WO2018062002A1 - 三次元造形装置、三次元物体製造方法および三次元造形プログラム - Google Patents

三次元造形装置、三次元物体製造方法および三次元造形プログラム Download PDF

Info

Publication number
WO2018062002A1
WO2018062002A1 PCT/JP2017/034190 JP2017034190W WO2018062002A1 WO 2018062002 A1 WO2018062002 A1 WO 2018062002A1 JP 2017034190 W JP2017034190 W JP 2017034190W WO 2018062002 A1 WO2018062002 A1 WO 2018062002A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
resin
dimensional
curing
modulation element
Prior art date
Application number
PCT/JP2017/034190
Other languages
English (en)
French (fr)
Inventor
雄一 富岡
英生 源田
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2018062002A1 publication Critical patent/WO2018062002A1/ja
Priority to US16/354,657 priority Critical patent/US10906246B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0037Production of three-dimensional images
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling

Definitions

  • the present invention relates to a technique for curing a photocurable resin to form a three-dimensional object.
  • Patent Document 1 discloses a method using a photocurable resin as one of such three-dimensional shaping methods.
  • the bottom surface of the container holding the liquid photocurable resin is formed of a light transmitting plate, and the light curing resin is cured with light irradiated from the lower side of the light transmitting plate through the light transmitting plate.
  • the light modulation element having a plurality of two-dimensionally arranged pixels simultaneously projects (irradiates) the light modulated according to the cross-sectional shape data onto the photocurable resin, thereby simultaneously curing the whole of one modeling layer
  • a three-dimensional object can be modeled by repeating the process of moving the hardened shaping layer upward and forming the next shaping layer.
  • the present invention provides a three-dimensional modeling apparatus and the like which can obtain good modeling accuracy even if the distribution or change of the curing reaction rate in the photocurable resin occurs during modeling.
  • a three-dimensional modeling apparatus includes a light transmitting portion, a container for holding a liquid photocurable resin, and a plurality of pixels for modulating light from a light source for each pixel.
  • a light modulation element based on each of a plurality of two-dimensional shape data generated from three-dimensional shape data
  • a moving member for moving the cured portion, which is hardened by receiving the modulated light, of the photocurable resin in a direction away from the light transmitting portion.
  • the irradiation light quantity of the modulated light required per unit volume to cure the photocurable resin to a predetermined curing rate is taken as the curing necessary light quantity.
  • the control unit is characterized in that the light modulation element is controlled such that modulated light of an irradiation light amount according to the curing necessary light amount for each resin region is irradiated to each of a plurality of resin regions in the photocurable resin. .
  • a three-dimensional object manufacturing method holds a liquid photocurable resin in a container having a light transmitting portion, has a plurality of pixels, and emits light from a light source for each pixel.
  • the light modulation element to be modulated is controlled based on each of a plurality of two-dimensional shape data generated from the three-dimensional shape data, and the modulated light from the light modulation element is irradiated to the photocurable resin through the light transmission portion.
  • each of the plurality of resin regions in the photocurable resin is controlled such that modulated light of an irradiation light amount corresponding to the curing necessary light amount for each resin region is irradiated.
  • a three-dimensional modeling program as a computer program that causes a computer of the three-dimensional modeling apparatus to execute a three-dimensional modeling process according to the three-dimensional object manufacturing method also constitutes another aspect of the present invention.
  • the light amount irradiated to the photocurable resin can be controlled accordingly for each resin region. Good modeling accuracy can be obtained.
  • FIG. 2 is a view showing an image forming element and a modeling unit used in the three-dimensional modeling apparatus of the first embodiment.
  • 3 is a flowchart showing a three-dimensional modeling process in Embodiment 1.
  • FIG. 7 is a view showing a temperature distribution in the X direction, a necessary curing light amount, a radiating light amount, and a radiating light amount / curing required light amount in Example 1.
  • FIG. 6 is a view showing temperature change, curing required light quantity, irradiation light quantity, and irradiation light quantity / curing required light quantity in Example 1 over time.
  • Flow chart showing three-dimensional modeling process of Example 3 The figure which shows the modeling unit of the three-dimensional modeling apparatus which is Example 4 of this invention.
  • the three-dimensional modeling apparatus 100 forms a three-dimensional model by sequentially laminating a modeling layer formed by irradiating a liquid photocurable resin with image light to be described later and curing the resin.
  • the image light is ultraviolet light (hereinafter, referred to as UV light)
  • an ultraviolet curable resin hereinafter, referred to as UV curable resin
  • photocurable resins other than UV light and image light other than UV curable resin may be used.
  • the three-dimensional modeling apparatus 100 includes a modeling unit 200 and a control unit 300 that controls the modeling unit 200.
  • An image processing apparatus 400 which is an external computer is connected to the control unit 300.
  • the modeling unit 200 includes a container 201, a holding plate 202 as a moving member, a moving mechanism 203, and a projection unit 250.
  • the container 201 is a liquid tank for holding the liquid UV curable resin RA, and an opening is formed in the upper part thereof.
  • the container 201 is configured of a container main body 211 and a light transmitting plate (light transmitting portion) 212 having a light transmitting property provided so as to close an opening formed on the bottom surface of the container main body 201.
  • the UV curable resin RA has a property of curing when it is irradiated with UV light of a predetermined light amount or more. For this reason, it is possible to form the three-dimensional object WB having a target shape by irradiating the UV light of the light amount of the predetermined light amount or more only to the region to be cured.
  • the light transmitting plate 212 is UV / oxygen permeable to transmit UV light and transmit oxygen.
  • a thin fluorine resin plate for example, Teflon (registered trademark) AF 2400 can be used.
  • the light transmitting plate 212 transmits oxygen in the air to form an oxygen-rich atmosphere at the interface with the UV curable resin RA, thereby preventing curing (radical polymerization reaction) of the UV curable resin RA with UV light. That is, the UV curable resin RA has the property of being cured by UV light, but in an oxygen rich environment, curing is hindered.
  • a dead zone (dead zone) DZ which is not cured by the UV curable resin RA even when it receives UV light is formed in the vicinity of the light transmitting plate 212 in the form of a layer.
  • a layered portion (hereinafter referred to as a shaping resin liquid layer) PA located immediately above the dead zone DZ in the UV curable resin RA is cured by receiving UV light (image light), and shaping as a cured portion Form a layer (intermediate in the process of shaping) WA.
  • the shaping layer WA does not adhere to the light transmitting plate 212.
  • the oxygen in the air mentioned above may be used for the oxygen which permeate
  • the shaping unit 200 or the entire three-dimensional shaping apparatus 100 may be disposed in a high pressure oxygen atmosphere.
  • the moving mechanism 203 moves the holding plate 202 up and down through the upper opening of the container 201.
  • the moving mechanism 203 is configured by a pulse motor, a ball screw, and the like, and moves the holding plate 202 at an arbitrary speed or an arbitrary pitch under the control of the control unit 300.
  • the moving direction (vertical direction in the drawing) of the holding plate 202 by the moving mechanism 203 in FIG. 1 is the Z direction (thickness direction)
  • the direction (horizontal direction in the drawing) orthogonal to the Z direction is the X direction I assume.
  • a direction (depth direction in the drawing) orthogonal to the Z direction and the X direction is taken as the Y direction.
  • the moving mechanism 203 moves the holding plate 202 in the direction away from the light transmitting plate 212 (upward) and in the direction approaching the light transmitting plate 212 (downward) in the Z direction.
  • the holding plate 202 is moved closer to the dead zone DZ from the opposite lower end position.
  • the first curable layer is attached to the holding plate 202 by irradiating the UV curable resin RA with the image light through the light transmitting plate 212.
  • a projection unit 250 is disposed below the container 201.
  • the projection unit 250 includes a UV light source 251, a beam splitter 252, an image forming element 253 as a light modulation element, a drive mechanism 254, and a projection optical system 255. If necessary, another optical element that changes the projection light path may be added to the projection unit 250.
  • the UV light source 251, the beam splitter 252, and the light modulation element 253 are arranged in series in the X direction which is the horizontal direction.
  • a projection optical system 255 is disposed above the beam splitter 252 (in the Z direction). The projection optical system 255 is disposed so that the light emitting surface thereof faces the light transmitting plate 212.
  • the UV light source 251 is configured of an LED that emits UV light, a high pressure mercury lamp, and the like.
  • the UV light emitted from the UV light source 251 is transmitted through the beam splitter 252 to irradiate the image forming element 253 with the UV light.
  • the image forming element 253 has a plurality of pixels, and modulates the irradiated UV light for each pixel to generate image light as modulated light.
  • a DMD Digital Micro mirror Device
  • each of the plurality of two-dimensionally arranged pixels 261 moves (pivots) between two angular positions (on position and off position).
  • Each pixel 261 can perform binary control to represent light and dark in an on state in which the reflection mirror is in the on position and in an off state in which the reflection mirror is in the off position.
  • the image processing apparatus 400 generates a plurality of original image data as two-dimensional shape data of a plurality of cross sections in the Z direction from three-dimensional shape data prepared in advance as shape data of a three-dimensional object.
  • Each original image data is binarized data including 1 indicating that it is a formation pixel position with respect to a plurality of two-dimensional pixel positions, or 0 indicating that it is a non-formation pixel position.
  • the image processing apparatus 400 outputs moving image data in which a plurality of pieces of original image data are arranged in time series to the control unit 300.
  • the control unit 300 corrects the brightness (irradiated light amount from the image forming element 253) according to the necessary curing light amount described later on the plurality of original image data in the moving image data to obtain a plurality of corrected image data Generate Then, based on each of the plurality of corrected image data (two-dimensional shape data), the binary control for each pixel 261 of the image forming element 253 is sequentially performed, so that the UV light for each pixel 261 as described above Modulate to generate image light.
  • the control unit 300 can also perform halftone control that performs switching between the on state and the off state of each pixel 261 at high speed to express a halftone.
  • the controller 300 also functions as a converter.
  • a reflective liquid crystal panel may be used as the image forming element 253, or a transmissive liquid crystal panel may be used.
  • a transmissive liquid crystal panel may be used.
  • not only light and dark representation by binary control of the reflectance or transmittance of a pixel, but also halftone representation by high-speed switching of reflectance or transmittance are possible.
  • any element capable of forming image light having brightness and darkness or halftone can be used as the image forming element 253.
  • the beam splitter 252 transmits the UV light from the UV light source 251 as described above, and reflects the image light from the image forming element 253 toward the projection optical system 255.
  • the projection optical system 255 is composed of one or more lenses, and connects the image light from the image forming element 253 (beam splitter 252) to a position optically conjugate with the image forming element 253 in the container 201. Project (illuminate) to make it image.
  • the imaging position of the image light is set as the modeling position.
  • the modeling position is a position immediately above the above-described dead zone DZ in the container 201, and the modeling resin liquid layer PA at the modeling position in the UV curable resin RA receives the image light, whereby the modeling layer WA is formed. .
  • the control unit 300 controls the UV light source 251, the moving mechanism 203, the image forming element 253, and the driving mechanism 254, continuously or intermittently at a speed synchronized with the formation (curing) of the shaping layer WA according to the moving image data described above. In this way, the moving mechanism 203 is caused to pull up the holding plate 202. Thereby, three-dimensional modeling is performed such that the three-dimensional object WB whose upper end is held by the holding plate 202 grows.
  • the projection unit 250 collectively projects the image light to the modeling position to form the modeling resin liquid layer PA. Cure at once. For this reason, the time required for shaping of the three-dimensional object WB is higher than that of other devices in which each modeling layer is formed by scanning with a laser beam, or a UV curable resin is applied and then light is formed. It can be shortened.
  • the control unit 300 is configured as a computer including a CPU 301, a RAM 302 having a work area used for the calculation of the CPU 301, and a ROM 303.
  • the ROM 303 is a recording medium in which the program 304 is recorded, and is a rewritable non-volatile memory such as an EEPROM.
  • the CPU 301 executes a three-dimensional modeling process (three-dimensional object manufacturing method) described later that reads the three-dimensional modeling program 304 as a computer program recorded in the ROM 303 and controls the modeling unit 200.
  • the three-dimensional modeling program 304 may be recorded on a computer readable recording medium, such as a non-volatile memory (semiconductor memory or the like), a recording disk (optical disk or magnetic disk), an external storage device (hard disk) or the like.
  • a computer readable recording medium such as a non-volatile memory (semiconductor memory or the like), a recording disk (optical disk or magnetic disk), an external storage device (hard disk) or the like.
  • FIG. 10 shows the relationship between the light irradiation amount and the curing rate of an acrylic resin which is a general photocurable resin.
  • the curing rate (or curing reaction rate) indicates the rate at which the light having the same energy is cured with respect to the whole of the photocurable resin irradiated.
  • a common photo-curable resin such as an acrylic resin has a characteristic that the higher the temperature, the higher the curing rate when irradiated with light of the same light quantity. That is, it has the characteristic that the higher the temperature, the smaller the amount of light necessary for curing.
  • the photocurable resin used for three-dimensional modeling has a temperature distribution
  • the photocurable resin is given a uniform light irradiation amount, insufficient curing occurs or unnecessary curing occurs depending on the region. Modeling defects will occur.
  • the occurrence of such formation defects can be suppressed by controlling the irradiation amount of UV light per unit volume for each resin region in the UV curable resin RA (the formation resin liquid layer PA). .
  • FIG. 3 shows the flow of a three-dimensional shaping process executed by the CPU 301 in the control unit 300 according to the above-described three-dimensional shaping program in the present embodiment.
  • step S1 the CPU 301 acquires, from the image processing apparatus 400, moving image data in which a plurality of original image data are arranged in time series, that is, three-dimensional shape data of a three-dimensional object to be formed.
  • step S2 the CPU 301 detects (measures) the temperature distribution of the light transmitting plate 212 in real time, using a thermographic sensor (infrared camera) 256 as a temperature detection unit shown in FIG.
  • the light transmitting plate 212 is located in the vicinity of the forming position described above with the dead zone DZ described above. For this reason, detecting the temperature distribution of the light transmitting plate 212 is equivalent to acquiring the temperature distribution of the modeling resin liquid layer PA at the modeling position. If a difference occurs between the temperature distribution of the light transmitting plate 212 and the actual temperature distribution of the shaping resin liquid layer PA, the detected temperature distribution of the light transmitting plate 212 is corrected and used as the temperature distribution of the shaping resin liquid layer PA Good.
  • a plurality of resin regions are provided by dividing the molding resin liquid layer PA into a plurality in each of the X direction and the Y direction, and the temperature for each resin region is acquired from the detected temperature distribution.
  • One resin area is an area that receives image light from one or more pixels of the image forming element 253. Further, by detecting the temperature distribution at predetermined time intervals by the thermography sensor 256, it is possible to detect a temperature change for each resin region. In addition, you may employ
  • step S3 the CPU 301 acquires the curing necessary light amount of each of the plurality of resin areas for each of the plurality of original image data based on the temperature distribution and temperature change detected in step S2.
  • a data table including the necessary curing light amount corresponding to various temperature distributions and temperatures is stored in advance in the storage unit 305 in the RAM 302, and the CPU 301 determines the curing necessary light amount corresponding to the detected temperature distribution and temperature. Read from data table.
  • the CPU 301 may calculate the required curing light amount for each resin region using an arithmetic expression.
  • the CPU 301 performs correction based on the necessary curing light amount acquired in step S3 for each data region corresponding to each resin region in each original image data acquired in step S1 to generate corrected image data Do.
  • the image forming element 253 maintains the pixel 261 in the on state only for the on time, and then turns it off to irradiate the image area of the irradiation light quantity corresponding to the on time to the resin area of the UV curable resin RA. can do.
  • the ratio of the on time to the off time maintaining the off state or on time / (on time + off time) is referred to as the irradiation duty ratio.
  • the CPU 301 can obtain the amount of light irradiation equivalent to the amount of light necessary for curing.
  • Correction image data is generated by increasing the on time of the data area.
  • the irradiation light quantity corresponding to the on time set for the data area of the original image data is more than the curing necessary light quantity, the irradiation light quantity equal to the curing necessary light quantity can be obtained.
  • step S5 the CPU 301 sequentially irradiates the modeling resin liquid layer PA with image light corresponding to the plurality of correction image data. Further, the moving mechanism 203 is controlled so that the holding plate 202 moves upward in synchronization with the irradiation of the image light corresponding to the corrected image data. In this manner, the shaped object WB including the plurality of shaped layers WA is shaped for a predetermined time.
  • step S6 the CPU 301 determines whether the irradiation of the image light has ended for all of the correction image data. If there is remaining corrected image data, the process returns to step S2, and the processing from step S2 to step S5 is repeated until the irradiation of the image light for all the corrected image data is completed.
  • step S5 after repeating the processing from step S2 to step S4 at every predetermined time, modeling is performed in step S5. That is, the CPU 301 detects the temperature distribution of the light transmitting plate 212 (the molding resin liquid layer PA) at predetermined time intervals during modeling, reads the new curing necessary light quantity from the data table according to the change of the temperature, and corrects the image Update data Thereby, generation
