基板に接触したことを電気的に検知する検知部と、を有している。
 前記した本発明の一態様によれば、先ず、電解処理治具と被処理基板を相対的に近づけるように移動させ、端子を被処理基板に接触させる。この際、検知部によって端子と被処理基板の接触を検知することができ、かかる接触を確実に行うことができる。その後、電極と被処理基板の間に処理液が供給された状態で、電極と被処理基板の間に電圧を印加して、当該被処理基板に電解処理を行う。端子は被処理基板の外周部に接触し、また上述したように端子と被処理基板とは確実に接触しているので、均一に電解処理を行うことができる。しかも、電解処理の均一性を向上させるため、従来のように処理液を攪拌させるための大掛かりな手段が必要なく、装置構成を簡易化することができる。したがって、電解処理を効率よく且つ適切に製造することができる。
 別な観点による本発明の一態様は、電解処理治具を用いて被処理基板に電解処理を行う電解処理方法であって、前記電解処理治具は、平板状の基体と、前記基体に設けられた電極と、前記基体に3本以上設けられ、且つ弾性を有し、前記被処理基板の外周部に接触する端子と、前記端子の少なくとも1本が前記被処理基板に接触したことを電気的に検知する検知部と、を有している。そして前記電解処理方法は、前記電解処理治具と前記被処理基板を相対的に近づけるように移動させ、前記端子を前記被処理基板に接触させる第1の工程と、その後、前記電極と前記被処理基板の間に処理液が供給された状態で、前記電極と前記被処理基板の間に電圧を印加して、当該被処理基板に電解処理を行う第2の工程と、を有し、前記第1の工程において、前記検知部によって前記端子と前記被処理基板の接触を検知する。
 本発明によれば、被処理基板に対する電解処理を効率よく且つ適切に行うことができる。
本実施の形態にかかる電解処理治具を備えた、半導体装置の製造装置の構成の概略を示す説明図である。 移動機構の構成の概略を示す説明図である。 ウェハ上にめっき液の液パドルを形成する様子を示す説明図である。 ウェハ上にめっき液の液パドルを形成した様子を示す説明図である。 1本目の端子をウェハに接触させる様子を示す説明図である。 1本目の端子をウェハに接触させる際の移動機構の様子を示す説明図である。 2本目の端子をウェハに接触させる様子を示す説明図である。 3本目~8本目の端子をウェハに接触させる様子を示す説明図である。 すべての端子をウェハに接触させた後、電解処理治具を所定距離させる様子を示す説明図である。 間接電極とウェハとの間に電圧を印加した様子を示す説明図である。 直接電極とウェハとの間に電圧を印加した様子を示す説明図である。
 以下、添付図面を参照して、本発明の実施の形態について説明する。なお、以下に示す実施の形態によりこの発明が限定されるものではない。
 図1は、本実施の形態にかかる電解処理治具を備えた、半導体装置の製造装置の構成の概略を示す説明図である。製造装置1では、被処理基板としての半導体ウェハW(以下、「ウェハW」という。)に対し、電解処理としてめっき処理を行う。このウェハWの表面には、電極として用いられるシード層(図示せず)が形成されている。なお、以下の説明で用いる図面において、各構成要素の寸法は、技術の理解の容易さを優先させるため、必ずしも実際の寸法に対応していない。
 製造装置1は、ウェハ保持部10を有している。ウェハ保持部10は、ウェハWを保持して回転させるスピンチャックである。ウェハ保持部10は、平面視においてウェハWの径より大きい径を有する上面10aを有し、当該上面10aには、例えばウェハWを吸引する吸引口(図示せず)が設けられている。この吸引口からの吸引により、ウェハWをウェハ保持部10上に吸着保持できる。
 ウェハ保持部10には、例えばモータなどを備えた駆動機構11が設けられ、その駆動機構11により所定の速度に回転できる。また、駆動機構11には、シリンダなどの昇降駆動部(図示せず)が設けられており、ウェハ保持部10は鉛直方向に移動可能である。
 ウェハ保持部10の上方には、当該ウェハ保持部10に対向して、電解処理治具20が設けられている。電解処理治具20は、絶縁体からなる基体21を有している。基体21は平板状であり、平面視においてウェハWの径より大きい径を有する下面21aを有している。基体21には、端子22、直接電極23及び間接電極24が設けられている。
