WO2018058457A1 - 在细长金属管内壁制备高强耐久性超疏水膜层的方法及装置 - Google Patents

在细长金属管内壁制备高强耐久性超疏水膜层的方法及装置 Download PDF

Info

Publication number
WO2018058457A1
WO2018058457A1 PCT/CN2016/100885 CN2016100885W WO2018058457A1 WO 2018058457 A1 WO2018058457 A1 WO 2018058457A1 CN 2016100885 W CN2016100885 W CN 2016100885W WO 2018058457 A1 WO2018058457 A1 WO 2018058457A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
wall
nickel
metal tube
preparing
Prior art date
Application number
PCT/CN2016/100885
Other languages
English (en)
French (fr)
Inventor
汪怀远
胡子艺
朱艳吉
朱艺星
王池嘉
Original Assignee
东北石油大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北石油大学 filed Critical 东北石油大学
Priority to PCT/CN2016/100885 priority Critical patent/WO2018058457A1/zh
Publication of WO2018058457A1 publication Critical patent/WO2018058457A1/zh
Priority to US16/247,443 priority patent/US11078572B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1614Process or apparatus coating on selected surface areas plating on one side
    • C23C18/1616Process or apparatus coating on selected surface areas plating on one side interior or inner surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1619Apparatus for electroless plating
    • C23C18/1628Specific elements or parts of the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1637Composition of the substrate metallic substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1664Process features with additional means during the plating process
    • C23C18/1666Ultrasonics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1827Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment only one step pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1827Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment only one step pretreatment
    • C23C18/1834Use of organic or inorganic compounds other than metals, e.g. activation, sensitisation with polymers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/34Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • C25D3/14Electroplating: Baths therefor from solutions of nickel or cobalt from baths containing acetylenic or heterocyclic compounds
    • C25D3/18Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/08Electroplating with moving electrolyte e.g. jet electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/20Electroplating using ultrasonics, vibrations
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/42Pretreatment of metallic surfaces to be electroplated of light metals
    • C25D5/44Aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/04Tubes; Rings; Hollow bodies

