WO2019102866A1 - 半導体装置の製造装置、半導体装置の製造方法及びコンピュータ記憶媒体 - Google Patents

半導体装置の製造装置、半導体装置の製造方法及びコンピュータ記憶媒体 Download PDF

Info

Publication number
WO2019102866A1
WO2019102866A1 PCT/JP2018/041621 JP2018041621W WO2019102866A1 WO 2019102866 A1 WO2019102866 A1 WO 2019102866A1 JP 2018041621 W JP2018041621 W JP 2018041621W WO 2019102866 A1 WO2019102866 A1 WO 2019102866A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
wafer
semiconductor device
voltage
unit
Prior art date
Application number
PCT/JP2018/041621
Other languages
English (en)
French (fr)
Inventor
智久 星野
正人 ▲濱▼田
恭満 山口
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2019102866A1 publication Critical patent/WO2019102866A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/06Suspending or supporting devices for articles to be coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/04Removal of gases or vapours ; Gas or pressure control
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition

Definitions

  • the present invention relates to a semiconductor device manufacturing apparatus, a semiconductor device manufacturing method using the manufacturing apparatus, and a computer storage medium.
  • electrolytic treatment such as plating treatment and etching treatment is performed, for example.
  • a plating process method described in Patent Document 1 has been proposed.
  • a wafer holding unit that holds a semiconductor wafer (hereinafter referred to as a "wafer") and an electrolytic processing unit that performs plating on the wafer held by the wafer holding unit are arranged opposite to each other ( First step).
  • a plating solution is supplied from the nozzle to the wafer held by the wafer holding unit (second step).
  • a terminal for applying a voltage to the wafer is brought into contact with the wafer, and a direct electrode provided in the electrolytic processing unit is brought into contact with the plating solution (third step).
  • an electric field is formed in the plating solution by applying a voltage to the indirect electrode included in the electrolytic processing unit, and the metal ions in the plating solution are moved to the wafer side (fourth step). Thereafter, a voltage is directly applied between the electrode and the wafer to reduce metal ions transferred to the wafer side (fifth step).
  • the movement of the metal ion by the indirect electrode (the fourth step) and the reduction of the metal ion by the direct electrode (the fifth step) are separately performed, so the metal in a state where metal ions are uniformly accumulated on the wafer side Ion reduction can be performed, thereby achieving uniform plating processing.
  • the present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to carry out electrolytic processing on a substrate uniformly and to appropriately manufacture a semiconductor device.
  • One aspect of the present invention for solving the above problems is a manufacturing apparatus of a semiconductor device, which is a substrate holding unit for holding a substrate, an electrolytic processing unit for electrolytically treating a substrate held by the substrate holding unit, and A terminal for applying a voltage to the substrate held by the substrate holding unit, the electrolytic processing unit being provided on a substrate disposed to face the substrate holding unit, and the substrate, the substrate A processing liquid supply unit for supplying a processing liquid from the surface of the substrate to the substrate, a direct electrode provided on the surface of the substrate, contacting the processing solution supplied to the substrate, and applying a voltage to the substrate; And an indirect electrode provided inside the substrate to form an electric field in the processing solution supplied to the substrate.
  • the manufacturing apparatus of one embodiment of the present invention in a state where a terminal is brought into contact with a substrate and a voltage is applied to the substrate through the terminal to energize the processing liquid from the surface of the substrate by the processing liquid supply unit.
  • the seed layer on the substrate can be prevented from dissolving in the processing liquid.
  • the processing liquid supplied to the substrate is brought into direct contact with the electrode. Subsequently, a voltage is applied to the indirect electrode to form an electric field in the treatment liquid, and after the ions to be treated in the treatment liquid are moved to the substrate side, a voltage is directly applied between the electrode and the substrate Thus, it is possible to oxidize or reduce the target ions transferred to the substrate side.
  • the movement of the ions to be treated by the indirect electrode and the oxidation or reduction of the ions to be treated directly by the electrode and the substrate (hereinafter sometimes simply referred to as "oxidation-reduction") are separately performed. Oxidation and reduction of the ions to be treated can be performed in a state where the ions to be treated are uniformly accumulated.
  • the seed layer on the substrate can be prevented from being dissolved in the processing solution, and the ions to be treated can be oxidized and reduced while sufficient ions to be treated are uniformly accumulated on the surface of the substrate.
  • the electrolytic processing can be uniformly performed on the surface of the substrate.
  • Another embodiment of the present invention is a method for manufacturing a semiconductor device, in which a substrate holding unit holding a substrate and an electrolytic processing unit performing electrolytic treatment on the substrate held by the substrate holding unit are opposed to each other.
  • the processing liquid is supplied from the surface of the substrate to the substrate by the processing liquid supply unit provided, and the processing liquid is brought into contact directly with the electrode provided on the surface of the substrate, and the inside of the substrate
  • a fourth step of forming an electric field in the treatment liquid by applying a voltage to the provided indirect electrode, and moving the ions to be treated in the treatment liquid to the substrate side, and between the direct electrode and the substrate To the substrate side by applying a voltage to the
  • a readable computer storage medium storing a program operating on a computer of a control unit that controls the manufacturing apparatus to cause the manufacturing apparatus to execute the method of manufacturing a semiconductor device. It is.
  • the substrate can be uniformly subjected to electrolytic treatment, and a semiconductor device can be appropriately manufactured.
  • FIG. 1 is an explanatory view schematically showing the configuration of a semiconductor device manufacturing apparatus 1 according to the present embodiment.
  • a plating process is performed as an electrolytic process on a semiconductor wafer W (hereinafter, referred to as “wafer W”) as a substrate.
  • wafer W semiconductor wafer W
  • a seed layer (not shown) used as an electrode is formed.
  • the dimensions of the respective components do not necessarily correspond to the actual dimensions in order to prioritize the ease of understanding of the technology.
  • the manufacturing apparatus 1 has a wafer holding unit 10 as a substrate holding unit.
  • the wafer holding unit 10 is a spin chuck that holds and rotates the wafer W.
  • a suction port (not shown) for suctioning the wafer W is provided on the surface 10 a of the wafer holding unit 10.
  • the wafer W can be adsorbed and held on the wafer holding unit 10 by suction from the suction port.
  • the surface 10a of the wafer holding unit 10 has a diameter larger than that of the wafer W in a plan view, but is not limited to this and may have the same diameter as the wafer W or a smaller diameter. .
  • the wafer holding unit 10 is provided with a drive mechanism 11 including, for example, a motor, and can be rotated at a predetermined speed by the drive mechanism 11. Further, the driving mechanism 11 is provided with an elevation driving unit (not shown) such as a cylinder, and the wafer holding unit 10 is movable in the vertical direction. In the present embodiment, the drive mechanism 11 constitutes the rotation mechanism and the movement mechanism in the present invention.
  • An electrolysis processing unit 20 is provided above the wafer holding unit 10 so as to face the wafer holding unit 10.
  • the electrolytic processing unit 20 has a base 21 made of an insulator.
  • the base 21 has a flat plate-like main body 22 and a projection 23 provided to project from the main body 22.
  • the main body portion 22 has a diameter larger than that of the wafer W in a plan view.
  • a plurality of protrusions 23 are provided in the main body 22.
  • the plan view shape of the projection 23 may be circular as shown in the example shown or rectangular.
  • the space 24 is formed in the part in which these several projection parts 23 are not provided.
  • the height of the space 24 (the height of the protrusion 23) is, for example, 2 mm or less.
  • the outer surface of the base 21 is open due to the formation of such a space 24.
  • substrate 21 says the surface of the projection part 23 in this Embodiment.
  • the back surface 21b of the base 21 refers to the surface on the opposite side of the surface 21a.
  • Terminals 25, direct electrodes 26 and indirect electrodes 27 are provided on the base 21.
  • the terminal 25 is held by the base 21 and provided so as to project from the surface 21 a of the base 21. As shown in FIG. 2, a plurality of terminals 25 are provided on the outer peripheral portion of the base 21. Further, as shown in FIG. 1, the terminal 25 is bent and has elasticity. And when performing a plating process, the terminal 25 contacts the outer peripheral part of the wafer W (seed layer) so that it may mention later, and applies a voltage to the said wafer W. As shown in FIG. In addition, the shape of the terminal 25 is not limited to this Embodiment, and the terminal 25 should just have elasticity. The terminals 25 do not necessarily have to be provided on the base 21, and may be provided separately from the electrolytic processing unit 20.
