WO2018058798A1 - 太赫兹全偏振态检测光谱仪 - Google Patents

太赫兹全偏振态检测光谱仪 Download PDF

Info

Publication number
WO2018058798A1
WO2018058798A1 PCT/CN2016/110018 CN2016110018W WO2018058798A1 WO 2018058798 A1 WO2018058798 A1 WO 2018058798A1 CN 2016110018 W CN2016110018 W CN 2016110018W WO 2018058798 A1 WO2018058798 A1 WO 2018058798A1
Authority
WO
WIPO (PCT)
Prior art keywords
terahertz
wave
terahertz wave
vertical
detector
Prior art date
Application number
PCT/CN2016/110018
Other languages
English (en)
French (fr)
Inventor
潘奕
彭世昌
丁庆
Original Assignee
深圳市太赫兹科技创新研究院有限公司
深圳市太赫兹科技创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市太赫兹科技创新研究院有限公司, 深圳市太赫兹科技创新研究院 filed Critical 深圳市太赫兹科技创新研究院有限公司
Priority to US15/749,979 priority Critical patent/US11199495B2/en
Publication of WO2018058798A1 publication Critical patent/WO2018058798A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • G01N21/3586Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation by Terahertz time domain spectroscopy [THz-TDS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0636Reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0638Refractive parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/068Optics, miscellaneous
    • G01N2201/0683Brewster plate; polarisation controlling elements