Definitions

  • the invention relates to a method and a device for preparing a high-strength and durable super-hydrophobic film layer on an inner wall of an elongated metal tube.
  • the superhydrophobic membrane layer is difficult to achieve or difficult to ensure uniformity and good bonding on the inner wall of the elongated tube.
  • the preparation of superhydrophobic membrane layer in the narrow tube cavity of practical application has been one of the main difficulties in industrial amplification of current preparation processes, such as gas phase sedimentation (CVD).
  • Photolithography or spray coating is difficult to implement in a narrow space.
  • the electric sink The product also faces many technical limitations, because this method of controlling surface growth by metal ion diffusion mechanism may be more susceptible to problems such as uneven partial discharge and uneven mass transfer in the microfluidic field, making it difficult to be on complex internal surfaces. A high quality film with application value is obtained.
  • the super-hydrophobic tube internal treatment method is generally used.
  • the fluorination modification is performed after chemical etching.
  • the method has little controllability on the structural size of the surface morphology, and when the hydrophobicity is lost, the substrate is removed.
  • the risk of direct exposure of the material to corrosive media; the second is the self-assembly of low surface energy substances (such as dimethyl siloxane) through the coupling agent on the inner surface of the long tube.
  • this method has complex process conditions and poor repeatability.
  • the assembled film layer is thin (generally less than 500 nm), and it is difficult to ensure mechanical wear resistance and cannot be adapted to industrial applications.
  • Embodiments of the present invention provide a method for preparing a high-strength and durable superhydrophobic film layer on an inner wall of an elongated (up to 1 m or more) metal tube.
  • a method for preparing a high-strength and durable superhydrophobic film layer on an inner wall of an elongated metal pipe includes the following steps: roughening treatment of an inner wall of a metal pipe: using 2 mol/L to 4 mol/L of nitric acid or 2 mol/L 4mol/L hydrochloric acid etches the inner wall of the metal tube for 5min ⁇ 30min, so that the inner wall of the metal tube forms a rough structure and exposes the active surface of the inner wall of the metal tube; preparation of the nickel-phosphorus alloy layer: using the chemical coating method in the rough A nickel-phosphorus alloy layer is deposited on the inner wall of the metal tube, wherein the first plating solution used in the electroless plating method comprises: 0.1 mol/L to 1 mol/L of nickel chloride hexahydrate, 0.1 mol/L to 1 mol/L of sodium hypophosphite, 0.1mol/L ⁇ 1mol/L trisodium citrate and
  • a method for preparing a high-strength and durable superhydrophobic film layer on an inner wall of an elongated metal tube which utilizes low-power ultrasound to transfer energy through a fluid medium in an elongated tube cavity and is not easily weakened, throughout the tube cavity
  • a stable ultrasonic field is formed inside, which greatly reduces the influence of local mass transfer resistance, and a uniform nanocrystalline film layer is prepared under the induction of ultrasound. Since only the plating solution is filled in the tube during the preparation process of the present invention, the plating process can eliminate the need for the plating member to be completely immersed, and only the inner wall of the tube needs to pass through the circulating liquid, that is, the entire tube section can be uniformly plated under special conditions.
  • the layer obtained by ultrasonic assisted electrodeposition is then passed through a controlled anodization
  • the composition at the grain boundary of the formed nanocrystals preferentially dissolves, thereby etching out a plurality of nano-scale channel structures, which allows the superhydrophobic inner surface to have a better ability to store air, and its resistance to water flow impact sexuality has greatly improved.
  • the cavity of the metal tube is filled with a first plating solution, and then a pure nickel wire is inserted into the metal tube, and the metal tube serves as a cathode.
  • the pure nickel wire is used as an anode, and is energized for 1 s to 30 s at a voltage of 1 V to 3 V, and then electroplated under a fluid circulation condition to prepare a nickel-phosphorus alloy layer.
  • the brightening agent includes one or more of leucine, sodium saccharin, coumarin or 1,4-butynediol.
  • the amphiphilic substance comprises one or more of octadecylamine, dodecanoic acid, myristic acid, and octadecanoic acid.
  • the silica particles have a particle diameter of 0.1 ⁇ m to 5 ⁇ m.
  • the low surface energy substance comprises heptadecafluorodecyltrimethoxysilane, tridecafluorooctyltriethoxysilane, tridecafluorooctyltrimethoxysilane And one or more of perfluorooctyltriethoxysilane.
  • the pure copper wire is prepared to spirally protrude into the metal tube, and the pure copper wire is coaxial on the metal tube, and then the ultrasonic source is turned on to form After circulating the liquid flow, the power is turned on, and the power is applied for 1 min to 30 min at an applied voltage of 0.5 V to 3 V to prepare a functional coating.
  • Another object of the present invention is to provide an apparatus for preparing a high strength and durable superhydrophobic film layer on the inner wall of an elongated metal tube.
  • An apparatus for preparing a high-strength and durable superhydrophobic film layer on an inner wall of an elongated metal tube comprising: a plating bath, a metal tube, a wire, a peristaltic pump, a power source, and an ultrasonic system; the plating bath contains a plating solution, The plating bath is disposed within the ultrasound system; the wire is deep Entering into the metal tube, and the first end of the wire and the first end of the metal tube are both below the liquid level of the plating solution, and the wire is connected to the positive electrode of the power source, The metal tube is connected to the negative pole of the power source; one end of the peristaltic pump is connected to the second end of the metal tube, and the second end of the peristaltic pump is deep below the liquid level of the plating solution.
  • an apparatus for preparing a high-strength and durable superhydrophobic film layer on an inner wall of an elongated metal tube comprising: a water bath, a heater, and an ultrasonic transducer.
  • the wire is a spiral structure.
  • FIG. 1 is a flow chart of a method for preparing a high strength and durable superhydrophobic film layer on an inner wall of an elongated metal tube according to the present invention
  • 2A is a schematic view showing the structure after depositing a nickel-phosphorus alloy layer on the inner wall of the metal pipe;
  • 2B is a schematic view showing the structure after depositing a functional coating on the inner wall of the metal pipe;
  • 2C is a schematic structural view of an inner wall of a metal pipe treated in an anodizing step
  • 3A1 is an SEM image of the inner wall of the metal tube after the preparation step of the nickel-phosphorus alloy layer (the silica solution is not contained in the plating solution);
  • 3A2 is an SEM image of the inner wall of the metal tube after the preparation step of the functional coating (silica particles in the plating solution);
  • Figure 3B is an SEM image of a cross section of the inner wall of the metal pipe treated by the preparation step of the functional coating
  • Figure 3C is an SEM image of the effect of anodizing on the adjustment of the surface topography
  • FIG. 4 is a schematic structural view of an apparatus for preparing a high-strength and durable superhydrophobic film layer on an inner wall of an elongated metal pipe according to the present invention
  • Figure 5A is a schematic view showing the structure of a wire fixed in a cavity of a metal tube
  • Figure 5B is a plan view of Figure 5A
  • Figure 6 is a graph showing the flow differential pressure of a pipe having a hydrophilic and superhydrophobic inner surface of Example 6.
  • the method can be implemented on the inner wall of a metal pipe that is more than 1 meter long. Those skilled in the art will appreciate that the method also achieves good results on metal sheets.
  • a method for preparing a high-strength and durable superhydrophobic film layer on an inner wall of an elongated metal pipe comprises the following steps:
  • Roughening treatment of the inner wall of the metal pipe S101 etching the inner wall of the metal pipe with 2 mol/L to 4 mol/L of nitric acid or 2 mol/L to 4 mol/L of hydrochloric acid for 5 min to 30 min, so that the inner wall of the metal pipe forms a rough structure.
  • the active surface of the inner wall of the metal tube is simultaneously exposed.
  • Preparation of a nickel-phosphorus alloy layer S102 depositing a nickel-phosphorus alloy layer on the inner wall of the rough metal tube by an electroless plating method, as shown in FIG. 2A and FIG. 3A1, 1 is a metal tube inner wall, and 2 is a nickel-phosphorus alloy layer, wherein
  • the first plating solution used in the electroless plating method includes: 0.1 mol/L to 1 mol/L of nickel chloride hexahydrate, 0.1 mol/L to 1 mol/L of sodium hypophosphite, and 0.1 mol/L to 1 mol/L of trisodium citrate.
  • the brightening agent includes one or more of leucine, sodium saccharin, coumarin or 1,4-butynediol.
  • the cavity of the metal tube is filled with a first plating solution, and then a pure nickel wire is inserted into the metal tube.
  • the metal tube is used as a cathode, and the pure nickel wire is used as an anode, and is added at 1 V to 3 V. Voltage The current is energized for 1 s to 30 s, and then electroplated under fluid circulation conditions to prepare a nickel-phosphorus alloy layer.
  • Pre-plating a dense layer of nickel-phosphorus alloy in the metal pipe not only greatly improves the anti-corrosion medium capacity of the film layer, but also facilitates the more regular and orderly growth of the nano-grains under ultrasonic, thereby greatly improving the interlayer bonding of the coating. force.
  • the hardness of the nickel-phosphorus alloy layer can be more than 2H, and the metallic microscopic size structure is not easily damaged by the impact of high-strength fluid or hard object friction, thereby ensuring the stability of the rough structure.
  • Preparation of Functional Coating S103 Electrodeposition of a functional coating on the nickel-phosphorus alloy layer, the electrodeposition plating bath operating in an ultrasonic environment to form micron or submicron channels, as shown in FIG. 2B, FIG. 3A2 and As shown in 3B, 3 is a functional coating and 4 is a micron or submicron channel.
  • the second plating solution used for the electrodeposition functional coating comprises: 0.01 mol/L to 0.1 mol/L nickel sulfate hexahydrate, 0.1 mol/L to 1 mol/L nickel chloride hexahydrate, 0.1 mol/L to 1 mol/ L boric acid, 0 mol / L ⁇ 0.1 mol / L silica particles, 1.0mmol / L ⁇ 5.0mmol / L amphiphilic material and 1.0mmol / L ⁇ 10mmol / L brightener, plating bath temperature of 15 ° C ⁇ 50 ° C
  • the ultrasonic frequency during the plating bath is 20 kHz to 60 kHz, and the power is 150 W to 400 W.
  • the amphiphilic substance comprises one or more of octadecylamine, dodecanoic acid, myristic acid or octadecanoic acid, and the silica particles have a particle diameter of 0.1 ⁇ m to 5 ⁇ m, and the brightener comprises One or more of leucine, sodium saccharin, coumarin or 1,4-butynediol.
  • the pure copper wire can be prepared to spirally protrude into the metal tube, and the pure copper wire is coaxial on the metal tube, and then the ultrasonic source is turned on to form a circulating liquid flow, and then the power is turned on, and The voltage is applied from 0.5V to 3V for 1 min to 30 min to prepare a functional coating.
  • Heat treatment step S104 heat treatment is performed on the surface of the functional coating layer at a temperature of 100 ° C to 350 ° C for a period of 0.5 h to 2 h. Since the amphiphilic substance is co-deposited in the preparation step of the above functional coating, the surface of the structural layer needs to be subjected to high temperature treatment to lose the hydrophobicity of the surface, and then the subsequent anodization step is performed.
  • Anodizing step S105 the metal tube is an anode, and the nickel wire is used as a cathode In the cavity of the metal tube, anodizing is carried out under the condition of liquid circulation at room temperature for 1 min to 10 min, and the applied voltage is 1 V to 5 V, wherein the plating composition of the anodizing step includes 0.25 mol of pH of 2.0-6.0. /L ⁇ 0.1mol / L potassium chloride.
  • a nanoscale channel structure 5 continues to be formed along the grain boundaries of the nanocrystals between the inner surface of the microporous pores of the nickel layer and the pores, as shown in the SEM photographs of Figures 2C and 3C.
  • Low surface energy modification S106 low surface energy modification with an ethanol-water mixed solution in which a low surface energy substance is dissolved, the temperature of the ethanol-water mixed solution is 60 ° C to 90 ° C, and the low surface energy modification time is 1 h to 3 h. .
  • the low surface energy substance comprises one of heptadecafluorodecyltrimethoxysilane, tridecafluorooctyltriethoxysilane, tridecafluorooctyltrimethoxysilane or perfluorooctyltriethoxysilane. kind or several.
  • a method for preparing a high-strength and durable superhydrophobic film layer on an inner wall of an elongated metal tube according to the present invention which greatly reduces the influence of local mass transfer resistance by using ultrasonic energy transfer method in a narrow tube cavity, and is in ultrasonic
  • a uniform nanocrystalline film layer was prepared under the induction. Since the longitudinal wave and energy of the ultrasonic wave can propagate along the fluid medium, the plating process can not completely immerse the plating plate into the plating solution, but only the inner wall of the pipe passes through the circulating liquid, that is, the entire pipe section can be uniformly plated under special conditions. , thereby greatly reducing the consumption of equipment and raw materials.
  • Pre-plating a layer of dense nickel-phosphorus alloy under the porous functional layer during the preparation process not only greatly enhances the corrosion-resistant medium capacity of the film layer, but also promotes the more regular and orderly growth of the nano-grain under ultrasound. , thereby greatly improving the interlayer bonding force of the coating.
  • the hardness of the finally obtained deposited layer can reach more than 2H, and the metallic microscopic size structure is not easily damaged by the impact of high-strength fluid or hard object friction, thereby ensuring the stability of the rough structure.
