WO2018056150A1 - 化合物又はその塩、抗炎症剤、肺がんに対する抗がん剤、化合物又はその塩の製造方法、炎症性疾患の治療方法及び肺がんの治療方法 - Google Patents

化合物又はその塩、抗炎症剤、肺がんに対する抗がん剤、化合物又はその塩の製造方法、炎症性疾患の治療方法及び肺がんの治療方法 Download PDF

Info

Publication number
WO2018056150A1
WO2018056150A1 PCT/JP2017/033144 JP2017033144W WO2018056150A1 WO 2018056150 A1 WO2018056150 A1 WO 2018056150A1 JP 2017033144 W JP2017033144 W JP 2017033144W WO 2018056150 A1 WO2018056150 A1 WO 2018056150A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
compound represented
salt
solution
Prior art date
Application number
PCT/JP2017/033144
Other languages
English (en)
French (fr)
Inventor
順博 戸田
康博 日高
明良 林
孝志 西澤
中村 振一郎
治 蟹江
芳樹 山口
Original Assignee
ティーエフケイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ティーエフケイ株式会社 filed Critical ティーエフケイ株式会社
Priority to CA3038021A priority Critical patent/CA3038021A1/en
Priority to CN201780058341.6A priority patent/CN110121560A/zh
Priority to JP2018541005A priority patent/JP6656677B2/ja
Priority to AU2017331889A priority patent/AU2017331889A1/en
Priority to KR1020197011657A priority patent/KR20190057354A/ko
Priority to US16/321,759 priority patent/US20190177440A1/en
Priority to EP17852927.7A priority patent/EP3511419A4/en
Publication of WO2018056150A1 publication Critical patent/WO2018056150A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/739Lipopolysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0003General processes for their isolation or fractionation, e.g. purification or extraction from biomass
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates

Definitions

  • the present invention relates to a compound or a salt thereof, an anti-inflammatory agent, an anticancer agent for lung cancer, a method for producing the compound or a salt thereof, a method for treating inflammatory diseases, and a method for treating lung cancer.
  • Non-Patent Documents 1 and 2 Various anti-inflammatory agents and anti-cancer agents against lung cancer have been proposed (for example, see Non-Patent Documents 1 and 2).
  • an object of the present invention is to provide a new compound excellent in safety that can be used as an anti-inflammatory agent, an anticancer agent for lung cancer, and the like, and a method for producing the same.
  • the compound of the present invention or a salt thereof is a compound represented by the formula (A) or the formula (B) or a salt thereof.
  • X 1 is hexose or hydroxyl group
  • X 2 is a phosphate group or a hydroxyl group.
  • a method for producing the compound of the present invention or a salt thereof is obtained from at least one of Rhodobacter azotoforms BP0899 strain (Accession No. NITE BP-644) and a culture thereof using the formula (A) or the formula (B).
  • a crude extraction step of extracting a crude extract containing the compound represented by A purification step of isolating the compound represented by the formula (A) or the formula (B) or a salt thereof from the crude extract; It is characterized by including.
  • the present inventors have conducted a series of studies, and obtained a formula obtained from Rhodobacter azotoforms BP0899 strain (Accession No. NITE BP-644) or a culture thereof. It has been found that the compound represented by (A) or formula (B) or a salt thereof has an anti-inflammatory effect and an anti-cancer effect against lung cancer, and has reached the present invention.
  • the compound represented by formula (A) or formula (B) or a salt thereof is highly safe and can be administered over a long period of time.
  • FIG. 1 is a flowchart showing an example of a rough extraction step in the production method of the present invention.
  • FIG. 2 is a flowchart showing an example of the purification step in the production method of the present invention.
  • FIG. 3 is a graph showing the IL-8 concentration of the test solution in Example 3.
  • FIG. 4 is a graph showing the absorbance of the test solution in Example 4.
  • FIG. 5 is a graph showing the absorbance of the test solution in Example 5.
  • FIG. 6 is a graph showing the TNF- ⁇ concentration of the test solution in Example 6.
  • FIG. 7 is a graph showing the TNF- ⁇ concentration of the test solution in Example 7.
  • FIG. 8 is a graph showing the IL-6 concentration of the test solution in Example 8-1.
  • FIG. 9 is a graph showing the tumor volume of mice in Example 9.
  • FIG. 9 is a graph showing the tumor volume of mice in Example 9.
  • FIG. 10 is a mass spectrum when the methyl esterified product in Example 2 was subjected to GC-MS analysis.
  • FIG. 11 is a mass spectrum when the hydrolyzed methyl esterified product in Example 2 was subjected to GC-MS analysis.
  • FIG. 12 is a mass spectrum when the pyrrolidated product was subjected to GC-MS analysis in Example 2.
  • FIG. 13 is a mass spectrum when the hydrolyzed pyrrolidide-treated product in Example 2 was subjected to GC-MS analysis.
  • 14 is a mass spectrum when the compound of peak 4 in FIG. 12 was subjected to GC-MS analysis in Example 2.
  • FIG. FIG. 15 is a mass spectrum when the compound of peak D in FIG. 13 was subjected to GC-MS analysis in Example 2.
  • FIG. 16A is a part of the spectrum when the sample solution was subjected to 1 HNMR measurement in Example 2.
  • FIG. 16B is a part of the spectrum when the sample solution was subjected to 1 HNMR measurement in Example 2.
  • FIG. 16C is a part of the spectrum when the sample solution was subjected to 1 HNMR measurement in Example 2.
  • FIG. 16D is a part of the spectrum when the sample solution was subjected to 1 HNMR measurement in Example 2.
  • FIG. 17A is a part of the spectrum when the sample solution was subjected to 13 CNMR measurement in Example 2.
  • FIG. 17B is a part of the spectrum when the sample solution was subjected to 13 CNMR measurement in Example 2.
  • FIG. 17C is a part of the spectrum when the sample solution was subjected to 13 CNMR measurement in Example 2.
  • FIG. 17D is a part of the spectrum when the sample solution was subjected to 13 CNMR measurement in Example 2.
  • FIG. 18 is a spectrum when the sample solution was subjected to 31 PNMR measurement in Example 2.
  • FIG. 19 is a mass spectrum when the sample solution was subjected to GC-MS analysis in Example 2.
  • FIG. 21 is a mass spectrum when the sample solution was subjected to GC-MS analysis.
  • FIG. 24 was subjected to GC-MS / MS / MS / MS analysis in Example 2.
  • FIG. 27 is a graph showing the expression level of the PPAR ⁇ gene in Example 8-2.
  • FIG. 28 is a graph showing the gel filtration pattern of the sugar chain portion released by the 4 mol / L KOH treatment of the hydrazine degradation product in Example 2.
  • FIG. 29 is a spectrum obtained when the sample A was subjected to 1 HNMR measurement in Example 2.
  • FIG. 30 is a spectrum when the sample A was subjected to 2D DQF-COSY measurement in Example 2.
  • FIG. 31 is a spectrum when the sample A was subjected to 2D NOESY measurement in Example 2.
  • FIG. 32 is a spectrum obtained when the sample A was subjected to 2D 1 H- 31 P HMBC measurement in Example 2.
  • FIG. 33 is a schematic diagram of Sample A in Example 2.
  • the extraction process in the rough extraction step may be an extraction process using an organic solvent that insolubilizes proteins.
  • the extraction solvent may be phenol.
  • the color removal treatment of the dye may be a color removal treatment using at least one selected from the group consisting of acetone, methanol, and chloroform.
  • the crude extract may be filtered in the coarse extraction step.
  • the crude extract in the purification step, may be subjected to an enzyme treatment and an extraction treatment with an organic solvent that insolubilizes proteins.
  • the enzyme treatment may be an enzyme treatment with at least one of a nucleolytic enzyme and a proteolytic enzyme
  • the organic solvent may be phenol.
  • the extraction solution after the extraction treatment may be filtered.
  • the compound of the present invention or a salt thereof is a compound represented by the formula (A) or the formula (B) or a salt thereof.
  • the combination of X 1 and X 2 includes hexose and phosphate group, hydroxyl group and hydroxyl group, hexose and hydroxyl group, hydroxyl group and phosphate group, hexose and phosphate group.
  • a combination of a hydroxyl group and a hydroxyl group is preferred.
  • the compound of the present invention or a salt thereof is represented by the formula (A1) or the formula (B1) when X 1 and X 2 in the formula (A) or the formula (B) are hexose and phosphate groups, respectively. If X 1 and X 2 are both hydroxyl groups in formula (A) or formula (B), the compound represented by formula (A2) or formula (B2) or salt thereof Become.
  • the compound of the present invention or a salt thereof is also referred to as “the novel compound of the present invention”.
  • the novel compound of the present invention can be obtained, for example, by the production method described later. However, the manufacturing method described later is merely an example and does not limit the present invention.
  • the hexose may be, for example, glucose.
  • the novel compound of the present invention may be used for any application, but can be used, for example, as an anti-inflammatory agent described later, a material for an anti-cancer agent for lung cancer, and the like.
  • the novel compounds of the present invention include NF- ⁇ B (Nuclear Factor-kappa B), TNF- ⁇ (Tumor Necrosis Factor- ⁇ ), IL-6 (Interleukin-6) and the like. It has a function of suppressing the production of inflammatory cytokines.
  • the novel compound of the present invention also has a function of activating TLR4 (Toll-like receptor 4), which is a kind of Toll-like receptor, as demonstrated in Examples described later.
  • TLR4 Toll-like receptor 4
  • TLR4 Activation of TLR4 is known to promote the production of anti-inflammatory type I interferon (NinaNMaeshima and Rachel C. Fernandez, “Recognition of lipid A variants by the TLR4-MD-2 receptor complex”, Frontiers in Cellular and Infection Microbiology, February 2013, volume3, Article3, p.2, FIGURE 2). Therefore, the novel compound of the present invention has an anti-inflammatory effect. Furthermore, the novel compound of the present invention also has a function of suppressing the growth of lung cancer, as demonstrated in Examples described later.
  • the anti-inflammatory agent of the present invention suppresses inflammation due to the anti-inflammatory effect of the compound of the present invention or a salt thereof (the above-mentioned novel compound), and is not limited at all except that it contains the novel compound of the present invention.
  • diseases that can be suppressed by the anti-inflammatory agent of the present invention include inflammatory bowel diseases such as ulcerative colitis and Crohn's disease, inflammatory skin diseases such as psoriasis and dermatitis, encephalitis, hepatitis, nephritis, pneumonia, Examples include bronchitis, vasculitis, meningitis, thyroiditis, diabetes, inflammatory bile diseases, cancer with inflammation, etc., and are not particularly limited.
  • the analgesic effect of pain associated with inflammation is also exerted by the anti-inflammatory effect of the novel compound of the present invention.
  • the dosage form of the anti-inflammatory agent includes, for example, powders, fine granules, granules, tablets, coated tablets, capsules, troches, liquids and the like, and is not particularly limited.
  • the composition of the anti-inflammatory agent is not particularly limited, and in addition to the novel compound of the present invention, for example, excipients, binders, lubricants, disintegrants, absorption promoters, emulsifiers, stabilizers, antiseptics Various additives such as an agent may be included.
  • the said anti-inflammatory agent can be manufactured with the formulation technique etc. which are used normally.
  • the method for treating an inflammatory disease of the present invention includes a step of administering the anti-inflammatory agent of the present invention containing the novel compound.
  • “treatment” includes, for example, improving (improving) symptoms, eliminating (completely recovering) symptoms, preventing deterioration of symptoms, prevention, etc.
  • the animal species to which the anti-inflammatory agent is administered is not particularly limited, and examples thereof include humans, non-human mammals such as monkeys, cows, pigs, dogs, and cats, birds such as chickens, and seafood.
  • the administration method is not particularly limited, and examples thereof include oral administration and parenteral administration. Examples of the parenteral administration include transdermal absorption, injection, and suppository administration.
  • the dose of the anti-inflammatory agent can be appropriately set according to, for example, animal species, age, etc., and is not particularly limited.
  • the anticancer agent for lung cancer of the present invention suppresses the growth of lung cancer by the anticancer effect of the compound of the present invention or a salt thereof (the above-mentioned novel compound) against lung cancer, and contains the novel compound of the present invention.
  • the method for treating lung cancer of the present invention includes a step of administering an anticancer agent for lung cancer of the present invention comprising the novel compound.
  • the dosage form of the anticancer agent, the animal species to which the anticancer agent is administered, and the method for administering the anticancer agent include the dosage form of the antiinflammatory agent, the animal species to which the antiinflammatory agent is administered, and the anticancer agent. This is the same as the method for administering the inflammatory agent.
  • the method of producing the compound of the present invention or a salt thereof is produced from at least one of Rhodobacter azotoformans BP0899 strain (Accession No. NITE BP-644) and its culture.
  • the crude extraction step is represented by the formula (A) or the formula (B) from at least one of Rhodobacter azotoforms BP0899 strain (Accession No. NITE BP-644) and its culture. This is a step of extracting a crude extract containing the compound to be prepared or a salt thereof.
  • At least one of the Rhodobacter azotoforms BP0899 strain (Accession No. NITE BP-644) and its culture will be described.
  • At least one of the Rhodobacter azotoforms BP0899 strain (Accession No. NITE BP-644) and the culture thereof preferably have the following mycological characteristics (1) to (30).
  • the BP0899 strain was deposited under the accession number NITE P-644 at the Patent Organism Depositary Center of the National Institute of Technology and Evaluation (2-5-8 Kazusa-Kamashita, Kisarazu City, Chiba, Japan) (Accession date: 2008) In addition, the deposit was made internationally under the deposit number NITE BP-644 (transfer date: October 27, 2010).
  • the base sequence of 16S rRNA of the BP0899 strain is preferably the base sequence represented by SEQ ID NO: 1.
  • At least one of the BP0899 strain and its culture may further exhibit, for example, the properties shown in the following table (31) under aerobic culture conditions in a dark place.
  • Table (31) under aerobic culture conditions in a dark place.
  • “ ⁇ ” indicates no production
  • “+” indicates production.
  • the mycological characteristics may be evaluated, for example, from the result of further main culture after pre-culture.
  • the preculture may be performed, for example, by inoculating the BP0899 strain on a normal agar medium and culturing at 30 ° C. for 24 hours.
  • the conditions of the main culture can be appropriately set according to the evaluation method of each mycological feature.
  • the culture conditions of (1) to (5) are, for example, aerobic culture in a dark place at 30 ° C. using a normal agar medium, and the culture conditions of (6) to (7) Is, for example, an anaerobic culture at 30 ° C.
  • the culture conditions of (8) to (12) are, for example, each medium, preferably at 30 ° C. in a dark place.
  • (13), (14), (16), (17), (19) to (23), (25) oxidation test, (26), (29), (30) and (30) 31) is an aerobic culture in the dark, for example, the fermentation test of (15), (18), (24), (25), and (27) and (28) are, for example, in the dark Anaerobic culture.
  • the method for testing these mycological characteristics is not particularly limited, and a conventionally known method can be employed. Specifically, for example, Barrow G. et al. I. And Feltham R .; K. A.
  • Denitrification reaction is positive if growth and gas formation are observed under anaerobic culture conditions using 1% sodium nitrate broth.
  • a gas generation and a dark blue color determined under anaerobic culture conditions using the above-mentioned Giltay medium (pH 7.0 to 7.2) containing a Durham tube is positive as a denitrification reaction. To do.
  • the said Giltay medium is liquid A (KNO 3 1 g, asparagine 1 g, 1% bromothymol blue alcohol solution 5 mL and distilled water 500 mL) and liquid B (sodium citrate 8.5 g, MgSO 4 .7H 2 O 1 g, FeCl 3 ⁇ 6H 2 O 0.05 g, KH 2 PO 4 1 g, CaCl 2 ⁇ 6H 2 O 0.2 g and distilled water 500 mL).
  • At least one of the BP0899 strain and its culture may further have the following mycological characteristics (32) to (40), for example.
  • the method for testing the mycological characteristics of (32) to (40) is not particularly limited, and a conventionally known method can be adopted. Specifically, for example, the methods described in the above-mentioned documents and the like can be mentioned. Moreover, you may use a commercially available bacteria identification kit for the said test method, for example. Although it does not restrict
  • the collection source of the BP0899 strain is not particularly limited, and examples thereof include soil, seawater, river water, lake water, and marsh water.
  • examples of the soil include, but are not limited to, land, sea bottom, river bottom, lake bottom and marsh bottom soil, sand, and mud.
  • a method for isolating the BP0899 strain for example, a conventionally known collection method, culture method and the like can be used, and there is no particular limitation.
  • the isolation method for example, when the collection source is lake water, the collected lake water is filtered through a filter or the like, the filtrate is cultured on an agar medium or the like, and the BP0899 strain is isolated from the obtained colony. Good.
  • the collection source is mud
  • the collected mud is suspended in a buffer solution, etc., and then the suspension is centrifuged, and the obtained supernatant is cultured on an agar medium or the like.
  • the BP0899 strain may be isolated.
  • the isolated BP0899 strain may be further cultured in a liquid medium, for example.
  • the medium is not particularly limited.
  • a medium containing a lower fatty acid, a medium added with malic acid, a culture medium 802 “DAIGO” (manufactured by Nippon Pharmaceutical Co., Ltd.) (Hiraishi and Kitagawa, Bulletin of the Japan Society of Scientific Fisheries, 1984, 50, 11, p. 1929-1937), modified MYS medium, growth medium and the like preferably, a medium containing lower fatty acids, Malic acid-added medium, L-dried culture medium 802 “DAIGO” (manufactured by Nippon Pharmaceutical Co., Ltd.).
  • Examples of the lower fatty acid-added medium and malic acid-added medium include a medium obtained by adding biotin, vitamin B 1 , nicotinic acid, a lower fatty acid, or a sodium salt of malic acid to the basal medium shown in Table 1 below. Although it does not restrict
  • modified MYS medium and the growth medium include media having the compositions shown in Tables 2 and 3 below.
  • the temperature range is not particularly limited, but is, for example, 23 to 39 ° C. or 30 ° C.
  • the pH range is not particularly limited, but is, for example, pH 5.5 to 8.5, 6.0 to 8.5, or 7.0.
  • the culture may be performed, for example, under an aerobic condition or an anaerobic condition, and is not particularly limited, but is preferably an anaerobic condition.
  • the light conditions during the culture are not particularly limited, and may be, for example, dark conditions or illumination conditions, but preferably under an illuminance of 2000 lux to 10000 lux.
  • the culture may be performed, for example, in a sealed illumination type culture tank. Moreover, you may culture
  • the culture time is not particularly limited, and may be, for example, until the growth of the BP0899 strain reaches a stationary phase.
  • the culture time may be, for example, 72 hours.
  • the 16S rRNA base sequence of the BP0899 strain is preferably the base sequence represented by SEQ ID NO: 1.
  • the base sequence of the 16S rRNA can be determined, for example, by extracting DNA from the BP0899 strain isolated and cultured by the method described above and using a primer or the like.
  • the method for extracting the DNA and determining the base sequence can be, for example, a conventional method and is not particularly limited.
  • the primer is not particularly limited, and examples thereof include the following primers.
  • Examples of the culture of the BP0899 strain include, but are not limited to, the cells of the BP0899 strain, the culture supernatant of the BP0899 strain, the cell extract of the BP0899 strain, and the like.
  • the culture may be, for example, a processed product of the bacterial cell, a processed product of the culture supernatant, a processed product of the bacterial cell extract, or the like, and is not particularly limited.
  • the treated product is not particularly limited.
  • the culture concentrate dried product, lyophilized product, solvent-treated product, surfactant-treated product, enzyme-treated product, protein fraction product, and sonicated product. , Milled products and the like.
  • the culture is, for example, a mixture of the cells, the culture supernatant, the cell extract, the processed product of the cell, the processed product of the culture supernatant, the processed product of the cell extract, etc. But you can.
  • the mixture can be mixed in any combination and ratio, and is not particularly limited.
  • the combination is not particularly limited, and examples thereof include a mixture of the cells and the culture supernatant.
  • the rough extraction process of the present example includes a decoloring process (step S11), an extraction process (step S12), and a filtering process (step S13).
  • step S11 First, the Rhodobacter azotoforms BP0899 strain (Accession No. NITE BP-644) or its culture is subjected to a decolorization treatment of the dye.
  • the color removal treatment of the dye is not particularly limited, and examples thereof include a color removal treatment with an organic solvent. Examples of the organic solvent include acetone, methanol, chloroform, and mixed solvents thereof.
  • the decolorization treatment can be performed, for example, by mixing the cells or the culture with the organic solvent.
  • acetone 25 mL to 150 mL of acetone is added to 10 to 60 g of lyophilized cells of the BP0899 strain in a beaker, and the mixture is sufficiently stirred using a stirrer.
  • the supernatant of the stirred solution is transferred to a 50 mL conical tube and centrifuged at 2000 rpm to 5000 rpm for 5 minutes to 10 minutes.
  • the resulting supernatant is removed, and 20 mL to 40 mL of acetone is added to the precipitate.
  • This operation is repeated until the color (brown) of the BP0899 strain is no longer visually recognized, and then the precipitate is dried under reduced pressure using an aspirator until a constant weight is obtained, thereby obtaining a decolored dry cell. .
  • step S12 the cell or culture after the decolorization treatment is treated with an organic solvent that insolubilizes the protein to remove the protein.
  • the organic solvent include phenol.
  • the extraction treatment for example, the cells or culture are mixed with the organic solvent and an aqueous solvent, and the protein insolubilized with the organic solvent is distributed to the phase of the organic solvent.
  • water for injection is added to 10 g to 60 g of decolorized dry cells in the beaker so that the concentration of the decolorized dry cells is 60 mg / mL to 90 mg / mL.
  • step S13 Next, the aqueous phase obtained by the extraction treatment is filtered, and the organic solvent mixed in the aqueous phase (organic solvent such as phenol used in the extraction treatment) is removed.
  • the filtration include ultrafiltration.
  • the molecular weight cut-off in the filtration is, for example, 7000, and it is preferable to remove molecules less than the molecular weight cut-off.
  • the recovered aqueous phase is put in a dialysis tube having a molecular weight cut off of 7000, and the external liquid is distilled water 1 L to 10 L, and dialysis is performed. The dialysis is repeated until the outer liquid no longer absorbs light at 270 nm, which is the absorption wavelength of phenol, and the inner liquid is recovered as a crude extract containing the novel compound of the present invention.
  • the purification process of the present example includes an enzyme treatment (step S21), an extraction treatment (step S22), and a filtration treatment (step S23).
  • Enzyme treatment is performed on the crude extract containing the novel compound of the present invention obtained in the crude extraction step.
  • the enzyme treatment is not particularly limited, and examples thereof include a treatment with a nucleolytic enzyme and a treatment with a proteolytic enzyme, which may be either one or both treatments. In the latter case, the order is not particularly limited. For example, after treatment with a nucleolytic enzyme, treatment with a proteolytic enzyme can be performed.
  • the nucleolytic enzyme is not particularly limited, and examples thereof include RNA degrading enzymes and DNA degrading enzymes.
  • the RNase is not particularly limited, and for example, Ribonuclease A manufactured by Sigma, Ribonuclease A manufactured by Wako Pure Chemical Industries, Ribonuclease A manufactured by Roche, and the like can be used.
  • the DNA degrading enzyme is not particularly limited, and for example, Deoxyribonuclease I from Sigma, Deoxyribonuclease I from Wako Pure Chemical Industries, Deoxyribonuclease I from Roche, etc. can be used.
  • 0.2 mg / mL to 1 mg / mL RNase and 1 ⁇ g / mL to 10 ⁇ g / mL DNA-degrading enzyme are added to the crude extract at 30 ° C. to 40 ° C. Incubate for 4-24 hours.
  • the proteolytic enzyme is not particularly limited.
  • Proteinase® K manufactured by Sigma, Proteinase® K manufactured by Wako Pure Chemical Industries, Proteinase® K manufactured by Roche, and the like can be used.
  • 100 ⁇ g / mL to 300 ⁇ g / mL of proteolytic enzyme is added to the crude extract and incubated at 40 ° C. to 50 ° C. for 2 hours to 24 hours.
  • step S22 the crude extract is treated with an organic solvent that insolubilizes the protein to remove the protein.
  • the organic solvent include phenol.
  • the enzyme-treated extract is centrifuged under the conditions of 2000 rpm to 5000 rpm for 20 minutes to 60 minutes.
  • the precipitate fraction is put into an ultrafiltration tube having a molecular weight cut off of 50,000 to 100,000, and the external solution is distilled water. Make 5 to 15 mL and perform ultrafiltration.
  • the aqueous phase obtained after separating into a phase and an aqueous phase is collected in a 50 mL conical tube, and the phenol phase remaining in the centrifuge tube is charged with an amount of water for injection equivalent to the recovered aqueous phase,
  • the same operation as the first extraction is repeated (second extraction). Further, the same operation as the first extraction is repeated once more (third extraction). In this manner, a total of 60 mL to 120 mL of the aqueous phase of the three extraction operations is collected.
  • step S23 Next, the aqueous phase obtained by the extraction treatment is filtered, and the organic solvent mixed in the aqueous phase (organic solvent such as phenol used in the extraction treatment) is removed.
  • organic solvent such as phenol used in the extraction treatment
  • the filtration include ultrafiltration.
  • the fractionated molecular weight in the filtration is, for example, 50,000 to 100,000, and it is preferable to remove molecules less than the fractionated molecular weight.
  • the recovered aqueous phase is put into a dialysis tube having a molecular weight cut off of 7000, and the external solution is distilled water of 0.5 L to 1 L, and dialysis is performed for 24 hours to 96 hours.
  • the obtained internal solution is put into an ultrafiltration tube having a molecular weight cut off of 50,000 to 100,000, and the external solution is made 5 mL to 15 mL of distilled water, and ultrafiltration is performed.
  • a compound represented by the formula (A) or the formula (B) or a salt thereof, which is a novel compound of the present invention is obtained.
  • Example 1 The compound represented by Formula (A) and the compound represented by Formula (B) were manufactured by the following method.
  • step S11 Decoloring process 50 mL of acetone was added to 20.03 g of lyophilized cells of the BP0899 strain in a beaker, and the mixture was stirred for 10 minutes using a stirrer. Next, the supernatant of the stirred solution is transferred to a 50 mL conical tube, centrifuged at 2000 rpm for 5 minutes, the resulting supernatant is removed, 20 mL of acetone is added to the precipitate, and the mixture is returned to the beaker. It was. This operation was repeated until the color (brown color) of the BP0899 strain was not visually recognized. And the decolored deposit was dried under reduced pressure until it became constant weight using the aspirator, and the decolorized dry microbial cell was obtained.
  • step S12 Water for injection was added to 16 g of the decolorized and dried cells in a beaker so that the concentration of the decolorized and dried cells was 75 mg / mL. Next, 90% phenol was added in an amount equivalent to the water for injection, and the mixture was stirred on a hot stirrer at 65 ° C. to 70 ° C. for 30 minutes, and this was the first extraction. Then, after cooling the stirred solution to 10 ° C. or lower, it is separated into a phenol phase and an aqueous phase by centrifuging using a centrifuge tube at 15000 rpm for 40 minutes at 4 ° C.
  • the obtained aqueous phase is recovered in a 50 mL conical tube, and the phenol phase remaining in the centrifuge tube is charged with an amount of water for injection equivalent to the recovered aqueous phase, and the same operation as the first extraction is performed. Repeated (second extraction). Further, the same operation as the first extraction was repeated once more (third extraction). In this way, 450 mL of the aqueous phase for three extraction operations was recovered.
  • Step S13 450 mL of the recovered aqueous phase was placed in a dialysis tube having a molecular weight cut off of 7000, and the external solution was 2.5 L of distilled water, followed by dialysis. The dialysis is carried out 22 times until the absorption of light at 270 nm, which is the absorption wavelength of phenol, is not observed in the external liquid, and the crude extraction containing the compound represented by formula (A) and the compound represented by formula (B) 75 mL of internal liquid which is a liquid was collect
  • step S21 Enzyme treatment
  • 0.5 mg / mL RNase (trade name: Sigma) is added to the crude extract containing the compound represented by formula (A) and the compound represented by formula (B) obtained in the crude extraction step.
  • Ribonuclease A) and 5 ⁇ g / mL DNA-degrading enzyme (Deoxyribonuclease I manufactured by Sigma) were added and incubated at 37 ° C. for 6 hours.
  • 200 ⁇ g / mL proteolytic enzyme Proteinase K manufactured by Sigma was added to the crude extract, incubated at 50 ° C. for 4 hours, and then centrifuged at 3000 rpm for 30 minutes.
  • step S22 Extraction process (step S22) Among the precipitate fraction of about 3 mL or less and the supernatant fraction of about 72 mL obtained by centrifugation in the enzyme treatment, the precipitate fraction is put into an ultrafiltration tube having a molecular weight cut off of 100,000, and the external solution is distilled. Ultrafiltration was performed using 15 mL of water. 30 mL of water for injection and 30 mL of 90% phenol were added to the obtained internal solution, and the mixture was stirred at 65 ° C. to 70 ° C. for 30 minutes on a hot stirrer. Then, after cooling the stirred solution to 10 ° C.
  • aqueous phase is separated into a phenol phase and an aqueous phase by centrifuging using a centrifuge tube at 15000 rpm for 40 minutes at 4 ° C.
  • the obtained aqueous phase is recovered in a 50 mL conical tube, and the phenol phase remaining in the centrifuge tube is charged with an amount of water for injection equivalent to the recovered aqueous phase, and the same operation as the first extraction is performed. Repeated (second extraction). Further, the same operation as the first extraction was repeated once more (third extraction). In this manner, 80 mL of the aqueous phase for three extraction operations was recovered.
  • Step S23 The recovered aqueous phase was put into a dialysis tube having a molecular weight cut off of 7000, and the external liquid was 1 L of distilled water, followed by dialysis for 72 hours.
  • the obtained inner liquid was put into an ultrafiltration tube having a fractional molecular weight of 100,000, and the outer liquid was made 15 mL of distilled water, and ultrafiltration was performed.
  • the obtained internal solution was freeze-dried to obtain 164.53 mg of a purified product.
  • Example 2 The purified product was subjected to mass spectrometry and nuclear magnetic resonance (NMR) to identify its structure.
  • the degradation products were each subjected to the following treatments to prepare four types of sample solutions: methyl esterification treatment products, pyrrolidation treatment products, hydrolysis methyl esterification treatment products, and hydrolysis pyrrolidation treatment products.
  • FIG. 10 is a mass spectrum when the methyl esterified product is subjected to GC-MS analysis
  • FIG. 11 is a mass spectrum when the hydrolyzed methyl esterified product is subjected to GC-MS analysis. is there. 10 and 11, the vertical axis represents the detection intensity, and the horizontal axis represents the detection time (min).
  • peaks 1 to 11 were obtained from the methyl esterified product.
  • the compounds of peaks 1, 2, 4, 6 and 7 having high detection intensity were further subjected to GC-MS analysis under the same conditions as described above.
  • a library having a mass spectrum similar in shape to the obtained mass spectrum was searched by Auto Mode of a database (The NIST MassSpectral Seach Program for the NIST / EPA / NIH Mass Spectral Library).