Definitions

  • the invention relates to the field of terahertz wave detection, in particular to a terahertz full polarization state detection spectrometer.
  • Terahertz full polarization detection can be applied to many fields of research, such as terahertz optics, including terahertz prisms, wave plates, and photoconductive antennas that are sensitive to polarization. It can also be applied to the detection of biomolecules with chiral characteristics such as amino acids and proteins. The molecules with chiral characteristics absorb the left-handed or right-handed circularly polarized light of terahertz. This phenomenon is also called circular dichroism. Sex. A wide range of applications make the research of terahertz full polarization detection spectrometers of great value.
  • the terahertz full polarization state detection spectrometer In order to measure multiple polarization states introduced by circular dichroism or optically active devices, the terahertz full polarization state detection spectrometer must be able to measure the amplitude and phase of the terahertz wave quadrature field component.
  • the measurement can use an electro-optical crystal or a conventional photoconductive antenna receiver, but the electro-optical crystal or the photoconductive antenna must be rotated to independently detect each polarization state. This mechanical adjustment not only measures a long time, but also causes a great measurement error.
  • a terahertz full polarization state detection spectrometer comprising:
  • Terahertz wave generator for generating a terahertz wave of a linear polarization state using a laser
  • a polarizer located at a radiation end of the terahertz generator for receiving the terahertz wave radiation and filtering out stray light in the terahertz wave to convert the terahertz wave into a higher polarization state Linearly polarized light; linearly polarized light outputted by the polarizer is used to illuminate a sample to be tested to generate a terahertz modulated wave;
  • a polarization beam splitter located in the transmission path of the terahertz modulated wave, for decomposing the terahertz modulated wave into horizontal terahertz waves and vertical terahertz waves whose polarization states are perpendicular to each other;
  • a horizontal terahertz detector located in the transmission path of the horizontal terahertz wave for detecting the horizontal terahertz wave
  • a vertical terahertz detector is located in the transmission path of the vertical terahertz wave for detecting the vertical terahertz wave.
  • the polarizer comprises two multi-layer silicon wafers of the same structure, two of the multi-layer silicon wafers are inclined in a V-shape, each of the multi-layer silicon wafers and the The angle formed by the Hertz wave is the Brewster angle.
  • the multilayer silicon wafer is a four layer silicon wafer.
  • the terahertz wave generator is a gallium arsenide photoconductive antenna.
  • the polarizing beam splitter is a metal wire grid beam splitter.
  • the method further includes a first off-axis parabolic mirror and a second off-axis parabolic mirror for focusing linearly polarized light generated by the polarizer onto the sample to be tested
  • the second off-axis parabolic mirror is configured to collimate the terahertz modulated wave and transmit the polarized beam splitter to the polarizing beam splitter.
  • a laser source is also included, the laser source being used to generate a laser.
  • the method further includes a beam splitter disposed on the laser beam path, the beam splitter comprising a first beam splitter and a second beam splitter, the first beam splitter for dividing the laser into the first beam And a second light beam, the first light beam is used to pump the terahertz wave generator to generate the terahertz wave, and the second light beam is divided into a third light beam and a fourth light beam by the second beam splitter, Three beams are used to excite the horizontal terahertz detector to detect the horizontal terahertz wave, and a fourth beam is used to excite the vertical terahertz detector to detect the vertical terahertz wave.
  • the method further includes a first delay line, a second delay line, and a third delay line, the first delay line delaying processing the first light beam and transmitting the same to the terahertz wave generator
  • the second delay line delays the third beam and sends the signal to the horizontal terahertz detector
  • the third delay line delays the fourth beam and sends the signal to the vertical
  • the terahertz detector is such that the laser processed by the beam splitter reaches the terahertz wave generator, the horizontal terahertz detector and the vertical terahertz detector at the same time.
  • the terahertz wave a generator, a horizontal terahertz detector and a vertical terahertz detector are respectively connected between a set of lenses and a focusing lens
  • the first lens performs focusing processing on the first beam and sends the terahertz wave generator to the terahertz wave generator
  • the first focusing lens collimates the terahertz wave generated by the terahertz wave generator and sends the terahertz wave to the polarizer
  • the second lens performs focusing processing on the third beam and sends it to the a horizontal terahertz detector
  • the second focusing lens performs focusing processing on the horizontal terahertz wave and sends the horizontal terahertz wave to the horizontal terahertz detector
  • the third lens performs focusing processing on the
  • the above terahertz full polarization detection spectrometer comprises a terahertz wave generator, a polarizer, a polarization beam splitter, a horizontal terahertz detector and a vertical terahertz detector; the terahertz wave generator generates a terahertz wave and passes the polarization
  • the purity of the terahertz wave is optimized, and the terahertz wave modulated by the purity is modulated to obtain a terahertz modulated wave, and the terahertz modulated wave is decomposed into a horizontal terahertz with polarization states perpendicular to each other through a polarization beam splitter.
  • Wave and vertical terahertz wave the two terahertz waves are respectively detected by two corresponding terahertz detectors, and then the characteristic sample is analyzed according to the structure of the detection; the terahertz full polarization state detecting spectrometer can Accurate detection of various terahertz waves of full polarization state is quickly performed, which improves the detection accuracy and detection efficiency of the sample to be tested.
  • FIG. 1 is a structural diagram of a terahertz full polarization state detecting spectrometer in an embodiment
  • FIG. 2 is a schematic diagram of modulation of a terahertz wave by a sample to be tested in an embodiment.
  • Fig. 1 is a structural diagram of a terahertz full polarization state detecting spectrometer in an embodiment.
  • the terahertz full polarization state detecting spectrometer includes a terahertz wave generator 10, a polarizer 11, a polarization beam splitter 12, a horizontal terahertz detector 13, and a vertical terahertz detector 14.
  • the terahertz wave generator 10 is used to generate a terahertz wave of a linear polarization state using a laser.
  • the terahertz wave generator 10 is a gallium arsenide photoconductive antenna, which is a coplanar antenna, generates terahertz radiation under the action of laser pumping, that is, emits a terahertz wave, and the terahertz wave It is linearly polarized light.
  • a polarizer 11 is located at a radiation end of the terahertz generator 10 for filtering stray light in the terahertz wave, converting the terahertz wave into linearly polarized light having a higher polarization state,
  • the linearly polarized light output from the deflector 11 is used to illuminate the sample to be tested 50 to generate a terahertz modulated wave.
  • the terahertz wave generated by the terahertz wave generator 10 is mainly linearly polarized light, and a small amount of stray light having a polarization state different from that of the linearly polarized light exists, and the stray light needs to be filtered to obtain a linear polarized light of higher purity, which is improved.
  • the accuracy of sample detection The polarizer 11 allows the required linearly polarized light to pass while reflecting unwanted stray light so that stray light does not enter the subsequent detection system.
  • the polarizer 11 comprises two multi-layer silicon wafers of the same structure, and the two-layer silicon wafers are relatively inclined in a V shape, and each of the silicon wafers has a high resistivity, a single layer.
  • the silicon wafer has a rectangular shape and can be 100 mm long, 30 mm wide, and 0.5 mm thick.
  • the multilayer silicon wafer can be four layers. An angle between each of the plurality of silicon wafers and the light beam formed by the terahertz waves is a Brewster angle.
  • the reflected light is converted into linearly polarized light, and the direction of propagation of the linearly polarized light is perpendicular to the linearly polarized light transmitted in the horizontal direction, and is reflected by the polarizer 11 without Into the subsequent detection system, the linearly polarized light required, that is, the linearly polarized terahertz wave propagating in the horizontal direction can pass smoothly, and the extinction ratio of the polarizer 11 can reach 10 4 , and the purity of the polarization state can be obtained. Linearly polarized light with good extinction effect.
  • the polarization beam splitter 12 is located in the transmission path of the terahertz modulated wave, and is used to decompose the terahertz modulated wave into horizontal terahertz waves and vertical terahertz waves whose polarization states are perpendicular to each other.
  • FIG. 2 is a schematic diagram of modulation of a terahertz wave by a sample 50 to be tested in an embodiment.
  • the sample to be tested 50 is a metamaterial structure having a surface of a metal structure of a periodic structure, which is optically active.
  • the three-dimensional coordinate system is a three-dimensional coordinate system in which the terahertz wave is modulated before and after the sample 50 is measured, a black arrow indicates a light vector before the terahertz wave is modulated, and a circle indicates a trajectory formed by the light vector after the terahertz wave is modulated. It can be seen that after modulation by the sample 50, the terahertz wave of the linear polarization state is converted into a terahertz wave of a circular polarization state, that is, circularly polarized light.