  • the prepared film layer has a remarkable thickness of more than 10 ⁇ m, which ensures its excellent mechanical abrasion resistance.
  • the inner wall of the tube Due to the combined action of the dense nanocrystalline film layer and the superhydrophobic surface blocking liquid and the solid phase, the inner wall of the tube has excellent resistance to fluid medium corrosion and self-cleaning.
  • the air film formed by plating the superhydrophobic surface through the fluid medium can effectively reduce the flow at the interface.
  • the direct contact of the body with the avoidance of the rough structure and the slippage of the fluid particles greatly reduce the resistance caused by the friction at the interface, thereby reducing the energy consumption of the conveying system.
  • another object of the present invention is to provide an apparatus 100 for preparing a high-strength and durable superhydrophobic film layer on an inner wall of an elongated metal tube, comprising: a plating bath 110, a metal tube 120, a wire 130, a peristaltic pump 140, Power source 150 and ultrasound system.
  • the plating bath 110 contains a plating solution, and the plating bath 110 is disposed in the ultrasonic system.
  • One end of the peristaltic pump 140 is connected to the second end of the metal tube 120, and the second end of the peristaltic pump 140 is deep below the liquid level of the plating solution. It is driven by the peristaltic pump 140 to form a circulating flow of the plating solution in the cavity of the plated metal tube, and electrodeposition is performed under the conditions.
  • the wire 130 is deep into the metal tube 120, and the first end of the wire 130 and the first end of the metal tube 120 are both below the liquid level of the plating solution, and the wire 130 is The positive electrode of the power source 150 is connected, and the metal tube 120 is connected to the negative electrode of the power source 150.
  • the wire 130 may be a nickel wire or a copper wire or the like. In the electrode cavity electrodeposition, it is necessary to ensure proper contact area between the anode and the solution during the electroplating process. Excessive current density caused by excessive contact area may cause damage to the plating structure, and too small contact area may cause Strong passivation affects the deposition process.
  • the wire can be prepared into a spiral structure to increase the contact area.
  • a pure copper wire having a diameter of 0.5 mm is wound into a spiral structure, and the dimensional parameters thereof are as shown in Figs. 5A and 5B, and the spiral diameter is 3 mm and the pitch is 5 mm.
  • the outer side of the spiral was surrounded by EVA (ethylene-vinyl acetate copolymer) foam having a thickness of slightly more than 3.5 mm and a width of 0.5 mm, and fixed with glue. The fixing is performed once every 15 mm in the longitudinal direction on the spiral line to ensure that the copper wire is in a position coaxial with the circular tube in the inner cavity of the tube.
  • EVA ethylene-vinyl acetate copolymer
  • the ultrasound system includes a water bath 160, a heater 170, and an ultrasonic transducer 180. Since the longitudinal wave and energy of the ultrasonic wave can propagate along the fluid medium, the plating process can eliminate the need to completely immerse the plated part. The plating solution, and only the inner wall of the tube passes through the circulating liquid, which enables the entire tube section to be uniformly plated under special conditions, which greatly reduces the consumption of the device and the raw materials.
  • the temperature of the water bath in the water bath 160 is controlled by the heater 170, the nickel wire is inserted into the cavity of the metal tube 120, and the peristaltic pump 140 is turned on to allow the plating solution to fill the cavity and form. Circulating liquid flow.
  • the power source 150 is turned on to form an initial nickel layer on the inner wall of the tube; then the anode nickel wire is taken out and the cycle is started for the electroless plating process.
  • the temperature of the water bath in the water bath 160 is controlled by the heater 170 to be constant, the peristaltic pump 140 is turned on to fill the cavity of the metal tube 120 with the plating solution and form a circulating liquid stream, and then the ultrasonic wave is turned on, since the longitudinal wave of the ultrasonic wave can be in the fluid
  • the medium propagates in a straight line and is not easily attenuated, and the ultrasonic energy can be uniformly obtained at each position in the vertically placed straight tube cavity.
  • the tube cavity can be electrodeposited in an ultrasonic environment.
  • the temperature of the water bath in the water bath 160 is controlled by the heater 170 to be constant, the peristaltic pump 140 is turned on to allow the solution to fill the cavity and form a circulating liquid stream, followed by a process of self-adsorption of the low surface energy monomer.
  • the steel pipe coated with the nickel-phosphorus alloy layer is used as the cathode, according to the shape and ruler in Figs. 5A and 5B.
  • the inch parameter is fixed in the steel pipe as the anode, and the device is filled with the nickel-containing salt plating solution and circulating, and the water bath temperature is controlled at 35 °C.
  • the DC power source is turned on and energized at 2.0 V for 25 min, that is, a functional coating having a micro-nano scale is continuously formed on the surface of the nickel-phosphorus alloy plating layer.
  • the second plating solution used was 0.09 mol/L of nickel sulfate hexahydrate, 0.15 mol/L of nickel chloride hexahydrate, 0.30 mol/L of boric acid, and 8.5 mmol/L of silica particles having an average particle diameter of 2 ⁇ m.
  • the amphiphilic substance was 2.5 mmol/L lauric acid, and the brightener added was 3.0 mmol/L sodium saccharin; the ultrasonic power used was 250 W, and the frequency was 40 kHz.
  • the steel pipe coated with the functional layer is heat treated at 270 ° C for 1.5 h until it is completely hydrophilic, and then the device is allowed to circulate the flow volume fraction of 0.1% perfluorooctyltriethoxysilane in the tube.
  • the water mixed solution has a mixing ratio of ethanol to water of 6:4, a controlled water bath temperature of 85 ° C, and a low surface energy substance modification time of 2 h, and finally uniform plating of the superhydrophobic film layer can be achieved in a stainless steel tube of up to 110 cm.
  • the composition of the first plating solution used is: 0.32 mol/L nickel chloride hexahydrate, 0.50 mol/L sodium hypophosphite, 0.20 mol/L trisodium citrate, and the brightener used is 3.0 mmol/L sodium saccharin;
  • the second plating solution used was 0.10 mol/L of nickel sulfate hexahydrate, 0.17 mol/L of nickel chloride hexahydrate, 0.30 mol/L of boric acid, and 12.5 mmol/L of silica particles having an average particle diameter of 3 ⁇ m.
  • the amphiphilic substance was 2.5 mmol/L octadecylamine, and the brightener added was 2.0 mmol/L sodium saccharin; the ultrasonic power used was 350 W, and the frequency was 50 kHz.
  • the aluminum tube coated with the functional layer is heat treated at 270 ° C for 1.5 h until it is completely hydrophilic. After the device is connected, the flow volume fraction of 0.1% perfluorooctyltriethoxysilane is circulated in the tube.
  • Water mixed solution the mixing ratio of ethanol to water is 7:3, the temperature of the water bath is controlled at 90 ° C, and the modification time of the low surface energy material is 2 h, so that a superhydrophobic inner coated aluminum tube can be obtained.
  • the plating solution used was 0.08 mol/L nickel sulfate hexahydrate, 0.13 mol/L nickel chloride hexahydrate, 0.32 mol/L boric acid, and 13.3 mmol/L silica particles having an average particle diameter of 1 ⁇ m, and the amphiphilicity was added.
  • the substance was 2.5 mmol/L lauric acid, and the brightener added was 3.0 mmol/L sodium saccharin; the ultrasonic power used was 200 W, and the frequency was 30 kHz.
  • the copper tube coated with the functional layer is heat treated at 270 ° C for 1 h until it is completely hydrophilic, and then the device is allowed to circulate the flow volume fraction of 0.1% perfluorooctyltriethoxysilane in the tube.
  • the water mixed solution has a mixing ratio of ethanol to water of 7:3, a controlled water bath temperature of 85 ° C, and a low surface energy substance modification time of 2 h.
  • a pure copper tube having a size of ⁇ 14 ⁇ 1 mm and a length of 20 cm was rinsed with 100 mL of distilled water, and the inner surface was etched with 3.0 mol/L of nitric acid for 15 minutes.
  • the composition of the plating solution used was 0.08 mol/L nickel sulfate hexahydrate, 0.13 mol/L nickel chloride hexahydrate, 0.32 Mol/L boric acid and 13.3 mmol/L silica particles having an average particle diameter of 1 ⁇ m, the amphiphilic substance added is 2.5 mmol/L lauric acid, and the brightener added is 3.0 mmol/L sodium saccharin; the ultrasonic power used is 200W, frequency is 30kHz.
  • the copper tube of the plating functional layer is heat-treated at 270 ° C for 1 h until it is completely hydrophilic, and then the pure nickel wire is used as the cathode, the copper tube is the anode, and the device is filled with 0.3 mol/L potassium chloride.
  • the solution was circulated, the pH of the solution was adjusted to 4 with dilute hydrochloric acid, the DC power was turned on and anodized at 1 V for 3 min.
  • the superhydrophobic membrane layer prepared by coupling ultrasonic assisted electrodeposition and anodization has better anti-water flow impact performance, and the water flow impact resistance test in the tube is as follows: let the tube pass 450L/h water flow, one time After scouring for 10 min, the copper tube was taken out and found to be not wetted on the inner wall, and the WCA of the inner surface was found to be maintained at about 120°. After the copper tube was treated at 80 ° C for 5 min, the WCA was found to recover to above 140 °. The experiment was repeated 5 times or more, and it was found that the WCA could still recover to 140° or more after each drying treatment, and the wall surface did not undergo significant wetting. Compared with Example 3, this shows that the obtained by the anodizing step has The surface of many nano-slot structures has excellent resistance to water flow impact.
  • a pure copper tube having a size of ⁇ 14 ⁇ 1 mm and a length of 55 cm was rinsed with 500 mL of distilled water, and the inner surface was etched with 2.5 mol/L of nitric acid for 20 minutes.
  • a copper tube coated with a nickel-phosphorus alloy layer as a cathode fix the copper wire as an anode in the copper tube according to the shape and size parameters in Figs. 5A and 5B, and connect the device to fill the tube with nickel-containing salt plating solution and circulate the flow.
  • the temperature of the water bath is controlled to 36 ° C; after the ultrasonic is turned on, the DC power source is turned on and energized at 1.6 V for 25 min, that is, a functional coating having a micro-nano scale is continuously formed on the surface of the nickel-phosphorus alloy plating layer.
  • the plating solution used was 0.07 mol/L nickel sulfate hexahydrate, 0.15 mol/L nickel chloride hexahydrate, 0.32 mol/L boric acid, and 12 mmol/L silica particles having an average particle diameter of 2 ⁇ m, and the amphiphilic substance was added. It was 2.5 mmol/L stearic acid, and the brightener added was 2.5 mmol/L sodium saccharin.
  • the ultrasonic power used was 250 W and the frequency was 40 kHz.
  • the copper tube of the plating functional layer is heat treated at 280 ° C for 1.5 h until it is completely hydrophilic, and then the pure nickel wire is used as the cathode, the copper tube is the anode, and the device is connected to make the tube filled with 0.25 mol/L chlorination.
  • the potassium solution was circulated and the pH of the solution was adjusted to 3 with dilute hydrochloric acid, the DC power was turned on and anodized at 1 V for 4 min.
  • the copper tube of the same size etched by simply passing 2.5 mol/L of nitric acid for 20 minutes was used as a comparison.
  • the water flow of 60 L/h to 260 L/h was sequentially passed through the two tubes, and the distance between the pressure measuring points was selected to be 40 cm every 20 L/h.
  • the static pressure difference (P 1 -P 2 ) between the two pressure measuring points was measured, and the obtained results are shown in Fig. 6.
  • the experimental results show that the superhydrophobic inner surface can obtain the drag reduction effect at a certain flow rate, up to about 17.9%.
  • the method for preparing a high-strength and durable superhydrophobic film layer on the inner wall of an elongated metal tube utilizes low-power ultrasound to transmit energy through the fluid medium in the elongated tube cavity and is not easily weakened.
  • a stable ultrasonic field is formed in the cavity of the whole tube, which greatly reduces the influence of local mass transfer resistance, and a uniform nanocrystalline film layer is prepared under the induction of ultrasound. Since only the plating solution is filled in the tube during the preparation process of the present invention, the plating process can eliminate the need for the plating member to be completely immersed, and only the inner wall of the tube needs to pass through the circulating liquid, that is, the entire tube section can be uniformly plated under special conditions.
  • Pre-plating a layer of dense nickel-phosphorus alloy under the porous functional layer during the preparation process not only greatly enhances the corrosion-resistant medium capacity of the film layer, but also promotes the more regular and orderly growth of the nano-grain under ultrasound. , thereby greatly improving the interlayer bonding force of the coating.
  • the thickness of the deposited layer finally obtained can reach 10 ⁇ m or more in a short preparation time (less than 30 minutes), the hardness can reach 2H or more, and the metallic microscopic size structure is not easily damaged by the impact of high-strength fluid or hard object friction. Thereby ensuring the stability of the rough structure.
  • the inner wall of the tube Due to the combined action of the dense nanocrystalline film layer and the superhydrophobic surface blocking liquid and the solid phase, the inner wall of the tube has excellent resistance to fluid medium corrosion and self-cleaning.
  • the air film formed by plating the superhydrophobic surface through the fluid medium can effectively reduce the direct contact between the fluid at the interface and the avoidance of the rough structure and the slippage of the fluid particles, thereby greatly reducing the resistance caused by the friction at the interface.
  • the energy consumption of the conveying system is reduced; the nano-groove structure obtained by the anodizing step ensures long-term maintenance of the non-wetting state of the inner film layer under strong water flow impact conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemically Coating (AREA)

