WO2023115949A1 - 一种基于同步参考光校正的椭偏测量系统 - Google Patents

一种基于同步参考光校正的椭偏测量系统 Download PDF

Info

Publication number
WO2023115949A1
WO2023115949A1 PCT/CN2022/108732 CN2022108732W WO2023115949A1 WO 2023115949 A1 WO2023115949 A1 WO 2023115949A1 CN 2022108732 W CN2022108732 W CN 2022108732W WO 2023115949 A1 WO2023115949 A1 WO 2023115949A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
detector
polarizer
focusing lens
wave plate
Prior art date
Application number
PCT/CN2022/108732
Other languages
English (en)
French (fr)
Inventor
牛晓海
黄建华
尚振华
姚岭
邱青菊
吴博文
吕彤欣
Original Assignee
睿励科学仪器(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 睿励科学仪器(上海)有限公司 filed Critical 睿励科学仪器(上海)有限公司
Publication of WO2023115949A1 publication Critical patent/WO2023115949A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0641Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of polarization
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere

Definitions

  • the present application relates to the field of optical measurement, in particular to an ellipsometry system based on synchronous reference light correction.
  • the semiconductor VLSI manufacturing process involves different types of thin film deposition, etching, etc., all of which require high-precision, high-stability measurement of thickness, optical constants, critical dimensions and other information.
  • non-contact and high-efficiency polarization optical means are often used. Accurate and stable measurement system can guarantee the yield rate of mass production.
  • an ellipsometer capable of resolving polarized light is often used for dimension measurement and calibration of wafer microstructures.
  • the signal collected by the detector or spectrometer will be affected by the stability of the light source, so the stability of the light source will directly affect the stability of the whole system.
  • the purpose of this application is to provide an ellipsometry system based on synchronous reference light correction, which can correct the stability of the light source in real time by using precisely controlled synchronous reference light, thus possessing ultra-high stability.
  • an ellipsometry system based on synchronous reference light correction includes: a light source, a polarizer, a beam splitter, a first focusing lens system, and a second focusing lens system , a polarizer, a first detector, a second detector, a processor and a controller; wherein, the light emitted by the light source is converted into linearly polarized light by the polarizer, and the linearly polarized light is divided into measurement light by a beam splitter and reference light, the reference light is irradiated to the second detector; the measurement light is irradiated on the sample to be detected after passing through the first focusing lens system, and the light emitted by the sample to be detected is focused by the second After the lens system enters the polarizer, the light emitted by the polarizer is irradiated to the first detector; the processor is used to synchronously measure the light of the first detector and the second
  • the ellipsometry system further includes a first retardation wave plate; the measurement light is irradiated on the sample to be tested after passing through the first retardation wave plate and the first focusing lens system in sequence, or, the to-be-tested The light emitted by the detection sample enters the polarizer after passing through the second focusing lens system and the first delay wave plate in sequence.
  • the ellipsometry system further includes a second retardation wave plate and a third retardation wave plate, the measuring light sequentially passes through the second retardation wave plate and the first focusing lens system and then irradiates on the sample to be tested , the light emitted by the sample to be tested sequentially passes through the second focusing lens system, the third delay wave plate, and then enters the polarizer.
  • the processor includes a first analog-digital converter for the first detector and a second analog-digital converter for the second detector, the first analog-digital converter and the first analog-digital converter
  • the two analog-to-digital converters are independent from each other and share a clock source.
  • the light-splitting plane of the beam splitter is parallel to the polarization direction of the outgoing light of the polarizer.
  • the light-splitting plane of the beam splitter is perpendicular to the polarization direction of the outgoing light of the polarizer.
  • the present application has the following advantages:
  • a beam splitter is arranged behind the polarizer, and the beam splitter can divide the linearly polarized light emitted by the polarizer into measurements in different directions
  • Light and reference light the reference light is irradiated to the second detector, the measurement light is reflected by the sample to be detected along the direction of the incident light beam, and finally captured by the first detector, and the processor can detect the first detector
  • the light intensity measured simultaneously by the detector and the second detector is collected and processed. Since the reference light and the measurement light come from linearly polarized light in the same direction, the reference light can be used to effectively correct the light source intensity fluctuation in real time and improve the system measurement. Stability, thus realizing an ellipsometry system with ultra-high stability.
  • Fig. 1 shows the structural diagram of the ellipsometry system of an example of the present application
  • Fig. 2 shows a schematic diagram of the polarization state of incident light of an example of the present application
  • Fig. 3 shows a synchronous schematic diagram of measuring light intensity and reference light intensity when the motor of an example of the present application is not moving;
  • FIG. 4 shows a schematic diagram of a result of reference light correction in FIG. 3 .
  • first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of example embodiments.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • This application proposes an ellipsometric measurement system based on synchronous reference light correction, wherein the ellipsometric measurement system includes: a light source, a polarizer, a beam splitter, a first focusing lens system, a second focusing lens system, and a polarizer , a first detector, a second detector, a processor, and a controller; wherein, the light emitted by the light source is converted into linearly polarized light by the polarizer, and the linearly polarized light is divided into measurement light and reference light by a beam splitter, The reference light is irradiated to the second detector; the measurement light is irradiated on the sample to be tested after passing through the first focusing lens system, and the light emitted by the sample to be tested enters the sample after passing through the second focusing lens system
  • the polarizer, the light emitted by the polarizer is irradiated to the first detector; the processor is used for collecting and synchronously measuring the light intensity of the first
  • the light source is used to emit light.
  • the light source may be a broadband multi-wavelength light source, from UV (Ultraviolet Rays, ultraviolet light) light to IR (Infrared Radiation, infrared ray) band.
  • the light source may be a single-wavelength light source, that is, constitutes a single-wavelength ellipsometry (Single Wavelength Ellipsometry, SWE) system.
  • the polarizer and the polarizer are used to limit the polarization direction of light to a certain linear polarization direction; the polarizer is used to obtain polarized light from light, and the polarizer (also Called “analyzer") is used to identify the polarization state of light.
  • the beam splitter is used to split the light beam into two beams of light in different directions, wherein one beam of light (that is, the measurement light) is used for measurement with the sample to be tested, and the other beam of light (that is, the reference light) is used for the measurement of the light source. correction.
  • the first focusing lens system and the second focusing lens system are used to reduce the spot of the beam incident therein, and make the output parallel light.
  • the function of the first focusing lens system is to make the incident beam spot
