WO2018056126A1 - 多孔質炭素材料、及びその製造方法、並びに合成反応用触媒 - Google Patents

多孔質炭素材料、及びその製造方法、並びに合成反応用触媒 Download PDF

Info

Publication number
WO2018056126A1
WO2018056126A1 PCT/JP2017/032942 JP2017032942W WO2018056126A1 WO 2018056126 A1 WO2018056126 A1 WO 2018056126A1 JP 2017032942 W JP2017032942 W JP 2017032942W WO 2018056126 A1 WO2018056126 A1 WO 2018056126A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous carbon
carbon material
producing
treatment
catalyst
Prior art date
Application number
PCT/JP2017/032942
Other languages
English (en)
French (fr)
Inventor
丹羽 勝也
芳春 奥田
貞子 黒田
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=61689485&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018056126(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to US16/335,340 priority Critical patent/US11504697B2/en
Priority to KR1020197011091A priority patent/KR102378644B1/ko
Priority to CN201780058526.7A priority patent/CN109790034B/zh
Priority to EP17852903.8A priority patent/EP3517499A4/en
Publication of WO2018056126A1 publication Critical patent/WO2018056126A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/306Active carbon with molecular sieve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/618Surface area more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • C01B32/324Preparation characterised by the starting materials from waste materials, e.g. tyres or spent sulfite pulp liquor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • C01B32/372Coating; Grafting; Microencapsulation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/12Polycyclic non-condensed hydrocarbons
    • C07C15/18Polycyclic non-condensed hydrocarbons containing at least one group with formula
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/08Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a porous carbon material, a method for producing the same, and a catalyst for synthesis reaction.
  • Porous carbon materials represented by activated carbon include plant raw materials (eg, wood pulp, coconut shells, rice husks, etc.), mineral raw materials (eg, coal, tar, petroleum pitch, etc.), and synthetic resins as raw materials.
  • plant raw materials eg, wood pulp, coconut shells, rice husks, etc.
  • mineral raw materials eg, coal, tar, petroleum pitch, etc.
  • synthetic resins as raw materials.
  • the porous carbon material is used not only for such applications but also as a carrier in the catalyst.
  • a heterogeneous catalyst can be obtained by supporting a metal or a metal compound on the porous carbon material.
  • activated carbon carrying a metal or a metal compound is used as a catalyst in the synthesis of vinyl acetate or vinyl chloride.
  • a catalyst carrier that is a porous carbon material for example, as a catalyst carrier for a fuel cell electrode, a charcoal produced by heating activated carbon having a specific surface area of 1,700 m 2 / g or more at 1,600 ° C. to 2,500 ° C.
  • a catalyst carrier made of a material has been proposed (see, for example, Patent Document 1). It has also been proposed to use a catalyst in which a catalytically active component such as platinum or a platinum alloy is supported on the catalyst carrier for an electrode of a fuel cell.
  • an object of the present invention is to provide a porous carbon material useful as a carrier for a catalyst, a method for producing the same, and a catalyst for a synthesis reaction using the porous carbon material.
  • Means for solving the problems are as follows. That is, ⁇ 1> The half-value width (2 ⁇ ) of a diffraction peak (10X) (38 ° to 49 °) by X-ray diffraction is 4.2 ° or less, A mesopore volume (cm 3 / g) as measured by the BJH method, the ratio (meso pore volume / micro pore volume) of micro pore volume (cm 3 / g) as measured by HK method, 1.20 or more Is, It is a porous carbon material characterized by this. ⁇ 2> The porous carbon material according to ⁇ 1>, which is derived from a plant.
  • ⁇ 3> The porous carbon material according to any one of ⁇ 1> to ⁇ 2>, which is derived from rice husk.
  • ⁇ 4> The porous carbon material according to any one of ⁇ 1> to ⁇ 3>, which is a support for a catalyst.
  • ⁇ 5> A method for producing a porous carbon material for producing the porous carbon material according to any one of ⁇ 1> to ⁇ 4>, In the method for producing a porous carbon material, the silicon component is removed from the raw material containing the silicon component by acid treatment or alkali treatment, and then carbonized.
  • ⁇ 6> The method for producing a porous carbon material according to ⁇ 5>, wherein an activation treatment is performed after the carbonization treatment.
  • ⁇ 7> A method for producing a porous carbon material for producing the porous carbon material according to any one of ⁇ 1> to ⁇ 4>, A method for producing a porous carbon material comprising carbonizing a raw material containing a silicon component, removing the silicon component from the obtained carbide by acid treatment or alkali treatment, and then performing activation treatment. .
  • ⁇ 8> The method for producing a porous carbon material according to any one of ⁇ 6> to ⁇ 7>, wherein heat treatment is performed after the activation treatment.
  • ⁇ 9> The method for producing a porous carbon material according to ⁇ 8>, wherein the temperature of the heat treatment is 1,200 ° C. or higher.
  • ⁇ 10> The method for producing a porous carbon material according to any one of ⁇ 5> to ⁇ 9>, wherein the carbonization temperature is 600 ° C. or higher.
  • a synthetic reaction catalyst comprising the porous carbon material according to any one of ⁇ 1> to ⁇ 4>, and a metal or a metal compound supported on the porous carbon material.
  • ⁇ 12> The catalyst for synthesis reaction according to ⁇ 11>, wherein the metal or metal compound is palladium.
  • porous carbon material that can achieve the above-mentioned object and is useful as a catalyst carrier, a method for producing the same, and a catalyst for a synthesis reaction using the porous carbon material. it can.
  • FIG. 1 is a flowchart of an example of a method for producing a porous carbon material.
  • FIG. 2 is a flowchart of another example of a method for producing a porous carbon material.
  • FIG. 3 shows the X-ray diffraction results of Example 2.
  • the porous carbon material of the present invention satisfies the following (1) and (2).
  • (2) and the mesopore volume (cm 3 / g) as measured by the BJH method, the ratio of the micro-pore volume as measured by HK method (cm 3 / g) (mesoporous volume / micro pore volume) is 1 .20 or more.
  • the present inventors have intensively studied to provide a porous carbon material useful as a catalyst support capable of efficiently performing a chemical reaction.
  • the porous carbon material is useful as a catalyst support capable of efficiently performing a chemical reaction (especially a hydroreduction reaction) by satisfying both (1) and (2) above.
  • the present invention has been completed.
  • the inventors of the present invention are useful as a catalyst support capable of efficiently performing a chemical reaction (especially a hydroreduction reaction) when the porous carbon material satisfies both the above (1) and (2).
  • the reason is as follows.
  • the electrical conductivity and pore distribution of a catalyst in which a metal element or the like is supported on a porous carbon material greatly affect the efficiency and reaction yield of a chemical reaction. That is, if the electrical conductivity of the porous carbon material is high, the flow of electrons in the catalyst carrier becomes faster, so that the speed at which the supported metal or metal compound is reused is increased and the reactivity is considered to be improved.
  • the diffraction peak (10X) (38 ° to 49 °) by X-ray diffraction is considered to be a pseudo graphite peak that appears when the carbon density increases.
  • the half width is estimated to represent the specific resistance value of the material. Further, in the porous carbon material, a relatively large mesopore volume (in other words, a relatively small micropore volume) exhibits an effect as a support for a heterogeneous catalyst.
  • catalyst particles such as metals and metal compounds supported on the porous carbon material are generally as small as 5 nm or less, so they enter the micropores, and the metal catalyst particles do not contribute to activity. Therefore, it is considered that a carrier having a relatively large mesopore volume and a relatively small micropore volume is effective as a catalyst. Therefore, by satisfying both of the above (1) and (2), a porous carbon material useful as a catalyst support capable of efficiently performing a chemical reaction (particularly a hydrogen reduction reaction) can be obtained.
  • the full width at half maximum (2 ⁇ ) of the diffraction peak (10X) (38 ° to 49 °) by X-ray diffraction is 4.2 ° or less, and preferably 4.0 ° or less.