Abstract

一种在细长金属管内壁制备高强耐久性超疏水膜层的方法及装置(100),该方法包括如下步骤:金属管内壁的粗糙化处理(S101)、镍磷合金层的制备(S102)、功能涂层的制备(S103)、热处理步骤(S104)、后续阳极氧化步骤(S105)和低表面能修饰(S106);该装置(100)包括:镀浴槽(110)、金属管(120)、金属丝(130)、蠕动泵(140)、电源(150)和超声系统;该方法及装置制备的高强耐久性超疏水膜层,可让表面形貌在微观形貌上更加均匀、致密,刻蚀出众多纳米级的槽道结构,让超疏水内表面具有了更佳的贮存空气的能力,其抗水流冲击性大大提升。

Description

在细长金属管内壁制备高强耐久性超疏水膜层的方法及装置 技术领域
本发明涉及一种在细长金属管内壁制备高强耐久性超疏水膜层的方法及装置。
发明背景
目前,油气及化工流体生产、运输和储藏等过程中存在许多问题,其中最突出的是腐蚀磨损和能耗高问题,包括腐蚀性介质对管道或容器内表面的腐蚀,以及为克服流体输送时摩擦阻力而消耗的大量能源。因此,管道内壁的功能涂层技术一直是解决上述问题的重点方向之一。
近十余年来,受自然界中荷叶效应的启发,超疏水表面减阻、防腐及其制备技术受到关注。一般而言,超疏水表面具有优良的水珠滚落特性,即拥有大于150°的静态水接触角(WCA)和小于10°的滚动角(SA)。当该种表面浸没在水中时,界面处所形成的空气膜层能够让其具备许多让独特性能,如:耐受流体介质腐蚀、减少流动阻力等。虽然目前在小尺寸平板上稳定、强韧的超疏水表面的实施已经有一些案例,然而,在细长金属管内壁的实现却极少报道,工业应用受限。同时,受制于反应器尺寸设计、空间复杂性等因素,超疏水膜层在细长管内壁难以实现或难以保证其均匀性、良好的结合性等。基于对稳定、均一的反应机制的需求,在实际应用的狭长管空腔内实现超疏水膜层的制备一直是现行制备工艺进行工业放大的主要难点之一,如:气相沉降法(CVD)、光刻或喷涂法在狭窄的空间中均难以实施。作为一种可行的方法,电沉 积也面临许多技术上的限制,因为这种通过金属离子扩散机制控制表面生长的方法可能更容易受到局部放电不均匀、微流场中传质不均等问题的影响,从而难以在复杂的内表面获得具有应用价值的高品质膜层。
目前普遍采用的超疏水管内处理方法,其一是先进行化学刻蚀后氟化修饰,然而该法对于表面形貌的结构尺寸的可控性不强,且当疏水性丧失后,有将基底材料直接暴露在腐蚀介质中的风险;其二是让低表面能物质(如二甲基硅氧烷)通过偶联剂在长管内表面进行自组装,然而这一方法具有工艺条件复杂、重复性差且组装的膜层薄(一般小于500nm),难以保证机械耐磨性能,无法适应工业应用。
可见,在细长输送管道内制备均匀、结构稳定且耐久性好的超疏水膜层,对于降低工业运输能耗损失和管道的腐蚀防护具有重大的意义,但也面临技术上的局限而难以实施。
发明内容
本发明实施例提供了一种在细长(可达到1m以上)金属管内壁制备高强耐久性超疏水膜层的方法。
根据本发明实施例的在细长金属管内壁制备高强耐久性超疏水膜层的方法,包括如下步骤:金属管内壁的粗糙化处理:用2mol/L~4mol/L的硝酸或2mol/L~4mol/L的盐酸刻蚀金属管内壁5min~30min,以使所述金属管内壁形成粗糙的结构,且暴露所述金属管内壁的活性表面;镍磷合金层的制备:采用化学镀膜方法在粗糙的金属管内壁沉积镍磷合金层,其中,化学镀膜方法采用的第一镀液包括:0.1mol/L~1mol/L六水氯化镍、0.1mol/L~1mol/L次亚磷酸钠、0.1mol/L~1mol/L柠檬酸三钠和0.001mol/L~0.01mol/L光亮剂,镀浴温度为60℃~90℃;功能涂层的制备:在所述镍磷合金层上电沉积功能涂层,电沉积镀浴在超声环境下 操作,以形成均匀的纳米晶膜层,该膜层具有显著的微米级或亚微米级孔道结构,其中,电沉积功能涂层采用的第二镀液包括:0.01mol/L~0.1mol/L六水硫酸镍,0.1mol/L~1mol/L六水氯化镍,0.1mol/L~1mol/L硼酸,0mol/L~0.1mol/L二氧化硅粒子和0.001mol/L~0.05mol/L两亲性物质,镀浴温度为15℃~50℃,镀浴时的超声频率为20kHz~60kHz,功率为150W~400W;热处理步骤:在所述功能涂层表面进行热处理,热处理的温度为100℃~350℃,时间为0.5h~2h;阳极氧化步骤:所述金属管做阳极,将镍丝作为阴极伸入所述金属管的空腔中,室温下在液流循环的条件下进行阳极氧化,时间为1min~10min,外加电压1V~5V,其中,阳极氧化步骤的镀液成分包括pH为2.0~6.0的0.25mol/L~0.1mol/L氯化钾;低表面能修饰:用溶解有低表面能物质的乙醇-水混合溶液进行低表面能修饰,所述乙醇-水混合液中,乙醇与水的质量比为(1:9)~(9:1),所述乙醇-水混合溶液的温度为60℃~90℃,低表面能修饰时间为1h~3h。
根据本发明的在细长金属管内壁制备高强耐久性超疏水膜层的方法,利用低功率超声在细长管空腔中可以通过流体介质传递能量且不易被削弱的特点,在整个管空腔内形成稳定的超声场,大大减小局部传质受阻带来的影响,并在超声的诱导作用下制备了均匀的纳米晶膜层。由于本发明的制备过程中仅需管内充满电镀液,施镀过程可以不用让镀件完全浸没,而仅需让管内壁通过循环流动的液体,即能让整个管段实现特殊条件下的均匀镀覆,从而大大降低了装置和原料的消耗量。同时,在制备纳米晶膜层的过程中,向电镀液中加入二氧化硅粒子,其在超声场的作用下发生高频振动,与新生成的沉积层表面不断发生碰撞和摩擦,可让表面形貌在微观形貌上更加均匀、致密。其对比效果反映在图3A中。然后将超声辅助电沉积得到的膜层继续经过可控的阳极氧化处 理,所形成聚合纳米晶的晶界处的成分优先发生溶解,从而刻蚀出了众多纳米级的槽道结构,这让超疏水内表面具有了更佳的贮存空气的能力,其抗水流冲击性大大提升。
进一步地,在所述镍磷合金层的制备步骤前,先在所述金属管的空腔充满第一镀液,然后将纯镍丝伸入所述金属管内,所述金属管作阴极,所述纯镍丝作阳极,在1V~3V外加电压下通电1s~30s,然后在流体循环条件下进行电镀,以制备镍磷合金层。
进一步地,在所述镍磷合金层的制备步骤中,所述光亮剂包括亮氨酸、糖精钠、香豆素或1,4-丁炔二醇中的一种或几种。
进一步地,在所述功能涂层的制备步骤中,所述两亲性物质包括十八胺、十二酸、十四酸、十八酸中的一种或几种。
进一步地,在所述功能涂层的制备步骤中,所述二氧化硅粒子的粒径为0.1μm~5μm。
进一步地,在所述低表面能修饰步骤中,所述低表面能物质包括十七氟癸基三甲氧基硅烷、十三氟辛基三乙氧基硅烷、十三氟辛基三甲氧基硅烷和全氟辛基三乙氧基硅烷中的一种或几种。
进一步地,在所述功能涂层的制备步骤中,将纯铜丝制备成螺线状伸入所述金属管内,且使所述纯铜丝在所述金属管同轴,然后开启超声源形成循环液流后接通电源,在外加电压为0.5V~3V下通电1min~30min,以制备功能涂层。
本发明的另一个目的在于提出一种在细长金属管内壁制备高强耐久性超疏水膜层的装置。
根据本发明的在细长金属管内壁制备高强耐久性超疏水膜层的装置,包括:镀浴槽、金属管、金属丝、蠕动泵、电源和超声系统;所述镀浴槽内盛有镀液,所述镀浴槽设置在所述超声系统内;所述金属丝深 入所述金属管中,且所述金属丝的第一端和所述金属管的第一端均深入所述镀液的液面以下,所述金属丝与所述电源的正极连接,所述金属管与所述电源的负极连接;所述蠕动泵的一端与所述金属管的第二端连接,所述蠕动泵的第二端深入所述镀液的液面以下。
进一步地,根据本发明的在细长金属管内壁制备高强耐久性超疏水膜层的装置,所述超声系统包括:水浴槽、加热器和超声波换能器。
进一步地,所述金属丝为螺线状结构。
附图简要说明
图1是根据本发明的在细长金属管内壁制备高强耐久性超疏水膜层的方法流程图;
图2A是在金属管内壁沉积镍磷合金层后的结构示意图;
图2B是在金属管内壁沉积功能涂层后的结构示意图;
图2C是进行阳极氧化步骤处理过的金属管内壁的结构示意图;
图3A1是经过镍磷合金层的制备步骤后的金属管内壁的SEM图(镀液中不含二氧化硅粒子);
图3A2是经过功能涂层的制备步骤后的金属管内壁的SEM图(镀液中含二氧化硅粒子);
图3B是经过功能涂层的制备步骤处理过的金属管内壁截面的SEM图;
图3C是阳极氧化处理对于调整表面形貌的作用的SEM图;
图4是本发明的在细长金属管内壁制备高强耐久性超疏水膜层的装置的结构示意图;
图5A是金属丝在金属管空腔中固定的结构示意图;
图5B是图5A的俯视图;
图6是实施例6的具有亲水性和超疏水性内表面的管道流动压差对比图。
实施本发明的方式
为使本发明的目的、技术方案和优点更加清楚明白,以下举实施例,并参照附图,对本发明进一步详细说明。
本发明的一个目的是提供一种耦合超声辅助电沉积和后续阳极氧化的方法,在细长金属管内壁上形成均匀的微纳尺度多级纳米晶膜层,并通过低表面能物质修饰制造出耐磨性、抗水流冲击性优良的超疏水层。该法可实施到超过1米长的金属管内壁上。本领域技术人员可以理解,该法同样可在金属板上获得良好效果。
如图1所示,根据本发明的在细长金属管内壁制备高强耐久性超疏水膜层的方法,包括如下步骤:
金属管内壁的粗糙化处理S101:用2mol/L~4mol/L的硝酸或2mol/L~4mol/L的盐酸刻蚀金属管内壁5min~30min,以使所述金属管内壁形成粗糙的结构,同时暴露所述金属管内壁的活性表面。
镍磷合金层的制备S102:采用化学镀膜方法在所述粗糙的金属管内壁沉积镍磷合金层,如图2A和图3A1所示,1为金属管内壁,2为镍磷合金层,其中,化学镀膜方法采用的第一镀液包括:0.1mol/L~1mol/L六水氯化镍、0.1mol/L~1mol/L次亚磷酸钠、0.1mol/L~1mol/L柠檬酸三钠和1.0mmol/L~10mmol/L光亮剂,镀浴温度为60℃~90℃。所述光亮剂包括亮氨酸、糖精钠、香豆素或1,4-丁炔二醇中的一种或几种。具体地,先在所述金属管的空腔充满第一镀液,然后将纯镍丝伸入所述金属管内,所述金属管作阴极,所述纯镍丝作阳极,在1V~3V外加电压 下通电1s~30s,然后在流体循环条件下进行电镀,以制备镍磷合金层。在金属管道内预先镀覆一层致密的镍磷合金层,不仅让膜层抗腐蚀介质能力大大提高,也有利于超声下纳米晶粒更加规整有序的生长,从而大大提高镀膜的层间结合力。镍磷合金层的硬度可达2H以上,且金属性的微观尺寸结构不易受高强度流体的冲击或坚硬物摩擦而被破坏,从而保证了粗糙结构的稳定性。
功能涂层的制备S103:在所述镍磷合金层上电沉积功能涂层,电沉积镀浴在超声环境下操作,以形成微米级或亚微米级的孔道,如图2B、图3A2和图3B所示,3为功能涂层,4为微米级或亚微米级孔道。其中,电沉积功能涂层采用的第二镀液包括:0.01mol/L~0.1mol/L六水硫酸镍,0.1mol/L~1mol/L六水氯化镍,0.1mol/L~1mol/L硼酸,0mol/L~0.1mol/L二氧化硅粒子,1.0mmol/L~5.0mmol/L两亲性物质和1.0mmol/L~10mmol/L光亮剂,镀浴温度为15℃~50℃,镀浴时的超声频率为20kHz~60kHz,功率为150W~400W。所述两亲性物质包括十八胺、十二酸、十四酸或十八酸中的一种或几种,所述二氧化硅粒子的粒径为0.1μm~5μm,所述光亮剂包括亮氨酸、糖精钠、香豆素或1,4-丁炔二醇中的一种或几种。具体地,可以将纯铜丝制备成螺线状伸入所述金属管内,且使所述纯铜丝在所述金属管同轴,然后开启超声源形成循环液流后接通电源,在外加电压为0.5V~3V下通电1min~30min,以制备功能涂层。
热处理步骤S104:在所述功能涂层表面进行热处理,热处理的温度为100℃~350℃,时间为0.5h~2h。由于上述功能涂层的制备步骤中两亲性物质会发生共沉积,该结构层的表面需要经过高温处理让表面失去疏水性,再进行接下来的阳极氧化步骤。
阳极氧化步骤S105:所述金属管做阳极,将镍丝作为阴极伸入所述 金属管的空腔中,室温下在液流循环的条件下进行阳极氧化,时间为1min~10min,外加电压1V~5V,其中,阳极氧化步骤的镀液成分包括pH为2.0~6.0的0.25mol/L~0.1mol/L氯化钾。通过阳极氧化步骤,在镍层微米级孔的内表面和孔间沿着纳米晶的晶界处继续形成纳米级的槽道结构5,如图2C和图3C的SEM照片所示。
低表面能修饰S106:用溶解有低表面能物质的乙醇-水混合溶液进行低表面能修饰,所述乙醇-水混合溶液的温度为60℃~90℃,低表面能修饰时间为1h~3h。所述低表面能物质包括十七氟癸基三甲氧基硅烷、十三氟辛基三乙氧基硅烷、十三氟辛基三甲氧基硅烷或全氟辛基三乙氧基硅烷中的一种或几种。
根据本发明的在细长金属管内壁制备高强耐久性超疏水膜层的方法,通过在狭长管空腔中利用超声传递能量的方法,大大减小局部传质受阻带来的影响,并在超声的诱导作用下制备了均匀的纳米晶膜层。由于超声的纵波和能量能沿流体介质传播,施镀过程可以不用让镀件完全浸入电镀液,而仅需让管内壁通过循环流动的液体,即能让整个管段实现特殊条件下的均匀镀覆,从而大大降低了装置和原料的消耗量。制备过程中在多孔结构功能层之下预先镀覆一层致密的镍磷合金层,不仅让膜层抗腐蚀介质能力大大提高,镍磷层也有利于超声下纳米晶粒更加规整有序的生长,从而大大提高镀膜的层间结合力。最终获得的沉积层硬度可达2H以上,且金属性的微观尺寸结构不易受高强度流体的冲击或坚硬物摩擦而被破坏,从而保证了粗糙结构的稳定性。如图3B所示,所制备膜层具有超过10μm的显著厚度,这保证了其优良的抗机械磨损能力。由于致密纳米晶膜层和超疏水表面阻断液、固相直接接触的共同作用,管内壁具有优良的耐流体介质腐蚀和自清洁性能。另一方面,通过流体介质时因镀覆超疏水表面而形成的空气膜能有效减少界面处流 体与避免粗糙结构的直接接触并产生流体质点的滑移,大大减少因界面处摩擦而产生的阻力,从而降低了输送系统的能耗。
如图4所示,本发明的另一个目的在于提出在细长金属管内壁制备高强耐久性超疏水膜层的装置100,包括:镀浴槽110、金属管120、金属丝130、蠕动泵140、电源150和超声系统。
其中,所述镀浴槽110内盛有镀液,所述镀浴槽110设置在所述超声系统内。所述蠕动泵140的一端与所述金属管120的第二端连接,所述蠕动泵140的第二端深入所述镀液的液面以下。通过蠕动泵140驱动,以使施镀的金属管空腔中形成电镀液的循环流动,并在该条件下进行电沉积。
所述金属丝130深入所述金属管120中,且所述金属丝130的第一端和所述金属管120的第一端均深入所述镀液的液面以下,所述金属丝130与所述电源150的正极连接,所述金属管120与所述电源150的负极连接。具体地,金属丝130可以为镍丝或铜丝等。在进行管内空腔电沉积时,要保证电镀过程中阳极与溶液有适当的接触面积,过大的接触面积引起的过高电流密度可能对镀层结构造成破坏,而过小的接触面积又可能引起强烈的钝化现象而影响沉积过程。在具体实施过程中,可以将金属丝制备成螺线状结构以增大接触面积。例如:如图5A所示,用直径为0.5mm的纯铜丝绕成螺线状结构,其尺寸参数如图5A和5B所示,螺线直径为3mm,螺距为5mm。如图5A所示,螺线外侧用厚度略大于3.5mm、宽度为0.5mm的EVA(乙烯-醋酸乙烯共聚物)泡棉围上,并用胶水固定。在螺线上沿长度方向上每隔15mm进行一次固定,保证铜丝在管内空腔中处于与圆管同轴的位置。
超声系统包括水浴槽160、加热器170和超声波换能器180。由于超声的纵波和能量能沿流体介质传播,施镀过程可以不用让镀件完全浸入 电镀液,而仅需让管内壁通过循环流动的液体,即能让整个管段实现特殊条件下的均匀镀覆,大大降低了装置和原料的消耗量。
当采用化学镀膜的方法镀镍磷合金层时,通过加热器170控制水浴槽160中水浴温度恒定,将镍丝伸入金属管120空腔中并开启蠕动泵140让电镀液充满空腔并形成循环液流。打开电源150让管内壁形成初始镍层;随后取出阳极镍丝,开启循环进行化学镀过程。
当制备功能涂层时,通过加热器170控制水浴槽160中水浴温度恒定,开启蠕动泵140让电镀液充满金属管120空腔并形成循环液流,随后开启超声,由于超声的纵波能在流体介质中沿直线方向传播而不易减弱,竖直放置的直管空腔中各个位置都能够均匀地获得超声能量。待打开电源150后,管空腔中就能在超声的环境下进行电沉积。
当进行低表面能修饰步骤时,通过加热器170控制水浴槽160中水浴温度恒定,开启蠕动泵140让溶液充满空腔并形成循环液流,接着进行低表面能单体自吸附的过程。
下面通过具体实施例详细描述本发明。
实施例1
1)将尺寸为φ14×1mm、长度为110cm的不锈钢管经1000mL蒸馏水冲洗后,内表面用3.0mol/L的盐酸刻蚀15min;
2)以钢管为阴极、纯镍丝为阳极并伸入钢管内壁中,按图4接好装置让管内充满化学镀液并循环流动,控制水浴温度80℃,接通直流电源并在1.7V下通电15s,待取出阳极后,继续循环1h进行化学镀镍磷合金层。所用的第一镀液的成分为:0.24mol/L六水氯化镍、0.47mol/L次亚磷酸钠、0.15mol/L柠檬酸三钠,所用光亮剂为4.0mmol/L糖精钠;
3)以镀覆镍磷合金层的钢管为阴极,按图5A和5B中的形状和尺 寸参数在钢管内固定好铜丝作为阳极,接好装置让管内充满含镍盐镀液并循环流动,控制水浴温度35℃。开启超声后接通直流电源并在2.0V下通电25min,即在镍磷合金镀层表面继续形成具有微纳尺度功能涂层。所用的第二镀液成分为0.09mol/L六水硫酸镍、0.15mol/L六水氯化镍、0.30mol/L硼酸和8.5mmol/L平均粒径为2μm的二氧化硅粒子,所添加两亲性物质为2.5mmol/L月桂酸,所添加光亮剂为3.0mmol/L糖精钠;所用超声功率为250W,频率为40kHz。
4)将镀覆功能层的钢管在270℃下热处理1.5h待其完全呈亲水态,随后接好装置后让管内循环流动体积分数为0.1%全氟辛基三乙氧基硅烷的乙醇-水混合溶液,乙醇与水的混合比为6:4,控制水浴温度85℃,低表面能物质修饰时间为2h,最终可在长达110cm的不锈钢管内实现超疏水膜层的均匀镀覆。
实施例2
