CN105758625B - 一种测量遥感仪器的线偏振灵敏度的装置及方法 - Google Patents

一种测量遥感仪器的线偏振灵敏度的装置及方法 Download PDF

Info

Publication number
CN105758625B
CN105758625B CN201610236516.5A CN201610236516A CN105758625B CN 105758625 B CN105758625 B CN 105758625B CN 201610236516 A CN201610236516 A CN 201610236516A CN 105758625 B CN105758625 B CN 105758625B
Authority
CN
China
Prior art keywords
remote sensing
sensing instrument
light
polarizer
linear polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610236516.5A
Other languages
English (en)
Other versions
CN105758625A (zh
Inventor
蔡清元
冯旗
刘定权
刘宝丽
罗海瀚
冯鑫
周靖
郑玉祥
丛蕊
刘保剑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201610236516.5A priority Critical patent/CN105758625B/zh
Publication of CN105758625A publication Critical patent/CN105758625A/zh
Application granted granted Critical
Publication of CN105758625B publication Critical patent/CN105758625B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种测量遥感仪器的线偏振灵敏度的装置及方法。该测量装置包括光源、准直透镜组、第一起偏器、第二起偏器、光电探测器、保偏扩束镜和遥感仪器。光束经由两个起偏器进行线偏振光调制,从而检测遥感仪器的线偏振灵敏度。所述测量方法为:1)精确校准两个起偏器的起偏角度;2)旋转第二起偏器,并利用遥感仪器进行光强探测,计算遥感仪器的相对光学效率曲线;3)变更第一起偏器的起偏角度,重复2)获得多条光学效率曲线,整合数据计算线偏振灵敏度。本发明的优点在于传输光的偏振状态明确,可用公式精确描述,无需退偏处理,克服了退偏效果差带来的线偏振灵敏度测量误差大的缺点,适用于精确测量遥感仪器的线偏振灵敏度。