  • the said half value width (2 (theta)) is preferably 3.0 degrees or more, and more preferably 3.5 degrees or more. .
  • 10X means a pseudo peak found in the vicinity of the 101 plane in graphite.
  • the X-ray diffraction measurement and half-width measurement can be performed using a known X-ray diffraction apparatus, for example, PHILIPS X'Pert manufactured by PANalytical.
  • Examples of the method of setting the half width (2 ⁇ ) to 4.2 ° or less include a method of heat treating a porous carbon material. The heat treatment will be described later.
  • the porous carbon material has many pores.
  • the pores are classified into mesopores, micropores, and macropores.
  • the mesopore refers to a pore having a pore diameter of 2 nm to 50 nm
  • the micropore refers to a pore having a pore diameter smaller than 2 nm
  • the macropore refers to a pore having a pore diameter larger than 50 nm.
  • a ratio (mesopore volume / micropore volume) of the mesopore volume (cm 3 / g) and the micropore volume (cm 3 / g) is 1.20 or more, 1.30 or more is more preferable.
  • ⁇ Mesopore volume There is no restriction
  • the mesopore volume can be measured using, for example, the following apparatus.
  • Nitrogen adsorption isotherm can be measured using 3Flex manufactured by Micromeritex Japan GK and calculated by BJH method.
  • the BJH method is widely used as a pore distribution analysis method. When pore distribution analysis is performed based on the BJH method, first, desorption isotherms are obtained by adsorbing and desorbing nitrogen as adsorbed molecules on the porous carbon material.
  • the thickness of the adsorption layer when the adsorption molecules are attached and detached in stages from the state where the pores are filled with the adsorption molecules (for example, nitrogen), and the pores generated at that time It obtains an inner diameter (twice the core radius) of calculating the pore radius r p according to the following equation (1) to calculate the pore volume based on the following equation (2).
  • a pore distribution curve can be obtained by plotting the pore volume change rate (dV p / dr p ) against the pore diameter (2r p ) from the pore radius and pore volume (BELSORP-mini manufactured by Nippon Bell Co., Ltd.). And BELSORP analysis software manual, pages 85-88).
  • V pn pore volume when the n-th attachment / detachment of nitrogen occurs
  • dV n amount of change at that time
  • dt n change in the thickness t n of the adsorption layer when the n-th attachment / detachment of nitrogen occurs
  • Amount r kn Core radius at that time c: Fixed value r pn : Pore radius when the nth attachment / detachment of nitrogen occurs.
  • Micropore volume is not particularly limited and may be appropriately selected depending on the purpose, 0.15 cm 3 / g or more 1.00 cm 3 / g or less is preferred, 0.20 cm 3 / g or more 0. more preferably not more than 90cm 3 / g, 0.30cm 3 / g or more 0.80 cm 3 / g or less is particularly preferred. If the micropore volume is too large, it is difficult to achieve the ratio of 1.20 or more.
  • the micropore volume can be measured using, for example, the following apparatus. Nitrogen adsorption isotherm can be measured using 3Flex manufactured by Micromeritex Japan GK and calculated by the HK method.
  • the HK method is an abbreviation of “Horvath-Kawazoe method”.
  • the adsorption energy to the pores is expressed by the distance between the slit wall surface and the adsorbed molecules, so that the adsorption energy can be expressed thermodynamically from the adsorbed molecular weight. That is, the relationship between the distance, that is, the pore diameter and the adsorbed molecular weight is required. Since this method can be applied when the distance between the slits, that is, the pore diameter is sufficiently small, it is used for analyzing the pore distribution of a relatively small diameter of several nm or less. For details of the HK method, see Horvath-Kawazoe, J. et al. Chem. Eng. Jpn. , 16, 470 (1983).
  • the BET specific surface area of the porous carbon material is not particularly limited and may be appropriately selected depending on the intended purpose, it is preferably from 500 meters 2 / g or more 2,000m 2 / g, 700m 2 / g or more 1 800 m 2 / g or less, more preferably 800 m 2 / g or more and 1,500 m 2 / g or less.
  • the raw material of the porous carbon material is preferably a plant-derived material. That is, the porous carbon material is preferably derived from a plant. When it is derived from a plant, it becomes easy to adjust the mesopore volume value and the ratio to the desired values. Moreover, there exists an advantage derived from a plant also at a point with little environmental impact.
  • rice husks such as rice (rice), barley, wheat, rye, rice bran, millet
  • cocoons cocoons and stem wakame
  • vascular plants fern plants, moss plants, algae, and seaweeds that are vegetated on land.
  • these materials may be used independently as a raw material, and multiple types may be mixed and used.
  • shape and form of the plant-derived material are not particularly limited, and may be, for example, rice husk or straw itself, or may be a dried product.
  • what processed various processes can also be used in food-drinks processing, such as beer and western liquor.
  • food-drinks processing such as beer and western liquor.
  • straws and rice husks after processing such as threshing from the viewpoint of recycling industrial waste.
  • These processed straws and rice husks can be easily obtained in large quantities from, for example, agricultural cooperatives, liquor manufacturers, and food companies.
  • porous carbon material is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include adsorbents and catalyst carriers. Among these, the porous carbon material can be suitably used as a carrier for a catalyst.
  • the method for producing the porous carbon material is not particularly limited and may be appropriately selected depending on the intended purpose. However, the method for producing a porous carbon material described later is preferable.
  • the silicon component is removed from the raw material containing the silicon component by acid treatment or alkali treatment, and then carbonized. That is, in the example of the method for producing the porous carbon material, the silicon component removal treatment and the carbonization treatment are included in this order.
  • the silicon component is removed from the obtained carbide by acid treatment or alkali treatment, and then activated. I do. That is, in another example of the method for producing a porous carbon material, carbonization treatment, silicon component removal treatment, and activation treatment are included in this order.
  • the method for producing a porous carbon material of the present invention includes, for example, carbonization treatment, activation treatment, and silicon component removal treatment, preferably includes heat treatment, and further includes other treatment as necessary.
  • the method for producing the porous carbon material is a method for producing the porous carbon material of the present invention.
  • the silicon component removal treatment is not particularly limited as long as it is a treatment for removing the silicon component by acid treatment or alkali treatment from a raw material containing a silicon component or from a carbide containing a silicon component after carbonization treatment. It can select suitably according to the objective, For example, the method etc. which immerse the said raw material or the said carbide
  • the ratio is easily increased in the carbonization treatment and activation treatment.
  • the carbonization treatment is not particularly limited as long as it is a treatment to carbonize (carbonize) the raw material or the raw material subjected to the silicon component removal treatment to obtain a carbide (carbonaceous material), and is appropriately selected according to the purpose. can do.
  • the carbonization (carbonization) generally means that an organic substance (in the present invention, for example, a plant-derived material) is heat treated to be converted into a carbonaceous substance (see, for example, JIS M0104-1984).
  • an atmosphere for carbonization an atmosphere in which oxygen is blocked can be given, and specifically, a vacuum atmosphere and an inert gas atmosphere such as nitrogen gas or argon gas can be given.
  • the upper limit of the carbonization time can be 10 hours, preferably 7 hours, more preferably 5 hours, but is not limited thereto.
  • the lower limit of the carbonization time may be a time during which the raw material is reliably carbonized.
  • the carbonization temperature is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 600 ° C. or higher, more preferably 600 ° C. or higher and 1,000 ° C. or lower.