  • the direct electrode 26 is provided on the surface 21 a of the base 21. As shown in FIG. 3, the direct electrode 26 has a flat mesh structure, and a plurality of through holes 28 are formed. As shown in FIG. 1, the space 24 of the base 21 described above is in communication with the plurality of through holes 28. And when performing a plating process so that it may mention later, the electrode 26 contacts the plating solution on the wafer W directly.
  • the structure of the direct electrode 26 is not limited to this Embodiment, What is necessary is just to form the through-hole, for example, may be mesh structure.
  • the diameter of the through hole 28 is preferably large.
  • the surface area of the direct electrode 26 in order to efficiently perform the plating process, it is better for the surface area of the direct electrode 26 to be larger, so it is better for the diameter of the through hole 28 to be smaller.
  • the diameter of the through holes 28 is determined to optimize them.
  • the indirect electrode 27 is provided inside the base 21. That is, the indirect electrode 27 is not exposed to the outside.
  • a DC power supply 30 is connected to the terminal 25, the direct electrode 26 and the indirect electrode 27.
  • the terminal 25 is connected to the negative electrode side of the DC power supply 30.
  • the direct electrode 26 and the indirect electrode 27 are respectively connected to the positive electrode side of the DC power supply 30.
  • the substrate 21 is further provided with a plating solution nozzle 40 as a processing solution supply unit for supplying a plating solution as a processing solution onto the wafer W.
  • the plating solution nozzle 40 is provided, for example, through the main body 22 at the central portion of the base 21 and opens in the space 24. Further, the plating solution nozzle 40 is in communication with the plating solution supply source 42 storing the plating solution through the supply pipe 41. Then, the plating solution is supplied from the plating solution supply source 42 to the plating solution nozzle 40, and the plating solution discharged from the plating solution nozzle 40 sequentially passes through the space 24 of the base 21 and the through holes 28 of the electrode 26 in sequence. The wafer W is supplied.
  • the plating solution nozzle 40 is used as the processing solution supply unit in the present embodiment, other various means can be used as a mechanism for supplying the plating solution. Furthermore, the number and arrangement of the plating solution nozzles 40 are not limited to the present embodiment, and a plurality of plating solution nozzles 40 may be provided. However, from the viewpoint of uniformly supplying the plating solution to the wafer W, the plating solution nozzle 40 is preferably provided at least at the central portion of the substrate 21.
  • a moving mechanism 50 for moving the base 21 in the vertical direction is provided on the side of the back surface 21 b of the base 21, a moving mechanism 50 for moving the base 21 in the vertical direction is provided.
  • the moving mechanism 50 is provided with a lift drive unit (not shown) such as a cylinder.
  • the configuration of the moving mechanism 50 may be various configurations as long as the substrate 21 is moved up and down.
  • a cleaning solution nozzle 60 as another processing solution supply unit for supplying a cleaning solution as a pretreatment liquid or a post-treatment liquid onto the wafer W is provided.
  • the cleaning solution nozzle 60 is movable in the horizontal direction and the vertical direction by the moving mechanism 61, and is configured to be movable back and forth with respect to the wafer holding unit 10. Further, the cleaning solution nozzle 60 is in communication with a cleaning solution supply source (not shown) that stores the cleaning solution, and the cleaning solution is supplied from the cleaning solution supply source to the cleaning solution nozzle 60.
  • IPA or pure water (DIW) is used as the cleaning liquid.
  • DIW pure water
  • the cleaning liquid nozzle 60 is used as another processing liquid supply unit in the present embodiment, other various means can be used as a mechanism for supplying the cleaning liquid.
  • a cup (not shown) may be provided around the wafer holding unit 10 to receive and recover the liquid scattered or dropped from the wafer W.
  • the above manufacturing apparatus 1 is provided with a control unit (not shown).
  • the control unit is, for example, a computer and has a program storage unit (not shown).
  • the program storage unit stores a program for controlling the processing of the wafer W in the manufacturing apparatus 1.
  • the program is stored in a computer readable storage medium such as a computer readable hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnet optical desk (MO), and a memory card. It may be installed in the control unit from the storage medium.
  • FIG. 4 is a flowchart showing an example of the main steps of the plating process.
  • the wafer holding unit 10 and the electrolytic processing unit 20 are disposed opposite to each other, and the wafer holding unit 10 sucks and holds the wafer W.
  • the distance between the surface 10 a of the wafer holding unit 10 and the surface 21 a of the base 21 of the electrolytic processing unit 20 is about 100 mm.
  • pretreatment for the plating process which is a cleaning process in the present embodiment, is performed.
  • the cleaning solution nozzle 60 is moved above the central portion of the wafer W held by the wafer holding unit 10 by the moving mechanism 61.
  • the cleaning solution P1 which is IPA
  • the cleaning solution nozzle 60 is supplied from the cleaning solution nozzle 60 to the central portion of the wafer W.
  • the supplied cleaning liquid P1 is diffused to the entire surface of the wafer W by centrifugal force, and the surface of the wafer W is cleaned (Step S1 in FIG. 4).
  • the liquid supplied from the cleaning liquid nozzle 60 is switched from the cleaning liquid P1 to the pure water D1, the pure water D1 is supplied to the central portion of the wafer W, and the cleaning liquid P1 on the wafer W is replaced with the pure water D1.
  • the supply of the deionized water D1 from the cleaning solution nozzle 60 is stopped, and the wafer W is further rotated to shake off and remove the deionized water D1 (step S2 in FIG. 4).
  • the pure water D1 is not completely removed, and remains on the wafer W in the form of a thin film.
  • the electrolytic processing unit 20 is lowered by the moving mechanism 50. Then, the terminal 25 is brought into contact with the wafer W, and a voltage is applied to the wafer W via the terminal 25 to conduct electricity (step S3 in FIG. 4). At this time, the distance between the surface 10a of the wafer holding unit 10 and the surface 21a of the base 21 of the electrolytic processing unit 20 is about 1 mm to several tens of mm. Since the terminal 25 has elasticity, the height of the terminal 25 can be adjusted to adjust the distance between the surfaces 10a and 21a.
  • step S3 a thin film of pure water D1 is formed on the wafer W.
  • an oxide film may be formed on the seed layer of the wafer W.
  • the formation of the oxide film on the seed layer can be suppressed.
  • the plating solution M is supplied from the plating solution nozzle 40.
  • the plating solution M is supplied to the wafer W sequentially through the space 24 of the base 21 and the through hole 28 of the direct electrode 26 (step S4 in FIG. 4).
  • the plating solution M is filled between the electrolytic processing unit 20 and the wafer W, and the electrode 26 is brought into direct contact with the plating solution M (step S5 in FIG. 4).
  • the steps S4 to S5 are performed in a state in which the wafer W is energized through the terminals 25, that is, the wafer W is energized from the moment when the wafer W is brought into contact with the plating solution M. Then, after the plating solution is supplied as in the prior art (Patent Document 1), the time for which the wafer W contacts the plating solution M is shortened in the present embodiment as compared to the case where the terminal is brought into contact with the wafer. it can. Then, the seed layer of the wafer W can be prevented from being dissolved in the plating solution.
  • the amount of current supplied to the wafer W through the terminals 25 is kept small to such an extent that copper plating does not precipitate in steps S4 to S5.
  • step S4 air may remain between the electrolytic processing unit 20 and the wafer W. Even in such a case, air can be released to the space 24 of the base 21 through the through holes 28 of the electrode 26 directly.
  • air bubbles may be mixed into the plating solution M supplied from the plating solution nozzle 40 due to various factors while being fed from the plating solution supply source 42.
  • the bubbles in the plating solution M are collected in the through holes 28 and collected in the space 24 when the plating solution M passes directly through the electrode 26.
  • the air bubbles can escape to the space 24 through the through holes 28.
  • the air of the space 24 is discharged to the outside from the opening of the outer surface of the base 21 because the outer surface of the base 21 is open. Furthermore, since the main body 22 of the base 21 has a diameter larger than that of the wafer W, air in the space 24 can be reliably discharged to the outside. Then, the internal pressure of the space 24 can be maintained constant, and unnecessary application of pressure to the wafer W can be suppressed. Thus, the plating process can be properly performed.
  • the electrode 26 is not electrically connected to the ground, but is in an electrically floating state.
  • charge exchange is suppressed on both surfaces of the electrolytic processing unit 20 and the wafer W, charged particles attracted by the electrostatic field are arranged directly on the surface of the electrode 26.
  • copper ions C are uniformly arranged on the surface of the wafer W as well.
  • the electric field can be increased when a voltage is applied between indirect electrode 27 and wafer W. Then, the movement of copper ions C can be accelerated by this high electric field, and the plating rate of the plating process can be improved.
  • copper ions C arrayed on the surface of the wafer W are also arbitrarily controlled. As described above, since generation of bubbles is prevented on the surface of the wafer W, copper ions C arrayed on the surface of the wafer W are stable.