  • the beam spot of the sample is narrowed, and the outgoing parallel light is made.
  • the first detector is used for receiving the light for measuring the sample to be detected
  • the second detector is used for receiving the reference light emitted by the beam splitter.
  • the processor is used for data collection and processing of the light intensity synchronously measured by the first detector and the second detector (the data collected by the first detector and the second detector must be synchronized clock), the controller is used to control the rotation of the motor during the measurement process to control the rotation of the optical device (such as a polarizer or a polarizer) on which the motor is installed, and the controller and the processor need to synchronously cooperate to process the motor And detectors to ensure the accuracy of measurement data.
  • the sample to be tested is a wafer.
  • the ellipsometry system of the present application may comprise a variety of system configurations.
  • the key components in the ellipsometry system include a light source, a polarizer, a beam splitter, a first focusing lens system, a second focusing lens system, a polarizer, a first detector, a second detector.
  • the polarizer and the polarizer are equipped with a rotating motor, and the controller rotates the polarizer or the polarizer through the rotating motor during the measurement process, that is, the P R SA or PSA R ellipsometric configuration is adopted, wherein the light source can be It is a single wavelength light source or a broadband light source.
  • the key components in the ellipsometry system include a light source, a polarizer, a beam splitter, a first focusing lens system, a second focusing lens system, a polarizer, a first detector, In addition to the second detector, it also includes a first delay wave plate; the measurement light is irradiated on the sample to be detected after passing through the first delay wave plate and the first focusing lens system in sequence, or the sample to be detected The emitted light enters the polarizer after passing through the second focusing lens system and the first delay wave plate in sequence.
  • the first retardation wave plate may be arranged between the beam splitter and the first focusing lens system, or may be arranged between the second focusing lens system and the polarizer.
  • the first delay wave plate is equipped with a rotating motor (it should be noted that the polarizer and the polarizer are also equipped with a rotating motor), and the controller rotates the first delay wave plate through the rotating motor during the measurement process, that is, The PC R SA or PSC RA ellipsoid configuration is adopted, wherein the light source can be a single-wavelength light source or a broadband light source.
  • the first retardation wave plate is a quarter wave plate, and its function is to delay polarized light in a certain transmission direction, so as to change the polarization state of outgoing polarized light and incident polarized light.
  • the key components in the partial measurement system also include a second retardation waveplate and a third retardation waveplate, the measurement light is irradiated on the sample to be tested after passing through the second retardation waveplate and the first focusing lens system in sequence, so The light emitted by the sample to be detected passes through the second focusing lens system and the third retardation wave plate in sequence, and then enters the polarizer.
  • a second retardation wave plate is arranged between the beam splitter and the first focusing lens system, and a third retardation wave plate is arranged between the second focusing system and the polarizer.
  • the second delay wave plate and the third delay wave plate are equipped with a rotating motor (it should be noted that the polarizer and the polarizer are also equipped with a rotating motor), and the controller makes the second retardation by rotating the motor during the measurement process.
  • the wave plate and the third retardation wave plate rotate, that is to say, adopt the PC R SC RA ellipsometry configuration, also known as the Mueller matrix ellipsometer, wherein the light source is generally a broadband light source.
  • the second delay wave plate, the third delay wave plate and the first delay wave plate mentioned above may be the same quarter wave plate.
  • the light-splitting surface of the beam splitter is parallel to the polarization direction of the outgoing light of the polarizer.
  • the light-splitting plane of the beam splitter is perpendicular to the polarization direction of the outgoing light of the polarizer.
  • the principle of eliminating the polarization interference of the beam splitter will be described in detail below in conjunction with the accompanying drawings, and will not be repeated here. It should be noted that if the light-splitting surface of the beam splitter is not parallel or perpendicular to the polarization direction of the light emitted by the polarizer, the polarization interference of the beam splitter can also be eliminated by correction.
  • the processor includes a first analog-to-digital converter for the first detector and a second analog-to-digital converter for the second detector, the first analog-to-digital converter and the The second analog-to-digital converters are independent of each other and share a clock source; as an example, there are two independent Sigma-Delta ADCs (Analog to Digital Converter, analog-to-digital converters) in the analog-to-digital conversion chip configured in the processor ), and the two independent ADCs share a clock source, so that the first detector and the second detector can collect data synchronously, that is, the synchronous collection of measurement light and reference light is realized.
  • Sigma-Delta ADCs Analog to Digital Converter, analog-to-digital converters
  • the processor includes a first analog-to-digital converter for the first detector and a second analog-to-digital converter for the second detector, the first analog-to-digital converter and the The second analog-to-digital converter corresponds to different clock sources T1 and T2 respectively, and the processor further includes a clock control module, which is used to control T1 and T2 so as to synchronize the two clock sources. It should be noted that any scheme for synchronizing the data collected by the first detector and the second detector should be included in the protection scope of the present application.
  • the linearly polarized light emitted by the polarizer is divided into measurement light and reference light by the beam splitter, that is, the beam splitter is arranged behind the polarizer, which makes the two light intensities of the measurement light and the reference light synchronized (that is, With optical splitter light intensity synchronization).
  • the light intensity fluctuation of the light source can be described as:
  • I 0 is the absolutely stable light intensity of the light source under ideal conditions
  • I var (t) is the rate of change of the light intensity of the light source under real conditions, which is the amount that changes with time.
  • the light intensity measured by the first detector is:
  • I sample (t) is the actually measured light intensity curve, which is the theoretical value subject to light intensity fluctuations in the direction of the beam splitter exiting the sample. affect the result.
  • the light intensity measured by the second detector is I ref (t), which is a quantity that changes with time, and I ref (t) is expressed as follows:
  • k is the light splitting ratio of the beam splitter to the direction of the second detector (ie, the direction of the reference light), and it is easy to know that the beam splitting ratio of the other outgoing direction of the beam splitter (ie, the direction of the measuring light) is 1-k.
  • the light intensity fluctuation in the direction of the reference light emitted by the beam splitter is In general, the light fluctuations of the light source in different polarization directions are different. Therefore, the beam splitter should be placed after the polarizer, so as to ensure that the two beams of light emitted by the beam splitter are derived from the component of the light source in a certain polarization direction.