  • FIG. 4A shows an example of the temperature distribution in the X direction of the modeling resin liquid layer PA in the three-dimensional modeling apparatus 100 of the present embodiment.
  • the temperature in the central portion is higher than that in the peripheral portion.
  • FIG. 4B shows an example of the distribution of the required curing light amount in the X direction in the modeling resin liquid layer PA in the case of having the temperature distribution shown in FIG. 4A.
  • the necessary curing light amount of the resin region (first resin region) in the central portion where the temperature is high in the modeling resin liquid layer PA is smaller than the curing light amount necessary for the peripheral portion (second resin region) where the temperature is low. .
  • FIG. 4C shows an example of the irradiation light quantity of image light per unit volume in a plurality of resin areas in the X direction controlled by the three-dimensional shaping process of this embodiment.
  • the amount of irradiation light is set small for the resin region in the central portion where the amount of light necessary for curing shown in FIG. 4B is small, and is set large for the resin region in the peripheral portion where the amount of light necessary for curing is small.
  • the ratio of the amount of irradiated light per unit volume for each resin region to the necessary amount of light for curing is in all resin regions. It becomes almost the same (approximately 1). In other words, substantially target curing rates can be obtained in all resin regions. Thereby, modeling of the three-dimensional object WB can be performed with good modeling accuracy.
  • FIGS. 4A to 4D have been described only in the X direction, the same applies to the Y direction.
  • FIG. 5A shows an example of the temperature change of the resin region (for example, the central portion) having the shaping resin liquid layer PA every time from the start to the end of the formation. With the passage of time from the start of molding, heat accumulates in the molding resin liquid layer PA and its temperature rises.
  • FIG. 5 (B) shows an example of the change of the required curing light amount with respect to the temperature change of the resin region shown in FIG. 5 (A). The higher the temperature of the resin region, the smaller the amount of light required for curing.
  • FIG. 5C shows an example of the irradiation light quantity of image light per unit volume in the resin area controlled according to the elapsed time from the start of modeling by the three-dimensional modeling process of this embodiment.
  • the amount of light required for curing shown in FIG. 5B decreases, the amount of light emitted is controlled to decrease.
  • the irradiation light amount to the modeling resin liquid layer PA is controlled for each modeling of each modeling layer WA. . The same is true for each resin region in the X and Y directions.
  • the ratio of the irradiation light amount per unit volume of the resin region to the curing necessary light amount is 1 regardless of the passage of time (that is, the increase in temperature) by such control of the irradiation light amount. Does not change much with In other words, almost the target curing rate can be obtained in each resin region from the start to the end of shaping. Thereby, modeling of the three-dimensional object WB can be performed with good modeling accuracy.
  • the number of data areas and time divisions for changing the data conversion ratio are merely examples for explanation, and the number of divisions is as large as possible. By doing this, the curing failure of the shaped article can be sufficiently suppressed.
  • FIG. 1 The basic configuration of the three-dimensional processing apparatus 100 'of this embodiment is the same as that of the first embodiment, and the same components as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment.
  • a temperature sensor 258 for detecting the temperature of the UV curable resin RA is provided in the container 201. Thereby, (the change of) temperature of UV curable resin RA is detected directly and in real time.
  • the formation start time (the Z direction is sequentially formed)
  • the irradiation light quantity of the image light per unit volume of the UV curable resin RA is set for each formation of the formation layer WA.
  • FIG. 7 The basic configuration of the three-dimensional processing apparatus 100 ′ ′ according to the present embodiment is the same as that according to the first embodiment.
  • the same components as in the first embodiment are denoted by the same reference numerals as in the first embodiment, and the description thereof is omitted.
  • the temperature distribution and temperature change of the UV curable resin RA were detected using the thermographic sensor 256 and the temperature sensor 258.
  • a sensor for detecting such temperature is not provided, and temperature distribution and temperature change during modeling are predicted from three-dimensional shape data. Then, the required curing light amount corresponding to the predicted result is acquired, and the unit light volume per unit volume in each Z direction in a plurality of resin regions in each of the resin regions in the X direction (and Y direction) Set the irradiation light amount.
  • the thermography sensor 256 and the temperature sensor 258 are omitted.
  • irradiation schedule information which is information such as irradiation timing and number of times of irradiation of image light for each resin region of the UV curable resin RA during modeling is obtained in advance be able to. Then, it is possible to predict the temperature distribution and temperature change of the UV curable resin RA during shaping from the irradiation schedule information for each resin region. That is, the irradiation schedule information of the image light estimated from three-dimensional shape data can be used as information regarding a temperature distribution or a temperature change.
  • the temperature distribution and the temperature change are predicted from the result of moving average of the irradiation schedule information for each time in each resin region. Then, according to the predicted temperature distribution and temperature change, as described with reference to FIGS. 4A to 4D and 5A to 5D in Example 1, the necessary curing light amount is obtained. , Further control the irradiation light amount.
  • FIG. 8 shows the flow of a three-dimensional shaping process that the CPU 301 executes in accordance with the three-dimensional shaping program in the present embodiment.
  • steps S1 and S4 to 6 are the same as the flowchart shown in FIG. 3 in the first embodiment.
  • step S12 of FIG. 8 the CPU 301 analyzes the three-dimensional data (a plurality of original image data) acquired in step S1 and, as described above, the irradiation schedule information for each resin region of the UV curable resin RA during modeling get. Then, the necessary curing light amount for each resin region is acquired based on the temperature distribution and temperature change of the UV curable resin RA during modeling predicted from the irradiation schedule information. Thereafter, the process proceeds to step S4.
  • the temperature distribution and temperature change during modeling are predicted from the irradiation schedule information acquired by analyzing the three-dimensional data, and the curing necessary light amount is acquired.
  • another data conversion ratio setting method may be used which does not actually detect the temperature as well.
  • three-dimensional shape data for distortion calibration different from the three-dimensional shape data for three-dimensional object WB is prepared, the three-dimensional object for calibration is formed, and data conversion is performed based on the result of measuring the shape of the three-dimensional object
  • the ratio may be set and stored in the storage unit 305. At this time, it is sufficient to measure the curing rates of a plurality of calibration figures that have been modeled at different temperatures.
  • the configuration described in the present embodiment may be combined with the configuration described in the first or second embodiment.
  • the required curing light quantity acquired based on the temperature distribution and temperature change predicted by the configuration of the present embodiment is corrected according to the temperature distribution and temperature change actually detected during modeling by the configuration of the first or second embodiment. .
  • the UV curable resin RA in the container 201 is irradiated with the image light through the light transmitting plate 212 provided at the bottom of the container 201 in the modeling unit 200 has been described.
  • the UV curable resin is transmitted through the light transmitting plate 212 provided on the ceiling of the container 201' with the image light from the projection unit 250. It may be irradiated to RA.
  • the shaping layer WA may be sequentially formed while moving the holding plate 202 'downward by the moving mechanism 203'.
  • the UV curable resin RA may be irradiated with the image light from the projection unit 250 through the light transmitting plate 212 provided on the side surface of the container 201 ′ ′.
  • the shaping layer WA may be sequentially formed while moving the holding plate 202 ′ ′ in the horizontal direction away from the light transmitting plate 212 by the moving mechanism 203 ′ ′.
  • temperature distribution and change may occur due to the change of the environmental temperature or the heat generated at the time of light curing, and the formation defect may occur. Therefore, by executing the three-dimensional shaping process described in the first to third embodiments, the occurrence of a shaping defect can be suppressed.
  • the dead zone is formed by the oxygen transmitted through the light transmitting plate 212
  • a mold release agent (mold release layer) different from the UV curable resin RA may be provided between the UV curable resin RA and the light transmitting plate 212, or the container 201 (201 ′, 201 ′ ′)
  • the shaping layer may not be attached to the light transmitting plate 212 by vibrating.
  • the present invention supplies a program that implements one or more functions of the above-described embodiments to a system or apparatus via a network or storage medium, and one or more processors in a computer of the system or apparatus read and execute the program. Can also be realized. It can also be implemented by a circuit (eg, an ASIC) that implements one or more functions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Abstract

【課題】光硬化性樹脂内で硬化必要光量の分布や変化が生じても良好な造形精度を得る。 【解決手段】三次元造形装置100は、透光部212を有し、液状の光硬化性樹脂RAを保持する容器201と、複数の画素261を有し、光源からの光を画素ごとに変調する光変調素子253と、光変調素子からの変調光を、透光部を通して光硬化性樹脂に照射する光学系250と、三次元形状データから生成された複数の二次元形状データのそれぞれに基づいて光変調素子を制御する制御部300と、光硬化性樹脂のうち変調光を受けて硬化した硬化部WAを透光部から離れる方向に移動させる移動部材202とを有する。制御部は、光硬化性樹脂における複数の樹脂領域のそれぞれに、該樹脂領域ごとの硬化必要光量に応じた照射光量の変調光が照射されるように光変調素子を制御する。

Description

三次元造形装置、三次元物体製造方法および三次元造形プログラム
 本発明は、光硬化性樹脂を硬化させて三次元物体を造形する技術に関する。
 三次元造形では、三次元物体の形状を示す三次元形状データから高さ方向の位置ごとの二次元形状データ(画像データ)を生成し、該断面形状データのそれぞれに対応する形状を有する造形層を順次形成して積層していくことで三次元物体(造形物)を得る。このような三次元造形方法の一つとして、特許文献1には、光硬化性樹脂を用いる方法が開示されている。
 具体的には、液状の光硬化性樹脂を保持する容器の底面を透光板で構成し、該透光板の下側から透光板を通して照射された光で光硬化性樹脂を硬化させる。この際、二次元配列された複数の画素を有する光変調素子によって上記断面形状データに応じて変調した光を光硬化性樹脂に一括投射(照射)することで1つの造形層の全体を同時に硬化させる。そして、硬化した造形層を上方に移動させて次の造形層を形成する工程を繰り返すことで三次元物体を造形することができる。
 この方法によれば、造形層ごとにレーザ光(スポット)で走査して光硬化性樹脂を順次硬化させる方法に比べて、造形に要する時間を短縮することが可能である。
特開2015-016610号公報
 しかしながら、特許文献1にて開示されたような三次元造形方法では、環境温度の変動や光硬化性樹脂の光硬化による発熱等によって光硬化性樹脂内での温度分布や温度変化が発生する。そして、光硬化性樹脂が硬化するために単位体積当たりに必要な照射光量である硬化必要光量は温度によって変動するため、造形中に光硬化性樹脂内で硬化必要光量の分布や変化が生じる。この結果、光硬化性樹脂に対して均一な光量の光を照射しても、硬化不足の領域や不要な硬化領域が生じたりして良好な造形精度が得られない。
 本発明は、造形中に光硬化性樹脂内での硬化反応率の分布や変化が生じても良好な造形精度が得られるようにした三次元造形装置等を提供する。
 本発明の一側面としての三次元造形装置は、透光部を有し、液状の光硬化性樹脂を保持する容器と、複数の画素を有して光源からの光を画素ごとに変調する光変調素子と、光変調素子からの変調光を、透光部を通して光硬化性樹脂に照射する光学系と、三次元形状データから生成された複数の二次元形状データのそれぞれに基づいて光変調素子を制御する制御部と、光硬化性樹脂のうち変調光を受けて硬化した硬化部を透光部から離れる方向に移動させる移動部材とを有する。光硬化性樹脂が所定の硬化率に硬化するのに単位体積当たりに必要とする変調光の照射光量を硬化必要光量とする。制御部は、光硬化性樹脂における複数の樹脂領域のそれぞれに、該樹脂領域ごとの硬化必要光量に応じた照射光量の変調光が照射されるように光変調素子を制御することを特徴とする。
 また、本発明の他の一側面としての三次元物体製造方法は、透光部を有する容器に液状の光硬化性樹脂を保持し、複数の画素を有して光源からの光を画素ごとに変調する光変調素子を、三次元形状データから生成された複数の二次元形状データのそれぞれに基づいて制御して、該光変調素子からの変調光を透光部を通して光硬化性樹脂に照射し、光硬化性樹脂のうち変調光を受けて硬化した硬化部を透光部から離れる方向に移動させて三次元物体を製造する方法である。該製造方法は、光硬化性樹脂が所定の硬化率に硬化するのに単位体積当たりに必要とする変調光の照射光量を硬化必要光量とするとき、光硬化性樹脂における複数の樹脂領域のそれぞれに、該樹脂領域ごとの硬化必要光量に応じた照射光量の変調光が照射されるように光変調素子を制御することを特徴とする。
 なお、上記三次元造形装置のコンピュータに上記三次元物体製造方法に従う三次元造形プロセスを実行させるコンピュータプログラムとしての三次元造形プログラムも、本発明の他の側面を構成する。
 本発明によれば、造形中に光硬化性樹脂内で硬化必要光量の分布や変化が生じても、それに応じて光硬化性樹脂への照射光量を樹脂領域ごとに制御することができるため、良好な造形精度を得ることができる。
本発明の実施例1である三次元造形装置の構成を示す図。 実施例1の三次元造形装置に用いられる画像形成素子と造形ユニットを示す図。 実施例1における三次元造形プロセスを示すフローチャート。 実施例1におけるX方向での温度分布、硬化必要光量、照射光量および照射光量/硬化必要光量を示す図。 実施例1における時間ごとの温度変化、硬化必要光量、照射光量および照射光量/硬化必要光量を示す図。 本発明の実施例2である三次元造形装置の構成を示す図。 本発明の実施例3である三次元造形装置の構成を示す図。 実施例3の三次元造形プロセスを示すフローチャート 本発明の実施例4である三次元造形装置の造形ユニットを示す図。 光硬化性樹脂の光照射量と硬化率との関係を示す図。
 以下、本発明の実施例について図面を参照しながら説明する。
 以下、本発明の実施例について図面を参照しながら説明する。
 図1には、本発明の実施例1である三次元造形装置の構成を示す。三次元造形装置100は、液状の光硬化性樹脂に後述する画像光を照射して硬化させることで形成した造形層を順次積層することで三次元造形物を形成する。本実施例では、画像光が紫外線(以下、UV光という)であり、光硬化性樹脂として紫外線硬化性樹脂(以下、UV硬化性樹脂という)を用いる場合を例として説明する。ただし、UV光以外の画像光およびUV硬化性樹脂以外の光硬化性樹脂を用いてもよい。
 三次元造形装置100は、造形ユニット200と、造形ユニット200を制御する制御部300とを有する。制御部300には、外部コンピュータである画像処理装置400が接続されている。
 造形ユニット200は、容器201と、移動部材としての保持板202と、移動機構203と、投射ユニット250とを有する。容器201は、液状のUV硬化性樹脂RAを保持する液槽であり、その上部には開口が形成されている。容器201は、容器本体211と、該容器本体201の底面に形成された開口を塞ぐように設けられた透光性を有する透光板(透光部)212とにより構成されている。UV硬化性樹脂RAは、所定光量以上のUV光が照射されたときに硬化する特性を有する。このため、硬化させる領域にのみ所定光量以上の光量のUV光を照射することで、目的とする形状を有する造形物WBを形成することができる。
 透光板212は、UV光を透過し、かつ酸素を透過するUV/酸素透過性を有する。このような透光板212としては、薄いフッ素樹脂板、例えばテフロン(登録商標)AF2400を用いることができる。透光板212は、空気中の酸素を透過してUV硬化性樹脂RAとの界面に酸素豊富な雰囲気を形成することでUV硬化性樹脂RAのUV光による硬化(ラジカル重合反応)を妨げる。すなわち、UV硬化性樹脂RAは、UV光により硬化する一方、酸素豊富な環境では硬化が妨げられる特性を有する。
 このため、図2(B)に示すように、透光板212の近傍には、UV硬化性樹脂RAがUV光を受けても硬化しないデッドゾーン(不感帯)DZが層状に形成される。そして、UV硬化性樹脂RAのうちデッドゾーンDZの直上に位置する層状の部分(以下、造形樹脂液層という)PAがUV光(画像光)を受けることで硬化して、硬化部としての造形層(造形途中の中間物)WAを形成する。これにより、造形層WAが透光板212に付着することはない。
 なお、透光板212を透過する酸素は、上述した空気中の酸素を用いてもよいし、不図示の酸素供給装置(ノズル)を透光板212の近傍に配置して透光板212に向けて酸素を供給するようにしてもよい。造形ユニット200または三次元造形装置100全体を高圧酸素雰囲気中に配置してもよい。
 移動機構203は、容器201の上部開口を通して保持板202を上下方向に移動させる。移動機構203は、パルスモータとボールねじ等により構成され、制御部300からの制御によって任意の速度または任意のピッチで保持板202を移動させる。以下の説明では、図1中の移動機構203による保持板202の移動方向(図の上下方向)をZ方向(厚み方向)とし、該Z方向に直交する方向(図の左右方向)をX方向とする。さらに、Z方向およびX方向に直交する方向(図中の奥行き方向)をY方向とする。
 移動機構203は、Z方向において、保持板202を透光板212から離れる方向(上方)および透光板212に近づける方向(下方)に移動させる。造形中は、保持板202を上記デッドゾーンDZに近づいて対向した下端位置から上方に移動させる。保持板202が下端位置にある状態で透光板212を通して画像光をUV硬化性樹脂RAに照射することで最初の造形層が保持板202に付着した状態で形成される。そして、最初の造形層が下端位置から所定量だけ引き上げられた状態で透光板212を通して画像光をUV硬化性樹脂RAに照射することで、最初の造形層とデッドゾーンDZとの間で次の造形層が最初の造形層に積層されて形成される。この工程を繰り返すことで、順次形成される複数の造形層WAが積層された造形物WBを形成することができる。
 容器201の下側には投射ユニット250が配置されている。投射ユニット250は、UV光源251と、ビームスプリッタ252と、光変調素子としての画像形成素子253と、駆動機構254と、投射光学系255とを有する。必要に応じて、投射ユニット250に投射光路を変更する別の光学素子を追加してもよい。