  • the activation treatment is not particularly limited as long as it is a treatment that activates the carbide, and can be appropriately selected according to the purpose. Examples thereof include a gas activation method and a chemical activation method.
  • activation means developing the pore structure of the carbon material and adding pores.
  • the gas activation method uses oxygen, water vapor, carbon dioxide gas, air, or the like as an activator, and in the gas atmosphere, for example, at 700 ° C. or more and 1,000 ° C. or less for several tens of minutes to several hours.
  • the microstructure is developed by volatile components and carbon molecules in the carbide by heating.
  • the heating temperature may be appropriately selected based on the type of plant-derived material, the type and concentration of gas, and is preferably 850 ° C. or higher and 1,000 ° C. or lower.
  • the chemical activation method is activated with zinc chloride, iron chloride, calcium phosphate, calcium hydroxide, magnesium carbonate, potassium carbonate, sulfuric acid, etc., instead of oxygen and water vapor used in the gas activation method, and washed with hydrochloric acid.
  • the pH is adjusted with an alkaline aqueous solution and dried.
  • time of the said activation process there is no restriction
  • the porous carbon material in order to increase the ratio, it is also effective to lengthen the activation treatment time.
  • the heat treatment is not particularly limited as long as it is a treatment for heating the carbide after the activation treatment, and can be appropriately selected according to the purpose. By this treatment, the carbon density of the carbide can be increased, and the electrical conductivity of the produced porous carbon material can be improved.
  • 1,200 degreeC or more is preferable, 1,200 degreeC or more and 2,800 degrees C or less are preferable, 1,200 degreeC or more 2,700 ° C. or lower is more preferable, and 1200 ° C. or higher and 2,500 ° C. or lower is particularly preferable.
  • the time for the heat treatment is not particularly limited and may be appropriately selected depending on the purpose. It is preferably 1 hour or longer and 24 hours or shorter, and more preferably 5 hours or longer and 15 hours or shorter.
  • the heat treatment is preferably performed in the presence of a reducing gas in order to reduce the load on the furnace.
  • a reducing gas examples include hydrogen gas, carbon monoxide gas, and organic vapor (for example, methane gas).
  • the reducing gas is preferably used together with an inert gas.
  • the inert gas examples include nitrogen gas, helium gas, and argon gas.
  • FIG. 1 is a flowchart of an example of a method for producing a porous carbon material.
  • a plant as a raw material is prepared (S1).
  • the plant contains a silicon component.
  • the raw material is subjected to a silicon component removal treatment using an alkali to remove the silicon component from the raw material (S2).
  • the raw material from which the silicon component has been removed is subjected to carbonization (S3).
  • Carbide is obtained by subjecting to carbonization treatment.
  • the obtained carbide is subjected to an activation process (S4).
  • the activated carbide is subjected to heat treatment (S5).
  • the carbon density of the carbide is increased and the electrical conductivity is improved.
  • a porous carbon material is obtained.
  • FIG. 2 is a flowchart of an example of a method for producing a porous carbon material.
  • a plant as a raw material is prepared (S11).
  • the plant contains a silicon component.
  • the raw material is subjected to carbonization (S12).
  • Carbide is obtained by subjecting to carbonization treatment.
  • the obtained carbide is subjected to a silicon component removal treatment using an alkali to remove the silicon component from the carbide (S13).
  • the carbide from which the silicon component has been removed is subjected to an activation process (S14).
  • the pore structure in the carbide is developed.
  • the activated carbide is subjected to heat treatment (S15). By subjecting it to heat treatment, the carbon density of the carbide is increased and the electrical conductivity is improved.
  • a porous carbon material is obtained.
  • the catalyst for synthesis reaction of the present invention includes the porous carbon material of the present invention and a metal or metal compound supported on the porous carbon material, and further includes other components as necessary.
  • the metal is not particularly limited as long as it is a catalytically active component, and can be appropriately selected according to the purpose.
  • platinum group elements platinum, iridium, osmium, ruthenium, rhodium, palladium
  • rhenium gold
  • Silver and the like.
  • the metal compound is not particularly limited as long as it is a catalytically active component, and can be appropriately selected according to the purpose. Examples thereof include the metal alloy. Among these, as the metal or the metal compound, palladium is preferable from the viewpoint of price and availability.
  • Examples of the method for supporting the metal or the metal compound on the porous carbon material include the following methods. (1) The porous carbon material, which is a catalyst carrier, is dispersed in the porous carbon material, which is a catalyst carrier, and a reducing agent is further added to reduce metal ions in the solution, whereby the porous material, which is a catalyst carrier, is reduced. (2) The catalyst active component is deposited on the catalyst carrier by heating and stirring the solution of the metal as the catalyst active component in which the porous carbon material as the catalyst carrier is dispersed. After that, filtration, washing, drying, etc. are performed as appropriate, and reduction treatment is performed with hydrogen gas, etc.
  • the ratio of the porous carbon material to the metal or the metal compound in the synthesis reaction catalyst is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the method for synthesizing the compound of the present invention includes at least a reduction step, and further includes other steps as necessary.
  • the reduction step is not particularly limited as long as it is a step of reducing a compound using the catalyst for synthesis reaction of the present invention, and can be appropriately selected according to the purpose.
  • the compound is not particularly limited as long as it is a compound having a reducible bond or group, and can be appropriately selected according to the purpose. Examples thereof include a compound having a reducible double bond or triple bond. Can be mentioned.
  • Examples of the reduction include reduction of a double bond to a single bond, reduction of a triple bond to a double bond or a single bond, and the like.
  • Examples of the compound include compounds having an acetylene group (—C ⁇ C—). Examples of the compound having an acetylene group include diphenylacetylene.
  • heating may be performed or the reaction may be performed at room temperature.
  • the compound synthesis method is preferably performed in the presence of a reducing gas.
  • a reducing gas examples include hydrogen gas, carbon monoxide gas, and organic vapor (for example, methane gas).
  • the alkali treatment for removing the silicon component was performed by immersing the rice husk in 90 ° C. of a 5.3 mass% sodium hydroxide aqueous solution for 14 hours.
  • Heat treatment was performed at a predetermined temperature for 10 hours under supply of hydrogen / nitrogen mixed gas (hydrogen 4% by mass with respect to nitrogen) (30 L / min).
  • Examples 1 to 4 The treatment for rice husk was performed in the order of alkali treatment, carbonization treatment, activation treatment, and heat treatment under the conditions shown in Table 1 to obtain a porous carbon material.
  • ⁇ BET specific surface area, micropore volume, mesopore volume> For the measurement of the BET specific surface area, the micropore volume, and the mesopore volume, a multi-analyte high performance specific surface area / pore distribution measuring device 3Flex manufactured by Micromeritics was used.
  • the porous carbon materials produced in Examples 1 to 4 exhibited superior catalytic performance when used as catalysts compared to the porous carbon materials produced in Comparative Examples 1 to 4. That is, when the half width (2 ⁇ ) of (10X) (38 ° to 49 °) by X-ray diffraction is higher than 4.2 °, the mesopore volume / micropore volume ratio is 1.20 or more. The reaction yield of bibenzyl was low (Comparative Examples 2 and 3). Moreover, when the mesopore volume / micropore volume ratio was less than 1.20, the reaction yield of bibenzyl was low (Comparative Examples 1 and 4).
  • the porous carbon material of the present invention can be suitably used as a carrier for a catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

