WO2013040776A1 - 退偏器 - Google Patents

退偏器 Download PDF

Info

Publication number
WO2013040776A1
WO2013040776A1 PCT/CN2011/079989 CN2011079989W WO2013040776A1 WO 2013040776 A1 WO2013040776 A1 WO 2013040776A1 CN 2011079989 W CN2011079989 W CN 2011079989W WO 2013040776 A1 WO2013040776 A1 WO 2013040776A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
mirror
splitting film
depolarizer
incident
Prior art date
Application number
PCT/CN2011/079989
Other languages
English (en)
French (fr)
Inventor
万俊康
Original Assignee
刘平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘平 filed Critical 刘平
Priority to PCT/CN2011/079989 priority Critical patent/WO2013040776A1/zh
Priority to CN201180008637.XA priority patent/CN102985870B/zh
Publication of WO2013040776A1 publication Critical patent/WO2013040776A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another

Definitions

  • the present invention relates to optical devices, and more particularly to a complex color depolarizer. Background technique
  • the depolarizer is used to convert linearly polarized light or elliptically polarized light into light of low degree of polarization, that is, the output light is uniformly distributed in the respective polarization directions.
  • Depolarizers are widely used in fiber-optic communication and sensing measurements to eliminate polarization-related effects during or during optical transmission. For example, in a Raman amplifier, the signal light can be amplified only by the polarization direction of the pump light. When the two are vertical, the gain is zero, so the pump light needs to be depolarized.
  • the spectrum of the laser always has a certain width and can be regarded as a complex color light source, so the complex color depolarizer has a wide range of applications.
  • the Lyot type depolarizer is one of the most common depolarizers. It is suitable for complex color light and can depolarize any line polarization and ellipsometry.
  • the depolarization method of the depolarizer is based on the principle that the beam of different wavelengths is dispersed in phase retardation when passing through the depolarizer, thereby achieving depolarization in the wavelength domain. Incident light with different wavelengths produces different phase delays after passing through the birefringent device, and the emitted light becomes elliptically polarized light with different ellipsometry. The whole beam is a combination of such random states, which makes the output light exhibit depolarization characteristics.
  • the depolarizer is made up of two birefringent devices in series.
  • the birefringent device can be realized by wave plate or by polarization-maintaining fiber.
  • the thickness (or length) ratio of the two devices is 2: 1, and the characteristic axis is clamped. The angle is 45 degrees.
  • the disadvantage of Lyot depolarizer is that it is bulky, such as 1480nm Raman pump light, bandwidth is 1nm, Lyot depolarizer must be at least 20m Panda polarization-maintaining fiber, or more than 10cm lithium niobate crystal can achieve low polarization. degree.
  • birefringent crystals or polarization-maintaining fibers are relatively expensive.
  • the technical problem to be solved by the present invention is to provide a depolarizer having a simple structure, a small volume, and a low cost in view of the defects of the prior art which are complicated in structure, large in volume, and high in cost.
  • the technical solution adopted by the present invention to solve the technical problem thereof is to provide a depolarizer comprising a light splitting film and a light guiding component and a polarization rotator disposed on the same side of the beam splitting film; wherein, the light splitting film The reflectivity is 25% to 43%, and the incident light is divided into the first reflected light and the first transmitted light at the incident point, and the splitting film is not perpendicular to the incident light;
  • the light guiding component guides the first transmitted light back to the incident point
  • the polarization rotator is disposed on an optical path between the beam splitting film and the light guiding component, and rotates a polarization state of the first transmitted light by an odd multiple of 90°, and the error tolerance is +/-22°. ;
  • the first transmitted light returned to the incident point passes through the light splitting film to form a second reflected light and a second transmitted light; the second transmitted light spatially coincides with the first reflected light on the same side, and merges a portion of the output light; the second reflected light enters a cycle along the optical path of the first transmitted light;
  • the light guiding assembly comprises two angled mirrors, and the first transmitted light is returned to the incident point by reflection of the two mirrors.
  • the two mirrors are respectively a plane mirror and a concave surface in an epitaxer according to an embodiment of the present invention
  • the light guiding assembly includes a mirror and is disposed on the beam splitting film a focusing lens with the mirror; the beam splitting film and the mirror are respectively located on an object plane and an image plane on both sides of the focusing lens; and the first transmitted light is refracted by the focusing lens The reflection of the mirror returns to the point of incidence.
  • the focusing lens is a self-focusing lens with a length of 0.49 pitches; the mirror is composed of a dielectric film and is directly plated on the end of the self-focusing lens away from the spectroscopic film. There is also a double-fiber collimator on the light incident side of the spectroscopic film, and the light-emitting surface of the collimator faces the spectroscopic film.
  • the light guiding assembly includes a mirror and a diamond wedge disposed between the mirror and the beam splitting film, the first transmitted light passing through the diamond light The refraction of the wedge and the reflection of the mirror return to the point of incidence.
  • the mirror is a plane mirror or a concave mirror.
  • the light guiding component is an isosceles triangular wedge, and a bottom surface of the isosceles triangular wedge is parallel to the spectroscopic film; the first transmitted light passes through the The isosceles of the waist triangle wedge are reflected back to the point of incidence.
  • the polarization rotator is an optically active crystal or a chiral liquid crystal or a magneto-optical device.
  • the polarization rotator is an optical rotatory crystal
  • the optical rotatory crystal is a quartz optical rotator.
  • the magneto-optical device when the polarization rotator is a magneto-optical device, the magneto-optical device is a Faraday rotator with a magnetic tube.
  • the invention has the beneficial effects that the invention uses the beam splitting film to divide the incident polarized light into an infinite number of beams with decreasing intensity, rotates the polarization states of the respective beams by different angles by means of an optical rotatory device, and finally combines all the beams with a light guiding device. Output together, so that the energy of the output light polarized in all directions is evenly distributed to achieve the effect of depolarization.
  • the depolarization principle of the invention is simple, and only the spectroscopic film, the light guiding component and the polarizing optical rotating sheet are included in the structure of the depolarizer, so the structure is simple and the cost is low; in addition, the structure of the depolarizer only needs to satisfy the optical path difference of the two beams. It is larger than the coherence length, so it is small in size.
  • FIG. 1 is a schematic structural view of a depolarizer according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural view of a depolarizer according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic structural view of a depolarizer according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic structural view of a depolarizer according to Embodiment 4 of the present invention.
  • Figure 5 is a schematic structural view of a depolarizer according to Embodiment 5 of the present invention
  • 6 is a schematic structural view of a depolarizer according to Embodiment 6 of the present invention
  • Figure 7 is a schematic structural view of a depolarizer according to Embodiment 7 of the present invention.
  • Embodiment 8 is a schematic structural view of a depolarizer according to Embodiment 8 of the present invention.
  • the depolarizer according to the embodiment of the present invention includes a beam splitting film 1, a light guiding unit 2, and a polarization rotatory device 3.
  • the light guiding unit 2 and the polarization rotatory unit 3 are disposed on the same side of the beam splitting film 1.
  • the spectroscopic film 1 may be selected from commercially available spectroscopic films, which are usually plated with materials such as silica, yttria and zirconia.
  • the reflectance of the spectroscopic film 1 is 25% to 43%, that is, the transmittance is 57% to 75%, when the incident beam I is incident.
  • the transmissive film 1 has a transmission/reflection ratio of 75:25 to 57:43, preferably a transmission/reflection ratio of 2:1, that is, a reflectance. 33.3%.
  • Light directing assembly 2 includes one or more optical components, such as mirrors, wedges, and/or focusing lenses, etc., and specific structural arrangements will be described in the embodiments.
  • the light guiding member 2 is for guiding the light beam T ⁇ transmitted from the spectroscopic film 1 through the polarization rotator 3 and returning to the incident point ⁇ on the spectroscopic film 1, thereby causing the beam to complete an optical path cycle.