2)将尺寸为φ14×1mm、长度为30cm的纯铝管经200mL蒸馏水冲洗后,内表面用1.5mol/L的盐酸刻蚀10min;
2)以铝管为阴极、纯镍丝为阳极并伸入钢管内壁中,按图4接好装置让管内充满化学镀液并循环流动,控制水浴温度90℃,接通直流电源并在1.5V下通电25s,待取出阳极后,继续循环1.5h进行化学镀镍磷合金层。所用的第一镀液的成分为:0.32mol/L六水氯化镍、0.50mol/L次亚磷酸钠、0.20mol/L柠檬酸三钠,所用光亮剂为3.0mmol/L糖精钠;
3)以镀覆镍磷合金层的铝管为阴极,按图5A和5B中的形状和尺寸参数在铝管内固定好铜丝作为阳极,接好装置让管内充满含镍盐镀液并循环流动,控制水浴温度40℃。开启超声后接通直流电源并在2.5V下通电20min,即在镍磷合金镀层表面继续形成具有微纳尺度功能涂层。 所用的第二镀液成分为0.10mol/L六水硫酸镍、0.17mol/L六水氯化镍、0.30mol/L硼酸和12.5mmol/L平均粒径为3μm的二氧化硅粒子,所添加两亲性物质为2.5mmol/L十八胺,所添加光亮剂为2.0mmol/L糖精钠;所用超声功率为350W,频率为50kHz。
4)将镀覆功能层的铝管在270℃下热处理1.5h待其完全呈亲水态,随后接好装置后让管内循环流动体积分数为0.1%全氟辛基三乙氧基硅烷的乙醇-水混合溶液,乙醇与水的混合比为7:3,控制水浴温度90℃,低表面能物质修饰时间为2h,这样可以获得超疏水内涂层铝管。
实施例3
1)将尺寸为φ14×1mm、长度为20cm的纯铜管经100mL蒸馏水冲洗后,内表面用3.0mol/L的硝酸刻蚀15min;
2)以铜管为阴极、纯镍丝为阳极并伸入铜管内壁中,按图4接好装置让管内充满化学镀液并循环流动,控制水浴温度80℃,接通直流电源并在1.5V下通电20s,待取出阳极后,继续循环1h进行化学镀镍磷合金层。所用化学镀液的成分为:0.25mol/L六水氯化镍、0.45mol/L次亚磷酸钠、0.13mol/L柠檬酸三钠,所用光亮剂为3.5mmol/L糖精钠;
3)以镀覆镍磷合金层的铜管为阴极,按图5A和5B中的形状和尺寸参数在铜管内固定好铜丝作为阳极,接好装置让管内充满含镍盐镀液并循环流动,控制水浴温度40℃。开启超声后接通直流电源并在1.8V下通电15min,即在镍磷合金镀层表面继续形成具有微纳尺度功能涂层。所用镀液成分为0.08mol/L六水硫酸镍、0.13mol/L六水氯化镍、0.32mol/L硼酸和13.3mmol/L平均粒径为1μm的二氧化硅粒子,所添加两亲性物质为2.5mmol/L月桂酸,所添加光亮剂为3.0mmol/L糖精钠;所用超声功率为200W,频率为30kHz。
4)将镀覆功能层的铜管在270℃下热处理1h待其完全呈亲水态,随后接好装置后让管内循环流动体积分数为0.1%全氟辛基三乙氧基硅烷的乙醇-水混合溶液,乙醇与水的混合比为7:3,控制水浴温度85℃,低表面能物质修饰时间为2h。
5)在管内进行抗水流冲击性能测试,具体方法为:让管中通过450L/h的水流,一次性冲刷10min,随后取出铜管发现其内壁不发生润湿现象,测定内表面的WCA(静态水接触角)发现仍然可以维持在约120°;铜管经80℃处理5min后测定WCA发现恢复到135°以上;重复以上实验步骤3次,发现经烘干后管内壁WCA难以达到110°,这说明单纯依靠超声诱导下电沉积形成的镀层难以对水流冲击形成长时间的耐受性。
实施例4
1)将尺寸为φ14×1mm、长度为20cm的纯铜管经100mL蒸馏水冲洗后,内表面用3.0mol/L的硝酸刻蚀15min。
2)以铜管为阴极、纯镍丝为阳极并伸入铜管内壁中,按图3接好装置让管内充满化学镀液并循环流动,控制水浴温度80℃,接通直流电源并在1.5V下通电20s,待取出阳极后,继续循环1h进行化学镀镍磷合金层。所用化学镀液的成分为:0.25mol/L六水氯化镍、0.40mol/L次亚磷酸钠、0.13mol/L柠檬酸三钠,所用光亮剂为3.5mmol/L糖精钠;
3)以镀覆镍磷合金层的铜管为阴极,按图5A和5B的形状和尺寸参数在铜管内固定好铜丝作为阳极,接好装置让管内充满含镍盐镀液并循环流动,控制水浴温度40℃;开启超声后接通直流电源并在1.8V下通电15min,即在镍磷合金镀层表面继续形成具有微纳尺度功能涂层。所用镀液成分为0.08mol/L六水硫酸镍、0.13mol/L六水氯化镍、0.32 mol/L硼酸和13.3mmol/L平均粒径为1μm的二氧化硅粒子,所添加两亲性物质为2.5mmol/L月桂酸,所添加光亮剂为3.0mmol/L糖精钠;所用超声功率为200W,频率为30kHz。
4)将镀覆功能层的铜管在270℃下热处理1h待其完全呈亲水态,再以纯镍丝为阴极、该铜管为阳极,接好装置让管内充满0.3mol/L氯化钾溶液并循环流动,用稀盐酸调节溶液pH至4,接通直流电源并在1V下阳极氧化3min。
5)将获得最终膜层的铜管接好装置后让管内循环流动体积分数为0.1%全氟辛基三乙氧基硅烷的乙醇-水混合溶液,乙醇与水的混合比为7:3,控制水浴温度85℃,低表面能物质修饰时间为2h,最终可在铜管内壁获得均匀致密、抗水流冲击性优良的超疏水膜层。
6)通过偶合超声辅助电沉积和阳极氧化而制得的超疏水膜层具有更加优良的抗水流冲击性能,在管内进行抗水流冲击性能测试如下:让管中通过450L/h的水流,一次性冲刷10min,随后取出铜管发现其内壁不发生润湿现象,测定内表面的WCA发现仍然可以维持在约120°。铜管经80℃处理5min后测定WCA发现恢复到140°以上。将该实验重复5次以上,发现每次经烘干处理后WCA依然能恢复到140°以上,且壁面不会发生明显润湿现象,与实施例3对比,这说明经过阳极氧化步骤获得的具有众多纳米槽结构的膜层表面具有优良的抗水流冲击性能。
实施例5
1)将尺寸为φ14×1mm、长度为55cm的纯铜管经500mL蒸馏水冲洗后,内表面用2.5mol/L的硝酸刻蚀20min。
2)以铜管为阴极、纯镍丝为阳极并伸入铜管内壁中,按图4接好 装置让管内充满化学镀液并循环流动,控制水浴温度85℃,接通直流电源并在1.7V下通电20s,待取出阳极后,继续循环1h进行化学镀镍磷合金层。
3)以镀覆镍磷合金层的铜管为阴极,按图5A和5B中形状和尺寸参数在铜管内固定好铜丝作为阳极,接好装置让管内充满含镍盐镀液并循环流动,控制水浴温度36℃;开启超声后接通直流电源并在1.6V下通电25min,即在镍磷合金镀层表面继续形成具有微纳尺度功能涂层。所用镀液成分为0.07mol/L六水硫酸镍、0.15mol/L六水氯化镍、0.32mol/L硼酸和12mmol/L平均粒径为2μm的二氧化硅粒子,所添加两亲性物质为2.5mmol/L硬脂酸,所添加光亮剂为2.5mmol/L糖精钠。所用超声功率为250W,频率为40kHz。
4)将镀覆功能层的铜管在280℃下热处理1.5h待其完全呈亲水态,再以纯镍丝为阴极、该铜管为阳极,接好装置让管内充满0.25mol/L氯化钾溶液并循环流动,用稀盐酸调节溶液pH至3,接通直流电源并在1V下阳极氧化4min。
5)将获得最终膜层的铜管接好装置后让管内循环流动体积分数为0.1%全氟辛基三乙氧基硅烷的乙醇-水混合溶液,乙醇与水的混合比为6:4,控制水浴温度85℃,低表面能物质修饰时间为1.5h,最终可在铜管内壁获得均匀致密、抗水流冲击性优良的超疏水膜层。
6)为测定该超疏功能管内壁的减阻效果,设计对比实验如下:
以单纯经过2.5mol/L的硝酸20min刻蚀的相同尺寸铜管作为对比,在两根管中依次通过60L/h~260L/h的水流,选取测压点间距离40cm,每隔20L/h测定两测压点间静压差(P1-P2),所获结果如图6所示。实验结果表明,所获超疏水内表面在一定流量下可获得减阻效果,最大可达约17.9%。
综上可知,根据本发明的在细长金属管内壁制备高强耐久性超疏水膜层的方法,利用低功率超声在细长管空腔中可以通过流体介质传递能量且不易被削弱的特点,在整个管空腔内形成稳定的超声场,大大减小局部传质受阻带来的影响,并在超声的诱导作用下制备了均匀的纳米晶膜层。由于本发明的制备过程中仅需管内充满电镀液,施镀过程可以不用让镀件完全浸没,而仅需让管内壁通过循环流动的液体,即能让整个管段实现特殊条件下的均匀镀覆,从而大大降低了装置和原料的消耗量。制备过程中在多孔结构功能层之下预先镀覆一层致密的镍磷合金层,不仅让膜层抗腐蚀介质能力大大提高,镍磷层也有利于超声下纳米晶粒更加规整有序的生长,从而大大提高镀膜的层间结合力。最终获得的沉积层厚度可在较短制备时间(小于30分钟)内达到10μm以上,硬度可达2H以上,且金属性的微观尺寸结构不易受高强度流体的冲击或坚硬物摩擦而被破坏,从而保证了粗糙结构的稳定性。由于致密纳米晶膜层和超疏水表面阻断液、固相直接接触的共同作用,管内壁具有优良的耐流体介质腐蚀和自清洁性能。另一方面,通过流体介质时因镀覆超疏水表面而形成的空气膜能有效减少界面处流体与避免粗糙结构的直接接触并产生流体质点的滑移,大大减少因界面处摩擦而产生的阻力,从而降低了输送系统的能耗;通过阳极氧化步骤而获得的纳米槽结构保证了管内膜层在强水流冲击条件下保持非润湿状态的长效性。