X線回折による回折ピーク(10X)(38°~49°)の半値幅(2θ)が、4.2°以下であり、 BJH法により測定されるメソ孔容積(cm/g)と、HK法により測定されるマイクロ孔容積(cm/g)との比率(メソ孔容積/マイクロ孔容積)が、1.20以上である、 多孔質炭素材料である。

Description

多孔質炭素材料、及びその製造方法、並びに合成反応用触媒
 本発明は、多孔質炭素材料、及びその製造方法、並びに合成反応用触媒に関する。
 活性炭に代表される多孔質炭素材料は、植物性原料(例えば、木材パルプ、ヤシ殻、籾殻等)、鉱物性原料(例えば、石炭、タール、石油ピッチ等)、更には合成樹脂等を原料とした炭素化物を、高温下でガスや薬品で処理して賦活化することにより微細孔が形成されて、得られる。この微細孔は炭素内部に網目状に構成されており、その微細孔が大きい表面積を生じさせることから、前記多孔質炭素材料は吸着能に優れている。そのため、前記多孔質炭素材料は、従来から悪臭の除去、液中の不純物除去、溶剤蒸気の回収、除去などの各種用途に広く使用されている。
 前記多孔質炭素材料は、そのような用途のほか、触媒における担体としても利用されている。前記多孔質炭素材料に金属や金属化合物を担持することで、不均一触媒が得られる。例えば、酢酸ビニルの合成や塩化ビニルの合成に、金属や金属化合物を担持した活性炭が触媒として使用されている。
 多孔質炭素材料である触媒担体に関し、例えば、燃料電池電極の触媒担体として、比表面積が1,700m/g以上の活性炭を1,600℃~2,500℃で加熱して製造された炭素材からなる触媒担体が提案されている(例えば、特許文献1参照)。また、この触媒担体に白金又は白金合金等の触媒活性成分を担持させた触媒を燃料電池の電極に使用することが提案されている。
特開2008-290062号公報
 本発明は、以下の目的を達成することを課題とする。
 即ち、本発明は、触媒用の担体として有用な多孔質炭素材料、及びその製造方法、並びに前記多孔質炭素材料を用いた合成反応用触媒を提供することを目的とする。
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> X線回折による回折ピーク(10X)(38°~49°)の半値幅(2θ)が、4.2°以下であり、
 BJH法により測定されるメソ孔容積(cm/g)と、HK法により測定されるマイクロ孔容積(cm/g)との比率(メソ孔容積/マイクロ孔容積)が、1.20以上である、
ことを特徴とする多孔質炭素材料である。
 <2> 植物由来である、前記<1>に記載の多孔質炭素材料である。
 <3> 籾殻由来である、前記<1>から<2>のいずれかに記載の多孔質炭素材料である。
 <4> 触媒用の担体である前記<1>から<3>のいずれかに記載の多孔質炭素材料である。
 <5> 前記<1>から<4>のいずれかに記載の多孔質炭素材料を製造する多孔質炭素材料の製造方法であって、
 ケイ素成分を含む原材料から、前記ケイ素成分を酸処理又はアルカリ処理により取り除いた後、炭化処理を行うことを特徴とする多孔質炭素材料の製造方法である。
 <6> 前記炭化処理の後に、賦活処理を行う前記<5>に記載の多孔質炭素材料の製造方法である。
 <7> 前記<1>から<4>のいずれかに記載の多孔質炭素材料を製造する多孔質炭素材料の製造方法であって、
 ケイ素成分を含む原材料の炭化処理を行った後に、得られた炭化物から前記ケイ素成分を酸処理又はアルカリ処理により取り除き、次に賦活処理を行うことを特徴とする多孔質炭素材料の製造方法である。
 <8> 前記賦活処理の後に熱処理を行う前記<6>から<7>のいずれかに記載の多孔質炭素材料の製造方法である。
 <9> 前記熱処理の温度が1,200℃以上である前記<8>に記載の多孔質炭素材料の製造方法である。
 <10> 前記炭化処理の温度が600℃以上である前記<5>から<9>のいずれかに記載の多孔質炭素材料の製造方法である。
 <11> 前記<1>から<4>のいずれかに記載の多孔質炭素材料と、前記多孔質炭素材料に担持された金属又は金属化合物とを有することを特徴とする合成反応用触媒である。
 <12> 前記金属又は金属化合物が、パラジウムである前記<11>に記載の合成反応用触媒である。
 本発明によれば、前記目的を達成することができ、触媒用の担体として有用な多孔質炭素材料、及びその製造方法、並びに前記多孔質炭素材料を用いた合成反応用触媒を提供することができる。
図1は、多孔質炭素材料の製造方法の一例のフローチャートである。 図2は、多孔質炭素材料の製造方法の他の一例のフローチャートである。 図3は、実施例2のX線回折結果である。
(多孔質炭素材料)
 本発明の多孔質炭素材料は、以下の(1)及び(2)を満たす。
 (1)X線回折による回折ピーク(10X)(38°~49°)の半値幅(2θ)は、4.2°以下である。
 (2)BJH法により測定されるメソ孔容積(cm/g)と、HK法により測定されるマイクロ孔容積(cm/g)との比率(メソ孔容積/マイクロ孔容積)は、1.20以上である。
 本発明者らは、化学反応を効率的に行うことが可能な触媒の担体として有用な多孔質炭素材料を提供するため鋭意検討を行った。
 その結果、多孔質炭素材料が、上記(1)及び(2)の両方を満たすことにより、化学反応(特に水素化還元反応)を効率的に行うことが可能な触媒の担体として有用であることを見出し、本発明の完成に至った。
 本発明者らは、多孔質炭素材料が、上記(1)及び(2)の両方を満たすことにより、化学反応(特に水素化還元反応)を効率的に行うことが可能な触媒の担体として有用である理由を、以下のように考えている。
 化学反応の効率や反応収率には、金属元素等を多孔質炭素材料に担持した触媒の電気伝導度と細孔分布とが大きく影響する。即ち、多孔質炭素材料の電気伝導度が高いと、触媒担体中の電子の流れが速くなるので、担持した金属や金属化合物が再利用される速度が速くなり、反応性が向上すると考えられる。
 X線回折による回折ピーク(10X)(38°~49°)は、炭素密度が上がった時に現れる疑似黒鉛のピークと考えられる。前記半値幅(2θ)が、4.2°以下であると、電気伝導性が高くなり、触媒担体中の電子の流れが速くなるので、担持した金属や金属化合物が再利用される速度が速くなり、反応性が向上すると考えられる。前記半値幅は、材料の比抵抗値を表していると推測される。
 また、多孔質炭素材料において、相対的にメソ孔容積が大きくなること(言い換えれば、相対的にマイクロ孔容積が小さくなること)は、不均一系触媒の担体として効果を発現する。即ち、多孔質炭素材料に担持される金属や金属化合物等の触媒粒子は、一般的に5nm以下と小さいため、マイクロ孔内に入り込み、その金属触媒粒子は、活性に寄与しないものとなる。そのため、相対的にメソ孔容積を大きくし、相対的にマイクロ孔容積を小さくした担体は、触媒用途として有効であると考えられる。
 そのため、上記(1)及び(2)の両方を満たすことで、化学反応(特に水素化還元反応)を効率的に行うことが可能な触媒の担体として有用な多孔質炭素材料が得られる。
<半値幅>
 前記多孔質炭素材料において、X線回折による回折ピーク(10X)(38°~49°)の半値幅(2θ)は、4.2°以下であり、4.0°以下が好ましい。前記半値幅の上限値としては、特に制限はなく、目的に応じて適宜選択することができるが、前記半値幅(2θ)は、3.0°以上が好ましく、3.5°以上がより好ましい。
 ここで、「10X」とは、黒鉛における101面近傍に見られる疑似ピークを意味する。
 前記X線回折測定、及び半値幅の測定は、公知のX線回折装置により行うことができ、例えば、PANalytical社製のPHILIPS X’Pertにより行うことができる。
 前記半値幅(2θ)を4.2°以下にする方法としては、例えば、多孔質炭素材料を熱処理する方法が挙げられる。熱処理については、後述する。
<孔容積>
 前記多孔質炭素材料は、細孔(ポア)を多く有している。細孔は、メソ孔、マイクロ孔、マクロ孔に分類される。ここで、メソ孔は孔径が2nm~50nmの細孔をいい、マイクロ孔は孔径が2nmよりも小さい細孔をいい、マクロ孔は孔径が50nmよりも大きい細孔をいう。
 前記多孔質炭素材料において、前記メソ孔容積(cm/g)と、前記マイクロ孔容積(cm/g)との比率(メソ孔容積/マイクロ孔容積)は、1.20以上であり、1.30以上がより好ましい。前記比率の上限値としては、特に制限はなく、目的に応じて適宜選択することができるが、前記比率は、5.00以下が好ましく、2.00以下がより好ましい。
<<メソ孔容積>>
 前記メソ孔容積としては、特に制限はなく、目的に応じて適宜選択することができるが、0.20cm/g以上1.50cm/g以下が好ましく、0.30cm/g以上1.30cm/g以下がより好ましく、0.40cm/g以上1.20cm/g以下が特に好ましい。前記メソ孔容積が、0.20cm/g未満であると、前記比率1.20以上を達成しにくい。
 前記メソ孔容積は、例えば、以下の装置を使用して測定することができる。
 マイクロメリテックスジャパン合同会社製の3Flexを使用して、窒素吸着等温線を測定し、BJH法で算出することができる。