  • the compounds of peaks 1, 2, 4 and 7 showed a high degree of similarity with the compounds of formulas (2) to (5), respectively.
  • the present inventors have found that the mass spectrum of the compound of peak 6 is Slingermatter et al. (Strittmatter W.
  • peaks A to I were obtained from the hydrolyzed methyl esterified product.
  • peaks A, B, and D are confirmed in FIG. 11 as peaks corresponding to the peaks 1, 2, and 4 of FIG. .
  • Each of these peaks A, B and D was further subjected to GC-MS analysis under the same conditions as described above.
  • a structure having a mass spectrum similar in shape to the obtained mass spectrum was searched using the database.
  • the peaks A, B, and D showed a high degree of similarity with the compounds of formula (7), formula (3), and formula (4), respectively.
  • FIG. 10 shows the result of subjecting the decomposed product to GC-MS analysis without hydrolysis
  • FIG. 11 shows only the substance separated by hydrolysis after hydrolysis of the decomposed product.
  • the peak confirmed in FIG. 11 is considered to be a peak of a compound having an ester bond that is hydrolyzed in the decomposition product. Therefore, it is presumed that the compounds of peaks 6 and 7 in FIG. 10 in which the corresponding peak in FIG. 11 was not confirmed are compounds having no ester bond to be hydrolyzed.
  • the compound of peak 1 in FIG. 10 was estimated to be the compound of formula (2) as a result of library search.
  • the compound of peak 1 is the compound of formula (2)
  • the peak should be observed at a shorter retention time (that is, the left side) than peak 1 in FIG.
  • the compound of peak A in FIG. 11 corresponding to peak 1 in FIG. 10 was estimated to be a compound of formula (7) as a result of library search.
  • the compound of peak A is the compound of formula (7), it is consistent with the result of peak A in FIG.
  • the compound of peak 1 in FIG. 10 was estimated to be the compound of formula (7).
  • the compound of peak 2 in FIG. 10 was estimated to be BHT (dibutylhydroxytoluene) of formula (3) as a result of library search.
  • the compound of peak B in FIG. 11 corresponding to peak 2 in FIG. 10 is also estimated to be BHT (dibutylhydroxytoluene) of formula (3) as a result of library search, as shown in FIG. 10 and FIG. The result was consistent with 11. For this reason, the compound of peak 2 in FIG.
  • BHT dibutylhydroxytoluene
  • the compound of peak 4 in FIG. 10 was estimated to be the compound of formula (4) as a result of library search.
  • the compound of peak D in FIG. 11 corresponding to peak 4 in FIG. 10 was also estimated to be a compound of formula (4) as a result of library search. For this reason, it was estimated that the compound of the peak 4 in FIG. 10 is a compound of Formula (4).
  • FIG. 12 is a mass spectrum when the pyrrolidide-treated product is subjected to GC-MS analysis
  • FIG. 13 is a mass spectrum when the hydrolyzed pyrrolidide-treated product is subjected to GC-MS analysis. 12 and 13, the vertical axis indicates the detection intensity, and the horizontal axis indicates time (min).
  • the decomposition product contains four types of compounds of formulas (4) to (7). Further, as described above, the compounds of formula (5) and formula (6) were analyzed by GC-MS analysis on only the substance obtained by hydrolysis of the decomposition product as described above. As a result, no peak was confirmed in FIG. It was estimated that the compound did not have
  • FIGS. 16A to 16D are spectra of 1 HNMR measurement
  • FIGS. 17A to 17D are spectra of 13 CNMR measurement
  • FIG. 18 is a spectrum of 31 PNMR measurement. 16 to 18, the vertical axis indicates the detected intensity, and the horizontal axis indicates the chemical shift value (ppm).
  • the decomposition product was a compound of the formula (9) containing the four kinds of compounds and two molecules of glucosamine.
  • the four compounds bonded to two molecules of glucosamine are, from the left, the compound of the formula (7), the compound of the formula (5), the compound of the formula (4), and the formula (7 ) And the compound of formula (6).
  • the numbers in the formula (9) correspond to the peak numbers in the spectrum of 1 HNMR measurement in FIG. 16, and the alphabet (upper case) in the formula (9) indicates the peak in the spectrum of 13 CNMR measurement in FIG.
  • the alphabet (lower case) in the formula (9) corresponds to the alphabet (lower case) of the peak in the spectrum of 31 PNMR measurement of FIG.
  • the solution obtained by diluting the chloroform solution prepared in (1) above so as to have a concentration of 30 mg / mL 40000 times with methanol was used as a sample solution and subjected to GC-MS analysis under the following conditions.
  • FIG. 19 is a mass spectrum when the sample solution was subjected to GC-MS analysis.
  • the vertical axis indicates the detected intensity
  • the horizontal axis indicates the m / z value.
  • the vertical axis indicates the detected intensity
  • the horizontal axis indicates the m / z value
  • the numerical value in parentheses indicates the m / z value.
  • the compound of peak 1 was estimated to be the compound of formula (9) as described above. Since the difference value obtained by subtracting the m / z value (1229) of the peak 2 from the m / z value (1417) of the peak 1 is 188, the compound of the peak 2 has a molecular weight of about 188 from the decomposition product. It was estimated that the compound of (7) was a separated compound. In the compound of peak 3, the difference value obtained by subtracting the m / z value (1194) of peak 3 from the m / z value (1417) of peak 1 is 223, so that the molecular weight is about 223 from the decomposition product. It was estimated that the compound of (4) was a separated compound.
  • the compound of peak 4 Since the compound of peak 4 has a difference value obtained by subtracting the m / z value (1042) of peak 4 from the m / z value (1417) of peak 1 is 375, the molecular weight is about 188 from the decomposition product. It was estimated that the compound of (7) was a separated compound. As described above, the compounds obtained by separating the compound of the formula (7) or the compound of the formula (4) from the compound of the formula (9) were confirmed as peaks 2 to 4. From this, it can be confirmed that the decomposition product contains at least two of the compound of formula (7) and the compound of formula (4), and the decomposition product estimated in the above (2). A result further supporting the estimated structural formula (9) was obtained.
  • FIG. 21 is a mass spectrum when the sample solution was subjected to GC-MS analysis.
  • the vertical axis indicates the detection intensity
  • the horizontal axis indicates the m / z value
  • the numerical value in parentheses indicates the valence of the ion to be detected.
  • FIGS. 22 to 26 show schematic diagrams of compounds presumed to correspond to each peak in addition to the mass spectrum.
  • P is the structural formula of Formula (10)
  • Hex is the structural formula of Formula (11)
  • Kdo is the structural formula of Formula (12)
  • HexU is the structure of Formula (13).
  • HexN represents the structural formula of formula (14)
  • F represents any of the four compounds estimated in the above (2).
  • Hex is glucose (Glc).
  • the latter phosphate group was specified as the correct structure for the following reason. That is, in the above (2), the purified product is subjected to a predetermined treatment to obtain the decomposed product. When a weak acid is used in this process, it is bound to glucosamine on the right side of two glucosamine molecules. This is because it is generally known that the phosphate group is dropped and replaced with the —OH group frequently.
  • sample A A collection of Fraction No. 14-18 in FIG. 28 (dry weight 4.8 mg) was dissolved in 500 ⁇ L of D 2 O (99.96% D), and a sample for NMR measurement (hereinafter referred to as “sample A”). Said.) NMR measurement was carried out under the following conditions.
  • Measurement condition Equipment: DRX500 and ADVANCE600 spectrometer (BrukerBioSpin) Probe: cryogenic TXI probe, TXI probe and BBO probe Probe temperature: 25 ° C Measurement method: 1D 1 H, 1D 1 H-selective TOCSY, 1 H-selective NOESY, 1 H-selective ROSEY, 1D 13 C, 1D 31 P, 2D 1 H- 1 H DQF-COSY, HOANA, NOESY, ROESY, 1 H- 13 C HSQC-TOCSY, 1 H- 13 C HSQC-NOESY, 1 H- 13 C HMBC, 1 H- 31 P HMBC
  • a signal (H1) derived from the anomeric position of each sugar residue is identified, and the signal within the residue (from the DQF-COSY, HOHANA, 1 H- 13 C HSQC-TOCSY spectrum ( H2-H6 was identified for glucose and glucosamine residues, and H2-H5) for glucuronic acid residues.
  • the results are shown in FIG. 29 and FIG. FIG. 29 is a spectrum when the sample A is subjected to 1 HNMR measurement
  • FIG. 30 is a spectrum when the sample A is subjected to 2D DQF-COSY measurement. 29 and 30, Glc is Hex in FIGS. 22 to 26, KDO is Kdo in FIGS. 22 to 26, GlcA is HexU in FIGS.
  • FIG. 31 is a spectrum when the sample A was subjected to 2D NOESY measurement.
  • the binding mode ( ⁇ / ⁇ ) of each sugar residue was determined by 1 J (C1, H1) as follows. 1 J (C1, H1) GlcN-1 174 Hz ( ⁇ ) GlcN-2 164 Hz ( ⁇ ) GlcA 171 Hz ( ⁇ ) Glc-1 173 Hz ( ⁇ ) Glc-2 171 Hz ( ⁇ )
  • FIG. 32 is a spectrum obtained when the sample A was subjected to 2D 1 H- 31 P HMBC measurement.
  • the two phosphate groups one was attached to position 1 of GlcN-1, and the other was attached to position 4 of GlcN-2.
  • the structure of the sample A was specified as shown in the schematic diagram of FIG. From this result, the compound before the hydrazine decomposition of the hydrazine decomposition product obtained in the above (4) is a compound in which X 1 and X 2 are both hydroxyl groups in the formula (A) and the formula (B) (formula (A2 ) And a compound represented by formula (B2)).
  • the structural formulas of these compounds using the monosaccharide symbols are as follows. Note that FIG. 33 shows a sugar chain structural formula based on a chair-type conformation.
  • Compound represented by formula (A2) Compound represented by formula (B2)
  • Example 3 It was confirmed that the compound represented by the formula (A1), the compound represented by the formula (B1), the compound represented by the formula (A2), and the compound represented by the formula (B2) have an anti-inflammatory effect. .
  • Example 1 Preparation of test solution Purified product obtained in Example 1 (compound represented by formula (A1), compound represented by formula (B1), compound represented by formula (A2) and formula (B2)
  • a solution of the compound represented by formula (1) is dissolved in water for injection to a concentration of 2 mg / mL and stored at 4 ° C., heated at 37 ° C. for 5 minutes, and subjected to ultrasonic waves at 37 ° C. for 1 minute. Processed. 10 ⁇ L of the solution after the ultrasonic treatment is added to 990 ⁇ L of a culture solution having the following composition and mixed well to prepare a solution having a concentration of the purified product of 20000 ng / mL.
  • a total of 6 types of test liquids 2000 ng / mL, 200 ng / mL, 20 ng / mL, 2 ng / mL and 0.2 ng / mL, were obtained.
  • the final concentrations of the purified products are 10,000 ng / mL, 1000 ng / mL, 100 ng / mL, 10 ng / mL, 1 ng / mL and 0.1 ng / mL.
  • DMEM medium 500mL Fetal calf serum 55.5mL Penicillin-streptomycin-glutamine (100 ⁇ ) 5.6 mL
  • test solution The culture solution is added to human fetal kidney cells (InvivoGen) into which human TLR4 gene has been introduced to prepare a solution with a concentration of 4 ⁇ 10 5 cells / mL. did.
  • the solution was seeded in a 96-well flat-bottom plate at 100 ⁇ L (ie, 4 ⁇ 10 4 cells / 100 ⁇ L / well). After seeding, the cells were cultured at 37 ° C. under 5% CO 2 for 24 hours, and then the culture supernatant was removed, and 100 ⁇ L of fresh culture solution was added to each well. Next, 100 ⁇ L of the test solution was added to each well. After the addition of the test solution, the cells were cultured at 37 ° C. and 5% CO 2 for 24 hours.
  • the vertical axis indicates the concentration of IL-8
  • the horizontal axis indicates the concentration of the test solution.
  • the concentration of IL-8 increased depending on the concentration of the test solution.
  • the production amount of IL-8 is generally known to be an indicator of TLR4 activation, and as described above, the activation of TLR4 is a type I interferon having anti-inflammatory action. It has been reported to promote production. That is, an increase in the concentration of IL-8 means activation of anti-inflammatory action. Therefore, from these results, the purified product (the compound represented by the formula (A1), the compound represented by the formula (B1), the compound represented by the formula (A2), and the formula (B2) is represented.
  • Example 4 It was confirmed that the compound represented by the formula (A1), the compound represented by the formula (B1), the compound represented by the formula (A2), and the compound represented by the formula (B2) have an anti-inflammatory effect. .
  • test solution a solution having a concentration of the purified product of 20000 ng / mL was prepared, and this was designated as a culture solution having the following composition: In total, two types of test liquids of 100 ng / mL and 10000 ng / mL were obtained. In addition, since the two types of test solutions are diluted 100-fold when added to cells, the final concentrations of the purified products are 1 ng / mL and 100 ng / mL, respectively.
  • composition of culture solution RPMI1640 medium 500mL Non-immobilized fetal bovine serum 55.5 mL Penicillin-streptomycin-glutamine (100 ⁇ ) 5.6 mL
  • test solution The culture solution was added to mouse macrophage cells (RAW264.7, ATCC) to prepare a solution having a concentration of the cells of 1.067 ⁇ 10 6 cells / mL.
  • the solution was seeded in a 6-well plate at 3 mL (that is, 3.2 ⁇ 10 6 cells / 3 mL / well). After seeding, the cells were cultured at 37 ° C. under 5% CO 2 for 2 hours, and 30 ⁇ L of the test solution was added to each well. After the addition of the test solution, the cells were cultured at 37 ° C. and 5% CO 2 for 24 hours. Next, the culture supernatant of each well was collected in a 15 mL tube.
  • recovered to the said 15 mL tube was repeated twice. Thereafter, the culture solution collected in the 15 mL tube is centrifuged at 1000 rpm for 3 minutes, and then the supernatant is removed. Further, 3 mL of a new culture solution at 37 ° C. is added and suspended, and again. Centrifugation was performed under the same conditions. After centrifugation, the supernatant was removed, and 2 mL of the new culture solution at 37 ° C. was added and suspended in the precipitate. Then, 2 mL of the suspension was added to each well in a state where 1 mL of the new culture solution was previously added.
  • culture solution addition step After the addition, after culturing at 37 ° C. under 5% CO 2 for 30 minutes, the culture supernatant of each well is collected in a 15 mL tube, centrifuged at 1000 rpm for 3 minutes, and the supernatant is removed by an aspirator. did. Further, 3 mL of cooled PBS (Phosphate buffered saline) / Phosphatase Inhibitors solution was added to each well of the 6-well plate from which the culture supernatant had been removed, the cells were detached by pipetting, and the cell suspension was put into the 15 mL tube. Added.
  • PBS Phosphate buffered saline
  • the 15 mL tube was centrifuged at 1000 rpm for 3 minutes, the supernatant was removed by an aspirator, and then the PBS / Phosphatase Inhibitors solution 0.5 mL was added to the 15 mL tube and suspended.
  • a cell suspension was prepared. Nuclear protein was extracted from the cell suspension using a Nuclear Extract kit (manufactured by Active Motif).
  • the confirmation result is shown in the graph of FIG.
  • the vertical axis indicates the absorbance
  • the horizontal axis indicates the concentration of the test solution.
  • the absorbance became lower as the concentration of the test solution was higher. Therefore, it was found that the amount of NF- ⁇ B in the nucleoprotein decreased as the concentration of the test solution was higher. It was. From this result, production of NF- ⁇ B, which is a kind of inflammatory cytokine, is suppressed by the purified product, that is, the purified product (compound represented by formula (A1), represented by formula (B1)). It was confirmed that the compound, the compound represented by the formula (A2) and the mixture represented by the formula (B2) have an anti-inflammatory effect.
  • a compound represented by formula (A1), a compound represented by formula (B1), a compound represented by formula (A2), or a compound represented by formula (B2) was used. However, equivalent results were obtained.
  • Example 5 It was confirmed that the compound represented by the formula (A1), the compound represented by the formula (B1), the compound represented by the formula (A2), and the compound represented by the formula (B2) have an anti-inflammatory effect. .
  • the experiment was performed in the same manner as in Example 4 except for the following two points, and the amount of NF- ⁇ B in the nucleoprotein was confirmed by measuring the absorbance. That is, in this example, three types of test liquids having concentrations of the purified product of 100 ng / mL, 10000 ng / mL, and 1000000 ng / mL were used as test liquids. In addition, since the three kinds of test solutions are diluted 100-fold when added to cells, the final concentrations of the purified products are 1 ng / mL, 100 ng / mL, and 10000 ng / mL, respectively.
  • LPS Lipopolysaccharide, Pantoea
  • Pantoea Purified from Pantoea agglomerans, which is a gram-negative bacterium having a final concentration of 100 ng / mL
  • LPSp 30 ⁇ L of the above culture solution containing agglomerans, manufactured by Innate Immunity Applied Technology Co., Ltd.
  • the confirmation result is shown in the graph of FIG.
  • the vertical axis indicates the absorbance
  • the horizontal axis indicates the concentration of the test solution.
  • the absorbance decreased as the concentration of the test solution increased, indicating that the amount of NF- ⁇ B in the nucleoprotein decreased as the concentration of the test solution increased. It was. From this result, production of NF- ⁇ B, which is a kind of inflammatory cytokine, is suppressed by the purified product, that is, the purified product (compound represented by formula (A1), represented by formula (B1)). It was confirmed that the compound, the compound represented by the formula (A2) and the mixture represented by the formula (B2) have an anti-inflammatory effect.
  • a compound represented by formula (A1), a compound represented by formula (B1), a compound represented by formula (A2), or a compound represented by formula (B2) was used. However, equivalent results were obtained.
  • Example 6 It was confirmed that the compound represented by the formula (A1), the compound represented by the formula (B1), the compound represented by the formula (A2), and the compound represented by the formula (B2) have an anti-inflammatory effect. .
  • composition of culture solution RPMI1640 medium 500mL Fetal calf serum 55.5mL Kanamycin sulfate 0.11mL Ampicillin sodium 0.134 mL
  • test solution The culture solution was added to mouse macrophage cells (RAW264.7, ATCC) to prepare a solution having a concentration of 4 ⁇ 10 5 cells / mL.
  • the solution was seeded in a 96-well flat-bottom plate at 100 ⁇ L (ie, 4 ⁇ 10 4 cells / 100 ⁇ L / well). After seeding, the cells were cultured at 37 ° C. under 5% CO 2 for 2 hours until the cells adhered to the well bottom and spread. Next, 100 ⁇ L of the test solution was added to each well. After the addition of the test solution, the cells were cultured at 37 ° C. and 5% CO 2 for 24 hours.
  • culture solution addition step After culturing, the culture supernatant of each well is removed, and 150 ⁇ L of the culture solution is newly added (hereinafter, this step is referred to as “culture solution addition step”), and the reaction is performed at 37 ° C. under 5% CO 2 for 24 hours. Cultured.
  • TNF- ⁇ concentration After culturing, 50 ⁇ L of the culture supernatant of each well was collected, transferred to each well of a new 96-well flat bottom plate, and using a mouse TNF- ⁇ measurement kit (manufactured by Biolegend). Absorbance was measured and converted to TNF- ⁇ concentration.
  • the vertical axis indicates the TNF- ⁇ concentration
  • the horizontal axis indicates the concentration of the test solution.
  • the purified product suppresses the production of TNF- ⁇ , which is a kind of inflammatory cytokine, that is, the purified product (compound represented by formula (A1), represented by formula (B1)).
  • the purified product compound represented by formula (A1), represented by formula (B1)
  • the compound, the compound represented by the formula (A2) and the mixture represented by the formula (B2) have an anti-inflammatory effect.
  • a compound represented by formula (A1), a compound represented by formula (B1), a compound represented by formula (A2), or a compound represented by formula (B2) was used. However, equivalent results were obtained.
  • Example 7 It was confirmed that the compound represented by the formula (A1), the compound represented by the formula (B1), the compound represented by the formula (A2), and the compound represented by the formula (B2) have an anti-inflammatory effect. .
  • the experiment was performed in the same manner as in Example 6 except for the following two points, 50 ⁇ L of the culture supernatant in each well was collected, and the TNF- ⁇ concentration was measured. That is, in this example, five kinds of test liquids having a concentration of the purified product of 20 ⁇ g / mL, 2 ⁇ g / mL, 200 ng / mL, 20 ng / mL, and 2 ng / mL were used as test liquids.
  • the final concentrations of the purified products are 10 ⁇ g / mL, 1 ⁇ g / mL, 100 ng / mL, 10 ng / mL and 1 ng / mL.
  • 150 ⁇ L of the culture solution containing LPSp having a final concentration of 100 ng / mL was added instead of 150 ⁇ L of the culture solution.
  • the vertical axis represents the TNF- ⁇ concentration
  • the horizontal axis represents the concentration of the test solution.
  • the TNF- ⁇ concentration was lower as the test solution concentration was higher. Therefore, it was found that the production of TNF- ⁇ decreased as the test solution concentration increased. .
  • the purified product suppresses the production of TNF- ⁇ , which is a kind of inflammatory cytokine, that is, the purified product (compound represented by formula (A1), represented by formula (B1)). It was confirmed that the compound, the compound represented by the formula (A2) and the mixture represented by the formula (B2) have an anti-inflammatory effect.
  • a compound represented by formula (A1), a compound represented by formula (B1), a compound represented by formula (A2), or a compound represented by formula (B2) was used. However, equivalent results were obtained.
  • Example 8 It was confirmed that the compound represented by the formula (A1), the compound represented by the formula (B1), the compound represented by the formula (A2), and the compound represented by the formula (B2) have an anti-inflammatory effect. .
  • test solution In the same manner as in “(1) Preparation of test solution” in Example 3, a solution having a purified product concentration of 20000 ng / mL was prepared. By using and diluting stepwise, a total of three types of test liquids of 400 ng / mL, 4000 ng / mL and 40000 ng / mL were obtained. In addition, since the three kinds of test solutions are diluted 4-fold when added to cells, the final concentrations of the purified products are 100 ng / mL, 1000 ng / mL, and 10000 ng / mL, respectively.
  • composition of culture solution RPMI1640 medium 500mL Non-immobilized fetal bovine serum 55.5 mL Penicillin-streptomycin-glutamine (100 ⁇ ) 5.6 mL
  • test solution The culture solution is added to human peripheral blood monocyte-derived cells (THP-1, manufactured by DS Pharma Biomedical Co., Ltd.), and the concentration of the cells is 4 ⁇ 10 5 cells / mL.
  • a solution was prepared. The solution was seeded in a 24-well plate at 500 ⁇ L (that is, 2.0 ⁇ 10 5 cells / 500 ⁇ L / well). After seeding, 250 ⁇ L of the culture solution or 250 ⁇ L of the culture solution containing 40 ⁇ mol / L GW9662 (manufactured by Wako Pure Chemical Industries, Ltd.) was added to each well.
  • the GW9662 is an inhibitor of PPAR ⁇ (Peroxisome proliferator-activated receptor ⁇ ), which is a kind of nuclear receptor.
  • PPAR ⁇ Peroxisome proliferator-activated receptor ⁇
  • the cells were cultured at 37 ° C. under 5% CO 2 for 1 hour. Thereafter, 250 ⁇ L of the test solution was added to each well and cultured at 37 ° C. under 5% CO 2 for 22 hours. After culturing, the culture supernatant of each well was collected in a 2 mL tube. In addition, 0.5 mL of the new culture solution was added to each well, spread over the whole well, and collected in the 2 mL tube. To each emptied well, 0.49 mL of the new culture solution was added.
  • PPAR ⁇ Peroxisome proliferator-activated receptor ⁇
  • the culture solution collected in the 2 mL tube is centrifuged at 1000 rpm for 5 minutes, the supernatant is removed, and 1 mL of the new culture solution is added and suspended, and centrifuged again under the same conditions. did. After centrifugation, the supernatant was removed, and 0.49 mL of culture solution in each well was added to the 2 mL tube and suspended, and returned to each well again. Then, 250 ⁇ L of the culture solution or 250 ⁇ L of the culture solution containing 40 ⁇ mol / L of the GW9662 was added to each well, and cultured at 37 ° C. under 5% CO 2 for 1 hour. After the culture, 250 ⁇ L of a culture solution containing LPSp was added to each well so that the final concentration of LPSp was 100 ng / mL, followed by culturing at 37 ° C. under 5% CO 2 for 22 hours.
  • the vertical axis indicates the concentration of IL-6
  • the horizontal axis indicates the concentration of the test solution.
  • the IL-6 concentration became lower as the test solution concentration was higher. It was found that the higher the concentration of the test solution, the smaller.
  • the IL-6 concentration became lower as the test solution concentration was higher.
  • the purified product suppresses the production of IL-6, which is a kind of inflammatory cytokine, that is, the purified product (compound represented by formula (A1), represented by formula (B1)). It was confirmed that the compound, the compound represented by the formula (A2) and the mixture represented by the formula (B2) have an anti-inflammatory effect.
  • IL by the purified product a compound represented by the formula (A1), a compound represented by the formula (B1), a compound represented by the formula (A2), and a compound represented by the formula (B2). It was suggested that PPAR ⁇ is involved in the suppression of -6 production.
  • a compound represented by formula (A1), a compound represented by formula (B1), a compound represented by formula (A2), or a compound represented by formula (B2) was used. However, equivalent results were obtained.
  • Example 8-2 That the compound represented by the formula (A1), the compound represented by the formula (B1), the compound represented by the formula (A2), and the compound represented by the formula (B2) promote the expression of the PPAR ⁇ gene. This was confirmed by the CAGE (Cap Analysis of Gene Expression) method developed by RIKEN.
  • Example 8-2A A culture solution similar to that in Example 8-1 (2) was added to the THP-1 cells to prepare a solution having a concentration of the cells of 5 ⁇ 10 5 cells / mL.
  • the expression level of the PPAR ⁇ gene in this solution was measured by the CAGE method, it was 3.97 TPM (Tags Per Million).
  • the cell solution was divided into the following 4 groups. That is, a group (Example 8-2A) in which the purified solution was added to the cell solution to a final concentration of 1 ⁇ g / mL, and the purified solution to a final concentration of 10 ⁇ g / mL to the cell solution.
  • Example 8-2B a group in which nothing was added to the cell solution (Comparative Example 8-2A), and a group in which the LPSp solution was added to the cell solution at 100 ng / mL
  • Example 8-2A the expression level of the PPAR ⁇ gene was significantly increased from 3.97 TPM to 5.86 TPM in 3 hours, and in Example 8-2B, the expression level was 3 hours. In addition, the expression level of the PPAR ⁇ gene was significantly increased from 3.97 TPM to 5.90 TPM. On the other hand, in Comparative Example 8-2A, the expression level of the PPAR ⁇ gene slightly decreased from 3.97 TPM to 3.89 TPM in 3 hours, and in Comparative Example 8-2B, in 3 hours. Although the expression level of the PPAR ⁇ gene increased from 3.97 TPM to 4.31 TPM, the degree of increase was not significant.
  • the purified product (a compound represented by the formula (A1), a compound represented by the formula (B1), a compound represented by the formula (A2) and a mixture represented by the formula (B2)).
  • a compound represented by formula (A1), a compound represented by formula (B1), a compound represented by formula (A2), or a compound represented by formula (B2) was used instead of the purified product.
  • a compound represented by formula (A1), a compound represented by formula (B1), a compound represented by formula (A2), or a compound represented by formula (B2) was used.
  • equivalent results were obtained.
  • Example 9 The compound represented by formula (A1), the compound represented by formula (B1), the compound represented by formula (A2), and the compound represented by formula (B2) have an anticancer effect against lung cancer. It was confirmed.
  • the collagenase solution containing the tumor fragment was pipetted to obtain a finer tumor fragment, and the collagenase solution containing the tumor fragment was transferred to another 50 mL tube and cooled on ice. After cooling, 5 mL of collagenase solution was further added to the collagenase solution containing the tumor fragment, and the same operation was repeated 5 times until the tumor fragment could no longer be observed. Thereafter, the collagenase solution containing the tumor fragment was filtered with a cell strainer (mesh size 70 ⁇ m, manufactured by BD), and the filtrate was centrifuged at 1200 rpm for 7 minutes.
  • a cell strainer mesh size 70 ⁇ m, manufactured by BD
  • Example 9-2 (2) Administration of drug After dividing into groups, the substances shown in Table 5 were administered to each group.
  • the intake amount of the purified product in the mouse is 0.5 mg / 10 mL / kg.
  • free intake (po) in Example 9-3 and Example 9-4 use a water bottle containing a solution with a concentration of the purified product of 1 ⁇ g / mL to separate the groups. It started immediately after. The water bottles were replaced with new ones every 3 days.
  • Example 9-1 Administration of the physiological saline of Comparative Example 9-1 was performed once immediately after grouping so that the physiological saline intake of the mice was 10 mL / kg by ip.
  • Administration of CY cyclophosphamide, anticancer agent for lung cancer, manufactured by Wako Pure Chemical Industries, Ltd.
  • CY cyclophosphamide, anticancer agent for lung cancer, manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 9-2, Example 9-4 and Reference Example 9-1 It was performed once immediately after grouping so that the CY intake was 100 mg / 10 mL / kg.
  • the vertical axis represents the tumor volume (mm 3 ), and the horizontal axis represents the number of days elapsed after grouping when the day of grouping is defined as day 0.
  • the tumor volume was small compared to Comparative Example 9-1 to which physiological saline was administered. From this, the purified product (a compound represented by the formula (A1), a compound represented by the formula (B1), a compound represented by the formula (A2), and a compound represented by the formula (B2)).
  • the purified product a compound represented by the formula (A1), a compound represented by the formula (B1), a compound represented by the formula (A2), and a compound represented by the formula (B2).
  • Example 9-2 and Example 9-4 to which CY was administered in addition to the purified product the tumor volume was small compared to Reference Example 9-1 to which only CY was administered.
  • the purified product a compound represented by the formula (A1), a compound represented by the formula (B1), a compound represented by the formula (A2), and a compound represented by the formula (B2).
  • the purified product a compound represented by formula (A1), a compound represented by formula (B1), a compound represented by formula (A2), or a compound represented by formula (B2) was used.
  • equivalent results were obtained.
  • the compound of the present invention or a salt thereof can be used as an anti-inflammatory agent, an anticancer agent for lung cancer, and the like. Since the compound of the present invention or a salt thereof is highly safe, it can be administered over a long period of time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Pulmonology (AREA)
  • Sustainable Development (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