Description

一种测量遥感仪器的线偏振灵敏度的装置及方法
技术领域
本发明涉及偏振光谱技术领域,具体涉及一种测量遥感仪器的线偏振灵敏度的装置及方法。
背景技术
偏振灵敏度描述的是仪器的光学系统对入射光的偏振态的敏感程度,它反映的是:在入射光的偏振态发生变化时,从系统中出射光强的变化。在实际描述光学系统偏振敏感特性时,常采用线偏振灵敏度(LPS)来进行表征系统的偏振灵敏度,其定义为:当一束完全线偏振光入射到一个光学系统中时,在入射线偏振光的偏振方向旋转180度的过程中,设出射光强度的最大值和最小值分别为Imax和Imin,则线偏振灵敏度的数学表达式为:LPS=(Imax-Imin)/(Imax+Imin)。
地物目标的辐射光的偏振状态本身包含丰富的信息,但对于某些遥感仪器来讲却是一个重要的干扰信息,如大气层反射光的偏振状态变化对于水色遥感仪器的水色信息反演来讲是很大的干扰项,因此需控制好线偏振灵敏度。在先进的遥感仪器研制中,往往将线偏振灵敏度作为一个重要的技术指标,一般来讲希望其值越小越好。在传统的遥感仪器的偏振灵敏度测量方案中,往往需要将光源先退偏成自然光或伪自然光,使其在各个偏振方向上的光强一致,然后经由起偏器起偏获得各个偏振方向光强一样的线偏振光,对于起偏器转动过程中遥感仪器检测到的光强变化就可以反映了仪器本身的线偏振灵敏度特性。然而,这种方案中,光源的偏振度影响很大,一般很难获得完美的零偏振度的光,这对仪器线偏振灵敏度的测量带来很大的不确定性,一般有1%左右的绝对测量误差。另外,对于采用双折射率晶体退偏器的测量方案,还存在光束分离的问题,不适用于远程测量光路。
发明内容
本发明目的在于提出了一种测量遥感仪器的线偏振灵敏度的装置及方法,可以实现更高的线偏振灵敏度测量精度,减小测量的不确定性。
本发明提出的一种测量遥感仪器的线偏振灵敏度的装置,其特征在于包括:光源1、准直透镜组2、第一起偏器3、第二起偏器4、光电探测器5、保偏扩束镜6和遥感仪器7;光源1发出的光经准直透镜组2进行准直,以准直光出射,经由第一起偏器3和第二起偏器4进行线偏振光的调制,并由光电探测器5完成校准,然后经由保偏扩束镜6进行扩束,最后进入遥感仪器7,检测遥感仪器7的线偏振灵敏度。光束在测量装置中传输过程的偏振状态变化如图2所示。
所述光源1为白光、单色光或光谱调制光。
所述准直透镜组2为消色差透镜组,并经由光阑控制杂散光。
所述第一起偏器3、第二起偏器4为格兰-汤普森棱镜或格兰-泰勒棱镜,安装在中空电动转台的轴心上进行起偏角度α和β的控制;
所述光电探测器5探测面积大于光束截面,完全接收光束,为可拆卸式安装;
所述保偏扩束镜6的光线分布在0~15°入射角范围,反射镜表面镀制银膜加介质保护膜的保偏膜系;
本发明提出的测量遥感仪器的线偏振灵敏度的装置的测量方法的特征在于包含以下测量步骤:
1)将光电探测器5放入光路中的位置,记录所述第一起偏器3的转台角度,设为α=0位置,转动所述第二起偏器4并记录下随着转动而变化的光强曲线,该曲线为关于第二起偏器4起偏角度的三角函数曲线,利用三角函数拟合或偏振消光原理精确校准两个起偏器的起偏角度,记消光角度为β=90°或270°位置;
2)将光电探测器5卸载,固定所述第一起偏器3的起偏角度α,旋转所述第二起偏器4,利用遥感仪器7测量获得各遥感通道光强随着β角变化的曲线Iout(β),根据马吕斯定律,可以知道待测遥感仪器7的光学效率σ正比于Iout(β)/cos2(β-α),即σ=A·Iout(β)/cos2(β-α),A为权重,可以获得遥感仪器7的相对光学效率曲线;