 前記BJH法は、細孔分布解析法として広く用いられている方法である。BJH法に基づき細孔分布解析をする場合、先ず、多孔質炭素材料に吸着分子として窒素を吸脱着させることにより、脱着等温線を求める。そして、求められた脱着等温線に基づき、細孔が吸着分子(例えば窒素)によって満たされた状態から吸着分子が段階的に着脱する際の吸着層の厚さ、及び、その際に生じた孔の内径(コア半径の2倍)を求め、下記式(1)に基づき細孔半径rを算出し、下記式(2)に基づき細孔容積を算出する。そして、細孔半径及び細孔容積から細孔径(2r)に対する細孔容積変化率(dV/dr)をプロットすることにより細孔分布曲線が得られる(日本ベル株式会社製BELSORP-mini及びBELSORP解析ソフトウェアのマニュアル、第85頁~第88頁参照)。
 r=t+r                (1)
 Vpn=R・dV-R・dt・c・ΣApj  (2)
 但し、R=rpn /(rkn-1+dt       (3)
 ここで、
 r:細孔半径
 r:細孔半径rの細孔の内壁にその圧力において厚さtの吸着層が吸着した場合のコア半径(内径/2)
 Vpn:窒素の第n回目の着脱が生じたときの細孔容積
 dV:そのときの変化量
 dt:窒素の第n回目の着脱が生じたときの吸着層の厚さtの変化量
 rkn:その時のコア半径
 c:固定値
 rpn:窒素の第n回目の着脱が生じたときの細孔半径
である。また、ΣApjは、j=1からj=n-1までの細孔の壁面の面積の積算値を表す。
<<マイクロ孔容積>>
 前記マイクロ孔容積としては、特に制限はなく、目的に応じて適宜選択することができるが、0.15cm/g以上1.00cm/g以下が好ましく、0.20cm/g以上0.90cm/g以下がより好ましく、0.30cm/g以上0.80cm/g以下が特に好ましい。前記マイクロ孔容積が、大きすぎると、前記比率1.20以上を達成しにくい。
 前記マイクロ孔容積は、例えば、以下の装置を使用して測定することができる。
 マイクロメリテックスジャパン合同会社製の3Flexを使用して、窒素吸着等温線を測定し、HK法で算出することができる。
 前記HK法とは、「Horvath-Kawazoeの方法」の略称である。本法は、細孔をスリット状と仮定の上、細孔への吸着エネルギーをスリット壁面と吸着分子の距離で表わすことにより、吸着エネルギーは吸着分子量から熱力学的にも表わせるため、スリット間の距離すなわち細孔径と吸着分子量の関係が求められるというものである。本法は、スリット間の距離すなわち細孔径が十分小さい場合に適用できるため、数nm以下の比較的小さい径の細孔分布の解析に用いられる。なお、HK法の詳細は、Horvath-Kawazoe ,J. Chem. Eng. Jpn., 16, 470 (1983)にも記載されている。
<BET比表面積>
 前記多孔質炭素材料のBET比表面積としては、特に制限はなく、目的に応じて適宜選択することができるが、500m/g以上2,000m/g以下が好ましく、700m/g以上1,800m/g以下がより好ましく、800m/g以上1,500m/g以下が特に好ましい。
[メソ孔容積、マイクロ孔容積、BET比表面積の具体的な測定方法]
 多孔質炭素材料を30mg用意し、相対圧(P/P0)0.0000001から0.995の範囲を測定する条件に設定した3FLEXを使用して、メソ孔容積、マイクロ孔容積、BET比表面積を測定することができる。
<多孔質炭素材料の原材料>
 前記多孔質炭素材料の原材料は、植物由来の材料であることが好ましい。即ち、前記多孔質炭素材料は、植物由来であることが好ましい。植物由来であると、メソ孔容積値、及び前記比率を上記所望の値に調整することが容易となる。また、環境負荷が少ない点でも、植物由来とする利点がある。
 前記植物由来の材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、米(稲)、大麦、小麦、ライ麦、稗(ヒエ)、粟(アワ)等の籾殻や藁、あるいは、葦、茎ワカメを挙げることができる。更には、例えば、陸上に植生する維管束植物、シダ植物、コケ植物、藻類、海草を挙げることができる。尚、これらの材料を、原料として、単独で用いてもよいし、複数種を混合して用いてもよい。また、植物由来の材料の形状や形態も特に限定はなく、例えば、籾殻や藁そのものでもよいし、あるいは乾燥処理品でもよい。更には、ビールや洋酒等の飲食品加工において、発酵処理、焙煎処理、抽出処理等の種々の処理を施されたものを使用することもできる。特に、産業廃棄物の資源化を図るという観点から、脱穀等の加工後の藁や籾殻を使用することが好ましい。これらの加工後の藁や籾殻は、例えば、農業協同組合や酒類製造会社、食品会社から、大量、且つ、容易に入手することができる。
 前記多孔質炭素材料の用途としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、吸着剤、触媒用の担体などが挙げられる。これらの中でも、前記多孔質炭素材料は、触媒用の担体として好適に用いることができる。
 前記多孔質炭素材料の製造方法としては、特に制限はなく、目的に応じて適宜選択することができるが、後述する多孔質炭素材料の製造方法が好ましい。
(多孔質炭素材料の製造方法)
 本発明の多孔質炭素材料の製造方法の一例では、ケイ素成分を含む原材料から、前記ケイ素成分を酸処理又はアルカリ処理により取り除いた後、炭化処理を行う。即ち、多孔質炭素材料の製造方法の一例では、ケイ素成分除去処理と、炭化処理とをこの順で含む。
 本発明の多孔質炭素材料の製造方法の他の一例では、ケイ素成分を含む原材料の炭化処理を行った後に、得られた炭化物から前記ケイ素成分を酸処理又はアルカリ処理により取り除き、次に賦活処理を行う。即ち、多孔質炭素材料の製造方法の他の一例では、炭化処理と、ケイ素成分除去処理と、賦活処理とをこの順で含む。
 本発明の多孔質炭素材料の製造方法は、例えば、炭化処理と、賦活処理と、ケイ素成分除去処理とを含み、好ましくは熱処理を含み、更に必要に応じて、その他の処理を含む。
 前記多孔質炭素材料の製造方法は、本発明の前記多孔質炭素材料を製造する方法である。
<ケイ素成分除去処理>
 前記ケイ素成分除去処理としては、ケイ素成分を含む原材料から、又は、炭化処理後の、ケイ素成分を含む炭化物から、前記ケイ素成分を酸処理又はアルカリ処理により取り除く処理であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、酸水溶液又はアルカリ水溶液に前記原材料、又は前記炭化物を浸漬する方法などが挙げられる。
 前記ケイ素成分除去処理を経ることにより、炭化処理、賦活処理において、前記比率を高くしやすくなる。
<炭化処理>
 前記炭化処理としては、原材料、又はケイ素成分除去処理が行われた原材料を炭化(炭素化)し、炭化物(炭素質物質)を得る処理であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記炭化(炭素化)とは、一般に、有機物質(本発明においては、例えば、植物由来の材料)を熱処理して炭素質物質に変換することを意味する(例えば、JIS M0104-1984参照)。尚、炭素化のための雰囲気として、酸素を遮断した雰囲気を挙げることができ、具体的には、真空雰囲気、窒素ガスやアルゴンガスといった不活性ガス雰囲気を挙げることができる。炭素化温度に至るまでの昇温速度として、係る雰囲気下、1℃/分以上、好ましくは3℃/分以上、より好ましくは5℃/分以上を挙げることができる。また、炭素化時間の上限として、10時間、好ましくは7時間、より好ましくは5時間を挙げることができるが、これに限定するものではない。炭素化時間の下限は、前記原材料が確実に炭素化される時間とすればよい。
 前記炭化処理の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、600℃以上が好ましく、600℃以上1,000℃以下がより好ましい。
<賦活処理>
 前記賦活処理としては、前記炭化物を賦活する処理であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、ガス賦活法、薬品賦活法などが挙げられる。
 ここで、賦活とは、炭素材料の細孔構造を発達させ、細孔を付加することをいう。
 前記ガス賦活法とは、賦活剤として酸素や水蒸気、炭酸ガス、空気等を用い、係るガス雰囲気下、例えば、700℃以上1,000℃以下にて、数十分~数時間、前記炭化物を加熱することにより、前記炭化物中の揮発成分や炭素分子により微細構造を発達させる方法である。尚、加熱温度は、植物由来の材料の種類、ガスの種類や濃度等に基づき、適宜、選択すればよいが、好ましくは、850℃以上1,000℃以下である。
 前記薬品賦活法とは、ガス賦活法で用いられる酸素や水蒸気の替わりに、塩化亜鉛、塩化鉄、リン酸カルシウム、水酸化カルシウム、炭酸マグネシウム、炭酸カリウム、硫酸等を用いて賦活させ、塩酸で洗浄、アルカリ性水溶液でpHを調整し、乾燥させる方法である。
 前記賦活処理の時間としては、特に制限はなく、目的に応じて適宜選択することができるが、0.5時間以上20時間以下が好ましく、1時間以上10時間以下がより好ましい。
 前記多孔質炭素材料において、前記比率を高くするには、前記賦活処理の時間を長くすることも有効である。
<熱処理>
 前記熱処理としては、前記賦活処理の後の前記炭化物を加熱する処理であれば、特に制限はなく、目的に応じて適宜選択することができる。この処理により、前記炭化物の炭素密度を上げることができ、製造される前記多孔質炭素材料の電気伝導性を向上させることができる。