抗炎症剤及び肺がんに対する抗がん剤等として使用可能な、安全性に優れる新たな化合物を提供する。 本発明の化合物又はその塩は、式(A)又は式(B)で表される化合物又はその塩であることを特徴とする。 【化A】 【化B】 式(A)及び式(B)において、 Xは、ヘキソース又は水酸基であり、 Xは、リン酸基又は水酸基である。

Description

化合物又はその塩、抗炎症剤、肺がんに対する抗がん剤、化合物又はその塩の製造方法、炎症性疾患の治療方法及び肺がんの治療方法
 本発明は、化合物又はその塩、抗炎症剤、肺がんに対する抗がん剤、化合物又はその塩の製造方法、炎症性疾患の治療方法及び肺がんの治療方法に関する。
 抗炎症剤及び肺がんに対する抗がん剤として、様々なものが提案されている(例えば、非特許文献1及び2参照)。
和田孝一郎、上崎善規著、「PPARγアゴニストの抗炎症作用 ―基礎・臨床研究の最新動向-」、日本臨牀、2010年、第68巻第2号、p.278-283 Vincent T. DeVita, Jr. and Edward Chu, "A History of Cancer Chemotherapy", Cancer Res, November 1, 2008, Vol.68, issue.21, p.8643-8653
 しかしながら、抗炎症剤及び肺がんに対する抗がん剤等として使用可能な、安全性に優れる新たな化合物及びその製造方法が求められている。
 そこで、本発明は、抗炎症剤及び肺がんに対する抗がん剤等として使用可能な、安全性に優れる新たな化合物及びその製造方法の提供を目的とする。
 前記目的を達成するために、本発明の化合物又はその塩は、式(A)又は式(B)で表される化合物又はその塩であることを特徴とする。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
式(A)及び式(B)において、
は、ヘキソース又は水酸基であり、
は、リン酸基又は水酸基である。
 本発明の化合物又はその塩の製造方法は、ロドバクター・アゾトフォルマンス(Rhodobacter azotoformans)BP0899株(受託番号 NITE BP-644)及びその培養物の少なくとも一方から、式(A)又は式(B)で表される化合物又はその塩を含む粗抽出液を抽出する粗抽出工程と、
前記粗抽出液から式(A)又は式(B)で表される化合物又はその塩を単離する精製工程と、
を含むことを特徴とする。
 前記目的を達成するために、本発明者らは、一連の研究を重ねたところ、ロドバクター・アゾトフォルマンス(Rhodobacter azotoformans)BP0899株(受託番号 NITE BP-644)又はその培養物から得られる式(A)又は式(B)で表される化合物又はその塩が、抗炎症効果及び肺がんに対する抗がん効果を有することを見出し、本発明に到達した。式(A)又は式(B)で表される化合物又はその塩は、安全性が高く、長期にわたり投与可能である。
図1は、本発明の製造方法における粗抽出工程の一例を示すフローチャートである。 図2は、本発明の製造方法における精製工程の一例を示すフローチャートである。 図3は、実施例3における被験液のIL-8濃度を示すグラフである。 図4は、実施例4における被験液の吸光度を示すグラフである。 図5は、実施例5における被験液の吸光度を示すグラフである。 図6は、実施例6における被験液のTNF-α濃度を示すグラフである。 図7は、実施例7における被験液のTNF-α濃度を示すグラフである。 図8は、実施例8-1における被験液のIL-6濃度を示すグラフである。 図9は、実施例9におけるマウスの腫瘍体積を示すグラフである。 図10は、実施例2において、メチルエステル化処理物をGC-MS分析に供した際のマススペクトルである。 図11は、実施例2において、加水分解メチルエステル化処理物をGC-MS分析に供した際のマススペクトルである。 図12は、実施例2において、ピロリジド化処理物をGC-MS分析に供した際のマススペクトルである。 図13は、実施例2において、加水分解ピロリジド化処理物をGC-MS分析に供した際のマススペクトルである。 図14は、実施例2において、図12におけるピーク4の化合物をGC-MS分析に供した際のマススペクトルである。 図15は、実施例2において、図13におけるピークDの化合物をGC-MS分析に供した際のマススペクトルである。 図16Aは、実施例2において、試料溶液をHNMR測定に供した際のスペクトルの一部である。 図16Bは、実施例2において、試料溶液をHNMR測定に供した際のスペクトルの一部である。 図16Cは、実施例2において、試料溶液をHNMR測定に供した際のスペクトルの一部である。 図16Dは、実施例2において、試料溶液をHNMR測定に供した際のスペクトルの一部である。 図17Aは、実施例2において、試料溶液を13CNMR測定に供した際のスペクトルの一部である。 図17Bは、実施例2において、試料溶液を13CNMR測定に供した際のスペクトルの一部である。 図17Cは、実施例2において、試料溶液を13CNMR測定に供した際のスペクトルの一部である。 図17Dは、実施例2において、試料溶液を13CNMR測定に供した際のスペクトルの一部である。 図18は、実施例2において、試料溶液を31PNMR測定に供した際のスペクトルである。 図19は、実施例2において、試料溶液をGC-MS分析に供した際のマススペクトルである。 図20は、実施例2において、図19における、m/z=1417.93のピークの化合物を、GC-MS/MS分析に供した際のマススペクトルである。 図21は、試料溶液をGC-MS分析に供した際のマススペクトルである。 図22は、実施例2において、図21におけるm/z=538.15のピークの化合物をGC-MS/MS分析に供した際のマススペクトルである。 図23は、実施例2において、図22におけるm/z=474.27のピークの化合物をGC-MS/MS/MS分析に供した際のマススペクトルである。 図24は、実施例2において、図22におけるm/z=601.17のピークの化合物をGC-MS/MS/MS分析に供した際のマススペクトルである。 図25は、実施例2において、図24におけるm/z=557.19のピークの化合物をGC-MS/MS/MS/MS分析に供した際のマススペクトルである。 図26は、実施例2において、図24におけるm/z=645.12のピークの化合物をGC-MS/MS/MS/MS分析に供した際のマススペクトルである。 図27は、実施例8-2において、PPARγ遺伝子の発現量を示すグラフである。 図28は、実施例2において、ヒドラジン分解物の4mol/LのKOH処理で遊離した糖鎖部分のゲルろ過パターンを示すグラフである。 図29は、実施例2において、試料AをHNMR測定に供した際のスペクトルである。 図30は、実施例2において、試料Aを2D DQF-COSY測定に供した際のスペクトルである。 図31は、実施例2において、試料Aを2D NOESY測定に供した際のスペクトルである。 図32は、実施例2において、試料Aを2D H-31P HMBC測定に供した際のスペクトルである。 図33は、実施例2における試料Aの模式図である。
 本発明の製造方法において、前記粗抽出工程における前記抽出処理が、タンパク質を不溶化する有機溶媒による抽出処理であってもよい。この場合において、前記抽出溶媒は、フェノールであってもよい。
 本発明の製造方法では、前記粗抽出工程において、前記抽出処理の前に、前記ロドバクター・アゾトフォルマンス(Rhodobacter azotoformans)BP0899株(受託番号 NITE BP-644)及びその培養物の少なくとも一方について、色素の脱色処理を行ってもよい。この場合において、前記色素の脱色処理は、アセトン、メタノール及びクロロホルムからなる群から選択される少なくとも一つによる脱色処理であってもよい。
 本発明の製造方法では、前記粗抽出工程において、前記粗抽出液について濾過処理を行ってもよい。
 本発明の製造方法では、前記精製工程において、前記粗抽出液について、酵素処理と、タンパク質を不溶化する有機溶媒による抽出処理とを行ってもよい。この場合において、前記酵素処理は、核酸分解酵素及びタンパク質分解酵素の少なくとも一方による酵素処理であってもよく、前記有機溶媒は、フェノールであってもよい。
 本発明の製造方法では、前記精製工程において、前記抽出処理後の抽出液について濾過処理を行ってもよい。
 本発明について、以下に詳細に説明する。
<新規化合物>
 前述のとおり、本発明の化合物又はその塩は、式(A)又は式(B)で表される化合物又はその塩であることを特徴とする。式(A)及び式(B)において、XとXとの組合せは、ヘキソースとリン酸基、水酸基と水酸基、ヘキソースと水酸基、水酸基とリン酸基の4通りあり、ヘキソースとリン酸基、水酸基と水酸基の組合せが好ましい。Xがヘキソースの場合、例えば、その2位の炭素における水酸基の酸素が、Xの結合先であるヘキソースの4位の炭素に結合している。本発明の化合物又はその塩は、式(A)又は式(B)において、X及びXが、それぞれ、ヘキソース及びリン酸基であれば、式(A1)又は式(B1)で表される化合物又はその塩となり、式(A)又は式(B)において、X及びXが、いずれも水酸基であれば、式(A2)又は式(B2)で表される化合物又はその塩となる。本発明の化合物又はその塩は、以下、「本発明の新規化合物」ともいう。本発明の新規化合物は、例えば、後述の製造方法で得ることができる。ただし、後述の製造方法は例示に過ぎず、本発明を限定するものではない。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 本発明の新規化合物において、ヘキソースは、例えば、グルコースであってもよい。
 本発明の新規化合物は、いかなる用途に用いてもよいが、例えば、後述の抗炎症剤、肺がんに対する抗がん剤の材料等として利用可能である。本発明の新規化合物は、後述の実施例で実証されているように、NF-κB(Nuclear Factor-kappa B)、TNF-α(Tumor Necrosis Factor-α)及びIL-6(Interleukin-6)等の炎症性サイトカインの生産を抑制する機能を有する。また、本発明の新規化合物は、後述の実施例で実証されているように、Toll様受容体の一種であるTLR4(Toll-like receptor 4)を活性化する機能も有する。TLR4の活性化は、抗炎症作用を有するI型インターフェロンの産生を促すことが知られている(Nina Maeshima and Rachel C. Fernandez, “Recognition of lipid A variants by the TLR4-MD-2 receptor complex”, Frontiers in Cellular and Infection Microbiology, February 2013, volume3, Article3, p.2, FIGURE 2)。したがって、本発明の新規化合物は、抗炎症効果を有する。さらに、本発明の新規化合物は、後述の実施例で実証されているように、肺がんの増殖を抑える機能も有する。
<抗炎症剤及び炎症性疾患の治療方法>
 本発明の抗炎症剤は、本発明の化合物又はその塩(前記新規化合物)が有する抗炎症効果により炎症を抑えるものであり、本発明の新規化合物を含んでいる以外は、何ら制限されない。本発明の抗炎症剤により炎症を抑えられる疾患としては、例えば、潰瘍性大腸炎及びクローン病等の炎症性腸疾患、乾癬及び皮膚炎等の炎症性皮膚疾患、脳炎、肝炎、腎炎、肺炎、気管支炎、脈管炎、髄膜炎、甲状腺炎、糖尿病、炎症性胆汁疾患、炎症を伴う癌等があげられ、特に限定されない。本発明の抗炎症剤によれば、本発明の新規化合物の有する抗炎症効果により、炎症に伴う疼痛の鎮痛効果も発揮される。
 前記抗炎症剤の剤形は、例えば、散剤、細粒剤、顆粒剤、錠剤、被覆錠剤、カプセル剤、トローチ剤、液剤等が挙げられ、特に制限されない。また、前記抗炎症剤の組成は、特に制限されず、本発明の新規化合物以外に、例えば、賦形剤、結合剤、滑沢剤、崩壊剤、吸収促進剤、乳化剤、安定化剤、防腐剤等の各種添加剤等を含んでいてもよい。また、前記抗炎症剤は、通常用いられる製剤化技術等により製造可能である。
 本発明の炎症性疾患の治療方法は、前記新規化合物を含む本発明の抗炎症剤を投与する工程を含む。本発明において、「治療」とは、例えば、症状を改善する(良くする)こと、症状を解消(完治)すること、症状の悪化を防止すること、予防等が含まれ、後述の肺がんの治療方法において同様である。前記抗炎症剤を投与する動物種としては、特に制限されないが、例えば、ヒト、又は、サル、ウシ、ブタ、イヌ、ネコ等の非ヒトの哺乳類、ニワトリ等の鳥類、魚介類等が挙げられる。前記投与方法としては、特に制限されず、例えば、経口投与又は非経口投与があげられ、前記非経口投与は、例えば、経皮吸収、注射、座薬投与等が挙げられる。前記抗炎症剤の投与量は、例えば、動物種、年齢等に応じて適宜設定でき、特に制限されない。
<肺がんに対する抗がん剤及び肺がんの治療方法>
 本発明の肺がんに対する抗がん剤は、本発明の化合物又はその塩(前記新規化合物)の有する肺がんに対する抗がん効果により肺がんの増殖を抑えるものであり、本発明の新規化合物を含んでいる以外、何ら制限されない。また、本発明の肺がんの治療方法は、前記新規化合物を含む本発明の肺がんに対する抗がん剤を投与する工程を含む。前記抗がん剤の剤形、前記抗がん剤を投与する動物種及び前記抗がん剤の投与方法は、前記抗炎症剤の剤形、前記抗炎症剤を投与する動物種及び前記抗炎症剤の投与方法と同様である。
<新規化合物の製造方法>
 前述のとおり、本発明の化合物又はその塩(前記新規化合物)の製造方法は、ロドバクター・アゾトフォルマンス(Rhodobacter azotoformans)BP0899株(受託番号 NITE BP-644)及びその培養物の少なくとも一方から、式(A)又は式(B)で表される化合物又はその塩を含む粗抽出液を抽出する粗抽出工程と、
前記粗抽出液から式(A)又は式(B)で表される化合物又はその塩を単離する精製工程と、
を含むことを特徴とする。
〔粗抽出工程〕
 前述のとおり、前記粗抽出工程は、ロドバクター・アゾトフォルマンス(Rhodobacter azotoformans)BP0899株(受託番号 NITE BP-644)及びその培養物の少なくとも一方から、式(A)又は式(B)で表される化合物又はその塩を含む粗抽出液を抽出する工程である。
 まず、前記ロドバクター・アゾトフォルマンス(Rhodobacter azotoformans)BP0899株(受託番号 NITE BP-644)及びその培養物の少なくとも一方について説明する。前記ロドバクター・アゾトフォルマンス(Rhodobacter azotoformans)BP0899株(受託番号 NITE BP-644)及びその培養物の少なくとも一方は、下記(1)~(30)の菌学的特徴を有することが好ましい。なお、前記BP0899株は、独立行政法人製品評価技術基盤機構 特許生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8)に受託番号 NITE P-644で寄託され(受託日:2008年 9月12日)、さらに、受託番号 NITE BP-644で国際寄託されている(移管日:2010年10月27日)。
(1)細胞の形:桿状形又は卵形
(2)多形性:なし
(3)細胞の大きさ:0.8μm×1.0μm
(4)運動性の有無:あり
(5)胞子の有無:なし
(6)普通寒天培養における光沢:あり
(7)普通寒天培養における色素産生:あり
(8)普通ブイヨン培養における表面発育の有無:なし
(9)普通ブイヨン培養における培地の混濁の有無:あり
(10)ゼラチン穿刺培養におけるゼラチン液化:陰性
(11)リトマス・ミルク培養における凝固:なし
(12)リトマス・ミルク培養における液化:なし
(13)グラム染色性:陰性
(14)硝酸塩の還元:なし
(15)脱窒反応:なし又はあり
(16)MRテスト:陰性
(17)インドール産生:なし
(18)硫化水素の生成:なし
(19)デンプンの加水分解:なし
(20)クエン酸の利用(Christensen):なし
(21)無機窒素源の利用(アンモニウム塩):あり
(22)カタラーゼの生成:陽性
(23)オキシダーゼの生成:陽性
(24)嫌気的生育性:あり
(25)O-Fテスト(酸化/発酵):陰性/陰性
(26)β-ガラクトシダーゼ活性:陰性
(27)アルギニンジヒドロラーゼ活性:陰性
(28)リジンデカルボキシラーゼ活性:陰性
(29)トリプトファンデアミナーゼ活性:陰性
(30)ゼラチナーゼ活性:陰性
 前記BP0899株の16S rRNAの塩基配列は、配列番号1で表される塩基配列であることが好ましい。
 前記BP0899株及びその培養物の少なくとも一方は、暗所での好気培養条件下で、さらに、例えば、下記(31)の表に示す性質を示してもよい。なお、同表において、「-」は産生なしを、「+」は産生ありを示す。
(31)糖類からの酸産生及びガス産生
  基質     酸産生/ガス産生
L-アラビノース   -/-
D-グルコース    -/-
D-フラクトース   -/-
マルトース      -/-
ラクトース      -/-
D-ソルビトール   -/-
イノシトール     -/-
D-キシロース    -/-
D-マンノース    -/-
D-ガラクトース   -/-
サッカロース     -/-
トレハロース     -/-
グリセリン      -/-
 前記菌学的特徴は、例えば、前培養後、さらに本培養した結果から評価してもよい。前記前培養は、例えば、普通寒天培地に前記BP0899株を植菌し、30℃で24時間培養して行ってもよい。前記本培養の条件は、各菌学的特徴の評価方法に応じて、適宜設定できる。具体的には、前記(1)~(5)の培養条件は、例えば、普通寒天培地を用い、30℃、暗所での好気培養であり、前記(6)~(7)の培養条件は、例えば、普通ブイヨン培地を用い、30℃、明所での嫌気培養であり、前記(8)~(12)の培養条件は、例えば、各培地を用い、30℃、暗所での好気培養であり、前記(13)、(14)、(16)、(17)、(19)~(23)、(25)の酸化テスト、(26)、(29)、(30)及び(31)は、例えば、暗所での好気培養であり、(15)、(18)、(24)、(25)の発酵テスト、(27)及び(28)は、例えば、暗所での嫌気培養である。これらの菌学的特徴の試験方法としては、特に制限されず、従来公知の方法を採用できる。具体的には、例えば、Barrow G.I.及びFeltham R.K.A.著「Cowan and Steel‘s Manual for the Identification of Medical Bacteria.」(イギリス)3rd edition Cambridge University Press 1993年、坂崎ら著「新 細菌培地学講座・下」(東京)第二版 近大出版 1988年、長谷川編著「微生物の分類と同定(下)」(東京)学会出版センター 1985年、土壌微生物研究会編「新編 土壌微生物学実験」(東京)養賢堂 1992年等に記載の方法が挙げられる。前記(15)の試験方法は、例えば、前記「微生物の分類と同定(下)」記載の駒形らの方法、Giltay培地を用いた前記「新編 土壌微生物学実験」記載の方法、PYN培地を用いた下水法等を採用できる。前記駒形らの方法は、1%硝酸ナトリウム肉汁を用いた嫌気培養条件下で、生育及びガス形成が認められたものを脱窒反応陽性と判定する。前記Giltay培地を用いた方法は、ダーラム管入り前記Giltay培地(pH7.0~7.2)を用いた嫌気培養条件下で、ガス発生及び濃青色に呈色したものを脱窒反応陽性と判定する。なお、前記Giltay培地は、A液(KNO 1g、アスパラギン1g、1%ブロモチモールブルー・アルコール溶液5mL及び蒸留水500mL)及びB液(クエン酸ナトリウム8.5g、MgSO・7HO 1g、FeCl・6HO 0.05g、KHPO 1g、CaCl・6HO 0.2g及び蒸留水500mL)を混合した培地である。また、前記試験方法には、例えば、市販の細菌同定キットを使用してもよい。前記キットとしては、特に制限されないが、例えば、細菌同定キット API20E(ビオメリュー社製)等を使用できる。
 前記BP0899株及びその培養物の少なくとも一方は、例えば、さらに、下記(32)~(40)の菌学的特徴を有してもよい。
(32)コロニーの色:赤色
(33)ゼラチン穿刺培養:生育しない
(34)VPテスト:陰性
(35)クエン酸の利用(Koser):あり
(36)無機窒素源の利用(硝酸塩):あり
(37)ウレアーゼ活性:陰性
(38)生育するpH範囲:5~9
(39)D-マンニトールからの酸産生:産生あり
(40)D-マンニトールからのガス産生:産生なし
 前記(32)~(40)の菌学的特徴の試験方法としては、特に制限されず、従来公知の方法を採用できる。具体的には、例えば、前述の文献等に記載の方法が挙げられる。また、前記試験方法には、例えば、市販の細菌同定キットを使用してもよい。前記キットとしては、特に制限されないが、例えば、前述の細菌同定キット等を使用できる。
 前記BP0899株の採取源としては、特に限定されず、例えば、土壌、海水、川水、湖水、沼水等が挙げられる。また、前記土壌としては、例えば、陸地、海底、川底、湖底及び沼底の土、砂及び泥土等が挙げられ、特に限定されない。
 前記BP0899株の単離方法としては、例えば、従来公知の採取法、培養法等を用いることができ、特に制限されない。前記単離方法としては、例えば、採取源が湖水の場合、採取した湖水をフィルター等によりろ過し、このろ液を寒天培地等で培養し、得られたコロニーから前記BP0899株を単離してもよい。また、例えば、採取源が泥土の場合、採取した泥土を緩衝液等により懸濁後、この懸濁液を遠心分離し、得られた上清を寒天培地等で培養し、得られたコロニーから前記BP0899株を単離してもよい。前記単離したBP0899株は、さらに、例えば、液体培地中で培養してもよい。
 前記BP0899株の培養において、培地は、特に限定されず、例えば、低級脂肪酸添加培地、リンゴ酸添加培地、L-乾燥標品復元用培養基802「ダイゴ」(日本製薬(株)製)、MYS培地(平石及び北川、Bulletin of the Japanese Society of Scientific Fisheries、1984年、50巻、11号、p.1929-1937)、改変MYS培地、生育用培地等が挙げられ、好ましくは、低級脂肪酸添加培地、リンゴ酸添加培地、L-乾燥標品復元用培養基802「ダイゴ」(日本製薬(株)製)である。
 前記低級脂肪酸添加培地及び前記リンゴ酸添加培地としては、例えば、下記表1の基礎培地に、ビオチン、ビタミンB、ニコチン酸、低級脂肪酸又はリンゴ酸のナトリウム塩を添加した培地が挙げられる。前記低級脂肪酸としては、特に制限されないが、例えば、酢酸、プロピオン酸、乳酸等が好ましい。
Figure JPOXMLDOC01-appb-T000011
 前記改変MYS培地、生育用培地としては、例えば、下記表2及び表3の組成の培地が挙げられる。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 前記培養において、温度範囲は、特に限定されないが、例えば、23~39℃、30℃である。
 また、前記培養において、pH範囲は、特に限定されないが、例えば、pH5.5~8.5、6.0~8.5、7.0である。
 前記培養は、例えば、好気的条件下で行ってもよく、嫌気的条件下で行ってもよく、特に制限されないが、好ましくは、嫌気的条件下である。また、前記培養時の光条件も、特に制限されず、例えば、暗黒条件でもよく、照明条件でもよいが、好ましくは、2000ルクス~10000ルクスの照度下である。前記培養は、例えば、密閉照明式培養槽内で行ってもよい。また、前記密閉照明式培養槽内に備えられた撹拌装置を用いて、培養液を撹拌しながら培養してもよい。
 前記培養時間は、特に制限されず、例えば、前記BP0899株の増殖が定常期に達するまでであってもよい。前記BP0899株の増殖が、約72時間以内に定常期に達する培養条件下の場合、前記培養時間は、例えば、72時間であってもよい。
 前述のように、前記BP0899株の16S rRNAの塩基配列は、配列番号1で表される塩基配列であることが好ましい。
 前記16S rRNAの塩基配列は、例えば、前述の方法等により、単離及び培養した前記BP0899株から、DNAを抽出し、プライマー等を用いて決定できる。前記DNAの抽出及び前記塩基配列の決定方法は、例えば、常法を用いることができ、特に制限されない。また、前記プライマーは、特に制限されないが、例えば、以下のプライマー等が挙げられる。
(プライマー)
9F    (配列番号2)
  5’-GAGTTTGATCCTGGCTCAG-3’
339F  (配列番号3)
  5’-CTCCTACGGGAGGCAGCAG-3’
785F  (配列番号4)
  5’-GGATTAGATACCCTGGTAGTC-3’
1099F (配列番号5)
  5’-GCAACGAGCGCAACCC-3’
536R  (配列番号6)
  5’-GTATTACCGCGGCTGCTG-3’
802R  (配列番号7)
  5’-TACCAGGGTATCTAATCC-3’
1242R (配列番号8)
  5’-CCATTGTAGCACGTGT-3’
1541R (配列番号9)
  5’-AAGGAGGTGATCCAGCC-3’
 前記BP0899株の培養物としては、例えば、前記BP0899株の菌体、前記BP0899株の培養上清、前記BP0899株の菌体抽出物等が挙げられ、特に限定されない。
 前記培養物は、例えば、前記菌体の処理物、前記培養上清の処理物、前記菌体抽出物の処理物等でもよく、特に限定されない。前記処理物としては、特に限定されないが、例えば、前記培養物の濃縮物、乾燥物、凍結乾燥物、溶媒処理物、界面活性剤処理物、酵素処理物、タンパク質分画物、超音波処理物、磨砕処理物等が挙げられる。また、前記培養物は、例えば、前記菌体、前記培養上清、前記菌体抽出物、前記菌体の処理物、前記培養上清の処理物、前記菌体抽出物の処理物等の混合物でもよい。前記混合物としては、任意の組み合わせ及び比率で混合することができ、特に制限されない。前記組み合わせとしては、特に制限されないが、例えば、前記菌体及び前記培養上清の混合物等が挙げられる。
 図1のフローチャートに、前記粗抽出工程の一例を示す。図示のとおり、本例の前記粗抽出工程は、脱色処理(ステップS11)と、抽出処理(ステップS12)と、濾過処理(ステップS13)と、を含む。
(1)脱色処理(ステップS11)
 まず、前記ロドバクター・アゾトフォルマンス(Rhodobacter azotoformans)BP0899株(受託番号 NITE BP-644)又はその培養物について、色素の脱色処理を行う。前記色素の脱色処理は、特に制限されず、例えば、有機溶媒による脱色処理があげられる。前記有機溶媒は、例えば、アセトン、メタノール、クロロホルム及びそれらの混合溶媒等があげられる。前記脱色処理は、例えば、前記菌体又は前記培養物を前記有機溶媒と混合することによって行える。具体的には、例えば、ビーカー内の前記BP0899株の凍結乾燥菌体10g~60gに対し、アセトン25mL~150mLを加え、スターラーを用いて十分に撹拌する。つぎに、前記撹拌した溶液の上澄みを50mLコニカルチューブに移し、2000rpm~5000rpm、5分~10分の条件で遠心分離し、得られた上清を除去し、沈殿物にアセトン20mL~40mLを加え、前記ビーカーに戻す。この操作を、前記BP0899株の色素の色(褐色)を目視で認められなくなるまで繰り返した後、前記沈殿物を、アスピレーターを用いて恒量になるまで減圧乾燥し、脱色された乾燥菌体を得る。
(2)抽出処理(ステップS12)
 つぎに、前記脱色処理後の菌体又は培養物を、タンパク質を不溶化する有機溶媒で処理し、タンパク質の除去を行う。前記有機溶媒は、例えば、フェノール等があげられる。前記抽出処理は、例えば、前記菌体又は培養物を、前記有機溶媒及び水性溶媒と混合し、前記有機溶媒により不溶化したタンパク質を前記有機溶媒の相に分配させ、前記水性溶媒の相に、目的とする前記化合物を分配させる。具体的には、例えば、前記ビーカー内の脱色乾燥菌体10g~60gに、前記脱色乾燥菌体の濃度が60mg/mL~90mg/mLとなるように、注射用水を加える。つぎに、90%フェノールを前記注射用水と等量加え、ホットスターラー上で65℃~70℃で20分~40分撹拌し、これを初回の抽出とする。そして、前記撹拌した溶液を10℃以下になるまで冷却した後、遠心分離用チューブを用いて、8000rpm~20000rpm、20分~60分、2℃~10℃の条件で遠心分離することにより、フェノール相と水相とに分離し、得られた前記水相を50mLコニカルチューブに回収し、前記遠心分離用チューブに残ったフェノール相に、回収した水相と等量の注射用水を入れ、前記初回の抽出と同様の操作を繰り返す(2回目の抽出)。さらに、前記初回の抽出と同様の操作をもう一度繰り返す(3回目の抽出)。このようにして、3回分の抽出により得られた水相500mL~1000mLを回収する。
(3)濾過処理(ステップS13)
 つぎに、抽出処理で得られた水相に、濾過処理を施し、前記水相に混入した有機溶媒(前記抽出処理で用いたフェノール等の有機溶媒)を除去する。前記濾過としては、例えば、限外濾過等があげられる。前記濾過における分画分子量は、例えば、7000であり、前記分画分子量未満の分子を除去することが好ましい。具体的には、例えば、前記回収した水相を、分画分子量7000の透析チューブに入れ、外液を蒸留水1L~10Lとし、透析を行う。外液にフェノールの吸収波長である270nmにおける光の吸収が認められなくなるまで、前記透析を繰り返し行い、内液を、前記本発明の新規化合物を含む粗抽出液として回収する。
〔精製工程〕
 図2のフローチャートに、前記精製工程の一例を示す。図示のとおり、本例の前記精製工程は、酵素処理(ステップS21)と、抽出処理(ステップS22)と、濾過処理(ステップS23)と、を含む。
(1)酵素処理(ステップS21)
 前記粗抽出工程で得られた前記本発明の新規化合物を含む粗抽出液について、酵素処理を行う。前記酵素処理は、特に制限されず、例えば、核酸分解酵素による処理、タンパク質分解酵素による処理があげられ、いずれか一方の処理でもよいし、両方の処理でもよい。後者の場合、その順序は、特に制限されないが、例えば、核酸分解酵素による処理を行った後、タンパク質分解酵素による処理を行うことができる。
 まず、前記粗抽出液について、核酸分解酵素による処理を施す。前記核酸分解酵素は、特に制限されず、例えば、RNA分解酵素、DNA分解酵素があげられる。前記RNA分解酵素としては、特に限定するものではないが、例えば、シグマ社製のRibonuclease A、和光純薬工業(株)製のRibonuclease A、ロシュ社製のRibonuclease A等を用い得る。前記DNA分解酵素としては、特に限定するものではないが、例えば、シグマ社製のDeoxyribonuclease I、和光純薬工業(株)製のDeoxyribonuclease I、ロシュ社製のDeoxyribonuclease I等を用い得る。具体的には、例えば、前記粗抽出液に、0.2mg/mL~1mg/mLのRNA分解酵素と、1μg/mL~10μg/mLのDNA分解酵素とを添加し、30℃~40℃で4時間~24時間インキュベートする。
 つぎに、前記粗抽出液について、タンパク質分解酵素による処理を施す。前記タンパク質分解酵素としては、特に限定するものではないが、例えば、シグマ社製のProteinase K、和光純薬工業(株)製のProteinase K、ロシュ社製のProteinase K等を用い得る。具体的には、例えば、前記粗抽出液に、100μg/mL~300μg/mLのタンパク質分解酵素を添加し、40℃~50℃で2時間~24時間インキュベートする。
(2)抽出処理(ステップS22)
 つぎに、前記粗抽出液を、タンパク質を不溶化する有機溶媒で処理し、タンパク質の除去を行う。前記有機溶媒は、例えば、フェノール等があげられる。具体的には、例えば、前記酵素処理後の抽出液を、2000rpm~5000rpm、20分~60分の条件で遠心分離する。そして、得られた沈殿画分約1mL~10mLと上清画分約50mL~100mLとのうち、前記沈殿画分を、分画分子量50000~100000の限外濾過チューブに入れ、外液を蒸留水5mL~15mLとし、限外濾過を行う。得られた内液に、注射用水10mL~60mLと90%フェノール10mL~60mLとを加え、ホットスターラー上で65℃~70℃で20分~40分撹拌し、これを初回の抽出とする。そして、前記撹拌した溶液を10℃以下になるまで冷却した後、遠心分離用チューブを用いて、8000rpm~20000rpm、20分~60分、2℃~10℃の条件で遠心分離することにより、フェノール相と水相とに分離し、得られた前記水相は、50mLコニカルチューブに回収し、前記遠心分離用チューブに残ったフェノール相に、回収した水相と等量の注射用水を入れ、前記初回の抽出と同様の操作を繰り返す(2回目の抽出)。さらに、前記初回の抽出と同様の操作をもう一度繰り返す(3回目の抽出)。このようにして、3回分の抽出操作の水相を、計60mL~120mL回収する。
(3)濾過処理(ステップS23)
 つぎに、抽出処理で得られた水相に、濾過処理を施し、前記水相に混入した有機溶媒(前記抽出処理で用いたフェノール等の有機溶媒)を除去する。前記濾過としては、例えば、限外濾過等があげられる。前記濾過における分画分子量は、例えば、50000~100000であり、前記分画分子量未満の分子を除去することが好ましい。具体的には、例えば、前記回収した水相を、分画分子量7000の透析チューブに入れ、外液を蒸留水0.5L~1Lとし、24時間~96時間透析を行う。得られた内液を、分画分子量50000~100000の限外濾過チューブに入れ、外液を蒸留水5mL~15mLとし、限外濾過を行う。得られた内液を凍結乾燥することにより、本発明の新規化合物である、式(A)又は式(B)で表される化合物又はその塩が得られる。
 つぎに、本発明の実施例について説明する。ただし、本発明は、下記の実施例に限定されない。市販の試薬は、特に示さない限り、それらのプロトコルに基づいて使用した。
〔実施例1〕
 下記方法により、式(A)で表される化合物及び式(B)で表される化合物を製造した。
〔1.粗抽出工程〕
(1-1)脱色処理(ステップS11)
 ビーカー内の前記BP0899株の凍結乾燥菌体20.03gに対し、アセトン50mLを加え、スターラーを用いて10分撹拌した。つぎに、前記撹拌した溶液の上澄みを50mLコニカルチューブに移し、2000rpm、5分の条件で遠心分離し、得られた上清は除去し、沈殿物には、アセトン20mLを加え、前記ビーカーに戻した。この操作を、前記BP0899株の色素の色(褐色)を目視で認められなくなるまで繰り返した。そして、脱色された沈殿物を、アスピレーターを用いて恒量になるまで減圧乾燥し、脱色乾燥菌体を得た。
(1-2)抽出処理(ステップS12)
 ビーカーに入れた前記脱色乾燥菌体16gに、前記脱色乾燥菌体の濃度が75mg/mLとなるように、注射用水を加えた。つぎに、90%フェノールを前記注射用水と等量加え、ホットスターラー上で65℃~70℃で30分撹拌し、これを初回の抽出とした。そして、前記撹拌した溶液を10℃以下になるまで冷却した後、遠心分離用チューブを用いて、15000rpm、40分、4℃の条件で遠心分離することにより、フェノール相と水相とに分離し、得られた前記水相は、50mLコニカルチューブに回収し、前記遠心分離用チューブに残ったフェノール相に、回収した水相と等量の注射用水を入れ、前記初回の抽出と同様の操作を繰り返した(2回目の抽出)。さらに、前記初回の抽出と同様の操作をもう一度繰り返した(3回目の抽出)。このようにして、3回分の抽出操作の水相450mLを回収した。
(1-3)濾過処理(ステップS13)
 前記回収した水相450mLを、分画分子量7000の透析チューブに入れ、外液を蒸留水2.5Lとし、透析を行った。外液にフェノールの吸収波長である270nmにおける光の吸収が認められなくなるまで、前記透析を22回行い、式(A)で表される化合物及び式(B)で表される化合物を含む粗抽出液である内液75mLを回収した。
[2.精製工程]
(2-1)酵素処理(ステップS21)
 まず、前記粗抽出工程で得た式(A)で表される化合物及び式(B)で表される化合物を含む粗抽出液に、0.5mg/mLのRNA分解酵素(商品名:シグマ社製のribonuclease A)と、5μg/mLのDNA分解酵素(シグマ社製のDeoxyribonuclease I)とを添加し、37℃で6時間インキュベートした。つぎに、前記粗抽出液に、200μg/mLのタンパク質分解酵素(シグマ社製のProteinase K)を添加し、50℃で4時間インキュベートした後、3000rpm、30分の条件で遠心分離した。
(2-2)抽出処理(ステップS22)
 前記酵素処理における遠心分離により得られた、沈殿画分約3mL以下と上清画分約72mLとのうち、前記沈殿画分を、分画分子量100000の限外濾過チューブに入れ、外液を蒸留水15mLとし、限外濾過を行った。得られた内液に、注射用水30mLと90%フェノール30mLとを加え、ホットスターラー上で65℃~70℃で30分撹拌し、これを初回の抽出とした。そして、前記撹拌した溶液を10℃以下になるまで冷却した後、遠心分離用チューブを用いて、15000rpm、40分、4℃の条件で遠心分離することにより、フェノール相と水相とに分離し、得られた前記水相は、50mLコニカルチューブに回収し、前記遠心分離用チューブに残ったフェノール相に、回収した水相と等量の注射用水を入れ、前記初回の抽出と同様の操作を繰り返した(2回目の抽出)。さらに、前記初回の抽出と同様の操作をもう一度繰り返した(3回目の抽出)。このようにして、3回分の抽出操作の水相80mLを回収した。
(2-3)濾過処理(ステップS23)
 前記回収した水相を、分画分子量7000の透析チューブに入れ、外液を蒸留水1Lとし、72時間透析を行った。得られた内液を、分画分子量100000の限外濾過チューブに入れ、外液を蒸留水15mLとし、限外濾過を行った。得られた内液を凍結乾燥することにより、精製物164.53mgを得た。
〔実施例2〕
 前記精製物を、質量分析(mass spectrometry)及び核磁気共鳴(nuclear magnetic resonance、NMR)に供し、その構造を特定した。
(1)精製物の分解物の質量分析
 前記精製物を以下のようにして分解し、前記精製物の分解物を調製した。まず、前記精製物を、10mg/mLの濃度となるように、0.1mol/Lの塩酸に溶解し、前記溶解液を水浴中で90分間加熱して、沈殿物と無色透明の上清とを得た。つぎに、前記沈殿物を回収し、クロロホルム抽出に供し、クロロホルム画分を回収した。前記クロロホルム画分に、38mg/mLの濃度となるように、クロロホルムを追加し、この溶解液6μLを、薄層クロマトグラフィー(TLC)に供した。なお、TLCプレートとしては、10cm×10cmのシリカゲル60F254TLCプレート(メルク社製)を、展開溶媒としては、クロロホルム:メタノール:蒸留水:トリエチルアミン=30:13:2:0.1(体積比)の溶液を使用した。そして、展開後の前記TLCプレートに、50%の硫酸を噴霧し、最も強く染まったスポットに対応するゲルをかき取り、再度前記展開溶媒に溶解した。そして、溶媒を取り除いた後に、溶媒以外の画分を回収し凍結乾燥し、これを前記精製物の分解物(以下、「分解物」という。)とした。
 前記分解物を、それぞれ、以下の処理に供し、メチルエステル化処理物、ピロリジド化処理物、加水分解メチルエステル化処理物及び加水分解ピロリジド化処理物の4種類の試料溶液を調製した。
<メチルエステル化処理物の調製>
(I)前記分解物濃度が、30mg/mLとなるように調製したクロロホルム溶液0.1mLに、0.2mg/mL BHT(ジブチルヒドロキシトルエン) クロロホルム溶液1mLを添加し、乾固した。
(II)前記乾固物に、5%塩酸・メタノール1mLを添加し、85℃で24時間反応させた。
(III)前記反応物を放冷後、ヘキサン1mL、水0.5mLを添加し、ヘキサン相を回収した。
(IV)前記回収したヘキサン相を、窒素気流化で溶媒留去し、クロロホルム1mLに再溶解し、メチルエステル化処理物の試料溶液を得た。
<ピロリジド化処理物の調製>
(I)前記メチルエステル化処理物の試料溶液200μLをガラス試験管に採取した。
(II)前記ガラス試験管に、ピロリジン400μL及び酢酸40μLを添加して、100℃で30分間反応させた。
(III)反応終了後、前記反応物に、ジクロロメタン2mLと5%酢酸水溶液2mLを加えて振り混ぜた後、ジクロロメタン相を回収した。
(IV)前記回収したジクロロメタン相から、窒素気流下で溶媒を除去した後、クロロホルム200μLに再溶解し、ピロリジド化処理物の試料溶液を得た。
<加水分解メチルエステル化処理物の調製>
(I)前記分解物に対して、前記メチルエステル化処理物の調製における(I)と同様の処理を行い、乾固物を得た。
(II)前記乾固物に、0.5mol/L NaOH・メタノール1mLを添加し、50℃で1時間反応させた。
(III)前記反応物を放冷後、ヘキサン1mL、1mol/L塩酸試液0.5mLを添加し、ヘキサン相を回収した。
(IV)前記回収したヘキサン相に対して、前記メチルエステル化処理物の調製における(IV)と同様の処理を行い、加水分解メチルエステル化処理物の試料溶液を得た。
<加水分解ピロリジド化処理物の調製>
 前記加水分解メチルエステル化処理物に対して、前記ピロリジド化処理物の調製における(I)~(IV)と同様の処理を行い、加水分解ピロリジド化処理物の試料溶液を得た。
(1-1)メチルエステル化処理物及び加水分解メチルエステル化処理物のGC-MS
 前記メチルエステル化処理物及び前記加水分解メチルエステル化処理物を、下記条件で、GC-MS(ガスクロマトグラフ-マススペクトロメトリー)分析に供した。
<GC-MS条件>
機器:JMS-700V(日本電子(株)製)
カラム:SPB-1 30m×0.25mm 膜厚0.25μm
カラム温度:50℃(1分保持)→300℃(+8℃/分で昇温、30分保持)
注入口温度:250℃
検出器:水素炎イオン化検出器(FID) 300℃
注入量:1μL(splitless注入)
キャリアガス:ヘリウム(線速度30cm/sec、定流量モード)
検出器:MS
    イオン化法:EI(Electron Ionization)
    イオン化電流:300μA
    イオン化エネルギー:70eV
    イオン化室温度:300℃
    電子加速電圧:10kV
    走査範囲:m/z=35~500(sec/scan)
 この結果を、図10及び図11に示す。図10は、前記メチルエステル化処理物をGC-MS分析に供した際のマススペクトルであり、図11は、前記加水分解メチルエステル化処理物をGC-MS分析に供した際のマススペクトルである。図10及び図11において、縦軸は、検出強度を示し、横軸は、検出時間(min)を示す。
 図10に示すように、前記メチルエステル化処理物から、ピーク1~11が得られた。これらの中で、検出強度が高かったピーク1、2、4、6及び7の化合物を、それぞれ、さらに、上記と同様の条件でGC-MS分析に供した。得られたマススペクトルに対して、形状が似ているマススペクトルを有する構造物を、データベース(The NIST MassSpectral Seach Program for the NIST/EPA/NIH Mass Spectral Library)のAuto Modeによりライブラリ検索した。その結果、ピーク1、2、4及び7の化合物は、それぞれ、式(2)~(5)の化合物と、高い類似度を示した。また、本発明者らは、ピーク6の化合物のマススペクトルが、Strittmatterら(Strittmatter W. et al (1983), Journal of Bacteriology, Vol.155, No.1, p.153-p.158, Fig2)に記載の3-oxo-tetradecanoic acid methyl esterのマススペクトルと酷似していることを発見した。このため、ピーク6の化合物は、式(6)の3-oxo-tetradecanoic acid methyl esterであると推定した。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 また、図11に示すように、前記加水分解メチルエステル化処理物から、ピークA~Iが得られた。ここで、図10のマススペクトルと図11のマススペクトルを比較すると、図10のピーク1、2及び4に対応するピークとして、図11においては、それぞれ、ピークA、B及びDが確認された。これらのピークA、B及びDを、それぞれ、さらに、上記と同様の条件でGC-MS分析に供した。得られたマススペクトルに対して、形状が似ているマススペクトルを有する構造物を、前記データベースを用いて検索した。その結果、ピークA、B及びDは、それぞれ、式(7)、式(3)及び式(4)の化合物と、高い類似度を示した。
Figure JPOXMLDOC01-appb-C000019
 なお、図10のピーク6及び7に対応するピークは、図11においては確認されなかったが、これは、つぎの理由によるものと思われる。すなわち、図10は、前記分解物を加水分解せずにGC-MS分析に供した結果であるのに対し、図11は、前記分解物を加水分解し、加水分解により分離した物質のみをGC-MS分析に供した結果である。このため、図11において確認されるピークは、前記分解物中で加水分解されるエステル結合を有する化合物のピークであると考えられる。したがって、図11で対応するピークが確認されなかった図10のピーク6及び7の化合物は、加水分解されるエステル結合を有しない化合物であると推定される。
 図10及び図11の結果をまとめて、図10において検出強度が高かったピーク1、2、4及び7の化合物を推定すると、つぎの説明及び表4に示すとおりとなる。まず、図10のピーク1の化合物は、前述のように、ライブラリ検索の結果、式(2)の化合物であると推定された。しかし、ピーク1の化合物が式(2)の化合物である場合、図10におけるピーク1よりも、短い保持時間(すなわち、左側)にピークが観察されるはずであり、整合がとれない。一方、図10のピーク1に対応する図11のピークAの化合物は、前述のように、ライブラリ検索の結果、式(7)の化合物であると推定された。ピークAの化合物が式(7)の化合物である場合、図11におけるピークAの結果とも整合がとれる。このため、図10におけるピーク1の化合物は、式(7)の化合物であると推定した。つぎに、図10におけるピーク2の化合物は、前述のように、ライブラリ検索の結果、式(3)のBHT(ジブチルヒドロキシトルエン)であると推定された。また、図10のピーク2に対応する図11のピークBの化合物も、前述のように、ライブラリ検索の結果、式(3)のBHT(ジブチルヒドロキシトルエン)であると推定され、図10と図11とで結果は一致した。このため、図10におけるピーク2の化合物は、式(3)のBHT(ジブチルヒドロキシトルエン)であると推定されたが、これは、前記分解物に含まれる化合物ではなく、試料溶液の調製において添加したBHT(ジブチルヒドロキシトルエン)であると推定された。そして、図10におけるピーク4の化合物は、前述のように、ライブラリ検索の結果、式(4)の化合物であると推定された。また、図10のピーク4に対応する図11のピークDの化合物も、前述のように、ライブラリ検索の結果、式(4)の化合物であると推定された。このため、図10におけるピーク4の化合物は、式(4)の化合物であると推定された。なお、式(4)の化合物の炭素間二重結合決定に関する考察は、以下の(1-2)において詳述する。さらに、図10のピーク7の化合物は、前述のように、ライブラリ検索の結果、式(5)の化合物であると推定された。
Figure JPOXMLDOC01-appb-T000020
(1-2)ピロリジド化処理物及び加水分解ピロリジド化処理物のGC-MS
 つぎに、式(4)の化合物における炭素間二重結合位置の決定を目的に、前記ピロリジド化処理物及び前記加水分解ピロリジド化処理物を、下記条件で、GC-MS分析に供した。
<GC-MS条件>
機器:JMS-700V(日本電子(株)製)
カラム:SPB-1 30m×0.25mm 膜厚0.25μm
カラム温度:100℃(1分保持)→300℃(+10℃/分で昇温、30分保持)
注入口温度:280℃
検出器:水素炎イオン化検出器(FID) 300℃
注入量:1μL(splitless注入)
キャリアガス:ヘリウム(線速度30cm/sec、定流量モード)
検出器:MS
    イオン化法:EI
    イオン化電流:300μA
    イオン化エネルギー:70eV
    イオン化室温度:300℃
    電子加速電圧:10kV
    走査範囲:m/z=35~500(sec/scan)
 この結果を、図12及び図13に示す。図12は、前記ピロリジド化処理物をGC-MS分析に供した際のマススペクトルであり、図13は、前記加水分解ピロリジド化処理物をGC-MS分析に供した際のマススペクトルである。図12及び図13において、縦軸は、検出強度を示し、横軸は、時間(min)を示す。
 図12におけるピーク4及び図13におけるピークDの化合物を、それぞれ、さらに、上記と同様の条件でGC-MS分析に供した。その結果、ピーク4の化合物からは、図14に示すマススペクトルが得られ、ピークDの化合物からは、図15に示すマススペクトルが得られた。図14及び図15において、縦軸は、検出強度を示し、横軸は、m/z値を示す。ここで、式(8)に示すように、ヒドラジンが結合した炭素から数えて、4番目と5番目の炭素間で切断された場合、分子量は140となる。このため、ヒドラジンが結合した炭素から数えて、7番目と8番目の炭素間で切断された場合、二重結合がなければ、m/z=182が検出されるはずだが、この位置に二重結合があるため、m/z=180が検出された。以上より、式(4)の化合物における炭素間二重結合は、カルボニル結合の炭素から数えて7番目と8番目の間に存在すると推定された。
Figure JPOXMLDOC01-appb-C000021
 以上、前記(1-1)及び前記(1-2)の結果をまとめると、前記分解物中には、式(4)~(7)の4種の化合物が含まれることが推定された。また、式(5)及び式(6)の化合物は、前述のとおり、前記分解物を加水分解により分離した物質のみをGC-MS分析したところ、図11においてピークが確認されなかったため、エステル結合を有しない化合物であると推定された。
(2)精製物の分解物の構造分析
 前記(1)で得た分解物の濃度が、30mg/mLとなるように調製したクロロホルム溶液0.1mLから、溶媒を除去し、重DMSO600μLを添加し、5mm試験管に移し、これを試料溶液とした。
HNMR測定及び13CNMR測定>
 前記試料溶液を、下記測定条件でHNMR測定及び13CNMR測定に供した。
(測定条件)
装置:UNITY INOVA 500型(バリアン社製)
観測周波数:499.8MHz(H核)
      125.7MHz(13C核)
溶媒:重DMSO
基準(※):溶媒:H核(2.49ppm)、13C核(39.7ppm)
温度:70℃に設定
測定法:13CNMR、DEPT、NOESY、ROESY、COSY、TOCSY、HSQC、HMBC
※ 70℃での重DMSOでのケミカルシフトの値は、Albaら(Alba S. et al(2004), Glycobiology, vol.14, No.9, p.805-p.815)に記載の値を使用した。
31PNMR測定>
 200μLの85%リン酸が入った3mm試験管を、前記試料溶液の入った前記5mm試験管に挿入した。この際、観測された85%リン酸由来のシグナルを0.000ppmに合わせ、その後、前記3mm試験管を抜き、前記試料溶液を、下記測定条件で31PNMR測定に供した。
(測定条件)
装置:UNITY INOVA 500型(バリアン社製)
観測周波数:499.8MHz(31P核)
溶媒:重DMSO
基準:85%リン酸(外部標準):0.000ppm
温度:25℃に設定
 この結果を、図16~図18に示す。図16A~図16Dは、HNMR測定のスペクトルであり、図17A~図17Dは、13CNMR測定のスペクトルであり、図18は、31PNMR測定のスペクトルである。図16~図18において、縦軸は、検出強度を示し、横軸は、化学シフト値(ppm)を示す。
 図16~図18のスペクトルから、前記分解物は、前記4種の化合物とグルコサミン2分子とを含む式(9)の化合物であると推定された。式(9)において、2分子のグルコサミンに結合している前記4種の化合物は、左から順に、式(7)の化合物、式(5)の化合物、式(4)の化合物、式(7)の化合物及び式(6)の化合物である。なお、式(9)中の数字は、図16のHNMR測定のスペクトルにおけるピークの数字に対応し、式(9)中のアルファベット(大文字)は、図17の13CNMR測定のスペクトルにおけるピークのアルファベット(大文字)に対応し、式(9)中のアルファベット(小文字)は、図18の31PNMR測定のスペクトルにおけるピークのアルファベット(小文字)に対応する。
Figure JPOXMLDOC01-appb-C000022
・・・(9)
(3)精製物の分解物の質量分析
 前記分解物が、式(9)の化合物であることをさらに裏付けるべく、以下の分析を行った。
 前記(1)で得た分解物の濃度が、30mg/mLとなるように調製したクロロホルム溶液を、メタノールにより40000倍希釈した溶液を試料溶液とし、下記条件で、GC-MS分析に供した。
<GC-MS条件>
機器:amaZon ETD (Bruker Daltonics社製)にESI interfaceを装着
測定モード:ESI-IT-MS、Negative mode
 この結果を、図19に示す。図19は、前記試料溶液をGC-MS分析に供した際のマススペクトルである。図19において、縦軸は、検出強度を示し、横軸は、m/z値を示す。図19に示すように、複数のピークが確認されたが、前記分解物の推定化合物である式(9)の化合物の分子量に最も近いピークは、m/z=1417.93のピークである。このため、m/z=1417.93が前記分解物のピークであると判断し、このピークを、さらに、同様の条件で、GC-MS/MS分析に供した。
 この結果を、図20に示す。図20は、図19における、m/z=1417.93のピークの化合物を、GC-MS/MS分析に供した際のマススペクトルである。図20において、縦軸は、検出強度を示し、横軸は、m/z値を示し、かっこ内の数値は、m/z値を示す。
 図20から、つぎのことが推定された。ピーク1の化合物は、前述のとおり、式(9)の化合物であると推定された。ピーク2の化合物は、ピーク1のm/z値(1417)からピーク2のm/z値(1229)を引いた差分値が188であることから、前記分解物から分子量が約188である式(7)の化合物が分離した化合物であると推定された。ピーク3の化合物は、ピーク1のm/z値(1417)からピーク3のm/z値(1194)を引いた差分値が223であることから、前記分解物から分子量が約223である式(4)の化合物が分離した化合物であると推定された。ピーク4の化合物は、ピーク1のm/z値(1417)からピーク4のm/z値(1042)を引いた差分値が375であることから、前記分解物から分子量が約188である式(7)の化合物が2つ分離した化合物であると推定された。このように、式(9)の化合物から式(7)の化合物又は式(4)の化合物が分離した化合物を、ピーク2~4として確認できた。このことから、前記分解物中には、少なくとも、式(7)の化合物及び式(4)の化合物の2つは含まれていることが確認でき、前記(2)において推定した前記分解物の推定構造式(9)をさらに支持する結果が得られた。
(4)精製物の質量分析
 前記精製物を、Leoneら(Serena Leone et al, “ Structural elucidation of the core-lipid A backbone from the lipopolysaccharide of Acinetobacter radioresistens S13, an organic solvent tolerant Gram-negative bacterium”, Carbohydrate Research, April 10, 2006, Vol.341, issue.5, p.582-590)に記載の方法によりヒドラジン分解し、ヒドラジン分解物105.4mgを得た。前記ヒドラジン分解物濃度が、2.1mg/mLとなるように蒸留水に溶解し、メタノールにより200倍希釈した溶液を試料溶液とし、下記条件で、GC-MS分析に供した。
<GC-MS条件>
機器:amaZon ETD (Bruker Daltonics社製)にelectrospray ionization (ESI) interfaceを装着
測定モード:ESI-IT-MS、Negative mode
 この結果を、図21に示す。図21は、前記試料溶液をGC-MS分析に供した際のマススペクトルである。図21において、縦軸は、検出強度を示し、横軸は、m/z値を示し、かっこ中の数値は、検出されるイオンの価数を示す。
 図21に示す複数のピークのうち、最も大きなピーク(m/z=538.15)の化合物を、同様の条件で、GC-MS/MS分析に供し、図22に示すマススペクトルを得た。さらに、図22に示す複数のピークのうち、m/z=474.27のピークの化合物及びm/z=601.17のピークの化合物を、同様の条件で、それぞれさらに、GC-MS/MS/MS分析に供し、図23及び図24に示すマススペクトルを得た。さらに、図24に示す複数のピークのうち、m/z=557.19のピークの化合物及びm/z=645.12のピークの化合物を、同様の条件で、それぞれさらに、GC-MS/MS/MS/MS分析に供し、図25及び図26に示すマススペクトルを得た。図22~図26において、縦軸は、検出強度を示し、横軸は、m/z値を示し、かっこ中の数値は、検出されるイオンの価数を示す。
 図22~図26には、マススペクトルに加えて、各ピークに対応すると推定される化合物の模式図を示した。前記模式図において、Pは、式(10)の構造式を、Hexは、式(11)の構造式を、Kdoは、式(12)の構造式を、HexUは、式(13)の構造式を、HexNは、式(14)の構造式を、Fは、前記(2)で推定した4種の化合物のいずれかを示す。なお、図22~図26において、Hexは、グルコース(Glc)である。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
(5)まとめ
 前記(1)~(4)の結果をまとめると、前記精製物は、式(A)及び式(B)において、X及びXが、それぞれ、ヘキソース及びリン酸基である化合物(式(A1)で表される化合物及び式(B1)で表される化合物)を含むことが特定された。なお、前記(2)においては、式(9)に示すように、β-1,6-ジグルコサミン骨格の1位の炭素には、ヒドロキシル基が結合していると推定された。一方、前記(4)においては、図21の模式図に示すように、β-1,6-ジグルコサミン骨格の1位の炭素には、リン酸基が結合していると推定された。これについては、つぎの理由により、後者のリン酸基が正しい構造であると特定した。すなわち、前記(2)においては、前記精製物に所定の処理を施し、前記分解物を得ているが、この過程で弱酸を用いる際、グルコサミン2分子の内の右側のグルコサミンに結合しているリン酸基が脱落し、-OH基に置き換わる頻度が高いことが一般的に知られているためである。
(6)糖鎖部分のNMR解析
 前記(4)で得たヒドラジン分解物を、4mol/LのKOHで処理し、遊離した糖鎖部分を、ゲルろ過カラムクロマトグラフィー(Bio-Rad社製のBio-gel P4 media Extra fine <45μm(wet):#150-4128)により分画・精製した。図28のグラフに、そのゲルろ過パターンを示す。
 図28におけるFraction No. 14-18をまとめたもの(乾燥重量4.8mg)を、500μLのDO(99.96% D)に溶解し、NMR測定用の試料(以下、「試料A」と言う。)とした。NMR測定は、下記条件で実施した。
(測定条件)
装置:DRX500及びADVANCE600分光器(BrukerBioSpin社製)
プローブ:cryogenic TXI probe、TXI probe及びBBO probe
プローブ温度:25℃
測定法:1D H、1D H-selective TOCSY、H-selective NOESY、H-selective ROSEY、1D 13C、1D 31P、2D H-H DQF-COSY、HOHANA、NOESY、ROESY、H-13C HSQC-TOCSY、H-13C HSQC-NOESY、H-13C HMBC、H-31P HMBC
 まず、各糖残基のアノマー位に由来するシグナル(H1)を同定し、アノマー位のシグナルを拠点として、DQF-COSY、HOHANA、H-13C HSQC-TOCSYスペクトルから残基内のシグナル(グルコース残基及びグルコサミン残基の場合は、H2-H6、グルクロン酸残基の場合は、H2-H5)を同定した。この結果を、図29及び図30に示す。図29は、前記試料AをHNMR測定に供した際のスペクトルであり、図30は、前記試料Aを2D DQF-COSY測定に供した際のスペクトルである。なお、図29及び図30において、Glcは、図22~図26におけるHexに、KDOは、図22~図26におけるKdoに、GlcAは、図22~26におけるHexUに、GlcNは、図22~26におけるHexNに対応し、これ以降において同様である。KDOの場合は、3位のプロトン(H3ax、H3eq)を拠点にして、KDO残基内のシグナル(H4-H8)の帰属を行った。
 糖残基間の結合については、NOESYスペクトル中で観測される糖残基間のNOEシグナル(図31)及びH-13C HMBCスペクトル中で観測される糖残基間の相関シグナルによって同定を行った。図31は、前記試料Aを2D NOESY測定に供した際のスペクトルである。
 各糖残基の結合様式(α/β)については、J(C1,H1)によって、下記のとおり決定した。
J(C1,H1)
GlcN-1 174 Hz (α)
GlcN-2 164 Hz (β)
GlcA   171 Hz (α)
Glc-1  173 Hz (α)
Glc-2  171 Hz (α)
 リン酸基の存在及び結合部位に関しては、1D 31P及びH-13C HMBCにより明らかとした。この結果を、図32に示す。図32は、試料Aを2D H-31P HMBC測定に供した際のスペクトルである。2つのリン酸基のうち、1つは、GlcN-1の1位に、もう1つは、GlcN-2の4位に結合していた。
 以上の結果から、前記試料Aの構造は、図33の模式図に示すものと特定された。この結果から、前記(4)で得たヒドラジン分解物のヒドラジン分解前の化合物は、式(A)及び式(B)において、X及びXが、いずれも水酸基である化合物(式(A2)で表される化合物及び式(B2)で表される化合物)を含むことが特定された。これらの化合物の単糖類の記号を用いた構造式は、下記のとおりである。なお、図33には、イス型配座による糖鎖構造式を示している。
式(A2)で表される化合物
Figure JPOXMLDOC01-appb-M000028
式(B2)で表される化合物
Figure JPOXMLDOC01-appb-M000029
〔実施例3〕
 式(A1)で表される化合物、式(B1)で表される化合物、式(A2)で表される化合物及び式(B2)で表される化合物が、抗炎症効果を有することを確認した。
(1)被験液の調製
 実施例1で得た精製物(式(A1)で表される化合物、式(B1)で表される化合物、式(A2)で表される化合物及び式(B2)で表される化合物の混合物)を、2mg/mLの濃度となるように注射用水に溶解し4℃で保存した溶液を、37℃で5分加熱し、37℃、1分の条件で超音波処理した。前記超音波処理後の前記溶液10μLを、下記の組成の培養液990μLに添加して十分に混合し、前記精製物の濃度が、20000ng/mLの溶液を調製し、これを、前記培養液を用いて段階的に希釈することにより、2000ng/mL、200ng/mL、20ng/mL、2ng/mL及び0.2ng/mLである計6種類の被験液を得た。なお、前記6種類の被験液は、細胞への添加の際に2倍希釈されるため、前記精製物の終濃度は、それぞれ、10000ng/mL、1000ng/mL、100ng/mL、10ng/mL、1ng/mL及び0.1ng/mLとなる。
[培養液の組成]
DMEM培地                      500mL
ウシ胎児血清                      55.5mL
ペニシリン-ストレプトマイシン-グルタミン(100×) 5.6mL
(2)被験液の添加
 ヒトTLR4遺伝子を導入したヒト胎児由来腎臓細胞(InvivoGen社製)に、前記培養液を添加し、前記細胞の濃度が、4×10細胞/mLとなる溶液を調製した。前記溶液を、96ウェル平底プレートに、100μLずつ(すなわち、4×10細胞/100μL/ウェル)となるように播種した。播種後、37℃、5%CO下で24時間培養した後、培養上清を除去し、新たな前記培養液を各ウェルに100μLずつ添加した。つぎに、前記被験液を各ウェルに100μLずつ添加した。前記被験液の添加後、37℃、5%CO下で24時間培養した。
(3)IL-8の濃度の測定
 各ウェルの培養上清を回収し、Human IL-8 ELISA MAX(登録商標) Standard(Biolegend社製)を用い、インターロイキン-8(Interleukin-8:IL-8)の濃度を測定した。
 測定結果を、図3のグラフに示す。図3において、縦軸は、IL-8の濃度を示し、横軸は、被験液の濃度を示す。図3に示すように、被験液の濃度依存的に、IL-8の濃度が上昇した。ここで、IL-8の生産量は、一般的に、TLR4活性化の指標となることが知られており、また、前述のとおり、TLR4の活性化は、抗炎症作用を有するI型インターフェロンの産生を促すことが報告されている。すなわち、IL-8の濃度の上昇は、抗炎症作用の活性化を意味する。このため、これらの結果から、前記精製物(式(A1)で表される化合物、式(B1)で表される化合物、式(A2)で表される化合物及び式(B2)で表される化合物の混合物)が、抗炎症作用を有することが確認された。なお、前記精製物に代えて、式(A1)で表される化合物、式(B1)で表される化合物、式(A2)で表される化合物又は式(B2)で表される化合物を用いても、同等の結果が得られた。
〔実施例4〕
 式(A1)で表される化合物、式(B1)で表される化合物、式(A2)で表される化合物及び式(B2)で表される化合物が、抗炎症効果を有することを確認した。
(1)被験液の調製
 実施例3における「(1)被験液の調製」と同様にして、前記精製物の濃度が、20000ng/mLの溶液を調製し、これを、下記の組成の培養液を用いて段階的に希釈することにより、100ng/mL及び10000ng/mLである計2種類の被験液を得た。なお、前記2種類の被験液は、細胞への添加の際に100倍希釈されるため、前記精製物の終濃度は、それぞれ、1ng/mL及び100ng/mLとなる。
[培養液の組成]
RPMI1640培地                  500mL
非動化ウシ胎児血清                   55.5mL
ペニシリン-ストレプトマイシン-グルタミン(100×) 5.6mL
(2)被験液の添加
 マウスマクロファージ細胞(RAW264.7、ATCC)に、前記培養液を添加し、前記細胞の濃度が、1.067×10細胞/mLとなる溶液を調製した。前記溶液を、6ウェルプレートに、3mLずつ(すなわち、3.2×10細胞/3mL/ウェル)となるように播種した。播種後、37℃、5%CO下で2時間培養した後、前記被験液を各ウェルに30μLずつ添加した。前記被験液の添加後、37℃、5%CO下で24時間培養した。つぎに、前記各ウェルの培養上清を、15mLチューブに回収した。そして、前記各ウェルに、新たな前記培養液1mLを添加し、ウェル全体に行き渡らせた後、前記15mLチューブに回収する作業を2回繰り返した。その後、前記15mLチューブに回収した前記培養液を、1000rpm、3分の条件で遠心分離した後、上清を除去し、さらに、37℃の新たな前記培養液3mLを添加して懸濁し、再度同様の条件で遠心分離した。遠心分離後、上清を除去し、沈殿に、37℃の新たな前記培養液2mLを添加して懸濁した。そして、前記懸濁液を、2mLずつ、新たな前記培養液1mLが予め添加してある状態の各ウェルに添加した。その後、新たな前記培養液30μLを添加した(以下、この工程を、「培養液添加工程」という。)。添加後、37℃、5%CO下で30分培養した後、前記各ウェルの培養上清を、15mLチューブに回収し、1000rpm、3分の条件で遠心分離し、上清をアスピレーターにより除去した。さらに、培養上清を除去した前記6ウェルプレートの各ウェルに、冷却したPBS(Phosphate buffered saline)/Phosphatase Inhibitors液3mLを添加し、ピペッティングにより細胞を剥がし、細胞懸濁液を前記15mLチューブに添加した。前記15mLチューブを、1000rpm、3分の条件で遠心分離し、上清をアスピレーターにより除去した後、前記15mLチューブに冷却した前記PBS/Phosphatase Inhibitors液0.5mLを添加して懸濁することにより、細胞懸濁液を調製した。前記細胞懸濁液から、Nuclear Extract キット(アクティブ モティフ社製)を用いて、核タンパク質を抽出した。
(3)核内NF-κB量の測定
 Trans AM NF-κB p65キット(アクティブ モティフ社製)を用いて吸光度を測定することにより、前記核タンパク質中のNF-κB量を確認した。
 確認結果を、図4のグラフに示す。図4において、縦軸は、吸光度を示し、横軸は、被験液の濃度を示す。図4に示すように、吸光度が、被験液の濃度が高い程、低い値となったことから、前記核タンパク質中のNF-κB量は、被験液の濃度が高い程、少なくなることがわかった。この結果から、前記精製物により、炎症性サイトカインの一種であるNF-κBの産生が抑制される、すなわち、前記精製物(式(A1)で表される化合物、式(B1)で表される化合物、式(A2)で表される化合物及び式(B2)で表される化合物の混合物)が、抗炎症効果を有することが確認された。なお、前記精製物に代えて、式(A1)で表される化合物、式(B1)で表される化合物、式(A2)で表される化合物又は式(B2)で表される化合物を用いても、同等の結果が得られた。
〔実施例5〕
 式(A1)で表される化合物、式(B1)で表される化合物、式(A2)で表される化合物及び式(B2)で表される化合物が、抗炎症効果を有することを確認した。
 本例では、つぎの2点以外は、実施例4と同様にして実験を行い、吸光度を測定することにより、前記核タンパク質中のNF-κB量を確認した。すなわち、本例では、被験液として、前記精製物の濃度が、100ng/mL、10000ng/mL及び1000000ng/mLである3種類の被験液を用いた。なお、前記3種類の被験液は、細胞への添加の際に100倍希釈されるため、前記精製物の終濃度は、それぞれ、1ng/mL、100ng/mL及び10000ng/mLとなる。また、本例では、実施例3における前記培養液添加工程において、前記培養液30μLに代えて、終濃度100ng/mLのグラム陰性菌であるパントエア アグロメランス(Pantoea agglomerans)から精製したLPS(Lipopolysaccharide, Pantoea agglomerans、自然免疫応用技研(株)製、以下、「LPSp」という。)を含む前記培養液30μLを添加した。
 確認結果を、図5のグラフに示す。図5において、縦軸は、吸光度を示し、横軸は、被験液の濃度を示す。図5に示すように、吸光度が、被験液の濃度が高い程、低い値となったことから、前記核タンパク質中のNF-κB量は、被験液の濃度が高い程、少なくなることがわかった。この結果から、前記精製物により、炎症性サイトカインの一種であるNF-κBの産生が抑制される、すなわち、前記精製物(式(A1)で表される化合物、式(B1)で表される化合物、式(A2)で表される化合物及び式(B2)で表される化合物の混合物)が、抗炎症効果を有することが確認された。なお、前記精製物に代えて、式(A1)で表される化合物、式(B1)で表される化合物、式(A2)で表される化合物又は式(B2)で表される化合物を用いても、同等の結果が得られた。
〔実施例6〕
 式(A1)で表される化合物、式(B1)で表される化合物、式(A2)で表される化合物及び式(B2)で表される化合物が、抗炎症効果を有することを確認した。
(1)被験液の調製
 実施例3における「(1)被験液の調製」と同様にして、前記精製物の濃度が、20000ng/mLの溶液を調製し、これを、下記組成の培養液を用いて段階的に希釈することにより、2ng/mL、0.2ng/mL及び0.02ng/mLである計3種類の被験液を得た。なお、前記3種類の被験液は、細胞への添加の際に2倍希釈されるため、前記精製物の終濃度は、それぞれ、1ng/mL、0.1ng/mL及び0.01ng/mLとなる。
[培養液の組成]
RPMI1640培地                 500mL
ウシ胎児血清                     55.5mL
硫酸カナマイシン                   0.11mL
アンピシリンナトリウム                0.134mL
(2)被験液の添加
 マウスマクロファージ細胞(RAW264.7、ATCC)に、前記培養液を添加し、前記細胞の濃度が、4×10細胞/mLとなる溶液を調製した。前記溶液を、96ウェル平底プレートに、100μLずつ(すなわち、4×10細胞/100μL/ウェル)となるように播種した。播種後、37℃、5%CO下で、前記細胞がウェルの底に接着して伸展するまで2時間培養した。つぎに、前記被験液を各ウェルに100μLずつ添加した。前記被験液の添加後、37℃、5%CO下で24時間培養した。培養後、各ウェルの培養上清を除去し、新たに前記培養液150μLを添加し(以下、この工程を、「培養液添加工程」という。)、37℃、5%CO下で24時間培養した。
(3)TNF-α濃度の測定
 培養後、各ウェルの培養上清50μLを回収し、新たな96ウェル平底プレートの各ウェルへと移し、mouse TNF-α測定キット(Biolegend社製)を用いて吸光度を測定し、TNF-α濃度に換算した。
 測定結果を、図6のグラフに示す。図6において、縦軸は、TNF-α濃度を示し、横軸は、被験液の濃度を示す。図6に示すように、TNF-α濃度が、被験液の濃度が高い程、低い値となったことから、TNF-αの産生は、被験液の濃度が高い程、少なくなることがわかった。この結果から、前記精製物により、炎症性サイトカインの一種であるTNF-αの産生が抑制される、すなわち、前記精製物(式(A1)で表される化合物、式(B1)で表される化合物、式(A2)で表される化合物及び式(B2)で表される化合物の混合物)が、抗炎症効果を有することが確認された。なお、前記精製物に代えて、式(A1)で表される化合物、式(B1)で表される化合物、式(A2)で表される化合物又は式(B2)で表される化合物を用いても、同等の結果が得られた。
〔実施例7〕
 式(A1)で表される化合物、式(B1)で表される化合物、式(A2)で表される化合物及び式(B2)で表される化合物が、抗炎症効果を有することを確認した。
 本例では、以下の2点以外は、実施例6と同様にして実験を行い、各ウェルの培養上清50μLを回収し、TNF-α濃度を測定した。すなわち、本例では、被験液として、前記精製物の濃度が、20μg/mL、2μg/mL、200ng/mL、20ng/mL及び2ng/mLである計5種類の被験液を用いた。なお、前記5種類の被験液は、細胞への添加の際に2倍希釈されるため、前記精製物の終濃度は、それぞれ、10μg/mL、1μg/mL、100ng/mL、10ng/mL及び1ng/mLとなる。また、本例では、実施例5における前記培養液添加工程において、前記培養液150μLに代えて、終濃度100ng/mLのLPSpを含む前記培養液150μLを添加した。
 測定結果を、図7のグラフに示す。図7において、縦軸は、TNF-α濃度を示し、横軸は、被験液の濃度を示す。図7に示すように、TNF-α濃度が、被験液の濃度が高い程、低い値となったことから、TNF-αの産生は、被験液の濃度が高い程、少なくなることがわかった。この結果から、前記精製物により、炎症性サイトカインの一種であるTNF-αの産生が抑制される、すなわち、前記精製物(式(A1)で表される化合物、式(B1)で表される化合物、式(A2)で表される化合物及び式(B2)で表される化合物の混合物)が、抗炎症効果を有することが確認された。なお、前記精製物に代えて、式(A1)で表される化合物、式(B1)で表される化合物、式(A2)で表される化合物又は式(B2)で表される化合物を用いても、同等の結果が得られた。
〔実施例8〕
〔実施例8-1〕
 式(A1)で表される化合物、式(B1)で表される化合物、式(A2)で表される化合物及び式(B2)で表される化合物が、抗炎症効果を有することを確認した。
(1)被験液の調製
 実施例3における「(1)被験液の調製」と同様にして、前記精製物の濃度が、20000ng/mLの溶液を調製し、これを、下記組成の培養液を用いて段階的に希釈することにより、400ng/mL、4000ng/mL及び40000ng/mLである計3種類の被験液を得た。なお、前記3種類の被験液は、細胞への添加の際に4倍希釈されるため、前記精製物の終濃度は、それぞれ、100ng/mL、1000ng/mL及び10000ng/mLとなる。
[培養液の組成]
RPMI1640培地                  500mL
非動化ウシ胎児血清                   55.5mL
ペニシリン-ストレプトマイシン-グルタミン(100×) 5.6mL
(2)被験液の添加
 ヒト末梢血単球由来細胞(THP-1、DSファーマバイオメディカル(株)製)に、前記培養液を添加し、前記細胞の濃度が、4×10細胞/mLとなる溶液を調製した。前記溶液を、24ウェルプレートに、500μLずつ(すなわち、2.0×10細胞/500μL/ウェル)となるように播種した。播種後、前記培養液250μL、又は、40μmol/LのGW9662(和光純薬工業(株)製)を含有する前記培養液250μLを、各ウェルに添加した。なお、前記GW9662は、核内受容体の一種であるPPARγ(Peroxisome proliferator-activated receptor γ)の阻害剤である。添加後、37℃、5%CO下で1時間培養した。その後、前記被験液を各ウェルに250μLずつ添加し、37℃、5%CO下で22時間培養した。培養後、各ウェルの培養上清を、2mLチューブに回収した。また、各ウェルに新たな前記培養液0.5mLを添加し、ウェル全体に行き渡らせ、前記2mLチューブに回収した。空になった各ウェルには、新たな前記培養液0.49mLを添加しておいた。前記2mLチューブに回収した前記培養液を、1000rpm、5分の条件で遠心分離し、上清を除去し、さらに、新たな前記培養液1mLを添加して懸濁し、再度同様の条件で遠心分離した。遠心分離後、上清を除去し、各ウェル中の0.49mLの培養液を、前記2mLチューブに添加して懸濁し、各ウェルに再び戻した。そして、各ウェルに、培養液250μL、又は、40μmol/Lの前記GW9662を含有する培養液250μLを添加し、37℃、5%CO下で1時間培養した。培養後、各ウェルに対して、前記LPSpの終濃度が100ng/mLとなるように、LPSpを含む培養液250μLを添加して、37℃、5%CO下で22時間培養した。
(3)IL-8の濃度の測定
 培養後、各ウェルの培養上清をチューブに回収して遠心分離し、上清を1.5mLチューブに回収し、Human IL-6 ELISA MAX Deluxe(Biolegend社)を用いて吸光度を測定し、インターロイキン-6(Interleukin6:IL-6)の濃度を換算した。
 測定結果を、図8のグラフに示す。図8において、縦軸は、IL-6の濃度を示し、横軸は、被験液の濃度を示す。図8に示すように、GW9662-の場合、すなわち、PPARγが阻害されていない時は、IL-6濃度が、被験液の濃度が高い程、低い値となったことから、IL-6の産生は、被験液の濃度が高い程、少なくなることがわかった。これに対して、GW9662+の場合、すなわち、PPARγが阻害されている時も、IL-6濃度が、被験液の濃度が高い程、低い値となったことから、IL-6の産生は、被験液の濃度が高い程、少なくなることがわかったものの、その減少の程度は、PPARγが阻害されていない時ほど顕著ではなかった。この結果から、前記精製物により、炎症性サイトカインの一種であるIL-6の産生が抑制される、すなわち、前記精製物(式(A1)で表される化合物、式(B1)で表される化合物、式(A2)で表される化合物及び式(B2)で表される化合物の混合物)が、抗炎症効果を有することが確認された。また、前記精製物(式(A1)で表される化合物、式(B1)で表される化合物、式(A2)で表される化合物及び式(B2)で表される化合物の混合物)によるIL-6の産生抑制には、PPARγが関与していることが示唆された。なお、前記精製物に代えて、式(A1)で表される化合物、式(B1)で表される化合物、式(A2)で表される化合物又は式(B2)で表される化合物を用いても、同等の結果が得られた。
〔実施例8-2〕
 式(A1)で表される化合物、式(B1)で表される化合物、式(A2)で表される化合物及び式(B2)で表される化合物が、PPARγ遺伝子の発現を促進することを、理化学研究所が開発したCAGE(Cap Analysis of Gene Expression)法により確認した。
 前記THP-1細胞に、実施例8-1(2)と同様の培養液を添加し、前記細胞の濃度が、5×10細胞/mLとなる溶液を調製した。この溶液のPPARγ遺伝子の発現量を、前記CAGE法により測定したところ、3.97TPM(Tags Per Million)であった。前記測定後、この細胞溶液を、つぎの4群に分けた。すなわち、前記細胞溶液に終濃度1μg/mLとなるように前記精製物の溶液を添加した群(実施例8-2A)、前記細胞溶液に終濃度10μg/mLとなるように前記精製物の溶液を添加した群(実施例8-2B)、前記細胞溶液に何も添加しなかった群(比較例8-2A)、及び、前記細胞溶液に100ng/mLとなるようにLPSp溶液を添加した群(比較例8-2B)の計4群である。前記4群を3時間培養後、前記CAGE法によりPPARγ遺伝子の発現量を測定した。この結果を、図27に示す。図27は、PPARγ遺伝子の発現量を示すグラフである。図27において、横軸は、培養時間を示し、縦軸は、PPARγ遺伝子の発現量(TPM)を示す。図27に示すように、実施例8-2Aでは、3時間の間に、PPARγ遺伝子の発現量が3.97TPMから5.86TPMに大幅に増加し、実施例8-2Bでも、3時間の間に、PPARγ遺伝子の発現量が3.97TPMから5.90TPMに大幅に増加した。これに対して、比較例8-2Aでは、3時間の間に、PPARγ遺伝子の発現量が3.97TPMから3.89TPMへと僅かに減少し、比較例8-2Bでは、3時間の間に、PPARγ遺伝子の発現量が3.97TPMから4.31TPMへと増加したものの、増加の程度は顕著ではなかった。この結果から、前記精製物(式(A1)で表される化合物、式(B1)で表される化合物、式(A2)で表される化合物及び式(B2)で表される化合物の混合物)が、PPARγ遺伝子の発現を促進することが確認された。なお、前記精製物に代えて、式(A1)で表される化合物、式(B1)で表される化合物、式(A2)で表される化合物又は式(B2)で表される化合物を用いても、同等の結果が得られた。
〔実施例9〕
 式(A1)で表される化合物、式(B1)で表される化合物、式(A2)で表される化合物及び式(B2)で表される化合物が、肺がんに対する抗がん効果を有することを確認した。
(1)担癌マウスの作製
 ルイス肺がん由来細胞株(Lewis lung carcinoma:3LL、JCRB細胞バンクより入手)の懸濁液を、1匹当たりのがん細胞投与量が2.5×10cells/200μLとなるように、6週齢の雄性C57 BL/6Jマウス5匹の腹側部に皮下投与した。投与から2週間後、前記マウス1匹から腫瘍を摘出し、ディッシュ上でPBS(-)を用いて洗浄した。つぎに、洗浄した前記腫瘍を2mm角程度に細かくきざみ腫瘍断片とし、前記腫瘍断片を50mLチューブに移して、コラゲナーゼ液5mLを添加し、37℃で10分温めた。その後、前記腫瘍断片を含むコラゲナーゼ液をピペッティングすることにより、さらに細かい腫瘍断片とし、前記腫瘍断片を含むコラゲナーゼ液を別の50mLチューブに移し、氷上で冷却した。冷却後、前記腫瘍断片を含むコラゲナーゼ液にさらにコラゲナーゼ液5mLを添加し、同様の操作を、腫瘍断片を観察できなくなるまで5回繰り返した。その後、前記腫瘍断片を含むコラゲナーゼ液をセルストレイナー(メッシュサイズ70μm、BD社製)でろ過し、ろ過液を1200rpm、7分の条件で遠心分離した。遠心分離後、上清を除去し、沈殿に、RPMI1260培地(血清無添加)20mLを添加し、転倒混和による懸濁後、1200rpm、7分の条件で遠心分離した。遠心分離後、上清を除去し、沈殿に、PBS(-)を添加し2回洗浄した後、PBS(-)10mLを添加し懸濁し、がん細胞懸濁液を調製した。前記がん細胞懸濁液を、1匹当たりのがん細胞投与量が2.5×10cells/200μLとなるように、前記マウス12匹の腹側部に皮下投与した。投与から14日後、前記マウス10匹から腫瘍を摘出し、前述と同様の方法で、がん細胞懸濁液を調製した。前記がん細胞懸濁液を、1匹当たりのがん細胞投与量が2.5×10cells/50μLとなるように、前記マウス108匹の腹部皮内に投与した。投与後、各マウスの腫瘍サイズが直径5mm程度になった時点(投与後8日目)で、マウスを下記に示す6群(各群n=6)に分けた。
Figure JPOXMLDOC01-appb-T000030
(2)薬剤の投与
 群分けした後、各群に、前記表5に示す物質を投与した。前記精製物の投与は、実施例9-1及び実施例9-2の腹腔内投与(ip)においては、マウスにおける前記精製物の摂取量が0.5mg/10mL/kgとなるように、群分け直後に1回行い、実施例9-3及び実施例9-4の自由摂取(po)の場合は、前記精製物の濃度が1μg/mLの溶液が入った給水瓶を用いて、群分け直後から開始した。なお、給水瓶は3日ごとに新しいものへと交換した。比較例9-1の生理食塩水の投与は、ipにより、マウスの生理食塩水摂取量が10mL/kgとなるように、群分け直後に1回行った。実施例9-2、実施例9-4及び参考例9-1におけるCY(シクロフォスファミド、肺がんに対する抗がん剤、和光純薬工業(株)製)の投与は、ipにより、マウスのCY摂取量が100mg/10mL/kgとなるように、群分け直後に1回行った。
(3)腫瘍体積の計測
 群分けした日を0日目として、3日目、6日目及び9日目に、ノギスを用いて腫瘍の長径及び短径を測定し、それを基に腫瘍体積を算出した。腫瘍体積の算出は、Shime ら(Shime H, et al, “ Toll-like receptor 3 signaling converts tumor-supporting myeloid cells to tumoricidal effectors”, Proc Natl Acad Sci USA, February 7, 2012, Vol.109, no.6, p.2066-2071)に記載の方法に従い、計算式:長径(mm)×短径(mm)2×0.4=腫瘍体積(mm3)により行った。
 計測結果を、図9のグラフに示す。図9において、縦軸は、腫瘍体積(mm)を示し、横軸は、群分けした日を0日目とした時の、群分け後の経過日数を示す。図9に示すように、前記精製物を投与した実施例9-1及び実施例9-2では、生理食塩水を投与した比較例9-1と比較して、腫瘍体積が小さかった。このことから、前記精製物(式(A1)で表される化合物、式(B1)で表される化合物、式(A2)で表される化合物及び式(B2)で表される化合物の混合物)は、肺がんに対する抗がん効果を有することが確認された。また、前記精製物に加え、CYを投与した実施例9-2及び実施例9-4では、CYのみを投与した参考例9-1と比較して、腫瘍体積が小さかった。このことから、前記精製物(式(A1)で表される化合物、式(B1)で表される化合物、式(A2)で表される化合物及び式(B2)で表される化合物の混合物)は、CYの肺がんに対する抗がん効果を増強する効果を有することが確認された。なお、前記精製物に代えて、式(A1)で表される化合物、式(B1)で表される化合物、式(A2)で表される化合物又は式(B2)で表される化合物を用いても、同等の結果が得られた。
 以上、実施形態及び実施例を参照して本発明を説明したが、本発明は、上記実施形態及び実施例に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をすることができる。
 この出願は、2016年9月23日に出願された日本出願特願2016-186116及び2016年12月8日に出願された日本特許出願2016-238863を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上のように、本発明の化合物又はその塩は、抗炎症剤及び肺がんに対する抗がん剤等として使用可能なものである。本発明の化合物又はその塩は、安全性が高いため、長期にわたり投与できる。

Claims (15)

  1. 式(A)又は式(B)で表されることを特徴とする、化合物又はその塩。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    式(A)及び式(B)において、
    は、ヘキソース又は水酸基であり、
    は、リン酸基又は水酸基である。
  2. 請求項1記載の化合物又はその塩を含むことを特徴とする、抗炎症剤。
  3. 請求項1記載の化合物又はその塩を含むことを特徴とする、肺がんに対する抗がん剤。
  4. ロドバクター・アゾトフォルマンス(Rhodobacter azotoformans)BP0899株(受託番号 NITE BP-644)及びその培養物の少なくとも一方から、式(A)又は式(B)で表される化合物又はその塩を含む粗抽出液を抽出する粗抽出工程と、
    前記粗抽出液から式(A)又は式(B)で表される化合物又はその塩を単離する精製工程と、
    を含むことを特徴とする、式(A)又は式(B)で表される化合物又はその塩の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    式(A)及び式(B)において、
    は、ヘキソース又は水酸基であり、
    は、リン酸基又は水酸基である。
  5. 前記粗抽出工程における抽出処理が、タンパク質を不溶化する有機溶媒による抽出処理である、請求項4記載の製造方法。
  6. 前記有機溶媒が、フェノールである、請求項5記載の製造方法。
  7. 前記粗抽出工程において、前記抽出処理の前に、ロドバクター・アゾトフォルマンス(Rhodobacter azotoformans)BP0899株(受託番号 NITE BP-644)及びその培養物の少なくとも一方について、色素の脱色処理を行う、請求項4から6のいずれか一項に記載の製造方法。
  8. 前記色素の脱色処理が、アセトン、メタノール及びクロロホルムからなる群から選択される少なくとも一つによる脱色処理である、請求項7記載の製造方法。
  9. 前記粗抽出工程において、前記粗抽出液について濾過処理を行う、請求項4から8のいずれか一項に記載の製造方法。
  10. 前記精製工程において、前記粗抽出液について、酵素処理と、タンパク質を不溶化する有機溶媒による抽出処理とを行う、請求項4から9のいずれか一項に記載の製造方法。
  11. 前記酵素処理が、核酸分解酵素及びタンパク質分解酵素の少なくとも一方による酵素処理である、請求項10記載の製造方法。
  12. 前記有機溶媒が、フェノールである、請求項10又は11記載の製造方法。
  13. 前記精製工程において、前記抽出処理後の抽出液について濾過処理を行う、請求項10から12のいずれか一項に記載の製造方法。
  14. 炎症性疾患の治療方法であって、
    請求項1記載の化合物又はその塩を含む抗炎症剤を投与する工程を含むことを特徴とする治療方法。
  15. 肺がんの治療方法であって、
    請求項1記載の化合物又はその塩を含む肺がんに対する抗がん剤を投与する工程を含むことを特徴とする治療方法。
PCT/JP2017/033144 2016-09-23 2017-09-13 化合物又はその塩、抗炎症剤、肺がんに対する抗がん剤、化合物又はその塩の製造方法、炎症性疾患の治療方法及び肺がんの治療方法 WO2018056150A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA3038021A CA3038021A1 (en) 2016-09-23 2017-09-13 Compound or salt thereof, anti-inflammatory agent, anti-cancer agent against lung cancer, method of producing compound or salts thereof, method of treating inflammatory diseases and method of treating lung cancer
CN201780058341.6A CN110121560A (zh) 2016-09-23 2017-09-13 化合物或其盐、抗炎症剂、针对肺癌的抗癌剂、化合物或其盐的制造方法、炎症性疾病的治疗方法及肺癌的治疗方法
JP2018541005A JP6656677B2 (ja) 2016-09-23 2017-09-13 化合物又はその塩、抗炎症剤、肺がんに対する抗がん剤、化合物又はその塩の製造方法、炎症性疾患の治療方法及び肺がんの治療方法
AU2017331889A AU2017331889A1 (en) 2016-09-23 2017-09-13 Compound or salt thereof, anti-inflammatory agent, anti-cancer agent against lung cancer, method of producing compound or salts thereof, method of treating inflammatory diseases and method of treating lung cancer
KR1020197011657A KR20190057354A (ko) 2016-09-23 2017-09-13 화합물 또는 그 염, 항염증제, 폐암에 대한 항암제, 화합물 또는 그 염의 제조 방법, 염증성 질환의 치료 방법 및 폐암의 치료 방법
US16/321,759 US20190177440A1 (en) 2016-09-23 2017-09-13 Compound or salt thereof, anti-inflammatory agent, anti-cancer agent against lung cancer, method of producing compound or salts thereof, method of treating inflammatory diseases and method of treating lung cancer
EP17852927.7A EP3511419A4 (en) 2016-09-23 2017-09-13 COMPOUND OR SALT THEREOF, ANTI-INFLAMMATORY AGENT, ANTI-CANCER AGENT FOR LUNG CANCER, METHOD FOR PRODUCING THE COMPOUND OR SALT THEREOF, METHOD FOR TREATING INFLAMMATORY DISEASE, AND METHOD FOR TREATING LUNG CANCER

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-186116 2016-09-23
JP2016186116 2016-09-23
JP2016-238863 2016-12-08
JP2016238863 2016-12-08

Publications (1)

Publication Number Publication Date
WO2018056150A1 true WO2018056150A1 (ja) 2018-03-29

Family

ID=61690490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033144 WO2018056150A1 (ja) 2016-09-23 2017-09-13 化合物又はその塩、抗炎症剤、肺がんに対する抗がん剤、化合物又はその塩の製造方法、炎症性疾患の治療方法及び肺がんの治療方法

Country Status (8)

Country Link
US (1) US20190177440A1 (ja)
EP (1) EP3511419A4 (ja)
JP (1) JP6656677B2 (ja)
KR (1) KR20190057354A (ja)
CN (1) CN110121560A (ja)
AU (1) AU2017331889A1 (ja)
CA (1) CA3038021A1 (ja)
WO (1) WO2018056150A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181826A1 (ja) * 2018-03-23 2019-09-26 ティーエフケイ株式会社 化合物、腸内細菌叢構成比率調整剤、医薬品、飲食品、食品添加物、腸内細菌叢構成比率の調整方法及び化合物の製造方法
WO2022182261A1 (en) 2021-02-24 2022-09-01 Uniwersytet Jagielloński An artificial trap-cage, its use and method of preparing thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042994A2 (en) * 1999-01-21 2000-07-27 North Shore-Long Island Jewish Research Institute Inhibition of bacterial dissemination
WO2011102035A1 (ja) * 2010-02-16 2011-08-25 ティーエフケイ株式会社 疾患の予防改善剤、持久力向上剤、抗疲労剤、並びにそれらを用いた医薬品および飲食品

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4152576B2 (ja) * 1999-09-30 2008-09-17 昇 金子 抗がん剤
WO2007043635A1 (ja) * 2005-10-07 2007-04-19 Takeda Pharmaceutical Company Limited 癌の予防・治療剤
JP2015117181A (ja) * 2012-02-22 2015-06-25 学校法人 城西大学 敗血症治療剤

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042994A2 (en) * 1999-01-21 2000-07-27 North Shore-Long Island Jewish Research Institute Inhibition of bacterial dissemination
WO2011102035A1 (ja) * 2010-02-16 2011-08-25 ティーエフケイ株式会社 疾患の予防改善剤、持久力向上剤、抗疲労剤、並びにそれらを用いた医薬品および飲食品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PERERA, P. Y. ET AL.: "Lipopolysaccharide and its analog antagonists display differential serum factor dependencies for induction of cytokine genes in murine macrophages", INFECTION AND IMMUNITY, vol. 66, no. 6, 1998, pages 2562 - 2569, XP055479421 *
See also references of EP3511419A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181826A1 (ja) * 2018-03-23 2019-09-26 ティーエフケイ株式会社 化合物、腸内細菌叢構成比率調整剤、医薬品、飲食品、食品添加物、腸内細菌叢構成比率の調整方法及び化合物の製造方法
WO2022182261A1 (en) 2021-02-24 2022-09-01 Uniwersytet Jagielloński An artificial trap-cage, its use and method of preparing thereof

Also Published As

Publication number Publication date
CN110121560A (zh) 2019-08-13
KR20190057354A (ko) 2019-05-28
AU2017331889A1 (en) 2019-04-18
EP3511419A4 (en) 2020-06-24
EP3511419A1 (en) 2019-07-17
CA3038021A1 (en) 2018-03-29
JPWO2018056150A1 (ja) 2019-09-05
JP6656677B2 (ja) 2020-03-04
US20190177440A1 (en) 2019-06-13

Similar Documents

Publication Publication Date Title
WO2011148959A1 (ja) 新規環状ペプチド化合物とその製造方法及び感染症治療薬、抗生物質含有画分、その抗生物質及びその抗生物質の製造方法並びに抗生物質産生微生物及びそれが産生した抗生物質
CN107298672B (zh) 源于草酸青霉的黑麦酮酸i在制备抗人结肠癌药物的应用
JP6656677B2 (ja) 化合物又はその塩、抗炎症剤、肺がんに対する抗がん剤、化合物又はその塩の製造方法、炎症性疾患の治療方法及び肺がんの治療方法
CN112538434A (zh) 海葵共附生真菌sysu-ms5127及其发酵化合物和应用
KR100366258B1 (ko) 신규 kf-1040 물질 및 그 제조법
DE3832362A1 (de) Neue cyclopeptolide, verfahren zu ihrer herstellung und ihre verwendung
CN115851454A (zh) 嗜氮酮类化合物及其制备方法和在制备神经保护药物中的应用
CN113620970B (zh) 混源萜类化合物及其制备方法和在制备降脂降胆固醇药物中应用
WO2019181826A1 (ja) 化合物、腸内細菌叢構成比率調整剤、医薬品、飲食品、食品添加物、腸内細菌叢構成比率の調整方法及び化合物の製造方法
CN108467398A (zh) 一种二酮哌嗪类化合物及其制备和应用
Hyodo et al. Structures of phospholipase A2 inhibitors, ergophilones A and B
KR100397793B1 (ko) 느릅나무로부터 분리된 신규의 미생물 및 그를 이용한항암 면역활성의 세포밖 당화합물의 제조방법
JP5878303B2 (ja) 抗生物質含有画分、その抗生物質及びその抗生物質の製造方法
CN109970698B (zh) 具有抗氧化作用的化合物及其制备方法和用途
W Hawas et al. Fungal biotechnology of the red sea alga Sarggassum subrepandum with potential of anticancer and anti-Hepatitis C Virus protease activities
CN109293494B (zh) 一种红树内生真菌来源的1,4-萘醌类化合物及其制备方法和在制备抗炎药物中的应用
JP4836783B2 (ja) 抗腫瘍剤、抗腫瘍剤の製造方法、抗腫瘍剤を含む医薬組成物、及び抗腫瘍剤産生菌
CN101525578A (zh) 盾叶薯蓣内生真菌螺二萘类化合物的制备及作为杀菌剂的应用
JP2007223902A (ja) 新規イソクロマン化合物とその抗がん剤等への利用
JP3641013B2 (ja) 新規な細胞接着阻害剤マクロスフェライドa及びb並びにそれらの製造法
CN115960068A (zh) 一种具有免疫抑制活性的色酮类化合物及其制备方法和应用
JP3916944B2 (ja) 神経細胞保護物質
KR0130473B1 (ko) 새로운 항생물질, 베나노마이신 a와 b 및 덱실오실베나노마이신 b와 이들의 제조 방법과 용도
JP2000053663A (ja) 新規抗真菌活性物質pf1163a物質およびpf1163b物質、それらの製造法ならびにそれらを有効成分とする抗真菌剤
CN110923279A (zh) 源于草酸青霉的iso-Penicillixanthone A及在结肠癌方面的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852927

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018541005

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3038021

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017852927

Country of ref document: EP

Effective date: 20190408

ENP Entry into the national phase

Ref document number: 2017331889

Country of ref document: AU

Date of ref document: 20170913

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197011657

Country of ref document: KR

Kind code of ref document: A