  • a part of the light beam returning to the incident point ⁇ of the spectroscopic film 1 is transmitted through the spectroscopic film 1 to form a second transmitted light which is emitted from the spectroscopic film 1 (ie, an outgoing beam), and the second transmitted light T 2 is on the same side
  • the first reflected light is combined into a bundle to form an output beam of the depolarizer; another portion of the beam returning to the incident point A of the spectroscopic film 1 is reflected to form the second reflected light R 2 and will be under the action of the light guiding assembly 2
  • the next optical path is circulated by the polarization rotator 3, and the transmission/reflection ratio is still 75:25 to 57:43, preferably 2:1.
  • the light beam is continuously circulated between the beam splitting film 1, the light guiding unit 2, and the polarization rotatory device 3.
  • the optical path difference between the outgoing beam T 2 and the reflected beam is larger than the incident light I.
  • the coherence length that is, the optical path of the primary beam path of the transmitted beam is greater than the coherence length described above, Therefore, when the first transmitted light ⁇ is again transmitted through the optical splitting film 1 after a plurality of optical paths to form an outgoing beam, the optical path difference between the first transmitted light and the reflected beam is also necessarily greater than the coherence length.
  • the polarization rotator 3 is disposed on the optical path between the beam splitting film 1 and the light guiding component 2, and may be an optical crystal or a chiral liquid crystal or a magneto-optical device for rotating the polarization state of the passing light beam (90° + N*) 180° +1-11. ) Angle, where N is a positive integer, in other words, the light polarization state of the passing beam is rotated by an odd multiple of 90° with an allowable error of +/- 22°. At this time, the light beam may pass through the polarization rotator 3 one or more times, so that the light polarization state of the light beam is rotated at different angles. At the same time, appropriate polarization rotatory devices with different optical rotation angles should be selected according to the number and angle of beam passing.
  • the light guiding member 2 includes a plurality of mirrors which are high mirrors.
  • the mirror here comprises a mirror and/or a concave mirror.
  • the polarization rotator 3 is located between at least one of the mirrors and the beam splitting film 1, and the polarization rotator 3 is, for example, an optically active crystal or a chiral liquid crystal or a magneto-optical device.
  • the light guiding assembly 2 includes two plane mirrors 21 and 22 at an angle, and the polarization rotator 3 is disposed between the beam splitting film 1 and the two plane mirrors 21, 22.
  • the first transmitted light is formed into an isosceles triangle optical path between the spectroscopic film 1 and the light guiding component 2 after being twice reflected by the plane mirrors 21, 22, and then returns to the incident point A to generate the second reflected light R 2 and the second transmitted light. T 2 .
  • the second transmitted aperture 2 spatially coincides with the first reflected light and merged into one beam; the second reflected light R 2 and the first transmitted light 1 ⁇ spatially coincide with each other, and continuously circulate along the 1 ⁇ track. Finally, all of the energy is transmitted from the spectroscopic film 1 and combined into output light.
  • FIG. 2 is a schematic structural view of a depolarizer according to Embodiment 2 of the present invention, wherein the light guiding component 2 includes a plane mirror 21 and a concave mirror 23, which are disposed in such a manner that the optical path between the beam splitting film 1 and the light guiding component 2 is The isosceles triangle, so that the transmitted beam can return to the point of incidence A.
  • the arrangement of the polarization rotator 3 is similar to that in Embodiment 1, and will not be described again.
  • the light guiding component 2 can also include three or more mirrors, as shown in FIG. 3 is a schematic structural view of a depolarizer according to Embodiment 3 of the present invention, which is different from Embodiment 1 in that the light guide assembly 2 further includes a concave mirror 23 disposed between the plane mirrors 21, 22 and the beam splitting film 1, a concave mirror 23 faces the mirror surface of the plane mirrors 21, 22.
  • the arrangement of the polarization rotator 3 is similar to that in Embodiment 1, and will not be described again. Only in this configuration, the beam is passed through the polarization rotator 3 two or three or four times by setting the position of the polarization rotator 3. The light beam shown in Figure 3 passes back and forth through the polarization rotator 3 three times.
  • the light guiding assembly 2 includes a mirror and a focusing lens.
  • the mirror is a high-reflection mirror, and all the light is reflected after the incident beam.
  • the mirror is a plane mirror, and it can also be a concave mirror or a convex mirror.
  • the focus lens is disposed between the beam splitting film 1 and the mirror, and may be a self-focusing lens or a convex lens.
  • the polarization rotator 3 is located at any position on the optical path between the spectroscopic film 1 and the mirror as long as the light beam can pass.
  • the polarization rotator 3 is preferably a magnetic rotator.
  • the light guide assembly 2 includes a plane mirror 21 and a convex lens 25 disposed between the plane mirror 21 and the beam splitting film 1, and the beam splitting film 1 and the plane mirror 21 are respectively placed at positions of the object and the image on both sides of the convex lens 25.
  • the light scattered by the point A of the spectroscopic film is concentrated by the convex lens 25 at the plane mirror 21, i.e., imaged on the plane mirror 21.
  • the angle of the plane mirror 21 is adjusted such that the first transmitted light passes through the convex lens 25 and returns to point A to form a circulating optical path as described above.
  • the polarization rotator 3 is realized by the Faraday piece 32, and a magnetic ring 321 is placed over the Faraday piece 32.
  • the convex lens 25 in FIG. 4 is replaced by a self-focusing lens 29.
  • the length of the self-focusing lens 29 is 0.49 pitch, and the refractive index is distributed along the center of the circle, and the light is advanced along the curve as shown.
  • the mirror 21 is composed of a dielectric film which is directly plated on the end face of the self-focusing lens 29.
  • the spectroscopic film 1 is also plated on the light-emitting surface of the collimator self-focusing lens.
  • the Faraday piece 32 and the magnetic tube 321 remain unchanged. Comparing Fig. 4, a double fiber collimator 4 is further added to form a pigtail type depolarizer.
  • the collimator 4 is composed of two optical fibers 41, a 0.25 pitch self-focusing lens 42 and a fixing device 43.
  • the fixing device 43 is bonded by a capillary glass tube and a glass tube.
  • the incident light from the depolarizer is input by one of the fibers, and the output light (including, ⁇ 2 , ⁇ 3 , ⁇ 4 ...) is coupled into the other fiber.
  • the above is only a few examples, and is not intended to limit the invention, and there are many related combinations, which are not described in detail herein.
  • the light guiding component 2 comprises a mirror and a wedge, wherein the wedge is located between the at least one mirror and the beam splitting film 1; in another case, the light guiding component 2 comprises only the wedge .
  • the polarization rotator 3 is an optically active crystal or a chiral liquid crystal or a magneto-optical device, which is similar to the arrangement in the above embodiment, and will not be described again.
  • the light guiding member 2 includes a concave mirror 22 and a diamond wedge 27 disposed between the beam splitting film 1 and the concave mirror 22.
  • the transmitted beam passes through the transmission of the diamond wedge 27 and the reflection from the concave mirror 22, and returns to the origin to complete an optical path cycle.
  • the light guide assembly includes only one isosceles triangular glass wedge 26.
  • the wedge 26 is made of a transparent substance such as BK7 glass.
  • the two isosceles of the wedge 26 act as a mirror, the light is incident on the isosceles, and the isosceles acts as a mirror.
  • the polarization rotator is a magnetic rotator 32 located between the beam splitting film 1 and the distal wedge 26 as long as the beam can pass.
  • the light guide assembly includes only one isosceles triangular glass wedge 26.
  • the wedge 26 is made of a transparent substance such as BK7 glass.
  • the two isosceles of the wedge 26 act as a mirror, the light is incident on the isosceles, and the isosceles acts as a mirror.
  • the polarization rotator is composed of two optical crystals 331 and 332.
  • the optically active crystals 331 and 332 have opposite optical directions, one being a left-handed crystal and one being a right-handed crystal, each rotating 45 °.
  • the optical rotation crystals 331 and 332 are located between the spectral film 1 and the distal wedge 26, and the light passes through the optical rotation crystals 331 and 332 in the opposite directions in one cycle.
  • the wedge can be used not only with a mirror, but also with a variety of optics such as mirrors and/or focusing lenses.
  • the light guiding member 2 may include a plurality of optical devices, and by combining the optical devices, the light beam is returned to the light-splitting film 1 after being circulated through an optical path.
  • the above embodiments are only used as examples and are not intended to limit the invention.
  • the light guide assembly 2 may also be other types of structural arrangements, and thus variations and equivalents based thereon are intended to be within the scope of the present invention. In the actual situation, from In terms of cost and implementation, it should be the simplest structure, the lowest cost, and the easiest to implement.
  • the polarization rotator 3 taking the embodiment 1 as an example, when the quartz rotator 31 is used, the light polarization state of the beam is rotated by 90° as an example. The beam in FIG.
  • the quartz rotator 1 passes through the quartz rotator once, so it should be selected at this time.
  • a quartz optical rotating sheet with an optical rotation angle of 90° If the beams pass through the quartz rotator once in opposite directions, the two rotations cancel each other out, and the quartz rotator does not function, which is equivalent to a zero pass of the beam.
  • the light beam shown in Fig. 3 passes through the quartz optical rotating sheet 31 three times, which corresponds to a net passage number of the light beam of 1, so that a quartz optical rotating sheet having an optical rotation angle of 90° is still selected. Therefore, in the setting, it is necessary to ensure that the net passage number of the light beam passing through the quartz optical rotating sheet is greater than zero.
  • the optical rotation angle of the quartz optical rotator can be expressed as (90° + N * 180°) / k. If the error allowed in the project is considered, the optical rotation angle range is (90 ° + N * 180 ° -22 ° ) / k to (90° + N * 180 ° + 22 °) / k.
  • the polarization rotator 3 can also be a chiral crystal or a magneto-optical device (for example, a Faraday rotator with a magnetic tube), wherein the chiral crystal is similar to the optical illuminating crystal and will not be described again.
  • the Faraday rotator with a magnetic tube is different.
  • the optical rotation angle of the Faraday rotator 32 can be expressed as (90° + N*180°). I (m+n), where m and n are non-negative integers, respectively representing the number of times the beam passes through the Faraday rotator in the opposite direction.
  • the range of the optical rotation angle is (90° + N * 180 ° -22 °) I (m + n) to (90 ° + N * 180 ° + 22 °) I (m + n) o
  • the polarization rotator described above is a single device, and the polarization rotator may also be a combination of a plurality of optical rotators, such as in Embodiment 8.
  • the polarization rotator comprises two crystal rotators, one of which is a left-handed crystal, and the other of which is a right-handed crystal 332.
  • the sum of the rotation angles of the two is 90 degrees, such as a left-handed 45-degree right-handed 45-degree; or a left-handed 30-degree right-handed 60-degree and so on.
  • one of the crystals can also be a Faraday piece, as long as the combined effect of the two optical rotations is 90 degrees.
  • the depolarizer needs to have a pigtail, which can be used in the beam splitting film.
  • One side is added with a double fiber collimator to form a pigtail type depolarizer, as shown in FIG.
  • Embodiment 1 the optical path in the depolarizer according to the embodiment of the present invention is also depicted in FIG.
  • the initial incident light is incident on the spectroscopic film at an incident angle ⁇ , and the transmission angle is ⁇ , where ⁇ and ⁇ are >0.
  • the incident light is marked as I.
  • the first reflected light is labeled Ri
  • the first transmitted light is labeled
  • the first transmitted light leaves the spectroscopic film 1 and is reflected by the light guiding unit 2 to return to the spectroscopic film 1, and passes through the polarization rotator 3 in the middle, and the polarization state is rotated by 90°.
  • the first transmitted light transmitted through the polarization rotator 3 is marked to distinguish the change in the polarization state, and returns to the spectroscopic film 1 to cause reflection and transmission, thereby completing one optical path cycle.
  • Characteristics of the optical path cycle The incident angle is ⁇ , and the transmission angle is equal; the incident point and the ⁇ exit point coincide, both are points A, and Ii, 1 scoop of the incident normal and 1 ⁇ in a plane.
  • a second reflected beam and a second transmitted beam T 2 are formed after passing through the beam splitting film 1. Since the incident angle is ⁇ , the incident point is a defect, and the normal and T ⁇ are in one plane, the second transmitted light 11 ⁇ 2 will spatially coincide with the first reflected light to form a bundle, and the second reflected light R 2 advancing along the trajectory of the first transmitted light T ⁇ , entering the next optical path cycle, and continuously circulating, thereby having I 2 , T 3 , R 3 , I 3 , T 4 , R 4 , ⁇ 4 , ⁇ 5 , R 5 , ..., and so on.
  • the working principle and effect of this new type of depolarizer can be accurately derived by multi-beam interference, but the process is more complicated.
  • the coherence length theory is used below to explain the depolarization effect, and the process is simple but does not affect the accuracy of the results.
  • the structure design of the depolarizer ensures that the optical path length L of one cycle is longer than the coherence length Lc of the incident polarized light source, so the light reflected by the spectroscopic film and the multiple transmissions are not coherent, and the power phase can be directly performed regardless of the phase relationship. plus.
  • the polarization rotator 3 exchanges the energy in the XY direction once, and 2/3 of the light energy is transmitted from the spectroscopic film 1, leaving 1/3 to continue the cycle.
  • the table below shows the light energy at each incident, reflection, and transmission.
  • equations (1) and (2) can represent any incident polarized light.
  • the incident light is decomposed into the X-axis Y-axis component along the fast and slow axis of the ellipsometric light.
  • the definition of the XY axis is not necessary.
  • the energy of any polarization can be decomposed into two components of arbitrary vertical. The two vertical directions are the X and Y axes, and the two energy components are a and b. In this case, the above analysis and formula (1) and (2) Still established.
  • the conclusion is that whether the incident light is linear, elliptically polarized or circularly polarized, the output light is in use.
  • the energy in any one of the polarization directions is equal, that is, the exiting light does not have any polarization direction dominant, and the depolarization is successfully achieved.
  • the splitting ratio and the optical rotation angle are not absolutely equal to the ideal values of 1/3 and 90°, and the present invention does not require an absolute accurate value. Instead, the present invention has a wide tolerance for engineering. It can be easily implemented, which increases reliability and reduces costs. The following will be discussed in detail when the spectroscopic film 1 has other reflectances, or the optical rotation angle cannot be accurately reached to 90°.
  • the depolarization effect of the depolarizer can be expressed by the degree of polarization of the output light, and its value range is [0, 1]. 0 means complete depolarization, 1 means no depolarization at all, if it is 0.1, it means that 10% of the light is still polarized, and it can be considered that the depolarization effect is achieved when the degree of polarization is less than 20%.
  • the degree of polarization of the device is calculated using the full polarization extinction ratio test method. The basic principle is that the input light is linearly polarized and the analyzer is connected to the output.
  • Constantly adjust the polarization direction of the input light change the polarization direction of the input light every time, rotate the analyzer for one week, and record a set of maximum/minimum analyzer output power.
  • the polarization direction of the input light is rotated by 180°, and the maximum output light intensity I max in the data is selected.
  • the minimum output intensity I min is the polarization degree DOP of the device is ' ⁇ (see Song Shixia, Monochrome Optical Depolarizer and Wave Plate Depolarization). Research on Effects, p. 8, Ph.D., Master's Thesis, 2009).
  • There is no birefringent material in the depolarizer of the present invention so the polarization direction of the input light is isotropic, and only the analyzer rotation needs to be analyzed. In other words, the polarization component in each direction can be analyzed.
  • the incident light I is assumed. It is linearly polarized, and there is no loss in the optical path during transmission.
  • the output light of the depolarizer according to the embodiment of the present invention is at any angle ⁇ polarization state energy is:
  • the enthalpy is in the range of 68°-112°, and the DOP is less than 20%, of which 90.
  • the DOP is 0.
  • the angle represents a clockwise rotation of 68°-112°, and the resulting depolarization effect is the same.
  • the transmittance of the spectroscopic film 1 is not optimal 2/3, but other values, but the optical rotation angle is accurately 90°, the incident light I is assumed. It is linearly polarized and there is no loss in the optical path during transmission.
  • Table 3 can be calculated according to the same formula (3). It can be seen from Table 3 that when the reflectance R is in the range of 25% to 43%, the degree of polarization DOP is lower than 0.2, and the polarization degree DOP is the lowest when it is close to 33.3%, and the overall depolarization effect is ideal.
  • the depolarizer according to the present invention, common optical devices such as mirrors, focusing lenses and/or wedges are used, which are simple in structure, low in cost, and small in size; It can be seen from the principle of the device that the depolarizer is suitable for linear polarized light, elliptically polarized light or circularly polarized light, and has wide application range.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