3)变换α值进行多次测量,对于相同的β角度,σ不变并设为基准光学效率,可建立关系式获得不同α角度的权重A的相对关系,进而获得β变化180°过程中的样品光传递效率曲线相对值,设最大值为σmax,最小值为σmin,则遥感仪器7的线偏振灵敏度为LPS=(σmaxmin)/(σmaxmin)。
与现有技术相比,本发明具有如下优点:
1)不需进行退偏处理,没有退偏不完全导致的测量不确定性,测量精度高;
2)完全偏振光传递,可以实现明确的公式表达,有利于分析测量误差来源;
3)不存在测量光束分离现象,可用于远程光路测量。
附图说明
图1为测量遥感仪器的线偏振灵敏度的装置结构示意图,图中1为光源,2为准直透镜组、3为第一起偏器、4为第二起偏器、5为光电探测器、6为保偏扩束镜、7为遥感仪器。
图2为光束在测量装置中传输过程的偏振状态变化,图中8为经过准直透镜组2后的部分偏振光,9为经过第一起偏器3后偏振角度为α的线偏振光,10为经过第二起偏器4后偏振角度为β的线偏振光。
具体实施方式
下面根据实例,来说明本发明的具体实施方式。
如图1所示,测量装置包括光源1、准直透镜组2、第一起偏器3、第二起偏器4、光电探测器5、保偏扩束镜6和遥感仪器7。光源1采用欧司朗12v75w卤素灯,对应电源为稳流电源,光源短时间不稳定性小于0.1%,信噪比大于1000:1;准直透镜组2为熔石英与氟化钙透镜组成的消色差透镜组,消色差范围400-900nm;第一起偏器3和第二起偏器4采用方解石制作的格兰-泰勒棱镜,分别安装在步进马达控制的转台中空轴上,转台的转动角度重复精度优于1′;准直后的光束通光口径小于等于10mm;光电探测器5采用单元的硅探测器,探测面元尺寸为10mm口径;保偏扩束镜6为卡塞格林结构,光线为准直进出,扩束后的光束口径最大可达300mm,反射镜上镀Ag、Al2O3和SiO2的保偏反射膜系,保证任意光线的工作入射角度的偏振灵敏度小于0.1%。将待测遥感仪器7安装在图1所示位置,使光束进入遥感仪器7的视场范围内,从而可以获得各个探测波段的光强值。
开始测量遥感仪器7的线偏振灵敏度前,需要进行两个起偏器的起偏角度的校准,步骤如下:安装光电探测器5,设定第一起偏器3转台的当前角度为α=0°位置,转动所述第二起偏器4并记录下随着第二起偏器4转动而变化的光强曲线,该曲线为关于第二起偏器4起偏角度β的三角函数曲线,将该曲线进行归一化处理,则曲线变成了为cos2β函数曲线,利用三角函数曲线拟合可以精确校β角的位置,记消光角度为β=90°或270°位置,从而确定了β的基准角度位置;固定第一起偏器3到αn角度,然后转动β角,记录光电探测器5随着β角的光强变化曲线,并进行归一化处理,则归一化后的曲线为函数cos2(β-αn)函数曲线,同时可获得归一化权重为Cn,从而完成了第一起偏器3和第二起偏器4的校准。
卸载掉探测器5,可以直接从遥感仪器获得各个遥感通道的光强探测值,首先将第一起偏器3转到α=45°位置,转动β角,可以获得任意β角的光强探测值Iout(β),根据马吕斯定律,可以知道待测遥感仪器的光学效率σ正比于Iout(β)/cos2(β-α),即σ=A·Iout(β)/cos2(β-α),A为权重;设定β=90°的光学效率σ为1,则可以获得α=45°时的权重A45相对光学效率曲线。将第一起偏器3转到α=135°位置,重复以上测量,同样将β=90°的光学效率σ设为1,可以获得获得α=135°时的权重A135及相对光学效率曲线。此时,α=45°和α=135°状态下测量得到的相对光学效率曲线为同一曲线,根据曲线的信噪比分布进行取舍,对于0°≤β≤90°,取α=45°的相对光学效率曲线,对于90°≤β≤180°,取α=135°的相对光学效率曲线,从而获得0°≤β≤180°的遥感仪器的光学效率曲线。设最大值为σmax,最小值为σmin,则遥感仪器7的线偏振灵敏度为LPS=(σmaxmin)/(σmaxmin)。