Claims (10)

  1. 在细长金属管内壁制备高强耐久性超疏水膜层的方法,其特征在于,包括如下步骤:
    金属管内壁的粗糙化处理:用2mol/L~4mol/L的硝酸或2mol/L~4mol/L的盐酸刻蚀金属管内壁5min~30min,以使所述金属管内壁形成粗糙的结构,且暴露所述金属管内壁的活性表面;
    镍磷合金层的制备:采用化学镀膜方法在粗糙的金属管内壁沉积镍磷合金层,其中,化学镀膜方法采用的第一镀液包括:0.1mol/L~1mol/L六水氯化镍、0.1mol/L~1mol/L次亚磷酸钠、0.1mol/L~1mol/L柠檬酸三钠和0.001mol/L~0.01mol/L光亮剂,镀浴温度为60℃~90℃;
    功能涂层的制备:在所述镍磷合金层上电沉积功能涂层,电沉积镀浴在超声环境下操作,以形成微米级或亚微米级的孔道,其中,电沉积功能涂层采用的第二镀液包括:0.01mol/L~0.1mol/L六水硫酸镍,0.1mol/L~1mol/L六水氯化镍,0.1mol/L~1mol/L硼酸,0mol/L~0.1mol/L二氧化硅粒子和0.001mol/L~0.05mol/L两亲性物质,镀浴温度为15℃~50℃,镀浴时的超声频率为20kHz~60kHz,功率为150W~400W;
    热处理步骤:在所述功能涂层表面进行热处理,热处理的温度为100℃~350℃,时间为0.5h~2h;
    阳极氧化步骤:所述金属管做阳极,将镍丝作为阴极伸入所述金属管的空腔中,室温下在液流循环的条件下进行阳极氧化,时间为1min~10min,外加电压1V~5V,其中,阳极氧化步骤的镀液成分包括pH为2.0~6.0的0.25mol/L~0.1mol/L氯化钾;
    低表面能修饰:用溶解有低表面能物质的乙醇-水混合溶液进行低表面能修饰,所述乙醇-水混合液中,乙醇与水的质量比为(1:9)~(9: 1),所述乙醇-水混合溶液的温度为60℃~90℃,低表面能修饰时间为1h~3h。
  2. 根据权利要求1所述的在细长金属管内壁制备高强耐久性超疏水膜层的方法,其特征在于,在所述镍磷合金层的制备步骤前,先在所述金属管的空腔充满第一镀液,然后将纯镍丝伸入所述金属管内,所述金属管作阴极,所述纯镍丝作阳极,在1V~3V外加电压下通电1s~30s,然后在流体循环条件下进行电镀,以制备镍磷合金层。
  3. 根据权利要求1所述的在细长金属管内壁制备高强耐久性超疏水膜层的方法,其特征在于,在所述镍磷合金层的制备步骤中,所述光亮剂包括亮氨酸、糖精钠、香豆素或1,4-丁炔二醇中的一种或几种。
  4. 根据权利要求1所述的在细长金属管内壁制备高强耐久性超疏水膜层的方法,其特征在于,在所述功能涂层的制备步骤中,所述两亲性物质包括十八胺、十二酸、十四酸或十八酸中的一种或几种。
  5. 根据权利要求1所述的在细长金属管内壁制备高强耐久性超疏水膜层的方法,其特征在于,在所述功能涂层的制备步骤中,所述二氧化硅粒子的粒径为0.1μm~5μm。
  6. 根据权利要求1所述的在细长金属管内壁制备高强耐久性超疏水膜层的方法,其特征在于,在所述低表面能修饰步骤中,所述低表面能物质包括十七氟癸基三甲氧基硅烷、十三氟辛基三乙氧基硅烷、十三氟辛基三甲氧基硅烷或全氟辛基三乙氧基硅烷中的一种或几种。
  7. 根据权利要求1所述的在细长金属管内壁制备高强耐久性超疏水膜层的方法,其特征在于,在所述功能涂层的制备步骤中,将纯铜丝制备成螺线状伸入所述金属管内,且使所述纯铜丝在所述金属管同轴,然后开启超声源形成循环液流后接通电源,在外加电压为0.5V~3V下通电1min~30min,以制备功能涂层。
  8. 在细长金属管内壁制备高强耐久性超疏水膜层的装置,其特征在于,包括:
    镀浴槽、金属管、金属丝、蠕动泵、电源和超声系统;
    所述镀浴槽内盛有镀液,所述镀浴槽设置在所述超声系统内;
    所述金属丝深入所述金属管中,且所述金属丝的第一端和所述金属管的第一端均深入所述镀液的液面以下,所述金属丝与所述电源的正极连接,所述金属管与所述电源的负极连接;
    所述蠕动泵的一端与所述金属管的第二端连接,所述蠕动泵的第二端深入所述镀液的液面以下。
  9. 根据权利要求8所述的在细长金属管内壁制备高强耐久性超疏水膜层的装置,其特征在于,所述超声系统包括:水浴槽、加热器和超声波换能器。
  10. 根据权利要求8所述的在细长金属管内壁制备高强耐久性超疏水膜层的装置,其特征在于,所述金属丝为螺线状结构。
PCT/CN2016/100885 2016-09-29 2016-09-29 在细长金属管内壁制备高强耐久性超疏水膜层的方法及装置 WO2018058457A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/100885 WO2018058457A1 (zh) 2016-09-29 2016-09-29 在细长金属管内壁制备高强耐久性超疏水膜层的方法及装置
US16/247,443 US11078572B2 (en) 2016-09-29 2019-01-14 Method and device for preparing high strength and durable super-hydrophobic film layer on inner wall of elongated metal tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100885 WO2018058457A1 (zh) 2016-09-29 2016-09-29 在细长金属管内壁制备高强耐久性超疏水膜层的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/247,443 Continuation US11078572B2 (en) 2016-09-29 2019-01-14 Method and device for preparing high strength and durable super-hydrophobic film layer on inner wall of elongated metal tube