 端子22は、基体21の外周部において、下面21aから突出して設けられている。端子22は例えば8本設けられ、基体21の同心円周上に均等間隔に配置されている。また、端子22は屈曲し、弾性を有している。さらに、複数の端子22は、その先端部から構成される仮想面、すなわち複数の各端子22の先端部(点)によって形成される平面が、ウェハ保持部10に保持されたウェハWの表面と略平行になるように配置されている。
 そして、めっき処理を行う際、端子22は、後述するようにウェハW(シード層)の外周部に接触し、当該ウェハWに電圧を印加する。なお、端子22の数は本実施の形態に限定されず、少なくとも3本以上であればよい。また、端子22の形状も本実施の形態に限定されず、端子22が弾性を有していればよい。
 直接電極23は、基体21の下面21aに設けられている。直接電極23は、ウェハ保持部10に保持されたウェハWに対向し、且つ略平行に配置されている。そして、めっき処理を行う際、直接電極23は、後述するようにウェハW上のめっき液に接触する。
 間接電極24は、基体21の内部に設けられている。すなわち、間接電極24は外部に露出していない。
 端子22、直接電極23及び間接電極24には、直流電源30が接続されている。端子22は、直流電源30の負極側に接続されている。直接電極23と間接電極24は、それぞれ直流電源30の正極側に接続されている。
 また、直流電源30と端子22を接続する回路には、検知部31が設けられている。検知部31は、複数の端子22のうち、一の端子22と他の端子22の間の抵抗値を測定する抵抗計である。そして、検知部31は、この電流値を測定することにより、後述するようにウェハWに対する端子22の接触を電気的に検知する。
 基体21の上面21b側には、当該基体21を移動させる移動機構40が設けられている。図2に示すように移動機構40は、基体21の上面21bを押圧して移動させる押圧部41を有している。押圧部41は、押圧板42、支持板43及び支持柱44が一体に構成されている。押圧板42は基体21の上面21bに接触して設けられ、支持板43は押圧板42に対向して設けられている。これら押圧板42と支持板43は、それぞれ剛体であり、荷重がかかっても変形しないようになっている。支持柱44は、押圧板42と支持板43の間を接続して設けられている。
 押圧部41には、当該押圧部41を昇降させる昇降駆動部45が設けられている。昇降駆動部45は例えばエアベアリングシリンダであり、支持柱44に取り付けられている。なお、昇降駆動部45の構成は本実施の形態に限定されず、押圧部41を昇降させるものであれば任意である。
 押圧板42と支持板43の間には、荷重測定部46が設けられている。荷重測定部46には、例えばロードセルが用いられる。荷重測定部46は、支持部材47によって固定されている。昇降駆動部45によって押圧部41が下降し、支持板43が荷重測定部46と当接して、荷重測定部46は荷重を測定する。また、この際に荷重測定部46で測定される荷重は、後述するように端子22にかかる荷重となる。なお、荷重測定部46の構成は本実施の形態に限定されず、端子22にかかる荷重を測定するものであれば任意である。
 図1に示すようにウェハ保持部10と電解処理治具20の間には、ウェハW上にめっき液を供給するノズル50が設けられている。ノズル50は、移動機構51によって、水平方向及び鉛直方向に移動自在であり、ウェハ保持部10に対して進退自在に構成されている。またノズル50は、めっき液を貯留するめっき液供給源(図示せず)に連通し、当該めっき液供給源からノズル50にめっき液が供給されるようになっている。なお、めっき液としては、例えば硫酸銅と硫酸を溶解した混合液が用いられ、かかる場合めっき液中には、たとえば銅イオンが含まれている。また、本実施の形態では処理液供給部としてノズル50を用いているが、めっき液を供給する機構としては他の種々の手段を用いることができる。