  • the copper ions C have a lower ionization tendency than the hydrogen ions. For this reason, only the copper ion C is reduced and hydrogen is not generated.
  • the sulfate ion S is directly oxidized by the electrode 26 as the copper ion C is reduced.
  • step S7 sufficient copper ions C accumulate on the surface of the wafer W and are reduced in a uniformly arranged state, so that the copper plating 70 can be uniformly deposited on the surface of the wafer W. As a result, the density of crystals in the copper plating 70 is increased, and a good quality copper plating 70 can be formed. Further, since the reduction is performed in a state where the copper ions C are uniformly arranged on the surface of the wafer W, the copper plating 70 can be generated uniformly and with high quality.
  • the electrolytic processing unit 20 is raised by the moving mechanism 50. At this time, the air present in the space 24 also escapes. Then, the wafer W is rotated by the drive mechanism 11, and the plating solution M is shaken off and removed (Step S8 in FIG. 4).
  • step S 8 when the electrolytic processing unit 20 is lifted, air flows in from the opening of the outer surface of the base 21 and flows into the interface between the electrolytic processing unit 20 and the plating solution M.
  • the surface tension of the plating solution M acting on the electrolytic processing unit 20 can be reduced by the air. Therefore, the force required to separate the electrolytic processing unit 20 from the plating solution M can be reduced, and separation can be easily performed.
  • the cleaning solution nozzle 60 is moved above the central portion of the wafer W held by the wafer holding unit 10 by the moving mechanism 61. Thereafter, while the wafer W is rotated by the drive mechanism 11, the cleaning liquid P2, which is IPA, is supplied from the cleaning liquid nozzle 60 to the central portion of the wafer W. The supplied cleaning liquid P2 is diffused to the entire surface of the wafer W by centrifugal force, and the surface of the wafer W is cleaned (Step S9 in FIG. 4).
  • the liquid supplied from the cleaning liquid nozzle 60 is switched from the cleaning liquid P2 to the pure water D2, and the pure water D2 is supplied to the central portion of the wafer W to replace the cleaning liquid P2 on the wafer W with the pure water D2.
  • the supply of the deionized water D2 from the cleaning solution nozzle 60 is stopped, and the wafer W is further rotated to shake off and remove the deionized water D2 (step S10 in FIG. 4).
  • steps S4 to S5 supply and filling of the plating solution M in steps S4 to S5, movement of copper ions C by the indirect electrode 27 in step S6, copper ions by the direct electrode 26 and wafer W in step S7.
  • the reduction of C is repeated.
  • steps S4 to S8 may be repeated, or steps S4 to S9 may be repeated.
  • step S3 after the terminal 25 is brought into contact with the wafer W in step S3 and a voltage is applied to the substrate through the terminal 25 to energize, plating is performed on the wafer W from the plating solution nozzle 40 in step S4. Liquid M is supplied. Therefore, as described above, the time for which the wafer W is in contact with the plating solution M can be shortened, and the dissolution of the seed layer of the wafer W in the plating solution can be suppressed.
  • the electrolytic solution can be electrolyzed when supplying the plating solution M onto the wafer W in step S4. Even when air remains between the processing unit 20 and the wafer W, the air can be released to the space 24. In addition, even when air bubbles are present in the plating solution M supplied from the plating solution nozzle 40, the air bubbles can escape into the space 24. Therefore, air bubbles in the plating solution M can be suppressed.
  • step S6 since movement of copper ion C by indirect electrode 27 in step S6 and reduction of copper ion C by direct electrode 26 and wafer W in step S7 are separately performed, copper ion C sufficient on the surface of wafer W is uniform. The copper ion C can be reduced in the state of being accumulated in the
  • the seed layer of wafer W is prevented from being dissolved in plating solution M, and further, air bubbles in plating solution M are suppressed, and sufficient copper ions C are uniformly accumulated on the surface of wafer W. Since copper ions C can be reduced, plating can be performed uniformly.
  • FIG. 15 is an explanatory view showing an outline of a configuration of a manufacturing apparatus 1 according to another embodiment.
  • the manufacturing apparatus 1 shown in FIG. 15 has a direct electrode 100 instead of the direct electrode 26 of the manufacturing apparatus 1 shown in FIG.
  • the other configuration of the manufacturing apparatus 1 shown in FIG. 15 is the same as the other configuration of the manufacturing apparatus 1 shown in FIG.
  • the direct electrode 100 is divided into a plurality of, for example, seven.
  • the seven divided direct electrodes 100 are hereinafter referred to as divided electrodes 101 to 107.
  • a plurality of through holes 110 are formed in each of the divided electrodes 101 to 107. Note that the number of divisions of the direct electrode 100 and the method of division are not limited to those in this embodiment, and can be set arbitrarily.
  • the divided electrodes 101 to 107 are connected to a common DC power supply 30, and each divided electrode 101 to 107 is individually provided with a switch (not shown) for switching on / off of the connection with the DC power supply 30. By switching on and off with the switch in this manner, the divided electrodes 101 to 107 can individually control the application of voltage.
  • the control method of the voltage is not limited to this embodiment.
  • the divided electrodes 101 to 107 may be connected to individual DC power supplies (not shown).
  • a DC voltage may be applied to the divided electrodes 101 to 107 in the form of a pulse, and control may be performed by the application time of the pulse and the width of the pulse.
  • the present embodiment by individually controlling the application of the voltage by the divided electrodes 101 to 107, it is possible to individually control the plating process of the wafer W in a portion facing the divided electrodes 101 to 107. That is, for example, when the application of the voltage by the divided electrodes 101 is stopped, the deposition of the copper plating 70 can be suppressed in the portion facing the divided electrodes 101 in the wafer W. On the other hand, when voltage application is performed by the divided electrodes 101, copper plating 70 can be positively deposited on the portion of the wafer W facing the divided electrodes 101.
  • the copper plating 70 tends to grow thick in a portion near the portion where the terminal 25 contacts in the wafer W, while the copper plating 70 becomes thin in a distant portion.
  • the film thickness of the copper plating 70 can be made uniform by individually controlling the application of the voltage by the divided electrodes 101 to 107 according to the growth ease of the copper plating 70.
  • the space 24 is formed on the surface 21 a of the base 21, and the direct electrodes 26 and 100 have a mesh structure.
  • the present invention can be applied even in the case of a flat plate. That is, in the base 21, the space 24 may be omitted and the surface 21 a may be flat. Further, in the direct electrodes 26 and 100, the through holes 28 and 110 may be omitted.
  • the time for which the wafer W contacts the plating solution M can be shortened.
  • the layer can be inhibited from dissolving in the plating solution. Therefore, the plating process can be performed uniformly.
  • cleaning-liquid nozzle 60 was provided separately from the plating solution nozzle 40, supply of the washing
  • the cleaning process (pretreatment) of the wafer W is performed in steps S2 to S3, when the cleaning solution P1 and the pure water D1 are supplied from the plating solution nozzle 40, the cleaning process is completed and the supply of the cleaning solution P1 and the pure water D1 is performed. There is a risk that the liquid drips on the wafer W even if the nozzle is stopped.
  • the cleaning process (post process) of the wafer W is performed in steps S9 to S10, there is a possibility that the liquid drips.
  • the supply of the cleaning liquid P and the pure water D is preferably performed using the cleaning liquid nozzle 60.
  • the electrolytic processing unit 20 is lowered by the moving mechanism 50 to bring the terminal 25 into contact with the wafer W.
  • the wafer holding unit 10 is lifted by the drive mechanism 11. May be Alternatively, both the electrolytic processing unit 20 and the wafer holding unit 10 may be moved.
  • the electrolytic processing unit 20 and the wafer holding unit 10 may be arranged reversely, and the electrolytic processing unit 20 may be arranged below the wafer holding unit 10.
  • the above embodiment demonstrated the case where copper plating was formed as a metal-plating process
  • this invention is applicable also when plating other metals.
  • the ionization tendency of the metal ions to be plated is lower than the ionization tendency of hydrogen ions, only the metal ions can be reduced in step S7, and hydrogen is not generated.
  • the ionization tendency of metal ions to be plated is higher than the ionization tendency of hydrogen ions, by adjusting the potential of the direct electrodes 26 and 100 and the PH of the plating solution M in step S7, It is possible to reduce only the metal ion.
  • the plating solution M is made alkaline, hydrogen is not generated even if the metal ion ionization tendency is high. In any case, the plating process can be performed while suppressing the generation of hydrogen.
  • the present invention is also applicable to the case where the ions to be processed are oxidized on the front surface side of the wafer W.
  • the ions to be treated are anions, and in the above embodiment, the anode and the cathode may be reversed to perform the same electrolytic treatment. Also in this embodiment, regardless of the difference between oxidation and reduction of the ions to be treated, the same effect as that of the above embodiment can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