Publications (1)

Publication Number Publication Date
WO2018058457A1 true WO2018058457A1 (zh) 2018-04-05

Family

ID=61763028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100885 WO2018058457A1 (zh) 2016-09-29 2016-09-29 在细长金属管内壁制备高强耐久性超疏水膜层的方法及装置

Country Status (2)

Country Link
US (1) US11078572B2 (zh)
WO (1) WO2018058457A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108977865A (zh) * 2018-07-19 2018-12-11 中国人民解放军92228部队 一种5xxx铝及铝合金表面高耐蚀单致密微弧氧化膜层的制备方法
CN109750283A (zh) * 2019-02-27 2019-05-14 曲阜师范大学 一种smc材料表面化学镀镍磷合金的工艺方法
CN110340789A (zh) * 2019-06-19 2019-10-18 哈尔滨朗昇电气股份有限公司 一种不锈钢配电柜自清洁表面的制备工艺
CN111875944A (zh) * 2020-08-10 2020-11-03 青岛科技大学 一种复合材料及其制备方法和应用
CN113136573A (zh) * 2020-01-17 2021-07-20 先丰通讯股份有限公司 化学沉积系统
CN113445095A (zh) * 2021-07-14 2021-09-28 北京航空航天大学 一种多梯度浸润性铜丝阵列及其制备方法和应用
CN113737246A (zh) * 2021-11-08 2021-12-03 山东裕航特种合金装备有限公司 一种铝合金表面微弧氧化处理工艺

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113005388A (zh) * 2020-11-18 2021-06-22 河海大学 超疏水耐蚀防污铝基非晶涂层及其制备方法
CN112593280A (zh) * 2020-11-23 2021-04-02 重庆大学 一种空心针内外表面及端面超疏水涂层的制备方法
CN112593281A (zh) * 2020-11-23 2021-04-02 重庆大学 一种适用于不锈钢管内表面的超浸润涂层的制备方法
CN114507888B (zh) * 2022-01-20 2023-09-26 江苏大学 一种管道内壁超疏水结构的电沉积制备方法及装置
CN114232040A (zh) * 2022-02-24 2022-03-25 深圳市顺信精细化工有限公司 一种镍磷合金电镀液及电镀方法
CN115430597B (zh) * 2022-11-03 2023-03-07 中国科学院宁波材料技术与工程研究所 超亲水镍基多层复合膜材料及其制备方法与应用
CN116005242B (zh) * 2023-03-28 2023-06-02 河南科技学院 一种适用于金属管件内壁电净与电镀修复的多功能装置
CN117512745A (zh) * 2024-01-08 2024-02-06 聊城大学 一种适用于海洋强腐蚀环境下的金属表面镀层结构的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221227B1 (en) * 1999-11-02 2001-04-24 Ching-Bin Lin Microfabrication process for making microstructures as geometrically miniaturized from three-dimensional orientations
CN101532159A (zh) * 2009-03-10 2009-09-16 集美大学 一种金属铝超疏水表面的制备方法
CN101665968A (zh) * 2008-09-04 2010-03-10 中国科学院兰州化学物理研究所 用电化学法制备超疏水表面工艺方法
CN102199783A (zh) * 2011-06-08 2011-09-28 浙江大学 镍电镀液和使用镍电镀液制备超疏水镍镀层的方法
CN102776548A (zh) * 2012-06-07 2012-11-14 清华大学 钢材表面超疏水膜层的制备方法
DE102009014588B4 (de) * 2009-03-24 2013-07-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Metallbasiertes Schichtsystem, Verfahren zur Herstellung desselben und Verwendung des Schichtsystems oder des Verfahrens

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2441531A (en) * 2006-09-08 2008-03-12 Nanotecture Ltd Liquid crystal templated deposition method
WO2014146117A2 (en) * 2013-03-15 2014-09-18 Modumetal, Inc. A method and apparatus for continuously applying nanolaminate metal coatings
KR101615749B1 (ko) * 2016-03-17 2016-04-27 재단법인대구경북과학기술원 다공성 수지침의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221227B1 (en) * 1999-11-02 2001-04-24 Ching-Bin Lin Microfabrication process for making microstructures as geometrically miniaturized from three-dimensional orientations
CN101665968A (zh) * 2008-09-04 2010-03-10 中国科学院兰州化学物理研究所 用电化学法制备超疏水表面工艺方法
CN101532159A (zh) * 2009-03-10 2009-09-16 集美大学 一种金属铝超疏水表面的制备方法
DE102009014588B4 (de) * 2009-03-24 2013-07-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Metallbasiertes Schichtsystem, Verfahren zur Herstellung desselben und Verwendung des Schichtsystems oder des Verfahrens
CN102199783A (zh) * 2011-06-08 2011-09-28 浙江大学 镍电镀液和使用镍电镀液制备超疏水镍镀层的方法
CN102776548A (zh) * 2012-06-07 2012-11-14 清华大学 钢材表面超疏水膜层的制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108977865A (zh) * 2018-07-19 2018-12-11 中国人民解放军92228部队 一种5xxx铝及铝合金表面高耐蚀单致密微弧氧化膜层的制备方法
CN108977865B (zh) * 2018-07-19 2021-01-05 中国人民解放军92228部队 一种5xxx铝及铝合金表面高耐蚀单致密微弧氧化膜层的制备方法
CN109750283A (zh) * 2019-02-27 2019-05-14 曲阜师范大学 一种smc材料表面化学镀镍磷合金的工艺方法
CN110340789A (zh) * 2019-06-19 2019-10-18 哈尔滨朗昇电气股份有限公司 一种不锈钢配电柜自清洁表面的制备工艺
CN113136573A (zh) * 2020-01-17 2021-07-20 先丰通讯股份有限公司 化学沉积系统
CN111875944A (zh) * 2020-08-10 2020-11-03 青岛科技大学 一种复合材料及其制备方法和应用
CN113445095A (zh) * 2021-07-14 2021-09-28 北京航空航天大学 一种多梯度浸润性铜丝阵列及其制备方法和应用
CN113737246A (zh) * 2021-11-08 2021-12-03 山东裕航特种合金装备有限公司 一种铝合金表面微弧氧化处理工艺

Also Published As

Publication number Publication date
US11078572B2 (en) 2021-08-03
US20190153604A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
WO2018058457A1 (zh) 在细长金属管内壁制备高强耐久性超疏水膜层的方法及装置
Liu et al. Fabrication of superhydrophobic coatings for corrosion protection by electrodeposition: A comprehensive review
CN103469215B (zh) 一种具有低摩擦系数的铜基超疏水表面及其制备方法
CN110724992B (zh) 在铝合金表面制备耐腐蚀超疏水膜层的方法
CN101851771A (zh) 可直接用于电化学沉积的有序多孔氧化铝模板及制备方法
TWI421373B (zh) 一種金屬母材之鎢塗層方法
JP2000282293A (ja) 振動流動攪拌を活用した金属の陽極酸化処理システム
CN110205604A (zh) 梯度金刚石/石墨复合自润滑减磨工程陶瓷涂层及制法
He et al. Experimental study on the anti-fouling effects of EDM machined hierarchical micro/nano structure for heat transfer surface
Lv et al. Heat transfer and fouling rate at boiling on superhydrophobic surface with TiO 2 nanotube-array structure
Hidema et al. Adhesive behavior of a calcium carbonate particle to solid walls having different hydrophilic characteristics
CN110998217B (zh) 带有微结构化涂层的热交换元件及其制造方法
Chien et al. Cost-effective technique to fabricate a tubular through-hole anodic aluminum oxide membrane using one-step anodization
CN209779038U (zh) 一种不锈钢基耐蚀耐磨涂层结构的生产系统
Ni et al. Quantitative analysis of the volume expansion of nanotubes during constant voltage anodization
Li et al. Conformally anodizing hierarchical structure in a deformed tube towards energy-saving liquid transportation
EP3983579A1 (en) Composition and method for preparing corrosion resistant multifunctional coatings
TW201841741A (zh) 經提升的表面疏水性或親水性之基體
JP4884202B2 (ja) 微細構造体の製造方法および微細構造体
CN110484944B (zh) 一种制备石油管道耐蚀表面的复合电解液及超声辅助电沉积石油管道耐蚀层的制备方法
CN103510132A (zh) 高效传热纳米铜材及其制备方法
CN108531946A (zh) 一种实验室内制备Ni-Co-SiC织构纳米镀层的方法及其实验装置
Park et al. Nanoscale reaction vessels: highly ordered nanocrystal arrays inside porous anodic alumina nanowells
Wakil et al. Northumbria Research Link
Yu et al. Fabrication of Super-hydrophobic Surfaces and Studies of Water Flow in Super-hydrophobic Micro-tubes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917211

Country of ref document: EP

Kind code of ref document: A1