  • I var (t) specifically refers to the light intensity fluctuation of the light source in a certain polarization direction.
  • the theoretical light intensity measured by the sample is proportional to the ratio of the actually measured light intensity of the sample to the reference light intensity.
  • the calculation principle of the ellipsometer is to perform Fourier decomposition of the light intensity, the correct Fourier coefficients can be directly solved without knowing the exact values of k and I0 .
  • Fig. 1 shows a structural diagram of an ellipsometric measurement system of an example of the present application
  • the ellipsometric measurement system 100 includes a light source 101, a polarizer 102, a beam splitter 103, a second delay wave plate 104, and a first focusing lens system 105 , the second focusing lens system 106, the third delay wave plate 107, the polarizer 108, the first detector 109, the second detector 110, the controller 111 and the processor 112, wherein the light source 101 can be a broadband multi-wavelength
  • the light source can also be a single-wavelength light source, the second delay wave plate 104 and the third delay wave plate 107 are quarter wave plates, and the analog-to-digital conversion chip configured by the processor 112 has two independent Sigma-Delta ADCs, At the same time, the two independent ADCs share a clock source.
  • the light emitted by the light source 101 is converted into linearly polarized light by the polarizer 102, and the linearly polarized light is divided into measuring light and reference light by the beam splitter 103, and the reference light is irradiated to the second detector 110;
  • the measurement light enters the first focusing lens system 105 through the second delay wave plate 104, the outgoing light of the first focusing lens system 105 is irradiated on the sample 113 (such as a wafer) to be tested, and the light emitted by the sample 113 to be tested passes through the second
  • the focusing lens system 106 first enters the third delay wave plate 107, then enters the polarizer 108, the light emitted by the polarizer 108 is irradiated to the first detector 109, and the processor 112 controls the first detector 109 and the second detector 110 Measured light intensity for data collection and processing.
  • the polarizer 102, the second delay wave plate 104, the third delay wave plate 107, and the polarizer 108 are equipped with a rotating motor, and the controller 111 is used to control the rotation of the motor, and the controller 111 and the processor 112 need to be synchronously coordinated. Motor and two detectors to ensure the accuracy of measurement data.
  • the beam splitting device 103 divides the incident light beam into two beams of light, one beam of light continues along the direction of the incident beam, is reflected by the sample to be tested and finally captured by the first detector 109, and the other beam
  • the light then reaches the second detector 110, and through the processor 112, the dual-channel data clock synchronization can ensure the time synchronization between the first detector 109 and the second detector 110, that is, the light intensity measured by the two is the light intensity at the same time , and the light intensity synchronization of the beam splitter ensures that the rate of change of the intensity of the two beams of light is consistent, which should be equal to the rate of change of light intensity of the light emitted by the light source 101. Or vertical), eliminates the polarization interference of the beam splitter, and further ensures the measurement accuracy of the system.
  • Fig. 2 shows a schematic diagram of the polarization state of the incident light in an example of the present application.
  • This example is based on the ellipsometry system shown in Fig. 1, specifically showing the polarization state of the beam from the light source 101 through the polarizer 102 to the beam splitter 103, to illustrate This application eliminates the principle of polarization interference of the beam splitter.
  • the polarizer 102 converts the unpolarized light (unpolarized light) emitted by the light source 101 into linearly polarized light. Due to the optical requirements of the ellipsometer device, the linearly polarized light emitted by the polarizer 102 is different from the incident light.
  • the incident plane has a certain fixed angle ⁇ 1 , according to the definition of ellipsometry:
  • ⁇ 1 , ⁇ ′ 1 , and ⁇ 2 are respectively the angles between the linearly polarized light of the incident light, the reflected light, and the refracted light and the incident surface.
  • E 1s , E′ 1s , E 2s are s light components of incident light, reflected light, and refracted light, respectively;
  • E 1p , E′ 1p , E 2p are p light components of incident light, reflected light, and refracted light, respectively.
  • n 1 and n 2 are the refractive indices of air and lens respectively, and ⁇ 1 and ⁇ 2 are the incident angle and refraction angle respectively. From the above results, it can be seen that if ⁇ 1 is not equal to 0 or 90°, then the polarization angle of reflected and transmitted light varies with the incident angle and refractive index, so the polarization direction actually incident on the surface of the sample to be detected is not the polarizer
  • the designed polarization angle is too large, especially when the light source range of the ellipsometry system is large, the dispersion of the refractive index of the beam splitter material will bring more complicated correction costs, therefore, the splitting surface of the beam splitter and the polarization of the polarizer
  • the polarization direction of the output light is parallel or vertical, which can eliminate the change of the polarization state of the incident light by the beam splitter, that is, eliminate the polarization interference of the beam splitter.
  • Fig. 3 shows a schematic diagram of the synchronization of the measured light intensity and the reference light intensity when the motor is not moving in an example of the present application, which shows the light intensity curve measured at a certain wavelength based on the ellipsometry system shown in Fig. 1, Theoretically, the measured light intensity when the motor is not moving in the system should be completely unchanged. In practice, the instability of the light source will lead to fluctuations in the actual measurement. It can be seen from Figure 3 that the variation trends of the measured light intensity (Measure shown in Figure 3) and the reference light intensity (Reference shown in Figure 3) are almost parallel, and the consistency is very good.
  • FIG. 4 shows a schematic diagram of the result of reference light correction in FIG. 3 , wherein the measured light intensity (Measure shown in FIG. 4 ) and the corrected light intensity (Calibrated shown in FIG. 4 ) are shown when the motor is not moving. It can be seen from FIG. 4 that by using the solution of the present application (see the formula (4) above), the influence of the fluctuation of the light source can be minimized, and the corrected light intensity is basically a straight line.
  • a beam splitter is arranged behind the polarizer, and the beam splitter can split the linearly polarized light emitted by the polarizer into measurement light and reference light in different directions, and the reference light is irradiated to the second detector
  • the measuring light is reflected by the sample to be tested along the direction of the incident light beam and finally captured by the first detector, and the processor can collect and compare the light intensity synchronously measured by the first detector and the second detector Since the reference light and the measurement light come from linearly polarized light in the same direction, the reference light can be used to effectively correct the light source intensity fluctuation in real time and improve the measurement stability of the system, thus realizing an ellipsometric measurement system with ultra-high stability .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种基于同步参考光校正的椭偏测量系统,该系统中在起偏器(102)之后设置有分光器(103),分光器(103)能够将起偏器(102)出射的线偏振光分成不同方向的测量光和参考光,参考光照射到第二探测器(110),测量光沿着入射光束的方向经过待检测样品(113)反射最终由第一探测器(109)捕获,处理器(112)可对第一探测器(109)和第二探测器(110)同步测量的光强进行收集和处理,由于参考光与测量光来自于同一方向的线偏振光,因此能够使用参考光来有效地实时校正光源强度波动,提高系统测量稳定性,从而实现了具备超高稳定度的椭偏测量系统。