一种退偏器,包括分光膜(1)、以及设置在分光膜同一侧的导光组件(2)和偏振旋光装置(3);分光膜的反射率为25%~43%,在入射点(A)处将入射光(I0)分为第一反射光(R1)和第一透射光(T1),分光膜不垂直于入射光;导光组件将第一透射光引导回到入射点;偏振旋光装置设置在分光膜与导光组件之间的光路上,将第一透射光的光偏振态旋转90°的奇数倍,误差容限为+/-22°;其中,返回至入射点的第一透射光通过分光膜后形成第二反射光(R2)和第二透射光(T2);第二透射光与第一反射光合并为输出光;第二反射光沿着第一透射光的光路进入循环;第二透射光与第一反射光的光程差大于入射光的相干长度。退偏器采用较少的普通光学元件即可实现,具有结构简单、成本低且体积小的优点。

Description

退偏器 技术领域
本发明涉及光学器件, 尤其涉及一种复色退偏器。 背景技术
退偏器用于将线偏振光或椭偏光转化为低偏振度的光,即输出光在各个偏 振方向上能量均匀分布。退偏器广泛的应用于光纤通信和传感测量当中,用来 消除光传输过程中或者探测过程中的偏振相关效应。 比如在拉曼放大器中, 信 号光只有和泵浦光偏振方向一致才能放大, 当两者垂直时增益为零,所以泵浦 光需要退偏。激光的频谱总有一定的宽度, 可以看作复色光源, 所以复色退偏 器有着广泛的应用。
对复色光退偏, Lyot 型的退偏器是使用最普遍的退偏器之一。 它适用于 复色光, 可以对任意的线偏光、椭偏光退偏。这种退偏器的退偏方法是基于不 同波长的光束在通过退偏器时相位延迟弥散, 从而在波长域上实现退偏的原 理。具有不同波长的入射光, 通过双折射器件后产生不同的相位延迟, 出射光 成为具有不同椭偏率的椭圆偏振光, 整个光束就是这种随机状态的合成, 使输 出光呈现退偏特性。这种退偏器由两个双折射器件串联而成,双折射器件可以 用波片实现也可以用保偏光纤实现, 两器件的厚度 (或长度)比为 2: 1, 且特征 轴的夹角为 45度角。 Lyot退偏器的缺点是体积大, 比如 1480nm拉曼泵浦光, 带宽为 lnm, Lyot退偏器至少要 20米以上熊猫保偏光纤, 或超过 10厘米的 铌酸锂晶体才能实现低的偏振度。 而且双折射晶体或者保偏光纤都比较昂贵。
也有用一段双折射晶体或保偏光纤产生相位延迟, 如公告日为 2003年 1 月 8 日、 公告号为 CN2530368Y的中国专利 "一种光的偏振合波与消偏的混 合器件"。这种退偏器虽然比 Lyot退偏器少用双折射晶体或保偏光纤, 体积也 小点,但是只能对特定的偏振态退偏。如果一个系统中需要对多个激光器退偏, 则体积和成本都不具有优势。而且它还是要用到双折射晶体或保偏光纤, 成本 也不便宜。 发明内容
本发明要解决的技术问题在于针对现有技术中结构复杂、体积大以及成本 高的缺陷, 提供一种结构简单、 体积小且成本低的退偏器。
本发明解决其技术问题所采用的技术方案是:提供了一种退偏器,包括分 光膜、 以及设置在所述分光膜同一侧的导光组件和偏振旋光装置; 其中, 所述分光膜的反射率为 25%~43%, 在入射点处将入射光分为第一反射光 和第一透射光, 分光膜不垂直于入射光;
所述导光组件将所述第一透射光引导回到所述入射点;
所述偏振旋光装置设置在所述分光膜与所述导光组件之间的光路上,将所 述第一透射光的光偏振态旋转 90° 的奇数倍, 误差容限为 +/-22° ;
其中满足:
返回至所述入射点的第一透射光通过所述分光膜后形成第二反射光和第 二透射光; 所述第二透射光与同侧的所述第一反射光在空间上重合, 合并为输 出光的一部分; 所述第二反射光沿着所述第一透射光的光路进入循环;
所述第二透射光与所述第一反射光的光程差大于入射光的相干长度。 在依据本发明实施例的退偏器中, 所述导光组件包括两个成夹角的反射 镜, 所述第一透射光通过两个所述反射镜的反射后返回至所述入射点。
在依据本发明实施例的退偏器中, 两个所述反射镜分别为平面镜和凹面 在依据本发明实施例的退偏器中,所述导光组件包括反射镜和设置在所述 分光膜与所述反射镜之间的聚焦透镜;所述分光膜和所述反射镜分别位于所述 聚焦透镜两侧的物平面和像平面上;所述第一透射光通过所述聚焦透镜的折射 和反射镜的反射后返回至所述入射点。
在依据本发明实施例的退偏器中, 所述聚焦透镜为自聚焦透镜, 长度为 0.49个节距; 反射镜由介质膜构成, 直接镀在自聚焦透镜远离分光膜的那一端 面;且在分光膜的入光侧还有一个双光纤准直器,准直器的出光面朝着分光膜。 在依据本发明实施例的退偏器中,所述导光组件包括反射镜和设置在所述 反射镜和所述分光膜之间的菱形光楔,所述第一透射光通过所述菱形光楔的折 射和反射镜的反射后返回至所述入射点。
在依据本发明实施例的退偏器中, 所述反射镜为平面镜或凹面镜。
在依据本发明实施例的退偏器中,所述导光组件为等腰三角形光楔,所述 等腰三角形光楔的底面与所述分光膜平行;所述第一透射光通过所述等腰三角 形光楔的等腰面反射回所述入射点。
在依据本发明实施例的退偏器中,所述偏振旋光装置为旋光晶体或手性液 晶或磁旋光装置。
在依据本发明实施例的退偏器中, 当所述偏振旋光装置为旋光晶体时,所 述旋光晶体为石英旋光片。
在依据本发明实施例的退偏器中, 当所述偏振旋光装置为磁旋光装置时, 所述磁旋光装置为带磁管的法拉第旋光片。
本发明产生的有益效果是:本发明利用分光膜将入射的偏振光分成强度递 减的无穷多束,通过旋光装置将各束光偏振态旋转不同角度, 最后再用导光装 置将所有的光束合并在一起输出, 使得输出光在各个方向偏振的能量均匀分 布, 达到退偏的效果。 本发明退偏原理简单, 退偏器的结构中只有分光膜、 导 光组件和偏振旋光片, 因此结构简单且成本低; 另外, 退偏器的结构上只需要 满足两束光的光程差大于相干长度即可, 因此体积小。 附图说明
下面将结合附图及实施例对本发明作进一步说明, 附图中:
图 1是依据本发明实施例 1的退偏器的结构示意图;
图 2是依据本发明实施例 2的退偏器的结构示意图;
图 3是依据本发明实施例 3的退偏器的结构示意图;
图 4是依据本发明实施例 4的退偏器的结构示意图;
图 5是依据本发明实施例 5的退偏器的结构示意图; 图 6是依据本发明实施例 6的退偏器的结构示意图;
图 7是依据本发明实施例 7的退偏器的结构示意图;
图 8是依据本发明实施例 8的退偏器的结构示意图; 具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白, 以下结合附图及实 施例, 对本发明进行进一步详细说明。应当理解, 此处所描述的具体实施例仅 用以解释本发明, 并不用于限定本发明。
如图 1所示, 依据本发明实施例的退偏器包括分光膜 1、 导光组件 2和偏 振旋光装置 3, 导光组件 2和偏振旋光装置 3均设置在分光膜 1的同一侧。 其 中, 分光膜 1选用市面上常用的分光膜即可, 其通常由二氧化硅、氧化钽和氧 化锆等材料镀成。 分光膜 1的反射率为 25%~43%, 即透过率为 57%~75%, 当 入射光束 I。以一定角度 (例如角 φ, φ>0) 入射到分光膜 1上的入射点 Α时, 一部分光束在分光膜 1的表面反射形成第一反射光 Ri, 反射角与入射角相等, 剩余光束穿过分光膜 1 以一定的透射角发生透射形成第一透射光 T 此时分 光膜 1 的透射 /反射比为 75:25〜57:43, 优选透射 /反射比为 2: 1, 即反射率为 33.3%。 导光组件 2包括一个或多个光学器件, 例如反射镜、 光楔和 /或聚焦透 镜等, 具体结构设置将在实施例中进行描述。 导光组件 2用于引导从分光膜 1 透射进来的光束 T\通过偏振旋光装置 3并返回至分光膜 1上的入射点 Α, 从 而使该光束完成一次光路循环。 返回至分光膜 1的入射点 Α的光束 ^的一部 分穿过分光膜 1发生透射, 从而形成第二透射光 从分光膜 1射出 (即出射 光束), 该第二透射光 T2与同侧的第一反射光 合成一束, 构成退偏器的输 出光束; 返回至分光膜 1的入射点 A的光束 ^的另一部分发生反射形成第二 反射光 R2, 并将在导光组件 2的作用下通过偏振旋光装置 3 以进行下一次光 路循环, 此时透射 /反射比仍为 75:25〜57:43, 优选为 2: 1。 从以上可以看出, 将有光束在分光膜 1、 导光组件 2和偏振旋光装置 3之间不断进行光路循环。 在导光组件 2的设置过程中, 需要满足出射光束 T2与反射光束 的光程差大 于入射光 I。的相干长度, 即透射光束一次光路循环的光程大于上述相干长度, 因此当第一透射光 τ\经过多次光路循环后再次透射出分光膜 1 以形成出射光 束时, 其与反射光束 的光程差也必然大于相干长度。 偏振旋光装置 3设置 在分光膜 1与导光组件 2之间的光路上,可以为旋光晶体或手性液晶或磁旋光 装置, 用于将通过的光束的光偏振态旋转 (90° +N*180° +1-11。 ) 角度, 其 中 N为正整数, 换句话说, 将通过的光束的光偏振态旋转 90° 的奇数倍, 容 许的误差为 +/-22° 。 此时, 光束可以通过偏振旋光装置 3 —次或多次, 从而 使得光束的光偏振态旋转角度不同。同时,也应该根据光束通过的次数和角度, 选择合适的具有不同旋光角度的偏振旋光装置。