 前記熱処理の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、1,200℃以上が好ましく、1,200℃以上2,800℃以下が好ましく、1,200℃以上2,700℃以下がより好ましく、1,200℃以上2,500℃以下が特に好ましい。
 前記熱処理の時間としては、特に制限はなく、目的に応じて適宜選択することができるが、1時間以上24時間以下が好ましく、5時間以上15時間以下がより好ましい。
 前記熱処理は、炉への負荷を低減させるために還元性ガス存在下で行われることが好ましい。前記還元性ガスとしては、例えば、水素ガス、一酸化炭素ガス、有機物の蒸気(例えば、メタンガス)などが挙げられる。
 前記還元性ガスは、不活性ガスと共に使用されることが好ましい。前記不活性ガスとしては、例えば、窒素ガス、ヘリウムガス、アルゴンガスなどが挙げられる。
 前記多孔質炭素材料の製造方法の一例を、図1を用いて説明する。
 図1は、多孔質炭素材料の製造方法の一例のフローチャートである。
 まず、原材料としての植物を用意する(S1)。植物にはケイ素成分が含まれている。
 続いて、原材料について、アルカリを用いてケイ素成分除去処理を行い、原材料からケイ素成分を除去する(S2)。
 続いて、ケイ素成分が除去された原材料を炭化処理に供する(S3)。炭化処理に供することにより、炭化物が得られる。
 続いて、得られた炭化物を賦活処理に供する(S4)。賦活処理に供することにより、炭化物中の細孔構造を発達させる。
 続いて、賦活処理後の炭化物を熱処理に供する(S5)。熱処理に供することにより、炭化物の炭素密度を上げ、電気伝導性を向上させる。
 以上により多孔質炭素材料が得られる。
 前記多孔質炭素材料の製造方法の他の一例を、図2を用いて説明する。
 図2は、多孔質炭素材料の製造方法の一例のフローチャートである。
 まず、原材料としての植物を用意する(S11)。植物にはケイ素成分が含まれている。
 続いて、原材料を炭化処理に供する(S12)。炭化処理に供することにより、炭化物が得られる。
 続いて、得られた炭化物について、アルカリを用いてケイ素成分除去処理を行い、炭化物からケイ素成分を除去する(S13)。
 続いて、ケイ素成分が除去された炭化物を賦活処理に供する(S14)。賦活処理に供することにより、炭化物中の細孔構造を発達させる。
 続いて、賦活処理後の炭化物を熱処理に供する(S15)。熱処理に供することにより、炭化物の炭素密度を上げ、電気伝導性を向上させる。
 以上により多孔質炭素材料が得られる。
(合成反応用触媒)
 本発明の合成反応用触媒は、本発明の前記多孔質炭素材料と、前記多孔質炭素材料に担持された金属又は金属化合物とを有し、更に必要に応じて、その他の成分を有する。
 前記金属としては、触媒活性成分であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、白金族元素(白金、イリジウム、オスミウム、ルテニウム、ロジウム、パラジウム)、レニウム、金、銀などが挙げられる。
 前記金属化合物としては、触媒活性成分であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記金属の合金などが挙げられる。
 これらの中でも、前記金属又は前記金属化合物としては、パラジウムが価格及び入手容易性の点で好ましい。
 前記多孔質炭素材料に前記金属又は前記金属化合物を担持させる方法としては、例えば、以下の方法などが挙げられる。
 (1)触媒活性成分である金属の溶液に、触媒担体である前記多孔質炭素材料を分散し、さらに還元剤を加えて、前記溶液中の金属イオンを還元して、触媒担体である前記多孔質炭素材料に金属を析出させる方法
 (2)触媒担体である前記多孔質炭素材料を分散させた、触媒活性成分である金属の溶液を加熱撹拌して、触媒活性成分を触媒担体上に析出させた後に、ろ過、洗浄、乾燥などを適宜行い、水素ガスなどにより還元処理する方法
 前記合成反応用触媒における前記多孔質炭素材料と、前記金属又は前記金属化合物との割合としては、特に制限はなく、目的に応じて適宜選択することができる。
(化合物の合成方法)
 本発明の化合物の合成方法は、還元工程を少なくとも含み、更に必要に応じて、その他の工程を含む。
<還元工程>
 前記還元工程としては、本発明の前記合成反応用触媒を用いて、化合物を還元する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記化合物としては、還元可能な結合又は基を有する化合物であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、還元可能な二重結合又は三重結合を有する化合物などが挙げられる。
 前記還元としては、例えば、二重結合の単結合への還元、三重結合の二重結合又は単結合への還元などが挙げられる。
 前記化合物としては、例えば、アセチレン基(-C≡C-)を有する化合物などが挙げられる。前記アセチレン基を有する化合物としては、例えば、ジフェニルアセチレンなどが挙げられる。
 前記化合物の合成方法において、ジフェニルアセチレンを還元させると、例えば、ビベンジルが得られる。
 前記化合物の合成方法における前記合成反応用触媒の使用量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記化合物100質量部に対して、0.5質量部以上5.0質量部以下が好ましく、1.0質量部以上3.0質量部以下がより好ましい。
 前記化合物の合成方法においては、加熱を行ってもよいし、常温で反応を行ってもよい。
 前記化合物の合成方法は、還元性ガス存在下で行われることが好ましい。前記還元性ガスとしては、例えば、水素ガス、一酸化炭素ガス、有機物の蒸気(例えば、メタンガス)などが挙げられる。
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
<原材料>
 原材料として、宮城県産のもみ殻を使用した。
<アルカリ処理>
 ケイ素成分を除去するためのアルカリ処理(ケイ素成分除去処理)は、もみ殻を水酸化ナトリウム5.3質量%水溶液90℃に14時間浸漬することで行った。
<炭化処理>
 炭化処理は、炭化炉にて、窒素雰囲気下(N=30L/min)、600℃、3時間で行った。
<賦活処理>
 賦活処理は、ロータリーキルンを使用し、窒素バブリング(N=5L/min)条件下、水蒸気により、950℃、所定時間で行った。
<熱処理>
 熱処理は、水素・窒素混合ガス(窒素に対して水素4質量%)供給下(30L/min)、所定温度、10時間で行った。
(比較例1~4)
 もみ殻に対する処理を、表1に示すとおりの条件で、アルカリ処理、炭化処理、及び賦活処理の順で行い、多孔質炭素材料を得た。
(実施例1~4)
 もみ殻に対する処理を、表1に示すとおりの条件で、アルカリ処理、炭化処理、賦活処理、及び熱処理の順で行い、多孔質炭素材料を得た。
 得られた多孔質炭素材料について、以下の評価を行った。結果を表2に示した。
<半値幅>
 X線回折による(10X)(38°~49°)の半値幅(2θ)の測定には、PANalytical社製のPHILIPS X’Pertを用いた。
 ここで、実施例2の多孔質炭素材料のX線回折結果を図3に示す。
<BET比表面積、マイクロ孔容積、メソ孔容積>
 BET比表面積、マイクロ孔容積、及びメソ孔容積の測定には、マイクロメリティックス社製の多検体高性能比表面積・細孔分布測定装置3Flexを用いた。
<触媒性能>
<<パラジウム炭素触媒の製造>
 多孔質炭素材料1gに対して、Pd金属が5質量%になるように調整された塩酸溶液に、多孔質炭素材料を浸漬させた。その後、100℃で2時間減圧乾燥させた。更に、水素含有ガス雰囲気内で、400℃、3時間還元処理を行った。その結果、多孔質炭素材料にパラジウムが担持されたパラジウム炭素触媒を得た。
<<ビベンジルの合成>>
 下記組成を10ml試験管に投入し、水素ガスをバルーン供給しながら、500rpmの回転数で撹拌し1時間水素化反応を行った。
 主生成物は、ビベンジルであり、反応収率は、その生成量をジフェニルアセチレンの投入量から算出した。反応収率は、Agilent 6890N/5975MSDを用いて求めた。
〔組成〕
 ・ジフェニルアセチレン:89.1mg
 ・上記パラジウム炭素触媒:1.6mg
 ・溶媒としての重メタノール:1ml
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1~4で作製した多孔質炭素材料は、比較例1~4で作製した多孔質炭素材料と比較して、触媒とした場合に、優れた触媒性能を示した。
 即ち、X線回折による(10X)(38°~49°)の半値幅(2θ)が、4.2°より高い場合は、メソ孔容積/マイクロ孔容積比率が1.20以上であっても、ビベンジルの反応収率は低い結果となった(比較例2、3)。また、メソ孔容積/マイクロ孔容積比率が1.20未満の場合も、ビベンジルの反応収率は低い結果となった(比較例1、4)。
 一方、X線回折による(10X)(38°~49°)の半値幅(2θ)が、4.2°以下であり、かつメソ孔容積/マイクロ孔容積比率が1.20以上の場合は、ビベンジルの反応収率が80%以上と、良好な結果を示した。
 本発明の多孔質炭素材料は、触媒用の担体等に好適に使用することができる。

Claims (12)

  1.  X線回折による回折ピーク(10X)(38°~49°)の半値幅(2θ)が、4.2°以下であり、
     BJH法により測定されるメソ孔容積(cm/g)と、HK法により測定されるマイクロ孔容積(cm/g)との比率(メソ孔容積/マイクロ孔容積)が、1.20以上である、
    ことを特徴とする多孔質炭素材料。
  2.  植物由来である、請求項1に記載の多孔質炭素材料。
  3.  籾殻由来である、請求項1から2のいずれかに記載の多孔質炭素材料。
  4.  触媒用の担体である請求項1から3のいずれかに記載の多孔質炭素材料。
  5.  請求項1から4のいずれかに記載の多孔質炭素材料を製造する多孔質炭素材料の製造方法であって、
     ケイ素成分を含む原材料から、前記ケイ素成分を酸処理又はアルカリ処理により取り除いた後、炭化処理を行うことを特徴とする多孔質炭素材料の製造方法。
  6.  前記炭化処理の後に、賦活処理を行う請求項5に記載の多孔質炭素材料の製造方法。
  7.  請求項1から4のいずれかに記載の多孔質炭素材料を製造する多孔質炭素材料の製造方法であって、
     ケイ素成分を含む原材料の炭化処理を行った後に、得られた炭化物から前記ケイ素成分を酸処理又はアルカリ処理により取り除き、次に賦活処理を行うことを特徴とする多孔質炭素材料の製造方法。
  8.  前記賦活処理の後に熱処理を行う請求項6から7のいずれかに記載の多孔質炭素材料の製造方法。
  9.  前記熱処理の温度が1,200℃以上である請求項8に記載の多孔質炭素材料の製造方法。
  10.  前記炭化処理の温度が600℃以上である請求項5から9のいずれかに記載の多孔質炭素材料の製造方法。
  11.  請求項1から4のいずれかに記載の多孔質炭素材料と、前記多孔質炭素材料に担持された金属又は金属化合物とを有することを特徴とする合成反応用触媒。
  12.  前記金属又は金属化合物が、パラジウムである請求項11に記載の合成反応用触媒。
PCT/JP2017/032942 2016-09-26 2017-09-12 多孔質炭素材料、及びその製造方法、並びに合成反応用触媒 WO2018056126A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/335,340 US11504697B2 (en) 2016-09-26 2017-09-12 Porous carbon material, method for producing same, and synthesis reaction catalyst
KR1020197011091A KR102378644B1 (ko) 2016-09-26 2017-09-12 다공질 탄소 재료, 및 그 제조 방법, 그리고 합성 반응용 촉매
CN201780058526.7A CN109790034B (zh) 2016-09-26 2017-09-12 多孔质碳材料及其制造方法、以及合成反应用催化剂
EP17852903.8A EP3517499A4 (en) 2016-09-26 2017-09-12 POROUS CARBONACEOUS MATERIAL, PRODUCTION METHOD THEREOF AND SYNTHESIS REACTION CATALYST

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-187106 2016-09-26
JP2016187106A JP6450352B2 (ja) 2016-09-26 2016-09-26 多孔質炭素材料、及びその製造方法、並びに合成反応用触媒

Publications (1)

Publication Number Publication Date
WO2018056126A1 true WO2018056126A1 (ja) 2018-03-29

Family

ID=61689485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032942 WO2018056126A1 (ja) 2016-09-26 2017-09-12 多孔質炭素材料、及びその製造方法、並びに合成反応用触媒

Country Status (7)

Country Link
US (1) US11504697B2 (ja)
EP (1) EP3517499A4 (ja)
JP (1) JP6450352B2 (ja)
KR (1) KR102378644B1 (ja)
CN (1) CN109790034B (ja)
TW (1) TWI745434B (ja)
WO (1) WO2018056126A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112279235A (zh) * 2020-09-25 2021-01-29 湘潭大学 一种金属掺杂的三维框架结构分级多孔生物炭及其制备方法
KR20210032319A (ko) * 2018-07-20 2021-03-24 주식회사 쿠라레 탄소질 재료, 그 제조 방법, 전기 화학 디바이스용 전극 활물질, 전기 화학 디바이스용 전극 및 전기 화학 디바이스

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6646088B2 (ja) * 2018-02-21 2020-02-14 デクセリアルズ株式会社 多孔質炭素材料、及びその製造方法、並びに合成反応用触媒
JP7349836B2 (ja) * 2019-07-11 2023-09-25 デクセリアルズ株式会社 レシチンの水素化反応用の不均一遷移金属触媒及びその製造方法
JP7478163B2 (ja) * 2019-11-01 2024-05-02 株式会社クラレ めっき液精製用吸着フィルター、並びに、それを用いためっき液精製装置及びめっき液精製方法
CN110854395A (zh) * 2019-11-28 2020-02-28 中国科学技术大学 一种氮掺杂多孔生物质碳的制备方法及其应用
CN111068667A (zh) * 2019-12-03 2020-04-28 昆明理工大学 芒草介孔活性炭基钯纳米粒子催化剂的制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10355A (ja) * 1996-06-14 1998-01-06 Hitachi Ltd 水素添加用パラジウム/炭素触媒及びその製造方法
JPH1190223A (ja) * 1997-05-19 1999-04-06 Sud Chem Mt Srl 水素化触媒
JP2008290062A (ja) 2007-04-25 2008-12-04 Kansai Coke & Chem Co Ltd 触媒担体、触媒、触媒担体の製造方法、および触媒の製造方法
WO2014112401A1 (ja) * 2013-01-18 2014-07-24 ソニー株式会社 電極用複合材料及びその製造方法並びに二次電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69102405T2 (de) 1990-12-13 1994-09-29 Mitsubishi Gas Chemical Co Aktivkohlesubstanz, Herstellungsverfahren und Anwendung.
JP2541087B2 (ja) * 1992-10-30 1996-10-09 日本電気株式会社 不揮発性半導体記憶装置のデ―タ消去方法
JP4618308B2 (ja) * 2007-04-04 2011-01-26 ソニー株式会社 多孔質炭素材料及びその製造方法、並びに、吸着剤、マスク、吸着シート及び担持体
JP5471142B2 (ja) 2008-09-29 2014-04-16 ソニー株式会社 多孔質炭素材料複合体及びその製造方法、並びに、吸着剤、化粧料、浄化剤及び光触媒複合材料
JP6324924B2 (ja) * 2010-03-30 2018-05-16 ソニー株式会社 吸着剤の製造方法及び浄化剤の製造方法
JP2011225521A (ja) * 2010-03-30 2011-11-10 Sony Corp 殺菌剤、光触媒複合材料、吸着剤及び浄化剤
JPWO2014167981A1 (ja) * 2013-04-11 2017-02-16 ソニー株式会社 電極及びその製造方法、並びに、二次電池
JP6460448B2 (ja) 2014-02-07 2019-01-30 日産自動車株式会社 多孔質炭素材料およびその製造方法
JP6426582B2 (ja) 2015-10-29 2018-11-21 東洋炭素株式会社 多孔質炭素

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10355A (ja) * 1996-06-14 1998-01-06 Hitachi Ltd 水素添加用パラジウム/炭素触媒及びその製造方法
JPH1190223A (ja) * 1997-05-19 1999-04-06 Sud Chem Mt Srl 水素化触媒
JP2008290062A (ja) 2007-04-25 2008-12-04 Kansai Coke & Chem Co Ltd 触媒担体、触媒、触媒担体の製造方法、および触媒の製造方法
WO2014112401A1 (ja) * 2013-01-18 2014-07-24 ソニー株式会社 電極用複合材料及びその製造方法並びに二次電池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"a manual of BELSORP-mini and BELSORP analysis software", MICROTRACBEL CORP., pages: 85 - 88
HORVATH-KAWAZOE, J., CHEM. ENG. JPN., vol. 16, 1983, pages 470
See also references of EP3517499A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210032319A (ko) * 2018-07-20 2021-03-24 주식회사 쿠라레 탄소질 재료, 그 제조 방법, 전기 화학 디바이스용 전극 활물질, 전기 화학 디바이스용 전극 및 전기 화학 디바이스
KR102639869B1 (ko) 2018-07-20 2024-02-22 주식회사 쿠라레 탄소질 재료, 그 제조 방법, 전기 화학 디바이스용 전극 활물질, 전기 화학 디바이스용 전극 및 전기 화학 디바이스
CN112279235A (zh) * 2020-09-25 2021-01-29 湘潭大学 一种金属掺杂的三维框架结构分级多孔生物炭及其制备方法

Also Published As

Publication number Publication date
CN109790034A (zh) 2019-05-21
EP3517499A4 (en) 2020-05-06
US20190275498A1 (en) 2019-09-12
JP2018052750A (ja) 2018-04-05
TW201815469A (zh) 2018-05-01
EP3517499A1 (en) 2019-07-31
KR102378644B1 (ko) 2022-03-24
US11504697B2 (en) 2022-11-22
TWI745434B (zh) 2021-11-11
CN109790034B (zh) 2022-04-15
KR20190052699A (ko) 2019-05-16
JP6450352B2 (ja) 2019-01-09

Similar Documents

Publication Publication Date Title
JP6450352B2 (ja) 多孔質炭素材料、及びその製造方法、並びに合成反応用触媒
JP6284197B2 (ja) 金属ナノ粒子複合体の製造方法およびその方法により製造された金属ナノ粒子複合体
KR20120085079A (ko) 복합금속 산화물 촉매, 상기 촉매를 구비한 필터 모듈 및 이를 구비한 공기청정기
JP6175552B2 (ja) 多孔質炭素材料、及びその製造方法、並びにフィルター、シート、及び触媒用担体
Truong-Phuoc et al. Silicon carbide foam decorated with carbon nanofibers as catalytic stirrer in liquid-phase hydrogenation reactions
CN1695805A (zh) 用于对苯二甲酸加氢精制的以纳米碳纤维为载体的催化剂
Hosseini et al. Effect of catalyst and substrate on growth characteristics of carbon nanofiber onto honeycomb monolith
Longo et al. Waste biomasses as precursors of catalytic supports in benzaldehyde hydrogenation
Ma et al. Palladium supported on calcium decorated carbon nanotube hybrids for chemoselective hydrogenation of cinnamaldehyde
WO2019163396A1 (ja) 多孔質炭素材料、及びその製造方法、並びに合成反応用触媒
CN111511682B (zh) 活性炭、使用其的担载金属的活性炭、以及氢化反应催化剂
JP6646087B2 (ja) 多孔質炭素材料、及びその製造方法、並びに合成反応用触媒
RU2414961C1 (ru) Сорбент углерод-минеральный и способ его получения
CN107626327A (zh) 一种四氯化碳脱氯催化剂
CN107999139B (zh) 一种提高氯乙烯粗品纯度的无汞催化剂的制备方法
Toebes Carbon nanofibers as catalyst support for noble metals
WO2017126421A1 (ja) 多孔質炭素材料、及びその製造方法、並びにフィルター、シート、及び触媒用担体
Mai et al. Improving Adsorption Performance Of Water Hyacinth-Derived Activated Biochar Via Controlling The Activating Agents And Pyrolysis Temperature
WO2021006027A1 (ja) 触媒及びその製造方法
Kim et al. Pd (Palladium) Supported on the Porous Carbon: Effect of Pore Distribution in Carbon on the Dispersion of Pd
CN116273109A (zh) 一种单原子催化剂的制备方法及其应用
CN113398977A (zh) 以废弃烟头为碳源制备的氮掺杂碳催化剂及其制备方法和应用
CN115672317A (zh) 一种提高Pd(OH)2/C催化剂氢解脱苄活性的方法

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197011091

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017852903

Country of ref document: EP