  • the sample 50 to be tested may be other substances, and the terahertz wave of the linear polarization state may be modulated to have other full polarization states, such as a linear polarization state or an elliptical polarization state.
  • the polarization beam splitter 12 is a wire grid beam splitter composed of equidistantly arranged parallel tungsten wires with a pitch of 5 micrometers. During operation, the polarizing beam splitter 12 is powered, and the incident electromagnetic wave polarized in the direction of the metal grid is represented as a typical metal plate, and most of it will be reflected back; if the polarization direction of the incident electromagnetic wave is perpendicular to The metal wire grid can smoothly pass through the polarization beam splitter 12.
  • the circularly polarized light modulated by the sample to be tested 50 is projected on the metal wire grating beam splitter, and the polarization direction of the circularly polarized light is reflected parallel to the terahertz wave component of the metal wire grid, and the polarization direction is perpendicular to the metal wire grid.
  • the terahertz wave component passes smoothly through the metal wire grid beam splitter, and the circularly polarized light is decomposed into two beams of polarization directions perpendicular to each other through the metal wire grid beam splitter, which are horizontal terahertz waves and vertical terahertz waves, respectively. .
  • a horizontal terahertz detector 13 is located in the transmission path of the horizontal terahertz wave for detecting the horizontal terahertz wave.
  • a vertical terahertz detector 14 is located in the transmission path of the vertical terahertz wave for detecting the vertical terahertz wave.
  • the horizontal terahertz wave and the vertical terahertz wave are linearly polarized light, and two terahertz detectors are respectively set to detect the two linearly polarized lights, and the amplitude and phase of the circularly polarized light orthogonal field component are obtained, and then The circularly polarized light is subjected to feature analysis to acquire characteristics of the object to be measured.
  • the scheme is also applicable to the detection of linearly polarized light and elliptically polarized light, and both linearly polarized light and elliptically polarized light can be decomposed into orthogonal field components for detection.
  • Both terahertz detectors use a dipole detection antenna that receives only terahertz waves with a polarization state parallel to the dipole axis. If the polarization direction of the horizontal terahertz wave obtained after being processed by the polarization beam splitter 12 is parallel to the dipole axis of the horizontal terahertz detector, the horizontal terahertz detector 13 receives only the horizontal terahertz wave, and does not need to use terahertz.
  • the polarizer processes the horizontal terahertz wave with high detection precision and simple structure.
  • the terahertz detector 10 can determine whether the received terahertz wave is a linear polarization state or other polarization states according to different light intensities, and then analyzes the terahertz modulated wave to obtain a polarization state thereof, a magnitude of the orthogonal field component, and The phase is used to detect the terahertz modulated wave of the fully polarized state, and then the characteristics of the sample 50 to be tested are analyzed according to the detected structure.
  • the terahertz full polarization state detection spectrometer further includes a first off-axis parabolic mirror 15 and a second off-axis parabolic mirror 16 for using the polarizer
  • the generated linearly polarized light is focused onto the sample to be tested 50, and the second off-axis parabolic mirror 16 is used to collimate the terahertz modulated wave and transmit it to the polarizing beam splitter 12.
  • the terahertz wave emitted from the polarizer 11 is a high-purity linearly polarized light propagating in a horizontal direction, is subjected to focusing processing by the first off-axis parabolic mirror 15, and is projected onto the sample to be tested 50 to detect the sample 50 to be tested.
  • the terahertz modulated wave modulated by the sample 50 is diverged, and the second off-axis parabolic mirror 16 collimates it, converts it into a horizontally transmitted terahertz modulated wave, and transmits it to the polarizing beam splitter 12.
  • the terahertz full polarization state detection spectrometer further comprises a laser light source 17 as a light source of the terahertz full polarization state detection spectrometer for providing a laser generating terahertz waves, and exciting The horizontal terahertz detector 13 and the vertical terahertz detector 14 operate the laser.
  • the laser light source 17 is a femtosecond laser which is a titanium sapphire laser.
  • the emitted laser light has a center wavelength of 800 nm and generates a laser pulse having a pulse width of 100 fs and a power of 100 mW.
  • the terahertz full polarization state detection spectrometer further comprises a beam splitter disposed on the laser beam path, the beam splitter comprising a first beam splitter 18 and a second beam splitter 19, the first beam splitter 18 For dividing the laser into a first beam and a second beam, the first beam is used to pump the terahertz wave generator 10 to generate the terahertz wave, and the second beam is used by the second beam splitter 19 is divided into a third beam for exciting the horizontal terahertz detector 13 to detect the horizontal terahertz wave and a fourth beam for exciting the vertical terahertz detector 14 The vertical terahertz wave is detected.
  • the laser light generated by the laser light source 17 is divided into three beams, one for pumping the terahertz wave generator 10 to perform terahertz radiation to generate a linearly polarized terahertz wave, and the other beam is divided into two for excitation Two terahertz detectors detect the orthogonal field components of the terahertz modulated wave.
  • the laser light for the terahertz wave generator 10 for terahertz radiation is changed by the first mirror 23 to be transmitted to the terahertz wave generator 10.
  • the laser light for exciting the horizontal terahertz detector 13 is changed to the direction of propagation thereof by the second mirror 24, and then sent to the horizontal terahertz detector 13.
  • the propagation directions of the three laser beams are all horizontal and do not interfere with each other.
  • the terahertz full polarization state detection spectrometer further includes a first delay line 20, a second delay line 21, and a third delay line 22, the first delay line 20 being opposite to the first beam
  • the terahertz wave generator 10 is sent to the terahertz wave generator 10
  • the second delay line 21 delays the third light beam and sends the signal to the horizontal terahertz detector 13, the third delay.
  • the line 22 delays the fourth beam and sends it to the vertical terahertz detector 14 so that the laser processed by the beam splitter reaches the terahertz wave generator 10 and the horizontal terahertz detector 13 It coincides with the time of the vertical terahertz detector 14.
  • the sample 50 to be tested When detecting the sample 50 to be tested, it is necessary to simultaneously detect the orthogonal field components of the terahertz modulated wave in real time to improve the detection accuracy. Since the laser beam is split, the transmission line of each laser beam is inconsistent, and the arrival is too The time of the Hertz wave generator 10, the horizontal terahertz detector 13 and the vertical terahertz detector 14 is different. In order to make the three work at the same time, the real-time detection of the sample to be tested 50 is realized, and the measurement error is reduced in three laser beams.
  • Optical delay lines are respectively disposed on the transmission lines. The delay time of the first delay line 20 can be set longer, the second delay line 21 is second, and the delay time of the third delay line 22 is the shortest.
  • the terahertz full polarization state detection spectrometer further comprises three sets of lenses and focusing lenses, respectively a first lens 30 and a first focusing lens 40, a second lens 31 and a second focusing lens 41, and a third
  • the lens 32 and the third focus lens 42, the terahertz wave generator 10, the horizontal terahertz detector 13 and the vertical terahertz detector 14 are respectively connected between a set of lenses and a focus lens, the first lens 30 pair
  • the first light beam is subjected to a focusing process and then sent to the terahertz wave generator 10, and the first focus lens 40 collimates the terahertz wave generated by the terahertz wave generator 10 and transmits the terahertz wave to the terahertz wave generator 10 a second lens 31 that performs focusing processing on the third light beam and transmits the same to the horizontal terahertz detector 13, and the second focus lens 41 performs focusing processing on the horizontal terahertz wave and transmits Giving the horizontal
  • the polarization beam splitter 12 decomposes the terahertz modulated light to obtain two terahertz waves whose polarization direction and propagation direction are both perpendicular, wherein the vertical terahertz wave is changed to the propagation direction by the third mirror 25 and then sent to the third focus.
  • the lens 42 is subjected to focusing processing to improve the sensitivity of the terahertz detector, thereby improving the detection accuracy.
  • the terahertz full polarization state detecting spectrometer generates a terahertz wave from the terahertz wave generation 10, and optimizes the purity of the terahertz wave by the polarizer 11, and the object 50 is modulated by the purity-optimized terahertz wave.
  • a terahertz modulated wave is obtained, and the terahertz wave is focused and collimated by an off-axis parabolic mirror before and after modulation to improve the detection effect, and then the terahertz modulated wave is decomposed into polarization states by the polarization beam splitter 12
  • the horizontal terahertz wave and the vertical terahertz wave are respectively detected by two corresponding terahertz detectors, and then the characteristic samples of the sample to be tested are analyzed according to the result of the detection, and each laser branch is branched.
  • the optical delay line is added to ensure the real-time detection of the sample; the terahertz full polarization detection spectrometer can quickly detect the terahertz waves of various full polarization states, and improve the detection precision and detection efficiency of the sample to be tested. .