下面将在实施例中具体讨论退偏器的结构。 首先, 对于导光组件 2, 在第 一组实施例 (实施例 1-3 ) 中, 导光组件 2包括多个反射镜, 该反射镜为高反 镜。 此处反射镜包括平面镜和 /或凹面镜。 偏振旋光装置 3位于其中至少一个 反射镜与分光膜 1之间,此时偏振旋光装置 3例如为旋光晶体或手性液晶或磁 旋光装置。
实施例 1
图 1是依据本发明实施例 1的退偏器的结构示意图。如图 1所示, 导光组 件 2包括成一定夹角的两个平面镜 21和 22, 偏振旋光装置 3设置在分光膜 1 与两个平面镜 21、 22之间。 第一透射光 ^经过平面镜 21、 22两次反射之后 在分光膜 1与导光组件 2之间形成为等腰三角形的光路, 而后返回入射点 A 产生第二反射光 R2和第二透射光 T2。 第二透射光 Τ2与第一反射光 在空间 上重合, 合并为一束光; 第二反射光 R2与第一透射光 1\在空间上重合, 沿着 1\轨迹不断循环。 最后所有的能量从分光膜 1透射出去合并成输出光。
实施例 2
当然, 导光组件 2也可以是采用其它设置, 如图 2所示。 图 2是依据本发 明实施例 2的退偏器的结构示意图, 其中, 导光组件 2包括平面镜 21和凹面 镜 23, 两者配合设置, 使得分光膜 1与导光组件 2之间的光路为等腰三角形, 从而透射光束可以返回入射点 A。而偏振旋光装置 3的设置与实施例 1中类似, 不再赘述。
实施例 3 当然, 导光组件 2也可以包括三个或三个以上的反射镜, 如图 3所示。 图 3是依据本发明实施例 3的退偏器的结构示意图, 与实施例 1的区别在于, 导 光组件 2还包括设置在平面镜 21、 22与分光膜 1之间的凹面镜 23, 凹面镜 23 与平面镜 21、 22的镜面相向。 而偏振旋光装置 3的设置与实施例 1中类似, 不再赘述。只不过在这种结构中,通过设置偏振旋光装置 3的位置使得光束通 过偏振旋光装置 3两次或三次或四次。图 3中所示的光束来回通过偏振旋光装 置 3三次。
在第二组实施例 (实施例 4和 5 ) 中, 导光组件 2包括一个反射镜和一个 聚焦透镜。反射镜为高反镜,光束入射后全部发生反射,此处反射镜为平面镜, 也可以为凹面镜或凸面镜。聚焦透镜设置在分光膜 1与反射镜之间, 可为自聚 焦透镜或凸透镜。偏振旋光装置 3位于分光膜 1与反射镜之间的光路上的任意 位置处, 只要光束能通过即可。 此处偏振旋光装置 3最佳为磁旋光装置。
实施例 4
如图 4所示, 导光组件 2包括平面镜 21和设置在平面镜 21与分光膜 1 之间的凸透镜 25, 分光膜 1和平面镜 21分别放置在该凸透镜 25的两侧物与 像的位置处, 满足一般的透镜成像规律。 分光膜 A点散射的光经凸透镜 25会 聚于平面镜 21处, 即成像于平面镜 21上。 调整平面镜 21的角度, 使得第一 透射光 ^经凸透镜 25后回到 A点, 形成如前所述循环光路。 偏振旋光装置 3 由法拉第片 32实现, 且在法拉第片 32的外面套着一个磁环 321。
实施例 5
如图 5所示, 图 4中的凸透镜 25被自聚焦透镜 29代替。 自聚焦透镜 29 的长度为 0.49节距, 折射率沿着圆心呈递减分布, 光线在里面如图所示沿曲 线前进。 此外反射镜 21由介质膜构成, 它被直接镀在自聚焦透镜 29的端面。 最后,分光膜 1也被镀在准直器自聚焦透镜出光面上。法拉第片 32和磁管 321 保持不变。 对比图 4, 还加多了一个双光纤准直器 4做成尾纤型退偏器。 准直 器 4由两根光纤 41、 一个 0.25节距的自聚焦透镜 42和固定装置 43构成, 通 常固定装置 43由一根毛细玻璃管和一根玻璃管粘结而成。 退偏器入射光由其 中一根光纤输入, 输出光(包括 、 Τ2、 Τ3、 Τ4……)被耦合进另外一根光纤。 以上仅给出了几种示例, 并不是对本发明的限制, 相关的组合还有多种, 此处 不再详细描述。
在第三组实施例中, 一种情况是导光组件 2包括反射镜和光楔, 其中光楔 位于至少一个反射镜与分光膜 1之间; 另一种情况是导光组件 2只包括光楔。 此处偏振旋光装置 3为旋光晶体或手性液晶或磁旋光装置,与以上所述实施例 中的设置类似, 不再赘述。
实施例 6
如图 6所示, 导光组件 2包括凹面镜 22和设置在分光膜 1与凹面镜 22 之间的菱形光楔 27。 透射光束经过菱形光楔 27的透射和凹面镜 22的反射后 回到原点, 完成一次光路循环。
实施例 7
如图 7所示, 导光组件只包括一个等腰三角玻璃光楔 26。 光楔 26由透明 物质做成, 如 BK7玻璃。 光楔 26的两个等腰面充当反射镜子, 光入射到等腰 面上发生全反射, 等腰面起到镜子的作用。 偏振旋光装置为磁旋光装置 32, 位于分光膜 1与远端的光楔 26之间, 只要光束能通过即可。
实施例 8
如图 8所示, 导光组件只包括一个等腰三角玻璃光楔 26。 光楔 26由透明 物质做成, 如 BK7玻璃。 光楔 26的两个等腰面充当反射镜子, 光入射到等腰 面上发生全反射, 等腰面起到镜子的作用。 偏振旋光装置由两片旋光晶体 331 和 332构成。旋光晶体 331和 332旋光方向相反, 一个为左旋晶体, 一个为右 旋晶体, 两者各旋转 45 ° 。 旋光晶体 331和 332位于分光膜 1与远端的光楔 26之间, 在一个循环内光以相反的方向各通过旋光晶体 331、 332—次。
当然, 光楔不仅可以配合反射镜使用, 光楔还可配合反射镜和 /或聚焦透 镜等多种光学器件一同使用。
从以上可以看出,导光组件 2可包括多个光学器件,通过对光学器件的组 合设置, 使得光束经过一个光路循环后返回至分光膜 1上。 以上实施例仅用作 示例, 并不是对本发明的限制, 导光组件 2还可以是其它类型的结构设置, 因 此在此基础上的变形和等同都应在本发明的保护范围之内。在实际情况中, 从 成本和实现角度而言,应当是结构最简单、成本最低以及最容易实现的为最优。 对于偏振旋光装置 3而言, 以实施例 1为例, 当采用石英旋光片 31时, 以光束的光偏振态旋转 90° 为例, 图 1 中光束通过石英旋光片一次, 因此此 时应当选用旋光角度为 90° 的石英旋光片。 如果光束以相反方向各通过石英 旋光片一次, 则两次通过后旋光作用相互抵消, 石英旋光片没有发挥作用, 相 当于光束的净通过次数为 0。 又以实施例 3为例, 图 3中所示的光束通过石英 旋光片 31三次,相当于光束的净通过次数为 1,因此仍然选用旋光角度为 90° 的石英旋光片。 因此在设置中要确保光束通过石英旋光片的净通过次数大于 零, 为描述方便, 将净通过次数表示 k=m-n, 其中 m和 n为非负整数, 分别 表示光束以相反方向通过石英旋光片的次数。这样石英旋光片的旋光角度即可 表示为(90° +N*180° ) /k, 如果考虑工程当中容许的误差则旋光角度范围为 (90° +N*180° -22° ) /k至 (90° +N*180° +22° ) /k。 当然, 在本实施例 中偏振旋光装置 3还可选用手性晶体或磁旋光装置(例如带磁管的法拉第旋光 片), 其中手性晶体与旋光晶体类似, 不再赘述。 而带磁管的法拉第旋光片则 不同, 以实施例 5为例, 当采用带磁管 321的法拉第旋光片 32时, 法拉第旋 光片 32的旋光角度即可表示为 (90° +N*180° ) I (m+n), 其中 m和 n为非 负整数, 分别表示光束以相反方向通过法拉第旋光片的次数。如果考虑工程当 中容许的误差则旋光角度范围为 (90° +N*180° -22° ) I (m+n) 至 (90° +N*180° +22° ) I (m+n)o 例如, 以光束的光偏振态旋转 90° 为例, 此处光 束二次 (即 m+n=2) 通过法拉第旋光片时, 应当选用旋光角度为 45° 的法拉 第旋光片。
以上所讨论的偏振旋光装置为单个装置,偏振旋光装置也可以是多个旋光 片的组合, 例如在实施例 8中。如图 8所示, 偏振旋光装置包括两片晶体旋光 片,一片是左旋晶体 331, 另外一片是右旋晶体 332。两者的旋转角度之和(不 考虑方向) 为 90度, 如左旋 45度右旋 45度; 或左旋 30度右旋 60度等等。 而且其中一块晶体还可以是法拉第片,只要二者旋光的综合效果是 90度就行。
以上所述为最基本的退偏器。不同的实施例中,还可以添加不同的部件以 满足特定的应用要求。 比如在拉曼放大器中退偏器需要带尾纤, 可以在分光膜 的一侧加双光纤准直器做成尾纤型退偏器, 如图 5所示。
以实施例 1为例,图 1中还描绘了依据本发明实施例的退偏器中的光路示 意图。在对光束进行退偏的过程中,初始入射光以入射角 φ射入到分光膜上 1, 透射角度为 β, 其中 φ、 β >0。 为了方便说明和识别, 把入射光标记为 I。, 第 一反射光标记为 Ri, 第一透射光标记为
第一透射光 ^离开分光膜 1后被导光组件 2反射重新回到分光膜 1,中间 透过偏振旋光装置 3,偏振态旋转 90° 。透过偏振旋光装置 3后的第一透射光 ^被标记为 ^以区别偏振态的变化, 回到分光膜 1, 发生反射和透射, 从 而完成一次光路循环。 光路循环的特征: 的入射角度是 β, 和 ^透射角度 相等; 入射点和^出射点重合, 都是 A点, 且 Ii、 1 勺入射法线以及 1\在 一个平面。 通过分光膜 1后形成第二反射光束 和第二透射光束 T2。 由于 的入射角度是 β, 入射点是 Α点, 且 的法线以及 T\在一个平面, 因此 第二透射光 1½将和第一反射光 在空间上重合而合成一束, 第二反射光 R2 沿着第一透射光 T\的轨迹前进, 进入下一次光路循环, 并且不断循环, 从而 有 I2、 T3、 R3, I3、 T4、 R4, Ι4、 Τ5、 R5, ……, 以此类推。
这种新型退偏器的工作原理和效果可以用多光束干涉精确的推导,但是过 程比较复杂。下面用相干长度理论来解释退偏效果, 过程简单但不影响结果的 准确性。 退偏器的结构设计保证光走一个循环的光程 L 比入射偏振光源的相 干长度 Lc长, 所以在分光膜反射和多次透射上来的光不相干, 可以不考虑相 位的关系直接进行功率相加。
以分光膜 1的最佳透射率为 2/3为例, 假设光路中都没有损耗, 且假设入 射光为椭偏光。椭偏光长轴为 X轴, X轴方向偏振的能量为 a; 短轴为 Y轴, Y 轴方向偏振能量为 b。 光每行进一个循环, 偏振旋光装置 3就会把 XY方向的 能量交换一次, 2/3光能量从分光膜 1透射出去, 留下 1/3继续循环。 下表是 在各次入射、反射和透射时候的光能量。表 1中每个输出端的各光束能量的总 和就是输出光能量, 其中下标 i表示所进行的光路循环的次数, 例如, i=l表 示进行第一次光路循环。 表 1
Figure imgf000012_0001
所以, 输出光在 x轴方向偏振的能量为:
PX=a/3+(2/3)2b+l/3 X (2/3)2 a+…… + (1/3) 2k2 X (2/3) ¾+ (1/3) 2k1 X (2/3) 2a
= [a/3+1/3 X (2/3)2 a+(l/3)3 X (2/3)2 a+…… + (1/3) 2k1 X (2/3) 2a+…… ]
+ [(2/3)2b+(l/3)2(2/3)2b+…… + (1/3) 2k2 X (2/3) 2b+…… ]
= [a/3+∑ (1/3)2" X (2/3)2 a]+ (l/3)2k"2 (2/3)2b
k=l k=l
={a/3+a/3 X (2/3)2/[l-(l/3)2]}+b(2/3)2/[l-(l/3)2]
=a/2+b/2 ( 1 ) 通过同样计算可以得出输出光在 Y轴方向偏振态能量为:
PY=a/2+b/2 (2 ) 当 b=0时, 入射光为线偏光; 当 a=b时, 入射光是圆偏光。 所以公式(1 ) 和 (2 ) 可以表示任意入射偏振光。 另外, 在上面一段中入射光沿着椭偏光的 快慢轴分解为 X轴 Y轴分量, 其实这种 XY轴的定义不是必须的。 任意偏振 的光能量都可以分解为任意垂直的两个分量,这两个垂直方向为 X轴和 Y轴, 两个分能量为 a和 b, 在这种情况下上述分析和公式 (1 ) 和 (2 ) 仍然成立。 所以综合起来的结论是, 无论入射光是线偏光、椭偏光或圆偏光, 输出光在任 何一个偏振方向上的能量都是均等的, 也就是说出射光没有任何偏振方向占 优, 成功实现了退偏。
然而在实际的工程应用中,分光比和旋光角度没有办法做到绝对的等于理 想值 1/3和 90° , 本发明也不需要绝对的精确值,相反本发明具有很宽的容限 使得工程当中可以轻松实现, 从而增加了可靠性和减低了成本。下面将详细讨 论当分光膜 1为其它反射率、 或旋光角度无法精确达到 90° 时的情况。
退偏器的退偏效果可以用输出光偏振度来表示, 其数值范围为 [0,1]。 0表 示完全退偏, 1表示完全没有退偏, 如果为 0.1则表示 10%的光还是偏振光, 在偏振度小于 20%以内都可以认为达到了退偏的效果。以下采用用全偏振态消 光比测试法计算器件的偏振度。基本原理为输入光为线偏振光,在输出端接检 偏器。不断调整输入光偏振方向, 每改变一点输入光偏振方向, 将检偏器旋转 一周, 记录一组最大 /最小检偏器输出功率。输入光偏振方向旋转 180° , 挑选 出数据里面最大输出光强 Imax,最小输出光强 Imin器件的偏振度 DOP为 '匪 (详见宋师霞, 《单色光退偏器及波片退偏效应的研究》第 8页, 曲阜师范大 学硕士学位论文, 2009年)。 本发明退偏器中没有双折射材料, 所以对输入光 偏振方向各向同性,仅需要分析检偏器旋转即可, 换句话说分析各个方向上偏 振分量即可。
首先, 当分光膜 1的透射率仍为最佳的 2/3, 但是旋光角度无法精确达到 90° 时, 假设入射光 I。为线偏振光, 且传输中光路中不存在损耗。 此时, 依据 本发明实施例的退偏器的输出光在任意角度 Φ偏振态能量为:
Lr.Rcos (())) + ^ ΛΤ +R1— -cos (i-0 - φ) Lc j
i (3 ) 其中 R为分光膜 1的反射率, T为分光膜 1的透射率, Lr为第一反射光损耗, Lc 为每个循环光损耗, Θ为旋光装置旋转角, Φ为检偏器与起偏器之间的夹 角。 此处的分析中 R=0.333, T=0.667, Lr=Lc=0。 Φ在 0到 180。 之间取值, 根据公式 (3 ) 可以得到 Imax和 Imm, 从而得出某旋光装置旋转角 ( Θ ) 时的 偏振度 DOP, 变化旋转角 Θ得到下表 2。 从表 2可以看出, Θ在 68°-112°的范 围内, DOP都小于 20%,其中 90。 时, DOP为 0。当然, Θ也可在 248。 〜292。 范围内, 该角度表示顺时针旋转 68°-112°, 而得到的退偏效果是一样的。
表 2
Figure imgf000014_0002
另外, 当分光膜 1的透射率不是最佳的 2/3, 而是其它值, 但是旋光角度 精确达到 90° 时,假设入射光 I。为线偏振光,且传输中光路中不存在损耗。 根 据同样的公式 (3 ) 可以计算出表 3。 从表 3可以看出, 当反射率 R在 25%到 43%的范围内时, 偏振度 DOP都低于 0.2, 在靠近 33.3%左右时偏振度 DOP 最低, 总体而言退偏效果比较理想。
Figure imgf000014_0001
Figure imgf000014_0003
从以上可以看出, 在依据本发明的退偏器中, 采用的都是反射镜、 聚焦透 镜和 /或光楔等常见光学器件, 结构简单、 成本低、 且体积小; 另外, 从退偏 器的原理可以看出, 该退偏器适用于线偏光、 椭偏光或圆偏光, 适用范围广。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进 或变换, 而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims

权 利 要 求 书
1、 一种退偏器, 其特征在于, 包括分光膜 (1)、 以及设置在所述分光膜 (1) 同一侧的导光组件 (2) 和偏振旋光装置 (3); 其中,
所述分光膜(1) 的反射率为 25%~43%, 在入射点 (A) 处将入射光 (Io) 分为第一反射光 和第一透射光(^), 分光膜(1)不垂直于入射光(10); 所述导光组件 (2) 将所述第一透射光 (^) 引导回到所述入射点 (A); 所述偏振旋光装置 (3) 设置在所述分光膜 (1) 与所述导光组件 (2) 之 间的光路上, 将所述第一透射光 (^) 的光偏振态旋转 90° 的奇数倍, 误差 容限为 +/-22° ;
其中满足:
返回至所述入射点 (A) 的第一透射光 (^) 通过所述分光膜 (1) 后形 成第二反射光 (R2) 和第二透射光 (T2); 所述第二透射光 (T2) 与同侧的所 述第一反射光 在空间上重合, 合并为输出光的一部分; 所述第二反射光 (R2) 沿着所述第一透射光 ( ) 的光路进入循环;
所述第二透射光(T2)与所述第一反射光 的光程差大于入射光(10) 的相干长度。
2、 根据权利要求 1所述的退偏器, 其特征在于, 所述导光组件(2)包括 两个成夹角的反射镜, 所述第一透射光(T\)通过两个所述反射镜的反射后返 回至所述入射点 (Α)。
3、 根据权利要求 2所述的退偏器, 其特征在于, 两个所述反射镜分别为 平面镜 (21) 和凹面镜 (23)。
4、 根据权利要求 1所述的退偏器, 其特征在于, 所述导光组件(2)包括 反射镜 (21) 和设置在所述分光膜 (1) 与所述反射镜 (21) 之间的聚焦透镜
(25); 所述分光膜(1)和所述反射镜(21)分别位于所述聚焦透镜两侧的物 平面和像平面上; 所述第一透射光( )通过所述聚焦透镜(25) 的折射和反 射镜 (21) 的反射后返回至所述入射点 (A)。
1
5、 根据权利要求 4所述的退偏器, 其特征在于, 所述聚焦透镜为自聚焦 透镜 (29), 长度为 0.49个节距; 反射镜 (21 ) 由介质膜构成, 直接镀在自聚 焦透镜 (29)远离分光膜(1 ) 的那一端面; 且在分光膜(1 ) 的入光侧还有一 个双光纤准直器 (4), 准直器 (4) 的出光面朝着分光膜 (1 )。
6、 根据权利要求 1所述的退偏器, 其特征在于, 所述导光组件(2)包括 反射镜和设置在所述反射镜和所述分光膜(1 )之间的菱形光楔(27), 所述第 一透射光(^ )通过所述菱形光楔(27) 的折射和反射镜的反射后返回至所述 入射点 (A)。
7、 根据权利要求 6所述的退偏器, 其特征在于, 所述反射镜为平面镜或 凹面镜。
8、 根据权利要求 1所述的退偏器, 其特征在于, 所述导光组件(2)为等 腰三角形光楔(26), 所述等腰三角形光楔(26) 的底面与所述分光膜(1 )平 行; 所述第一透射光 ( )通过所述等腰三角形光楔(26) 的等腰面反射回所 述入射点 (A)。
9、 根据权利要求 1所述的退偏器, 其特征在于, 所述偏振旋光装置 (3 ) 为旋光晶体或手性液晶或磁旋光装置。
10、根据权利要求 9所述的退偏器,其特征在于,当所述偏振旋光装置(3 ) 为旋光晶体时, 所述旋光晶体为石英旋光片。
11、根据权利要求 9所述的退偏器,其特征在于,当所述偏振旋光装置(3 ) 为磁旋光装置时, 所述磁旋光装置为带磁管的法拉第旋光片。
2
PCT/CN2011/079989 2011-09-22 2011-09-22 退偏器 WO2013040776A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/079989 WO2013040776A1 (zh) 2011-09-22 2011-09-22 退偏器
CN201180008637.XA CN102985870B (zh) 2011-09-22 2011-09-22 退偏器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/079989 WO2013040776A1 (zh) 2011-09-22 2011-09-22 退偏器