 UV光源251、ビームスプリッタ252および光変調素子253は水平方向であるX方向に直列に配置されている。ビームスプリッタ252の上方(Z方向)には、投射光学系255が配置されている。投射光学系255は、その光出射面が透光板212に対向するように配置されている。
 UV光源251は、UV光を発するLEDや高圧水銀ランプ等により構成されている。UV光源251から発せられたUV光は、ビームスプリッタ252を透過して画像形成素子253にUV光を照射する。
 画像形成素子253は、複数の画素を有し、照射されたUV光を画素ごとに変調して変調光としての画像光を生成する。本実施例では、画像形成素子253として、DMD(Digital Micro mirror Device)を用いる。DMDとしての画像形成素子253は、図2(A)に示すように、二次元配列された複数の画素261のそれぞれが、2つの角度位置(オン位置とオフ位置)の間で移動(回動)する微細な反射ミラーで構成されている。各画素261は、反射ミラーがオン位置にあるオン状態と反射ミラーがオフ位置にあるオフ状態とで明暗を表現する2値制御が可能である。
 画像処理装置400は、三次元物体の形状データとして予め用意された三次元形状データからZ方向での複数の断面の二次元形状データとしての複数の原画像データを生成する。各原画像データは、二次元の複数の画素位置に対して造形画素位置であることを示す1または非造形画素位置であることを示す0を含む2値化データである。画像処理装置400は、複数の原画像データが時系列に配列された動画像データを制御部300に出力する。
 制御部300は、動画像データ内の複数の原画像データに対して、後述する硬化必要光量に応じた明るさ(画像形成素子253からの照射光量)に関する補正を行って複数の補正画像データを生成する。そして、これら複数の補正画像データ(二次元形状データ)のそれぞれに基づいて、順次、画像形成素子253の画素261ごとの2値制御を行うことで、上述したようにUV光を画素261ごとに変調して画像光を生成する。なお、制御部300は、各画素261のオン状態とオフ状態との切り替えを高速で行うデューティ制御を行って中間調を表現することもできる。制御部300は、変換部としても機能する。
 また、本実施例では、画像形成素子253としてDMDを用いる場合について説明するが、画像形成素子253として反射型液晶パネルを用いてもよいし、透過型液晶パネルを用いてもよい。この場合も、画素の反射率または透過率の2値制御による明暗表現だけでなく、反射率または透過率の高速スイッチングによる中間調表現も可能である。その他、明暗や中間調を有する画像光を形成できる素子であれば、画像形成素子253として用いることができる。
 ビームスプリッタ252は、前述したようにUV光源251からのUV光を透過させ、画像形成素子253からの画像光を投射光学系255に向けて反射する。投射光学系255は、1つまたは複数のレンズにより構成されており、画像形成素子253(ビームスプリッタ252)からの画像光を、容器201内において画像形成素子253と光学的に共役な位置に結像させるように投射(照射)する。本実施例では、この画像光の結像位置を造形位置とする。造形位置は、容器201内における上述したデッドゾーンDZの直上の位置であり、UV硬化性樹脂RAのうち造形位置にある造形樹脂液層PAが画像光を受けることで造形層WAが形成される。画像形成素子253の各画素からの画像光を造形位置に結像させる、すなわち最も絞った状態とすることにより、良好な解像度の造形層WAを形成することができる。
 制御部300は、UV光源251、移動機構203、画像形成素子253および駆動機構254を制御し、上述した動画像データに応じた造形層WAの形成(硬化)と同期した速度で連続的または断続的に移動機構203に保持板202を引き上げさせる。これにより、保持板202によって上端が保持された造形物WBが成長するように三次元造形が行われる。
 このように本実施例の三次元造形装置100は、順次積層される複数の造形層WAのそれぞれを形成する際に、投射ユニット250から画像光を造形位置に一括投射して造形樹脂液層PAを一度に硬化させる。このため、各造形層をレーザ光の走査により形成したり、UV硬化性樹脂を塗布してから光を照射して形成したりする他の装置に比べて、造形物WBの造形に要する時間を短くすることができる。
 制御部300は、CPU301と、CPU301の演算に用いられる作業領域を有するRAM302と、ROM303とを有するコンピュータとして構成されている。ROM303は、プログラム304が記録された記録媒体であり、EEPROM等の書き換え可能な不揮発性のメモリである。CPU301は、ROM303に記録されたコンピュータプログラムとしての三次元造形プログラム304を読み出して造形ユニット200を制御する後述する三次元造形プロセス(三次元物体製造方法)を実行する。
 なお、三次元造形プログラム304は、コンピュータ読み取り可能な記録媒体、例えば不揮発性メモリ(半導体メモリ等)、記録ディスク(光ディスクや磁気ディスク)、外部記憶装置(ハードディスク)等に記録されていてもよい。
 従来の三次元造形装置において造形を行う際に、環境の変動やUV硬化性樹脂の光硬化による発熱等によってUV硬化性樹脂内での温度分布や温度変化が発生する。UV硬化性樹脂が所定の硬化率に硬化するのに必要な単位体積当たりの光量(以下、硬化必要光量という)は温度によって変動する。このため、造形中に発生した温度分布や温度変化によって光硬化性樹脂(造形樹脂液層)内で硬化必要光量に分布や変化が生じる。この結果、造形樹脂液層に対して均一な光量のUV光が照射されても、造形層に硬化不足の領域や不要な硬化領域が生じる等の造形不良が生じて良好な造形精度が得られない。
 図10には、一般的な光硬化性樹脂であるアクリル樹脂の光照射量と硬化率との関係を示している。硬化率(または硬化反応率)とは、同一のエネルギーを有する光が照射された光硬化性樹脂の全体に対して硬化している割合を示す。アクリル樹脂等の一般的な光硬化性樹脂は、同一光量の光が照射されたときに温度が高いほど硬化率が高くなる特性を有する。すなわち、温度が高いほど硬化必要光量が少なくなる特性を有する。前述したように三次元造形に用いる光硬化性樹脂が温度分布を有する場合に該光硬化性樹脂に均一な光照射量を与えると、領域によって硬化不足が発生したり不要硬化が発生したりして造形不良が生じる。本実施例は、UV硬化性樹脂RA(造形樹脂液層PA)内の樹脂領域ごとに単位体積当たりのUV光の照射量を制御することで、このような造形不良の発生を抑えることができる。
 本実施例では、以下に説明する三次元造形プロセスを実行する。図3のフローチャートには、本実施例において制御部300内のCPU301が前述した三次元造形プログラムに従って実行する三次元造形プロセスの流れを示している。
 ステップS1において、CPU301は、画像処理装置400から複数の原画像データが時系列に配列された動画像データ、つまりは造形する三次元物体の三次元形状データを取得する。
 次にステップS2において、CPU301は、図1に示す温度検出手段としてのサーモグラフィセンサ(赤外線カメラ)256を用いて、透光板212の温度分布をリアルタイムに検出(計測)する。透光板212は、前述したデッドゾーンDZを挟んで前述した造形位置の近傍に位置する。このため、透光板212の温度分布を検出することは、造形位置にある造形樹脂液層PAの温度分布を取得することと等価である。透光板212の温度分布と造形樹脂液層PAの実際の温度分布とに差が生じる場合は、検出した透光板212の温度分布を補正して造形樹脂液層PAの温度分布として用いればよい。
 本実施例では、造形樹脂液層PAをX方向およびY方向のそれぞれに複数に分割することで複数の樹脂領域を設け、検出した温度分布から樹脂領域ごとの温度を取得する。1つの樹脂領域は、画像形成素子253の1または2以上の画素から画像光を受ける領域である。また、サーモグラフィセンサ256によって所定時間ごとに温度分布を検出することで、樹脂領域ごとの温度変化も検出することができる。なお、造形樹脂液層PAの温度分布を直接、検出する方法を採用してもよい。
 次にステップS3において、CPU301は、ステップS2で検出した温度分布や温度変化に基づいて、複数の原画像データのそれぞれについて複数の樹脂領域のそれぞれの硬化必要光量を取得する。ここでは、様々な温度分布や温度に対応する硬化必要光量を含むデータテーブルが予めRAM302内の記憶部305に記憶されており、CPU301は、検出された温度分布や温度に対応する硬化必要光量をデータテーブルから読み出す。なお、CPU301は、演算式を用いて樹脂領域ごとの硬化必要光量を算出してもよい。
 次のステップS4では、CPU301は、ステップS1で取得したそれぞれの原画像データにおける各樹脂領域に対応するデータ領域ごとに、ステップS3で取得した硬化必要光量に基づく補正を行って補正画像データを生成する。画像形成素子253は、画素261をオン時間の間だけオン状態に維持し、その後オフ状態とすることで、該オン時間に対応する照射光量の画像光をUV硬化性樹脂RAの樹脂領域に照射することができる。オン時間とオフ状態を維持するオフ時間との比またはオン時間/(オン時間+オフ時間)を照射デューティ比という。
 CPU301は、原画像データのデータ領域に対して設定されたオン時間(照射デューティ比)に対応する照射光量が硬化必要光量に足りない場合は、硬化必要光量に等しい照射光量が得られるように該データ領域のオン時間を増加させた補正画像データを生成する。逆に、原画像データのデータ領域に対して設定されたオン時間に対応する照射光量が硬化必要光量より多すぎる場合には、該硬化必要光量に等しい照射光量が得られるようにそのデータ領域のオン時間を減少させた補正画像データを生成する。
 次にステップS5では、CPU301は、複数の補正画像データに対応する画像光を順次、造形樹脂液層PAに照射する。また、補正画像データに対応する画像光の照射に同期して保持板202が上方に移動するように移動機構203を制御する。このようにして所定時間の間、複数の造形層WAからなる造形物WBの造形を行う。
 次にステップS6において、CPU301は、補正画像データの全てについて画像光の照射が終了したか否かを判断する。残りの補正画像データがあればステップS2に戻って全補正画像データについての画像光の照射が終了するまでステップS2からステップS5までの処理を繰り返す。
 ここで、造形物の造形開始からの時間の経過に伴って光硬化により生じた熱や三次元造形装置100が設置された空間の温度の変化によって、造形樹脂液層PAの温度が変化するおそれがある。このため、本実施例では、上記所定時間ごとにステップS2からステップS4の処理を繰り返した上でステップS5にて造形を行うようにしている。すなわち、CPU301は、造形中において所定時間ごとに透光板212(造形樹脂液層PA)の温度分布を検出し、該温度の変化に応じて新たな硬化必要光量をデータテーブルから読み出して補正画像データを更新する。これにより、造形開始から終了に至るまで造形層WAの歪みの発生を抑えることができる。
 図4(A)には、本実施例の三次元造形装置100において造形樹脂液層PAのX方向での温度分布の例を示している。一般的な造形物の造形においては、中心部の方が周辺部より温度が高くなる。図4(B)には、図4(A)に示した温度分布を有する場合の造形樹脂液層PAにおけるX方向での硬化必要光量の分布の例を示している。造形樹脂液層PAのうち温度が高い中心部の樹脂領域(第1の樹脂領域)の硬化必要光量は、温度が低い周辺部(第2の樹脂領域)の硬化必要光量よりも少なくなっている。
 そして、図4(C)には、本実施例の三次元造形プロセスにより制御されるX方向での複数の樹脂領域における単位体積当たりの画像光の照射光量の例を示している。照射光量は、図4(B)に示した硬化必要光量が少ない中心部の樹脂領域に対しては少なく設定され、硬化必要光量が少ない周辺部の樹脂領域に対しては多く設定される。
 このような照射光量の制御(画像形成素子253の制御)により、図4(D)に示すように、樹脂領域ごとの単位体積当たりの照射光量の硬化必要光量に対する比率が、全ての樹脂領域においてほぼ同じ(概ね1)となる。言い換えれば、全ての樹脂領域においてほぼ目標とする硬化率が得られる。これにより、造形物WBの造形を良好な造形精度で行うことができる。
 なお、図4(A)~(D)ではX方向についてのみ説明したが、Y方向についても同様である。
 また、図5(A)には、造形の開始から終了までの時間ごとの造形樹脂液層PAのある樹脂領域(例えば中心部)の温度変化の例を示している。造形開始からの時間の経過とともに造形樹脂液層PA内で熱が蓄積していきその温度が高くなっていく。図5(B)には、図5(A)に示した樹脂領域の温度変化に対する硬化必要光量の変化の例を示している。該樹脂領域の温度が高くなるほど、硬化必要光量が少なくなっている。
 そして、図5(C)には、本実施例の三次元造形プロセスにより造形開始からの経過時間に応じて制御される樹脂領域における単位体積当たりの画像光の照射光量の例を示している。図5(B)に示した硬化必要光量が少なくなっていくのに応じて、照射光量も少なくなるように制御される。なお、時間の経過に伴ってZ方向において順次異なる造形層WAが形成されていくため、各造形層WAの造形ごとに造形樹脂液層PA(樹脂領域)に対する照射光量が制御されることになる。このことは、XおよびY方向の各樹脂領域について同様である。
 このような照射光量の制御により、図5(D)に示すように、樹脂領域の単位体積当たりの照射光量の硬化必要光量に対する比率が、時間の経過(すなわち温度の上昇)にかかわらず、1に対して大きくは変化しないようになる。言い換えれば、造形開始から終了まで各樹脂領域においてほぼ目標とする硬化率が得られる。これにより、造形物WBの造形を良好な造形精度で行うことができる。
 なお、図4(A)~(D)および図5(A)~(D)におけるデータ変換比率を異ならせるデータ領域や時間の分割数は説明のための例に過ぎず、分割数をできるだけ多くすることで、造形物の硬化不良を十分に小さく抑えることができる。
 次に、図6を用いて、本発明の実施例2である三次元処理装置100′について説明する。本実施例の三次元処理装置100′における基本的な構成は実施例1と同じであり、共通する構成要素には実施例1と同符号を付して説明に代える。
 本実施例では、容器201内にUV硬化性樹脂RAの温度を検出する温度センサ258を設けている。これにより、UV硬化性樹脂RAの温度(の変化)を直接、かつリアルタイムに検出する。
 そして本実施例でも、実施例1で図5(A)~(D)を用いて説明したように、UV硬化性樹脂RAの温度変化に応じて造形開始から時間(Z方向に順次形成される造形層WAの造形)ごとにUV硬化性樹脂RAの単位体積当たりの画像光の照射光量を設定する。これにより、造形中の温度変化により生じる硬化必要光量の変化に起因する造形不良の発生を抑えることができる。
 次に、本発明の実施例2での三次元処理装置100″について図7を用いて説明する。本実施例の三次元処理装置100″における基本的な構成は実施例1と同じであり、共通する構成要素には実施例1と同符号を付して説明に代える。
 実施例1,2では、サーモグラフィセンサ256や温度センサ258を用いてUV硬化性樹脂RAの温度分布や温度変化を検出した。一方、本実施例ではそのような温度を検出するセンサを設けず、三次元形状データから造形中の温度分布や温度変化を予測する。そして、該予測結果に応じた硬化必要光量を取得し、該硬化必要光量に対してX方向(およびY方向)の複数の樹脂領域や各樹脂領域でのZ方向の造形ごとの単位体積当たりの照射光量を設定する。これにより、サーモグラフィセンサ256や温度センサ258を省いたより簡易な装置構成により造形不良の発生を抑えることができる。
 造形物の造形に用いられる三次元形状データを解析することで、造形中におけるUV硬化性樹脂RAの樹脂領域ごとの画像光の照射タイミングや照射回数等の情報である照射予定情報を予め取得することができる。そしてこのような樹脂領域ごとの照射予定情報から造形中におけるUV硬化性樹脂RAの温度分布や温度変化を予測することが可能である。すなわち、三次元形状データから予測された画像光の照射予定情報を、温度分布や温度変化に関する情報として用いることができる。
 より具体的には、各樹脂領域において時間ごとの照射予定情報を移動平均した結果から温度分布や温度変化を予測する。そして、予測した温度分布や温度変化に応じて、実施例1にて図4(A)~(D)や図5(A)~(D)を用いて説明したように硬化必要光量を取得し、さらに照射光量を制御する。
 図8のフローチャートには、本実施例においてCPU301が三次元造形プログラムに従って実行する三次元造形プロセスの流れを示している。図8のフローチャートのうちステップS1およびステップS4~6は実施例1で図3に示したフローチャートと同じである。
 図8のステップS12では、CPU301は、ステップS1で取得した三次元データ(複数の原画像データ)を解析して上述したように造形中におけるUV硬化性樹脂RAの樹脂領域ごとの照射予定情報を取得する。そして、該照射予定情報から予測した造形中におけるUV硬化性樹脂RAの温度分布や温度変化に基づいて、樹脂領域ごとの硬化必要光量を取得する。その後、ステップS4に進む。
 本実施例では、温度を実際に検出することなく、三次元データを解析して取得した照射予定情報から造形中の温度分布や温度変化を予測して硬化必要光量を取得する。これに代えて、同様に温度を実際に検出しない他のデータ変換比率の設定方法を用いてもよい。例えば、造形物WB用の三次元形状データとは異なる歪み校正用三次元形状データを用意して校正用造形物の造形を行い、該校正用造形物の形状を計測した結果に基づいてデータ変換比率を設定して記憶部305に記憶させてもよい。この際、異なる複数の温度で造形を行った複数の較正用造形物の硬化率を測定すればよい。
 また、本実施例で説明した構成と実施例1または2で説明した構成とを組み合わせてもよい。例えば、本実施例の構成で予測した温度分布や温度変化に基づいて取得した硬化必要光量を、実施例1または2の構成で造形中に実際に検出した温度分布や温度変化に応じて補正する。これにより、温度分布等を予測した時点とは異なる実際の造形中の環境温度の変化の影響を低減しつつ造形不良の発生を抑えることができる。
 実施例1~3では、造形ユニット200において、容器201の底部に設けられた透光板212を通して画像光を容器201内のUV硬化性樹脂RAに照射する場合について説明した。しかし、図9(A)に示す本発明の実施例3の造形ユニット200′のように、投射ユニット250からの画像光を容器201′の天井部に設けた透光板212を通してUV硬化性樹脂RAに照射してもよい。この場合、移動機構203′により保持板202′を下方に移動させながら造形層WAを順次形成していけばよい。
 また、図9(B)に示す造形ユニット200″のように、投射ユニット250からの画像光を容器201″の側面部に設けた透光板212を通してUV硬化性樹脂RAに照射してもよい。この場合、移動機構203″により保持板202″を透光板212から離れる水平方向に移動させながら造形層WAを順次形成していけばよい。
 図9(A),(B)に示す構成においても、環境温度の変動や光硬化時に発生する熱によって温度分布および変化が生じて造形不良が生じ得る。このため、実施例1~3で説明した三次元造形プロセスを実行することで、造形不良の発生を抑えることができる。
 また、上述した各実施例では、透光板212を透過した酸素によってデッドゾーンが形成される場合について説明した。しかし、UV硬化性樹脂RAと透光板212との間にUV硬化性樹脂RAとは異なる離形剤(離形層)を設けてもよいし、容器201(201′,201″)を微細振動させることで造形層が透光板212に付着しないようにしてもよい。
(その他の実施例)
 本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
 以上説明した各実施例は代表的な例にすぎず、本発明の実施に際しては、各実施例に対して種々の変形や変更が可能である。