半導体装置の製造装置であって、基板を保持する基板保持部と、前記基板保持部に保持された基板に電解処理を行う電解処理部と、前記基板保持部に保持された基板に電圧を印加するための端子と、を有し、前記電解処理部は、前記基板保持部に対向して配置される基体と、前記基体に設けられ、当該基体の表面から基板に処理液を供給する処理液供給部と、前記基体の表面に設けられ、基板に供給された前記処理液に接触し、基板との間で電圧を印加する直接電極と、前記基体の内部に設けられ、基板に供給された前記処理液に電界を形成する間接電極と、を有する。

Description

半導体装置の製造装置、半導体装置の製造方法及びコンピュータ記憶媒体
(関連出願の相互参照)
 本願は、2017年11月22日に日本国に出願された特願2017-224695号に基づき、優先権を主張し、その内容をここに援用する。
 本発明は、半導体装置の製造装置、当該製造装置を用いた半導体装置の製造方法及びコンピュータ記憶媒体に関する。
 半導体装置の製造工程においては、例えばめっき処理やエッチング処理等の電解処理が行われる。
 上述しためっき処理を均一に行うため、例えば特許文献1に記載されためっき処理方法が提案されている。このめっき処理では、先ず、半導体ウェハ(以下、「ウェハ」という。)を保持するウェハ保持部と、当該ウェハ保持部に保持されたウェハにめっき処理を行う電解処理部と、を対向配置する(第1の工程)。次に、ノズルから、ウェハ保持部に保持されたウェハにめっき液を供給する(第2の工程)。次に、ウェハに電圧を印加するための端子をウェハに接触させると共に、電解処理部が備える直接電極をめっき液に接触させる(第3の工程)。次に、電解処理部が備える間接電極に電圧を印加することで、めっき液に電界を形成し、当該めっき液中の金属イオンをウェハ側に移動させる(第4の工程)。その後、直接電極とウェハとの間に電圧を印加することで、ウェハ側に移動した金属イオンを還元する(第5の工程)。
 かかる場合、間接電極による金属イオンの移動(第4の工程)と直接電極による金属イオンの還元(第5の工程)が個別に行われるので、ウェハ側に金属イオンが均一に集積した状態で金属イオンの還元を行うことができ、これによりめっき処理の均一化を図っている。
国際公開WO2017/094568号公報
 本発明者らが鋭意検討した結果、ウェハ上に形成されたシード層がめっき液に晒されると、当該めっき液に溶けてしまうことを見出した。すなわち、特許文献1に記載されためっき処理方法では、第2の工程においてウェハにめっき液を供給すると、このめっき液にシード層が溶けて損傷を被る。そうすると、その後の第5の工程においてシード層が損傷した部分は電極として適切に機能せず、金属イオンを均一に還元させることができない。特に近年、半導体装置の微細化に伴い、シード層も薄膜化しているため、上述したシード層の損傷の影響は大きく、めっき処理の均一化には改善の余地がある。
 本発明は、上記事情に鑑みてなされたものであり、基板に対する電解処理を均一に行い、半導体装置を適切に製造することを目的とする。
 上記課題を解決する本発明の一態様は、半導体装置の製造装置であって、基板を保持する基板保持部と、前記基板保持部に保持された基板に電解処理を行う電解処理部と、前記基板保持部に保持された基板に電圧を印加するための端子と、を有し、前記電解処理部は、前記基板保持部に対向して配置される基体と、前記基体に設けられ、当該基体の表面から基板に処理液を供給する処理液供給部と、前記基体の表面に設けられ、基板に供給された前記処理液に接触し、基板との間で電圧を印加する直接電極と、前記基体の内部に設けられ、基板に供給された前記処理液に電界を形成する間接電極と、を有する。
 本発明の一態様の製造装置を用いれば、基板に端子を接触させ、当該端子を介して基板に電圧を印加して通電した状態で、処理液供給部によって基体の表面から基板に処理液を供給することができる。すなわち、基板をめっき液に接触させる瞬間から基板に通電することができる。そうすると、従来(特許文献1)のようにめっき液を供給した後、基板に端子を接触させる場合に比べて、本発明の一態様によれば、基板が処理液に接触する時間を短縮することができる。したがって、例えば基板上のシード層が処理液に溶けるのを抑制することができる。
 さらに本発明の一態様の製造装置では、基板に供給された処理液を直接電極に接触させる。続いて、間接電極に電圧を印加することで、処理液に電界を形成し、当該処理液中の被処理イオンを基板側に移動させた後、直接電極と基板との間に電圧を印加することで、基板側に移動した被処理イオンを酸化又は還元することができる。このように間接電極による被処理イオンの移動と直接電極及び基板による被処理イオンの酸化又は還元(以下、単に「酸化還元」という場合がある)が個別に行われるので、基板の表面に十分な被処理イオンが均一に集積した状態で被処理イオンの酸化還元を行うことができる。
 以上のように、基板上のシード層が処理液に溶けるのを抑制しつつ、しかも基板の表面に十分な被処理イオンが均一に集積した状態で被処理イオンの酸化還元を行うことができるので、基板の表面に対する電解処理を均一に行うことができる。
 別な観点による本発明の一態様は、半導体装置の製造方法であって、基板を保持した基板保持部と、当該基板保持部に保持された基板に電解処理を行う電解処理部と、を対向配置する第1の工程と、基板に電圧を印加するための端子を基板に接触させ、当該端子を介して基板に電圧を印加して通電する第2の工程と、前記電解処理部の基体に設けられた処理液供給部によって、前記基体の表面から基板に処理液を供給し、当該処理液を前記基体の表面に設けられた直接電極に接触させる第3の工程と、前記基体の内部に設けられた間接電極に電圧を印加することで、前記処理液に電界を形成し、当該処理液中の被処理イオンを基板側に移動させる第4の工程と、前記直接電極と基板との間に電圧を印加することで、基板側に移動した前記被処理イオンを酸化又は還元する第5の工程と、を有する。
 別な観点による本発明の一態様は、前記半導体装置の製造方法を製造装置によって実行させるように、当該製造装置を制御する制御部のコンピュータ上で動作するプログラムを格納した読み取り可能なコンピュータ記憶媒体である。
 本発明の一態様によれば、基板に対する電解処理を均一に行い、半導体装置を適切に製造することができる。
本実施の形態にかかる半導体装置の製造装置の構成の概略を示す説明図である。 本実施の形態にかかる基体の構成の概略を示す平面図である。 本実施の形態にかかる直接電極の構成の概略を示す平面図である。 めっき処理の主な工程を示すフローチャートである。 めっき処理における製造装置の動作を示す説明図であり、図4のステップS1を行う様子を示す説明図である。 めっき処理における製造装置の動作を示す説明図であり、図4のステップS2を行う様子を示す説明図である。 めっき処理における製造装置の動作を示す説明図であり、図4のステップS3を行う様子を示す説明図である。 めっき処理における製造装置の動作を示す説明図であり、図4のステップS4を行う様子を示す説明図である。 めっき処理における製造装置の動作を示す説明図であり、図4のステップS5を行う様子を示す説明図である。 めっき処理における製造装置の動作を示す説明図であり、図4のステップS6を行う様子を示す説明図である。 めっき処理における製造装置の動作を示す説明図であり、図4のステップS7を行う様子を示す説明図である。 めっき処理における製造装置の動作を示す説明図であり、図4のステップS8を行う様子を示す説明図である。 めっき処理における製造装置の動作を示す説明図であり、図4のステップS9を行う様子を示す説明図である。 めっき処理における製造装置の動作を示す説明図であり、図4のステップS10を行う様子を示す説明図である。 他の実施の形態にかかる半導体装置の製造装置の構成の概略を示す説明図である。 他の実施の形態にかかる直接電極の構成の概略を示す平面図である。
 以下、添付図面を参照して、本発明の実施の形態について説明する。なお、以下に示す実施の形態によりこの発明が限定されるものではない。
 図1は、本実施の形態にかかる半導体装置の製造装置1の構成の概略を示す説明図である。製造装置1では、基板としての半導体ウェハW(以下、「ウェハW」という。)に対し、電解処理としてめっき処理を行う。このウェハWの表面には、電極として用いられるシード層(図示せず)が形成されている。なお、以下の説明で用いる図面において、各構成要素の寸法は、技術の理解の容易さを優先させるため、必ずしも実際の寸法に対応していない。
 製造装置1は、基板保持部としてのウェハ保持部10を有している。ウェハ保持部10は、ウェハWを保持して回転させるスピンチャックである。ウェハ保持部10の表面10aには、例えばウェハWを吸引する吸引口(図示せず)が設けられている。この吸引口からの吸引により、ウェハWをウェハ保持部10上に吸着保持できる。なお、図示の例では、ウェハ保持部10の表面10aは、平面視においてウェハWより大きい径を有するが、これに限定されず、ウェハWと同じか、あるいは小さい径を有していてもよい。
 ウェハ保持部10には、例えばモータなどを備えた駆動機構11が設けられ、その駆動機構11により所定の速度に回転できる。また、駆動機構11には、シリンダなどの昇降駆動部(図示せず)が設けられており、ウェハ保持部10は鉛直方向に移動可能である。なお、本実施の形態においては駆動機構11が、本発明における回転機構と移動機構を構成している。
 ウェハ保持部10の上方には、当該ウェハ保持部10に対向して、電解処理部20が設けられている。電解処理部20は、絶縁体からなる基体21を有している。基体21は、平板状の本体部22と、本体部22から突出して設けられた突起部23とを有している。本体部22は、平面視においてウェハWより大きい径を有している。
 図2に示すように突起部23は、本体部22において複数設けられている。突起部23の平面視形状は、図示の例のように円形状であってもよいし、矩形状であってもよい。そして、これら複数の突起部23が設けられていない部分には、空間24が形成されている。空間24の高さ(突起部23の高さ)は、例えば2mm以下である。また、このような空間24が形成されていることにより、基体21の外側面は開口している。なお、図1に示すように、本実施の形態において基体21の表面21aは、突起部23の表面をいう。また、基体21の裏面21bは、表面21aの反対側の面をいう。
 基体21には、端子25、直接電極26及び間接電極27が設けられている。
 端子25は、基体21に保持され、当該基体21の表面21aから突出して設けられている。図2に示すように端子25は、基体21の外周部において複数設けられている。また、図1に示すように端子25は屈曲し、弾性を有している。そして、めっき処理を行う際、端子25は、後述するようにウェハW(シード層)の外周部に接触し、当該ウェハWに電圧を印加する。なお、端子25の形状は本実施の形態に限定されず、端子25が弾性を有していればよい。また、端子25は必ずしも基体21に設けられている必要はなく、電解処理部20とは別に設けられていてもよい。
 直接電極26は、基体21の表面21aに設けられている。図3に示すように直接電極26は平板状のメッシュ構造を有し、複数の貫通孔28が形成されている。図1に示すように上述した基体21の空間24は、この複数の貫通孔28に連通している。そして、後述するようにめっき処理を行う際、直接電極26はウェハW上のめっき液に接触する。なお、直接電極26の構造は、本実施の形態に限定されず、貫通孔が形成されていればよく、例えば網目構造であってもよい。
 直接電極26において、後述するように電解処理部20とウェハWとの間の空気を空間24に逃がすという観点からは、貫通孔28の径は大きい方が良い。一方、めっき処理を効率よくするためには、直接電極26の表面積が大きい方が良いため、貫通孔28の径は小さい方が良い。したがって、貫通孔28の径は、これらを最適化するように決定される。
 間接電極27は、基体21の内部に設けられている。すなわち、間接電極27は外部に露出されていない。
 端子25、直接電極26及び間接電極27には、直流電源30が接続されている。端子25は、直流電源30の負極側に接続されている。直接電極26と間接電極27は、それぞれ直流電源30の正極側に接続されている。
 基体21には、ウェハW上に処理液としてのめっき液を供給する、処理液供給部としてのめっき液ノズル40がさらに設けられている。めっき液ノズル40は、例えば基体21の中央部において本体部22を貫通して設けられ、空間24において開口している。また、めっき液ノズル40は、供給管41を介して、めっき液を貯留するめっき液供給源42に連通している。そして、めっき液供給源42からめっき液ノズル40にめっき液が供給され、さらにめっき液ノズル40から吐出されためっき液は、基体21の空間24、直接電極26の貫通孔28を順次通って、ウェハWに供給される。
 なお、めっき液としては、例えば硫酸銅と硫酸を溶解した混合液が用いられ、めっき液中には、銅イオンが含まれている。また、本実施の形態では処理液供給部としてめっき液ノズル40を用いているが、めっき液を供給する機構としては他の種々の手段を用いることができる。さらに、めっき液ノズル40の数や配置は、本実施の形態に限定されず、複数のめっき液ノズル40が設けられていてもよい。但し、ウェハWに対してめっき液を均一に供給するという観点から、めっき液ノズル40は、少なくとも基体21の中央部に設けられるのが好ましい。
 基体21の裏面21b側には、当該基体21を鉛直方向に移動させる移動機構50が設けられている。移動機構50には、シリンダなどの昇降駆動部(図示せず)が設けられている。なお、移動機構50の構成は、基体21を昇降させるものであれば種々の構成を取り得る。
 ウェハ保持部10と電解処理部20の間には、ウェハW上に前処理液又は後処理液としての洗浄液を供給する、他の処理液供給部としての洗浄液ノズル60が設けられている。洗浄液ノズル60は、移動機構61によって、水平方向及び鉛直方向に移動自在であり、ウェハ保持部10に対して進退自在に構成されている。また、洗浄液ノズル60は、洗浄液を貯留する洗浄液供給源(図示せず)に連通し、当該洗浄液供給源から洗浄液ノズル60に洗浄液が供給されるようになっている。
 なお、洗浄液としては、例えばIPAや純水(DIW)が用いられる。本実施の形態では、例えばIPAである洗浄液でウェハWの表面を洗浄した後、洗浄液がDIWに置換される。また、本実施の形態では他の処理液供給部として洗浄液ノズル60を用いているが、洗浄液を供給する機構としては他の種々の手段を用いることができる。
 なお、ウェハ保持部10の周囲には、ウェハWから飛散又は落下する液体を受け止め、回収するカップ(図示せず)が設けられていてもよい。
 以上の製造装置1には、制御部(図示せず)が設けられている。制御部は、例えばコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、製造装置1におけるウェハWの処理を制御するプログラムが格納されている。なお、前記プログラムは、例えばコンピュータ読み取り可能なハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルデスク(MO)、メモリーカードなどのコンピュータに読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から制御部にインストールされたものであってもよい。
 次に、以上のように構成された製造装置1を用いた製造方法におけるめっき処理について説明する。図4は、かかるめっき処理の主な工程の例を示すフローチャートである。
 先ず、ウェハ保持部10と電解処理部20を対向配置し、ウェハ保持部10でウェハWを吸着保持する。ウェハ保持部10の表面10aと電解処理部20の基体21の表面21aの間の距離は約100mmである。
 次に、めっき処理の前処理、本実施の形態では洗浄処理を行う。図5に示すように移動機構61によって洗浄液ノズル60をウェハ保持部10に保持されたウェハWの中心部の上方まで移動させる。その後、駆動機構11によってウェハWを回転させながら、洗浄液ノズル60からウェハWの中心部に、IPAである洗浄液P1を供給する。供給された洗浄液P1は遠心力によりウェハW全面に拡散され、ウェハWの表面が洗浄される(図4のステップS1)。