Description

一种基于同步参考光校正的椭偏测量系统
关联申请的交叉引用
本专利申请要求2021年12月21日提交的名为“一种基于同步参考光校正的椭偏测量系统”,申请号为202111570272.1的中国发明专利申请的优先权,该在先申请的整体通过引用方式并入本申请。
技术领域
本申请涉及光学量测领域,尤其涉及一种基于同步参考光校正的椭偏测量系统。
背景技术
半导体超大规模集成电路制造工艺涉及到不同种类的薄膜沉积、刻蚀等,都需要高精度、高稳定性地测量厚度、光学常数、关键尺寸等多种信息。一般常采用非接触、效率高的偏振光学手段。精确、稳定的测量系统可以保证大规模生产的良品率。
现有技术集成电路产业的光学量测领域,经常使用可分辨偏振光的椭偏仪进行晶圆微结构的尺度测量和标定。而在椭偏测量系统中,探测器或光谱仪收集到的信号会受到光源稳定性的影响,因此光源的稳定性会直接影响整机系统的稳定性。
发明内容
本申请的目的是提供一种基于同步参考光校正的椭偏测量系统,该椭偏测量系统能够通过使用精确控制的同步参考光来实时校正光源的稳定性,因此具备超高稳定度。
根据本申请的一个方面,提供一种基于同步参考光校正的椭偏测量系统,其中,该椭偏测量系统包括:光源、起偏器、分光器、第一 聚焦透镜系统、第二聚焦透镜系统、验偏器、第一探测器、第二探测器、处理器以及控制器;其中,所述光源发出的光经所述起偏器转换为线偏振光,线偏振光经分光器分成测量光和参考光,所述参考光照射到所述第二探测器;所述测量光经过所述第一聚焦透镜系统后照射在待检测样品,所述待检测样品发射的光经过所述第二聚焦透镜系统后进入所述验偏器,所述验偏器出射的光照射到所述第一探测器;所述处理器用于对所述第一探测器和所述第二探测器同步测量的光强进行收集和处理,所述控制器用于在测量过程中控制马达旋转。
可选地,该椭偏测量系统还包括第一延迟波片;所述测量光依次经过所述第一延迟波片、所述第一聚焦透镜系统后照射在待检测样品,或者,所述待检测样品发射的光依次经过所述第二聚焦透镜系统、所述第一延迟波片后进入所述验偏器。
可选地,该椭偏测量系统还包括第二延迟波片和第三延迟波片,所述测量光依次经过所述第二延迟波片、所述第一聚焦透镜系统后照射在待检测样品,所述待检测样品发射的光依次经过所述第二聚焦透镜系统、所述第三延迟波片后进入所述验偏器。
可选地,所述处理器中包括用于第一探测器的第一模拟数字转换器以及用于第二探测器的第二模拟数字转换器,所述第一模拟数字转换器和所述第二模拟数字转换器相互独立且共用一个时钟源。
可选地,所述分光器的分光面与所述起偏器的出光偏振方向平行。
可选地,所述分光器的分光面与所述起偏器的出光偏振方向垂直。
与现有技术相比,本申请具有以下优点:本申请的椭偏测量系统中,在起偏器之后设置有分光器,该分光器能够将起偏器出射的线偏振光分成不同方向的测量光和参考光,所述参考光照射到所述第二探测器,所述测量光沿着入射光束的方向经过待检测样品反射最终由第一探测器捕获,处理器可对所述第一探测器和所述第二探测器同步测 量的光强进行收集和处理,由于参考光与测量光来自于同一方向的线偏振光,因此能够使用参考光来有效地实时校正光源强度波动,提高系统测量稳定性,从而实现了具备超高稳定度的椭偏测量系统。
附图说明
图1示出了本申请一个示例的椭偏测量系统的结构图;
图2示出了本申请一个示例的入射光偏振态示意图;
图3示出了本申请一个示例的电机不动时测量光强与参考光强的同步性示意图;
图4示出了将图3进行参考光校正后的结果示意图。
附图中相同或相似的附图标记代表相同或相似的部件。
具体实施方式
下面将参照附图对本发明进行更详细的描述,其中表示了本发明的优选实施例,应该理解本领域技术人员可以修改在此描述的本发明而仍然实现本发明的有利效果。因此,下列描述应当被理解为对于本领域技术人员的广泛知道,而并不作为对本发明的限制。
这里所公开的具体结构和功能细节仅仅是代表性的,并且是用于描述本申请的示例性实施例的目的。但是本申请可以通过许多替换形式来具体实现,并且不应当被解释成仅仅受限于这里所阐述的实施例。
应当理解的是,虽然在这里可能使用了术语“第一”、“第二”等等来描述各个单元,但是这些单元不应当受这些术语限制。使用这些术语仅仅是为了将一个单元与另一个单元进行区分。举例来说,在不背离示例性实施例的范围的情况下,第一单元可以被称为第二单元,并且类似地第二单元可以被称为第一单元。这里所使用的术语“和/或”包括其中一个或更多所列出的相关联项目的任意和所有组合。
这里所使用的术语仅仅是为了描述具体实施例而不意图限制示 例性实施例。除非上下文明确地另有所指,否则这里所使用的单数形式“一个”、“一项”还意图包括复数。还应当理解的是,这里所使用的术语“包括”和/或“包含”规定所陈述的特征、整数、步骤、操作、单元和/或组件的存在,而不排除存在或添加一个或更多其他特征、整数、步骤、操作、单元、组件和/或其组合。
下面结合附图对本申请作进一步详细描述。
本申请提出了一种基于同步参考光校正的椭偏测量系统,其中,该椭偏测量系统包括:光源、起偏器、分光器、第一聚焦透镜系统、第二聚焦透镜系统、验偏器、第一探测器、第二探测器、处理器以及控制器;其中,所述光源发出的光经所述起偏器转换为线偏振光,线偏振光经分光器分成测量光和参考光,所述参考光照射到所述第二探测器;所述测量光经过所述第一聚焦透镜系统后照射在待检测样品,所述待检测样品发射的光经过所述第二聚焦透镜系统后进入所述验偏器,所述验偏器出射的光照射到所述第一探测器;所述处理器用于对所述第一探测器和所述第二探测器同步测量的光强进行收集和处理,所述控制器用于在测量过程中控制马达旋转。
其中,所述光源用于发出光。在一些实施例中,所述光源可以是宽波段多波长光源,从UV(Ultraviolet Rays,紫外光线)光到IR(Infrared Radiation,红外线)波段。在一些实施例中,所述光源可以是单波长光源,即构成单波长椭偏(Single Wavelength Ellipsometry,SWE)系统。
其中,所述起偏器和所述验偏器,用于限定光的偏振方向为某一个确定的线偏振方向;所述起偏器用于从光中获得偏振光,所述验偏器(又称“检偏器”)用于鉴别光的偏振状态。其中,所述分光器用于将光束分成两束不同方向的光,其中一束光(也即测量光)用于与待检测样品的测量,另一束光(也即参考光)用于对光源的校正。其中,所述第一聚焦透镜系统以及所述第二聚焦透镜系统用于使入射到其中的光束光斑缩小,并使出射平行光,如所述第一聚焦透镜系统的 作用在于使入射到待检测样品的光束光斑缩小,并使出射平行光。其中,所述第一探测器用于接收测量待检测样品的光,所述第二探测器用于接收分光器出射的参考光。其中,所述处理器用于对所述第一探测器和所述第二探测器同步测量的光强进行数据收集和处理(第一探测器和所述第二探测器采集到的数据必须有同步的时钟),所述控制器用于在测量过程中控制马达旋转以控制安装有马达的光学器件(如起偏器或验偏器)旋转,所述控制器和所述处理器需要同步协同处理马达和探测器,以保证测量数据的准确性。在一些实施例中,所述待检测样品为晶圆。
本申请的椭偏测量系统可以包含多种系统构型。
作为一种示例的系统构型,椭偏测量系统中的关键部件包括光源、起偏器、分光器、第一聚焦透镜系统、第二聚焦透镜系统、验偏器、第一探测器、第二探测器。其中,起偏器和验偏器安装有旋转马达,测量过程中控制器通过旋转马达使得起偏器旋转或验偏器旋转,即采用P RSA或PSA R椭偏构型,其中,光源可以是单波长光源或宽波段光源。
作为另一种示例的系统构型,该椭偏测量系统中的关键部件除光源、起偏器、分光器、第一聚焦透镜系统、第二聚焦透镜系统、验偏器、第一探测器、第二探测器之外,还包括第一延迟波片;所述测量光依次经过所述第一延迟波片、所述第一聚焦透镜系统后照射在待检测样品,或者,所述待检测样品发射的光依次经过所述第二聚焦透镜系统、所述第一延迟波片后进入所述验偏器。也即,第一延迟波片可能设置在分光器与第一聚焦透镜系统之间,也可能设置在第二聚焦透镜系统与验偏器之间。其中,第一延迟波片安装有旋转马达(需要说明的是,起偏器和验偏器也安装有旋转马达),在测量过程中控制器通过旋转马达使得第一延迟波片旋转,也即采用PC RSA或PSC RA椭偏构型,其中,光源可以是单波长光源或宽波段光源。在一些实施例中,所述第一延迟波片为四分之一波片,其作用是延迟某一个透射方向的 偏振光,使出射的偏振光和入射的偏振光的偏振态发生改变。
作为另一种示例的系统构型,除光源、起偏器、分光器、第一聚焦透镜系统、第二聚焦透镜系统、验偏器、第一探测器、第二探测器之外,该椭偏测量系统中的关键部件还包括第二延迟波片和第三延迟波片,所述测量光依次经过所述第二延迟波片、所述第一聚焦透镜系统后照射在待检测样品,所述待检测样品发射的光依次经过所述第二聚焦透镜系统、所述第三延迟波片后进入所述验偏器。也即,在分光器与第一聚焦透镜系统之间设置第二延迟波片,且在第二聚焦系统与验偏器之间设置第三延迟波片。其中,第二延迟波片和第三延迟波片安装有旋转马达(需要说明的是,起偏器和验偏器也安装有旋转马达),在测量过程中控制器通过旋转马达使得第二延迟波片和第三延迟波片旋转,也即采用PC RSC RA椭偏构型,也称为穆勒矩阵椭偏仪,其中,光源一般为宽波段光源。需要说明的是,所述第二延迟波片、第三延迟波片以及上文中涉及的第一延迟波片可为相同的四分之一波片。
需要说明的是,上述系统构型仅为举例,而非对本申请的限制,本领域技术人员应能理解,所述椭偏测量系统中也可能包含其他光学器件,以形成其他系统构型。
作为一种优选方案,所述分光器的分光面与所述起偏器的出光偏振方向平行。作为另一种优选方案,所述分光器的分光面与所述起偏器的出光偏振方向垂直。需要说明的是,通过将分光器的分光面与起偏器出光偏振方向平行或垂直,能够消除分光器对入射光偏振态的改变,也即消除分光器偏振干扰,从而保持起偏器原有出光的偏振方向,保证了系统测量精度,下文中将结合附图来对此消除分光器偏振干扰的原理进行详细说明,在此不再赘述。需要说明的是,若分光器的分光面与起偏器出光偏振方向并非平行或垂直,也可通过校正来消除分光器偏振干扰。
本申请中,为了实现精密的数据同步,采用了双通道数据时钟同 步方案,也即所述第一探测器和所述第二探测器采集到的数据有同步的时钟。在一些实施例中,所述处理器中包括用于第一探测器的第一模拟数字转换器以及用于第二探测器的第二模拟数字转换器,所述第一模拟数字转换器和所述第二模拟数字转换器相互独立且共用一个时钟源;作为一个示例,所述处理器中配置的模数转换芯片内有两个独立的Sigma-Delta ADC(Analog to Digital Converter,模拟数字转换器),同时这两个独立ADC共用一个时钟源,由此所述第一探测器和所述第二探测器可以同步采集数据,也即实现了针对测量光和参考光的同步采集。在一些实施例中,所述处理器中包括用于第一探测器的第一模拟数字转换器以及用于第二探测器的第二模拟数字转换器,所述第一模拟数字转换器和所述第二模拟数字转换器分别对应不同的时钟源T1和T2,所述处理器中还包括时钟控制模块,该时钟控制模块用于对T1和T2进行控制,以使这两个时钟源同步。需要说明的是,任何用于使得所述第一探测器和所述第二探测器采集到的数据有同步的时钟的方案,均应包含在本申请的保护范围内。
本申请中,起偏器出射的线偏振光经分光器分成测量光和参考光,也即分光器设置在起偏器之后,这使得测量光和参考光两束光强具备同步性(也即具备分光器光强同步性)。具体来说,假设光源的光强波动可以描述为:
I source(t)=I 0(1+I var(t))                   (1)
其中,I 0是理想情况下绝对稳定的光源光强,I var(t)是真实情况下光源光强的变化率,是随着时间变化的量。第一探测器测量的光强为:
Figure PCTCN2022108732-appb-000001
其中,
Figure PCTCN2022108732-appb-000002
为理论上应该测到光强曲线,I sample(t)为实际上测量到的光强曲线,这是理论值受到分光器出射样品方向光强波动
Figure PCTCN2022108732-appb-000003
影响的结果。第二探测器测量得到的光强是I ref(t),是随着时间变化的量,I ref(t)表示如下:
Figure PCTCN2022108732-appb-000004
其中,k是分光器出射到第二探测器方向(即参考光方向)的分光比例,易得知,分光器另一个出射方向(即测量光方向)的分光比例为1-k。其中,分光器出射参考光方向的光强波动为
Figure PCTCN2022108732-appb-000005
一般情况下,光源在不同偏振方向的光波动程度有所不同,因此,分光器应该置于起偏器之后,这样才能保证分光器出射的两束光都源于光源在某一偏振方向的分量,即
Figure PCTCN2022108732-appb-000006
这里I var(t)特指光源在某一偏振方向的光强波动情况。当
Figure PCTCN2022108732-appb-000007
时,可以得出:
Figure PCTCN2022108732-appb-000008
也即,理论上的样品测量光强正比于实际测量的样品光强与参考光强的比值。考虑到椭偏仪的计算原理是将光强进行傅里叶分解,因此不需要知道k和I 0的精确数值就可以直接解出正确的傅里叶系数。综合以上可见,本申请通过将分光器放置于起偏器之后,实现了测量光和参考光两束光强的同步性。
图1示出了本申请一个示例的椭偏测量系统的结构图,该椭偏测量系统100包括光源101、起偏器102、分光器103、第二延迟波片104、第一聚焦透镜系统105、第二聚焦透镜系统106、第三延迟波片107、验偏器108、第一探测器109、第二探测器110、控制器111以及处理器112,其中,光源101可以是宽波段多波长光源,也可以是单波长光源,第二延迟波片104和第三延迟波片107为四分之一波片,处理器112配置的模数转换芯片内有两个独立的Sigma-Delta ADC,同时这两个独立ADC共用一个时钟源。基于该椭偏测量系统,光源101发出的光经起偏器102转换为线偏振光,线偏振光经分光器103分成测量光和参考光,所述参考光照射到第二探测器110;所述测量光经 过第二延迟波片104进入第一聚焦透镜系统105,第一聚焦透镜系统105的出射光照射在待检测样品113(如晶圆)上,待检测样品113发射的光经过第二聚焦透镜系统106后先进入第三延迟波片107,之后进入验偏器108,验偏器108出射的光照射到第一探测器109,处理器112对第一探测器109、第二探测器110测量的光强进行数据收集和处理。其中,起偏器102、第二延迟波片104、第三延迟波片107、验偏器108安装有旋转马达,控制器111用于控制马达旋转,控制器111与处理器112需要同步协同处理马达和两个探测器,以保证测量数据的准确性。
基于图1所示的椭偏测量系统,分光器件103将入射光束分为两束光,一束光继续沿着入射光束的方向经过待检测样品反射最终由第一探测器109捕获,另一束光则到达第二探测器110,通过处理器112,双通道数据时钟同步能够保证第一探测器109和第二探测器110的时间同步性,即二者测量的光强是同一时间的光强,而分光器光强同步性保证两束光的强度变化率一致,都应该等于光源101出光的光强变化率,并且,通过将分光器103的分光面与起偏器102出光偏振方向平行(或垂直),消除了分光器偏振干扰,进一步保证了系统测量精度。
图2示出了本申请一个示例的入射光偏振态示意图,该示例基于图1所示椭偏测量系统,具体展示了从光源101经过起偏器102到分光器103的光束偏振态,以说明本申请消除分光器偏振干扰的原理。如图2所示,起偏器102将光源101发出的非偏振态的光(unpolarized light)转化为线偏振光,由于椭偏仪设备的光学需求,起偏器102出射的线偏振光与入射面(incident plane)存在某个固定的角度α 1,根据椭偏光的定义可知:
入射光:
Figure PCTCN2022108732-appb-000009
反射光:
Figure PCTCN2022108732-appb-000010
折射光:
Figure PCTCN2022108732-appb-000011
其中,α 1、α′ 1、α 2分别为入射光、反射光、折射光的线偏振光与入射面的夹角。E 1s、E′ 1s、E 2s分别为入射光、反射光、折射光的s光分量;E 1p、E′ 1p、E 2p分别为入射光、反射光、折射光的p光分量。根据菲涅尔公式和斯涅尔定理(n 1 sin θ 1=n 2 sin θ 2)可得到:
Figure PCTCN2022108732-appb-000012
Figure PCTCN2022108732-appb-000013
其中,n 1、n 2分别是空气和镜头两种介质的折射率,θ 1、θ 2分别是入射角和折射角。从以上结果可知,如果α 1不等于0或90°,那么反射和透射光的偏振角度是随着入射角和折射率变化的,因此实际入射到待检测样品表面的偏振方向就不是起偏器设计的偏振角度了,尤其是当椭偏测量系统的光源波段范围较大,分光器材料折射率的色散性会带来更加复杂的校正成本,因此,将分光器的分光面与起偏器的出光偏振方向平行或垂直,能够消除分光器对入射光偏振态的改变,也即消除分光器偏振干扰。
图3示出了本申请一个示例的电机不动时测量光强与参考光强的同步性示意图,其中展示的是基于图1所示椭偏测量系统在某一波长下实测的光强曲线,理论上系统中电机不动时的测量光强应该是完全不变的,实际中由于光源的不稳定性会导致实际测量的波动。由图3可以看出,测量光强(图3所示Measure)与参考光强(图3所示Reference)的变化趋势几乎平行,一致性很好。
图4示出了将图3进行参考光校正后的结果示意图,其中示出了电机不动时的测量光强(图4所示Measure)与矫正后的光强(图4所示Calibrated)。由图4可见,利用本申请的方案(见上文中的公式(4)),可以将光源的波动影响降低到最小,校正后光强基本是一条直线。
根据本申请的方案,在起偏器之后设置有分光器,该分光器能够将起偏器出射的线偏振光分成不同方向的测量光和参考光,所述参考光照射到所述第二探测器,所述测量光沿着入射光束的方向经过待检测样品反射最终由第一探测器捕获,处理器可对所述第一探测器和所述第二探测器同步测量的光强进行收集和处理,由于参考光与测量光来自于同一方向的线偏振光,因此能够使用参考光来有效地实时校正光源强度波动,提高系统测量稳定性,从而实现了具备超高稳定度的椭偏测量系统。
对于本领域技术人员而言,显然本申请不限于上述示范性实施例的细节,而且在不背离本申请的精神或基本特征的情况下,能够以其他的具体形式实现本申请。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本申请的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本申请内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他单元或步骤,单数不排除复数。系统权利要求中陈述的多个单元或装置也可以由一个单元或装置通过软件或者硬件来实现。第一,第二等词语用来表示名称,而并不表示任何特定的顺序。

Claims (6)

  1. 一种基于同步参考光校正的椭偏测量系统,其中,该椭偏测量系统包括:光源、起偏器、分光器、第一聚焦透镜系统、第二聚焦透镜系统、验偏器、第一探测器、第二探测器、处理器以及控制器;其中,所述光源发出的光经所述起偏器转换为线偏振光,线偏振光经分光器分成测量光和参考光,所述参考光照射到所述第二探测器;所述测量光经过所述第一聚焦透镜系统后照射在待检测样品,所述待检测样品发射的光经过所述第二聚焦透镜系统后进入所述验偏器,所述验偏器出射的光照射到所述第一探测器;所述处理器用于对所述第一探测器和所述第二探测器同步测量的光强进行收集和处理,所述控制器用于在测量过程中控制马达旋转。
  2. 根据权利要求1所述的椭偏测量系统,其中,该椭偏测量系统还包括第一延迟波片;所述测量光依次经过所述第一延迟波片、所述第一聚焦透镜系统后照射在待检测样品,或者,所述待检测样品发射的光依次经过所述第二聚焦透镜系统、所述第一延迟波片后进入所述验偏器。
  3. 根据权利要求1所述的椭偏测量系统,其中,该椭偏测量系统还包括第二延迟波片和第三延迟波片,所述测量光依次经过所述第二延迟波片、所述第一聚焦透镜系统后照射在待检测样品,所述待检测样品发射的光依次经过所述第二聚焦透镜系统、所述第三延迟波片后进入所述验偏器。
  4. 根据权利要求1至3中任一项所述的椭偏测量系统,其中,所述处理器中包括用于第一探测器的第一模拟数字转换器以及用于第二探测器的第二模拟数字转换器,所述第一模拟数字转换器和所述第二模拟数字转换器相互独立且共用一个时钟源。
  5. 根据权利要求1至4中任一项所述椭偏测量系统,其中,所述分光器的分光面与所述起偏器的出光偏振方向平行。
  6. 根据权利要求1至4中任一项所述椭偏测量系统,其中,所述分光器的分光面与所述起偏器的出光偏振方向垂直。
PCT/CN2022/108732 2021-12-21 2022-07-28 一种基于同步参考光校正的椭偏测量系统 WO2023115949A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111570272.1A CN114427834A (zh) 2021-12-21 2021-12-21 一种基于同步参考光校正的椭偏测量系统
CN202111570272.1 2021-12-21

Publications (1)

Publication Number Publication Date
WO2023115949A1 true WO2023115949A1 (zh) 2023-06-29

Family

ID=81310773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108732 WO2023115949A1 (zh) 2021-12-21 2022-07-28 一种基于同步参考光校正的椭偏测量系统

Country Status (2)