Claims (10)

  1.  透光部を有し、液状の光硬化性樹脂を保持する容器と、
     複数の画素を有し、光源からの光を前記画素ごとに変調する光変調素子と、
     前記光変調素子からの変調光を、前記透光部を通して前記光硬化性樹脂に照射する光学系と、
     三次元形状データから生成された複数の二次元形状データのそれぞれに基づいて前記光変調素子を制御する制御部と、
     前記光硬化性樹脂のうち前記変調光を受けて硬化した硬化部を前記透光部から離れる方向に移動させる移動部材とを有し、
     前記光硬化性樹脂が所定の硬化率に硬化するのに単位体積当たりに必要とする前記変調光の照射光量を硬化必要光量とするとき、
     前記制御部は、前記光硬化性樹脂における複数の樹脂領域のそれぞれに、該樹脂領域ごとの前記硬化必要光量に応じた照射光量の前記変調光が照射されるように前記光変調素子を制御することを特徴とする三次元造形装置。
  2.  前記制御部は、前記複数の二次元形状データのそれぞれに基づく前記変調光の照射ごとの前記硬化必要光量に応じた前記照射光量の前記変調光が前記複数の樹脂領域のそれぞれに照射されるように前記光変調素子を制御することを特徴とする請求項1に記載の三次元造形装置。
  3.  前記制御部は、前記複数の樹脂領域のうち第1の樹脂領域の前記硬化必要光量が第2の樹脂領域の前記硬化必要光量より少ない場合に、前記第1の樹脂領域に対する前記照射光量が前記第2の樹脂領域に対する前記照射光量より少なくなるように前記光変調素子を制御することを特徴とする請求項1に記載の三次元造形装置。
  4.  前記制御部は、前記硬化必要光量に応じて、前記光変調素子の前記画素の照射デューティ比を制御することを特徴とする請求項1に記載の三次元造形装置。
  5.  前記光硬化性樹脂の温度分布または温度変化を検出するための温度検出手段を有し、
     前記制御部は、前記温度検出手段により検出された前記温度分布または前記温度変化に応じて、前記樹脂領域ごとの前記硬化必要光量に応じた前記照射光量を設定することを特徴とする請求項1に記載の三次元造形装置。
  6.  前記制御部は、前記三次元形状データに応じて、前記樹脂領域ごとの前記硬化必要光量を取得することを特徴とする請求項1に記載の三次元造形装置。
  7.  前記制御部は、前記三次元形状データに応じた前記複数の樹脂領域に対する前記変調光の照射予定情報を用いて、前記樹脂領域ごとの前記硬化必要光量を取得することを特徴とする請求項6に記載の三次元造形装置。
  8.  前記変換部は、校正用三次元形状データに基づいて前記光変調素子を制御することで形成された前記硬化部の形状を計測した結果を用いて、前記樹脂領域ごとの前記硬化必要光量を取得することを特徴とする請求項1に記載の三次元造形装置。
  9.  透光部を有する容器に液状の光硬化性樹脂を保持し、
     複数の画素を有して光源からの光を前記画素ごとに変調する光変調素子を、三次元形状データから生成された複数の二次元形状データのそれぞれに基づいて制御して、該光変調素子からの変調光を前記透光部を通して前記光硬化性樹脂に照射し、
     前記光硬化性樹脂のうち前記変調光を受けて硬化した硬化部を前記透光部から離れる方向に移動させて三次元物体を製造する三次元物体製造方法であって、
     前記光硬化性樹脂が所定の硬化率に硬化するのに単位体積当たりに必要とする前記変調光の照射光量を硬化必要光量とするとき、
     前記光硬化性樹脂における複数の樹脂領域のそれぞれに、該樹脂領域ごとの前記硬化必要光量に応じた照射光量の前記変調光が照射されるように前記光変調素子を制御することを特徴とする三次元物体製造方法。
  10.  透光部を有して液状の光硬化性樹脂を保持する容器と、複数の画素を有して光源からの光を前記画素ごとに変調する光変調素子と、前記光変調素子からの変調光を前記透光部を通して前記光硬化性樹脂に照射する光学系とを有する三次元造形装置のコンピュータに三次元造形プロセスを実行させるコンピュータプログラムであって、
     前記コンピュータに、
     三次元形状データから生成された複数の二次元形状データのそれぞれに基づいて前記光変調素子を制御させ、
     前記光硬化性樹脂のうち前記変調光を受けて硬化した硬化部を前記透光部から離れる方向に移動させる処理を行わせ、
     前記光硬化性樹脂が所定の硬化率に硬化するのに単位体積当たりに必要とする前記変調光の照射光量を硬化必要光量とするとき、
     さらに前記コンピュータに、前記光硬化性樹脂における複数の樹脂領域のそれぞれに、該樹脂領域ごとの前記硬化必要光量に応じた照射光量の前記変調光が照射されるように前記光変調素子を制御させることを特徴とする三次元造形プログラム。
PCT/JP2017/034190 2016-09-29 2017-09-22 三次元造形装置、三次元物体製造方法および三次元造形プログラム WO2018062002A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/354,657 US10906246B2 (en) 2016-09-29 2019-03-15 Optical shaping apparatus, manufacturing method, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-191422 2016-09-29
JP2016191422A JP6849365B2 (ja) 2016-09-29 2016-09-29 光造形装置、光造形方法および光造形プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/354,657 Continuation US10906246B2 (en) 2016-09-29 2019-03-15 Optical shaping apparatus, manufacturing method, and storage medium

Publications (1)

Publication Number Publication Date
WO2018062002A1 true WO2018062002A1 (ja) 2018-04-05

Family

ID=61759712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034190 WO2018062002A1 (ja) 2016-09-29 2017-09-22 三次元造形装置、三次元物体製造方法および三次元造形プログラム

Country Status (3)

Country Link
US (1) US10906246B2 (ja)
JP (1) JP6849365B2 (ja)
WO (1) WO2018062002A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124526A1 (ja) * 2017-12-20 2019-06-27 三井化学株式会社 光造形装置、光造形プログラム及び光造形方法
WO2020005717A1 (en) 2018-06-29 2020-01-02 Intrepid Automation Closed loop print process adjustment based on real time feedback

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11141919B2 (en) 2015-12-09 2021-10-12 Holo, Inc. Multi-material stereolithographic three dimensional printing
JP6786332B2 (ja) 2016-09-29 2020-11-18 キヤノン株式会社 光造形装置、光造形方法および光造形プログラム
JP6833431B2 (ja) 2016-09-29 2021-02-24 キヤノン株式会社 光造形装置、光造形方法および光造形プログラム
CN108327253B (zh) * 2017-01-19 2021-08-06 上海普利生机电科技有限公司 光固化型三维打印方法和设备
GB2564956B (en) 2017-05-15 2020-04-29 Holo Inc Viscous film three-dimensional printing systems and methods
US10245785B2 (en) 2017-06-16 2019-04-02 Holo, Inc. Methods for stereolithography three-dimensional printing
EP3902659A4 (en) 2018-12-26 2022-09-07 Holo, Inc. SENSORS FOR THREE-DIMENSIONAL PRESSURE SYSTEMS AND PROCESSES
KR102291767B1 (ko) * 2019-03-26 2021-08-24 주식회사 덴티스 3d 프린터
EP3984721A1 (de) * 2020-10-15 2022-04-20 Ivoclar Vivadent AG Verfahren zur prozessteuerung eines 3d-stereolithographie-prozesses
CN112589122A (zh) * 2020-11-23 2021-04-02 安徽省春谷3D打印智能装备产业技术研究院有限公司 一种合金型3d打印机用固化箱
KR102441901B1 (ko) * 2021-05-07 2022-09-13 서울과학기술대학교 산학협력단 재료물성 조절이 가능한 광조형 3d 프린팅 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301431A (ja) * 1991-03-29 1992-10-26 Japan Synthetic Rubber Co Ltd 光学的造形物成形装置
JPH08142203A (ja) * 1994-11-15 1996-06-04 Japan Synthetic Rubber Co Ltd 光造形装置
JPH09277384A (ja) * 1996-04-16 1997-10-28 Olympus Optical Co Ltd 三次元構造体の製造装置と製造方法
JP2003507223A (ja) * 1999-08-20 2003-02-25 デルタメド・メディツィーンプロドュクテ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 3次元物体を生成するための装置およびその方法

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01228828A (ja) 1988-03-08 1989-09-12 Osaka Prefecture 光学的造形法
US4945032A (en) * 1988-03-31 1990-07-31 Desoto, Inc. Stereolithography using repeated exposures to increase strength and reduce distortion
JPH0231727U (ja) 1988-08-24 1990-02-28
US5175077A (en) 1990-07-05 1992-12-29 E. I. Du Pont De Nemours And Company Solid imaging system using photohardening inhibition
JPH0499618A (ja) 1990-08-17 1992-03-31 Fujitsu Ltd 立体形状物の形成方法
JP3173212B2 (ja) 1993-03-19 2001-06-04 ソニー株式会社 光学的造形方法および光学的造形装置
DE69621001T2 (de) 1995-02-01 2003-04-03 3D Systems Inc Schnelles glättungsverfahren für schichtweise hergestellte dreidimensionale gegenstände
JPH0976353A (ja) 1995-09-12 1997-03-25 Toshiba Corp 光造形装置
JPH10180881A (ja) 1996-12-26 1998-07-07 Toshiba Corp 光造形装置
AU2001268465A1 (en) * 2000-06-15 2001-12-24 3M Innovative Properties Company Multiphoton curing to provide encapsulated optical elements
JP2002331591A (ja) * 2001-05-08 2002-11-19 Fuji Photo Film Co Ltd 光造形方法
JP3782049B2 (ja) 2001-08-31 2006-06-07 独立行政法人科学技術振興機構 光造形方法及びその装置
JP2003345030A (ja) 2002-05-23 2003-12-03 Fuji Photo Film Co Ltd 露光装置
JP4114595B2 (ja) * 2003-10-30 2008-07-09 Jsr株式会社 光造形方法
JP4499538B2 (ja) 2004-11-26 2010-07-07 シーメット株式会社 光ビーム制御装置及び光造形装置
JP4824382B2 (ja) 2005-10-20 2011-11-30 シーメット株式会社 光学的立体造形方法および装置
JP5082537B2 (ja) 2007-03-28 2012-11-28 Jsr株式会社 光造形方法及び光造形装置
JP2009113294A (ja) 2007-11-05 2009-05-28 Sony Corp 光造形装置及び光造形方法
JP5023975B2 (ja) 2007-11-05 2012-09-12 ソニー株式会社 光造形装置及び光造形方法
JP5234315B2 (ja) * 2007-12-03 2013-07-10 ソニー株式会社 光造形装置および光造形方法
JP2009132127A (ja) * 2007-12-03 2009-06-18 Sony Corp 光造形装置および光造形方法
JP5088114B2 (ja) 2007-12-04 2012-12-05 ソニー株式会社 光造形装置
JP5693160B2 (ja) * 2010-11-09 2015-04-01 キヤノン株式会社 複合光学素子の製造方法、製造装置、及び応力除去方法
US9886526B2 (en) * 2012-10-11 2018-02-06 University Of Southern California 3D printing shrinkage compensation using radial and angular layer perimeter point information
JP2015016610A (ja) 2013-07-10 2015-01-29 ローランドディー.ジー.株式会社 画像投影システムおよび画像投影方法
JP6210784B2 (ja) 2013-08-02 2017-10-11 ローランドディー.ジー.株式会社 三次元造形装置および三次元造形方法
JP2015058678A (ja) * 2013-09-20 2015-03-30 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation レーザ照射で形成される3次元構造物の寸法と当該3次元構造物のスキャンパスの設計値との差を最小化するためのデータを作成する方法、並びに当該データを作成するためのコンピュータ及びコンピュータ・プログラム
CN103737929B (zh) 2013-12-17 2015-09-30 招銮 一种3d打印机二轴扫描仪聚焦透镜吹风冷却装置
US9952448B2 (en) * 2014-03-26 2018-04-24 Indizen Optical Technologies, S.L. Eyewear lens production by additive techniques
MX2014012717A (es) 2014-10-21 2016-04-26 Corporativo Uspsa Mexico S A De C V Dispositivo de construccion de estructuras de precision por deposicion controlada y ajustada.
JP2016087866A (ja) 2014-10-31 2016-05-23 ローランドディー.ジー.株式会社 3次元造形装置
US10786865B2 (en) 2014-12-15 2020-09-29 Arcam Ab Method for additive manufacturing
US20180264735A1 (en) * 2015-04-17 2018-09-20 Hewlett-Packard Development Company, L.P. Generating three-dimensional objects
CN108472869B (zh) * 2015-11-13 2021-05-21 帕克西斯有限责任公司 增材制造设备、系统和方法
US11141919B2 (en) * 2015-12-09 2021-10-12 Holo, Inc. Multi-material stereolithographic three dimensional printing
CN105635705B (zh) 2015-12-30 2018-01-02 大族激光科技产业集团股份有限公司 增强的数字光处理面曝光快速成型的方法及装置
US11130286B2 (en) * 2016-09-07 2021-09-28 Canon Kabushiki Kaisha Three-dimensional manufacturing apparatus, three-dimensional manufactured object producing method, and container for three-dimensional manufacturing apparatus
JP6833431B2 (ja) * 2016-09-29 2021-02-24 キヤノン株式会社 光造形装置、光造形方法および光造形プログラム
JP6786332B2 (ja) * 2016-09-29 2020-11-18 キヤノン株式会社 光造形装置、光造形方法および光造形プログラム
JP6800679B2 (ja) * 2016-09-29 2020-12-16 キヤノン株式会社 光造形装置、光造形方法および光造形プログラム
JP7182904B2 (ja) * 2018-05-31 2022-12-05 キヤノン株式会社 検出装置、インプリント装置、平坦化装置、検出方法及び物品製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301431A (ja) * 1991-03-29 1992-10-26 Japan Synthetic Rubber Co Ltd 光学的造形物成形装置
JPH08142203A (ja) * 1994-11-15 1996-06-04 Japan Synthetic Rubber Co Ltd 光造形装置
JPH09277384A (ja) * 1996-04-16 1997-10-28 Olympus Optical Co Ltd 三次元構造体の製造装置と製造方法
JP2003507223A (ja) * 1999-08-20 2003-02-25 デルタメド・メディツィーンプロドュクテ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 3次元物体を生成するための装置およびその方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124526A1 (ja) * 2017-12-20 2019-06-27 三井化学株式会社 光造形装置、光造形プログラム及び光造形方法
JPWO2019124526A1 (ja) * 2017-12-20 2020-11-26 三井化学株式会社 光造形装置、光造形プログラム及び光造形方法
WO2020005717A1 (en) 2018-06-29 2020-01-02 Intrepid Automation Closed loop print process adjustment based on real time feedback
EP3814117A4 (en) * 2018-06-29 2022-09-21 Intrepid Automation CLOSED LOOP PRINT PROCESS ADJUSTMENT BASED ON REAL-TIME FEEDBACK
US11465340B2 (en) 2018-06-29 2022-10-11 Intrepid Automation Closed loop print process adjustment based on real time feedback
US11820073B2 (en) 2018-06-29 2023-11-21 Intrepid Automation Closed loop print process adjustment based on real time feedback

Also Published As

Publication number Publication date
JP6849365B2 (ja) 2021-03-24
US10906246B2 (en) 2021-02-02
JP2018051958A (ja) 2018-04-05
US20190210285A1 (en) 2019-07-11

Similar Documents

Publication Publication Date Title
WO2018062002A1 (ja) 三次元造形装置、三次元物体製造方法および三次元造形プログラム
WO2018061993A1 (ja) 三次元造形装置、三次元物体製造方法および三次元造形プログラム
JP6786332B2 (ja) 光造形装置、光造形方法および光造形プログラム
AU2016374639B2 (en) Method for producing a three-dimensional body
US8348655B2 (en) Optical molding apparatus, optical molding method, and optically molded product
JP2018051950A5 (ja) 光造形装置、光造形方法および光造形プログラム
JP2018051958A5 (ja) 光造形装置、光造形方法および光造形プログラム
JP6898449B2 (ja) 樹脂の光学的性質をシミュレートするセンサ
JP4183119B2 (ja) 光造形装置
JP2018051951A5 (ja) 光造形装置、光造形方法および光造形プログラム
EP3560712B1 (en) Three-dimensional printing system
WO2017154457A1 (ja) 三次元造形装置、造形物の製造方法、プログラム及び記録媒体
JP2009132127A (ja) 光造形装置および光造形方法
JP2007111989A (ja) 光学的立体造形方法および装置
JP2024022666A (ja) 光造形装置、及び該装置を用いた光造形方法
JP2023520296A (ja) 可変速度およびパワーのハイブリッド光源を備えた等方的ステレオリソグラフィ3d印刷のための予測方法および相対装置
JP6833431B2 (ja) 光造形装置、光造形方法および光造形プログラム
JP6866152B2 (ja) 三次元造形装置および三次元造形方法
KR20160081354A (ko) 광경화 3d프린터 및 이의 광량편차 측정방법 및 보정방법
JP2009137049A (ja) 光造形装置
WO2024042793A1 (ja) 画像生成制御装置および光造形装置
JP2009160859A (ja) 光造形装置および光造形方法、並びに光造形物
CN115256938A (zh) 理想辐射参数测试方法、系统、3d打印方法及打印设备
JP2021094754A (ja) 光造形装置、及び該装置を用いた光造形方法
JP2009132125A (ja) 光造形装置および光造形方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855956

Country of ref document: EP

Kind code of ref document: A1