Claims (6)

1.一种测量遥感仪器的线偏振灵敏度的装置,包括光源(1)、准直透镜组(2)、第一起偏器(3)、第二起偏器(4)、光电探测器(5)、保偏扩束镜(6)和遥感仪器(7);其特征在于:
光源(1)发出的光经准直透镜组(2)进行准直,以准直光出射,经由第一起偏器(3)和第二起偏器(4)进行线偏振光的调制,并由光电探测器(5)完成校准,然后经由保偏扩束镜(6)进行扩束,最后进入遥感仪器(7),检测遥感仪器(7)的线偏振灵敏度;
其线偏振灵敏度的检测步骤如下:1)将光电探测器(5)放入光路中的位置,记录所述第一起偏器(3)的转台角度,设为α=0位置,转动所述第二起偏器(4)并记录下随着转动而变化的光强曲线,该曲线为关于第二起偏器(4)起偏角度的三角函数曲线,利用三角函数拟合或偏振消光原理精确校准两个起偏器的起偏角度,记消光角度为β=90°或270°位置;2)将光电探测器(5)卸载,固定所述第一起偏器(3)的起偏角度α,旋转所述第二起偏器(4),利用遥感仪器(7)测量获得各遥感通道光强随着β角变化的曲线Iout(β),根据马吕斯定律,可以知道待测遥感仪器(7)的光学效率σ正比于Iout(β)/cos2(β-α),即σ=A·Iout(β)/cos2(β-α),A为权重,可以获得遥感仪器(7)的相对光学效率曲线;3)变换α值进行多次测量,对于相同的β角度,σ不变并设为基准光学效率,可建立关系式获得不同α角度的权重A的相对关系,进而获得β变化180°过程中的样品光传递效率曲线相对值,设最大值为σmax,最小值为σmin,则遥感仪器(7)的线偏振灵敏度为LPS=(σmaxmin)/(σmaxmin)。
2.根据权利要求1所述的测量遥感仪器的线偏振灵敏度的装置,其中该光源(1)为白光、单色光或光谱调制光。
3.根据权利要求1所述的测量遥感仪器的线偏振灵敏度的装置,其中该准直透镜组(2)为消色差透镜组,并经由光阑控制杂散光。
4.根据权利要求1所述的测量遥感仪器的线偏振灵敏度的装置,其中该第一起偏器(3)、第二起偏器(4)为格兰-汤普森棱镜或格兰-泰勒棱镜,安装在中空电动转台的轴心上进行起偏角度α和β的控制。
5.根据权利要求1所述的测量遥感仪器的线偏振灵敏度的装置,其中该光电探测器(5)探测面积大于光束截面,完全接收光束,为可拆卸式安装。
6.根据权利要求1所述的测量遥感仪器的线偏振灵敏度的装置,其中该保偏扩束镜(6)的光线分布在0~15°入射角范围,反射镜表面镀制银膜加介质保护膜的保偏膜系。
CN201610236516.5A 2016-04-15 2016-04-15 一种测量遥感仪器的线偏振灵敏度的装置及方法 Active CN105758625B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610236516.5A CN105758625B (zh) 2016-04-15 2016-04-15 一种测量遥感仪器的线偏振灵敏度的装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610236516.5A CN105758625B (zh) 2016-04-15 2016-04-15 一种测量遥感仪器的线偏振灵敏度的装置及方法

Publications (2)

Publication Number Publication Date
CN105758625A CN105758625A (zh) 2016-07-13
CN105758625B true CN105758625B (zh) 2018-10-19

Family

ID=56335168

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610236516.5A Active CN105758625B (zh) 2016-04-15 2016-04-15 一种测量遥感仪器的线偏振灵敏度的装置及方法

Country Status (1)

Country Link
CN (1) CN105758625B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109931969A (zh) * 2017-10-27 2019-06-25 广东建元和安科技发展有限公司 一种空间目标三维信息实时探测系统
CN110132420B (zh) * 2018-02-09 2020-11-27 上海微电子装备(集团)股份有限公司 偏振测量装置、偏振测量方法及光配向方法
CN110658548B (zh) * 2019-09-26 2021-02-09 中国计量科学研究院 一种空间辐射探测器偏振度的校准方法及装置
CN112362307B (zh) * 2020-10-23 2022-07-29 北京空间机电研究所 一种大口径光学遥感器双扩束级联偏振测试系统
CN113933024B (zh) * 2021-08-31 2023-05-02 中国科学院合肥物质科学研究院 一种光学遥感器中检偏器绝对偏振方位角的测量方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101216348A (zh) * 2008-01-07 2008-07-09 浙江大学 去偏器制作中的偏振度在线检测系统
CN102645281A (zh) * 2012-04-26 2012-08-22 暨南大学 一种利用起偏分束棱镜测量偏振度的方法
CN103063411A (zh) * 2012-12-13 2013-04-24 华中科技大学 一种高功率线偏振激光光束性能的测量装置
CN103411752A (zh) * 2013-07-05 2013-11-27 中国科学院苏州生物医学工程技术研究所 一种简易自动化半导体激光器偏振测试系统
CN104296875A (zh) * 2014-09-25 2015-01-21 中国科学院光电技术研究所 一种光束偏振度测量装置和方法
CN205607626U (zh) * 2016-04-15 2016-09-28 中国科学院上海技术物理研究所 一种测量遥感仪器的线偏振灵敏度的装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5313189B2 (ja) * 2010-02-17 2013-10-09 日本電信電話株式会社 Pdl測定器およびpdl測定方法
CN202956189U (zh) * 2012-12-28 2013-05-29 哈尔滨理工大学 自发式多功能偏振光特性实验系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101216348A (zh) * 2008-01-07 2008-07-09 浙江大学 去偏器制作中的偏振度在线检测系统
CN102645281A (zh) * 2012-04-26 2012-08-22 暨南大学 一种利用起偏分束棱镜测量偏振度的方法
CN103063411A (zh) * 2012-12-13 2013-04-24 华中科技大学 一种高功率线偏振激光光束性能的测量装置
CN103411752A (zh) * 2013-07-05 2013-11-27 中国科学院苏州生物医学工程技术研究所 一种简易自动化半导体激光器偏振测试系统
CN104296875A (zh) * 2014-09-25 2015-01-21 中国科学院光电技术研究所 一种光束偏振度测量装置和方法
CN205607626U (zh) * 2016-04-15 2016-09-28 中国科学院上海技术物理研究所 一种测量遥感仪器的线偏振灵敏度的装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
偏振灵敏度测试仪的技术研究;陈红波;《中国优秀硕士学位论文全文数据库 信息科技辑》;20080415(第4期);正文第10、14、15、26页 *