 なお、ウェハ保持部10の周囲には、ウェハWから飛散又は落下する液体を受け止め、回収するカップ(図示せず)が設けられていてもよい。
 以上の製造装置1には、制御部(図示せず)が設けられている。制御部は、例えばコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、製造装置1におけるウェハWの処理を制御するプログラムが格納されている。なお、前記プログラムは、例えばコンピュータ読み取り可能なハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルデスク(MO)、メモリーカードなどのコンピュータに読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から制御部にインストールされたものであってもよい。
 次に、以上のように構成された製造装置1を用いた製造方法におけるめっき処理について説明する。表1は、めっき処理の各工程における、端子22の接触状態、電解処理治具20の位置、荷重測定部46で測定される荷重、及び検知部31で測定される抵抗値を示している。
Figure JPOXMLDOC01-appb-T000001
 先ず、図3に示すようにウェハ保持部10と電解処理治具20を対向配置した状態で、移動機構51によってノズル50をウェハ保持部10に保持されたウェハWの中心部の上方まで移動させる。その後、駆動機構11によってウェハWを回転させながら、ノズル50からめっき液MをウェハWの中心部に供給する。供給されためっき液Mは遠心力によりウェハW全面に拡散される。このとき、ウェハWが回転することで、めっき液Mはウェハ面内で均一に拡散する。そして、ノズル50からのめっき液Mの供給を停止し、ウェハWの回転を停止すると、図4に示すようにめっき液Mの表面張力によってウェハW上にめっき液Mが留まり、均一な厚みのめっき液Mの液パドルが形成される(表1の工程S1)。
 工程S1では、電解処理治具20は通常の待機位置から移動しておらず、電解処理治具20の高さ位置はP1である。この高さ位置P1において、ウェハ保持部10の上面10aと電解処理治具20の基体21の下面21aとの間の距離は約100mmである。そして、すべての端子22はウェハWに接触していない。また、移動機構40において荷重測定部46は支持板43に当接しておらず、荷重測定部46で測定される荷重はゼロである。さらに、端子22間に電流が流れておらず、検知部31で測定される抵抗値は無限大である。
 その後、移動機構40によって電解処理治具20を下降させる。ここで、上述したように複数の端子22の先端部から構成される仮想面は、ウェハ保持部10に保持されたウェハWの表面と略平行であるが、実際には端子22の先端部の高さには微小なばらつきがある。また、電解処理治具20の基体21やウェハ保持部10に保持されたウェハWは、微小な表面粗さを有し、また微小な傾斜度を有しており、すなわちウェハWの表面は完全に平坦ではない。これらの要因より、電解処理治具20を下降させて端子22をウェハWに接触させる際、各端子22でウェハWに接触するタイミングはばらつく。以下、本実施の形態では、技術の理解を容易にするため、複数の端子22がすべてばらついてウェハWに接触する場合について説明する。
 図5に示すように電解処理治具20を下降させると、先ず1本目の端子22aがウェハWに接触する(表1の工程S2)。この際、電解処理治具20の高さ位置はP2である。高さ位置P2は、例えば移動機構40によって電解処理治具20の高さ調整のティーチングを行う際の原点高さとなる。
 工程S2では、図6に示すように荷重測定部46が支持板43に当接し、荷重測定部46において荷重が測定される。換言すれば、荷重測定部46が所定の荷重を測定することで、1本目の端子22aの接触が検知される。
 また、工程S2では、端子22、22間に電流が流れておらず、検知部31で測定される抵抗値は工程S1と変わらず無限大である。
 その後、図7に示すように電解処理治具20をさらに下降させると、2本目の端子22bがウェハWに接触する(表1の工程S3)。この際、電解処理治具20の高さ位置はP3である。