Abstract

一种太赫兹全偏振态检测光谱仪,包括太赫兹波发生器(10)、起偏器(11)、偏振分光片(12)、水平太赫兹探测器(13)和垂直太赫兹探测器(14);太赫兹波发生器(10)产生太赫兹波,并通过起偏器(11)对该太赫兹波进行纯度优化,被测对象将进行纯度优化后的太赫兹波进行调制得到太赫兹调制波,通过偏振分光片(12)将该太赫兹调制波分解为偏振态相互垂直的水平太赫兹波和垂直太赫兹波,用两个对应的太赫兹探测器(13、14)分别对这两个太赫兹波进行检测,进而根据该检测的结构对被测样品(50)进行特征分析;该太赫兹全偏振态检测光谱仪能够快速地对各种全偏振态的太赫兹波进行准确的检测,提高了被测样品(50)的检测精度和检测效率。

Description

太赫兹全偏振态检测光谱仪
【技术领域】
本发明涉太赫兹波检测领域,尤其涉及一种太赫兹全偏振态检测光谱仪。
【背景技术】
太赫兹全偏振态检测可以应用于多领域的研究,如太赫兹光学器件的检测,包括太赫兹棱镜、波片和对偏振态敏感的光电导天线。也可应用于生物领域,如氨基酸和蛋白质等具有手性特征的生物分子的检测,具有手性特征的分子对太赫兹的左旋或右旋圆偏振光的吸收不同,此现象又叫做圆二色性。广泛的应用领域使得太赫兹全偏振态检测光谱仪的研究具有重要的价值。
为了测量由圆二色性或光学活性器件引入的多偏振态,太赫兹全偏振态检测光谱仪必须能够测量太赫兹波正交场分量的振幅和相位。该测量可以使用电光晶体或常规光电导天线接收器,但必须旋转电光晶体或光电导天线对各偏振态进行独立检测,这种机械性调整不仅测量时间长,而且会造成极大的测量误差。
【发明内容】
基于此,有必要提供一种太赫兹全偏振态检测光谱仪,能够快速地对各种全偏振态的太赫兹波进行准确的检测,提高被测样品的检测精度和检测效率。
一种太赫兹全偏振态检测光谱仪,包括:
太赫兹波发生器,用于利用激光产生线性偏振态的太赫兹波;
起偏器,位于所述太赫兹发生器的辐射端,用于接收所述太赫兹波辐射并滤除所述太赫兹波中的杂散光,将所述太赫兹波转化为偏振态纯度更高的线性偏振光;经所述起偏器输出的线性偏振光用于照射被测样品后产生太赫兹调制波;
偏振分光片,位于所述太赫兹调制波的传输路径中,用于将所述太赫兹调制波分解为偏振态相互垂直的水平太赫兹波和垂直太赫兹波;
水平太赫兹探测器,位于所述水平太赫兹波的传输路径中,用于检测所述水平太赫兹波;
垂直太赫兹探测器,位于所述垂直太赫兹波的传输路径中,用于检测所述垂直太赫兹波。
在其中一个实施例中,所述起偏器包括两个结构相同的多层硅片,两个所述多层硅片相对倾斜呈V字型,每个所述多层硅片与所述太赫兹波形成的光束的夹角为布儒斯特角。
在其中一个实施例中,所述多层硅片为四层硅片。
在其中一个实施例中,其特征在于所述太赫兹波发生器为砷化镓光电导天线。
在其中一个实施例中,所述偏振分光片为金属线栅分光片。
在其中一个实施例中,还包括第一离轴抛物面镜和第二离轴抛物面镜,所述第一离轴抛物面镜用于将所述起偏器产生的线性偏振光聚焦到被测样品上,所述第二离轴抛物面镜用于将所述太赫兹调制波进行准直后发送给所述偏振分光片。
在其中一个实施例中,还包括激光光源,所述激光光源用于产生激光。
在其中一个实施例中,还包括置于激光光路上的分光片,所述分光片包括第一分光片和第二分光片,所述第一分光片用于将所述激光分为第一光束和第二光束,所述第一光束用于泵浦所述太赫兹波发生器产生所述太赫兹波,所述第二光束由所述第二分光片分成第三光束和第四光束,第三光束用于激发所述水平太赫兹探测器对所述水平太赫兹波进行检测,第四光束用于激发所述垂直太赫兹探测器对所述垂直太赫兹波进行检测。
在其中一个实施例中,还包括第一延迟线、第二延迟线和第三延迟线,所述第一延迟线对所述第一光束进行延时处理后发送给所述太赫兹波发生器,所述第二延迟线对所述第三光束进行延时处理后发送给所述水平太赫兹探测器,所述第三延迟线对所述第四光束进行延时处理后发送给所述垂直太赫兹探测器,使得经所述分光片处理后的激光到达所述太赫兹波发生器、水平太赫兹探测器和垂直太赫兹探测器的时间一致。
在其中一个实施例中,还包括三组透镜和聚焦透镜,分别为第一透镜和第一聚焦透镜、第二透镜和第二聚焦透镜,第三透镜和第三聚焦透镜,所述太赫兹波发生器、水平太赫兹探测器和垂直太赫兹探测器分别连接在一组透镜和聚焦透镜之间,所述第一透镜对所述第一光束进行聚焦处理后发送给所述太赫兹波发生器,所述第一聚焦透镜将所述太赫兹波发生器产生的太赫兹波进行准直后发送给所述起偏器,所述第二透镜对所述第三光束进行聚焦处理后发送给所述水平太赫兹探测器,所述第二聚焦透镜将所述水平太赫兹波进行聚焦处理后发送给所述水平太赫兹探测器,所述第三透镜对所述第四光束进行聚焦处理后发送给所述垂直太赫兹探测器,所述第三聚焦透镜将所述垂直太赫兹波进行聚焦处理后发送给所述垂直太赫兹探测器。
上述太赫兹全偏振态检测光谱仪,包括太赫兹波发生器、起偏器、偏振分光片、水平太赫兹探测器和垂直太赫兹探测器;太赫兹波发生器产生太赫兹波,并通过起偏器对该太赫兹波进行纯度优化,被测对象将进行纯度优化后的太赫兹波进行调制得到太赫兹调制波,通过偏振分光片将该太赫兹调制波分解为偏振态相互垂直的水平太赫兹波和垂直太赫兹波,用两个对应的太赫兹探测器分别对这两个太赫兹波进行检测,进而根据该检测的结构对被测样品进行特征分析;该太赫兹全偏振态检测光谱仪能够快速地对各种全偏振态的太赫兹波进行准确的检测,提高了被测样品的检测精度和检测效率。
【附图说明】
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1是一实施例中太赫兹全偏振态检测光谱仪的结构图;
图2是一实施例中被测样品对太赫兹波进行调制的示意图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
参见图1,图1是一实施例中太赫兹全偏振态检测光谱仪的结构图。
在本实施例中,该太赫兹全偏振态检测光谱仪包括太赫兹波发生器10、起偏器11、偏振分光片12、水平太赫兹探测器13和垂直太赫兹探测器14。
太赫兹波发生器10用于利用激光产生线性偏振态的太赫兹波。该太赫兹波发生器10为砷化镓光电导天线,该砷化镓光电导天线为共平面天线,在激光的泵浦作用下产生太赫兹辐射,即发出太赫兹波,且该太赫兹波为线性偏振光。
起偏器11位于所述太赫兹发生器10的辐射端,用于滤除所述太赫兹波中的杂散光,将所述太赫兹波转化为偏振态纯度更高的线性偏振光,经起偏器11输出的线性偏振光用于照射被测样品50后产生太赫兹调制波。太赫兹波发生器10产生的太赫兹波主要为线性偏振光,存在少量偏振态不同于该线性偏振光的杂散光,需要将这些杂散光滤除,以得到纯度更高的线性偏振光,提高样品检测的精度。该起偏器11可以让需要的线性偏振光通过,同时将不需要的杂散光反射出去,使得杂散光不会进入到后续的检测系统中。
在其中一个实施例中,该起偏器11包括两个结构相同的多层硅片,两个所述多层硅片相对倾斜呈V字型,每层硅片均为高电阻率,单层硅片呈矩形,大小可以为长100mm、宽30mm,厚度可以为0.5mm,该多层硅片可以为四层。每个所述多层硅片与所述太赫兹波形成的光束的夹角为布儒斯特角。杂散光经该起偏器11反射后,反射光转化为线性偏振光,且该线性偏振光的传播方向与上述沿水平方向传输的线性偏振光垂直,被该起偏器11反射出去,不会进入后续的检测系统,需要的线性偏振光,即沿水平方向传播的线性偏振的太赫兹波则能顺利通过,该起偏器11的消光比可达104,可以获得偏振态纯度更高的线性偏振光,消光效果好。
偏振分光片12位于所述太赫兹调制波的传输路径中,用于将所述太赫兹调制波分解为偏振态相互垂直的水平太赫兹波和垂直太赫兹波。
参见图2,图2是一实施例中被测样品50对太赫兹波进行调制的示意图。该被测样品50为一种超材料结构,其表面独有一层周期结构的金属万字符,该万字符具有光学活性。该三维坐标系为太赫兹波经被测样品50调制前后所在的三维坐标系,黑色箭头表示该太赫兹波被调制之前的光矢量,圆圈表示该太赫兹波被调制之后的光矢量形成的轨迹,可以看到经过该被测样品50调制后,线性偏振态的太赫兹波转化为圆偏振态的太赫兹波,即圆偏振光。
在实际的检测中,被测样品50可以为其他物质,线性偏振态的太赫兹波经调制后可能会出现其他全偏振态,如线性偏振态或者椭圆偏振态。
该偏振分光片12为金属线栅分光片,其由等距排列的平行钨丝组成,间距可以为5微米。在工作过程中,给该偏振分光片12上电,对于沿金属线栅方向偏振的入射电磁波,其表现为一个典型的金属平板,大部分将被反射回去;如果该入射电磁波的偏振方向垂直于金属线栅,该电磁波可以顺利穿过该偏振分光片12。
在经上述被测样品50调制之后的圆偏振光投射在该金属线栅分光片上,该圆偏振光中偏振方向平行于金属线栅的太赫兹波分量被反射出去,偏振方向垂直于金属线栅的太赫兹波分量则顺利通过该金属线栅分光片,该圆偏振光经过该金属线栅分光片后被分解为偏振方向相互垂直的两束光,分别为水平太赫兹波和垂直太赫兹波。
水平太赫兹探测器13位于所述水平太赫兹波的传输路径中,用于检测所述水平太赫兹波。
垂直太赫兹探测器14位于所述垂直太赫兹波的传输路径中,用于检测所述垂直太赫兹波。
水平太赫兹波和垂直太赫兹波均为线性偏振光,分别设置两个太赫兹探测器对这两个线性偏振光进行检测,得到该圆偏振光正交场分量的幅值和相位,进而对该圆偏振光进行特征分析,以获取被测对象的特性。
本方案同样适用于线性偏振光和椭圆偏振光的检测,线性偏振光和椭圆偏振光均可以分解为正交场分量以实现检测。两个太赫兹探测器均采用偶极子探测天线,只接收偏振态与偶极子轴线平行的太赫兹波。如经过偏振分光片12处理后得到的水平太赫兹波的偏振方向与水平太赫兹探测器的偶极子轴线平行,该水平太赫兹探测器13只接收该水平太赫兹波,不需要使用太赫兹起偏器对该水平太赫兹波进行处理,检测精度高,结构简单。
上述太赫兹探测器10可以根据光强的不同判断接收的太赫兹波是线性偏振态,还是其他偏振态,进而对太赫兹调制波进行分析,得到其偏振态,正交场分量的幅值和相位,以实现对全偏振态的太赫兹调制波的检测,进而根据检测的结构分析被测样品50的特征。
在其中一个实施例中,该太赫兹全偏振态检测光谱仪还包括第一离轴抛物面镜15和第二离轴抛物面镜16,所述第一离轴抛物面镜15用于将所述起偏器11产生的线性偏振光聚焦到被测样品50上,所述第二离轴抛物面镜16用于将所述太赫兹调制波进行准直后发送给所述偏振分光片12。起偏器11发出的太赫兹波为水平方向传播的高纯度线性偏振光,通过第一离轴抛物面镜15对其进行聚焦处理后投射在被测样品50上,对被测样品50进行检测,经被测样品50调制后的太赫兹调制波为发散状态,第二离轴抛物面镜16对其进行准直,转化为水平方向传播的太赫兹调制波后发送给偏振分光片12。
在其中一个实施例中,该太赫兹全偏振态检测光谱仪还包括激光光源17,所述激光光源17作为该太赫兹全偏振态检测光谱仪的光源,用于提供产生太赫兹波的激光,以及激发水平太赫兹探测器13和垂直太赫兹探测器14工作的激光。该激光光源17为飞秒激光器,其为钛宝石激光器,发出的激光的中心波长为800nm,产生脉宽为100fs的激光脉冲,功率为100mw。
在其中一个实施例中,该太赫兹全偏振态检测光谱仪还包括置于激光光路上的分光片,所述分光片包括第一分光片18和第二分光片19,所述第一分光片18用于将所述激光分为第一光束和第二光束,所述第一光束用于泵浦太赫兹波发生器10产生所述太赫兹波,所述第二光束由所述第二分光片19分成第三光束和第四光束,第三光束用于激发所述水平太赫兹探测器13对所述水平太赫兹波进行检测,第四光束用于激发所述垂直太赫兹探测器14对所述垂直太赫兹波进行检测。
将激光光源17产生的激光分为三束,一束用于泵浦太赫兹波发生器10进行太赫兹辐射以产生线性偏振的太赫兹波,另外一束被一分为二,分别用于激发两个太赫兹探测器对太赫兹调制波的正交场分量进行检测。
其中,用于泵浦太赫兹波发生器10进行太赫兹辐射的激光经第一反射镜23改变其传播方向后,发送给太赫兹波发生器10。用于激发水平太赫兹探测器13的激光经第二反射镜24改变其传播方向后,发送给水平太赫兹探测器13。使得三束激光的传播方向均为水平方向,彼此互不干扰。
在其中一个实施例中,该太赫兹全偏振态检测光谱仪还包括还包括第一延迟线20、第二延迟线21和第三延迟线22,所述第一延迟线20对所述第一光束进行延时处理后发送给所述太赫兹波发生器10,所述第二延迟线21对所述第三光束进行延时处理后发送给所述水平太赫兹探测器13,所述第三延迟线22对所述第四光束进行延时处理后发送给所述垂直太赫兹探测器14,使得经所述分光片处理后的激光到达所述太赫兹波发生器10、水平太赫兹探测器13和垂直太赫兹探测器14的时间一致。
在对被测样品50进行检测时,需要同时对太赫兹调制波的正交场分量进行实时检测,以提高检测的精度,由于激光被分束后,每束激光的传输线路不一致,其到达太赫兹波发生器10、水平太赫兹探测器13和垂直太赫兹探测器14的时间有差别,为了使得三者同时工作,实现对被测样品50的实时检测,减小测量误差,在三束激光的传输线路上分别设置光学延迟线。可以将第一延迟线20的延时时间设置的长一些,第二延迟线21次之,第三延迟线22的延时时间最短。
在其中一个实施例中,该太赫兹全偏振态检测光谱仪还包括三组透镜和聚焦透镜,分别为第一透镜30和第一聚焦透镜40、第二透镜31和第二聚焦透镜41,第三透镜32和第三聚焦透镜42,所述太赫兹波发生器10、水平太赫兹探测器13和垂直太赫兹探测器14分别连接在一组透镜和聚焦透镜之间,所述第一透镜30对所述第一光束进行聚焦处理后发送给所述太赫兹波发生器10,所述第一聚焦透镜40将所述太赫兹波发生器10产生的太赫兹波进行准直后发送给所述起偏器11,所述第二透镜31对所述第三光束进行聚焦处理后发送给所述水平太赫兹探测器13,所述第二聚焦透镜41将所述水平太赫兹波进行聚焦处理后发送给所述水平太赫兹探测器13,所述第三透镜32对所述第四光束进行聚焦处理后发送给所述垂直太赫兹探测器14,所述第三聚焦透42镜将所述垂直太赫兹波进行聚焦处理后发送给所述垂直太赫兹探测器14。
偏振分光片12对太赫兹调制光进行分解后得到偏振方向和传播方向均垂直的两束太赫兹波,其中,垂直太赫兹波经第三反射镜25改变其传播方向后被送入第三聚焦透镜42,对其进行聚焦处理,提高太赫兹探测器的灵敏度,进而提高检测精度。
上述太赫兹全偏振态检测光谱仪,由太赫兹波发生10产生太赫兹波,并通过起偏器11对该太赫兹波进行纯度优化,被测对象50将进行纯度优化后的太赫兹波进行调制得到太赫兹调制波,并在调制前后通过离轴抛物面镜对太赫兹波进行聚焦和准直处理,提高检测的效果,然后通过偏振分光片12将该太赫兹调制波分解为偏振态相互垂直的水平太赫兹波和垂直太赫兹波,用两个对应的太赫兹探测器分别对这两个太赫兹波进行检测,进而根据该检测的结果对被测样品进行特征分析,并在每束激光分支上加入光学延迟线,保障样品检测的实时性;该太赫兹全偏振态检测光谱仪能够快速地对各种全偏振态的太赫兹波进行准确的检测,提高了被测样品的检测精度和检测效率。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种太赫兹全偏振态检测光谱仪,其特征在于,包括:
    太赫兹波发生器,用于利用激光产生线性偏振态的太赫兹波;
    起偏器,位于所述太赫兹发生器的辐射端,用于接收所述太赫兹波辐射并滤除所述太赫兹波中的杂散光,将所述太赫兹波转化为偏振态纯度更高的线性偏振光;经所述起偏器输出的线性偏振光用于照射被测样品后产生太赫兹调制波;
    偏振分光片,位于所述太赫兹调制波的传输路径中,用于将所述太赫兹调制波分解为偏振态相互垂直的水平太赫兹波和垂直太赫兹波;
    水平太赫兹探测器,位于所述水平太赫兹波的传输路径中,用于检测所述水平太赫兹波;
    垂直太赫兹探测器,位于所述垂直太赫兹波的传输路径中,用于检测所述垂直太赫兹波。
  2. 根据权利要求1所述的太赫兹全偏振态检测光谱仪,其特征在于,所述起偏器包括两个结构相同的多层硅片,两个所述多层硅片相对倾斜呈V字型,每个所述多层硅片与所述太赫兹波形成的光束的夹角为布儒斯特角。
  3. 根据权利要求2所述的太赫兹全偏振态检测光谱仪,其特征在于,所述多层硅片为四层硅片。
  4. 根据权利要求1所述的太赫兹全偏振态检测光谱仪,其特征在于所述太赫兹波发生器为砷化镓光电导天线。
  5. 根据权利要求1所述的太赫兹全偏振态检测光谱仪,其特征在于,所述偏振分光片为金属线栅分光片。
  6. 根据权利要求1所述的太赫兹全偏振态检测光谱仪,其特征在于,还包括第一离轴抛物面镜和第二离轴抛物面镜,所述第一离轴抛物面镜用于将所述起偏器产生的线性偏振光聚焦到被测样品上,所述第二离轴抛物面镜用于将所述太赫兹调制波进行准直后发送给所述偏振分光片。
  7. 根据权利要求1所述的太赫兹全偏振态检测光谱仪,其特征在于,还包括激光光源,所述激光光源用于产生激光。
  8. 根据权利要求7所述的太赫兹全偏振态检测光谱仪,其特征在于,还包括置于激光光路上的分光片,所述分光片包括第一分光片和第二分光片,所述第一分光片用于将所述激光分为第一光束和第二光束,所述第一光束用于泵浦所述太赫兹波发生器产生所述太赫兹波,所述第二光束由所述第二分光片分成第三光束和第四光束,第三光束用于激发所述水平太赫兹探测器对所述水平太赫兹波进行检测,第四光束用于激发所述垂直太赫兹探测器对所述垂直太赫兹波进行检测。
  9. 根据权利要求8所述的太赫兹全偏振态检测光谱仪,其特征在于,还包括第一延迟线、第二延迟线和第三延迟线,所述第一延迟线对所述第一光束进行延时处理后发送给所述太赫兹波发生器,所述第二延迟线对所述第三光束进行延时处理后发送给所述水平太赫兹探测器,所述第三延迟线对所述第四光束进行延时处理后发送给所述垂直太赫兹探测器,使得经所述分光片处理后的激光到达所述太赫兹波发生器、水平太赫兹探测器和垂直太赫兹探测器的时间一致。
  10. 根据权利要求9所述的太赫兹全偏振态检测光谱仪,其特征在于,还包括三组透镜和聚焦透镜,分别为第一透镜和第一聚焦透镜、第二透镜和第二聚焦透镜,第三透镜和第三聚焦透镜,所述太赫兹波发生器、水平太赫兹探测器和垂直太赫兹探测器分别连接在一组透镜和聚焦透镜之间,所述第一透镜对所述第一光束进行聚焦处理后发送给所述太赫兹波发生器,所述第一聚焦透镜将所述太赫兹波发生器产生的太赫兹波进行准直后发送给所述起偏器,所述第二透镜对所述第三光束进行聚焦处理后发送给所述水平太赫兹探测器,所述第二聚焦透镜将所述水平太赫兹波进行聚焦处理后发送给所述水平太赫兹探测器,所述第三透镜对所述第四光束进行聚焦处理后发送给所述垂直太赫兹探测器,所述第三聚焦透镜将所述垂直太赫兹波进行聚焦处理后发送给所述垂直太赫兹探测器。
PCT/CN2016/110018 2016-09-27 2016-12-15 太赫兹全偏振态检测光谱仪 WO2018058798A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/749,979 US11199495B2 (en) 2016-09-27 2016-12-15 Terahertz full polarization state detection spectrometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610856759.9 2016-09-27
CN201610856759.9A CN106248616B (zh) 2016-09-27 2016-09-27 太赫兹全偏振态检测光谱仪