Also Published As

Publication number Publication date
CN105758625A (zh) 2016-07-13

Similar Documents

Publication Publication Date Title
CN105758625B (zh) 一种测量遥感仪器的线偏振灵敏度的装置及方法
Hauge et al. A rotating-compensator Fourier ellipsometer
US6384916B1 (en) Parallel detecting, spectroscopic ellipsometers/polarimeters
KR101590389B1 (ko) 광소자 회전형 분광타원계측기 및 광소자 회전형 분광타원계측기의 측정 정밀도 예측 방법, 이를 구현하기 위한 프로그램이 저장된 기록매체 및 이를 구현하기 위해 매체에 저장된 컴퓨터프로그램
CN103776537B (zh) 一种偏振光斯托克斯参量的测量装置及其优化方法
JPS6134442A (ja) 試料表面ないしは試料の表面膜層の物理的特性を検査するためのエリプソメトリ測定法とその装置
US20190317010A1 (en) Method for conducting optical measurement usingfull mueller matrix ellipsometer
CN110806266A (zh) 一种偏振态检测系统中偏振态分析器的选择方法
CN111060711B (zh) 一种基于斯托克斯矢量的光学转速测量系统及测量方法
Gao et al. Spatially modulated polarimetry based on a vortex retarder and Fourier analysis
US2829555A (en) Polarimetric method and apparatus
CN108519335A (zh) 一种基于弹光调制的光谱椭偏测量装置及方法
CN101738369B (zh) 相位差检测装置
CN205607626U (zh) 一种测量遥感仪器的线偏振灵敏度的装置
CN118243274A (zh) 一种衬底残余应力的光学无损检测系统及方法
EP0737856B1 (en) A method of investigating samples by changing polarisation
CN112903598B (zh) 一种椭偏测量系统中偏振元件方位角的差分光谱定标方法
El-Bahrawi et al. Birefringence of muscovite mica
CN201885837U (zh) 一种微弱应力检测装置
CN112284541B (zh) 一种绝对辐射与偏振联合的定标方法及装置
Naciri et al. Fixed polarizer, rotating-polarizer and fixed analyzer spectroscopic ellipsometer: accurate calibration method, effect of errors and testing
US3016789A (en) Polarimetric apparatus
CN107764748A (zh) 一种玻璃材料的线性双折射测量装置与方法
CN105784327A (zh) 用于测定复合零级波片装配误差的装置与方法
US3580681A (en) Apparatus for automatically measuring the properties of elliptically polarized light

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant