WO2018062522A1 - 蛍光樹脂粒子及びその用途 - Google Patents

蛍光樹脂粒子及びその用途 Download PDF

Info

Publication number
WO2018062522A1
WO2018062522A1 PCT/JP2017/035604 JP2017035604W WO2018062522A1 WO 2018062522 A1 WO2018062522 A1 WO 2018062522A1 JP 2017035604 W JP2017035604 W JP 2017035604W WO 2018062522 A1 WO2018062522 A1 WO 2018062522A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescent resin
resin particles
fluorescent
mass
vinyl
Prior art date
Application number
PCT/JP2017/035604
Other languages
English (en)
French (fr)
Inventor
原田 良祐
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to KR1020197004411A priority Critical patent/KR102151956B1/ko
Priority to CN201780058321.9A priority patent/CN109790234B/zh
Priority to EP17856469.6A priority patent/EP3521323B1/en
Priority to US16/337,493 priority patent/US11396566B2/en
Priority to JP2018542956A priority patent/JP6831849B2/ja
Publication of WO2018062522A1 publication Critical patent/WO2018062522A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/12Monomers containing a branched unsaturated aliphatic radical or a ring substituted by an alkyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1818C13or longer chain (meth)acrylate, e.g. stearyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • C08F218/10Vinyl esters of monocarboxylic acids containing three or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/62Monocarboxylic acids having ten or more carbon atoms; Derivatives thereof
    • C08F220/68Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1545Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B11/00Diaryl- or thriarylmethane dyes
    • C09B11/04Diaryl- or thriarylmethane dyes derived from triarylmethanes, i.e. central C-atom is substituted by amino, cyano, alkyl
    • C09B11/10Amino derivatives of triarylmethanes
    • C09B11/24Phthaleins containing amino groups ; Phthalanes; Fluoranes; Phthalides; Rhodamine dyes; Phthaleins having heterocyclic aryl rings; Lactone or lactame forms of triarylmethane dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0071Process features in the making of dyestuff preparations; Dehydrating agents; Dispersing agents; Dustfree compositions
    • C09B67/0084Dispersions of dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/08Copolymers of styrene
    • C09D125/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/16Homopolymers or copolymers of alkyl-substituted styrenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D131/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid, or of a haloformic acid; Coating compositions based on derivatives of such polymers
    • C09D131/02Homopolymers or copolymers of esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/22Luminous paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M10/00Hydrodynamic testing; Arrangements in or on ship-testing tanks or water tunnels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter

Definitions

  • the present invention relates to fluorescent resin particles containing a water-soluble fluorescent dye and a polymer of a vinyl monomer and uses thereof (dispersion liquid and resin composition).
  • Fluorescent particles that emit fluorescence are currently widely used in various fields. Among them, they play an important role as tracers for fluid visualization devices, standard particles for quality control of flow sites, and carriers for immunodiagnostic drugs.
  • Patent Document 1 discloses a vinyl for producing vinyl polymer particles containing the water-soluble fluorescent dye by dispersing a vinyl monomer and a water-soluble fluorescent dye in an aqueous medium and polymerizing the vinyl monomer.
  • a production method is described in which the vinyl monomer having a functional group capable of binding to the carboxyl group of the vinyl monomer is dispersed in the aqueous medium and the emulsion polymerization is carried out.
  • the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to make it easy to follow the flow of fluid and to easily observe the flow of fluid when used for fluid visualization. And providing a dispersion and a resin composition using the same.
  • the fluorescent resin particles of the present invention are fluorescent resin particles containing a water-soluble fluorescent dye and a polymer of a monomer mixture, wherein the monomer mixture is 20 to 80% by mass of the first vinyl monomer. And a second vinyl monomer of 80 to 20% by mass, wherein the first vinyl monomer is a styrene derivative having an alkyl group having 3 to 30 carbon atoms, having 10 to 30 carbon atoms.
  • At least one monofunctional vinyl monomer selected from the group consisting of a (meth) acrylic acid ester having an alkyl group and a vinyl ester having an alkyl group having 10 to 30 carbon atoms, wherein the second vinyl type
  • the monomer is styrene, a styrene derivative having an alkyl group having 2 or less carbon atoms, a (meth) acrylic acid ester having an alkyl group having 9 or less carbon atoms, and a vinyl ester having an alkyl group having 9 or less carbon atoms. It is characterized in that it comprises at least one monofunctional vinyl-based monomer selected from the group that.
  • the said structure consists of styrene, the styrene derivative which has a C2 or less alkyl group, the (meth) acrylic acid ester which has a C9 or less alkyl group, and the vinyl ester which has a C9 or less alkyl group.
  • the particle size is relatively large. Even if it exists, the fluorescent resin particle which is easy to follow the flow of fluid is realizable. Therefore, the fluorescent resin particles of the present invention are suitable for use in fluid visualization on a large scale.
  • the said structure consists of styrene, the styrene derivative which has a C2 or less alkyl group, the (meth) acrylic acid ester which has a C9 or less alkyl group, and the vinyl ester which has a C9 or less alkyl group.
  • a styrene derivative having an alkyl group having 3 to 30 carbon atoms which is a monomer having low solubility in water with respect to a monomer mixture containing at least one monofunctional vinyl monomer selected from the group Containing at least one monofunctional vinyl monomer selected from the group consisting of a (meth) acrylic acid ester having an alkyl group having 10 to 30 carbon atoms and a vinyl ester having an alkyl group having 10 to 30 carbon atoms
  • a (meth) acrylic acid ester having an alkyl group having 10 to 30 carbon atoms and a vinyl ester having an alkyl group having 10 to 30 carbon atoms
  • (meth) acrylic acid means acrylic acid and / or methacrylic acid
  • (meth) acrylate means acrylate and / or methacrylate.
  • the dispersion of the present invention is characterized by containing the fluorescent resin particles of the present invention. Since the dispersion liquid of the present invention contains the fluorescent resin particles of the present invention, when used for fluid visualization, the fluorescent resin particles can easily follow the flow of the fluid and easily observe the flow of the fluid.
  • the resin composition of the present invention is characterized by containing the fluorescent resin particles of the present invention and a binder resin.
  • the fluorescent resin particles of the present invention since the fluorescent resin particles of the present invention that are difficult to settle in a fluid are used, the fluorescent resin particles are uniformly dispersed in the binder resin.
  • the fluorescent resin particle which can follow a fluid flow easily, and can make it easy to observe a fluid flow, and a dispersion liquid and resin composition using the same can be provided. .
  • the state of the fluid at the time of evaluation of the visibility of the flow of the fluid containing the fluorescent resin particles of Example 1 is shown.
  • the state of the fluid at the time of evaluation of the visibility of the flow of the fluid containing the fluorescent resin particles of Comparative Example 1 is shown.
  • the fluorescent resin particles of the present invention are fluorescent resin particles containing a water-soluble fluorescent dye and a polymer of a monomer mixture, wherein the monomer mixture is 20 to 80% by mass of the first vinyl monomer. And a second vinyl monomer of 80 to 20% by mass, wherein the first vinyl monomer is a styrene derivative having an alkyl group having 3 to 30 carbon atoms, having 10 to 30 carbon atoms.
  • the monomer includes styrene, a styrene derivative having an alkyl group having 2 or less carbon atoms, a (meth) acrylic acid ester having an alkyl group having 9 or less carbon atoms, and a vinyl ester having an alkyl group having 9 or less carbon atoms. It contains at least one monofunctional vinyl-based monomer selected from the group.
  • the first vinyl monomer includes a styrene derivative having an alkyl group having 3 to 30 carbon atoms, a (meth) acrylic acid ester having an alkyl group having 10 to 30 carbon atoms, and an alkyl group having 10 to 30 carbon atoms. And at least one monofunctional vinyl monomer selected from the group consisting of vinyl esters having This monofunctional vinyl monomer is a relatively hydrophobic monofunctional vinyl monomer.
  • the “vinyl monomer” means a compound having at least one ethylenically unsaturated group
  • the “monofunctional vinyl monomer” means a compound having one ethylenically unsaturated group.
  • Examples of the styrene derivative having an alkyl group having 3 to 30 carbon atoms include pn-butyl styrene, p-tert-butyl styrene, pn-hexyl styrene, pn-octyl styrene, pn- Nonyl styrene, pn-decyl styrene, pn-dodecyl styrene and the like.
  • Examples of the (meth) acrylic acid ester having an alkyl group having 10 to 30 carbon atoms include dodecyl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, hexadecyl (meth) acrylate. , Octadecyl (meth) acrylate, icosyl (meth) acrylate, and the like.
  • Examples of the vinyl ester having an alkyl group having 10 to 30 carbon atoms include vinyl laurate, vinyl myristate, vinyl palmitate, and vinyl stearate.
  • the styrene derivative having an alkyl group having 3 to 30 carbon atoms is preferable because fluorescent resin particles that can easily follow the flow of fluid can be realized.
  • the content of the first vinyl monomer in the monomer mixture may be 20 to 80% by mass, preferably 30 to 80% by mass, and 40 to 75% by mass. It is more preferable. As a result, fluorescent resin particles that can easily follow the flow of the fluid can be realized.
  • the second vinyl monomer includes styrene, a styrene derivative having an alkyl group having 2 or less carbon atoms, a (meth) acrylic acid ester having an alkyl group having 9 or less carbon atoms, and an alkyl group having 9 or less carbon atoms. And at least one monofunctional vinyl monomer selected from the group consisting of vinyl esters (hereinafter referred to as “specific monofunctional vinyl monomers”).
  • Examples of the styrene derivative having an alkyl group having 2 or less carbon atoms include o-methylstyrene, m-methylstyrene, p-methylstyrene, p-ethylstyrene, 2,4-dimethylstyrene, and n-methoxystyrene. Can be mentioned.
  • Examples of the (meth) acrylic acid ester having an alkyl group having 9 or less carbon atoms include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and n-butyl (meth) acrylate.
  • the vinyl ester having an alkyl group having 9 or less carbon atoms include vinyl acetate, vinyl propionate, vinyl butyrate and the like.
  • styrene and a styrene derivative having an alkyl group having 2 or less carbon atoms are preferable because fluorescent resin particles that can easily follow the flow of fluid can be realized.
  • the content of the specific monofunctional vinyl monomer in the monomer mixture may be 20 to 80% by mass, preferably 30 to 80% by mass, and 40 to 75% by mass. It is more preferable. Thereby, it is possible to realize fluorescent resin particles that can easily follow the flow of fluid.
  • the second vinyl monomer preferably contains a monofunctional vinyl monomer having a carboxy group whose solubility in 100 ml of water at 20 ° C. is 50 g or less.
  • a monofunctional vinyl-based monomer having a carboxy group having a solubility in 100 ml of water of 50 g or less at 20 ° C. is relatively hydrophobic, and at the time of polymerization, the carboxy group has a basic moiety (
  • the water-soluble fluorescent dye can be hydrophobized to be uniformly dissolved in the monomer mixture by binding to the amino group in the rhodamine dye, and as a result, the water-soluble fluorescent dye can be dissolved in the fluorescent resin particles. Can be present uniformly.
  • the vinyl monomer having a carboxy group preferably has a solubility in 100 ml of water at 20 ° C. of 30 g or less, and more preferably has a solubility in 100 ml of water at 20 ° C. of 10 g or less.
  • Examples of the vinyl monomer having a carboxy group having a solubility in 100 ml of water at 20 ° C. of 50 g or less include, for example, 2-methacryloyloxy (Meth) acrylic acid derivatives such as ethyl succinic acid [solubility 1.9 g], 2-methacryloyloxyethyl phthalic acid, 2-methacryloyloxyethyl hexahydrophthalic acid, and the like may be used alone or in combination. be able to.
  • 2-methacryloyloxy (Meth) acrylic acid derivatives such as ethyl succinic acid [solubility 1.9 g]
  • 2-methacryloyloxyethyl phthalic acid 2-methacryloyloxyethyl hexahydrophthalic acid, and the like may be used alone or in combination. be able to.
  • the content of the carboxy group-containing monofunctional vinyl monomer in the monomer mixture is preferably 2 to 30% by mass, and more preferably 4 to 25% by mass. Thereby, it is possible to realize fluorescent resin particles with better uniformity of fluorescent color development among the particles.
  • the fluorescent resin particles may further contain a carboxylic acid having no ethylenically unsaturated group and having a solubility in 100 ml of water at 20 ° C. of 50 g or less.
  • a carboxylic acid having no ethylenically unsaturated group having a solubility in 100 ml of water of 50 g or less at 20 ° C. is relatively hydrophobic, and the basicity of the molecule of the water-soluble fluorescent dye is determined by the carboxy group during polymerization.
  • the water-soluble fluorescent dye By binding to a site (for example, an amino group in a rhodamine dye), the water-soluble fluorescent dye can be hydrophobized to facilitate uniform dissolution in the monomer mixture. As a result, the water-soluble fluorescent dye is converted into a fluorescent resin. It can exist uniformly in the particles. As a result, it is possible to realize fluorescent resin particles with uniform fluorescent color development among the particles.
  • the carboxylic acid having no ethylenically unsaturated group preferably has a solubility in 100 ml of water at 20 ° C. of 30 g or less, and more preferably has a solubility in 100 ml of water at 20 ° C. of 10 g or less.
  • Examples of the carboxylic acid having no ethylenically unsaturated group having a solubility in 100 ml of water at 20 ° C. of 50 g or less include octanoic acid, heptanoic acid, hexanoic acid, and the like. Can be used as a mixture.
  • the content of the carboxylic acid having no ethylenically unsaturated group having a solubility in 100 ml of water at 20 ° C. in the fluorescent resin particles of 50 g or less is preferably 2 to 30% by mass. More preferably, it is mass%. Thereby, it is possible to realize fluorescent resin particles with better uniformity of fluorescent color development among the particles.
  • the second vinyl monomer may contain a polyfunctional vinyl monomer.
  • the polyfunctional vinyl monomer is a compound having two or more ethylenically unsaturated groups.
  • examples of the polyfunctional vinyl-based monomer include alkylene glycol di (meth) acrylates such as divinylbenzene and ethylene glycol dimethacrylate (alkylene preferably has a range of 2 to 4 carbon atoms).
  • the second vinyl monomer may contain other monofunctional vinyl monomers.
  • examples of other monofunctional vinyl monomers include styrene derivatives such as p-phenylstyrene, p-chlorostyrene, and 3,4-dichlorostyrene; vinyl chloride, vinylidene chloride, vinyl bromide, vinyl fluoride, and the like.
  • vinyl ethers such as vinyl methyl ether, vinyl ethyl ether, and vinyl isobutyl ether
  • vinyl ketones such as vinyl methyl ketone, vinyl hexyl ketone, and methyl isopropenyl ketone
  • N-vinyl pyrrole N-vinyl compounds such as N-vinylcarbazole, N-vinylindole and N-vinylpyrrolidone
  • vinylnaphthalene can also be used.
  • the water-soluble fluorescent dye is not particularly limited as long as it is substantially uniformly soluble in the monomer mixture.
  • Rhodamine dyes such as rhodamine B, rhodamine 6G and rhodamine 640; stilbene dyes; methylene blue; fluorescein And fluorescein dyes (fluorescein derivatives) such as uranin and erythrosine.
  • rhodamine dyes such as rhodamine B, rhodamine 6G and rhodamine 640, or fluorescein dyes such as fluorescein, uranin and erythrosine can be suitably used as the water-soluble fluorescent dye.
  • the amount of the water-soluble fluorescent dye depends on the type of the water-soluble fluorescent dye, but is preferably in the range of 0.005 to 20 parts by mass with respect to 100 parts by mass of the polymer. More preferably, it is in the range of 0.01 to 10 parts by mass. If the amount of the water-soluble fluorescent dye is less than 0.005 parts by mass, there is a possibility that the fluorescence coloring property of the fluorescent resin particles may not be sufficient. On the other hand, even if the amount of the water-soluble fluorescent dye exceeds 20 parts by mass, it is difficult to expect an effect commensurate with the increase in the amount.
  • the fluorescent resin particles are produced by polymerizing the monomer mixture in the presence of the water-soluble fluorescent dye, if the amount of the water-soluble fluorescent dye exceeds 20 parts by mass, There is a risk of causing precipitation and polymerization inhibition of the monomer mixture.
  • the fluorescent resin particles preferably further contain a surfactant.
  • a surfactant By further including a surfactant, the fluorescent resin particles are hydrophilized and easily dispersed in water, and when used for fluid visualization, the flow of fluid is easily observed.
  • the surfactant may be added at the time of polymerization for producing fluorescent resin particles, or may be added after the polymerization for producing fluorescent resin particles.
  • the surfactant any of an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant can be used, and a nonionic surfactant is preferable.
  • anionic surfactant any known anionic surfactant such as a fatty acid salt type, a sulfate ester type, and a sulfonate type can be used.
  • anionic surfactant such as sodium oleate, castor oil potash soap, etc.
  • alkyl sulfates such as sodium lauryl sulfate and ammonium lauryl sulfate
  • alkyl benzene sulfonates such as sodium dodecylbenzene sulfonate
  • alkyl naphthalene sulfonates alkane sulfonates, di (2-ethylhexyl) sulfosuccinate (sodium) Salt), dialkylsulfosuccinate such as dioctylsulfosuccinate (sodium salt); alkenyl succinate (dipotassium salt); alkyl phosphate ester salt
  • naphthalene sulfonate formalin condensate polyoxyethylene alkylphenyl Ether sulfates, polyoxyethylene lauryl ether, polyoxyethylene alkyl ether sulfate such as sodium sulfate; polyoxyethylene alkyl sulfates
  • nonionic surfactant any known nonionic surfactant such as an ester type, an ether type, and an ester / ether type can be used.
  • a polyoxyethylene alkyl such as polyoxyethylene tridecyl ether can be used.
  • polyoxyethylene alkylphenyl ether such as polyoxyethylene octylphenyl ether, polyoxyethylene styrenated phenyl ether, polyoxyalkylene alkyl ether such as polyoxyalkylene tridecyl ether having 3 or more carbon atoms in the alkylene group
  • poly Oxyethylene fatty acid esters such as polyoxyethylene octylphenyl ether, polyoxyethylene styrenated phenyl ether, polyoxyalkylene alkyl ether such as polyoxyalkylene tridecyl ether having 3 or more carbon atoms in the alkylene group
  • poly Oxyethylene fatty acid esters such as polyoxyethylene octylphenyl ether, polyoxyethylene styrenated phenyl ether, polyoxyalkylene alkyl ether such as polyoxyalkylene tridecyl ether having 3 or more carbon atoms in the alkylene group
  • cationic surfactant known cationic surfactants such as amine salt type and quaternary ammonium salt type can be used. However, water-soluble cationic surfactants are used from the viewpoint of handling. It is advantageous. Specific examples of the cationic surfactant include alkylamine salts such as laurylamine acetate and stearylamine acetate; alkyltrimethylammonium such as lauryltrimethylammonium chloride, hexadecyltrimethylammonium chloride, cocoyltrimethylammonium chloride and dodecyltrimethylammonium chloride Chloride; alkyl dimethyl benzyl chlorides such as hexadecyl dimethyl benzyl ammonium chloride and lauryl dimethyl benzyl ammonium chloride; These cationic surfactants may be used individually by 1 type, and may be used in combination of 2 or more type.
  • amphoteric surfactants examples include lauryl dimethylamine oxide, phosphate ester surfactants, phosphite ester surfactants, and the like. These amphoteric surfactants may be used alone or in combination of two or more.
  • the surfactants may be used alone or in combination of two or more.
  • the surfactant preferably has a solubility in water at a liquid temperature of 25 ° C. of 0.3 g / 100 ml or more, more preferably 0.5 g / 100 ml or more. If a surfactant having a solubility of less than 0.3 g / 100 ml is used, the effect of making the fluorescent resin particles hydrophilic may not be sufficiently obtained. Further, it is preferable that the surfactant is a surfactant having a polyoxyethylene chain because the surfactant is likely to adhere to the polymer surface.
  • the content of the surfactant in the fluorescent resin particles is preferably in the range of 0.01 to 0.5 parts by weight with respect to 100 parts by weight of the polymer.
  • the surfactant content is less than the above range, the effect of making the fluorescent resin particles hydrophilic may not be sufficiently obtained.
  • there is more content of surfactant than the said range it is uneconomical in terms of cost.
  • the fluorescent resin particles can be contained in a range that does not significantly impair the effects of the present invention, and other additives may be added.
  • additives include coloring components (coloring agents) other than water-soluble fluorescent dyes, light stabilizers, ultraviolet absorbers, heat stabilizers, leveling agents, antistatic agents, and the like.
  • the fluorescent resin particles are obtained as the turbidity of a filtrate obtained by filtering a dispersion in which fluorescent resin particles are dispersed in water 3 times by mass with “qualitative filter paper No. 101” (manufactured by Toyo Roshi Kaisha, Ltd.).
  • the measured emulsion content index value is preferably 100 NTU or less, more preferably 70 NTU or less, and even more preferably 40 NTU or less.
  • an emulsion content rate index value can be measured with the measuring method as described in the item of [Example] of a latter stage, for example.
  • the volume average particle diameter of the fluorescent resin particles is preferably 30 to 500 ⁇ m, and more preferably 30 to 200 ⁇ m.
  • the variation coefficient of the volume-based particle diameter of the fluorescent resin particles is preferably 32% or less, and more preferably 25% or less. Thereby, it is possible to realize fluorescent resin particles that can easily follow the flow of fluid.
  • the true specific gravity of the fluorescent resin particles is preferably 0.95 to 1.05.
  • the method for producing the fluorescent resin particles of the present invention is not particularly limited, and the above-mentioned simple method can be performed by various polymerization methods (emulsion polymerization, dispersion polymerization, suspension polymerization, seed polymerization, etc.) in the presence of a water-soluble fluorescent dye.
  • a method of polymerizing a monomer mixture can be used, it is preferable to use suspension polymerization in which a mixture containing the monomer mixture and the water-soluble fluorescent dye is suspended in an aqueous medium to polymerize. This is preferable because fluorescent resin particles having a diameter of 30 to 500 ⁇ m can be easily produced.
  • aqueous medium used for the suspension polymerization examples include water and a mixture of water and a water-soluble organic solvent (for example, a lower alcohol having 5 or less carbon atoms).
  • a polymerization initiator may be further mixed with the mixture containing the monomer mixture and the water-soluble fluorescent dye.
  • the polymerization initiator include oils such as benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, orthochlorobenzoyl peroxide, methyl ethyl ketone peroxide, diisopropyl peroxydicarbonate, cumene hydroperoxide, and t-butyl hydroperoxide. Soluble peroxides; oil-soluble azo compounds such as 2,2′-azobisisobutyronitrile and 2,2′-azobis (2,4-dimethylvaleronitrile). These polymerization initiators can be used alone or in combination of two or more. The amount of the polymerization initiator used is about 0.1 to 1 part by mass with respect to 100 parts by mass of the monomer mixture.
  • the suspension polymerization may be performed in the presence of a dispersant and / or a surfactant, if necessary.
  • a dispersant include poorly water-soluble inorganic salts such as calcium phosphate and magnesium pyrophosphate; water-soluble polymers such as polyvinyl alcohol, methyl cellulose, and polyvinyl pyrrolidone.
  • surfactant examples include anionic surfactants such as sodium oleate, sodium lauryl sulfate, sodium dodecylbenzene sulfonate, alkyl naphthalene sulfonate, and alkyl phosphate ester salt; polyoxyethylene alkyl ether, poly Nonionic surfactants such as oxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxysorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin fatty acid ester; amphoteric surfactants such as lauryl dimethylamine oxide, etc. Is mentioned.
  • anionic surfactants such as sodium oleate, sodium lauryl sulfate, sodium dodecylbenzene sulfonate, alkyl naphthalene sulfonate, and alkyl phosphate ester salt
  • polyoxyethylene alkyl ether poly Noni
  • the above dispersants and surfactants can be used alone or in combination of two or more.
  • a water-soluble polymer is used as a dispersant
  • a surfactant is used in combination with the dispersant
  • the surfactant is not added at the time of the polymerization initiator but is added after the primary temperature rise (inhibition of aggregation after the primary temperature rise). Is preferable).
  • fluorescent resin particles having a lower emulsion content can be obtained.
  • the amount of the dispersant used is preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the monomer mixture, and the amount of the surfactant used is 100 parts by mass of the aqueous medium. It is preferably 0.01 to 0.2 parts by mass.
  • the suspension polymerization it is preferable to perform suspension polymerization of the monomer mixture in a state where the mixture containing the monomer mixture and the water-soluble fluorescent dye contains an acidic organic modified phosphoric acid compound.
  • the suspension of the water-soluble fluorescent dye and unreacted monomer into the aqueous phase is prevented when suspended in an aqueous medium, and the stable Fine oil droplets of the mixture can be generated.
  • Examples of the acidic organically modified phosphoric acid compound include phosphorous acid monoester, phosphorous acid diester, phosphoric acid monoester, and phosphoric acid diester. These phosphorous acid monoesters or phosphorous acid diesters, phosphoric acid monoesters and phosphoric acid diesters are not particularly limited, but lauryl phosphoric acid, polyoxyethylene (1) lauryl ether phosphoric acid, dipolyoxyethylene (2) alkyl ether phosphoric acid Dipolyoxyethylene (4) alkyl ether phosphoric acid, dipolyoxyethylene (6) alkyl ether phosphoric acid, dipolyoxyethylene (8) alkyl ether phosphoric acid, dipolyoxy ether (4) nonylphenyl ether phosphoric acid, Examples include caprolactone EO-modified phosphoric acid dimethacrylate, 2-methacryloyloxyethyl acid phosphate and the like. Among these compounds, lauryl phosphoric acid or caprolactone EO-mod
  • the addition amount of the acidic organic modified phosphoric acid compound is preferably 0.01 to 5 parts by mass, and preferably 0.01 to 3 parts by mass with respect to 100 parts by mass of the monomer mixture. More preferred.
  • the suspension polymerization is performed by preparing an oil phase containing the monomer mixture, and heating the aqueous phase in which the oil phase is dispersed while dispersing the prepared oil phase in an aqueous phase containing an aqueous medium. You can start.
  • a polymerization initiator a polymerization initiator is mixed with the said monomer mixture, and an oil phase is prepared.
  • a dispersing agent and / or surfactant a dispersing agent and / or surfactant are mixed with an aqueous medium, and an aqueous phase is prepared.
  • the volume average particle diameter of the fluorescent resin particles can be appropriately controlled by adjusting the mixing ratio of the oil phase and the aqueous phase, the amount of the dispersant, the amount of the surfactant used, the stirring conditions, and the dispersion conditions.
  • Examples of the method for dispersing the oil phase in the aqueous phase include a method in which the oil phase is directly added to the aqueous phase and the oil phase is dispersed as droplets in the aqueous phase by stirring force of a propeller blade or the like; A method in which an oil phase is directly added to a phase and the oil phase is dispersed in an aqueous phase using a homomixer that is a disperser using a high shear force composed of a rotor and a stator; There are various methods such as a method of directly adding and dispersing the oil phase in the aqueous phase using an ultrasonic disperser or the like.
  • the oil phase is directly added to the aqueous phase, and using a high-pressure disperser such as a microfluidizer or nanomizer (registered trademark), the droplets of the mixture collide with each other or the mixture collides with the machine wall.
  • a high-pressure disperser such as a microfluidizer or nanomizer (registered trademark)
  • the oil phase is dispersed as a droplet in the aqueous phase using an MPG (microporous glass) porous film, the oil phase is pressed into the aqueous phase, etc. It is preferable because the particle diameters of these can be made more uniform.
  • the polymerization temperature is preferably about 40 to 90 ° C.
  • the time for maintaining this polymerization temperature is preferably about 0.1 to 10 hours.
  • the polymerization reaction may be performed in an inert gas atmosphere that is inert to the reactant (oil phase) in the polymerization reaction system, such as a nitrogen atmosphere.
  • an inert gas atmosphere that is inert to the reactant (oil phase) in the polymerization reaction system, such as a nitrogen atmosphere.
  • a pressure-resistant polymerization facility such as an autoclave so that the vinyl monomer does not volatilize. It is preferable to perform suspension polymerization in
  • the desired fluorescent resin particles can be obtained by performing decomposition and removal of the hardly water-soluble inorganic salt with an acid, etc., dehydration by filtration, washing, drying, pulverization, classification, etc., if desired. .
  • emulsion microparticles generated during polymerization by classification (for example, airflow classification), filtration, or the like
  • fluorescent resin particles having a small emulsion content index value for example, 100 NTU or less
  • the surfactant may be attached to the polymer surface by performing polymerization in the presence of the surfactant. However, after the polymerization, washing and drying are performed to obtain a dry powder, and then it is preferable to perform a hydrophilic treatment of the dry powder by adding the surfactant. Thereby, it becomes easy to attach more surfactant to the said polymer surface more uniformly.
  • the fluorescent resin particles of the present invention can be suitably used as tracer particles for visualizing fluid flow.
  • the flow of fluid or bubble flow can be detected and analyzed by fluorescent emission.
  • the fluorescent resin particle of the present invention itself may be added to a fluid such as water, and the fluorescent resin particle of the present invention is dispersed in a dispersion medium such as water.
  • the dispersed liquid may be added to a fluid such as water.
  • the dispersion of the present invention contains the fluorescent resin particles of the present invention.
  • the dispersion of the present invention can be used not only for tracers but also for paints.
  • the dispersion of the present invention has an advantage that the fluorescent resin particles do not settle in the liquid when used as a dispersion for paint.
  • the dispersion of the present invention is one in which the fluorescent resin particles of the present invention are dispersed as a dispersoid in a dispersion medium.
  • a dispersion medium an aqueous medium can be suitably used.
  • the aqueous medium has water or a solubility parameter (hereinafter referred to as “SP value”) calculated by the Fedors method of 20.5 (MPa) 1/2 (10 (cal / cm 3 ) 1/2 ) or more.
  • SP value a solubility parameter calculated by the Fedors method of 20.5 (MPa) 1/2 (10 (cal / cm 3 ) 1/2 ) or more.
  • This is a mixed medium of an organic solvent and water.
  • the specific gravity of the aqueous medium is larger than the specific gravity of the polymer particles ( ⁇ p > ⁇ f ).
  • the organic solvent SP value of 20.5 (MPa) 1/2 specifically, for example, SP value 24.3 (MPa) 1/2 (11.9 ( cal / cm 3) 1 / 2 ) isopropyl alcohol, SP value 28.2 (MPa) 1/2 (13.8 (cal / cm 3 ) 1/2 ) methyl alcohol, SP value 26.2 (MPa) 1/2 And ethyl alcohol which is (12.6 (cal / cm 3 ) 1/2 ).
  • the dispersion of the present invention When used for paint, it usually further contains a binder, and the fluorescent resin particles are dispersed in the binder as a dispersoid.
  • the binder is not particularly limited as long as it is used in the field according to required properties such as transparency, polymer particle dispersibility, light resistance, moisture resistance and heat resistance.
  • the binder include (meth) acrylic resins; (meth) acrylic-urethane resins; urethane resins; polyvinyl chloride resins; polyvinylidene chloride resins; melamine resins; styrene resins; alkyd resins.
  • Modified silicone resins; binder resins such as fluororesins such as polyvinylidene fluoride and fluoroolefin vinyl ether polymers.
  • the binder resin is preferably a curable resin capable of forming a crosslinked structure by a crosslinking reaction from the viewpoint of improving the durability of the dispersion for coating.
  • the curable resin can be cured under various curing conditions.
  • the curable resin is classified into an ionizing radiation curable resin such as an ultraviolet curable resin and an electron beam curable resin, a thermosetting resin, a hot air curable resin, and the like depending on the type of curing.
  • thermosetting resin examples include thermosetting urethane resins composed of acrylic polyols and isocyanate prepolymers, phenol resins, urea melamine resins, epoxy resins, unsaturated polyester resins, and silicone resins.
  • the ionizing radiation curable resin is synthesized from a polyfunctional (meth) acrylate resin such as polyhydric alcohol polyfunctional (meth) acrylate; a diisocyanate, a polyhydric alcohol, and a (meth) acrylic acid ester having a hydroxy group. And polyfunctional urethane acrylate resins.
  • the ionizing radiation curable resin is preferably a polyfunctional (meth) acrylate resin, more preferably a polyhydric alcohol polyfunctional (meth) acrylate having 3 or more (meth) acryloyl groups in one molecule.
  • polyhydric alcohol polyfunctional (meth) acrylate having 3 or more (meth) acryloyl groups in one molecule specifically, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, 1,2,4-cyclohexane tri (meth) acrylate, pentaglycerol triacrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol triacrylate, dipentaerythritol pentaacrylate, dipentaerythritol tetra (Meth) acrylate, dipentaerythritol hexa (meth) acrylate, tripentaerythritol triacrylate, tripentaerythritol hexaacrylate, etc. .
  • Two or more kinds of the ionizing radiation curable resins may be used
  • a polyether resin having an acrylate functional group a polyester resin, an epoxy resin, an alkyd resin, a spiroacetal resin, a polybutadiene resin, a polythiol polyene resin, and the like can also be used.
  • a photopolymerization initiator is added to the ultraviolet curable resin to obtain a binder resin.
  • a photoinitiator it is preferable to use what was suitable for the ultraviolet curable resin to be used.
  • Examples of the photopolymerization initiator include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, ⁇ -hydroxyalkylphenones, ⁇ -aminoalkylphenones, anthraquinones, thioxanthones, azo compounds, peroxides (Described in JP-A No. 2001-139663), 2,3-dialkyldione compounds, disulfide compounds, fluoroamine compounds, aromatic sulfoniums, onium salts, borate salts, active halogen compounds, ⁇ -acyloximes
  • Examples include esters.
  • acetophenones examples include acetophenone, 2,2-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxydimethylphenyl ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-4-methylthio-2-morpholinopropio.
  • examples include phenone and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone.
  • benzoins examples include benzoin, benzoin benzoate, benzoin benzene sulfonate, benzoin toluene sulfonate, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether.
  • benzophenones examples include benzophenone, 2,4-dichlorobenzophenone, 4,4'-dichlorobenzophenone, p-chlorobenzophenone, and the like.
  • phosphine oxides examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
  • Examples of the ketals include benzylmethyl ketals such as 2,2-dimethoxy-1,2-diphenylethane-1-one.
  • Examples of the ⁇ -hydroxyalkylphenones include 1-hydroxycyclohexyl phenyl ketone and 1-hydroxycyclohexyl phenyl ketone.
  • Examples of the ⁇ -aminoalkylphenones include 2-methyl-1- [4- (methylthio) phenyl] -2- (4-morpholinyl) -1-propanone.
  • radical photopolymerization initiators include trade names “Irgacure (registered trademark) 651” (2,2-dimethoxy-1,2-diphenylethane-1-one) manufactured by BASF Japan Ltd., manufactured by BASF Japan Ltd. Trade name “Irgacure (registered trademark) 184”, and trade name “Irgacure (registered trademark) 907” (2-methyl-1- [4- (methylthio) phenyl] -2- (4-morpholinyl) manufactured by BASF Japan Ltd. ) -1-propanone) and the like.
  • the amount of the photopolymerization initiator used is usually in the range of 0.5 to 20% by weight, preferably in the range of 1 to 5% by weight with respect to 100% by weight of the binder.
  • thermoplastic resin As the binder resin, a thermoplastic resin can be used in addition to the curable resin.
  • the thermoplastic resin include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, and methylcellulose; homopolymers and copolymers of vinyl acetate, homopolymers and copolymers of vinyl chloride, and vinylidene chloride.
  • Vinyl resins such as homopolymers and copolymers; acetal resins such as polyvinyl formal and polyvinyl butyral; homopolymers and copolymers of acrylate esters, homopolymers and copolymers of methacrylate esters, etc.
  • Acrylic resin polystyrene resin; polyamide resin; linear polyester resin; polycarbonate resin.
  • rubber binders such as synthetic rubber and natural rubber, inorganic binders, and the like can be used as the binder.
  • the rubber binder resin include ethylene-propylene copolymer rubber, polybutadiene rubber, styrene-butadiene rubber, and acrylonitrile-butadiene rubber. These rubber-based binder resins may be used alone or in combination of two or more.
  • the inorganic binder examples include silica sol, alkali silicate, silicon alkoxide, and phosphate.
  • an inorganic or organic-inorganic composite matrix obtained by hydrolysis and dehydration condensation of metal alkoxide or silicon alkoxide can also be used.
  • a silicon oxide matrix obtained by hydrolysis and dehydration condensation of a silicon alkoxide such as tetraethoxysilane can be used.
  • the amount of the fluorescent resin particles in the coating liquid dispersion is preferably 2 parts by weight or more, more preferably 4 parts by weight or more, based on 100 parts by weight of the solid content of the binder. More preferably, it is the above. By making the amount of the fluorescent resin particles 2 parts by weight or more with respect to 100 parts by weight of the solid content of the binder, it becomes easy to make the matte property of the coating film formed by the coating liquid dispersion sufficient.
  • the amount of the fluorescent resin particles in the coating liquid dispersion is preferably 300 parts by weight or less, more preferably 200 parts by weight or less, and more preferably 100 parts by weight with respect to 100 parts by weight of the solid content of the binder. More preferably, it is as follows. By making the amount of the fluorescent resin particles 300 parts by weight or less with respect to 100 parts by weight of the solid content of the binder, it becomes easy to make the linear permeability of the coating film formed by the coating liquid dispersion sufficient.
  • the resin composition of the present invention contains the fluorescent resin particles of the present invention and a binder resin.
  • the binder resin those mentioned above as the binder resin used in the coating liquid dispersion can be used, but the (meth) acryl-styrene resin ((meth) acrylic) acid ester and styrene are co-polymerized. Coalescence), polycarbonate resin, and the like can also be used.
  • the amount of the fluorescent resin particles in the resin composition is preferably 2 parts by weight or more, more preferably 4 parts by weight or more, and 6 parts by weight or more with respect to 100 parts by weight of the binder resin. Is more preferable. By making the amount of the fluorescent resin particles 2 parts by weight or more with respect to 100 parts by weight of the binder resin, it becomes easy to make the matte property of the resin composition sufficient.
  • the amount of the fluorescent resin particles in the resin composition is preferably 300 parts by weight or less, more preferably 200 parts by weight or less, and 100 parts by weight or less with respect to 100 parts by weight of the binder resin. Is more preferable.
  • the amount of the fluorescent resin particles 300 parts by weight or less with respect to 100 parts by weight of the binder resin it becomes easy to make the linear transmittance of the resin composition sufficient.
  • additives such as a ultraviolet absorber, antioxidant, a heat stabilizer, a light stabilizer, and a fluorescent whitening agent, to the said resin composition.
  • the resin composition of the present invention can be molded into a molded body.
  • the binder resin is an ultraviolet curable resin
  • a method for molding the resin composition for example, a method of pouring the binder resin into a mold and irradiating it with ultraviolet rays can be used.
  • the binder resin is an ultraviolet curable resin
  • a molding method of the resin composition for example, a method of melt kneading the resin composition with a single screw extruder or a twin screw extruder
  • the resin composition A method of molding a molding material obtained by melt kneading of a product into a plate shape or the like via a T die and a roll unit, a pellet molding material (master pellet) obtained by melt kneading and pelletizing the resin composition
  • the method etc. which shape
  • the size, shape, etc. of the molded body can be appropriately selected depending on the application.
  • the binder resin in the molded body is a transparent resin
  • the polymer particles in the molded body function as a light diffusing agent
  • the molded body functions as a light diffusing body such as a light diffusing plate. Therefore, such a molded body can be used as an LED lighting cover or the like.
  • the obtained dispersion was suction filtered with a filter ("Qualitative filter paper No. 101", diameter 55 mm, manufactured by Toyo Roshi Kaisha, Ltd.), the turbidity of the filtrate was measured, and the measured turbidity contained an emulsion. The rate index value was used. The turbidity was measured using a turbidimeter “TurbiDirect” (manufactured by Tintometer).
  • the volume average particle diameter of the fluorescent resin particles is measured by Coulter Multisizer TM 3 (measurement device manufactured by Beckman Coulter, Inc.). The measurement shall be performed using an aperture calibrated according to the Multisizer TM 3 User's Manual issued by Beckman Coulter, Inc.
  • the aperture used for the measurement is appropriately selected depending on the size of the fluorescent resin particle to be measured.
  • Current (aperture current) and Gain (gain) are appropriately set according to the size of the selected aperture. For example, when an aperture having a size of 50 ⁇ m is selected, the current (aperture current) is set to ⁇ 800 and the gain (gain) is set to 4.
  • a measurement sample 0.1 g of fluorescent resin particles in a 0.1% by weight nonionic surfactant aqueous solution 10 ml, a touch mixer (manufactured by Yamato Kagaku Co., Ltd., “TOUCMIXER MT-31”) and an ultrasonic cleaner (stock) Dispersed using “ULTRASONIC CLEANER VS-150” (manufactured by Vervo Creer) and used as a dispersion.
  • the beaker is gently stirred to the extent that bubbles do not enter, and the measurement is terminated when 100,000 fluorescent resin particles are measured.
  • the volume average particle diameter of the fluorescent resin particles is an arithmetic average in a volume-based particle size distribution of 100,000 particles.
  • the fluorescence coloring property of the fluorescent resin particles was evaluated as follows. First, 2 g of fluorescent resin particles were placed in a beaker having an internal volume of 100 ml, and 50 g of water was added to disperse the fluorescent resin particles in water to obtain a dispersion. The resulting dispersion was irradiated with black light to confirm fluorescence development. Fluorescent color developability is “ ⁇ ” (excellent) when fluorescent color development is clearly visible, and fluorescent color developability is “ ⁇ ” (good) when fluorescent color development is weak, but can be confirmed. Was defined as “ ⁇ ” (poor).
  • Example 1 135 parts by mass of p-tert-butylstyrene as the first vinyl monomer (45% by mass in the monomer mixture) and 135 parts by mass of styrene as the specific monofunctional vinyl monomer (monomer mixture) 45 mass%), 15 parts by mass of divinylbenzene as a polyfunctional vinyl monomer (5 mass% in the monomer mixture), a specific monofunctional vinyl monomer and a carboxy group-containing monofunctional vinyl monomer 2-methacryloyloxyethyl succinic acid 15 parts by weight as a monomer (5% by weight in the monomer mixture), rhodamine B 0.3 parts by weight as a water-soluble fluorescent dye, and caprolactone as an acidic organic modified phosphate compound 0.3 parts by mass of EO-modified phosphoric dimethacrylate (product name “KAYAMER (registered trademark) PM-21”, manufactured by Nippon Kayaku Co., Ltd.) and 2,2′-azobis ( , 4-dimethyl
  • Japan Finechem 3 parts by mass of benzoyl peroxide 0.1 parts by mass, to prepare a oil phase.
  • 700 mass parts of deionized water as an aqueous medium and 7 mass parts of polyvinyl alcohol (PVA) as a dispersant were mixed to prepare an aqueous phase.
  • PVA polyvinyl alcohol
  • the oil phase and the aqueous phase were mixed to form a suspension, and the suspension was put into a polymerization vessel equipped with a stirrer and a thermometer.
  • the internal temperature of the polymerization vessel was raised to 60 ° C. (primary temperature rise), and the suspension was stirred for 5 hours at a stirring rotational speed of 350 rpm for suspension polymerization to obtain dodecylbenzenesulfonic acid as an anionic surfactant. 0.05 parts by weight of sodium was added to the suspension.
  • the internal temperature of the polymerization vessel was raised to 100 ° C. (secondary heating), and the suspension was stirred at 100 ° C. for 3 hours to complete the suspension polymerization reaction.
  • the suspension was dehydrated by filtration to separate the solid, and the solid was washed with sufficient water.
  • the obtained solid content was vacuum-dried at 70 ° C. for 24 hours to obtain a dry powder.
  • 20 parts by mass of a 0.5% by mass aqueous solution of polyoxyethylene sorbitan monolaurate as a nonionic surfactant was added and dried at 50 ° C. for 24 hours. Thereby, fluorescent resin particles were obtained.
  • FIG. 1 shows a state of a fluid at the time of evaluating the visibility of a flow of a fluid containing fluorescent resin particles.
  • Example 2 The amount of p-tert-butylstyrene used was changed to 150 parts by mass (50% by mass in the monomer mixture), and the amount of styrene used was changed to 120 parts by mass (40% by mass in the monomer mixture).
  • the fine particle was removed using the airflow classifier so that the ratio of the fine particle with a particle diameter of 30 micrometers or less might be 1 mass% or less.
  • Example 3 Avoid using 135 parts by mass of styrene, and use 210 parts by mass of isostearyl acrylate (70% by mass in the monomer mixture) instead of 135 parts by mass of p-tert-butylstyrene as the first vinyl monomer. Then, instead of 15 parts by mass of divinylbenzene as a polyfunctional vinyl monomer, 60 parts by mass of ethylene glycol dimethacrylate (20% by mass in the monomer mixture) is used, and the amount of 2-methacryloyloxyethyl succinic acid used is reduced.
  • Example 4 The amount of styrene used was changed to 90 parts by mass (30% by mass in the monomer mixture), and the amount of 2-methacryloyloxyethyl succinic acid was changed to 60 parts by mass (20% by mass in the monomer mixture).
  • Fluorescent resin particles were obtained in the same manner as in Example 1, except that the amount of rhodamine B used was changed to 0.9 parts by mass and the stirring rotation speed during polymerization was changed to 600 rpm. About the obtained fluorescent resin particles, fine particles and coarse particles were removed using an air classifier so that fine particles having a particle diameter of 10 ⁇ m or less and coarse particles having a particle diameter of 60 ⁇ m or more were 1% or less, respectively.
  • Example 5 As the first vinyl monomer, 135 parts by mass of 4-n-octylstyrene (45% by mass in the monomer mixture) was used instead of 135 parts by mass of p-tert-butylstyrene, and the number of stirring revolutions during polymerization The fluorescent resin particles were obtained in the same manner as in Example 1 except that was changed to 300 rpm.
  • Example 6 Instead of 15 parts by mass of 2-methacryloyloxyethyl succinic acid, 15 parts by mass of octanoic acid as a carboxylic acid having no ethylenically unsaturated group having a solubility in 100 ml of water of 50 g or less at 20 ° C. (5% in the monomer mixture) %), The amount of rhodamine B used was changed to 0.1 parts by mass, and the stirring rotation speed during polymerization was changed to 400 rpm, to obtain fluorescent resin particles in the same manner as in Example 1. .
  • Example 7 135 parts by weight of styrene was not used, and instead of 135 parts by weight of p-tert-butylstyrene as the first vinyl monomer, 215 parts by weight of vinyl stearate (71.7% by weight in the monomer mixture) was used. Using 65 parts by mass of ethylene glycol dimethacrylate (21.6% by mass in the monomer mixture) instead of 15 parts by mass of divinylbenzene as a polyfunctional vinyl monomer, and using rhodamine B as a water-soluble fluorescent dye. Fluorescent resin particles were obtained in the same manner as in Example 1 except that the amount used was changed to 0.1 parts by mass and the stirring rotation speed during polymerization was changed to 600 rpm. In this example, the amount of 2-methacryloyloxyethyl succinic acid is 6.7% by mass in the monomer mixture.
  • Example 8 135 parts by weight of styrene was not used, and instead of 135 parts by weight of p-tert-butylstyrene as the first vinyl monomer, 215 parts by weight of isostearyl acrylate (71.7% by weight in the monomer mixture) And 65 parts by mass of ethylene glycol dimethacrylate (21.7% by mass in the monomer mixture) instead of 15 parts by mass of divinylbenzene as the polyfunctional vinyl monomer, and rhodamine B as the water-soluble fluorescent dye.
  • the fluorescent resin particles were obtained in the same manner as in Example 1 except that the amount used was changed to 0.1 parts by mass and the stirring rotational speed during polymerization was changed to 600 rpm. In this example, the amount of 2-methacryloyloxyethyl succinic acid is 6.7% by mass in the monomer mixture.
  • FIG. 2 shows the state of the fluid when evaluating the visibility of the flow of the fluid containing the fluorescent resin particles.
  • the emulsion content index value (NTU), true specific gravity, volume average particle size ( ⁇ m), and coefficient of variation (%) of the particle size of the obtained fluorescent resin particles Measurement results, and the fluorescent color developability of the obtained fluorescent resin particles, the fluid flow visibility, and the evaluation results of the overall evaluation, together with the type and amount (parts by mass) of each raw material used in the production of the fluorescent resin particles Table 1 shows.
  • the monomer mixture contains the first vinyl monomer.
  • the phosphor resin particles of Comparative Example 1 not containing the emulsion content rate index value was large and the emulsion content rate was high, whereas the content rate of the first vinyl monomer in the monomer mixture was 45 to 71.
  • the emulsion content rate index value was small and the emulsion content rate was low.
  • the content of the first vinyl monomer in the monomer mixture is In the fluorescent resin particles of Comparative Examples 1 and 2 at 0 or 90% by mass, the fluid flow was poorly visible, whereas the content of the first vinyl monomer in the monomer mixture was 45 to 45%. In the fluorescent resin particles of Examples 1 to 8 at 71.7% by mass, the fluid flow visibility was good. In the fluorescent resin particles of Examples 1 to 8, the visibility of the flow of the fluid was good because the composition of the fluorescent resin particles of Examples 1 to 8 was easy to follow the flow of the fluid.
  • the emulsion content of the fluorescent resin particles in Examples 1 to 8 is small, the fine particles (emulsion) are peeled off from the surface of the fluorescent resin particles, and the image of the fluid flow caused by the fluorescent resin particles having the original particle diameter is blurred. This is thought to be due to both reasons that it is suppressed.
  • Example 9 2 parts by weight of the fluorescent resin particles obtained in Example 3 and 20 parts by weight of a commercially available acrylic water-based glossy paint (trade name “Super Hit”, manufactured by Campehapio Co., Ltd.), which is an aqueous dispersion of a binder, are stirred. A dispersion was obtained by mixing for 3 minutes using a defoamer and defoaming for 1 minute.
  • a commercially available acrylic water-based glossy paint (trade name “Super Hit”, manufactured by Campehapio Co., Ltd.), which is an aqueous dispersion of a binder
  • the obtained dispersion was applied onto an ABS resin (acrylonitrile-butadiene-styrene resin) plate using a coating apparatus on which a blade having a clearance of 100 ⁇ m was set, and then dried to obtain a coating film.
  • the obtained coating film was irradiated with black light, it developed a fluorescent color.
  • Example 10 2 parts by weight of the fluorescent resin particles obtained in Example 3 and dipentaerythritol hexaacrylate (A-DPH) (manufactured by Shin-Nakamura Chemical Co., Ltd.), which is a photocurable monomer that is a kind of ultraviolet curable resin, 20 Part by weight and 0.15 g of 2-hydroxy-2-methyl-1-phenyl-propan-1-one (manufactured by BASF, product name “Irgacure (registered trademark) 1173”) as a photopolymerization initiator are stirred. Using a defoaming device, the mixture was mixed for 3 minutes and defoamed for 1 minute to obtain a liquid resin composition in which the fluorescent resin particles were uniformly dispersed.
  • A-DPH dipentaerythritol hexaacrylate
  • the obtained liquid resin composition is poured into a petri dish having a diameter of 3 cm as a mold so as to have a thickness of 3 mm, cured by irradiation with ultraviolet rays, and a resin composition (molded article) containing fluorescent resin particles is obtained. Obtained.
  • the fluorescent resin particles were uniformly dispersed, and when the resin composition (molded article) was irradiated with black light, the fluorescent color was uniformly colored.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

流体可視化に使用したときに、流体の流れに追従しやすく、流体の流れを観察しやすくすることができる蛍光樹脂粒子を提供する。蛍光樹脂粒子は、水溶性蛍光染料と単量体混合物の重合体とを含む蛍光樹脂粒子であって、前記単量体混合物が、第1のビニル系単量体20~80質量%と第2のビニル系単量体80~20質量%との混合物であり、前記第1のビニル系単量体が、炭素数3~30のアルキル基を有するスチレン誘導体、炭素数10~30のアルキル基を有する(メタ)アクリル酸エステル及びビニルエステルからなる群より選ばれる少なくとも1種の単官能ビニル系単量体であり、前記第2のビニル系単量体が、スチレン、炭素数2以下のアルキル基を有するスチレン誘導体、炭素数9以下のアルキル基を有する(メタ)アクリル酸エステル及びビニルエステルからなる群より選ばれる少なくとも1種の単官能ビニル系単量体を含む。

Description

蛍光樹脂粒子及びその用途
 本発明は、水溶性蛍光染料とビニル系単量体の重合体とを含む蛍光樹脂粒子及びその用途(分散液及び樹脂組成物)に関するものである。
 蛍光を発する蛍光粒子は、現在、各種分野において広く使用されているが、中でも、流体可視化装置用トレーサー、フローサイトの精度管理用標準粒子、免疫診断薬用担体として重要な役割を果たしている。
 化学プラント内の流体の流れ、原子炉炉心内の流体の流れ(対流による流体の緩やかな流れ)、船舶・潜水艦のスクリューの回転によるキャビテーションなどの観察では、より実物に近いスケールでのテストが望ましい。大きなスケールでの流体計測では、カメラで蛍光を捉えるために蛍光にある程度の大きさが必要となる。
 特許文献1には、ビニル系単量体と水溶性蛍光染料とを水性媒体に分散させてビニル系単量体を重合させることにより前記水溶性蛍光染料を含むビニル系重合体粒子を作製するビニル系重合体粒子の製造方法であって、前記重合が、界面活性剤及び重合開始剤存在下に行われる乳化重合であり、ビニル系単量体として、カルボキシル基を有するビニル系単量体と、該ビニル系単量体の前記カルボキシル基と結合可能な官能基を備えたビニル系単量体とを前記水性媒体に分散させて前記乳化重合を実施する製造方法が記載されている。
特開2010-229219号公報
 しかしながら、本願発明者が、上記従来の水溶性蛍光染料を含有するビニル系重合体粒子に類似の組成で粒子径の大きい粒子を作製したところ、乳化物(微小粒子)の含有量の多い粒子が得られた。そして、本願発明者が、作製した粒子を大きなスケールでの流体計測に適用したところ、乳化物が蛍光樹脂粒子表面から剥がれて、本来の粒子径の蛍光樹脂粒子による流体の流れの像が不鮮明化されるために、流体の流れを観察しにくいことが分かった。また、作製した粒子は流体の流れに追従しにくいことが判明した。
 本発明は、上記従来の課題に鑑みなされたものであり、その目的は、流体可視化に使用したときに、流体の流れに追従しやすく、流体の流れを観察しやすくすることができる蛍光樹脂粒子並びにそれを用いた分散液及び樹脂組成物を提供することにある。
 本発明の蛍光樹脂粒子は、水溶性蛍光染料と単量体混合物の重合体とを含む蛍光樹脂粒子であって、前記単量体混合物が、第1のビニル系単量体20~80質量%と第2のビニル系単量体80~20質量%との混合物であり、前記第1のビニル系単量体が、炭素数3~30のアルキル基を有するスチレン誘導体、炭素数10~30のアルキル基を有する(メタ)アクリル酸エステル、及び炭素数10~30のアルキル基を有するビニルエステルからなる群より選ばれる少なくとも1種の単官能ビニル系単量体であり、前記第2のビニル系単量体が、スチレン、炭素数2以下のアルキル基を有するスチレン誘導体、炭素数9以下のアルキル基を有する(メタ)アクリル酸エステル、及び炭素数9以下のアルキル基を有するビニルエステルからなる群より選ばれる少なくとも1種の単官能ビニル系単量体を含むことを特徴としている。
 前記構成によれば、スチレン、炭素数2以下のアルキル基を有するスチレン誘導体、炭素数9以下のアルキル基を有する(メタ)アクリル酸エステル、及び炭素数9以下のアルキル基を有するビニルエステルからなる群より選ばれる少なくとも1種の単官能ビニル系単量体を含む単量体混合物に対して、炭素数3~30のアルキル基を有するスチレン誘導体、炭素数10~30のアルキル基を有する(メタ)アクリル酸エステル、及び炭素数10~30のアルキル基を有するビニルエステルからなる群より選ばれる少なくとも1種の単官能ビニル系単量体を適量含有させることで、粒子径が比較的大きい場合であっても、流体の流れに追従しやすい蛍光樹脂粒子を実現できる。よって、本発明の蛍光樹脂粒子は、大スケールでの流体可視化への使用に好適である。
 前記構成によれば、スチレン、炭素数2以下のアルキル基を有するスチレン誘導体、炭素数9以下のアルキル基を有する(メタ)アクリル酸エステル、及び炭素数9以下のアルキル基を有するビニルエステルからなる群より選ばれる少なくとも1種の単官能ビニル系単量体を含む単量体混合物に対して、水への溶解性が低い単量体である、炭素数3~30のアルキル基を有するスチレン誘導体、炭素数10~30のアルキル基を有する(メタ)アクリル酸エステル、及び炭素数10~30のアルキル基を有するビニルエステルからなる群より選ばれる少なくとも1種の単官能ビニル系単量体を含有させることで、水性媒体中での懸濁重合等により蛍光樹脂粒子を製造する場合に、水相中での乳化重合による乳化物(微小粒子)の生成が抑制される。その結果、流体可視化に使用したときに、蛍光樹脂粒子表面から乳化物が剥がれて、本来の粒子径の蛍光樹脂粒子による流体の流れの像が不鮮明化されることが抑制され、流体の流れを観察しやすくなる。なお、本出願書類において、「(メタ)アクリル酸」はアクリル酸及び/又はメタクリル酸を意味し、「(メタ)アクリレート」はアクリルレート及び/又はメタクリルレートを意味するものとする。
 本発明の分散液は、本発明の蛍光樹脂粒子を含むことを特徴としている。本発明の分散液は、本発明の蛍光樹脂粒子を含んでいるので、流体可視化に使用したときに、蛍光樹脂粒子が流体の流れに追従しやすく、流体の流れを観察しやすい。
 本発明の樹脂組成物は、本発明の蛍光樹脂粒子と、バインダー樹脂とを含むことを特徴としている。本発明の樹脂組成物では、流体中で沈降し難い本発明の蛍光樹脂粒子を用いているので、蛍光樹脂粒子がバインダー樹脂中に均一に分散する。
 本発明によれば、流体可視化に使用したときに、流体の流れに追従しやすく、流体の流れを観察しやすくすることができる蛍光樹脂粒子並びにそれを用いた分散液及び樹脂組成物を提供できる。
実施例1の蛍光樹脂粒子を含む流体の流れの視認性の評価時における流体の様子を示す。 比較例1の蛍光樹脂粒子を含む流体の流れの視認性の評価時における流体の様子を示す。
 以下、本発明について詳細に説明する。
〔蛍光樹脂粒子〕
 本発明の蛍光樹脂粒子は、水溶性蛍光染料と単量体混合物の重合体とを含む蛍光樹脂粒子であって、前記単量体混合物が、第1のビニル系単量体20~80質量%と第2のビニル系単量体80~20質量%との混合物であり、前記第1のビニル系単量体が、炭素数3~30のアルキル基を有するスチレン誘導体、炭素数10~30のアルキル基を有する(メタ)アクリル酸エステル、及び炭素数10~30のアルキル基を有するビニルエステルからなる群より選ばれる少なくとも1種の単官能ビニル系単量体であり、前記第2のビニル系単量体が、スチレン、炭素数2以下のアルキル基を有するスチレン誘導体、炭素数9以下のアルキル基を有する(メタ)アクリル酸エステル、及び炭素数9以下のアルキル基を有するビニルエステルからなる群より選ばれる少なくとも1種の単官能ビニル系単量体を含んでいる。
 前記第1のビニル系単量体は、炭素数3~30のアルキル基を有するスチレン誘導体、炭素数10~30のアルキル基を有する(メタ)アクリル酸エステル、及び炭素数10~30のアルキル基を有するビニルエステルからなる群より選ばれる少なくとも1種の単官能ビニル系単量体である。この単官能ビニル系単量体は、比較的疎水性の単官能ビニル系単量体である。なお、「ビニル系単量体」は少なくとも1つのエチレン性不飽和基を有する化合物を意味し、「単官能ビニル系単量体」は1つのエチレン性不飽和基を有する化合物を意味する。
 前記炭素数3~30のアルキル基を有するスチレン誘導体としては、例えば、p-n-ブチルスチレン、p-tert-ブチルスチレン、p-n-ヘキシルスチレン、p-n-オクチルスチレン、p-n-ノニルスチレン、p-n-デシルスチレン、p-n-ドデシルスチレン等が挙げられる。前記炭素数10~30のアルキル基を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸イソステアリル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸イコシル等が挙げられる。前記炭素数10~30のアルキル基を有するビニルエステルとしては、例えば、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル等が挙げられる。前記第1のビニル系単量体としては、前記炭素数3~30のアルキル基を有するスチレン誘導体が、より流体の流れに追従しやすい蛍光樹脂粒子を実現できるので、好ましい。
 前記単量体混合物中における前記第1のビニル系単量体の含有率は、20~80質量%であればよいが、30~80質量%であることが好ましく、40~75質量%であることがより好ましい。れにより、さらに流体の流れに追従しやすい蛍光樹脂粒子を実現できる。
 前記第2のビニル系単量体は、スチレン、炭素数2以下のアルキル基を有するスチレン誘導体、炭素数9以下のアルキル基を有する(メタ)アクリル酸エステル、及び炭素数9以下のアルキル基を有するビニルエステルからなる群より選ばれる少なくとも1種の単官能ビニル系単量体(以下、「特定単官能ビニル系単量体」と呼ぶ)を含んでいる。前記炭素数2以下のアルキル基を有するスチレン誘導体としては、例えば、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、p-エチルスチレン、2,4-ジメチルスチレン、n-メトキシスチレン等が挙げられる。前記炭素数9以下のアルキル基を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチル、2-メタクリロイルオキシエチルコハク酸、2-メタクリロイルオキシエチルフタル酸、2-メタクリロイルオキシエチルヘキサヒドロフタル酸等が挙げられる。前記炭素数9以下のアルキル基を有するビニルエステルとしては、例えば、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等が挙げられる。前記特定単官能ビニル系単量体としては、スチレン及び炭素数2以下のアルキル基を有するスチレン誘導体が、より流体の流れに追従しやすい蛍光樹脂粒子を実現できるので、好ましい。
 前記単量体混合物中における前記特定単官能ビニル系単量体の含有率は、20~80質量%であればよいが、30~80質量%であることが好ましく、40~75質量%であることがより好ましい。これにより、さらに流体の流れに追従しやすい蛍光樹脂粒子を実現できる。
 前記第2のビニル系単量体は、20℃において水100mlに対する溶解度が50g以下であるカルボキシ基を有する単官能ビニル系単量体を含むことが好ましい。20℃において水100mlに対する溶解度が50g以下であるカルボキシ基を有する単官能ビニル系単量体は、比較的疎水性であり、重合時に、そのカルボキシ基で水溶性蛍光染料の分子の塩基性部位(例えばローダミン系染料におけるアミノ基)に結合して、水溶性蛍光染料を疎水化して単量体混合物中に均一に溶解しやすくすることができ、その結果として、水溶性蛍光染料を蛍光樹脂粒子中に均一に存在させることができる。その結果、粒子間で蛍光発色が均一な蛍光樹脂粒子を実現できる。前記カルボキシ基を有するビニル系単量体は、より好ましくは20℃における水100mlに対する溶解度が30g以下であり、さらに好ましくは20℃における水100mlに対する溶解度が10g以下である。
 前記の20℃において水100mlに対する溶解度が50g以下であるカルボキシ基を有するビニル系単量体(以下、「カルボキシ基含有単官能ビニル系単量体」と呼ぶ)としては、例えば、2-メタクリロイルオキシエチルコハク酸[溶解度1.9g]、2-メタクリロイルオキシエチルフタル酸、2-メタクリロイルオキシエチルヘキサヒドロフタル酸等の(メタ)アクリル酸誘導体を挙げることができ、これらを単独或いは混合して使用することができる。
 前記単量体混合物中における前記カルボキシ基含有単官能ビニル系単量体の含有率は、2~30質量%であることが好ましく、4~25質量%であることがより好ましい。これにより、粒子間での蛍光発色の均一性がさらに良い蛍光樹脂粒子を実現できる。
 前記蛍光樹脂粒子は、20℃において水100mlに対する溶解度が50g以下である、エチレン性不飽和基を有しないカルボン酸をさらに含んでいてもよい。これにより、前記第2のビニル系単量体がカルボキシ基含有単官能ビニル系単量体をさらに含む場合と同様の効果が得られる。すなわち、20℃において水100mlに対する溶解度が50g以下である、エチレン性不飽和基を有しないカルボン酸は、比較的疎水性であり、重合時に、そのカルボキシ基で水溶性蛍光染料の分子の塩基性部位(例えばローダミン系染料におけるアミノ基)に結合して、水溶性蛍光染料を疎水化して単量体混合物中に均一に溶解しやすくすることができ、その結果として、水溶性蛍光染料を蛍光樹脂粒子中に均一に存在させることができる。その結果、粒子間で蛍光発色が均一な蛍光樹脂粒子を実現できる。前記エチレン性不飽和基を有しないカルボン酸は、より好ましくは20℃における水100mlに対する溶解度が30g以下であり、さらに好ましくは20℃における水100mlに対する溶解度が10g以下である。
 前記の20℃において水100mlに対する溶解度が50g以下である、エチレン性不飽和基を有しないカルボン酸としては、例えば、オクタン酸、ヘプタン酸、ヘキサン酸、等を挙げることができ、これらを単独或いは混合して使用することができる。
 前記蛍光樹脂粒子中における前記の20℃において水100mlに対する溶解度が50g以下である、エチレン性不飽和基を有しないカルボン酸の含有率は、2~30質量%であることが好ましく、4~25質量%であることがより好ましい。これにより、粒子間での蛍光発色の均一性がさらに良い蛍光樹脂粒子を実現できる。
 前記第2のビニル系単量体は、多官能ビニル系単量体を含んでいてもよい。前記多官能ビニル系単量体は、2つ以上のエチレン性不飽和基を有する化合物である。前記多官能ビニル系単量体としては、ジビニルベンゼン、エチレングリコールジメタクリレート等のアルキレングリコールジ(メタ)アクリレート(アルキレンは炭素数2~4の範囲が好ましい)等が挙げられる。
 前記第2のビニル系単量体は、その他の単官能ビニル系単量体を含んでいてもよい。その他の単官能ビニル系単量体としては、例えば、p-フェニルスチレン、p-クロロスチレン、3,4-ジクロロスチレン等のスチレン誘導体;塩化ビニル、塩化ビニリデン、臭化ビニル、弗化ビニル等のハロゲン化ビニル類;安息香酸ビニル等のビニルエステル類;(メタ)アクリル酸2-クロルエチル、(メタ)アクリル酸フェニル、等のα-メチレン脂肪族モノカルボン酸エステル類;(メタ)アクリロニトリル、(メタ)アクリルアミドの(メタ)アクリル酸誘導体等が挙げられる。
 また、その他の単官能ビニル系単量体として、ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテル等のビニルエーテル類;ビニルメチルケトン、ビニルヘキシルケトン、メチルイソプロペニルケトン等のビニルケトン類;N-ビニルピロール、N-ビニルカルバゾール、N-ビニルインドール、N-ビニルピロリドン等のN-ビニル化合物;ビニルナフタレンも使用できる。
 前記水溶性蛍光染料としては、前記単量体混合物に対して概ね均一に溶解可能であれば特に限定されず、ローダミンB、ローダミン6G、ローダミン640等のローダミン系染料;スチルベン系染料;メチレンブルー;フルオレセイン、ウラニン、エリスロシン等のフルオレセイン系染料(フルオレセイン誘導体)等をあげることができる。中でも、ローダミンB、ローダミン6G、ローダミン640等のローダミン系染料、又はフルオレセイン、ウラニン、エリスロシン等のフルオレセイン系染料を前記水溶性蛍光染料として好適に使用することができる。
 前記水溶性蛍光染料の量は、水溶性蛍光染料の種類等によっても左右されるが、前記重合体100質量部に対して、0.005~20質量部の範囲内であることが好ましく、0.01~10質量部の範囲内であることがより好ましい。前記水溶性蛍光染料の量が0.005質量部未満では、前記蛍光樹脂粒子の蛍光発色性が充分なものとならないおそれがある。一方、前記水溶性蛍光染料の量が20質量部を超えても、量の増加に見合う効果を期待することが困難である。また、前記水溶性蛍光染料の存在下で前記単量体混合物の重合を行うことによって前記蛍光樹脂粒子を製造する場合、前記水溶性蛍光染料の量が20質量部を超えると、未溶解物の析出や前記単量体混合物の重合阻害を発生させるおそれがある。
 前記蛍光樹脂粒子は、界面活性剤をさらに含むことが好ましい。界面活性剤をさらに含むことにより、蛍光樹脂粒子が親水化されて水中に分散しやすくなり、流体可視化に使用したときに、流体の流れを観察しやすくなる。
 前記界面活性剤は、蛍光樹脂粒子製造のための重合時に添加されたものであってもよく、蛍光樹脂粒子製造のための重合後に添加されたものであってもよい。前記界面活性剤としては、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤、及び両イオン性界面活性剤の何れをも用いることができるが、ノニオン性界面活性剤が好ましい。
 前記アニオン性界面活性剤としては、脂肪酸塩型、硫酸エステル塩型、スルホン酸塩型等公知のアニオン性界面活性剤をいずれも用いることができ、例えば、オレイン酸ナトリウム、ヒマシ油カリ石鹸等の脂肪酸石鹸;ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム等のアルキル硫酸エステル塩;ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩;アルキルナフタレンスルホン酸塩、アルカンスルホン酸塩、ジ(2-エチルヘキシル)スルホコハク酸塩(ナトリウム塩)、ジオクチルスルホコハク酸塩(ナトリウム塩)等のジアルキルスルホコハク酸塩;アルケニルコハク酸塩(ジカリウム塩);アルキルリン酸エステル塩;ナフタレンスルホン酸ホルマリン縮合物;ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩;ポリオキシエチレンラウリルエーテル硫酸ナトリウム等のポリオキシエチレンアルキルエーテル硫酸塩;ポリオキシエチレンアルキル硫酸エステル;ポリオキシエチレンスチレン化フェニルエーテル硫酸エステル塩等が挙げられる。これらのアニオン性界面活性剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 前記ノニオン性界面活性剤としては、エステル型、エーテル型、エステル・エーテル型等の公知のノニオン性界面活性剤をいずれも用いることができ、例えば、ポリオキシエチレントリデシルエーテル等のポリオキシエチレンアルキルエーテル、ポリオキシエチレンオクチルフェニルエーテル等のポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンスチレン化フェニルエーテル、アルキレン基の炭素数が3以上であるポリオキシアルキレントリデシルエーテルなどのポリオキシアルキレンアルキルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、モノラウリン酸ポリオキシエチレンソルビタンなどのポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステル、オキシエチレン-オキシプロピレンブロック重合体等が挙げられる。これらのノニオン性界面活性剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 前記カチオン性界面活性剤としては、アミン塩型、第4級アンモニウム塩型等の公知のカチオン性界面活性剤をいずれも用いることができるが、水溶性のカチオン性界面活性剤がその取扱い上から有利である。上記カチオン性界面活性剤の具体例としては、ラウリルアミンアセテート、ステアリルアミンアセテート等のアルキルアミン塩;ラウリルトリメチルアンモニウムクロライド、ヘキサデシルトリメチルアンモニウムクロライド、ココイルトリメチルアンモニウムクロライド、ドデシルトリメチルアンモニウムクロライド等のアルキルトリメチルアンモニウムクロライド;ヘキサデシルジメチルベンジルアンモニウムクロライド、ラウリルジメチルベンジルアンモニウムクロライド等のアルキルジメチルベンジルクロライド等が挙げられる。これらのカチオン性界面活性剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 前記両イオン性界面活性剤としては、ラウリルジメチルアミンオキサイド、リン酸エステル系界面活性剤、亜リン酸エステル系界面活性剤等が挙げられる。これらの両イオン性界面活性剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 前記界面活性剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。前記界面活性剤としては、液温25℃の水に対する溶解度が、0.3g/100ml以上のものが好ましく、0.5g/100ml以上のものがより好ましい。前記溶解度が0.3g/100ml未満の界面活性剤を使用すると、蛍光樹脂粒子を親水化する効果が十分に得られない恐れがある。また、前記界面活性剤がポリオキシエチレン鎖を有する界面活性剤であると、前記界面活性剤が重合体表面に付着しやすいので、好ましい。
 前記蛍光樹脂粒子における界面活性剤の含有量は、重合体100重量部に対して0.01~0.5重量部の範囲内であることが好ましい。界面活性剤の含有量が上記範囲より少ない場合には、蛍光樹脂粒子を親水化する効果が十分に得られない恐れがある。また、界面活性剤の含有量が上記範囲より多い場合には、コスト的に不経済である。
 なお、前記蛍光樹脂粒子には、本発明の効果を著しく阻害しない範囲において含有させることも可能で、その他の添加剤が添加されていてもよい。
 その他の添加剤としては、水溶性蛍光染料以外の着色成分(着色剤)、光安定化剤、紫外線吸収剤、熱安定剤、レベリング剤、帯電防止剤等が挙げられる。
 前記蛍光樹脂粒子は、蛍光樹脂粒子をその3質量倍の水中に分散させた分散液を「定性濾紙No.101」(東洋濾紙株式会社製)で濾過することによって得られた濾液の濁度として測定される乳化物含有率指標値が、100NTU以下であることが好ましく、70NTU以下であることがより好ましく、40NTU以下であることがさらに好ましい。これにより、流体可視化に使用したときに、蛍光樹脂粒子表面から乳化物が剥がれて、本来の粒子径の蛍光樹脂粒子による流体の流れの像が不鮮明化されることが抑制され、流体の流れを観察しやすくなる。なお、乳化物含有率指標値は、例えば、後段の[実施例]の項に記載の測定方法で測定できる。
 前記蛍光樹脂粒子の体積平均粒子径は、30~500μmであることが好ましく、30~200μmであることがより好ましい。これにより、化学プラント内の流体の流れ、原子炉内の流体の流れ、船舶・潜水艦のスクリューの回転による流体の流れなどを可視化する大きなスケールでの流体可視化に適用したときに、流体の流れが観察しやすい蛍光樹脂粒子を実現できる。
 前記蛍光樹脂粒子の体積基準の粒子径の変動係数は、32%以下であることが好ましく、25%以下であることがより好ましい。これにより、さらに流体の流れに追従しやすい蛍光樹脂粒子を実現できる。
 前記蛍光樹脂粒子の真比重は、0.95~1.05であることが好ましい。これにより、流体が水である流体可視化に使用したときに、水中で沈降や浮遊が起きにくくなる。
〔蛍光樹脂粒子の製造方法〕
 本発明の蛍光樹脂粒子を製造する方法としては、特に限定されるものでなく、水溶性蛍光染料の存在下で各種重合法(乳化重合、分散重合、懸濁重合、シード重合など)により前記単量体混合物を重合させる方法を用いることができるが、前記単量体混合物及び前記水溶性蛍光染料を含む混合物を水性媒体中に懸濁させて重合させる懸濁重合を用いることが、体積平均粒子径が30~500μmの蛍光樹脂粒子を容易に製造できることから好ましい。
 前記懸濁重合に用いる水性媒体としては、水、及び、水と水溶性有機溶媒(例えば、炭素数5以下の低級アルコール)との混合物が挙げられる。
 前記懸濁重合では、必要に応じて、前記単量体混合物及び前記水溶性蛍光染料を含む混合物に対してさらに重合開始剤を混合してもよい。前記重合開始剤としては、例えば、過酸化ベンゾイル、過酸化ラウロイル、過酸化オクタノイル、オルソクロロ過酸化ベンゾイル、メチルエチルケトンパーオキサイド、ジイソプロピルパーオキシジカーボネート、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド等の油溶性過酸化物;2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等の油溶性アゾ化合物が挙げられる。これらの重合開始剤は、それぞれ単独で、又は2種類以上組み合わせて用いることができる。なお、前記重合開始剤の使用量は、前記単量体混合物100質量部に対して、0.1~1質量部程度で十分である。
 また、前記懸濁重合は、必要に応じて、分散剤及び/又は界面活性剤の存在下で行われてもよい。前記分散剤としては、例えば、リン酸カルシウム、及びピロリン酸マグネシウム等の難水溶性無機塩;ポリビニルアルコール、メチルセルロース、及びポリビニルピロリドン等の水溶性高分子等が挙げられる。
 また、前記界面活性剤としては、例えばオレイン酸ナトリウム、ラウリル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、アルキルナフタレンスルホン酸塩、アルキルリン酸エステル塩等のアニオン性界面活性剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステル等のノニオン性界面活性剤;ラウリルジメチルアミンオキサイド等の両性界面活性剤等が挙げられる。
 前記の分散剤及び界面活性剤は、それぞれ単独で又は2種類以上を組み合わせて用いることができる。中でも、分散剤として水溶性高分子を使用し、界面活性剤を分散剤と併用し、かつ界面活性剤を重合開始剤時には添加せず一次昇温後に添加する(一次昇温後の凝集を抑制するため)のが好ましい。分散剤として水溶性高分子を使用し、界面活性剤を重合開始剤時に添加しないことで、より乳化物含有率の少ない蛍光樹脂粒子を得ることができる。
 前記分散剤の使用量は、前記単量体混合物100質量部に対して、0.5~10質量部であることが好ましく、前記界面活性剤の使用量は、前記水性媒体100質量部に対して0.01~0.2質量部であることが好ましい。
 前記懸濁重合では、前記単量体混合物及び前記水溶性蛍光染料を含む混合物に、酸性有機変性リン酸化合物を含有させた状態で、前記単量体混合物の懸濁重合を行うことが好ましい。前記酸性有機変性リン酸化合物を前記混合物へ含有させることにより、水性媒体に懸濁させた際に水溶性蛍光染料及び未反応の単量体の水相への移行防止を図ると共に、安定した前記混合物の微細油滴を生じさせることができる。
 前記酸性有機変性リン酸化合物としては、例えば、亜燐酸モノエステルあるいは亜燐酸ジエステル、燐酸モノエステル、燐酸ジエステルが挙げられる。これらの亜燐酸モノエステルあるいは亜燐酸ジエステル、燐酸モノエステル、燐酸ジエステルは、特に限定されないが、ラウリルリン酸、ポリオキシエチレン(1)ラウリルエーテルリン酸、ジポリオキシエチレン(2)アルキルエーテルリン酸、ジポリオキシエチレン(4)アルキルエーテルリン酸、ジポリオキシエチレン(6)アルキルエーテルリン酸、ジポリオキシエチレン(8)アルキルエーテルリン酸、ジポリオキシエーテル(4)ノニルフェニルエーテルリン酸、カプロラクトンEO変性燐酸ジメタクリレート、2-メタクリロイロキシエチルアシッドフォスフェート等が挙げられる。これら化合物の中でも、ラウリルリン酸又はカプロラクトンEO変性燐酸ジメタクリレートが好ましい。
 また、前記酸性有機変性リン酸化合物の添加量は、前記単量体混合物100質量部に対して、0.01~5質量部とするのが好ましく、0.01~3質量部とするのがより好ましい。
 前記懸濁重合は、前記単量体混合物を含む油相を調製し、調製した油相を水性媒体を含む水相中に分散させながら、この油相が分散された水相を加熱することにより開始できる。なお、重合開始剤を使用する場合には、前記単量体混合物に重合開始剤を混合して油相を調製する。また、分散剤及び/又は界面活性剤を使用する場合には、水性媒体に分散剤及び/又は界面活性剤を混合して水相を調製する。なお、前記蛍光樹脂粒子の体積平均粒子径は、油相と水相との混合割合や分散剤、界面活性剤の使用量及び攪拌条件、分散条件を調整することにより適宜制御できる。
 水相中に油相を分散させる方法としては、例えば、水相中に油相を直接添加して、プロペラ翼等の攪拌力によりその油相を液滴として水相中に分散させる方法;水相中に油相を直接添加して、ローターとステーターから構成される高せん断力を利用する分散機であるホモミクサーを用いてその油相を水相中に分散させる方法;水相中に油相を直接添加して、超音波分散機等を用いて水相中にその油相を分散させる方法等種々の方法が挙げられる。こられのうち、水相中に油相を直接添加して、マイクロフルイダイザー、ナノマイザー(登録商標)等の高圧型分散機を用いて、混合物の液滴同士の衝突あるいは機壁に対する混合物の衝突を利用して、その油相を液滴として水相中に分散させる方法;MPG(マイクロポーラスガラス)多孔膜を通して油相を水相中に圧入させる方法等によって分散させれば、前記蛍光樹脂粒子の粒子径をより均一に揃えることができるので好ましい。
 また、重合温度は、40~90℃程度が好ましい。そしてこの重合温度を保持する時間としては、0.1~10時間程度が好ましい。なお、重合反応は、窒素雰囲気のような、重合反応系中の反応物(油相)に対して不活性な不活性ガス雰囲気下で行ってもよい。また、前記単量体混合物の沸点が重合温度付近又は重合温度以下である場合には、ビニル系単量体が揮発しないように、オートクレーブ等の耐圧重合設備を使用して、密閉下あるいは加圧下で懸濁重合を行うことが好ましい。
 そして、重合反応終了後、所望により、難水溶性無機塩の酸等による分解除去、濾過等による脱水、洗浄、乾燥、粉砕、分級等を行うことによって、目的の蛍光樹脂粒子を得ることができる。重合時に生成した乳化物(微小粒子)を分級(例えば気流分級)、濾過等により除去することで、乳化物含有率指標値の小さい(例えば100NTU以下)蛍光樹脂粒子を得ることができる。
 前記重合体表面に付着した界面活性剤をさらに含む蛍光樹脂粒子を製造する場合には、前記界面活性剤の存在下で重合を行うことで前記重合体表面に界面活性剤を付着させてもよいが、重合後に、洗浄、乾燥を行い、乾燥粉体を得た後に、前記界面活性剤を添加することによって乾燥粉体の親水化処理を行うことが好ましい。これにより、界面活性剤をより多く、また、より均一に前記重合体表面に付着させやすくなる。
〔トレーサー用粒子〕
 本発明の蛍光樹脂粒子は、流体の流れを可視化するためのトレーサー用粒子として好適に使用できる。そのようなトレーサー用粒子として本発明の蛍光樹脂粒子を使用することで、流体や気泡流の流れを蛍光発光により検知し、解析することができる。本発明の蛍光樹脂粒子をトレーサー用粒子として使用する場合、本発明の蛍光樹脂粒子そのものを水等の流体中に添加してもよく、本発明の蛍光樹脂粒子を水等の分散媒中に分散させた分散液を水等の流体中に添加してもよい。
〔分散液〕
 本発明の分散液は、本発明の蛍光樹脂粒子を含んでいる。本発明の分散液は、トレーサー用だけではなく、塗料用にも使用できる。本発明の分散液は、塗料用の分散液として使用した場合、蛍光樹脂粒子が液中で沈降しないという利点を有している。
 本発明の分散液は、分散媒中に本発明の蛍光樹脂粒子が分散質として分散しているものである。前記分散媒としては、水性媒体が好適に使用できる。
 前記水性媒体は、水、又は、Fedors法より算出された溶解度パラメータ(以下、「SP値」と称する)が20.5(MPa)1/2(10(cal/cm1/2)以上である有機溶剤と水との混合媒体である。前記水性媒体の比重は、前記重合体粒子の比重よりも大きい(ρ>ρ)ものとする。SP値が20.5(MPa)1/2である有機溶剤としては、具体的には、例えば、SP値が24.3(MPa)1/2(11.9(cal/cm1/2)であるイソプロピルアルコール、SP値が28.2(MPa)1/2(13.8(cal/cm1/2)であるメチルアルコール、SP値が26.2(MPa)1/2(12.6(cal/cm1/2)であるエチルアルコール等が挙げられる。
 本発明の分散液は、塗料用の場合、通常、バインダーをさらに含み、前記蛍光樹脂粒子が分散質として前記バインダーに分散されている。
 前記バインダーとしては、透明性、重合体粒子分散性、耐光性、耐湿性及び耐熱性等の要求される特性に応じて、当該分野において使用されるものであれば特に限定されるものではない。上記バインダーとしては、例えば、(メタ)アクリル系樹脂;(メタ)アクリル-ウレタン系樹脂;ウレタン系樹脂;ポリ塩化ビニル系樹脂;ポリ塩化ビニリデン系樹脂;メラミン系樹脂;スチレン系樹脂;アルキド系樹脂;フェノール系樹脂;エポキシ系樹脂;ポリエステル系樹脂;アルキルポリシロキサン系樹脂等のシリコーン系樹脂;(メタ)アクリル-シリコーン系樹脂、シリコーン-アルキド系樹脂、シリコーン-ウレタン系樹脂、シリコーン-ポリエステル樹脂等の変性シリコーン樹脂;ポリフッ化ビニリデン、フルオロオレフィンビニルエーテル重合体等のフッ素系樹脂等のバインダー樹脂が挙げられる。
 前記バインダー樹脂は、塗料用の分散液の耐久性を向上させる観点から、架橋反応により架橋構造を形成できる硬化性樹脂であることが好ましい。上記硬化性樹脂は、種々の硬化条件で硬化させることができる。上記硬化性樹脂は、硬化のタイプにより、紫外線硬化性樹脂、電子線硬化性樹脂等の電離放射線硬化性樹脂、熱硬化性樹脂、温気硬化性樹脂等に分類される。
 前記熱硬化性樹脂としては、アクリルポリオールとイソシアネートプレ重合体とからなる熱硬化型ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等が挙げられる。
 前記電離放射線硬化性樹脂としては、多価アルコール多官能(メタ)アクリレート等のような多官能(メタ)アクリレート樹脂;ジイソシアネート、多価アルコール、及びヒドロキシ基を有する(メタ)アクリル酸エステル等から合成されるような多官能ウレタンアクリレート樹脂等が挙げられる。前記電離放射線硬化性樹脂としては、多官能(メタ)アクリレート樹脂が好ましく、1分子中に3個以上の(メタ)アクリロイル基を有する多価アルコール多官能(メタ)アクリレートがより好ましい。1分子中に3個以上の(メタ)アクリロイル基を有する多価アルコール多官能(メタ)アクリレートとしては、具体的には、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、1,2,4-シクロヘキサントリ(メタ)アクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールトリアクリレート、トリペンタエリスリトールヘキサアクリレート等が挙げられる。前記電離放射線硬化性樹脂は、二種類以上を併用してもよい。
 前記電離放射線硬化性樹脂としては、これらの他にも、アクリレート系の官能基を有するポリエーテル樹脂、ポリエステル樹脂、エポキシ樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂等も使用できる。
 前記電離放射線硬化性樹脂のうち紫外線硬化性樹脂を用いる場合、紫外線硬化性樹脂に光重合開始剤を加えてバインダー樹脂とする。前記光重合開始剤は、どのようなものを用いてもよいが、用いる紫外線硬化性樹脂にあったものを用いることが好ましい。
 前記光重合開始剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、α-ヒドロキシアルキルフェノン類、α-アミノアルキルフェノン、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類(特開2001-139663号公報等に記載)、2,3-ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類、芳香族スルホニウム類、オニウム塩類、ボレート塩、活性ハロゲン化合物、α-アシルオキシムエステル等が挙げられる。
 前記アセトフェノン類としては、例えば、アセトフェノン、2,2-ジエトキシアセトフェノン、p-ジメチルアセトフェノン、1-ヒドロキシジメチルフェニルケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-4-メチルチオ-2-モルフォリノプロピオフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン等が挙げられる。前記ベンゾイン類としては、例えば、ベンゾイン、ベンゾインベンゾエート、ベンゾインベンゼンスルホン酸エステル、ベンゾイントルエンスルホン酸エステル、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等が挙げられる。前記ベンゾフェノン類としては、例えば、ベンゾフェノン、2,4-ジクロロベンゾフェノン、4,4’-ジクロロベンゾフェノン、p-クロロベンゾフェノン等が挙げられる。前記ホスフィンオキシド類としては、例えば、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド等が挙げられる。前記ケタール類としては、例えば、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等のベンジルメチルケタール類が挙げられる。前記α-ヒドロキシアルキルフェノン類としては、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、1-ヒドロキシシクロヘキシルフェニルケトンが挙げられる。前記α-アミノアルキルフェノン類としては、例えば、2-メチル-1-[4-(メチルチオ)フェニル]-2-(4-モルホリニル)-1-プロパノンが挙げられる。
 市販の光ラジカル重合開始剤としては、BASFジャパン株式会社製の商品名「イルガキュア(登録商標)651」(2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン)、BASFジャパン株式会社製の商品名「イルガキュア(登録商標)184」、BASFジャパン株式会社製の商品名「イルガキュア(登録商標)907」(2-メチル-1-[4-(メチルチオ)フェニル]-2-(4-モルホリニル)-1-プロパノン)等が好ましい例として挙げられる。
 前記光重合開始剤の使用量は、バインダー100重量%に対し、通常、0.5~20重量%の範囲内であり、好ましくは1~5重量%の範囲内である。
 前記バインダー樹脂として、前記硬化性樹脂以外に、熱可塑性樹脂を用いることができる。前記熱可塑性樹脂としては、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロース等のセルロース誘導体;酢酸ビニルの単独重合体及び共重合体、塩化ビニルの単独重合体及び共重合体、塩化ビニリデンの単独重合体及び共重合体等のビニル系樹脂;ポリビニルホルマール、ポリビニルブチラール等のアセタール樹脂;アクリル酸エステルの単独重合体及び共重合体、メタクリル酸エステルの単独重合体及び共重合体等の(メタ)アクリル系樹脂;ポリスチレン樹脂;ポリアミド樹脂;線状ポリエステル樹脂;ポリカーボネート樹脂等が挙げられる。
 また、前記バインダーとして、前記バインダー樹脂の他に、合成ゴムや天然ゴム等のゴム系バインダーや、無機系結着剤等を用いることもできる。前記ゴム系バインダー樹脂としては、エチレン-プロピレン共重合ゴム、ポリブタジエンゴム、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム等が挙げられる。これらゴム系バインダー樹脂は、単独で用いられてもよいし、2種類以上が併用されてもよい。
 前記無機系結着剤としては、シリカゾル、アルカリ珪酸塩、シリコンアルコキシド、リン酸塩等が挙げられる。上記無機系結着剤として、金属アルコキシド又はシリコンアルコキシドを加水分解及び脱水縮合して得られる無機系又は有機無機複合系マトリックスを用いることもできる。前記無機系又は有機無機複合系マトリックスとしては、シリコンアルコキシド、例えばテトラエトキシシラン等を加水分解及び脱水縮合して得られる酸化珪素系マトリックスを使用できる。これら無機系結着剤は、単独で用いられてもよいし、2種類以上が併用されてもよい。
 前記塗料用の分散液中における蛍光樹脂粒子の量は、バインダーの固形分100重量部に対して、2重量部以上であることが好ましく、4重量部以上であることがより好ましく、6重量部以上であることがさらに好ましい。前記蛍光樹脂粒子の量をバインダーの固形分100重量部に対して2重量部以上にすることにより、前記塗料用の分散液によって形成される塗膜の艶消し性を十分なものにし易くなる。前記塗料用の分散液中における蛍光樹脂粒子の量は、バインダーの固形分100重量部に対して、300重量部以下であることが好ましく、200重量部以下であることがより好ましく、100重量部以下であることがさらに好ましい。前記蛍光樹脂粒子の量をバインダーの固形分100重量部に対して300重量部以下にすることにより、前記塗料用の分散液によって形成される塗膜の直線透過性を十分なものにし易くなる。
〔樹脂組成物〕
 本発明の樹脂組成物は、本発明の蛍光樹脂粒子と、バインダー樹脂とを含むものである。前記バインダー樹脂としては、前記塗料用の分散液に用いるバインダー樹脂として先に挙げたものを用いることができるが、(メタ)アクリル-スチレン樹脂((メタ)アクリル)酸エステルとスチレンとの共重合体)、ポリカーボネート樹脂等を用いることもできる。
 前記樹脂組成物中における蛍光樹脂粒子の量は、バインダー樹脂100重量部に対して、2重量部以上であることが好ましく、4重量部以上であることがより好ましく、6重量部以上であることがさらに好ましい。前記蛍光樹脂粒子の量をバインダー樹脂100重量部に対して2重量部以上にすることにより、前記樹脂組成物の艶消し性を十分なものにし易くなる。前記樹脂組成物中における蛍光樹脂粒子の量は、バインダー樹脂100重量部に対して、300重量部以下であることが好ましく、200重量部以下であることがより好ましく、100重量部以下であることがさらに好ましい。前記蛍光樹脂粒子の量をバインダー樹脂100重量部に対して300重量部以下にすることにより、前記樹脂組成物の直線透過性を十分なものにし易くなる。前記樹脂組成物には、紫外線吸収剤、酸化防止剤、熱安定剤、光安定剤、蛍光増白剤等の添加剤を加えてもよい。
 本発明の樹脂組成物は、成形して成形体とすることができる。前記バインダー樹脂が紫外線硬化性樹脂である場合には、前記樹脂組成物の成形方法として、例えば、前記バインダー樹脂を成形型に注ぎ込み、紫外線を照射することで硬化させる方法を用いることができる。また、前記バインダー樹脂が紫外線硬化性樹脂である場合には、前記樹脂組成物の成形方法として、例えば、前記樹脂組成物を一軸押出機や二軸押出機等で溶融混練する方法、前記樹脂組成物の溶融混練によって得られた成形材料をTダイ及びロールユニットを介して板状等に成形する方法、前記樹脂組成物の溶融混練及びペレット化によって得られたペレット状の成形材料(マスターペレット)を射出成形やプレス成形等により板状に成形する方法等を用いることができる。前記成形体の寸法や形状等は、用途によって適宜選択することができる。前記成形体中のバインダー樹脂が透明樹脂である場合、前記成形体中の重合体粒子は光拡散剤として機能するので、前記成形体は、光拡散板等の光拡散体として機能する。したがって、そのような成形体は、LED照明カバー等として利用できる。
 以下、実施例及び比較例により本発明を説明するが、本発明はこれに限定されるものではない。まず、以下の実施例及び比較例における蛍光樹脂粒子の特性測定及び評価の方法を説明する。
〔蛍光樹脂粒子の乳化物含有率指標値の測定方法〕
 蛍光樹脂粒子10.0gを内容量50mlのサンプル瓶に入れ、水30.0gを添加した。その後、超音波洗浄器(株式会社ヴェルヴォクリーア製「ULTRASONIC CLEANER VS-150」、発振周波数:50kHz、高周波出力:150W)を用いて30分間分散処理を行うことにより蛍光樹脂粒子を水中に分散させて、分散液を得た。なお、蛍光樹脂粒子が水に分散しにくい場合には、蛍光樹脂粒子を微量(上限0.8g)のアルコール(例えばエタノール)で湿潤させた後、水に分散させてもよい。
 次に得られた分散液を、フィルター(「定性濾紙No.101」、直径55mm、東洋濾紙株式会社製)で吸引濾過し、濾液の濁度を測定し、測定された濁度を乳化物含有率指標値とした。濁度の測定は、濁度計「TurbiDirect」(Tintometer社製)を用いて測定した。
〔蛍光樹脂粒子の真比重の測定方法〕
 JIS K5101-11-1におけるA法に準じて密度(真比重)の測定を行い、得られた測定値を蛍光樹脂粒子の真比重とした。具体的には、20℃の恒温室で、次のようにして真比重の測定を行った。内容量50mlのワードン形ピクノメータに、エタノールを完全に満たし、このときの内容物を含めたピクノメータの質量を秤量しA(g)とした。次に、ピクノメータ中のエタノールを捨てて空にした後、試料としての蛍光樹脂粒子約3gをピクノメータの中に移し入れ、移した蛍光樹脂粒子の質量を秤量しB(g)とした。ピクノメータの中にさらにエタノールを加えて蛍光樹脂粒子及びエタノールでピクノメータを完全に満たした。このときの内容物を含めたピクノメータの質量をCgとし、下記算出式により、蛍光樹脂粒子の真比重を算出した。
 [算出式]
 真比重(g/ml)=B×0.7950/(A-C+B)
〔蛍光樹脂粒子の体積平均粒子径及び体積基準の粒子径の変動係数の測定方法〕
 蛍光樹脂粒子の体積平均粒子径及び体積基準の粒子径の変動係数(CV値)の測定は、以下のようにしてコールター法により行った。
 蛍光樹脂粒子の体積平均粒子径は、コールターMultisizerTM 3(ベックマン・コールター株式会社製測定装置)により測定する。測定は、ベックマン・コールター株式会社発行のMultisizerTM 3ユーザーズマニュアルに従って校正されたアパチャーを用いて実施するものとする。
 なお、測定に用いるアパチャーは、測定する蛍光樹脂粒子の大きさによって、適宜選択する。Current(アパチャー電流)及びGain(ゲイン)は、選択したアパチャーのサイズによって、適宜設定する。例えば、50μmのサイズを有するアパチャーを選択した場合、Current(アパチャー電流)は-800、Gain(ゲイン)は4と設定する。
 測定用試料としては、蛍光樹脂粒子0.1gを0.1重量%ノニオン性界面活性剤水溶液10m1中にタッチミキサー(ヤマト科学株式会社製、「TOUCHMIXER MT-31」)及び超音波洗浄器(株式会社ヴェルヴォクリーア製、「ULTRASONIC CLEANER VS-150」)を用いて分散させ、分散液としたものを使用する。測定中はビーカー内を気泡が入らない程度に緩く攪拌しておき、蛍光樹脂粒子を10万個測定した時点で測定を終了する。蛍光樹脂粒子の体積平均粒子径は、10万個の粒子の体積基準の粒度分布における算術平均である。
 蛍光樹脂粒子の体積基準の粒子径の変動係数を、以下の数式によって算出する。
 蛍光樹脂粒子の体積基準の粒子径の変動係数
  =(蛍光樹脂粒子の体積基準の粒度分布の標準偏差
              ÷蛍光樹脂粒子の体積平均粒子径)×100
〔蛍光樹脂粒子の蛍光発色性の評価方法〕
 蛍光樹脂粒子の流体可視化特性の1つとして、蛍光樹脂粒子の蛍光発色性を以下のように評価した。まず、内容量100mlのビーカーに蛍光樹脂粒子2gを入れ、水50gを加えて水中に蛍光樹脂粒子を分散させて分散液を得た。得られた分散液にブラックライトを照射し、蛍光発色を確認した。蛍光発色がはっきりと視認できたものを蛍光発色性が「◎」(優良)、蛍光発色が弱いが確認できたものを蛍光発色性が「○」(良好)、蛍光発色が確認できなかったものを蛍光発色性が「×」(不良)とした。
〔蛍光樹脂粒子を含む流体の流れの視認性の評価方法〕
 蛍光樹脂粒子の流体可視化特性の他の1つとして、蛍光樹脂粒子を含む流体の流れの視認性を以下のように評価した。まず、内容量500mlのビーカー内に蒸留水500mlを入れ、マグネチックスターラーを用いてビーカー下部から攪拌回転数50rpmで緩やかに攪拌を行った。ビーカー上部から蛍光樹脂粒子の10質量%分散液を滴下し、ブラックライトの照射下で流体の流れを目視で確認した。流体の流れを良好に確認できたものを流体の流れの視認性が「◎」(優良)、流体の流れを良好にではないものの確認できたものを流体の流れの視認性が「○」(良好)、流体の流れを確認できなかったものを流体の流れの視認性が「×」(不良)とした。
〔蛍光樹脂粒子の流体可視化特性の総合評価方法〕
 蛍光発色性及び流体の流れの視認性の両方が「◎」である場合を流体可視化特性の総合評価が「◎」とし、蛍光発色性及び流体の流れの視認性の一方が「○」で他方が「○」又は「◎」である場合を流体可視化特性の総合評価が「○」とし、蛍光発色性及び流体の流れの視認性の少なくとも一方が「×」である場合を流体可視化特性の総合評価が「×」とした。
〔実施例1〕
 第1のビニル系単量体としてのp-tert-ブチルスチレン135質量部(単量体混合物中45質量%)と、特定単官能ビニル系単量体としてのスチレン135質量部(単量体混合物中45質量%)と、多官能ビニル系単量体としてのジビニルベンゼン15質量部(単量体混合物中5質量%)と、特定単官能ビニル系単量体及びカルボキシ基含有単官能ビニル系単量体としての2-メタクリロイルオキシエチルコハク酸15質量部(単量体混合物中5質量%)と、水溶性蛍光染料としてのローダミンB 0.3質量部と、酸性有機変性リン酸化合物としてのカプロラクトンEO変性燐酸ジメタクリレート(製品名「KAYAMER(登録商標)PM-21」、日本化薬株式会社製)0.3質量部と、重合開始剤としての2,2’-アゾビス(2,4-ジメチルバレロニトリル)(ABNV)(株式会社日本ファインケム製)3質量部及び過酸化ベンゾイル0.1質量部とを混合して、油相を調整した。また、水性媒体としての脱イオン水700質量部と、分散剤としてのポリビニルアルコール(PVA)7質量部とを混合して、水相を調製した。
 その後、上記油相及び上記水相を混合して懸濁液とし、撹拌機及び温度計を備えた重合器にこの懸濁液を入れた。重合器の内部温度を60℃に昇温(一次昇温)して上記懸濁液の撹拌を攪拌回転数350rpmで5時間続けて懸濁重合させ、アニオン性界面活性剤としてのドデシルベンゼンスルホン酸ナトリウム0.05質量部を上記懸濁液に追加した。その後、重合器の内部温度を100℃に昇温(二次昇温)し、上記懸濁液を100℃で3時間撹拌することによって、懸濁重合反応を完了させた。上記懸濁液を冷却した後、懸濁液を濾過により脱水して固形分を分離し、十分な水により固形分を洗浄した。得られた固形分を70℃で24時間真空乾燥して乾燥粉体を得た。得られた乾燥粉体100質量部に対し、ノニオン性界面活性剤としてのモノラウリン酸ポリオキシエチレンソルビタンの0.5質量%水溶液20質量部を添加し、50℃で24時間かけて乾燥した。これにより、蛍光樹脂粒子を得た。
 得られた蛍光樹脂粒子は、蛍光発色性が良好であり、前述した方法による蛍光樹脂粒子を含む流体の流れの視認性の評価において、図1に示すように、流体の流れが良好に確認でき、視認性が良好であった。図1は、蛍光樹脂粒子を含む流体の流れの視認性の評価時における流体の様子を示す。
〔実施例2〕
 p-tert-ブチルスチレンの使用量を150質量部(単量体混合物中50質量%)に変更し、スチレンの使用量を120質量部(単量体混合物中40質量%)に変更し、水溶性蛍光染料としてローダミンB 0.3質量部に代えてローダミン640 0.15質量部を使用し、重合時の攪拌回転数を400rpmに変更したこと以外は、実施例1と同様にして蛍光樹脂粒子を得た。得られた蛍光樹脂粒子について、気流分級機を用いて粒子径30μm以下の微細粒子の割合が1質量%以下となるように微細粒子を除去した。
〔実施例3〕
 スチレン135質量部を使用しないようにし、第1のビニル系単量体としてp-tert-ブチルスチレン135質量部に代えてアクリル酸イソステアリル210質量部(単量体混合物中70質量%)を使用し、多官能ビニル系単量体としてジビニルベンゼン15質量部に代えてエチレングリコールジメタクリレート60質量部(単量体混合物中20質量%)を使用し、2-メタクリロイルオキシエチルコハク酸の使用量を30質量部(単量体混合物中10質量%)に変更し、水溶性蛍光染料としてローダミンB 0.3質量部に代えてローダミン640 0.1質量部を使用し、重合時の攪拌回転数を600rpmに変更したこと以外は、実施例1と同様にして蛍光樹脂粒子を得た。
〔実施例4〕
 スチレンの使用量を90質量部(単量体混合物中30質量%)に変更し、2-メタクリロイルオキシエチルコハク酸の使用量を60質量部(単量体混合物中20質量%)に変更し、ローダミンBの使用量を0.9質量部に変更し、重合時の攪拌回転数を600rpmに変更したこと以外は、実施例1と同様にして蛍光樹脂粒子を得た。得られた蛍光樹脂粒子について、気流分級機を用いて粒子径10μm以下の微細粒子及び粒子径60μm以上の粗大粒子がそれぞれ1%以下となるように微細粒子及び粗大粒子を除去した。
〔実施例5〕
 第1のビニル系単量体としてp-tert-ブチルスチレン135質量部に代えて4-n-オクチルスチレン135質量部(単量体混合物中45質量%)を使用し、重合時の攪拌回転数を300rpmに変更したこと以外は、実施例1と同様にして蛍光樹脂粒子を得た。
〔実施例6〕
 2-メタクリロイルオキシエチルコハク酸15質量部に代えて、20℃において水100mlに対する溶解度が50g以下であるエチレン性不飽和基を有しないカルボン酸としてのオクタン酸15質量部(単量体混合物中5質量%)を使用し、ローダミンBの使用量を0.1質量部に変更し、重合時の攪拌回転数を400rpmに変更したこと以外は、実施例1と同様にして蛍光樹脂粒子を得た。
〔実施例7〕
 スチレン135質量部を使用しないようにし、第1のビニル系単量体としてp-tert-ブチルスチレン135質量部に代えてステアリン酸ビニル215質量部(単量体混合物中71.7質量%)を使用し、多官能ビニル系単量体としてジビニルベンゼン15質量部に代えてエチレングリコールジメタクリレート65質量部(単量体混合物中21.6質量%)を使用し、水溶性蛍光染料としてローダミンBの使用量を0.1質量部に変更し、重合時の攪拌回転数を600rpmに変更したこと以外は、実施例1と同様にして蛍光樹脂粒子を得た。なお、本実施例では、2-メタクリロイルオキシエチルコハク酸の量は、単量体混合物中6.7質量%である。
〔実施例8〕
 スチレン135質量部を使用しないようにし、第1のビニル系単量体としてp-tert-ブチルスチレン135質量部に代えてアクリル酸イソステアリル215質量部(単量体混合物中71.7質量%)を使用し、多官能ビニル系単量体としてジビニルベンゼン15質量部に代えてエチレングリコールジメタクリレート65質量部(単量体混合物中21.7質量%)を使用し、水溶性蛍光染料としてローダミンBの使用量を0.1質量部に変更し、重合時の攪拌回転数を600rpmに変更したこと以外は、実施例1と同様にして蛍光樹脂粒子を得た。なお、本実施例では、2-メタクリロイルオキシエチルコハク酸の量は、単量体混合物中6.7質量%である。
〔比較例1〕
 p-tert-ブチルスチレンを使用しないようにし、スチレンの使用量を225質量部(単量体混合物中75質量%)に変更し、2-メタクリロイルオキシエチルコハク酸の使用量を60質量部(単量体混合物中20質量%)に変更し、ローダミンBの使用量を0.9質量部に変更し、重合時の攪拌回転数を300rpmに変更したこと以外は、実施例1と同様にして蛍光樹脂粒子を得た。
 得られた蛍光樹脂粒子は、蛍光発色性は良好であったが、前述した方法による蛍光樹脂粒子を含む流体の流れの視認性の評価において、図2に示すように、流体の流れが確認できず、視認性が不良であった。図2は、蛍光樹脂粒子を含む流体の流れの視認性の評価時における流体の様子を示す。
〔比較例2〕
 スチレンを使用しないようにし、p-tert-ブチルスチレンの使用量を270質量部(単量体混合物中90質量%)に変更し、重合時の攪拌回転数を300rpmに変更したこと以外は、実施例1と同様にして蛍光樹脂粒子を得た。
 実施例1~8及び比較例1・2について、得られた蛍光樹脂粒子の乳化物含有率指標値(NTU)、真比重、体積平均粒子径(μm)、及び粒子径の変動係数(%)の測定結果、並びに得られた蛍光樹脂粒子の蛍光発色性、流体の流れの視認性、及び総合評価の評価結果を、蛍光樹脂粒子の製造に使用した各原料の種類及び量(質量部)と共に、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 

 以上のように、特特定単官能ビニル系単量体を含む単量体混合物の重合体と水溶性蛍光染料とを含む蛍光樹脂粒子において、単量体混合物が第1のビニル系単量体を含まない比較例1の蛍光樹脂粒子では乳化物含有率指標値が大きく乳化物含有率が多かったのに対し、単量体混合物中における第1のビニル系単量体の含有率を45~71.7質量%とした実施例1~8の蛍光樹脂粒子では乳化物含有率指標値が小さく乳化物含有率が少なかった。
 また、特定単官能ビニル系単量体を含む単量体混合物の重合体と水溶性蛍光染料とを含む蛍光樹脂粒子において、単量体混合物中における第1のビニル系単量体の含有率を0又は90質量%とした比較例1・2の蛍光樹脂粒子では流体の流れの視認性が悪かったのに対し、単量体混合物中における第1のビニル系単量体の含有率を45~71.7質量%とした実施例1~8の蛍光樹脂粒子では流体の流れの視認性が良好であった。実施例1~8の蛍光樹脂粒子では流体の流れの視認性が良好であったのは、実施例1~8の蛍光樹脂粒子の組成が流体の流れに追従しやすい組成であること、及び実施例1~8の蛍光樹脂粒子の乳化物含有率が少ないために、微小粒子(乳化物)が蛍光樹脂粒子表面から剥がれて、本来の粒子径の蛍光樹脂粒子による流体の流れの像が不鮮明化されることが抑制されていることの両方の理由によるものと考えられる。
〔実施例9〕
 実施例3で得られた蛍光樹脂粒子2重量部と、バインダーの水分散液である市販のアクリル系水性つやあり塗料(株式会社カンペハピオ製、商品名「スーパーヒット」)20重量部とを、攪拌脱泡装置を用いて、3分間混合し、1分間脱泡することによって、分散液を得た。
 得られた分散液を、クリアランス100μmのブレードをセットした塗工装置を用いてABS樹脂(アクリロニトリル-ブタジエン-スチレン樹脂)板上に塗布した後、乾燥することによって塗膜を得た。得られた塗膜にブラックライトを照射したところ、蛍光色に発色した。
〔実施例10〕
 実施例3で得られた蛍光樹脂粒子2重量部と、紫外線硬化性樹脂の1種である光硬化性モノマーであるジペンタエリスリトールヘキサアクリレート(A-DPH)(新中村化学工業株式会社製)20重量部と、光重合開始剤としての2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(BASF社製、製品名「イルガキュア(登録商標)1173」)0.15gとを、攪拌脱泡装置を用いて、3分間混合し、1分間脱泡することによって、蛍光樹脂粒子が均一に分散した液状の樹脂組成物を得た。
 得られた液状の樹脂組成物を、成形型としての直径3cmのシャーレに厚みが3mmになるように注ぎ込み、紫外線を照射することで硬化させ、蛍光樹脂粒子を含む樹脂組成物(成形体)を得た。得られた樹脂組成物(成形体)では、蛍光樹脂粒子が均一に分散しており、樹脂組成物(成形体)にブラックライトを照射したところ、均一に蛍光色に発色した。

Claims (12)

  1.  水溶性蛍光染料と単量体混合物の重合体とを含む蛍光樹脂粒子であって、
     前記単量体混合物が、第1のビニル系単量体20~80質量%と第2のビニル系単量体80~20質量%との混合物であり、
     前記第1のビニル系単量体が、炭素数3~30のアルキル基を有するスチレン誘導体、炭素数10~30のアルキル基を有する(メタ)アクリル酸エステル、及び炭素数10~30のアルキル基を有するビニルエステルからなる群より選ばれる少なくとも1種の単官能ビニル系単量体であり、
     前記第2のビニル系単量体が、スチレン、炭素数2以下のアルキル基を有するスチレン誘導体、炭素数9以下のアルキル基を有する(メタ)アクリル酸エステル、及び炭素数9以下のアルキル基を有するビニルエステルからなる群より選ばれる少なくとも1種の単官能ビニル系単量体を含むことを特徴とする蛍光樹脂粒子。
  2.  前記第2のビニル系単量体が、20℃において水100mlに対する溶解度が50g以下であるカルボキシ基を有する単官能ビニル系単量体を含むことを特徴とする請求項1に記載の蛍光樹脂粒子。
  3.  20℃において水100mlに対する溶解度が50g以下である、エチレン性不飽和基を有しないカルボン酸をさらに含むことを特徴とする請求項1又は2に記載の蛍光樹脂粒子。
  4.  蛍光樹脂粒子をその3質量倍の水中に分散させた分散液を「定性濾紙No.101」(東洋濾紙株式会社製)で濾過することによって得られた濾液の濁度として測定される乳化物含有率指標値が100NTU以下であることを特徴とする請求項1~3のいずれか1項に記載の蛍光樹脂粒子。
  5.  体積平均粒子径が30~500μmであることを特徴とする請求項1~4のいずれか1項に記載の蛍光樹脂粒子。
  6.  体積基準の粒子径の変動係数が25%以下であることを特徴とする請求項1~5のいずれか1項に記載の蛍光樹脂粒子。
  7.  界面活性剤をさらに含むことを特徴とする請求項1~6のいずれか1項に記載の蛍光樹脂粒子。
  8.  真比重が0.95~1.05であることを特徴とする請求項1~7のいずれか1項に記載の蛍光樹脂粒子。
  9.  前記水溶性蛍光染料が、ローダミン系染料又はフルオレセイン染料であることを特徴とする請求項1~8のいずれか1項に記載の蛍光樹脂粒子。
  10.  流体の流れを可視化するためのトレーサー用粒子であることを特徴とする請求項1~9のいずれか1項に記載の蛍光樹脂粒子。
  11.  請求項1~10のいずれか1項に記載の蛍光樹脂粒子を含むことを特徴とする分散液。
  12.  請求項1~10のいずれか1項に記載の蛍光樹脂粒子と、バインダー樹脂とを含むことを特徴とする樹脂組成物。
     
PCT/JP2017/035604 2016-09-30 2017-09-29 蛍光樹脂粒子及びその用途 WO2018062522A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197004411A KR102151956B1 (ko) 2016-09-30 2017-09-29 형광 수지 입자 및 그 용도
CN201780058321.9A CN109790234B (zh) 2016-09-30 2017-09-29 荧光树脂颗粒及其用途
EP17856469.6A EP3521323B1 (en) 2016-09-30 2017-09-29 Fluorescent resin particles and use thereof
US16/337,493 US11396566B2 (en) 2016-09-30 2017-09-29 Fluorescent resin particles and use thereof
JP2018542956A JP6831849B2 (ja) 2016-09-30 2017-09-29 蛍光樹脂粒子及びその用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-194503 2016-09-30
JP2016194503 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018062522A1 true WO2018062522A1 (ja) 2018-04-05

Family

ID=61759909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035604 WO2018062522A1 (ja) 2016-09-30 2017-09-29 蛍光樹脂粒子及びその用途

Country Status (6)

Country Link
US (1) US11396566B2 (ja)
EP (1) EP3521323B1 (ja)
JP (1) JP6831849B2 (ja)
KR (1) KR102151956B1 (ja)
CN (1) CN109790234B (ja)
WO (1) WO2018062522A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109503754A (zh) * 2018-12-13 2019-03-22 福建华夏蓝新材料科技有限公司 一种荧光改性丙烯酸酯乳液及其制备方法
WO2020218337A1 (ja) * 2019-04-23 2020-10-29 セントラルテクノ株式会社 蛍光粒子、蛍光粒子を用いて流体が存在する場において、流体の動き/運動を可視化し検査するための検査装置および、蛍光粒子を用いて流体が存在する場において、流体の動き/運動を可視化し検査する検査方法
JP7467974B2 (ja) 2020-02-17 2024-04-16 富士フイルムビジネスイノベーション株式会社 樹脂粒子

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110229261A (zh) * 2019-05-29 2019-09-13 天津大学 一种用于流体示踪的荧光颗粒合成方法
CN114874376B (zh) * 2022-06-14 2023-07-11 河北迪纳兴科生物科技有限公司 多孔树脂珠及其制备方法和应用
CN116084174B (zh) * 2023-03-03 2024-05-24 西安工程大学 同时掺杂荧光染料和光稳定剂的聚合物光纤及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0556005A1 (en) * 1992-02-14 1993-08-18 AMERSHAM INTERNATIONAL plc Fluorescent compounds
JP2001139663A (ja) 1999-11-12 2001-05-22 Daicel Chem Ind Ltd 光学的造形用樹脂組成物、その製造方法及び光学的造形物
JP2004300384A (ja) * 2003-04-01 2004-10-28 Dainippon Toryo Co Ltd 水性蛍光樹脂組成物及びその製造方法
WO2009157536A1 (ja) * 2008-06-27 2009-12-30 大日精化工業株式会社 色素ポリマーの製造方法、色素ポリマーおよびそれらの使用
JP2010090376A (ja) * 2008-10-06 2010-04-22 Xerox Corp 放射線硬化性インク組成物およびイメージを形成する方法
JP2010229219A (ja) 2009-03-26 2010-10-14 Sekisui Plastics Co Ltd ビニル系重合体粒子の製造方法及びビニル系重合体粒子
JP2013028729A (ja) * 2011-07-28 2013-02-07 Sumitomo Chemical Co Ltd 着色硬化性樹脂組成物
JP2014034588A (ja) * 2012-08-07 2014-02-24 Hitachi Chemical Co Ltd 太陽電池波長変換用無機蛍光体含有ポリマー粒子及びその製造方法
WO2015077831A1 (en) * 2013-11-28 2015-06-04 Commonwealth Scientific And Industrial Research Organisation Mikto-arm branched polymers
JP2015120814A (ja) * 2013-12-24 2015-07-02 大日精化工業株式会社 蛍光性染料含有樹脂ビーズの製造方法、該方法によって得られた蛍光性染料含有樹脂ビーズ、並びにこれを用いた蛍光性を有する物品
WO2015194611A1 (ja) * 2014-06-20 2015-12-23 住友化学株式会社 水性エマルション並びに塗膜、硬化物及び積層体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05133970A (ja) 1991-11-14 1993-05-28 Koji Eto 水運動追跡子
ATE136925T1 (de) * 1992-02-14 1996-05-15 Amersham Int Plc Fluoreszente verbindungen
US5658494A (en) * 1992-02-14 1997-08-19 Amersham International Plc Fluorescent compounds
DE19805121A1 (de) 1998-02-09 1999-08-12 Basf Ag Verfahren zur Herstellung farbstoffenthaltender, wässriger Polymerisatdispersionen
JP2003313545A (ja) 2002-04-26 2003-11-06 Keio Gijuku 蛍光発光微粒子とその製造方法
JP4602814B2 (ja) * 2005-03-24 2010-12-22 積水化成品工業株式会社 水溶性蛍光染料を内包したビニル系重合体粒子とその製造方法。

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0556005A1 (en) * 1992-02-14 1993-08-18 AMERSHAM INTERNATIONAL plc Fluorescent compounds
JP2001139663A (ja) 1999-11-12 2001-05-22 Daicel Chem Ind Ltd 光学的造形用樹脂組成物、その製造方法及び光学的造形物
JP2004300384A (ja) * 2003-04-01 2004-10-28 Dainippon Toryo Co Ltd 水性蛍光樹脂組成物及びその製造方法
WO2009157536A1 (ja) * 2008-06-27 2009-12-30 大日精化工業株式会社 色素ポリマーの製造方法、色素ポリマーおよびそれらの使用
JP2010090376A (ja) * 2008-10-06 2010-04-22 Xerox Corp 放射線硬化性インク組成物およびイメージを形成する方法
JP2010229219A (ja) 2009-03-26 2010-10-14 Sekisui Plastics Co Ltd ビニル系重合体粒子の製造方法及びビニル系重合体粒子
JP2013028729A (ja) * 2011-07-28 2013-02-07 Sumitomo Chemical Co Ltd 着色硬化性樹脂組成物
JP2014034588A (ja) * 2012-08-07 2014-02-24 Hitachi Chemical Co Ltd 太陽電池波長変換用無機蛍光体含有ポリマー粒子及びその製造方法
WO2015077831A1 (en) * 2013-11-28 2015-06-04 Commonwealth Scientific And Industrial Research Organisation Mikto-arm branched polymers
JP2015120814A (ja) * 2013-12-24 2015-07-02 大日精化工業株式会社 蛍光性染料含有樹脂ビーズの製造方法、該方法によって得られた蛍光性染料含有樹脂ビーズ、並びにこれを用いた蛍光性を有する物品
WO2015194611A1 (ja) * 2014-06-20 2015-12-23 住友化学株式会社 水性エマルション並びに塗膜、硬化物及び積層体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3521323A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109503754A (zh) * 2018-12-13 2019-03-22 福建华夏蓝新材料科技有限公司 一种荧光改性丙烯酸酯乳液及其制备方法
CN109503754B (zh) * 2018-12-13 2020-11-06 福建华夏蓝新材料科技有限公司 一种荧光改性丙烯酸酯乳液及其制备方法
WO2020218337A1 (ja) * 2019-04-23 2020-10-29 セントラルテクノ株式会社 蛍光粒子、蛍光粒子を用いて流体が存在する場において、流体の動き/運動を可視化し検査するための検査装置および、蛍光粒子を用いて流体が存在する場において、流体の動き/運動を可視化し検査する検査方法
JP2020180182A (ja) * 2019-04-23 2020-11-05 セントラルテクノ株式会社 蛍光粒子、蛍光粒子を用いて流体が存在する場において、流体の動き/運動を可視化し検査するための検査装置および、蛍光粒子を用いて流体が存在する場において、流体の動き/運動を可視化し検査する検査方法
CN113330094A (zh) * 2019-04-23 2021-08-31 中部泰科诺株式会社 荧光粒子、使用荧光粒子在流体存在的场中可视化检查流体的动作/运动的检查装置及方法
JP7467974B2 (ja) 2020-02-17 2024-04-16 富士フイルムビジネスイノベーション株式会社 樹脂粒子

Also Published As

Publication number Publication date
EP3521323B1 (en) 2020-11-11
JPWO2018062522A1 (ja) 2019-06-24
JP6831849B2 (ja) 2021-02-17
EP3521323A4 (en) 2020-04-08
CN109790234B (zh) 2021-10-22
KR102151956B1 (ko) 2020-09-04
CN109790234A (zh) 2019-05-21
US11396566B2 (en) 2022-07-26
KR20190030222A (ko) 2019-03-21
EP3521323A1 (en) 2019-08-07
US20190284320A1 (en) 2019-09-19

Similar Documents

Publication Publication Date Title
WO2018062522A1 (ja) 蛍光樹脂粒子及びその用途
JP6513273B1 (ja) 樹脂粒子
JP6121718B2 (ja) 樹脂粒子及びその製造方法、並びに、防眩フィルム、光拡散性樹脂組成物、及び外用剤
JP5439102B2 (ja) 中空粒子、その製造法及びその用途
WO2014119042A1 (ja) 樹脂粒子及びその用途
KR101898454B1 (ko) 나노 입자 함유액 및 그 용도
JP2020019968A (ja) 重合体粒子及びその用途
JP2020125477A (ja) 架橋アクリル系樹脂粒子及びその製造方法、樹脂組成物並びに包装物品
JP5352104B2 (ja) 単分散性樹脂粒子、その製造方法及び塗布物
JP5281938B2 (ja) 単分散重合体粒子の製造方法
CN104874338A (zh) 石油树脂作壁材原料制备疏水性芯材微胶囊的方法
JP6550456B2 (ja) 重合体粒子、重合体粒子の製造方法、及びその用途
JP7121275B2 (ja) 中空樹脂微粒子の製造方法
JP2004043557A (ja) 樹脂粒子及びその製造方法
JP2008231306A (ja) 着色樹脂粒子及びその製造方法
JP5463005B2 (ja) 架橋樹脂粒子及びそれを用いた光学シート
JP2004027008A (ja) 樹脂粒子及びその製造方法
JP5383218B2 (ja) 異形単分散粒子、その製造方法及びそれを含む光拡散フィルム
JP5281781B2 (ja) 単分散重合体粒子、その製造方法、光拡散性成形体及び光拡散性塗布物
JP4852327B2 (ja) 内部に空孔を有するポリマー粒子の製造方法ならびに内部に空孔を有するポリマー粒子
JP5297596B2 (ja) 重合体粒子の製造方法
JP6180317B2 (ja) 蛍光性染料含有樹脂ビーズの製造方法、該方法によって得られた蛍光性染料含有樹脂ビーズ、並びにこれを用いた蛍光性を有する物品
JP2024044239A (ja) 中空樹脂粒子および中空樹脂粒子の製造方法
JP2023181691A (ja) 樹脂粒子
JP5075441B2 (ja) 樹脂粒子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856469

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542956

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197004411

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017856469

Country of ref document: EP

Effective date: 20190430