Publications (1)

Publication Number Publication Date
WO2018058798A1 true WO2018058798A1 (zh) 2018-04-05

Family

ID=57611969

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2016/110018 WO2018058798A1 (zh) 2016-09-27 2016-12-15 太赫兹全偏振态检测光谱仪
PCT/CN2017/101494 WO2018059233A1 (zh) 2016-09-27 2017-09-13 太赫兹全偏振态检测光谱仪

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101494 WO2018059233A1 (zh) 2016-09-27 2017-09-13 太赫兹全偏振态检测光谱仪

Country Status (4)

Country Link
US (2) US11199495B2 (zh)
EP (1) EP3521809B1 (zh)
CN (1) CN106248616B (zh)
WO (2) WO2018058798A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9161696B2 (en) 2006-09-22 2015-10-20 Masimo Corporation Modular patient monitor
CN106248616B (zh) 2016-09-27 2017-10-24 深圳市太赫兹科技创新研究院有限公司 太赫兹全偏振态检测光谱仪
US11054662B2 (en) 2016-12-09 2021-07-06 Brown University Polarizing beam splitter for THz radiation
CN108344715A (zh) * 2018-02-06 2018-07-31 深圳市无牙太赫兹科技有限公司 基于atr模式的物质成分鉴别方法、装置和计算机设备
CN108680500A (zh) * 2018-03-30 2018-10-19 莆田学院 一种小型化的太赫兹时域光谱仪装置及分析方法
CN108801915B (zh) * 2018-06-13 2023-05-30 深圳大学 泵浦探测系统
CN112285029B (zh) * 2020-10-26 2022-11-15 南开大学 面向液态手性样品的太赫兹微结构偏振传感系统及其检测方法
CN113514400B (zh) * 2021-04-23 2022-10-11 长春理工大学 一种烟雾粒子穆勒矩阵的偏振测量方法
CN114397725A (zh) * 2022-01-13 2022-04-26 天津大学 一种将非偏振波直接转换成圆偏振波的太赫兹超构透镜
CN115128823B (zh) * 2022-06-17 2024-03-15 上海理工大学 一种基于正交平行平板的太赫兹偏振态转换方法
CN115980781B (zh) * 2023-03-21 2023-05-30 北京理工大学 超宽带太赫兹调频连续波雷达成像系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101726362A (zh) * 2009-11-23 2010-06-09 首都师范大学 太赫兹偏振分析器及太赫兹偏振测量方法
CN201662531U (zh) * 2010-01-14 2010-12-01 首都师范大学 小型太赫兹时域光谱仪
JP2012149930A (ja) * 2011-01-18 2012-08-09 Olympus Corp 分析装置および分析方法
CN202631110U (zh) * 2012-05-31 2012-12-26 上海理工大学 太赫兹时域双光谱检测系统
CN103234909A (zh) * 2013-04-26 2013-08-07 北京理工大学 一种快速脉冲激光偏振度测量装置
CN105784634A (zh) * 2016-03-31 2016-07-20 电子科技大学 垂直入射同时测透射和反射的太赫兹时域光谱仪
CN206095932U (zh) * 2016-09-27 2017-04-12 深圳市太赫兹科技创新研究院 太赫兹全偏振态检测光谱仪

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH448262A (fr) * 1965-04-10 1967-12-15 Merlin Gerin Dispositif de mesure de courant électro-optique
US3439968A (en) * 1965-06-25 1969-04-22 North American Rockwell Infrared radiation brewster's angle polarizer
US3822098A (en) * 1973-05-02 1974-07-02 Mc Donnell Douglas Corp Multispectral sensor means measuring depolarized radiation
US5181214A (en) * 1991-11-18 1993-01-19 Harmonic Lightwaves, Inc. Temperature stable solid-state laser package
US5499256A (en) * 1995-02-14 1996-03-12 Deacon Research Polarized frequency-selective optical source
US6414473B1 (en) * 1996-05-31 2002-07-02 Rensselaer Polytechnic Institute Electro-optic/magneto-optic measurement of electromagnetic radiation using chirped optical pulse
US5952818A (en) * 1996-05-31 1999-09-14 Rensselaer Polytechnic Institute Electro-optical sensing apparatus and method for characterizing free-space electromagnetic radiation
WO1997045747A1 (en) * 1996-05-31 1997-12-04 Rensselaer Polytechnic Institute Electro-optical and magneto-optical sensing apparatus and method for characterizing free-space electromagnetic radiation
JP3146998B2 (ja) * 1996-09-12 2001-03-19 ウシオ電機株式会社 液晶表示素子の配向膜光配向用偏光光照射装置
US5880877A (en) * 1997-01-28 1999-03-09 Imra America, Inc. Apparatus and method for the generation of high-power femtosecond pulses from a fiber amplifier
TW536644B (en) * 1997-10-29 2003-06-11 Ushio Electric Inc Polarized light radiation device for alignment film of liquid crystal display element
AU5566600A (en) * 1999-06-21 2001-01-09 Hamamatsu Photonics K.K. Terahertz wave spectrometer
US7152007B2 (en) * 2000-02-28 2006-12-19 Tera View Limited Imaging apparatus and method
JP3603758B2 (ja) * 2000-07-12 2004-12-22 ウシオ電機株式会社 液晶配向膜の光配向用偏光光照射装置の偏光素子
US6556306B2 (en) * 2001-01-04 2003-04-29 Rensselaer Polytechnic Institute Differential time domain spectroscopy method for measuring thin film dielectric properties
US6816534B2 (en) * 2001-05-03 2004-11-09 General Atomics Tunable single frequency filter for lasers
JP3550381B2 (ja) * 2001-06-27 2004-08-04 松下電器産業株式会社 偏光解析装置及び偏光解析方法
JPWO2003028173A1 (ja) * 2001-09-21 2005-01-13 株式会社ニコン テラヘルツ光装置
EP1694079B1 (en) * 2001-10-01 2008-07-23 Sony Corporation Polarization selecting prism for a projection device
JP3652296B2 (ja) * 2001-10-26 2005-05-25 キヤノン株式会社 光学装置
US6977379B2 (en) * 2002-05-10 2005-12-20 Rensselaer Polytechnic Institute T-ray Microscope
US7129491B2 (en) * 2002-11-13 2006-10-31 Rensselaer Polytechnic Institute Diffraction mode terahertz tomography
EP1602964A4 (en) * 2003-03-07 2008-08-13 Asahi Glass Co Ltd OPTICAL ATTENUATOR AND OPTICAL HEAD DEVICE
GB2399626B (en) * 2003-03-21 2006-04-05 Teraview Ltd Spectroscopy apparatus and associated technique
US20080014580A1 (en) * 2003-04-17 2008-01-17 Alfano Robert R Detection of biological molecules using THz absorption spectroscopy
JP3950818B2 (ja) * 2003-05-29 2007-08-01 アイシン精機株式会社 反射型テラヘルツ分光測定装置及び測定方法
JP4280654B2 (ja) * 2004-02-17 2009-06-17 アイシン精機株式会社 マルチチャンネルテラヘルツ波スペクトル測定法及び測定装置
CN100337143C (zh) * 2004-03-03 2007-09-12 株式会社日立制作所 光学单元以及使用该光学单元的投影型图像显示装置
US7894126B2 (en) * 2006-04-21 2011-02-22 Eth Zurich Broadband Terahertz radiation generation and detection system and method
US20080176332A1 (en) * 2006-09-29 2008-07-24 The Regents Of The University Of California Systems and methods for identifying and disrupting cellular organelles
US7781737B2 (en) * 2006-12-20 2010-08-24 Schlumberger Technology Corporation Apparatus and methods for oil-water-gas analysis using terahertz radiation
US7808636B2 (en) * 2007-01-11 2010-10-05 Rensselaer Polytechnic Institute Systems, methods, and devices for handling terahertz radiation
JP4871176B2 (ja) * 2007-03-13 2012-02-08 浜松ホトニクス株式会社 全反射テラヘルツ波測定装置
US8335037B2 (en) * 2007-10-24 2012-12-18 The University Of Tokyo Millimeter wave band nonreciprocal device
EP2273254A4 (en) * 2008-04-30 2014-02-26 Hamamatsu Photonics Kk TERRAHERTZIAN WAVE MEASURING DEVICE FOR TOTAL REFLECTION
KR101069607B1 (ko) * 2008-10-31 2011-10-05 서울대학교산학협력단 전자기파의 전기장 집속을 위한 나노갭 디바이스 및 이를 이용하여 나노입자를 검출하기 위한 시스템
JP5438327B2 (ja) * 2009-01-23 2014-03-12 キヤノン株式会社 テラヘルツ波を用いる測定装置
US8488119B2 (en) * 2009-02-27 2013-07-16 J.A. Woollam Co., Inc. Terahertz-infrared ellipsometer system, and method of use
US8736838B2 (en) * 2009-02-27 2014-05-27 J.A. Woollam Co., Inc. Terahertz ellipsometer system, and method of use
US8934096B2 (en) * 2009-02-27 2015-01-13 University Of Nebraska Board Of Regents Terahertz-infrared ellipsometer system, and method of use
JPWO2011115293A1 (ja) * 2010-03-19 2013-07-04 古河電気工業株式会社 偏波無依存波長変換器および偏波無依存波長変換方法
US8564777B1 (en) * 2010-08-16 2013-10-22 J.A. Woollam Co., Inc. System and method for compensating detector non-idealities
DE102011100252A1 (de) * 2011-05-03 2012-11-08 Polytec Gmbh Verfahren und Vorrichtung zur optischen, berührungslosen Schwingungsmessung eines schwingenden Objekts
JP2013007740A (ja) * 2011-05-23 2013-01-10 Canon Inc 波面測定装置及び波面測定方法、物体測定装置
DE102011104708A1 (de) * 2011-06-06 2012-12-06 Automation Dr. Nix Gmbh & Co. Kg Verfahren und Vorrichtung zur Bestimmung von Material-Eigenschaften einer Substrat-Probe im Tera-Hertz-Frequenzspektrum
CN102590125A (zh) * 2011-11-30 2012-07-18 天津大学 基于太赫兹波atr成像生物组织水分测量装置及方法
WO2013127370A1 (zh) * 2012-03-02 2013-09-06 北京航空航天大学 一种光异步采样信号测量的方法和系统
JP5773939B2 (ja) * 2012-04-27 2015-09-02 株式会社日立ハイテクノロジーズ 欠陥検査装置および欠陥検査方法
JP5957294B2 (ja) * 2012-05-29 2016-07-27 浜松ホトニクス株式会社 プリズム部材、テラヘルツ波分光計測装置、及びテラヘルツ波分光計測方法
JP2014029478A (ja) * 2012-07-03 2014-02-13 Canon Inc テラヘルツ波発生素子、テラヘルツ波検出素子、及びテラヘルツ時間領域分光装置
WO2014012110A2 (en) * 2012-07-13 2014-01-16 University Of Massachusetts Multimodal imaging for the detection of tissue structure and composition
JP6220128B2 (ja) * 2013-01-08 2017-10-25 アークレイ株式会社 テラヘルツ波発生装置及びテラヘルツ波測定方法
CN103091255B (zh) * 2013-01-15 2016-03-30 首都师范大学 太赫兹时空分辨成像系统、成像方法及其应用
US9322712B2 (en) * 2013-03-15 2016-04-26 The Johns Hopkins University Terahertz time-domain spectroscopic ellipsometry system
CN103308473A (zh) * 2013-05-11 2013-09-18 浙江理工大学 利用太赫兹时域光谱技术鉴别竹麻纤维的方法
CN103323420B (zh) * 2013-05-27 2016-12-07 杭州电子科技大学 一种用于胃癌检测太赫兹系统样品采样装置及其使用方法
JP2015083964A (ja) * 2013-09-17 2015-04-30 キヤノン株式会社 テラヘルツ波を用いて検体の情報を取得する情報取得装置および情報取得方法
US9377362B2 (en) * 2013-12-04 2016-06-28 Microtech Instruments, Inc. Systems and methods for high-contrast, near-real-time acquisition of terahertz images
JP2015135414A (ja) * 2014-01-17 2015-07-27 アイシン精機株式会社 テラヘルツ帯波長板、及びテラヘルツ波測定装置
JP2015222414A (ja) * 2014-04-30 2015-12-10 キヤノン株式会社 テラヘルツ波発生装置、及びこれを用いた測定装置
CN104035204A (zh) * 2014-06-24 2014-09-10 中国科学院光电技术研究所 一种偏振纯化装置
CN203981375U (zh) 2014-06-25 2014-12-03 首都师范大学 太赫兹波导测试系统
US10006859B2 (en) * 2014-07-24 2018-06-26 Nxgen Partners Ip, Llc System and method for multi-parameter spectroscopy
KR102261858B1 (ko) * 2014-10-15 2021-06-07 삼성전자주식회사 2차원 분광 시스템 및 분석 방법
US9557263B2 (en) * 2014-10-22 2017-01-31 The Boeing Company Terahertz material evaluation and characterization via material difference frequency generation
CN104390935A (zh) 2014-12-10 2015-03-04 上海理工大学 太赫兹波段测试非线性极化系数和吸收系数的装置及方法
WO2016115573A1 (en) * 2015-01-16 2016-07-21 The Research Foundation For The State University Of New York Apparatus and method for analyzing a sample
CN106248616B (zh) 2016-09-27 2017-10-24 深圳市太赫兹科技创新研究院有限公司 太赫兹全偏振态检测光谱仪

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101726362A (zh) * 2009-11-23 2010-06-09 首都师范大学 太赫兹偏振分析器及太赫兹偏振测量方法
CN201662531U (zh) * 2010-01-14 2010-12-01 首都师范大学 小型太赫兹时域光谱仪
JP2012149930A (ja) * 2011-01-18 2012-08-09 Olympus Corp 分析装置および分析方法
CN202631110U (zh) * 2012-05-31 2012-12-26 上海理工大学 太赫兹时域双光谱检测系统
CN103234909A (zh) * 2013-04-26 2013-08-07 北京理工大学 一种快速脉冲激光偏振度测量装置
CN105784634A (zh) * 2016-03-31 2016-07-20 电子科技大学 垂直入射同时测透射和反射的太赫兹时域光谱仪
CN206095932U (zh) * 2016-09-27 2017-04-12 深圳市太赫兹科技创新研究院 太赫兹全偏振态检测光谱仪

Also Published As

Publication number Publication date
EP3521809B1 (en) 2022-07-06
US10983048B2 (en) 2021-04-20
CN106248616A (zh) 2016-12-21
EP3521809A1 (en) 2019-08-07
US20200284722A1 (en) 2020-09-10
US11199495B2 (en) 2021-12-14
US20190003964A1 (en) 2019-01-03
EP3521809A4 (en) 2020-06-03
CN106248616B (zh) 2017-10-24
WO2018059233A1 (zh) 2018-04-05

Similar Documents

Publication Publication Date Title
WO2018058798A1 (zh) 太赫兹全偏振态检测光谱仪
JP6158795B2 (ja) レーザパルスマルチプライヤを用いた半導体検査および計測システム
CN1917806A (zh) 高效低相干干涉测量
TW201416810A (zh) 離軸對準系統及對準方法
US11940377B2 (en) Device and method for detecting a surface defect using interference between polarized lights
JP2009300108A (ja) テラヘルツ分光装置
JPH08122706A (ja) 偏光解消装置及びこれを用いた分光装置
WO2013185264A1 (zh) 相位延迟量分布和快轴方位角分布实时测量装置和方法
CN113777049B (zh) 一种角分辨快照椭偏仪及其测量系统与方法
CN108801465B (zh) 一种激光偏振态测量装置及其测量方法
CN108931495A (zh) 太赫兹时域光谱同步测量系统与方法
CN109883553B (zh) 一种偏振测量装置及偏振测量方法
WO2023115949A1 (zh) 一种基于同步参考光校正的椭偏测量系统
CN111693257B (zh) 阵列准直激光参量检测装置
US2849912A (en) Optical arrangement for determining the ratio of two light fluxes
CN115236026A (zh) 一种太赫兹二维光谱系统及非线性分析方法
WO2022126676A1 (zh) 半导体检测装置及检测方法
CN109781683B (zh) 同步进行时间分辨吸收、荧光以及太赫兹探测的光学系统
WO2013040776A1 (zh) 退偏器
CN102519712A (zh) 八分之一波片相位延迟量测量装置和测量方法
CN111780873A (zh) 一种棱镜型干涉测量装置
JP2015137980A (ja) 観察装置
CN217878006U (zh) 一种激光功率探测装置
SU1695145A1 (ru) Эллипсометр
CN109239931B (zh) 一种基于自由空间光学桥接器的自动化制作装置与方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917543

Country of ref document: EP

Kind code of ref document: A1