 工程S3では、1本目の端子22aと2本目の端子22bの間でウェハWを介して電流が流れる。そうすると、検知部31では、ウェハWの抵抗値に相当する所定の抵抗値が測定される。換言すれば、検知部31が所定の抵抗値を測定することで、2本目の端子22bの接触が検知される。
 また、工程S3では、荷重測定部46において荷重が測定される。そして、1本の端子22にかかる荷重は、荷重測定部46で測定された荷重の1/2となる。
 その後、図8に示すように電解処理治具20をさらに下降させ、3本目~8本目の端子22を順次ウェハWに接触させ、すべての端子22をウェハWに接触させる(表1の工程S4)。この際、電解処理治具20の高さ位置はP4である。ここで、上述したように1本目の端子22aがウェハWに接触する高さ位置P2が、電解処理治具20の高さ調整のティーチングを行う際の原点高さとなるが、このティーチングにおいて、高さ位置P4はすべての端子22がウェハWに接触する高さとして用いられる。
 工程S4では、工程S3と同様に各端子22、22間でウェハWを介して電流が流れる。そうすると、検知部31では、ウェハWの抵抗値に相当する所定の抵抗値が測定される。換言すれば、検知部31が所定の抵抗値を測定することで、各端子22bの接触が検知される。
 また、工程S4では、荷重測定部46において荷重が測定される。そして、1本の端子22にかかる荷重は、荷重測定部46で測定された荷重を、接触する端子の数で除したものとなる。
 その後、図9に示すように電解処理治具20を所定距離、例えば1mmさらに下降させる(表1の工程S5)。この際、電解処理治具20の高さ位置はP5であり、ウェハ保持部10の上面10aと電解処理治具20の基体21の下面21aとの間の距離は約1mmである。工程S4においてすべての端子22がウェハWに接触していれば、その後のめっき処理を開始することは可能であるが、このように工程S5において電解処理治具20をさらに下降させることで、端子22とウェハWの接触をより確実なものとすることができる。
 そして、このように工程S5においてすべての端子22とウェハWを接触させる際、荷重測定部46で測定された荷重に基づいて移動機構40を制御することで、各端子22にかかる荷重を適切な荷重に維持する。そうすると、例えば酸化膜などの薄膜や、接点形成が困難な硬度の高い材料に対しても、端子22とウェハWの間に電気的接点を形成することができる。
 また、工程S5においてすべての端子22とウェハWを接触させる際には、直接電極23をウェハW上のめっき液Mに接触させる。この直接電極23とめっき液Mとの接触は、工程S2~S5のいずれの段階で行われてもよいが、少なくとも工程S5において直接電極23はめっき液Mに接触している必要がある。
 さらに、工程S5においてすべての端子22とウェハWが接触しているので、電解処理治具20の表面、すなわち基体21の下面21a及び直接電極23(以下単に電解処理治具20の表面ということがある)と、ウェハWの表面が平行になっている。このため、後述するめっき処理を適切に行うことができる。
 その後、間接電極24を陽極とし、ウェハWを陰極として直流電圧を印加して、電界(静電場)を形成する。そうすると、図10に示すように電解処理治具20の表面(間接電極24及び直接電極23)側に負の荷電粒子である硫酸イオンSが集まり、ウェハWの表面側に正の荷電粒子である銅イオンCが移動する(表1の工程S6)。
 このとき、直接電極23が陰極になるのを回避するため、直接電極23をグランドに接続せず、電気的にフローティング状態にしている。かかる場合、電解処理治具20とウェハWのいずれの表面においても電荷交換が抑制されるので、静電場により引きつけられた荷電粒子が電極表面に配列されることになる。そして、ウェハWの表面においても銅イオンCが均一に配列される。また、ウェハW表面で銅イオンCの電荷交換が行われず、水の電気分解も抑制されるので、間接電極24とウェハWとの間に電圧を印可する際の電界を高くすることができる。そして、この高電界によって銅イオンCの移動を速くでき、めっき処理のめっきレートを向上させることができる。さらに、この電界を任意に制御することで、ウェハWの表面に配列される銅イオンCも任意に制御される。
 その後、十分な銅イオンCがウェハW側に移動して集積すると、直接電極23を陽極とし、ウェハWを陰極として電圧を印加して、直接電極23とウェハWとの間に電流を流す。そうすると、図11に示すようにウェハWの表面に均一に配列されている銅イオンCの電荷交換が行われ、銅イオンCが還元されて、ウェハWの表面に銅めっき60が析出する(表1の工程S7)。なお、このとき硫酸イオンSは直接電極23によって酸化されている。
 ウェハWの表面に十分な銅イオンCが集積し、均一に配列された状態で還元されるので、ウェハWの表面に銅めっき60を均一に析出させることができる。結果的に、銅めっき60における結晶の密度が高くなり、品質の良い銅めっき60を形成することができる。また、ウェハWの表面に銅イオンCが均一に配列された状態で還元を行っているので、銅めっき60を均一かつ高品質に生成することができるのである。
 そして、上述したノズル50からのめっき液Mの供給、間接電極24による銅イオンCの移動、直接電極23及びウェハWによる銅イオンCの還元が繰り返し行われることで、銅めっき60が所定の膜厚に成長する。こうして、製造装置1における一連のめっき処理が終了する。
 以上の実施の形態によれば、電解処理治具20を下降させていくと、先ず、1本目の端子22とウェハWの接触は荷重測定部46によって検知され、続いて、2本目~8本目の端子22とウェハWの接触は検知部31で検知される。このように荷重測定部46と検知部31で端子22とウェハWの接触が検知された後、さらに電解処理治具20を下降させるので、すべての端子22とウェハWの接触を確実に行うことができる。そして、すべての端子22とウェハWの接触が確保されることで、後続のめっき処理を均一に行うことができる。
 また、上述のように端子22とウェハWが確実に接触しているのに加え、複数の端子22はウェハWの外周部に接触するので、これら複数の端子22に囲まれた領域では均一にめっき処理を行うことができる。
 ここで、端子22とウェハWの接触は、電解処理治具20の移動距離で制御することも考えられる。この点、本実施の形態のように荷重測定部46と検知部31を用いて実際の接触を検知する方が、接触検知の精度が高くなる。
 また、めっき処理を行う際、電解処理治具20の直接電極23とウェハW上のめっき液が接触する必要があるが、電解処理治具20の表面とウェハWの表面の距離は微小であるため、必然的に電解処理治具20の表面とウェハWの表面が平行である必要がある。この点、複数の端子22の先端部から構成される仮想面が、ウェハWの表面と略平行になるように配置されているので、端子22とウェハWが接触する際、電解処理治具20の表面とウェハWの表面が平行となる。換言すれば、電解処理治具20に複数の端子22が設けられているので、電解処理治具20の表面とウェハWの表面の平行が保証される。したがって、かかる観点からもめっき処理を適切に行うことができる。
 さらに、電解処理治具20とウェハWの間のめっき液Mの量は、銅めっき60の膜厚(成膜量)、均一性に影響を及ぼすため、電解処理治具20の表面とウェハWの表面の距離は重要である。この点、本実施の形態では、電解処理治具20の表面とウェハWの表面を平行にし、且つ微小な距離を維持できる。したがって、めっき液Mの量を適切に制御して安定化させることができ、めっき処理を均一に行うことができる。
 以上の実施の形態では、検知部31は一の端子22と他の端子22の間の抵抗値を測定する抵抗計であったが、これに代えて、1本の端子22を流れる電流の有無を検出する電流計であってもよい。
 かかる場合、工程S2において1本目の端子22がウェハWに接触する際、検知部31が1本目の端子22を流れる電流を検出し、すなわち1本目の端子22におけるオープン・ショートを検出する。これによって1本目の端子22の接触が検知される。この際、荷重測定部46を用いた、1本目の端子22の接触の検知を省略してもよい。
 また、工程S3~S4において、2本目~8本目の端子22がウェハWに接触する際、検知部31がこれら2本目~8本目の端子22のそれぞれを流れる電流を検出し、端子22の接触が検知される。
 本実施の形態においても、上記実施の形態と同じ効果を享受できる。すなわち、すべての端子22とウェハWの接触を確保して、めっき処理を均一に行うことができる。
 以上の実施の形態の電解処理治具20には、検知部31による検知結果に基づいて、ウェハWに対する端子22の接触が不良であった場合に警告を発する警告部(図示せず)がさらに設けられていてもよい。例えば複数の端子22のうち、1本の端子22が非導通になった場合(例えば検知部31で検出される抵抗値が変わった場合)、その端子22が折れたり損傷している場合がある。かかる場合、ウェハWに対する端子22の接触が不良となり、その結果、めっき処理を適切に行うことができない。
 そこで、工程S2~S4において、検知部31によって端子22の接触不良が検知された場合、警告部から警告が発せられ、接触不良の端子22を交換する。これにより、その後の工程S6、S7におけるめっき処理を適切に行うことができ、製品としてのウェハWの歩留まりを向上させることができる。
 以上の実施の形態では、すべての端子22がウェハWに接触した後、めっき処理を行っていたが、電解処理治具20の複数の端子22のうち、すべてではなく所定数の端子22がウェハWに接触した段階で、工程S6、S7におけるめっき処理を行ってもよい。例えば電解処理治具20に設けられる端子22の数が、例えば16本や32本と増加すると、1本の端子22あたりの影響は小さくなるので、実際の運用上は、すべての端子22をウェハWに接触させる必要はない。また、以上の実施の形態では、端子22が接触検知と電解処理の両方の役割を担っていたが、端子22のうちの一部を接触検知用、一部を電解処理用と、それぞれの役割を割り当ててもよい。
 以上の実施の形態では、移動機構40によって電解処理治具20を下降させて、端子22をウェハWに接触させていたが、製造装置1において、駆動機構11によってウェハ保持部10を上昇させてもよい。あるいは、電解処理治具20とウェハ保持部10の両方を移動させてもよい。また、電解処理治具20とウェハ保持部10の配置を逆にし、電解処理治具20をウェハ保持部10の下方に配置してもよい。
 以上の実施の形態では、工程S1においてウェハW上にめっき液Mの液パドルを形成した後、工程S2~S5において端子22をウェハWに接触させていたが、この工程S1と工程S2~S5の順を逆にしてよい。すなわち、端子22をウェハWに接触させた後、ウェハW上にめっき液Mの液パドルを形成してもよい。かかる場合、電解処理治具20にはめっき液Mを供給するための液供給路(図示せず)が形成されていてもよい。
 以上の実施の形態の電解処理治具20には間接電極24が設けられていたが、この間接電極24を書略してもよい。かかる場合、工程S6が省略され、工程S5の後、工程S7のめっき処理が行われる。
 以上の実施の形態では、ウェハ保持部10はスピンチャックであったが、これに代えて、上面が開口し、内部にめっき液Mを貯留するカップを用いてもよい。
 以上の実施の形態では、電解処理としてめっき処理を行う場合について説明したが、本発明は例えばエッチング処理等の種々の電解処理に適用することができる。
 また、以上の実施の形態ではウェハWの表面側において銅イオンCを還元する場合について説明したが、本発明はウェハWの表面側において被処理イオンを酸化する場合にも適用できる。かかる場合、被処理イオンは陰イオンであり、上記実施の形態において陽極と陰極を反対にして同様の電解処理を行えばよい。本実施の形態においても、被処理イオンの酸化と還元の違いはあれ、上記実施の形態と同様の効果を享受することができる。
 以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。本発明はこの例に限らず種々の態様を採りうるものである。
  1  製造装置
  20 電解処理治具
  21 基体
  22 端子
  23 直接電極
  24 間接電極
  30 直流電源
  31 検知部
  40 移動機構
  46 荷重測定部
  60 銅めっき
  C  銅イオン
  M  めっき液
  S  硫酸イオン
  W  ウェハ(半導体ウェハ)

Claims (11)

  1. 被処理基板に電解処理を行う電解処理治具であって、
    平板状の基体と、
    前記基体に設けられた電極と、
    前記基体に3本以上設けられ、且つ弾性を有し、前記被処理基板の外周部に接触する端子と、
    前記端子の少なくとも1本が前記被処理基板に接触したことを電気的に検知する検知部と、を有する、電解処理治具。
  2. 請求項1に記載の電解処理治具において、
    前記検知部は、一の前記端子と他の前記端子の間の抵抗値を測定する。
  3. 請求項1に記載の電解処理治具において、
    前記検知部は、前記端子を流れる電流の有無を検出する。
  4. 請求項1に記載の電解処理治具において、
    前記端子にかかる荷重を測定する荷重測定部をさらに有する。
  5. 請求項1に記載の電解処理治具において、
    前記検知部による検知結果に基づいて、前記被処理基板に対する前記端子の接触が不良であった場合に警告を発する警告部をさらに有する。
  6. 電解処理治具を用いて被処理基板に電解処理を行う電解処理方法であって、
    前記電解処理治具は、
     平板状の基体と、
     前記基体に設けられた電極と、
     前記基体に3本以上設けられ、且つ弾性を有し、前記被処理基板の外周部に接触する端子と、
     前記端子の少なくとも1本が前記被処理基板に接触したことを電気的に検知する検知部と、を有し、
    前記電解処理方法は、
     前記電解処理治具と前記被処理基板を相対的に近づけるように移動させ、前記端子を前記被処理基板に接触させる第1の工程と、
     その後、前記電極と前記被処理基板の間に処理液が供給された状態で、前記電極と前記被処理基板の間に電圧を印加して、当該被処理基板に電解処理を行う第2の工程と、を有し、
    前記第1の工程において、前記検知部によって前記端子と前記被処理基板の接触を検知する。
  7. 請求項6に記載の電解処理方法において、
    前記第1の工程において、前記検知部によって一の前記端子と他の前記端子の間の抵抗値を測定し、当該測定された抵抗値が所定の抵抗値である場合に、前記端子と前記被処理基板の接触が検知される。
  8. 請求項6に記載の電解処理方法において、
    前記第1の工程において、前記検知部によって前記端子を流れる電流の有無を検出し、当該端子に電流が流れた場合に、前記端子と前記被処理基板の接触が検知される。
  9. 請求項6に記載の電解処理方法において、
    前記電解処理治具は、前記端子にかかる荷重を測定する荷重測定部をさらに有し、
    前記第1の工程において、前記荷重測定部によって前記端子にかかる荷重が測定された場合に、1本目の前記端子と前記被処理基板の接触が検知される。
  10. 請求項6に記載の電解処理方法において、
    前記第1の工程において、所定数の前記端子を前記被処理基板に接触させた後、さらに前記電解処理治具と前記被処理基板を相対的に近づけるように所定距離移動させる。
  11. 請求項6に記載の電解処理方法において、
    前記第1の工程において、前記検知部による検知結果に基づいて、前記被処理基板に対する前記端子の接触が不良であった場合に、警告部より警告を発する。
     
     
PCT/JP2017/032675 2016-10-07 2017-09-11 電解処理治具及び電解処理方法 WO2018066315A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197006952A KR102416775B1 (ko) 2016-10-07 2017-09-11 전해 처리 지그 및 전해 처리 방법
US16/330,812 US11542627B2 (en) 2016-10-07 2017-09-11 Electrolytic processing jig and electrolytic processing method
JP2018543803A JP6793742B2 (ja) 2016-10-07 2017-09-11 電解処理治具及び電解処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016198729 2016-10-07
JP2016-198729 2016-10-07

Publications (1)

Publication Number Publication Date
WO2018066315A1 true WO2018066315A1 (ja) 2018-04-12

Family

ID=61830980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032675 WO2018066315A1 (ja) 2016-10-07 2017-09-11 電解処理治具及び電解処理方法

Country Status (5)

Country Link
US (1) US11542627B2 (ja)
JP (1) JP6793742B2 (ja)
KR (1) KR102416775B1 (ja)
TW (1) TWI736676B (ja)
WO (1) WO2018066315A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112458509A (zh) * 2020-11-16 2021-03-09 苏州太阳井新能源有限公司 一种光伏电池电镀的夹具

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114515876B (zh) * 2022-03-25 2024-04-30 江苏徐工工程机械研究院有限公司 夹持装置、清洗设备和夹持方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138304A (ja) * 2000-03-17 2007-06-07 Ebara Corp めっき装置及び方法
JP2010287648A (ja) * 2009-06-10 2010-12-24 Seiko Epson Corp 半導体装置の製造方法
JP2013166999A (ja) * 2012-02-16 2013-08-29 Seiko Epson Corp 半導体装置の製造方法及び遮蔽板
JP2015200029A (ja) * 2014-01-17 2015-11-12 株式会社荏原製作所 めっき方法およびめっき装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6837978B1 (en) * 1999-04-08 2005-01-04 Applied Materials, Inc. Deposition uniformity control for electroplating apparatus, and associated method
US6494219B1 (en) * 2000-03-22 2002-12-17 Applied Materials, Inc. Apparatus with etchant mixing assembly for removal of unwanted electroplating deposits
KR100804714B1 (ko) * 2000-03-17 2008-02-18 가부시키가이샤 에바라 세이사꾸쇼 도금장치 및 방법
DE10229005B4 (de) 2002-06-28 2007-03-01 Advanced Micro Devices, Inc., Sunnyvale Vorrichtung und Verfahren zur elektrochemischen Metallabscheidung
JP2004250747A (ja) 2003-02-20 2004-09-09 Renesas Technology Corp 半導体装置の製造方法
JP2010013680A (ja) * 2008-07-01 2010-01-21 Nec Electronics Corp 電気めっき装置、及び電気めっき方法
US10234261B2 (en) * 2013-06-12 2019-03-19 Applied Materials, Inc. Fast and continuous eddy-current metrology of a conductive film
JP6328582B2 (ja) * 2014-03-31 2018-05-23 株式会社荏原製作所 めっき装置、および基板ホルダの電気接点の電気抵抗を決定する方法
JP6659467B2 (ja) * 2016-06-03 2020-03-04 株式会社荏原製作所 めっき装置、基板ホルダ、めっき装置の制御方法、及び、めっき装置の制御方法をコンピュータに実行させるためのプログラムを格納した記憶媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138304A (ja) * 2000-03-17 2007-06-07 Ebara Corp めっき装置及び方法
JP2010287648A (ja) * 2009-06-10 2010-12-24 Seiko Epson Corp 半導体装置の製造方法
JP2013166999A (ja) * 2012-02-16 2013-08-29 Seiko Epson Corp 半導体装置の製造方法及び遮蔽板
JP2015200029A (ja) * 2014-01-17 2015-11-12 株式会社荏原製作所 めっき方法およびめっき装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112458509A (zh) * 2020-11-16 2021-03-09 苏州太阳井新能源有限公司 一种光伏电池电镀的夹具
CN112458509B (zh) * 2020-11-16 2021-11-05 苏州太阳井新能源有限公司 一种光伏电池电镀的夹具

Also Published As

Publication number Publication date
TWI736676B (zh) 2021-08-21
US11542627B2 (en) 2023-01-03
JP6793742B2 (ja) 2020-12-02
KR102416775B1 (ko) 2022-07-05
US20190218682A1 (en) 2019-07-18
JPWO2018066315A1 (ja) 2019-07-18
TW201820493A (zh) 2018-06-01
KR20190060985A (ko) 2019-06-04

Similar Documents

Publication Publication Date Title
US11111592B2 (en) Manufacturing apparatus and manufacturing method for semiconductor device
JP2001298072A (ja) 静電吸着装置及びこれを用いた真空処理装置
JP6937974B1 (ja) めっき装置、およびめっき方法
WO2018066315A1 (ja) 電解処理治具及び電解処理方法
WO2018142955A1 (ja) 電解処理装置および電解処理方法
WO2022157852A1 (ja) めっき装置及び基板の膜厚測定方法
CN104894634A (zh) 新型电化学抛光装置
WO2019102866A1 (ja) 半導体装置の製造装置、半導体装置の製造方法及びコンピュータ記憶媒体
KR102499511B1 (ko) 전해 처리 지그 및 전해 처리 방법
WO2018070188A1 (ja) 電解処理治具、電解処理治具の製造方法及び電解処理装置
US20230096305A1 (en) Plating apparatus
JP2021014600A (ja) 半導体装置の製造装置、半導体装置の製造方法、プログラム及びコンピュータ記憶媒体
JP2006089797A (ja) 電解メッキ装置
JP2001316899A (ja) 半導体製造装置および半導体製造方法
KR20130059103A (ko) 라운드형의 프로브 탑 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858154

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018543803

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197006952

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17858154

Country of ref document: EP

Kind code of ref document: A1