Country Link
CN (1) CN114427834A (zh)
WO (1) WO2023115949A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114427834A (zh) * 2021-12-21 2022-05-03 睿励科学仪器(上海)有限公司 一种基于同步参考光校正的椭偏测量系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904085A (en) * 1988-05-04 1990-02-27 Simmonds Precision Products, Inc. Polarimetric fiber optic sensor testing apparatus
CN101614523A (zh) * 2009-08-10 2009-12-30 中国科学院长春光学精密机械与物理研究所 一种检测掠射筒状离轴非球面镜的多光束长轨干涉仪
CN102707345A (zh) * 2012-06-06 2012-10-03 中国科学院上海光学精密机械研究所 对45°线偏振光保偏的半透半反镜
CN104215432A (zh) * 2014-09-24 2014-12-17 武汉光迅科技股份有限公司 光源偏振状态动态反馈的相位延迟器特性检测装置及方法
CN111610535A (zh) * 2020-06-09 2020-09-01 深圳元戎启行科技有限公司 主动照明关联成像系统和主动照明关联成像方法
CN112326561A (zh) * 2020-10-28 2021-02-05 歌尔股份有限公司 椭偏仪及其测试方法、装置、计算机存储介质
CN113092386A (zh) * 2021-05-11 2021-07-09 清华大学深圳国际研究生院 一种自容式穆勒矩阵测量方法和装置
CN114427834A (zh) * 2021-12-21 2022-05-03 睿励科学仪器(上海)有限公司 一种基于同步参考光校正的椭偏测量系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798837A (en) * 1997-07-11 1998-08-25 Therma-Wave, Inc. Thin film optical measurement system and method with calibrating ellipsometer
CN102589850B (zh) * 2012-01-13 2014-02-19 中国科学院国家天文台 一种波片相位延迟的精密测量系统及其实现方法
CN104568765B (zh) * 2014-12-25 2017-02-22 武汉颐光科技有限公司 一种微型化光谱椭偏仪装置和测量方法
CN105004273B (zh) * 2015-06-29 2017-06-16 华中科技大学 一种激光干涉位移测量系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904085A (en) * 1988-05-04 1990-02-27 Simmonds Precision Products, Inc. Polarimetric fiber optic sensor testing apparatus
CN101614523A (zh) * 2009-08-10 2009-12-30 中国科学院长春光学精密机械与物理研究所 一种检测掠射筒状离轴非球面镜的多光束长轨干涉仪
CN102707345A (zh) * 2012-06-06 2012-10-03 中国科学院上海光学精密机械研究所 对45°线偏振光保偏的半透半反镜
CN104215432A (zh) * 2014-09-24 2014-12-17 武汉光迅科技股份有限公司 光源偏振状态动态反馈的相位延迟器特性检测装置及方法
CN111610535A (zh) * 2020-06-09 2020-09-01 深圳元戎启行科技有限公司 主动照明关联成像系统和主动照明关联成像方法
CN112326561A (zh) * 2020-10-28 2021-02-05 歌尔股份有限公司 椭偏仪及其测试方法、装置、计算机存储介质
CN113092386A (zh) * 2021-05-11 2021-07-09 清华大学深圳国际研究生院 一种自容式穆勒矩阵测量方法和装置
CN114427834A (zh) * 2021-12-21 2022-05-03 睿励科学仪器(上海)有限公司 一种基于同步参考光校正的椭偏测量系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU YUNZHI, HAN YU-SHENG, WANG FENG, WEI QING-NONG: "Design of Polarimetric BRDF Measurement System based on Configuration of Dual Rotation Retarder", YINGYONG-GUANGXUE / JOURNAL OF APPLIED OPTICS, ZHONGGUO BINGQI GONGYE DI-205 YANJIUSUO, CN, vol. 29, no. 1, 31 January 2008 (2008-01-31), CN , pages 35 - 39, XP093073927, ISSN: 1002-2082 *

Also Published As

Publication number Publication date
CN114427834A (zh) 2022-05-03

Similar Documents

Publication Publication Date Title
CN102297721B (zh) 斜入射宽带偏振光谱仪和光学测量系统
US8830463B2 (en) Rotating-element ellipsometer and method for measuring properties of the sample using the same
US10317334B2 (en) Achromatic rotating-element ellipsometer and method for measuring mueller-matrix elements of sample using the same
KR101590389B1 (ko) 광소자 회전형 분광타원계측기 및 광소자 회전형 분광타원계측기의 측정 정밀도 예측 방법, 이를 구현하기 위한 프로그램이 저장된 기록매체 및 이를 구현하기 위해 매체에 저장된 컴퓨터프로그램
US11187649B2 (en) Method for conducting optical measurement usingfull Mueller matrix ellipsometer
JPS6134442A (ja) 試料表面ないしは試料の表面膜層の物理的特性を検査するためのエリプソメトリ測定法とその装置
WO2001007881A1 (en) Parallel detecting, spectroscopic ellipsometers/polarimeters
EP0249235A2 (en) Film thickness-measuring apparatus using linearly polarized light
US9046474B2 (en) Multi-analyzer angle spectroscopic ellipsometry
CN110411952B (zh) 多偏振通道面阵列探测的椭圆偏振光谱获取系统和方法
CN103162831B (zh) 宽带偏振光谱仪及光学测量系统
CN109990736B (zh) 一种基于斯托克斯矢量的滚转角测量方法及装置
WO2023115949A1 (zh) 一种基于同步参考光校正的椭偏测量系统
CN105758625B (zh) 一种测量遥感仪器的线偏振灵敏度的装置及方法
KR20200007267A (ko) 수직입사 타원계측기 및 이를 이용한 시편의 광물성 측정 방법
CN109084676B (zh) 基于激光外差干涉的双基圆盘式渐开线样板测量系统
EP0075689A1 (en) Optical instruments for viewing a sample surface
TW201638575A (zh) 寬波段消色差複合波片的定標方法
CN111207678B (zh) 一种非旋转式薄膜厚度及折射率测量方法
CN110186388B (zh) 基于白光干涉光谱的同步相移测量系统与方法
CN112903598B (zh) 一种椭偏测量系统中偏振元件方位角的差分光谱定标方法
CN113340818B (zh) 一种自洽验证差分光谱仪及测量方法
Naciri et al. Fixed polarizer, rotating-polarizer and fixed analyzer spectroscopic ellipsometer: accurate calibration method, effect of errors and testing
CN114910422A (zh) 一种可变入射角的光谱椭偏仪
CN107314839A (zh) 基于穆勒矩阵的应力检测装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909279

Country of ref document: EP

Kind code of ref document: A1