Publications (1)

Publication Number Publication Date
WO2013040776A1 true WO2013040776A1 (zh) 2013-03-28

Family

ID=47858541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079989 WO2013040776A1 (zh) 2011-09-22 2011-09-22 退偏器

Country Status (2)

Country Link
CN (1) CN102985870B (zh)
WO (1) WO2013040776A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112683796A (zh) * 2020-12-15 2021-04-20 中国科学院合肥物质科学研究院 一种基于地球同步轨道观测的差分吸收光谱仪光学系统
CN113484248A (zh) * 2021-07-20 2021-10-08 山西大学 一种基于四镜谐振腔的高灵敏葡萄糖浓度检测装置及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106772916A (zh) * 2016-12-14 2017-05-31 上海伟钊光学科技股份有限公司 微型法拉第旋光反射镜
CN115903250B (zh) * 2021-09-23 2024-04-19 曲阜师范大学 石英晶体旋光与双折射偏振无关复色光退偏器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1201153A (zh) * 1997-05-01 1998-12-09 鸿海精密工业股份有限公司 光学解偏光器及将光束解偏光的方法
CN2530368Y (zh) * 2001-12-26 2003-01-08 武汉邮电科学研究院 一种光的偏振合波与消偏的混合器件
US7259914B2 (en) * 2005-08-30 2007-08-21 Coherent, Inc. Attenuator for high-power unpolarized laser beams
CN101726799A (zh) * 2009-12-22 2010-06-09 上海大学 单一自由度光纤环退偏方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6831778B2 (en) * 2001-12-26 2004-12-14 Wuhan Research I.O.P. And Telecom Hybrid component and method for combining two pumping lights and depolarizing them simultaneously and optical amplifier therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1201153A (zh) * 1997-05-01 1998-12-09 鸿海精密工业股份有限公司 光学解偏光器及将光束解偏光的方法
CN2530368Y (zh) * 2001-12-26 2003-01-08 武汉邮电科学研究院 一种光的偏振合波与消偏的混合器件
US7259914B2 (en) * 2005-08-30 2007-08-21 Coherent, Inc. Attenuator for high-power unpolarized laser beams
CN101726799A (zh) * 2009-12-22 2010-06-09 上海大学 单一自由度光纤环退偏方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112683796A (zh) * 2020-12-15 2021-04-20 中国科学院合肥物质科学研究院 一种基于地球同步轨道观测的差分吸收光谱仪光学系统
CN113484248A (zh) * 2021-07-20 2021-10-08 山西大学 一种基于四镜谐振腔的高灵敏葡萄糖浓度检测装置及方法

Also Published As

Publication number Publication date
CN102985870A (zh) 2013-03-20
CN102985870B (zh) 2015-02-25

Similar Documents

Publication Publication Date Title
JP2983553B2 (ja) 光学非相反装置
CN105319648B (zh) 组合的分光器、光隔离器和模斑转换器
JP2010507125A5 (zh)
CN108572061B (zh) 全口径谐波转换效率测量系统及其测量方法
US7277180B2 (en) Optical connection for interferometry
CN109164663A (zh) 一种小型化纠缠源及其制备方法、以及设备无关量子随机数发生器
US7643212B1 (en) Rotationally tunable optical delay line
WO2003075018A1 (fr) Dispositif de mesure de courant
CN106767389B (zh) 基于棱镜分光移相的斐索型同步移相干涉测试装置
US6819810B1 (en) Depolarizer
CN104216050A (zh) 一种偏振分束合束器
WO2013040776A1 (zh) 退偏器
CN110927984A (zh) 一种可调的横向错位激光分束/合束器
CN109085558A (zh) 相控阵激光雷达及其控制方法
CN107908022A (zh) 光纤隔离器及其使用方法
CN108957773B (zh) 一种偏振分光装置
US6545805B2 (en) Polarization-dependent retroreflection mirror device
CN213302563U (zh) 对入射光偏振态不敏感的单色退偏器
CN211236531U (zh) 一种能消除自身杂散光的镜头
CN111562002A (zh) 高通量高分辨率高对比度的偏振干涉光谱成像装置及方法
US6987896B1 (en) Optical isolator
CN219610994U (zh) 一种光源装置及模块
US20140320852A1 (en) Depolarizer, telescope and remote sensing device and method
US20040252376A1 (en) Beam converter for enhancing brightness of polarized light sources
JP2006267078A (ja) 光学測定器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180008637.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 30.05.2014)

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (31.07.2014)

122 Ep: pct application non-entry in european phase

Ref document number: 11872776

Country of ref document: EP

Kind code of ref document: A1