 その後、洗浄液ノズル60から供給される液を洗浄液P1から純水D1に切り替え、ウェハWの中心部に純水D1を供給して、ウェハW上の洗浄液P1を純水D1に置換する。その後、図6に示すように洗浄液ノズル60からの純水D1の供給を停止し、さらにウェハWを回転させて、純水D1を振り切り除去する(図4のステップS2)。但し、純水D1は完全に除去されるわけではなく、薄膜の状態でウェハW上に残っている。
 その後、図7に示すように移動機構50によって電解処理部20を下降させる。そして、端子25をウェハWに接触させ、当該端子25を介してウェハWに電圧を印加して通電する(図4のステップS3)。このとき、ウェハ保持部10の表面10aと電解処理部20の基体21の表面21aの間の距離は約1mm~数十mmである。端子25は弾性を有しているので、当該端子25の高さを調整して、表面10a、21a間の距離を調整することができる。
 なお、ステップS3において、ウェハW上には純水D1の薄膜が形成されている。ここで、ステップS2において純水D1が完全に除去され、ウェハWの表面が大気に晒されると、当該ウェハWのシード層に酸化膜が形成される場合がある。この点、本実施の形態では、ウェハW上に純水D1の薄膜が残存しているので、シード層に酸化膜が形成されるのを抑制することができる。
 その後、図8に示すようにめっき液ノズル40からめっき液Mを供給する。めっき液Mは、基体21の空間24、直接電極26の貫通孔28を順次通って、ウェハWに供給される(図4のステップS4)。そして、図9に示すように、電解処理部20とウェハWとの間にめっき液Mが充填され、直接電極26をめっき液Mに接触させる(図4のステップS5)。
 このステップS4~S5は端子25を介してウェハWに通電した状態で行われ、すなわちウェハWをめっき液Mに接触させる瞬間からウェハWに通電する。そうすると、従来(特許文献1)のようにめっき液を供給した後、ウェハに端子を接触させる場合に比べて、本実施の形態では、ウェハWがめっき液Mに接触する時間を短縮することができる。そうすると、ウェハWのシード層がめっき液に溶けるのを抑制することができる。
 なお、端子25を介してウェハWに通電する電流量は、ステップS4~S5で銅めっきが析出しない程度に小さく抑えられている。
 また、ステップS4においてウェハW上にめっき液Mを供給する際、電解処理部20とウェハWとの間に空気が残存する場合がある。かかる場合であっても、直接電極26の貫通孔28を介して、基体21の空間24に空気を逃がすことができる。
 さらに、めっき液ノズル40から供給されるめっき液Mには、めっき液供給源42から送液される途中で様々な要因により気泡が混入する場合がある。このめっき液M中の気泡は、めっき液Mが直接電極26を通過する際に、貫通孔28に捕集されて空間24に収集される。また、めっき液M中の気泡が電解処理部20とウェハWとの間に流れたとしても、貫通孔28を介して空間24に気泡を逃がすことができる。
 このように電解処理部20とウェハWとの間に充填されためっき液Mにおいて、気泡を抑制することができる。そして、偶発的な気泡が直接電極26の表面やウェハWの表面に付着することを防止できるので、安定しためっきを行うことが可能となる。
 また、空間24に空気を逃がしたとしても、基体21の外側面が開口しているので、空間24の空気は基体21の外側面の開口部から外部に排出される。さらに、基体21の本体部22はウェハWより大きい径を有しているので、空間24の空気を確実に外部に排出することができる。そうすると、空間24の内部圧力を一定に維持することができ、ウェハWに対して不要に圧力がかかるのを抑制することができる。こうしてめっき処理を適切に行うことができる。
 その後、間接電極27を陽極とし、ウェハWを陰極として直流電圧を印加して、電界(静電場)を形成する。そうすると、図10に示すように電解処理部20の表面(間接電極27及び直接電極26)側に負の荷電粒子である硫酸イオンSが集まり、ウェハWの表面側に正の荷電粒子である銅イオンCが移動する(図4のステップS6)。
 このステップS6では、直接電極26が陰極になるのを回避するため、直接電極26をグランドに接続せず、電気的にフローティング状態にしている。かかる場合、電解処理部20とウェハWのいずれの表面においても電荷交換が抑制されるので、静電場により引きつけられた荷電粒子が直接電極26表面に配列されることになる。そして、ウェハWの表面においても銅イオンCが均一に配列される。また、ウェハWの表面で銅イオンCの電荷交換が行われないので、間接電極27とウェハWの間に電圧を印可する際の電界を高くすることができる。そして、この高電界によって銅イオンCの移動を速くでき、めっき処理のめっきレートを向上させることができる。さらに、この電界を任意に制御することで、ウェハWの表面に配列される銅イオンCも任意に制御される。上述のように、ウェハWの表面において気泡の発生が防止されているので、ウェハWの表面に配列される銅イオンCは安定している。
 その後、十分な銅イオンCがウェハW側に移動して集積すると、直接電極26を陽極とし、ウェハWを陰極として電圧を印加して、直接電極26とウェハWの間に電流を流す。このとき、間接電極27による電圧印加を継続してもよいし、停止してもよい。そして、直接電極26とウェハWの間に電流が流れると、図11に示すようにウェハWの表面に均一に配列されている銅イオンCの電荷交換が行われ、銅イオンCが還元されて、ウェハWの表面に銅めっき70が析出する(図4のステップS7)。このとき、めっき液M中に水素イオンがあったとしても、銅イオンCは水素イオンよりイオン化傾向が低い。このため、銅イオンCのみが還元され、水素は発生しない。なお、銅イオンCの還元に伴い、硫酸イオンSは直接電極26によって酸化されている。
 このステップS7では、ウェハWの表面に十分な銅イオンCが集積し、均一に配列された状態で還元されるので、ウェハWの表面に銅めっき70を均一に析出させることができる。結果的に、銅めっき70における結晶の密度が高くなり、品質の良い銅めっき70を形成することができる。また、ウェハWの表面に銅イオンCが均一に配列された状態で還元を行っているので、銅めっき70を均一かつ高品質に生成することができるのである。
 その後、図12に示すように移動機構50によって電解処理部20を上昇させる。このとき、空間24に存在する空気も抜ける。そして、駆動機構11によってウェハWを回転させて、めっき液Mを振り切り除去する(図4のステップS8)。
 このステップS8では、電解処理部20を上昇させる際、基体21の外側面の開口部から空気が流入し、電解処理部20とめっき液Mとの界面に流入する。この空気によって、電解処理部20に作用するめっき液Mの表面張力を小さくすることができる。したがって、電解処理部20をめっき液Mから引き離す際に必要な力を小さくすることができ、引き離しを容易に行うことができる。
 次に、めっき処理の後処理、本実施の形態では洗浄処理を行う。図13に示すように移動機構61によって洗浄液ノズル60をウェハ保持部10に保持されたウェハWの中心部の上方まで移動させる。その後、駆動機構11によってウェハWを回転させながら、洗浄液ノズル60からウェハWの中心部に、IPAである洗浄液P2を供給する。供給された洗浄液P2は遠心力によりウェハW全面に拡散され、ウェハWの表面が洗浄される(図4のステップS9)。
 その後、洗浄液ノズル60から供給される液を洗浄液P2から純水D2に切り替え、ウェハWの中心部に純水D2を供給して、ウェハW上の洗浄液P2を純水D2に置換する。その後、図14に示すように洗浄液ノズル60からの純水D2の供給を停止し、さらにウェハWを回転させて、純水D2を振り切り除去する(図4のステップS10)。
 こうして、製造装置1における一連のめっき処理が終了する。なお、銅めっき70の目標膜厚によっては、ステップS4~S5のめっき液Mの供給及び充填、ステップS6の間接電極27による銅イオンCの移動、ステップS7の直接電極26及びウェハWによる銅イオンCの還元が繰り返し行われる。この際、ステップS4~S8を繰り返し行ってもよいし、あるいはステップS4~S9を繰り返し行ってもよい。
 以上の実施の形態によれば、ステップS3においてウェハWに端子25を接触させ、当該端子25を介して基板に電圧を印加して通電した後、ステップS4においてめっき液ノズル40からウェハWにめっき液Mが供給される。このため、上述したようにウェハWがめっき液Mに接触する時間を短縮することができ、ウェハWのシード層がめっき液に溶けるのを抑制することができる。
 また、基体21の表面21aに空間24が形成され、直接電極26は複数の貫通孔28が形成されたメッシュ構造を有するので、ステップS4においてウェハW上にめっき液Mを供給する際に、電解処理部20とウェハWとの間に空気が残る場合でも、空間24に空気を逃がすことができる。また、めっき液ノズル40から供給されるめっき液M自体に気泡が存在している場合でも、空間24に気泡を逃がすことができる。このため、めっき液M中の気泡を抑制することができる。
 さらに、ステップS6における間接電極27による銅イオンCの移動と、ステップS7における直接電極26及びウェハWによる銅イオンCの還元が個別に行われるので、ウェハWの表面に十分な銅イオンCが均一に集積した状態で銅イオンCの還元を行うことができる。
 以上のように、ウェハWのシード層がめっき液Mに溶けるのを抑制し、さらにめっき液M中の気泡を抑制し、しかもウェハWの表面に十分な銅イオンCが均一に集積した状態で銅イオンCの還元を行うことができるので、めっき処理を均一に行うことができる。
 次に、製造装置1の他の実施の形態について説明する。図15は、他の実施の形態にかかる製造装置1の構成の概略を示す説明図である。図15に示す製造装置1は、図1に示す製造装置1の直接電極26に代えて、直接電極100を有している。なお、図15に示す製造装置1の他の構成は、図1に示した製造装置1の他の構成と同じである。
 図15及び図16に示すように、直接電極100は複数、例えば7つに分割されている。以下、分割された7つの直接電極100を分割電極101~107と称する。各分割電極101~107には、複数の貫通孔110が形成されている。なお、直接電極100を分割する数や分割の仕方は、本実施の形態に限定されず、任意に設定することができる。
 分割電極101~107は共通の直流電源30に接続され、それぞれの分割電極101~107には個別に、直流電源30との接続のオンオフを切り替えるスイッチ(図示せず)が設けられている。このようにスイッチでオンオフを切り替えることで、分割電極101~107は、個別に電圧の印加を制御することができる。なお、電圧の制御方法は本実施の形態に限定されない。例えば分割電極101~107は個別の直流電源(図示せず)に接続されていてもよい。あるいは、分割電極101~107に対して直流電圧をパルス状に印加し、当該パルスの印加時間とパルスの幅で制御してもよい。
 本実施の形態によれば、分割電極101~107による電圧の印加を個別に制御することで、当該分割電極101~107に対向する部分のウェハWのめっき処理を個別に制御することができる。すなわち、例えば分割電極101による電圧の印加を停止すると、ウェハWにおいて分割電極101に対向する部分で銅めっき70の析出を抑えることができる。一方、分割電極101による電圧の印加を行うと、ウェハWにおいて分割電極101に対向する部分で銅めっき70を積極的に析出させることができる。
 ここで、例えばウェハWにおいて端子25が接触するところに近い部分では銅めっき70が厚く成長しやすく、一方、遠い部分では銅めっき70が薄くなる。特に近年の半導体装置の微細化に伴い、ウェハW上のシード層が薄膜化すると、このような銅めっき70の析出傾向は顕著に現れる。したがって、銅めっき70の成長しやすさに応じて、分割電極101~107による電圧の印加を個別に制御することで、銅めっき70の膜厚を均一にすることが可能となる。
 なお、以上の実施の形態の製造装置1では、基体21の表面21aには空間24が形成され、直接電極26、100はメッシュ構造を有していたが、これら基体21と直接電極26、100が平板状であっても、本発明を適用することができる。すなわち、基体21においては、空間24を省略し表面21aが平坦であってもよい。また、直接電極26、100においては、貫通孔28、110を省略してもよい。
 かかる場合、めっき液M中の気泡を抑制するという効果は小さくなるものの、本発明によれば、上述したようにウェハWがめっき液Mに接触する時間を短縮することができ、ウェハWのシード層がめっき液に溶けるのを抑制することができる。したがって、めっき処理を均一に行うことができる。
 また、以上の実施の形態の製造装置1では、めっき液ノズル40とは別に洗浄液ノズル60を設けていたが、前処理液又は後処理液である、洗浄液Pと純水Dの供給は、めっき液ノズル40を用いて行ってもよい。但し、例えばステップS2~S3においてウェハWの洗浄処理(前処理)を行う場合、めっき液ノズル40から洗浄液P1と純水D1を供給すると、洗浄処理が完了して洗浄液P1と純水D1の供給を停止した場合でもウェハW上に液垂れするおそれがある。また、ステップS9~S10においてウェハWの洗浄処理(後処理)を行う場合も同様に、液垂れのおそれがある。このため、洗浄液Pと純水Dの供給は、洗浄液ノズル60を用いて行うのが好ましい。
 また、以上の実施の形態では、移動機構50によって電解処理部20を下降させて、端子25をウェハWに接触させていたが、製造装置1において、駆動機構11によってウェハ保持部10を上昇させてもよい。あるいは、電解処理部20とウェハ保持部10の両方を移動させてもよい。また、電解処理部20とウェハ保持部10の配置を逆にし、電解処理部20をウェハ保持部10の下方に配置してもよい。
 また、以上の実施の形態では、めっき処理として銅めっきを形成する場合について説明したが、本発明は他の金属のめっきを行う場合にも適用することができる。例えばめっき対象の金属イオンのイオン化傾向が、水素イオンのイオン化傾向より低い場合、ステップS7において、当該金属イオンのみを還元することができ、水素は発生しない。一方、例えばめっき対象の金属イオンのイオン化傾向が、水素イオンのイオン化傾向より高い場合であっても、ステップS7における直接電極26、100の電位と、めっき液MのPHとを調節することで、当該金属イオンのみを還元することが可能となる。例えばめっき液Mをアルカリ性にすると、金属イオンのイオン化傾向が高くても、水素は発生しない。いずれにしても、水素の発生を抑制し、めっき処理を行うことができる。
 また、以上の実施の形態では、電解処理としてめっき処理を行う場合について説明したが、本発明は例えばエッチング処理等の種々の電解処理に適用することができる。
 また、以上の実施の形態ではウェハWの表面側において銅イオンCを還元する場合について説明したが、本発明はウェハWの表面側において被処理イオンを酸化する場合にも適用できる。かかる場合、被処理イオンは陰イオンであり、上記実施の形態において陽極と陰極を反対にして同様の電解処理を行えばよい。本実施の形態においても、被処理イオンの酸化と還元の違いはあれ、上記実施の形態と同様の効果を享受することができる。
 以上、本発明の実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
  1   製造装置
  10  ウェハ保持部
  11  駆動機構
  20  電解処理部
  21  基体
  22  本体部
  23  突起部
  24  空間
  25  端子
  26  直接電極
  27  間接電極
  28  貫通孔
  40  めっき液ノズル
  50  移動機構
  60  洗浄液ノズル
  70  銅めっき
  100 直接電極
  101~107 分割電極
  110 貫通孔
  C   銅イオン
  D(D1、D2) 純水
  M   めっき液
  P(P1、P2) 洗浄液
  S   硫酸イオン
  W   ウェハ(半導体ウェハ)

Claims (9)

  1. 半導体装置の製造装置であって、
    基板を保持する基板保持部と、
    前記基板保持部に保持された基板に電解処理を行う電解処理部と、
    前記基板保持部に保持された基板に電圧を印加するための端子と、を有し、
    前記電解処理部は、
    前記基板保持部に対向して配置される基体と、
    前記基体に設けられ、当該基体の表面から基板に処理液を供給する処理液供給部と、
    前記基体の表面に設けられ、基板に供給された前記処理液に接触し、基板との間で電圧を印加する直接電極と、
    前記基体の内部に設けられ、基板に供給された前記処理液に電界を形成する間接電極と、を有する。
  2. 請求項1に記載の半導体装置の製造装置において、
    前記処理液供給部は、少なくとも前記基体の中央部に設けられている。
  3. 請求項1に記載の半導体装置の製造装置において、
    前記基板に保持された基板に、電解処理の前処理を行うための前処理液又は後処理を行うための後処理液を供給する他の処理液供給部をさらに有する。
  4. 半導体装置の製造方法であって、
    基板を保持した基板保持部と、当該基板保持部に保持された基板に電解処理を行う電解処理部と、を対向配置する第1の工程と、
    基板に電圧を印加するための端子を基板に接触させ、当該端子を介して基板に電圧を印加して通電する第2の工程と、
    前記電解処理部の基体に設けられた処理液供給部によって、前記基体の表面から基板に処理液を供給し、当該処理液を前記基体の表面に設けられた直接電極に接触させる第3の工程と、
    前記基体の内部に設けられた間接電極に電圧を印加することで、前記処理液に電界を形成し、当該処理液中の被処理イオンを基板側に移動させる第4の工程と、
    前記直接電極と基板との間に電圧を印加することで、基板側に移動した前記被処理イオンを酸化又は還元する第5の工程と、を有する。
  5. 請求項4に記載の半導体装置の製造方法において、
    前記処理液供給部は、少なくとも前記基体の中央部に設けられ、
    前記第3の工程において、少なくとも前記基体の中央部から基板に前記処理液を供給する。
  6. 請求項4に記載の半導体装置の製造方法において、
    前記第1の工程の後であって前記第2の工程の前において、他の処理液供給部から基板に前処理液を供給し、当該前処理液によって電解処理の前処理を行う。
  7. 請求項6に記載の半導体装置の製造方法において、
    前記第2の工程は、前記前処理液が基板に残存した状態で行われる。
  8. 請求項4に記載の半導体装置の製造方法において、
    前記第5の工程の後において、他の処理液供給部から基板に後処理液を供給し、当該後処理液によって電解処理の後処理を行う。
  9. 半導体装置の製造方法を製造装置によって実行させるように、当該製造装置を制御する制御部のコンピュータ上で動作するプログラムを格納した読み取り可能なコンピュータ記憶媒体であって、
    前記半導体装置の製造方法は、
    基板を保持した基板保持部と、当該基板保持部に保持された基板に電解処理を行う電解処理部と、を対向配置する第1の工程と、
    基板に電圧を印加するための端子を基板に接触させ、当該端子を介して基板に電圧を印加して通電する第2の工程と、
    前記電解処理部の基体に設けられた処理液供給部によって、前記基体の表面から基板に処理液を供給し、当該処理液を前記基体の表面に設けられた直接電極に接触させる第3の工程と、
    前記基体の内部に設けられた間接電極に電圧を印加することで、前記処理液に電界を形成し、当該処理液中の被処理イオンを基板側に移動させる第4の工程と、
    前記直接電極と基板との間に電圧を印加することで、基板側に移動した前記被処理イオンを酸化又は還元する第5の工程と、を有する。
PCT/JP2018/041621 2017-11-22 2018-11-09 半導体装置の製造装置、半導体装置の製造方法及びコンピュータ記憶媒体 WO2019102866A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017224695A JP2021014599A (ja) 2017-11-22 2017-11-22 半導体装置の製造装置、半導体装置の製造方法、プログラム及びコンピュータ記憶媒体
JP2017-224695 2017-11-22

Publications (1)

Publication Number Publication Date
WO2019102866A1 true WO2019102866A1 (ja) 2019-05-31

Family

ID=66630921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041621 WO2019102866A1 (ja) 2017-11-22 2018-11-09 半導体装置の製造装置、半導体装置の製造方法及びコンピュータ記憶媒体

Country Status (3)

Country Link
JP (1) JP2021014599A (ja)
TW (1) TW201934814A (ja)
WO (1) WO2019102866A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177035A1 (ja) * 2020-03-02 2021-09-10 東京エレクトロン株式会社 めっき処理装置
CN115896881A (zh) * 2022-11-17 2023-04-04 安徽建筑大学 可防止偏移的半导体晶圆片及其预处理方法和电镀系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073197A (ja) * 1998-08-31 2000-03-07 Dainippon Screen Mfg Co Ltd 基板メッキ装置
JP2014227556A (ja) * 2013-05-20 2014-12-08 東京エレクトロン株式会社 基板の処理方法及びテンプレート
WO2017094568A1 (ja) * 2015-12-03 2017-06-08 東京エレクトロン株式会社 半導体装置の製造装置及び製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073197A (ja) * 1998-08-31 2000-03-07 Dainippon Screen Mfg Co Ltd 基板メッキ装置
JP2014227556A (ja) * 2013-05-20 2014-12-08 東京エレクトロン株式会社 基板の処理方法及びテンプレート
WO2017094568A1 (ja) * 2015-12-03 2017-06-08 東京エレクトロン株式会社 半導体装置の製造装置及び製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177035A1 (ja) * 2020-03-02 2021-09-10 東京エレクトロン株式会社 めっき処理装置
JP7399258B2 (ja) 2020-03-02 2023-12-15 東京エレクトロン株式会社 めっき処理装置
CN115896881A (zh) * 2022-11-17 2023-04-04 安徽建筑大学 可防止偏移的半导体晶圆片及其预处理方法和电镀系统

Also Published As

Publication number Publication date
TW201934814A (zh) 2019-09-01
JP2021014599A (ja) 2021-02-12

Similar Documents

Publication Publication Date Title
US11111592B2 (en) Manufacturing apparatus and manufacturing method for semiconductor device
JP6411741B2 (ja) 電解処理方法及び電解処理装置
WO2019102866A1 (ja) 半導体装置の製造装置、半導体装置の製造方法及びコンピュータ記憶媒体
JP6337016B2 (ja) 電解処理方法及び電解処理装置
CN110249079B (zh) 电解处理装置和电解处理方法
WO2019102867A1 (ja) 半導体装置の製造装置、半導体装置の製造方法及びコンピュータ記憶媒体
JPWO2018066315A1 (ja) 電解処理治具及び電解処理方法
KR102499511B1 (ko) 전해 처리 지그 및 전해 처리 방법
WO2018070188A1 (ja) 電解処理治具、電解処理治具の製造方法及び電解処理装置
KR102523718B1 (ko) 전해 처리 장치 및 전해 처리 방법
US20230096305A1 (en) Plating apparatus
KR20010004742A (ko) 반도체 소자의 화학기계적 연마 포스트-클리닝 방법
JP2017028187A (ja) 半導体装置の製造方法及び製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP