WO2018052053A1 - 医薬組成物 - Google Patents

医薬組成物 Download PDF

Info

Publication number
WO2018052053A1
WO2018052053A1 PCT/JP2017/033161 JP2017033161W WO2018052053A1 WO 2018052053 A1 WO2018052053 A1 WO 2018052053A1 JP 2017033161 W JP2017033161 W JP 2017033161W WO 2018052053 A1 WO2018052053 A1 WO 2018052053A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
chloro
phenyl
dimethoxyquinolin
therapeutic agent
Prior art date
Application number
PCT/JP2017/033161
Other languages
English (en)
French (fr)
Inventor
博貴 羽生田
幸子 榎園
知幸 中里
拓弥 徳田
紀枝 藤木
Original Assignee
協和発酵キリン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU2017326791A priority Critical patent/AU2017326791B2/en
Priority to EP17850954.3A priority patent/EP3513809B9/en
Priority to MX2019002861A priority patent/MX2019002861A/es
Priority to ES17850954T priority patent/ES2912105T3/es
Priority to BR112019004857A priority patent/BR112019004857A2/pt
Priority to PL17850954T priority patent/PL3513809T3/pl
Priority to DK17850954.3T priority patent/DK3513809T3/da
Priority to LTEPPCT/JP2017/033161T priority patent/LT3513809T/lt
Priority to HRP20220489TT priority patent/HRP20220489T1/hr
Priority to MYPI2019001248A priority patent/MY197845A/en
Priority to KR1020197008652A priority patent/KR102340311B1/ko
Priority to EP22150617.3A priority patent/EP4000634A1/en
Priority to SI201731114T priority patent/SI3513809T1/sl
Priority to EA201990706A priority patent/EA038692B1/ru
Application filed by 協和発酵キリン株式会社 filed Critical 協和発酵キリン株式会社
Priority to CA3036474A priority patent/CA3036474A1/en
Priority to CN201780053073.9A priority patent/CN109641056A/zh
Priority to US16/332,033 priority patent/US10894043B2/en
Priority to JP2017548494A priority patent/JP6328860B1/ja
Priority to RS20220385A priority patent/RS63136B9/sr
Publication of WO2018052053A1 publication Critical patent/WO2018052053A1/ja
Priority to PH12019500423A priority patent/PH12019500423A1/en
Priority to IL265260A priority patent/IL265260B/en
Priority to US17/106,671 priority patent/US11951103B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4709Non-condensed quinolines and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/517Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/14Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/40Cyclodextrins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6949Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
    • A61K47/6951Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes using cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5138Organic macromolecular compounds; Dendrimers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to an ophthalmic disease therapeutic agent and the like. Specifically, the present invention relates to an ophthalmic disease comprising a vascular endothelial growth factor (VEGF) receptor inhibitor or an epidermal growth factor (EGF) receptor inhibitor in the form of nanoparticles. It relates to therapeutic agents.
  • VEGF vascular endothelial growth factor
  • EGF epidermal growth factor
  • Patent Documents 1 to 4 disclose pharmaceutical compositions containing active ingredients in the form of nanoparticles.
  • Patent Documents 5 and 6 disclose pharmaceutical compositions containing an active ingredient in the form of nanoparticles such as an angiogenesis inhibitor.
  • Patent Document 7 discloses (R)-( ⁇ )-2- (4-bromo-2-fluorobenzyl) -1,2,3,4-tetrahydropyrrolo [1,2-a] pyrazine-4-
  • An ophthalmic suspension preparation containing spiro-3′-pyrrolidine-1,2 ′, 3,5′-tetraone (hereinafter referred to as “Compound A”) or a physiologically acceptable salt thereof is disclosed.
  • Compound A is a compound exhibiting an aldose reductase inhibitory action.
  • other suspension preparations of Compound B and Compound C exhibiting an aldose reductase inhibitory action enter the retina. It has been disclosed that only a few have been reached. In other words, the technique disclosed in Patent Document 7 does not indicate that the delivery to the posterior ocular tissue is improved for all compounds by nano-ization.
  • Patent Document 8 proposes an ophthalmic preparation containing a pharmaceutically effective amount of nano-sized particles such as nintedanib and pazopanib.
  • Patent Document 8 does not specifically disclose that the nintedanib, pazopanib or the like has been made into a nano material, and does not disclose any method for making each compound into a nano material.
  • An object of the present invention is to provide an ophthalmic disease therapeutic agent or the like containing a vascular endothelial growth factor (VEGF) receptor inhibitor or an epidermal growth factor (EGF) receptor inhibitor in the form of nanoparticles.
  • VEGF vascular endothelial growth factor
  • EGF epidermal growth factor
  • the present invention is as follows.
  • a therapeutic agent for ophthalmic diseases comprising a vascular endothelial growth factor (VEGF) receptor inhibitor or an epidermal growth factor (EGF) receptor inhibitor in the form of nanoparticles, which retains in the posterior ocular tissue when administered systemically .
  • VEGF vascular endothelial growth factor
  • EGF epidermal growth factor
  • the choroid / sclera half-life of a vascular endothelial growth factor (VEGF) receptor inhibitor or epidermal growth factor (EGF) receptor inhibitor that retains in the posterior eye tissue when administered systemically is 30 hours or more
  • the therapeutic agent for ophthalmic diseases according to (1).
  • a VEGF receptor inhibitor has the formula (I) (Where R 1 and R 2 are the same or different and each represents a C1-C6 alkoxy group, R 3 represents a halogen atom, R 4 and R 5 are the same or different and each represents a hydrogen atom, a halogen atom, a C1-C4 alkyl group, a C1-C4 alkoxy group, a C1-C4 alkylthio group, a trifluoromethyl group, a nitro group or an amino group, R 6 and R 7 are the same or different and each represents a hydrogen atom, a halogen atom, a C1-C4 alkyl group, a C1-C4 alkoxy group, a C1-C4 alkylthio group, a trifluoromethyl group, a nitro group, an amino group, 1 or 2 An amino group substituted with a C1-C4 alkyl group, a C1-C4 alkoxycarbonyl C1
  • the ophthalmic disease therapeutic agent according to any one of (3) to (6), wherein R 4 and R 5 are hydrogen atoms.
  • the VEGF receptor inhibitor has the formula (II) Or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof, (1) or (2).
  • the VEGF receptor inhibitor is a compound selected from the group consisting of axitinib, anlotinib, cabozantinib, gresatinib, sunitinib, nintedanib, fluquitinib, levastinib, lenvatinib, or a pharmaceutically acceptable salt thereof, or a hydrate or solvent thereof.
  • the therapeutic agent for ophthalmic diseases according to (1) or (2), which is a Japanese product.
  • EGF receptor inhibitors are abitinib, alitinib, icotinib, erlotinib, osmeltinib, N- [2-[[2- (dimethylamino) ethyl] methylamino] -5-[[4- (1H-indol-3-yl ) -2-pyrimidinyl] amino] -4-methoxyphenyl] -2-propanamide (AZD-5104), Gefitinib, Dacomitinib, Tesebatinib, Nazartinib, Valritinib, Brigatinib, Podiotinib, Lapatinib, 4-[(3-Chloro-2) -Fluorophenyl) amino] -7-methoxyquinazolin-6-yl (2R) -2,4-dimethylpiperazine-1-carboxylate (AZD-3759), N- (3-chloropheny
  • the therapeutic agent for ophthalmic diseases according to any one of (1) to (10), wherein the average particle size of the VEGF receptor inhibitor or EGF receptor inhibitor is 20 to 180 nm.
  • Thickening agent is carboxyvinyl polymer, carboxymethylcellulose calcium, carboxymethylcellulose sodium, povidone, partially saponified polyvinyl alcohol, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxypropylmethylcellulose phthalate, hydroxyethylcellulose, amorphous cellulose, methylcellulose, silicic acid
  • Surfactant is polyoxyethylene castor oil, polyoxyl 40 stearate, sucrose stearate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan tristearate, polyoxyethylene sorbitan monooleate , Polyoxyethylene sorbitan trioleate, sorbitan monolaurate, L- ⁇ -phosphatidylcholine (PC), 1,2-dipalmitoylphosphatidylcholine (DPPC), oleic acid, natural lecithin, synthetic lecithin, oleyl polyoxyethylene ether, lauryl poly Oxyethylene ether, diethylene glycol dioleate, tetrahydrofurfuryl oleate, ethyl oleate, isopropyl myristate, glyceryl monooleate Ophthalmology according to (12) or (13), which is one or more substances selected from glyceryl monostearate, glyce
  • the dispersion medium is water containing a solute.
  • the solute is selected from sodium chloride, glucose, glycerol, mannitol, sodium dihydrogen phosphate, sodium hydrogen phosphate hydrate, sodium bicarbonate, trishydroxymethylaminomethane, citric acid hydrate, boric acid and borax
  • the preservative is one or more substances selected from benzalkonium chloride, methyl paraoxybenzoate, propyl paraoxybenzoate, chlorobutanol, sodium edetate hydrate, chlorhexidine gluconate and sorbic acid, (18) For ophthalmic diseases.
  • the ophthalmic disease therapeutic agent according to any one of (1) to (20), which is for topical administration to the eye.
  • VEGF vascular endothelial growth factor
  • EGF epidermal growth factor
  • VEGF-related disease is associated with wet age-related macular degeneration, atrophic age-related macular degeneration, choroidal neovascularization, choroidal neovascularization in pathological myopia, retinal vein branch occlusion, macular edema, central retinal vein occlusion Macular edema, diabetic macular edema, proliferative diabetic retinopathy, neovascular glaucoma, retinitis pigmentosa, retinopathy of prematurity, Coats disease, branch retinal vein occlusion, central retinal vein occlusion, cystic macular edema, diabetes Intravitreal hemorrhage due to retinopathy, Eales disease, central serous chorioretinopathy, epiretinal membrane, uveitis, multifocal choroiditis, anterior ischemic optic neuropathy, corneal neovascularization, pterygium, intraocular mel
  • VEGF-related diseases include wet age-related macular degeneration, choroidal neovascularization in pathological myopia, branch retinal vein occlusion, central retinal vein occlusion, macular edema associated with central retinal vein occlusion, diabetic macular edema, proliferative
  • EGF-related diseases include wet age-related macular degeneration, atrophic age-related macular degeneration, choroidal neovascularization, choroidal neovascularization in pathological myopia, macular edema, macular edema associated with central retinal vein occlusion, diabetic macular edema, Proliferative diabetic retinopathy, glaucoma, neovascular glaucoma, eye inflammation, retinoblast, retinal vein branch occlusion, central retinal vein occlusion, retinopathy of prematurity, retinitis pigmentosa, retinal artery occlusion, corneal neovascularization
  • the therapeutic agent for ophthalmic diseases according to (25), which is: pterygium, uveal melanoma, uveitis, epiretinal membrane, subepithelial fibrosis, dry eye or meibomian gland dysfunction.
  • EGF-related diseases include wet age-related macular degeneration, choroidal neovascularization in pathologic myopia, branch retinal vein occlusion, central retinal vein occlusion, macular edema associated with central retinal vein occlusion, diabetic macular edema, proliferative
  • VEGF vascular endothelial growth factor
  • EGF epidermal growth factor
  • the therapeutic agent for ophthalmic diseases according to any one of (1) to (29), comprising a step of grinding a vascular endothelial growth factor (VEGF) receptor inhibitor or an epidermal growth factor (EGF) receptor inhibitor into a nanoparticle form Manufacturing method.
  • VEGF vascular endothelial growth factor
  • EGF epidermal growth factor
  • (32) The method according to (31), wherein in the pulverizing step, one or more components selected from a thickener, a surfactant and a dispersion medium are further added and pulverized.
  • 33) The method according to (31) or (32), wherein in the pulverizing step, one or more components selected from preservatives and inclusion substances are further added and pulverized.
  • VEGF vascular endothelial growth factor
  • EGF epidermal growth factor
  • a therapeutic agent for ophthalmic diseases and the like containing a vascular endothelial growth factor (VEGF) receptor inhibitor or an epidermal growth factor (EGF) receptor inhibitor in the form of nanoparticles can be provided.
  • VEGF vascular endothelial growth factor
  • EGF epidermal growth factor
  • the pharmaceutical composition (nanoparticle composition) of the present invention obtained in Example 19 and Example 24 and the microparticle composition obtained in Comparative Example 3 and Comparative Example 4 were administered to rats by single eye drop (4 The pharmacokinetics were evaluated when ⁇ 12 ⁇ L / eye).
  • the vertical axis represents the concentration II (ng / g) of Compound II in the choroid / sclera, and the horizontal axis represents the example and comparative example numbers.
  • the blood vessel when the pharmaceutical composition (nanoparticle composition) of the present invention obtained in the medium, Example 1 and Example 2 was administered to a rat twice a day from immediately after laser irradiation to 14 days after laser irradiation The newborn inhibitory effect was evaluated.
  • Aflibercept (Eiria (registered trademark) intravitreal injection solution, Bayer Co., Ltd.) was injected intravitreally into the rat eye immediately after laser irradiation, and the angiogenesis inhibitory effect 14 days after administration was evaluated.
  • the vertical axis represents the choroidal neovascularization area (pixel), and the horizontal axis represents the name of the administered substance or the example number.
  • * Indicates a significant difference (p ⁇ 0.05) in Dunnet's test of the administration group of aflibercept, Example 1 and Example 2 relative to the vehicle group. Lasers were applied to the eyes of cynomolgus monkeys to create a laser-induced choroidal neovascularization model.
  • choroidal neovascularization Grade evaluation was performed for each irradiation spot, and the appearance rate of Grade IV4 (clear hyperfluorescence in the first or middle contrast period and late fluorescence leakage other than the damaged area) was calculated.
  • the blood vessel when the vehicle, the pharmaceutical composition of the present invention (nanoparticle composition) prepared according to Example 1 and the solution composition obtained in Comparative Example 2 were instilled into the animal model four times a day for 35 days The newborn inhibitory effect was evaluated.
  • Aflibercept Ilea (registered trademark) intravitreal injection solution, Bayer Co., Ltd.
  • the vertical axis shows the appearance rate of Grade 4 (% of Grade 4 lesion), and the horizontal axis shows the administration period of the drug or the period after administration (for example, -1 is the day before the administration start date, 7 is the 7th day of the administration start Point to the eye).
  • represents the vehicle administration group of Example 1
  • represents the Example 1 administration group
  • represents the Comparative Example 2 administration group
  • represents the Aflibercept administration group.
  • the vertical axis shows the area of new blood vessels in the retina (ratio of new blood vessel area to the total tissue area of the retina,%), and the horizontal axis shows the name of the administered substance or the example number.
  • *** indicates a significant difference (p? 0.001) in the unpaired t-test of the administration group of the pharmaceutical composition (nanoparticle composition) of the present invention prepared according to Example 1 for the vehicle group.
  • a pharmaceutical composition (nanoparticle composition) of the present invention comprising compounds IV to VIII obtained according to Example 101, Example 108 and Example 112, Reference Example 9 and Reference Example 10, and Comparative Example 6, Comparative Example 7,
  • the microparticle composition containing the compounds IV to VIII obtained in Comparative Example 8, Comparative Example 9 and Comparative Example 10 was evaluated for pharmacokinetics when administered to rats in a single eye drop (5 ⁇ L / eye).
  • the vertical axis shows the concentration of compounds IV to VIII (ng / g) in the choroid / sclera divided by the formulation concentration (mg / mL), and the horizontal axis shows the compound number and particle size.
  • the pharmaceutical composition (nanoparticle composition) of the present invention containing Compound IX obtained in Example 145 and the microparticle composition obtained in Comparative Example 16 were administered to rats in a single eye drop (5 ⁇ L / eye (eye )) Was evaluated for pharmacokinetics.
  • the vertical axis shows the concentration ⁇ (ng / g) of Compound IX in the choroid / sclera divided by the formulation concentration (mg / mL), and the horizontal axis shows the compound number and particle size.
  • the pharmaceutical composition (nanoparticle composition) of the present invention containing Compound X obtained in Example 153 and the microparticle composition obtained in Comparative Example 17 were administered to rats in a single eye drop (5 ⁇ L / eye (eye )) Was evaluated for pharmacokinetics.
  • the vertical axis shows the concentration X (ng / g) of Compound X in the choroid / sclera divided by the formulation concentration (mg / mL), and the horizontal axis shows the compound number and particle size.
  • the therapeutic agent for ophthalmic diseases of the present invention is a vascular endothelial growth factor (VEGF) receptor inhibitor or epidermal growth factor (EGF) receptor inhibitor having the property of retaining in the posterior ocular tissue when administered systemically as an active ingredient including.
  • VEGF vascular endothelial growth factor
  • EGF epidermal growth factor
  • VEGF vascular endothelial growth factor
  • VEGF vascular endothelial growth factor
  • a substance can be used and is not particularly limited.
  • an epidermal growth factor (EGF) receptor inhibitor a known substance having an inhibitory activity against the epidermal growth factor (EGF) receptor and retaining in the posterior ocular tissue when systemically administered is used. It can be used and is not particularly limited.
  • the therapeutic agent for ophthalmic diseases may contain one type of vascular endothelial growth factor (VEGF) receptor inhibitor, or may contain two or more types of vascular endothelial growth factor (VEGF) receptor inhibitors.
  • VEGF vascular endothelial growth factor
  • the therapeutic agent for ophthalmic diseases may contain one type of epidermal growth factor (EGF) receptor inhibitor, or may contain two or more types of epidermal growth factor (EGF) receptor inhibitors.
  • EGF epidermal growth factor
  • the therapeutic agent for ophthalmic diseases may contain one or more vascular endothelial growth factor (VEGF) receptor inhibitors and one or more epidermal growth factor (EGF) receptor inhibitors.
  • VEGF vascular endothelial growth factor
  • EGF epidermal growth factor
  • VEGF vascular endothelial growth factor
  • EGF epidermal growth factor
  • the “posterior ocular tissue” refers to the choroid, retina, sclera, and optic nerve, preferably the choroid / sclera and retina, and more preferably the choroid / sclera.
  • VEGF vascular endothelial growth factor
  • EGF epidermal growth factor
  • the action based on the action mechanism of the compound is maintained for a longer period of time, and finally the pharmacological action (inhibition of angiogenesis, suppression of increased vascular permeability) Pharmacological action based on the phosphorylation inhibitory action of other VEGF receptors or EGF receptors).
  • a compound that stays in the posterior segment tissue accumulates in the tissue by continuous (repetitive) administration, and exposure in the tissue increases, compared to a compound that does not stay. As a result of these actions, the pharmacological action of the compound in the posterior eye tissue is more strongly expressed.
  • the method for systemic administration is not particularly limited, and oral administration, intravenous administration, intramuscular injection / subcutaneous injection, sublingual administration, nasal administration, eye drop administration, inhalation administration, and transdermal administration are possible.
  • Preferred are oral administration, intravenous administration, intramuscular injection / subcutaneous injection, and eye drop administration, and more preferred are oral administration and intravenous administration.
  • the subject of systemic administration is not particularly limited as long as it is a mammal, but humans, monkeys (for example, cynomolgus monkeys), rabbits (for example, Kbl: Dutch), mice (for example, 129SVE), rats (for example, Brown Norway) are preferable, Humans, monkeys and rats are more preferred.
  • VEGF vascular endothelial growth factor
  • EGF epidermal growth factor
  • DMA dimethylacetamide
  • polysorbate 80 Dilute with physiological saline containing Tween80
  • This intravenously administered solution is administered to Brown Norway rats, blood is collected at regular intervals, for example, 24, 72 and 168 hours after administration, and euthanized, and the eyeball is removed, from which the choroid / sclera, retina, optic nerve, etc. Collect the posterior eye tissue.
  • an aqueous solution containing a certain amount of an organic solvent for example, 50 vol% methanol solution
  • an organic solvent for example, 50 vol% methanol solution
  • Vascular endothelial growth factor (VEGF) receptor inhibitors that can be used as therapeutic agents for ophthalmic diseases in the form of nanoparticles include compounds represented by formula (I) or formula (II), formula (I) or formula (II) A pharmaceutically acceptable salt of a compound represented by formula (I) or a hydrate of a compound represented by formula (II), a solvent for a compound represented by formula (I) or formula (II) A hydrate of a pharmaceutically acceptable salt of a compound represented by formula (I) or formula (II), or a pharmaceutically acceptable compound represented by formula (I) or formula (II) Solvates of possible salts are mentioned.
  • Vascular endothelial growth factor (VEGF) receptor inhibitors that can be used as therapeutic agents for ophthalmic diseases in the form of nanoparticles include axitinib, cabozantinib, regorafenib, ponatinib, lenvatinib, sunitinib, sorafenib, pazopanib, vandetanib, nintedanib, ginsenoside Rg3 Jilin Yatai Pharmaceuticals), apatinib, anlotinib, fluquintinib, famitinib, sulfatinib, muparfostat (Medigen Biotechnology), levastinib, gresatinib, X-82 (TyrogeneX), ODM-203 (Orion), PAN-90806 (PanOptib) 115 (Taiho Pharmaceutical), ENMD-2076 (CASI Pharmaceuticals), albendazole, fenretinide, AN
  • VEGF vascular endothelial growth factor
  • VEGF receptor inhibitors that have the property of retaining in the posterior ocular tissue when administered systemically include axitinib, anlotinib, cabozantinib, gresatinib, sunitinib, nintedanib, flucitinib, levastinib, lenvatinib, and pharmaceutically acceptable salts thereof Or a hydrate or solvate thereof.
  • Epidermal growth factor (EGF) receptor inhibitors that can be used as therapeutic agents for ophthalmic diseases in the form of nanoparticles include osmeltinib, erlotinib, lapatinib, icotinib, gefitinib, afatinib, ormutinib, AZD-3759 (AstraZeneca), alitinib, and sartinib , Tesebatinib, podiotinib, dacomitinib, vallitinib, abitinib, S-222611 (Shionogi), brigatinib, AP-32788 (ARIAD Pharmaceuticals), neratinib, nacuotinib, azirafenib, PF-06747775 (Pfizer), LB-10 , NRC-2694-A (Natco Pharma), Epitinib, Hemay-020 (Tianjin Hemay Bio-Tech
  • epidermal growth factor (EGF) receptor inhibitors having the property of retaining in the posterior ocular tissue when administered systemically include abitinib, alitinib, icotinib, erlotinib, osmeltinib, N- [2-[[ 2- (Dimethylamino) ethyl] methylamino] -5-[[4- (1H-indol-3-yl) -2-pyrimidinyl] amino] -4-methoxyphenyl] -2-propanamide (AZD-5104) , Gefitinib, Dacomitinib, Tesebatinib, Nazartinib, Vallitinib, Brigatinib, Podiotinib, Lapatinib, 4-[(3-Chloro-2-fluorophenyl) amino] -7-methoxyquinazolin-6-yl (2R) -2,4-dimethyl Piperazine-1
  • VEGF vascular endothelial growth factor
  • R 1 and R 2 are the same or different and each represents a C1-C6 alkoxy group
  • R 3 represents a halogen atom
  • R 4 and R 5 are the same or different and each represents a hydrogen atom, a halogen atom, a C1-C4 alkyl group, a C1-C4 alkoxy group, a C1-C4 alkylthio group, a trifluoromethyl group, a nitro group or an amino group
  • R 6 and R 7 are the same or different and each represents a hydrogen atom, a halogen atom, a C1-C4 alkyl group, a C1-C4 alkoxy group, a C1-C4 alkylthio group, a trifluoromethyl group, a nitro group, an amino group, 1 or 2
  • Vascular endothelial growth factor (VEGF) receptor inhibitors include compounds represented by formula (I), pharmaceutically acceptable salts of compounds represented by formula (I), represented by formula (I) Compound hydrate, solvate of compound represented by formula (I), hydrate of pharmaceutically acceptable salt of compound represented by formula (I), or represented by formula (I) Or a solvate of a pharmaceutically acceptable salt of the compound.
  • R 1 and R 2 in the formula (I) are the same or different and each represents a C1-C6 alkoxy group, preferably a methoxy group.
  • R 3 in formula (I) represents a halogen atom and is preferably a chlorine atom.
  • R 4 and R 5 in formula (I) are the same or different and each represents a hydrogen atom, a halogen atom, a C1-C4 alkyl group, a C1-C4 alkoxy group, a C1-C4 alkylthio group, a trifluoromethyl group, a nitro group or
  • An amino group which is the same or different, is preferably a hydrogen atom or a halogen atom, more preferably a hydrogen atom or a halogen atom, and still more preferably a hydrogen atom.
  • R 6 and R 7 in formula (I) are the same or different and each represents a hydrogen atom, a halogen atom, a C1-C4 alkyl group, a C1-C4 alkoxy group, a C1-C4 alkylthio group, a trifluoromethyl group, a nitro group
  • R 4 and R 5 are the same or different and are a hydrogen atom or a halogen atom
  • R 6 and R 7 are the same or different and are a hydrogen atom
  • R 3 is a chlorine atom
  • R 4 and R 5 are the same or different, are a hydrogen atom or a halogen atom
  • R 6 and R 7 are The same or different, more preferably a hydrogen atom, a halogen atom or a C1-C4 alkyl group
  • R 3 is a chlorine atom
  • R 4 and R 5 are hydrogen atoms
  • R 6 is a C1-C4 alkyl group.
  • R 7 is more preferably a hydrogen atom.
  • Vascular endothelial growth factor (VEGF) receptor inhibitors include those of formula (II) Or a pharmaceutically acceptable salt thereof, or a hydrate or solvate thereof.
  • the compound represented by the formula (I) and the compound represented by the formula (II) in the present invention can be produced by the method disclosed in Japanese Patent Application Laid-Open No. 2003-12668 or a method based thereon.
  • VEGF vascular endothelial growth factor
  • the vascular endothelial growth factor (VEGF) receptor inhibitor in the present invention can be produced by a conventionally known method or a method analogous thereto.
  • VEGF vascular endothelial growth factor
  • the epidermal growth factor (EGF) receptor inhibitor in the present invention can be produced by a conventionally known method or a method analogous thereto.
  • vascular endothelial growth factor (VEGF) receptor inhibitor or epidermal growth factor (EGF) receptor inhibitor used in the present invention is a pharmaceutically acceptable salt, for example, hydrochloride, hydrogen fluoride Acid, hydrobromide, hydroiodide and other hydrohalides, sulfate, phosphate, nitrate, perchlorate and other inorganic acid salts, acetate, citrate, fumaric acid Organic acid salts such as salt, succinate, tartrate, oxalate, maleate, malate, lactate, ascorbate, etc., lower such as mesylate, trifluoromethanesulfonate, ethanesulfonate Alkyl sulfonate, benzene sulfonate, aryl sulfonate such as tosylate, etc., amino acid salts such as glycinate, phenylalanate, glutamate, aspartate, sodium salts, potassium salts, etc.
  • the compound represented by the formula (I) or a pharmaceutically acceptable salt thereof includes any of its internal salts, adducts, solvates, hydrates, and the like.
  • the vascular endothelial growth factor (VEGF) receptor inhibitor or epidermal growth factor (EGF) receptor inhibitor used in the present invention is a compound (free or free) or a pharmaceutically acceptable salt thereof, or a It may be a hydrate or a solvate.
  • the hydrate of the compound or pharmaceutically acceptable salt the number of water to be hydrated is not particularly limited, and may be monohydrate, dihydrate or trihydrate.
  • the number of solvents to be solvated is not particularly limited, and may be a monosolvate, a disolvate, or a trisolvate.
  • the solvating solvent include alcohols such as methanol and ethanol.
  • Solvates of the compound or pharmaceutically acceptable salt include alcohol solvates such as methanol solvates and ethanol solvates.
  • the vascular endothelial growth factor (VEGF) receptor inhibitor is a hydrochloride of a compound represented by formula (II) or a hydrate of a hydrochloride of a compound represented by formula (II) It is more preferable.
  • the ophthalmic disease therapeutic agent of the present invention contains a vascular endothelial growth factor (VEGF) receptor inhibitor or an epidermal growth factor (EGF) receptor inhibitor in the form of nanoparticles, but the blood vessel is in a form other than the form of nanoparticles.
  • VEGF vascular endothelial growth factor
  • EGF epidermal growth factor
  • Examples of forms other than nanoparticle forms include microparticle forms.
  • the content of the vascular endothelial growth factor (VEGF) receptor inhibitor or the epidermal growth factor (EGF) receptor inhibitor in a form other than the nanoparticulate form is the blood vessel in the nanoparticulate form.
  • VEGF endothelial growth factor
  • EGF epidermal growth factor
  • 60% to 100% by mass of the total amount of vascular endothelial growth factor (VEGF) receptor inhibitor or epidermal growth factor (EGF) receptor inhibitor is preferably in the form of nanoparticles, 70% to 100% by mass Is more preferably in the form of nanoparticles, more preferably 80% by mass to 100% by mass in the form of nanoparticles.
  • the nanoparticle form means that the substance has a nanometer order particle form, and generally means a particle form having an average particle diameter of 10 to 1000 nm.
  • the vascular endothelial growth factor (VEGF) receptor inhibitor or epidermal growth factor (EGF) receptor inhibitor in the form of nanoparticles contained in the ophthalmic disease therapeutic agent of the present invention is preferably prepared by grinding or crystallization .
  • the vascular endothelial growth factor (VEGF) receptor inhibitor or the epidermal growth factor (EGF) receptor inhibitor in the form of nanoparticles included in the therapeutic agent for ophthalmic diseases of the present invention has an average particle diameter of 400 nm or less. Although not limited, it is preferably 10 to 400 nm, more preferably 10 to 300 nm, still more preferably 10 to 200 nm, still more preferably 20 to 180 nm or less, and 30 to 150 nm or less. More preferably, it is more preferably 50 to 130 nm or less.
  • the method for measuring the average particle size of the vascular endothelial growth factor (VEGF) receptor inhibitor or epidermal growth factor (EGF) receptor inhibitor in the present invention is not particularly limited.
  • the average particle diameter can be measured, for example, using a dynamic light scattering method and measuring conditions of a scattering angle of 173 ° and a wavelength of 633 nm.
  • the method for measuring the median diameter (D50) of a vascular endothelial growth factor (VEGF) receptor inhibitor or epidermal growth factor (EGF) receptor inhibitor in the present invention is not particularly limited.
  • it can be measured with a laser diffraction / scattering type particle size distribution measuring device with a measurement condition of 2 mV He-Ne laser (wavelength 632.8 nm) and a focal length of 100 nm.
  • the content of the vascular endothelial growth factor (VEGF) receptor inhibitor or the epidermal growth factor (EGF) receptor inhibitor is not particularly limited, but for example, 0.01% with respect to 100 parts by weight of the ophthalmic disease therapeutic agent. It is preferably ⁇ 20 parts by weight, more preferably 0.01 to 15 parts by weight, and even more preferably 0.01 to 10 parts by weight.
  • the ophthalmic disease therapeutic agent of the present invention is selected from a thickener, a surfactant and a dispersion medium in addition to a vascular endothelial growth factor (VEGF) receptor inhibitor or an epidermal growth factor (EGF) receptor inhibitor 1
  • VEGF vascular endothelial growth factor
  • EGF epidermal growth factor
  • the above components, or one or more components selected from preservatives and clathrates may be further included.
  • the ophthalmic disease therapeutic agent of the present invention is selected from a thickener, a surfactant and a dispersion medium in addition to a vascular endothelial growth factor (VEGF) receptor inhibitor or an epidermal growth factor (EGF) receptor inhibitor 1
  • VEGF vascular endothelial growth factor
  • EGF epidermal growth factor
  • Examples of the thickening agent used in the ophthalmic disease therapeutic agent of the present invention include, for example, carboxyvinyl polymer, carboxymethylcellulose calcium, sodium carboxymethylcellulose, povidone (polyvinylpyrrolidone), partially saponified polyvinyl alcohol, hydroxypropylcellulose, hydroxypropylmethylcellulose, Examples thereof include hydroxypropylmethylcellulose phthalate, hydroxyethylcellulose, amorphous cellulose, methylcellulose, aluminum magnesium silicate, and triethanolamine.
  • polyvinyl alcohol, povidone (polyvinylpyrrolidone), hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxymethylcellulose and the like are preferable.
  • One thickener may be used, or two or more thickeners may be used in combination.
  • the content of the thickening agent is not particularly limited, but is preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the ophthalmic disease therapeutic agent, for example. 0.05 to 3 parts by weight, more preferably 0.1 to 2.5 parts by weight.
  • surfactant used in the ophthalmic disease therapeutic agent of the present invention examples include polyoxyethylene castor oil, polyoxyl 40 stearate, sucrose stearate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monostearate, and tristearin.
  • Polyoxyethylene sorbitan monooleate polyoxyethylene sorbitan monooleate (polysorbate 80, Tween (registered trademark) 80), polyoxyethylene sorbitan trioleate, sorbitan monolaurate, sodium lauryl sulfate, L- ⁇ -phosphatidylcholine (PC), 1,2-dipalmitoyl phosphatidylcholine (DPPC), oleic acid, natural lecithin, synthetic lecithin, oleyl polyoxyethylene ether, lauryl polyoxyethylene ether, diethylene glycol dioleate Cole, tetrahydrofurfuryl oleate, ethyl oleate, isopropyl myristate, glyceryl monooleate, glyceryl monostearate, glyceryl monoricinoleate, cetyl alcohol, stearyl alcohol, polyethylene glycol, tyloxapol, octylphenol ethoxylate, al
  • polyoxyethylene sorbitan monooleate and poloxamer are preferable, and among them, polyoxyethylene sorbitan monooleate (polysorbate 80) and poloxamer (Pluronic (registered trademark) F-127) are more preferable.
  • polysorbate 80 polyoxyethylene sorbitan monooleate
  • poloxamer Pluronic (registered trademark) F-127) are more preferable.
  • the surfactant one kind may be used, or two or more kinds may be used in combination.
  • the content of the surfactant is not particularly limited.
  • it is preferably 0 to 5 parts by weight with respect to 100 parts by weight of the ophthalmic disease therapeutic agent,
  • the amount is more preferably 0 to 3 parts by weight, and further preferably 0 to 1.0 part by weight.
  • the combination of the thickener and the surfactant is not particularly limited.
  • hydroxypropyl methylcellulose and polyoxyethylene sorbitan monooleate Hydroxypropyl cellulose and polyoxyethylene sorbitan monooleate, hydroxypropyl cellulose and tyloxapol, povidone and polyoxyethylene sorbitan monooleate, polyvinyl alcohol and polyoxyethylene sorbitan monooleate, poloxamer and polyoxyethylene sorbitan monooleate, etc. Combinations are mentioned.
  • Thickeners and surfactant combinations include hydroxypropyl cellulose and polyoxyethylene sorbitan monooleate, povidone and polyoxyethylene sorbitan monooleate, polyvinyl alcohol and polyoxyethylene sorbitan monooleate, poloxamer and monooleic acid
  • a combination of polyoxyethylene sorbitan is preferable, and a combination of hydroxypropyl cellulose and polyoxyethylene sorbitan monooleate, povidone and polyoxyethylene sorbitan monooleate, or a combination of poloxamer and polyoxyethylene sorbitan monooleate is more preferable.
  • the weight ratio of the thickener and the surfactant is not particularly limited, but as the surfactant / thickener, for example, 0 to 500, preferably 0 to 60, and more preferably 0 to 10.
  • Examples of the dispersion medium used in the ophthalmic disease therapeutic agent of the present invention include water, alcohol, liquid paraffin, water containing a solute, alcohol containing a solute, and liquid paraffin containing a solute.
  • As the dispersion medium water, liquid paraffin, and water containing a solute are preferable, and water and water containing a solute are more preferable.
  • One type of dispersion medium may be used, or two or more types may be used in combination.
  • the content of the dispersion medium is not particularly limited.
  • the dispersion medium contained in the ophthalmic disease therapeutic agent as a content per 100 parts by weight of the ophthalmic disease therapeutic agent. It is only necessary that the content of other components other than is adjusted and the dispersion medium is contained so as to obtain the remaining content.
  • the ophthalmic disease therapeutic agent contains a dispersion medium so that the amount of the ophthalmic disease therapeutic agent is 100 parts by weight with respect to the sum of the contents of components other than the dispersion medium contained in the ophthalmic disease therapeutic agent. It only has to be done.
  • the content of the dispersion medium is preferably 68 to 99.9 parts by weight, more preferably 78 to 99.9 parts by weight, and more preferably 85 to 99.9 parts by weight with respect to 100 parts by weight of the ophthalmic disease therapeutic agent. More preferably.
  • the solute contained in the dispersion medium is not particularly limited, but for example, those used as isotonic agents in the pharmaceutical field are preferable.
  • isotonic agents include sodium chloride, glucose (glucose), glycerol, mannitol, sodium dihydrogen phosphate, sodium hydrogen phosphate hydrate, sodium hydrogen carbonate, trishydroxymethylaminomethane, citric acid hydrate Boric acid, borax, phosphoric acid and the like.
  • the tonicity agent is preferably sodium chloride, glucose (dextrose), glycerol, or mannitol. One tonicity agent may be used, or two or more tonicity agents may be used in combination.
  • the content of the solute is not particularly limited, but is preferably 0 to 50 parts by weight with respect to 100 parts by weight of water, alcohol, or liquid paraffin. More preferably, it is 25 parts by weight.
  • Examples of the preservative used in the ophthalmic disease therapeutic agent of the present invention include benzalkonium chloride, methyl paraoxybenzoate, propyl paraoxybenzoate, chlorobutanol, sodium edetate hydrate, chlorhexidine gluconate, sorbic acid and the like. Is mentioned.
  • benzalkonium chloride is preferable.
  • the preservative one kind may be used, or two or more kinds may be used in combination.
  • the content of the preservative is not particularly limited, but for example, it is preferably 0 to 1 part by weight with respect to 100 parts by weight of the ophthalmic disease therapeutic agent.
  • the content is more preferably 0 to 0.75 parts by weight, still more preferably 0 to 0.5 parts by weight, or the content of the preservative is not particularly limited.
  • VEGF vascular endothelial growth factor
  • the amount is preferably 0 to 100 parts by weight, more preferably 0 to 75 parts by weight, and more preferably 0 to 50 parts by weight with respect to 100 parts by weight of the receptor inhibitor or epidermal growth factor (EGF) receptor inhibitor. More preferably.
  • the clathrate used in the ophthalmic disease therapeutic agent of the present invention is not particularly limited as long as it has the property of incorporating molecules, but for example, ⁇ -cyclodextrin, ⁇ -cyclodextrin, 2-hydroxypropyl- ⁇ - Examples include cyclodextrin (HP- ⁇ -CD) and ⁇ -cyclodextrin.
  • cyclodextrin HP- ⁇ -CD
  • ⁇ -cyclodextrin and 2-hydroxypropyl- ⁇ -cyclodextrin are preferable, and 2-hydroxypropyl- ⁇ -cyclodextrin (HP- ⁇ -CD) is more preferable.
  • One type of inclusion substance may be used, or two or more types may be used in combination.
  • the content of the inclusion substance is not particularly limited, but for example, it is preferably 0 to 1 part by weight with respect to 100 parts by weight of the ophthalmic disease therapeutic agent. 0 to 0.75 parts by weight is more preferable, and 0 to 0.5 parts by weight is still more preferable.
  • Topical ocular administration includes eye drop administration, subconjunctival administration, subtenon administration, intravitreal administration, suprachoroidal administration, periocular administration, or administration via intraocular implant or other drug delivery device And ophthalmic administration is preferred.
  • the pharmaceutical composition of the present invention can be used for the prevention or treatment of vascular endothelial growth factor (VEGF) -related diseases or epidermal growth factor (EGF) -related diseases by administration to mammals and the like.
  • vascular endothelial growth factor (VEGF) -related diseases include wet-type (neovascular or exudative) age-related macular degeneration (wet-AMD), atrophic age-related macular degeneration, and choroidal neovascularization.
  • Choroidal neovascularization in morbid myopia branch retinal vein occlusion, macular edema, macular edema associated with central retinal vein occlusion, diabetic macular edema, proliferative diabetic retinopathy, neovascular glaucoma, retinitis pigmentosa, immature Retinopathy of childhood, Coats disease, branch retinal vein occlusion, central retinal vein occlusion, cystic macular edema, intravitreal hemorrhage due to diabetic retinopathy, Eales disease, central serous chorioretinopathy, epiretinal membrane, uvea Inflammation, multifocal choroiditis, anterior ischemic optic neuropathy, corneal neovascularization, pterygium, intraocular melanoma, glioma acquired retinal hemangioma, radiation retinopathy, tuberous sclerosis, glioma acquired retinal
  • VEGF Vascular endothelial growth factor
  • epidermal growth factor (EGF) related diseases include wet-type (neovascular or exudative) age related macular degeneration (wet-AMD), atrophic age-related macular degeneration, choroidal neovascularization, Choroidal neovascularization in macular myopia, macular edema, macular edema associated with central retinal vein occlusion, diabetic macular edema, proliferative diabetic retinopathy, glaucoma, neovascular glaucoma, ocular inflammation, retinoblast, retinal vein branch occlusion, Central retinal vein occlusion, retinopathy of prematurity, retinitis pigmentosa, retinal artery occlusion, corneal neovascularization, pterygium, uveitis melanoma, uveitis, epiretinal membrane, subepithelial fibrosis, dry eye, Examples include meibomia
  • Epidermal growth factor (EGF) related diseases include wet age-related macular degeneration, choroidal neovascularization in pathologic myopia, branch retinal vein occlusion, central retinal vein occlusion, macular edema associated with central retinal vein occlusion, diabetes Suitably macular edema, proliferative diabetic retinopathy or neovascular glaucoma.
  • the pharmaceutical composition of the present invention can be used for the treatment and prevention of vascular endothelial growth factor (VEGF) -related diseases or epidermal growth factor (EGF) -related diseases.
  • VEGF vascular endothelial growth factor
  • EGF epidermal growth factor
  • existing anti-VEGF inhibitors Intravitreal injection
  • macular edema associated with central retinal vein occlusion macular edema associated with central retinal vein occlusion, choroid in pathological myopia Neovascular and diabetic macular edema, as well as proliferative diabetic retinopathy, neovascular glaucoma, uveitis and immaturity that have been reported clinically, even if not indicated, by anti-VEGF inhibitors (intravitreal injections)
  • epidermal growth factor (EGF) -related diseases it is thought that the pathogenesis is caused by angiogenesis and increased vascular permeability in the eye.
  • the pharmaceutical composition of the present invention can be used for the treatment and prevention of epidermal growth factor (EGF) -related diseases.
  • EGF epidermal growth factor
  • the effectiveness of the antiangiogenic action in the eye and the inhibitory action on the enhancement of vascular permeability are effective.
  • wet-type age-related macular degeneration (wet-type (neovascular or exudative) age related macular degeneration, wet-AMD), macular edema associated with central retinal vein occlusion, choroidal neovascularization and diabetes in pathological myopia It is preferably used for prevention and treatment of ophthalmic diseases such as macular edema.
  • a good therapeutic effect (recovery of the highest corrected visual acuity, histological improvement such as thinning of the retina thickened by the pathology, etc.) is obtained by intravitreal injection of an anti-VEGF inhibitor.
  • an anti-VEGF inhibitor non-clinical administration of an EGF inhibitor has been confirmed to inhibit angiogenesis in the retina and choroid and to suppress increased vascular permeability, and is expected to be clinically effective.
  • existing anti-VEGF inhibitors intravitreal injections
  • existing anti-VEGF inhibitors have a high therapeutic effect, but the administration route is intravitreal injection, and continuous treatment is required due to a high recurrence rate.
  • ophthalmic diseases such as those mentioned above, drugs (oral preparations) that can be administered by a noninvasive and simple route other than intravitreal injection from the viewpoint of reducing the burden on the patient, family, medical staff, etc.
  • the ophthalmic disease therapeutic agent of the present invention is useful in that an active ingredient can be administered to a patient through a route such as eye drops.
  • the shape of the ophthalmic disease therapeutic agent of the present invention is not particularly limited, but is preferably a liquid (liquid preparation), and more preferably a suspension preparation or a solution preparation. A part or all of the components of the ophthalmic disease therapeutic agent of the present invention or a powder obtained by freeze-drying them may be dissolved or dispersed in water or the like to be used as the ophthalmic disease therapeutic agent of the present invention.
  • the manufacturing method of the vascular endothelial growth factor (VEGF) receptor inhibitor or the epidermal growth factor (EGF) receptor inhibitor in the form of nanoparticles in the therapeutic agent for ophthalmic diseases of the present invention is not particularly limited, It can be produced by a nanoparticulation method generally used in the technical field.
  • the nanoparticulation method include vascular endothelial growth factor (VEGF) receptor inhibitor or epidermal growth factor (EGF) receptor using a commercially available instrument (zirconia container, zirconia ball, etc.) or a commercially available nano pulverizer.
  • vascular endothelial growth factor (VEGF) receptor inhibitor or an epidermal growth factor (EGF) receptor inhibitor in the form of nanoparticles is obtained.
  • VEGF vascular endothelial growth factor
  • EGF epidermal growth factor
  • VEGF vascular endothelial growth factor
  • EGF epidermal growth factor
  • solution can be crystallized by stimulating in the liquid phase or gas phase, and blood vessels in the form of nanoparticles Endothelial growth factor (VEGF) receptor inhibitors or epidermal growth factor (EGF) receptor inhibitors can be produced.
  • VEGF vascular endothelial growth factor
  • EGF epidermal growth factor
  • a thickening agent a surfactant and a dispersion medium
  • preservatives and inclusion substances may be added and pulverized.
  • the pulverization method is not particularly limited, and examples thereof include dry pulverization and wet pulverization, and wet pulverization is preferable.
  • a dispersion medium is added to a vascular endothelial growth factor (VEGF) receptor inhibitor or epidermal growth factor (EGF) receptor inhibitor and then ground.
  • VEGF vascular endothelial growth factor
  • EGF epidermal growth factor
  • the purification method is not particularly limited, and examples include purification using a commercially available centrifuge.
  • Example 1 N- [2-Chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate in a zirconia container (Sinky) Weigh, then hydroxypropylcellulose (Hydroxypropylcellulose (HPC), Wako Pure Chemical, the same below), Polysorbate 80 (Pure Chemical, same below), Benzalkonium chloride (Benzalkonium chloride (BAC), Nacalai Tesque, below The same), D-mannitol (Pure Chemical, same hereafter) and water were added to form a suspension, and zirconia balls (zirconia pulverized balls, YTZ diameter 0.1 mm, Nikkato) were placed and capped.
  • This nanoparticle composition was purified using a micro cooling centrifuge (3740, Kubota) (13200 rpm, 28 minutes), and N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy)
  • the concentration of phenyl] -N ′-(5-methylisoxazol-3-yl) urea hydrochloride hydrate was 1.28 mg / mL.
  • the average particle size of isoxazol-3-yl) urea hydrochloride hydrate was a nanoparticle composition having a size of 114 nm.
  • Example 2 According to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N ′-(5- Methylisoxazol-3-yl) urea hydrochloride hydrate, hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, aqueous glucose solution, N- [2-chloro-4- ( 6,7-Dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate concentration 5.36 mg / mL, average particle size 169 nm nanoparticle composition I got a thing.
  • HPC hydroxypropylcellulose
  • BAC benzalkonium chloride
  • D-mannitol aqueous glucose solution
  • Example 3 According to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N ′-(5- Methylisoxazol-3-yl) urea hydrochloride hydrate, hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, aqueous glucose solution, N- [2-chloro-4- ( 6,7-Dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate concentration 6.50mg / mL, average particle size 151nm nanoparticle composition I got a thing.
  • HPC hydroxypropylcellulose
  • BAC benzalkonium chloride
  • D-mannitol aqueous glucose solution
  • Example 4 According to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N ′-(5- Methylisoxazol-3-yl) urea hydrochloride hydrate, hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, aqueous glucose solution, N- [2-chloro-4- ( 6,7-Dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate concentration 0.54 mg / mL, average particle size 122 nm nanoparticle composition I got a thing.
  • HPC hydroxypropylcellulose
  • BAC benzalkonium chloride
  • D-mannitol aqueous glucose solution
  • Example 5 According to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl was changed by changing the amount of hydroxypropyl cellulose (HPC) from 0.5 parts by weight to 0.75 parts by weight.
  • HPC hydroxypropyl cellulose
  • Example 6 According to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl was changed by changing the amount of hydroxypropyl cellulose (HPC) from 0.5 parts by weight to 1.0 parts by weight.
  • HPC hydroxypropyl cellulose
  • Example 7 According to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl was changed by changing the amount of hydroxypropyl cellulose (HPC) from 0.5 parts by weight to 1.25 parts by weight.
  • HPC hydroxypropyl cellulose
  • Example 8 According to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl was changed by changing the amount of hydroxypropyl cellulose (HPC) from 0.5 parts by weight to 2.5 parts by weight.
  • HPC hydroxypropyl cellulose
  • Example 12 According to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N was obtained by changing the amount of D-mannitol from 0.1 parts by weight to 1.0 parts by weight.
  • Example 13 According to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N is obtained by changing the amount of D-mannitol from 0.1 parts by weight to 0.5 parts by weight.
  • Example 15 Weigh N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate in a zirconia container, Next, hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, water are added, and the suspension is made. Did. Wet pulverization was performed using a rotating / revolving nano pulverizer (NP-100, Sinky), and then an aqueous glucose solution was added and diluted, and the zirconia balls were screen-removed to obtain a nanoparticle composition.
  • HPC hydroxypropylcellulose
  • BAC benzalkonium chloride
  • BAC benzalkonium chloride
  • aqueous glucose solution was added and diluted, and the zirconia balls were screen-removed to obtain a nanop
  • the nanoparticle composition was purified using a micro cooling centrifuge (3740, Kubota) (10000 rpm, 1 minute), and N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy)
  • the concentration of phenyl] -N ′-(5-methylisoxazol-3-yl) urea hydrochloride hydrate was 0.65 mg / mL.
  • the average particle size of isoxazol-3-yl) urea hydrochloride hydrate was a nanoparticle composition having a particle size of 426 nm.
  • Example 16 Weigh N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate in a zirconia container, Next, hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, and water are added to form a suspension, and zirconia balls (zirconia ground balls, YTZ diameter 1.0 mm, Nikkato) are placed on the lid. Did.
  • the nanoparticle composition was purified using a micro-cooled centrifuge (3740, Kubota), and N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N'-
  • the concentration of (5-methylisoxazol-3-yl) urea hydrochloride hydrate was 1.35 mg / mL.
  • the average particle size of isoxazol-3-yl) urea hydrochloride hydrate was a nanoparticle composition having a particle size of 154 nm.
  • Example 17 Weigh N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate in a zirconia container, Next, hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, water are added to form a suspension, and zirconia balls (zirconia crushed balls, YTZ diameter 3.0 mm, Nikkato) are placed on the lid. Did.
  • HPC hydroxypropylcellulose
  • polysorbate 80 polysorbate 80
  • BAC benzalkonium chloride
  • D-mannitol water
  • zirconia balls zirconia crushed balls, YTZ diameter 3.0 mm, Nikkato
  • wet pulverization was performed using a rotating / revolving nano pulverizer (NP-100, Sinky), and then an aqueous glucose solution was added and diluted, and the zirconia balls were screen-removed to obtain a nanoparticle composition.
  • NP-100 rotating / revolving nano pulverizer
  • aqueous glucose solution was added and diluted, and the zirconia balls were screen-removed to obtain a nanoparticle composition.
  • the nanoparticle composition was purified using a micro-cooled centrifuge (3740, Kubota), and N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N'-
  • the concentration of (5-methylisoxazol-3-yl) urea hydrochloride hydrate was 1.17 mg / mL.
  • the average particle size of isoxazol-3-yl) urea hydrochloride hydrate was a nanoparticle composition having a particle size of 155 nm.
  • Example 18 According to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl]-was obtained by changing the aqueous glucose solution to an aqueous glycerol solution (8.2% by mass, hereinafter the same).
  • Example 20 According to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl]-was obtained by changing the aqueous glucose solution to an aqueous glycerol solution and removing D-mannitol from the composition.
  • N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate, hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), aqueous glycerol solution, N- [2-chloro -4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate / hydroxypropylcellulose (HPC) / polysorbate 80 / benzamide Luconium (BAC) 1 part by weight / 0.5 part by weight / 0.1 part by weight / 0.001 part by weight, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N ′-( 5-Methylisoxazol-3-yl) urea hydrochloride hydrate concentration is 0.76 mg / mL Average
  • Example 21 According to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl]-was obtained by changing the aqueous glucose solution to an aqueous glycerol solution and removing D-mannitol from the composition.
  • N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate, hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), aqueous glycerol solution, N- [2-chloro -4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate / hydroxypropylcellulose (HPC) / polysorbate 80 / benzamide Luconium (BAC) 1 part by weight / 0.5 part by weight / 0.1 part by weight / 0.001 part by weight, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N ′-( 5-Methylisoxazol-3-yl) urea hydrochloride hydrate concentration is 0.18 mg / mL Average
  • Example 22 According to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N ′-(5-methyl) was obtained by changing the aqueous glucose solution to physiological saline.
  • Isoxazol-3-yl) urea hydrochloride hydrate, hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, physiological saline, the composition is N- [2-chloro-4 -(6,7-Dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate / hydroxypropylcellulose (HPC) / polysorbate 80 / benzalkonium chloride (BAC) / D-mannitol 1 part by weight / 0.5 part by weight / 0.1 part by weight / 0.001 part by weight / 0.1 part by weight, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl ] -N '-(5-methylisoxazol-3-yl) urea hydrochloride
  • Example 23 According to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N ′-(5-methyl) was obtained by changing the aqueous glucose solution to physiological saline.
  • Isoxazol-3-yl) urea hydrochloride hydrate, hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, physiological saline, the composition is N- [2-chloro-4 -(6,7-Dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate / hydroxypropylcellulose (HPC) / polysorbate 80 / benzalkonium chloride (BAC) / D-mannitol 1 part by weight / 0.3 part by weight / 0.1 part by weight / 0.001 part by weight / 0.1 part by weight, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl ] -N '-(5-methylisoxazol-3-yl) urea hydrochloride
  • Example 24 According to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinoline-4-] was obtained by changing the thickening agent from hydroxypropylcellulose (HPC) to hydroxypropylmethylcellulose (HPMC). Yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate, hydroxypropylmethylcellulose (hydroxypropylmethylcellulose (HPMC), Shin-Etsu Chemical Co., Ltd.), polysorbate 80, benzalco chloride The composition of N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazole-3 with aqueous solution of nium (BAC), D-mannitol and glucose -Yl) urea hydrochloride hydrate / hydroxypropyl methylcellulose (HPMC) / polysorbate 80 / benzalkonium
  • Example 25 According to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinoline-4] was added to the composition by adding an inclusion substance (hydroxypropyl- ⁇ -cyclodextrin (HP- ⁇ -CD)). -Yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate, hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, hydroxypropyl - ⁇ -cyclodextrin (hydroxypropyl- ⁇ -cyclodextrin (HP- ⁇ -CD), Sigma-Aldrich, the same shall apply hereinafter) -4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate / hydroxypropylcellulose (HPC) / polysorbate 80 / benzalkonium chloride (BAC)
  • Example 26 According to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) was obtained by changing the thickening agent from hydroxypropyl cellulose (HPC) to polyvinyl alcohol (PVA). ) Phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate, polyvinyl alcohol (polyvinyl alcohol (PVA), Sigma-Aldrich, the same shall apply hereinafter), polysorbate 80, benzalkonium chloride (BAC) N- [2-Chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea in aqueous solution of D-mannitol and glucose Hydrochloride hydrate / polyvinyl alcohol (PVA) / polysorbate 80 / benzalkonium chloride (BAC) / D-
  • Example 27 According to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) was obtained by changing the thickening agent from hydroxypropylcellulose (HPC) to polyvinylpyrrolidone (PVP).
  • HPC hydroxypropylcellulose
  • PVP polyvinylpyrrolidone
  • Phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate, Polyvinylpyrrolidone (Polyvinylpyrrolidone (PVP), Pure Chemical, the same shall apply hereinafter), Polysorbate 80, Benzalkonium chloride (BAC) N- [2-Chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea in aqueous solution of D-mannitol and glucose Hydrochloride hydrate / polyvinylpyrrolidone (PVP) / polysorbate 80 / benzalkonium chloride (BAC) / D-mannitol 1 part by weight / 0.5 part by weight / 0.1 part by weight / 0.001 part by weight / 0.1 part by weight, N- [2 -Chloro-4- (6,7-dime
  • Example 28 Weigh N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate in a zirconia container, Next, polyoxyethylene (196) polyoxypropylene (67) glycol (Pluronic (registered trademark) F-127, Sigma-Aldrich, the same shall apply hereinafter), water was added to form a suspension, and zirconia balls (zirconia ground balls, YTZ diameter 0.1) mm, Nikkato) and put a lid.
  • This nanoparticle composition was purified using a micro cooling centrifuge (3740, Kubota) (13200 rpm, 60 minutes), and N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy)
  • the concentration of phenyl] -N ′-(5-methylisoxazol-3-yl) urea hydrochloride hydrate was 8.13 mg / mL.
  • the average particle size of isoxazol-3-yl) urea hydrochloride hydrate was a nanoparticle composition having a wavelength of 147 nm.
  • Example 30 According to Example 1, the surfactant was polysorbate 80 to 12-Hydroxy-octadecanoic acid polymer with ⁇ -hydro- ⁇ -hydroxypoly (oxy-1,2-ethanediyl) (Solutol (registered trademark) HS15, BASF, the same shall apply hereinafter) N- [2-Chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate by changing to , Hydroxypropylcellulose (HPC), Solutol (registered trademark) HS15, benzalkonium chloride (BAC), D-mannitol, aqueous glucose solution, the composition is N- [2-chloro-4- (6,7-dimethoxyquinoline- 4-yloxy) phenyl] -N ′-(5-methylisoxazol-3-yl) ure
  • Example 31 According to Example 1, the surfactant is changed from polysorbate 80 to 4- (1,1,3,3-tetramethylbutyl) phenol polymer (containing formaldehyde and oxirane) (Tyloxapol, Sigma-Aldrich, the same shall apply hereinafter) N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N ′-(5-methylisoxazol-3-yl) urea hydrochloride hydrate, hydroxypropylcellulose ( HPC), Tyloxapol, Benzalkonium chloride (BAC), D-mannitol, glucose aqueous solution, the composition is N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N'- (5-Methylisoxazol-3-yl) urea hydrochloride hydrate / hydroxypropylcellulose (HPC) / Tyloxapol
  • Example 32 According to Example 1, the surfactant was changed from polysorbate 80 to polyethylene glycol mono-p-isooctylphenyl ether (Triton (registered trademark) X100, Nacalai Tesque, the same shall apply hereinafter) to produce N- [2-chloro -4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate, hydroxypropylcellulose (HPC), Triton (registered trademark) X100 (Nacalai Tesque, the same shall apply hereinafter), benzalkonium chloride (BAC), D-mannitol, aqueous glucose solution, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate
  • Example 33 According to Example 1, the surfactant was changed from polysorbate 80 to polyoxyethylene castor oil (Cremophor® EL, Sigma-Aldrich, the same shall apply hereinafter) to produce N- [2-chloro-4- (6 , 7-Dimethoxyquinolin-4-yloxy) phenyl] -N ′-(5-methylisoxazol-3-yl) urea hydrochloride hydrate, hydroxypropylcellulose (HPC), Cremophor® EL, benzalkco chloride
  • Example 34 According to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) was obtained by changing the surfactant from polysorbate 80 to n-octyl- ⁇ -D-glucoside. Phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate, hydroxypropylcellulose (HPC), n-octyl- ⁇ -D-glucoside (Wako Pure Chemical, the same shall apply hereinafter), Benzyl chloride The composition of N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazole-, with aqueous solution of Luconium (BAC), D-mannitol and glucose 3-yl) urea hydrochloride hydrate / hydroxypropylcellulose (HPC) / n-octyl- ⁇
  • Example 35 According to Example 1, the surfactant was changed from polysorbate 80 to sodium lauryl sulfate, and the amount of hydroxypropyl cellulose (HPC) was changed from 0.5 parts by weight to 0.25 parts by weight.
  • HPC hydroxypropyl cellulose
  • BAC benzalkonium chloride
  • D-mannitol aqueous glucose solution
  • Example 36 In accordance with Example 1, the amount of hydroxypropylcellulose (HPC) was changed from 0.5 to 0.1 parts by weight, the surfactant was changed from polysorbate 80 to sodium lauryl sulfate, and benzalkonium chloride (BAC) and D-mannitol were changed.
  • HPC hydroxypropylcellulose
  • BAC benzalkonium chloride
  • Example 37 According to Example 1, the amount of hydroxypropyl cellulose (HPC) is changed from 0.5 parts by weight to 0.1 parts by weight, the surfactant is changed from polysorbate 80 to sodium lauryl sulfate, and benzalkonium chloride (BAC) is removed from the composition.
  • HPC hydroxypropyl cellulose
  • BAC benzalkonium chloride
  • N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N ′-(5-methylisoxazol-3-yl) urea hydrochloride hydrate, hydroxypropylcellulose ( HPC), sodium lauryl sulfate, D-mannitol, glucose aqueous solution, the composition is N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazole -3-yl) urea hydrochloride hydrate / hydroxypropylcellulose (HPC) / sodium lauryl sulfate / D-mannitol 1 part by weight / 0.1 part by weight / 0.0025 part by weight / 0.1 part by weight, N- [2-chloro-4 -(6,7-Dimethoxyquinolin-4-ylo A nanoparticle composition having a concentration of (
  • Example 40 In accordance with Example 1, the amount of hydroxypropylcellulose (HPC) was changed from 0.5 parts by weight to 0.3 parts by weight, and polysorbate 80, benzalkonium chloride (BAC), and D-mannitol were excluded from the composition.
  • HPC hydroxypropylcellulose
  • a nanoparticle composition having a hydrochloride hydrate concentration of 1.25 mg / mL and an average particle size of 81 nm
  • Example 41 In accordance with Example 1, the amount of hydroxypropylcellulose (HPC) was changed from 0.5 parts by weight to 0.3 parts by weight, and benzalkonium chloride (BAC) and D-mannitol were excluded from the composition.
  • BAC benzalkonium chloride
  • BAC benzalkonium chloride
  • D-mannitol D-mannitol
  • the composition is N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N ′-(5-methylisoxazol-3-yl) urea hydrochloride hydrate / hydroxypropylcellulose ( HPC) / polysorb
  • Example 42 According to Example 1, the amount of hydroxypropylcellulose (HPC) is 0.5 to 0.3 parts by weight, the amount of polysorbate 80 is 0.1 to 0.01 parts by weight, and benzalkonium chloride (BAC) and D-mannitol are composed.
  • HPC hydroxypropylcellulose
  • polysorbate 80 is 0.1 to 0.01 parts by weight
  • BAC benzalkonium chloride
  • N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N ′-(5-methylisoxazol-3-yl) urea hydrochloride hydrate, hydroxy N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazole-3 with propyl cellulose (HPC), polysorbate 80, and aqueous glucose solution -Yl) urea hydrochloride hydrate / hydroxypropylcellulose (HPC) / polysorbate 80 1 part by weight / 0.3 part by weight / 0.01 part by weight, N- [2-chloro-4- (6,7-dimethoxyquinoline-4- Yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride Hydrate concentration 1.74 mg / mL, an
  • Example 43 In accordance with Example 1, the amount of hydroxypropylcellulose (HPC) was changed from 0.5 parts by weight to 0.15 parts by weight, and benzalkonium chloride (BAC) and D-mannitol were removed from the composition to give N- [2-chloro-4 -(6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate, hydroxypropyl cellulose (HPC), polysorbate 80, aqueous glucose solution,
  • Example 44 According to Example 1, the amount of hydroxypropyl cellulose (HPC) is 0.5 to 0.15 parts by weight, the amount of polysorbate 80 is 0.1 to 0.01 parts by weight, and benzalkonium chloride (BAC) and D-mannitol are composed.
  • HPC hydroxypropyl cellulose
  • BAC benzalkonium chloride
  • N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N ′-(5-methylisoxazol-3-yl) urea hydrochloride hydrate, hydroxy N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazole-3 with propyl cellulose (HPC), polysorbate 80, and aqueous glucose solution -Yl) urea hydrochloride hydrate / hydroxypropylcellulose (HPC) / polysorbate 80 1 part by weight / 0.15 part by weight / 0.01 part by weight, N- [2-chloro-4- (6,7-dimethoxyquinoline-4- Yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride A nanoparticle composition having a salt hydrate concentration of
  • Example 47 According to Example 1, the amount of hydroxypropyl cellulose (HPC) is from 0.5 parts by weight to 0.1 parts by weight, the amount of polysorbate 80 is from 0.1 parts by weight to 0.02 parts by weight, and the amount of benzalkonium chloride (BAC) is from 0.001 parts by weight.
  • HPC hydroxypropyl cellulose
  • BAC benzalkonium chloride
  • N- [2-Chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N ′ by changing the amount of D-mannitol to 0.0002 parts by weight from 0.1 parts by weight to 0.02 parts by weight -(5-methylisoxazol-3-yl) urea hydrochloride hydrate, hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, aqueous glucose solution, N- [2 -Chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate / hydroxypropylcellulose (HPC) / polysorbate 80 / Benzalkonium chloride (BAC) / D-manni Toll 1 part by weight / 0.1 part by weight / 0.02 part by weight / 0.0002
  • Example 48 According to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl was changed by changing the amount of hydroxypropyl cellulose (HPC) from 0.5 parts by weight to 0.1 parts by weight.
  • HPC hydroxypropyl cellulose
  • Example 49 In accordance with Example 1, the amount of hydroxypropylcellulose (HPC) was changed from 0.5 parts by weight to 0.05 parts by weight, and polysorbate 80, benzalkonium chloride (BAC), and D-mannitol were excluded from the composition.
  • HPC hydroxypropylcellulose
  • a nanoparticle composition having a hydrochloride hydrate concentration of 2.00 mg / mL and an average particle size of 66 nm
  • Example 50 N- [2-Chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate in a zirconia container (Sinky) Weigh, and then add hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, water, make a suspension, zirconia balls (zirconia ground balls, YTZ diameter 0.1 mm, Nikkato) Put in the lid.
  • HPC hydroxypropylcellulose
  • polysorbate 80 polysorbate 80
  • BAC benzalkonium chloride
  • D-mannitol water
  • zirconia balls zirconia ground balls, YTZ diameter 0.1 mm, Nikkato
  • the average particle size of isoxazol-3-yl) urea hydrochloride hydrate was a nanoparticle composition having a particle size of 133 nm.
  • Example 51 According to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl was obtained by changing the aqueous glucose solution to an aqueous D-mannitol solution (10% by mass, the same applies hereinafter).
  • Example 52 According to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N ′ was obtained by changing the aqueous glucose solution to an aqueous citric acid solution (1% by mass).
  • Example 53 According to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] was obtained by changing the aqueous glucose solution to an aqueous phosphoric acid solution (6.2% by mass, the same shall apply hereinafter).
  • Example 54 N- [2-Chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate in a zirconia container (Sinky) Weigh, and then add hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, water, make a suspension, zirconia balls (zirconia ground balls, YTZ diameter 0.1 mm, Nikkato) Put in the lid.
  • HPC hydroxypropylcellulose
  • BAC benzalkonium chloride
  • BAC benzalkonium chloride
  • D-mannitol water
  • zirconia balls zirconia ground balls, YTZ diameter 0.1 mm, Nikkato
  • the average particle size of isoxazol-3-yl) urea hydrochloride hydrate was a nanoparticle composition having a diameter of 203 nm.
  • Example 55 In accordance with Example 1, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N′- was added by adding polyvinylpyrrolidone (PVP) to the thickening agent.
  • PVP polyvinylpyrrolidone
  • composition with (5-methylisoxazol-3-yl) urea hydrochloride hydrate, hydroxypropylcellulose (HPC), polyvinylpyrrolidone (PVP), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, aqueous glucose solution N- [2-Chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate / hydroxypropylcellulose (HPC ) / Polyvinylpyrrolidone (PVP) / Polysorbate 80 / Benzalkonium chloride (BAC) / D-mannitol 1 part by weight / 0.5 part by weight / 0.5 part by weight / 0.1 part by weight / 0.001 part by weight / 0.1 part by weight, N- [ 2-Chloro-4- (6,7-dimethoxyquinolin-4-
  • Example 56 According to Example 1, N- [2-Chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N ′-(5-methyliso) was added by adding lecithin to the surfactant.
  • Oxazol-3-yl) urea hydrochloride hydrate, hydroxypropyl cellulose (HPC), lecithin (Nacalai Tesque), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, aqueous glucose solution, N- [2 -Chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate / hydroxypropylcellulose (HPC) / lecithin / polysorbate 80 / benzalkonium chloride (BAC) / D-mannitol 1 part by weight / 0.5 part by weight / 0.5 part by weight / 0.1 part by weight / 0.001 part by weight / 0.1 part by weight, N- [2-chloro-4- (6, 7-Dimethoxyquinolin-4-yloxy) phenyl] -N '
  • Example 59 According to Example 1, the thickener was changed from hydroxypropylcellulose (HPC) to polyvinylpyrrolidone (PVP), the surfactant was changed from polysorbate 80 to sodium lauryl sulfate, benzalkonium chloride (BAC), D- N- [2-Chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrated by removing mannitol from the composition Product, polyvinylpyrrolidone (PVP), sodium lauryl sulfate, aqueous glucose solution, and the composition is N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methyliso Oxazol-3-yl) urea hydrochloride hydrate / polyvinylpyrrolidone (PVP)
  • Example 62 According to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) was obtained by changing the thickening agent from hydroxypropylcellulose (HPC) to polyvinylpyrrolidone (PVP).
  • HPC hydroxypropylcellulose
  • PVP polyvinylpyrrolidone
  • Phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate, polyvinylpyrrolidone (PVP), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, aqueous glucose composition N- [2-Chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate / polyvinylpyrrolidone (PVP) / Polysorbate 80 / benzalkonium chloride (BAC) / D-mannitol 1 part by weight / 0.25 part by weight / 0.1 part by weight / 0.001 part by weight / 0.1 part by weight, N- [2-chloro-4- (6,7- Dimethoxyquinolin-4-yloxy) phenyl] -N ′-(5-methyl)
  • Example 63 According to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) was obtained by changing the thickening agent from hydroxypropylcellulose (HPC) to polyvinylpyrrolidone (PVP).
  • HPC hydroxypropylcellulose
  • PVP polyvinylpyrrolidone
  • Phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate, polyvinylpyrrolidone (PVP), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, aqueous glucose composition N- [2-Chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate / polyvinylpyrrolidone (PVP) / Polysorbate 80 / benzalkonium chloride (BAC) / D-mannitol 1 part by weight / 1.0 part by weight / 0.1 part by weight / 0.001 part by weight / 0.1 part by weight, N- [2-chloro-4- (6,7- Dimethoxyquinolin-4-yloxy) phenyl] -N ′-(5-methyl)
  • Example 64 According to Example 1, N- [2-chloro-4- (6) was obtained by changing the thickening agent from hydroxypropylcellulose (HPC) to hydroxypropyl- ⁇ -cyclodextrin (HP- ⁇ -CD). , 7-Dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate, hydroxypropyl- ⁇ -cyclodextrin (HP- ⁇ -CD), polysorbate 80 , Benzalkonium chloride (BAC), D-mannitol, glucose aqueous solution, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methyl Isoxazol-3-yl) urea hydrochloride hydrate / hydroxypropyl- ⁇ -cyclodextrin (HP- ⁇ -CD) / polysorbate 80 /
  • Example 65 By changing the thickening agent from hydroxypropyl cellulose (HPC) to Pluronic (registered trademark) F-127 and the glucose aqueous solution to D-mannitol aqueous solution according to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N ′-(5-methylisoxazol-3-yl) urea hydrochloride hydrate, Pluronic® F-127, polysorbate 80, benzalkco chloride The composition of N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl with an aqueous solution of nium (BAC) and D-mannitol ) Urea hydrochloride hydrate / Pluronic (registered trademark) F-127 / Polysorbate 80 / Benzalkonium chloride (BAC
  • Example 66 According to Example 1, N- [2-chloro-4- (6) was obtained by changing the thickening agent from hydroxypropylcellulose (HPC) to polyvinylpyrrolidone (PVP) and the glucose aqueous solution to D-mannitol aqueous solution.
  • HPC hydroxypropylcellulose
  • PVP polyvinylpyrrolidone
  • composition of the nanoparticle composition is N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate
  • the average particle size of isoxazol-3-yl) urea hydrochloride hydrate was a nanoparticle composition having a particle size of 432 nm.
  • Example 68 N- [2-Chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate in a zirconia container (Sinky) Weighed, hydroxypropylcellulose (HPC) and water were added to form a suspension, and zirconia balls (zirconia ground balls, YTZ diameter 0.1 mm, Nikkato) were placed and capped.
  • HPC hydroxypropylcellulose
  • This nanoparticle composition was purified using a micro cooling centrifuge (3740, Kubota) (13200 rpm, 60 minutes), and N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy)
  • the concentration of phenyl] -N ′-(5-methylisoxazol-3-yl) urea hydrochloride hydrate was 2.37 mg / mL.
  • the average particle size of isoxazol-3-yl) urea hydrochloride hydrate was a nanoparticle composition having a particle size of 76 nm.
  • Example 69 According to Example 68, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl was changed by changing the amount of hydroxypropyl cellulose (HPC) from 0.1 parts by weight to 0.3 parts by weight.
  • HPC hydroxypropyl cellulose
  • Example 70 N- [2-Chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate in a zirconia container (Sinky) Weighed, hydroxypropylcellulose (HPC) and water were added to form a suspension, and zirconia balls (zirconia ground balls, YTZ diameter 0.1 mm, Nikkato) were placed and capped.
  • HPC hydroxypropylcellulose
  • Nikkato zirconia balls
  • the nanoparticle composition was purified using a micro cooling centrifuge (3740, Kubota) (13200 rpm, 100 minutes), and N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy)
  • the concentration of phenyl] -N ′-(5-methylisoxazol-3-yl) urea hydrochloride hydrate was 1.90 mg / mL.
  • the average particle size of isoxazol-3-yl) urea hydrochloride hydrate was a nanoparticle composition having a particle size of 75 nm.
  • Example 71 N- [2-Chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate in a zirconia container (Sinky) Weighed, hydroxypropylcellulose (HPC) and water were added to form a suspension, and zirconia balls (zirconia ground balls, YTZ diameter 0.1 mm, Nikkato) were placed and capped.
  • HPC hydroxypropylcellulose
  • This nanoparticle composition was purified using a micro-cooled centrifuge (3740, Kubota) (13200 rpm, 40 minutes), and N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy)
  • the concentration of phenyl] -N ′-(5-methylisoxazol-3-yl) urea hydrochloride hydrate was 1.33 mg / mL.
  • the average particle size of isoxazol-3-yl) urea hydrochloride hydrate was a nanoparticle composition having a particle size of 105 nm.
  • Example 72 According to Example 71, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) was obtained by changing the thickening agent from hydroxypropylcellulose (HPC) to polyvinylpyrrolidone (PVP).
  • HPC hydroxypropylcellulose
  • PVP polyvinylpyrrolidone
  • Phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate, polyvinylpyrrolidone (PVP), glucose aqueous solution, and N- [2-chloro-4- (6,7- Dimethoxyquinolin-4-yloxy) phenyl] -N ′-(5-methylisoxazol-3-yl) urea hydrochloride hydrate / polyvinylpyrrolidone (PVP) 1 part by weight / 0.3 part by weight, N- [2-chloro -4- (6,7-Dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate concentration 1.91 mg / mL, average particle size 62 nm A nanoparticle composition was obtained.
  • Example 73 According to Example 68, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) was obtained by changing the thickening agent from hydroxypropylcellulose (HPC) to polyvinylpyrrolidone (PVP).
  • HPC hydroxypropylcellulose
  • PVP polyvinylpyrrolidone
  • Phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate, polyvinylpyrrolidone (PVP), glucose aqueous solution, and N- [2-chloro-4- (6,7- Dimethoxyquinolin-4-yloxy) phenyl] -N ′-(5-methylisoxazol-3-yl) urea hydrochloride hydrate / polyvinylpyrrolidone (PVP) 1 part by weight / 0.3 part by weight, N- [2-chloro -4- (6,7-Dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate concentration is 1.21 mg / mL, average particle size is 77 nm A nanoparticle composition was obtained.
  • Example 80 N- [2-Chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate in a zirconia container (Sinky) Weigh, and then add hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, water, make a suspension, zirconia balls (zirconia ground balls, YTZ diameter 0.1 mm, Nikkato) Put in the lid.
  • HPC hydroxypropylcellulose
  • BAC benzalkonium chloride
  • BAC benzalkonium chloride
  • D-mannitol water
  • zirconia balls zirconia ground balls, YTZ diameter 0.1 mm, Nikkato
  • concentration of hydrochloride hydrate was 0.90 mg / mL.
  • the average particle size of isoxazol-3-yl) urea hydrochloride hydrate was a nanoparticle composition having a particle size of 400 nm.
  • Example 81 According to Example 80, the amount of hydroxypropylcellulose (HPC) is from 0.5 parts by weight to 0.05 parts by weight, the amount of polysorbate 80 is from 0.1 parts by weight to 0.01 parts by weight, and the amount of benzalkonium chloride (BAC) is from 0.001 parts by weight.
  • HPC hydroxypropylcellulose
  • polysorbate 80 is from 0.1 parts by weight to 0.01 parts by weight
  • BAC benzalkonium chloride
  • N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N′- (5-Methylisoxazol-3-yl) urea hydrochloride hydrate, hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, aqueous glucose solution, N- [2- Chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate / hydroxypropylcellulose (HPC) / polysorbate 80 / chloride Benzalkonium (BAC) / D-Manni Toll 0.1 part by weight / 0.05 part by weight / 0.01 part by weight / 0.0001
  • Example 82 According to Example 80, the thickening agent was changed from hydroxypropylcellulose (HPC) to hydroxypropylmethylcellulose (HPMC), the amount of polysorbate 80 was changed from 0.1 parts by weight to 0.01 parts by weight, and the amount of benzalkonium chloride (BAC) N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl by changing the amount of D-mannitol from 0.001 parts by weight to 0.0001 parts by weight and the amount of D-mannitol from 0.1 parts by weight to 0.01 parts by weight.
  • HPC hydroxypropylcellulose
  • HPMC hydroxypropylmethylcellulose
  • BAC benzalkonium chloride
  • Example 83 Amount of N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N ′-(5-methylisoxazol-3-yl) urea hydrochloride hydrate according to Example 80 N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N ′-(5-methylisoxazole-3- Yl) urea hydrochloride hydrate, hydroxypropyl cellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, aqueous glucose solution, the composition is N- [2-chloro-4- (6,7- Dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate / hydroxypropylcellulose (HPC) / polysorbate 80
  • Example 84 N- [2-Chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate in a zirconia container (Sinky) Weigh, and then add hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, water, make a suspension, zirconia balls (zirconia ground balls, YTZ diameter 1.0 mm, Nikkato) Put in the lid.
  • HPC hydroxypropylcellulose
  • BAC benzalkonium chloride
  • BAC benzalkonium chloride
  • D-mannitol water
  • zirconia balls zirconia ground balls, YTZ diameter 1.0 mm, Nikkato
  • concentration of hydrochloride hydrate was 2.05 mg / mL.
  • the average particle size of isoxazol-3-yl) urea hydrochloride hydrate was a nanoparticle composition having a 365 nm size.
  • Reference example 2 1- (2- (tert-butyl) -4- (3,5-dimethylisoxazol-4-yl) -1H-imidazol-5-yl) -3- (4-((6,7-dimethoxyquinoline- 4-yl) oxy) -3-fluorophenyl) urea was prepared according to the method disclosed in JP 2003-12668.
  • Example 85 Add 1- (2- (tert-butyl) -4- (3,5-dimethylisoxazol-4-yl) -1H-imidazol-5-yl) -3- (4-((6 , 7-dimethoxyquinolin-4-yl) oxy) -3-fluorophenyl) urea, then hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, water added, The suspension was made into a suspension, and zirconia balls (zirconia ground balls, YTZ diameter 0.1 mm, Nikkato) were placed and covered.
  • HPC hydroxypropylcellulose
  • polysorbate 80 polysorbate 80
  • BAC benzalkonium chloride
  • D-mannitol water added
  • nanoparticle composition When the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series), 1- (2- (tert-butyl) -4- (3,5-dimethylisoxazol-4-yl) -1H-imidazole- The average particle size of 5-yl) -3- (4-((6,7-dimethoxyquinolin-4-yl) oxy) -3-fluorophenyl) urea was a nanoparticle composition having a size of 211 nm.
  • Example 86 The nanoparticle composition prepared in Example 85 was purified using a micro-cooled centrifuge (3740, Kubota), and 1- (2- (tert-butyl) -4- (3,5-dimethylisoxazole- The concentration of 4-yl) -1H-imidazol-5-yl) -3- (4-((6,7-dimethoxyquinolin-4-yl) oxy) -3-fluorophenyl) urea was 0.77 mg / mL. .
  • nanoparticle composition When the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series), 1- (2- (tert-butyl) -4- (3,5-dimethylisoxazol-4-yl) -1H-imidazole- The average particle size of 5-yl) -3- (4-((6,7-dimethoxyquinolin-4-yl) oxy) -3-fluorophenyl) urea was a nanoparticle composition having a size of 133 nm.
  • Example 87 According to Example 85, 1- (2- (tert-butyl) -4- (3,5-dimethylisoxazol-4-yl) -1H-imidazol-5-yl) -3- (4-(( 6,7-Dimethoxyquinolin-4-yl) oxy) -3-fluorophenyl) urea was converted to 1- (4-((6,7-dimethoxyquinolin-4-yl) oxy) -2-fluorophenyl) -3- By changing to (1,5,5-trimethyl-4,5,6,7-tetrahydro-1H-indazol-3-yl) urea hydrochloride, 1- (4-((6,7-dimethoxyquinoline- 4-yl) oxy) -2-fluorophenyl) -3- (1,5,5-trimethyl-4,5,6,7-tetrahydro-1H-indazol-3-yl) urea hydrochloride, hydroxypropylcellulose ( HPC), poly
  • Example 88 The nanoparticle composition prepared in Example 87 was purified using a micro-cooled centrifuge (3740, Kubota), and 1- (4-((6,7-dimethoxyquinolin-4-yl) oxy) -2 The concentration of -fluorophenyl) -3- (1,5,5-trimethyl-4,5,6,7-tetrahydro-1H-indazol-3-yl) urea hydrochloride was 3.75 mg / mL.
  • the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series) and 1- (4-((6,7-dimethoxyquinolin-4-yl) oxy) -2-fluorophenyl) -3- (1 , 5,5-Trimethyl-4,5,6,7-tetrahydro-1H-indazol-3-yl) urea hydrochloride was a nanoparticle composition with an average particle size of 617 nm.
  • Reference example 4 1- (4-((6,7-dimethoxyquinolin-4-yl) oxy) -3-fluorophenyl) -3- (1,5,5-trimethyl-4,5,6,7-tetrahydro-1H- Indazol-3-yl) urea hydrochloride was prepared according to the method disclosed in JP2003-12668.
  • Example 89 According to Example 85, 1- (2- (tert-butyl) -4- (3,5-dimethylisoxazol-4-yl) -1H-imidazol-5-yl) -3- (4-(( 6,7-Dimethoxyquinolin-4-yl) oxy) -3-fluorophenyl) urea was converted to 1- (4-((6,7-dimethoxyquinolin-4-yl) oxy) -3-fluorophenyl) -3- By changing to (1,5,5-trimethyl-4,5,6,7-tetrahydro-1H-indazol-3-yl) urea hydrochloride, 1- (4-((6,7-dimethoxyquinoline- 4-yl) oxy) -3-fluorophenyl) -3- (1,5,5-trimethyl-4,5,6,7-tetrahydro-1H-indazol-3-yl) urea hydrochloride, hydroxypropylcellulose ( HPC), poly
  • Example 90 According to Example 85, 1- (2- (tert-butyl) -4- (3,5-dimethylisoxazol-4-yl) -1H-imidazol-5-yl) -3- (4-(( 6,7-Dimethoxyquinolin-4-yl) oxy) -3-fluorophenyl) urea is converted to 1- (4-((6,7-dimethoxyquinolin-4-yl) oxy) phenyl) -3- (5-isopropyl 1- (4-((6,7-dimethoxyquinolin-4-yl) oxy) phenyl) -3- (5-isopropylisoxazol-3-yl) by changing to isoxazol-3-yl) urea Urea, hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, glucose aqueous solution, composition 1- (4-((6,7-dimethoxyquinolin-4-
  • Example 91 The nanoparticle composition prepared in Example 90 was purified using a micro-cooled centrifuge (3740, Kubota), and 1- (4-((6,7-dimethoxyquinolin-4-yl) oxy) phenyl) The concentration of -3- (5-isopropylisoxazol-3-yl) urea was 1.34 mg / mL.
  • the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series) and 1- (4-((6,7-dimethoxyquinolin-4-yl) oxy) phenyl) -3- (5-isopropylisoxazole)
  • the average particle size of -3-yl) urea was a nanoparticle composition of 145 nm.
  • Example 92 According to Example 85, 1- (2- (tert-butyl) -4- (3,5-dimethylisoxazol-4-yl) -1H-imidazol-5-yl) -3- (4-(( 6,7-Dimethoxyquinolin-4-yl) oxy) -3-fluorophenyl) urea to 1- (4-((6,7-dimethoxyquinolin-4-yl) oxy) phenyl) -3- (5-methyl
  • isoxazol-3-yl) urea hydrochloride 1- (4-((6,7-dimethoxyquinolin-4-yl) oxy) phenyl) -3- (5-methylisoxazole-3- Yl) urea hydrochloride, hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, aqueous glucose solution, the composition is 1- (4-((6,7-dimethoxyquinoline
  • Example 93 The nanoparticle composition prepared in Example 92 was purified using a micro-cooled centrifuge (3740, Kubota), and 1- (4-((6,7-dimethoxyquinolin-4-yl) oxy) phenyl) The concentration of -3- (5-methylisoxazol-3-yl) urea hydrochloride was 1.34 mg / mL.
  • nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series), 1- (4-((6,7-dimethoxyquinolin-4-yl) oxy) phenyl) -3- (5-methylisoxazole
  • the average particle size of -3-yl) urea hydrochloride was a 169 nm nanoparticle composition.
  • Example 94 According to Example 85, 1- (2- (tert-butyl) -4- (3,5-dimethylisoxazol-4-yl) -1H-imidazol-5-yl) -3- (4-(( 6,7-Dimethoxyquinolin-4-yl) oxy) -3-fluorophenyl) urea was converted to 1- (5- (tert-butyl) isoxazol-3-yl) -3- (4-((6,7- By changing to dimethoxyquinolin-4-yl) oxy) -3-methoxyphenyl) urea hydrochloride, 1- (5- (tert-butyl) isoxazol-3-yl) -3- (4-((6 , 7-Dimethoxyquinolin-4-yl) oxy) -3-methoxyphenyl) urea hydrochloride, hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mann
  • Example 95 The nanoparticle composition prepared in Example 94 was purified using a micro-cooled centrifuge (3740, Kubota), and 1- (5- (tert-butyl) isoxazol-3-yl) -3- (4 The concentration of-((6,7-dimethoxyquinolin-4-yl) oxy) -3-methoxyphenyl) urea hydrochloride was 1.54 mg / mL.
  • nanoparticle composition When the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series), 1- (5- (tert-butyl) isoxazol-3-yl) -3- (4-((6,7-dimethoxyquinoline) The average particle diameter of -4-yl) oxy) -3-methoxyphenyl) urea hydrochloride was a nanoparticle composition having a size of 83 nm.
  • Example 96 N- [2-Chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate in a zirconia container (Sinky) Weigh, and then add hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, water, make a suspension, zirconia balls (zirconia ground balls, YTZ diameter 0.1 mm, Nikkato) Put in the lid.
  • HPC hydroxypropylcellulose
  • BAC benzalkonium chloride
  • BAC benzalkonium chloride
  • D-mannitol water
  • zirconia balls zirconia ground balls, YTZ diameter 0.1 mm, Nikkato
  • the concentration of hydrochloride hydrate was 2.06 mg / mL.
  • the average particle size of isoxazol-3-yl) urea hydrochloride hydrate was a nanoparticle composition having a diameter of 206 nm.
  • this method does not yield a nanoparticle composition, and [4- [N- (2,3-dimethyl-2H-indazol-6-yl) -N-methylamino] pyrimidin-2-ylamino] -2 -A solution of methylbenzenesulfonamide hydrochloride with a concentration of 2.94 mg / mL was obtained.
  • Example 98 1-[[4-[(4-Fluoro-2-methyl-1H-indol-5-yl) oxy] -6-methoxyquinolin-7-yl] oxymethyl] cyclopropane-1-in a zirconia container (Sinky) Amine (Shanghai Lollane, the same shall apply hereinafter) is weighed, and then hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride BAC, D-mannitol, water are added to form a suspension, and zirconia balls (zirconia ground balls, YTZ) are added. (Diameter 0.1 mm, Nikkato) was put and covered.
  • HPC hydroxypropylcellulose
  • polysorbate 80 polysorbate 80
  • benzalkonium chloride BAC benzalkonium chloride BAC
  • D-mannitol water
  • zirconia balls zirconia ground balls, YTZ
  • Example 99 The nanoparticle composition prepared in Example 98 was purified using a micro-cooling centrifuge (3740, Kubota) (17000 rpm, 5 minutes), and 1-[[4-[(4-fluoro-2-methyl- The concentration of 1H-indol-5-yl) oxy] -6-methoxyquinolin-7-yl] oxymethyl] cyclopropan-1-amine was 6.67 mg / mL. When the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series), 1-[[4-[(4-fluoro-2-methyl-1H-indol-5-yl) oxy] -6-methoxyquinoline was obtained. -7-yl] oxymethyl] cyclopropan-1-amine was a nanoparticle composition with an average particle size of 188 nm.
  • Example 100 The nanoparticle composition prepared in Example 98 was purified using a micro-cooled centrifuge (3740, Kubota) (17000 rpm, 15 minutes), and 1-[[4-[(4-fluoro-2-methyl- The concentration of 1H-indol-5-yl) oxy] -6-methoxyquinolin-7-yl] oxymethyl] cyclopropan-1-amine was 4.78 mg / mL. When the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series), 1-[[4-[(4-fluoro-2-methyl-1H-indol-5-yl) oxy] -6-methoxyquinoline was obtained. -7-yl] oxymethyl] cyclopropan-1-amine was a nanoparticle composition with an average particle size of 165 nm.
  • Example 101 The nanoparticle composition prepared in the same manner as in Example 98 was purified using a micro-cooled centrifuge (3740, Kubota) (17000 rpm, 100 minutes), and 1-[[4-[(4-fluoro- The concentration of 2-methyl-1H-indol-5-yl) oxy] -6-methoxyquinolin-7-yl] oxymethyl] cyclopropan-1-amine was 2.34 mg / mL. When the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series), 1-[[4-[(4-fluoro-2-methyl-1H-indol-5-yl) oxy] -6-methoxyquinoline was obtained. -7-yl] oxymethyl] cyclopropan-1-amine was a nanoparticle composition with an average particle size of 106 nm.
  • Example 102 The nanoparticle composition prepared in Example 98 was purified using a micro-cooled centrifuge (3740, Kubota) (17000 rpm, 75 minutes), and 1-[[4-[(4-fluoro-2-methyl- The concentration of 1H-indol-5-yl) oxy] -6-methoxyquinolin-7-yl] oxymethyl] cyclopropan-1-amine was 1.77 mg / mL. When the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series), 1-[[4-[(4-fluoro-2-methyl-1H-indol-5-yl) oxy] -6-methoxyquinoline was obtained. -7-yl] oxymethyl] cyclopropan-1-amine was a nanoparticle composition with an average particle size of 118 nm.
  • the nanoparticle composition was purified using a micro-cooled centrifuge (3740, Kubota) (17000 rpm, 10 minutes) to give 4- [3-chloro-4- (cyclopropylcarbamoylamino) phenoxy] -7-methoxy
  • concentration of quinoline-6-carboxamide was 2.39 mg / mL.
  • the average particle size of 4- [3-chloro-4- (cyclopropylcarbamoylamino) phenoxy] -7-methoxyquinoline-6-carboxamide was determined by measuring the nanoparticle composition using a Zeta Sizer (Malvern instruments Nano series). Was a nanoparticle composition of 228 nm.
  • This nanoparticle composition was purified using a micro-cooled centrifuge (3740, Kubota) (17000 rpm, 20 minutes), and (3Z) -3-[( ⁇ 4- [N-methyl-2- (4- The concentration of methyl piperazin-1-yl) acetamido] phenyl ⁇ amino) (phenyl) methylidene] -2-oxo-2 ⁇ 3-dihydro-1H-indole-6-carboxylate was 1.60 mg / mL.
  • Example 105 E) -N- [4- (3-Chloro-4-fluoroanilino) -7-methoxyquinazolin-6-yl] -4-piperidin-1-ylbut-2-enamide (RennoTech) in a zirconia container (Sinky) , The same applies hereinafter), and then hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, water added to form a suspension, zirconia balls (zirconia ground balls, YTZ diameter 0.1) mm, Nikkato) and put a lid.
  • HPC hydroxypropylcellulose
  • polysorbate 80 polysorbate 80
  • BAC benzalkonium chloride
  • D-mannitol water added to form a suspension
  • zirconia balls zirconia ground balls, YTZ diameter 0.1) mm, Nikkato
  • Example 106 The nanoparticle composition prepared in Example 105 was purified using a micro-cooled centrifuge (3740, Kubota) (17000 rpm, 5 minutes), and (E) -N- [4- (3-chloro-4- The concentration of (fluoroanilino) -7-methoxyquinazolin-6-yl] -4-piperidin-1-ylbut-2-enamide was 6.10 mg / mL.
  • Example 107 The nanoparticle composition prepared in Example 105 was purified using a micro-cooled centrifuge (3740, Kubota) (17000 rpm, 10 minutes), and (E) -N- [4- (3-chloro-4- The concentration of (fluoroanilino) -7-methoxyquinazolin-6-yl] -4-piperidin-1-ylbut-2-enamide was 4.66 mg / mL.
  • Example 108 The nanoparticle composition prepared in the same manner as in Example 105 was purified using a micro-cooled centrifuge (3740, Kubota) (17000 rpm, 60 minutes), and (E) -N- [4- (3- The concentration of (chloro-4-fluoroanilino) -7-methoxyquinazolin-6-yl] -4-piperidin-1-ylbut-2-enamide was 2.39 mg / mL.
  • Example 109 The nanoparticle composition prepared in Example 105 was purified using a micro-cooled centrifuge (3740, Kubota) (17000 rpm, 30 minutes), and (E) -N- [4- (3-chloro-4- The concentration of fluoroanilino) -7-methoxyquinazolin-6-yl] -4-piperidin-1-ylbut-2-enamide was 1.35 mg / mL.
  • Example 110 Weigh N- [4-[[3-chloro-4-[(3-fluorobenzyl) oxy] phenyl] amino] quinazolin-6-yl] acrylamide (Shanghai Lollane, the same below) in a zirconia container (Sinky), Next, hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, and water are added to form a suspension, and zirconia balls (zirconia ground balls, YTZ diameter 0.1 mm, Nikkato) are placed on the lid. Did.
  • the concentration of the nanoparticle composition was measured, the concentration of N- [4-[[3-chloro-4-[(3-fluorobenzyl) oxy] phenyl] amino] quinazolin-6-yl] acrylamide was 8.93 mg / mL.
  • the average particle size of acrylamide was a nanoparticle composition having 334 nm.
  • Example 111 The nanoparticle composition prepared in Example 110 was purified using a micro-cooled centrifuge (3740, Kubota), and N- [4-[[3-chloro-4-[(3-fluorobenzyl) oxy] The concentration of phenyl] amino] quinazolin-6-yl] acrylamide was 4.25 mg / mL.
  • the average particle size of acrylamide was a nanoparticle composition having a particle size of 252 nm.
  • Example 112 The nanoparticle composition prepared in the same manner as in Example 110 was purified using a micro-cooled centrifuge (3740, Kubota), and N- [4-[[3-chloro-4-[(3-fluoro The concentration of benzyl) oxy] phenyl] amino] quinazolin-6-yl] acrylamide was 2.45 mg / mL.
  • the average particle size of acrylamide was a nanoparticle composition with 204 nm.
  • Example 113 The nanoparticle composition prepared in Example 110 was purified using a micro-cooled centrifuge (3740, Kubota), and N- [4-[[3-chloro-4-[(3-fluorobenzyl) oxy] The concentration of phenyl] amino] quinazolin-6-yl] acrylamide was 1.40 mg / mL.
  • the average particle size of acrylamide was a nanoparticle composition having a particle size of 185 nm.
  • Example 114 1-N- [4- (6,7-Dimethoxyquinolin-6-4-yl) oxyphenyl] -1-N '-(4-fluorophenyl) cyclopropane-1,1-dicarboxyl in a zirconia container (Sinky) Amide (Shanghai Lollane, the same applies below) is weighed, then hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, water is added to form a suspension, and zirconia balls (zirconia ground balls) , YTZ diameter 0.1 mm, Nikkato) and put a lid.
  • HPC hydroxypropylcellulose
  • polysorbate 80 polysorbate 80
  • BAC benzalkonium chloride
  • D-mannitol water is added to form a suspension
  • zirconia balls zirconia ground balls
  • YTZ diameter 0.1 mm Nikkato
  • 1-N- [4- (6,7-dimethoxyquinolin-6-4-yl) oxyphenyl] -1-N ′-(4 -Fluorophenyl) cyclopropane-1,1-dicarboxamide was a nanoparticle composition having an average particle size of 432 nm.
  • Example 115 The nanoparticle composition prepared in Example 114 was purified using a micro-cooled centrifuge (3740, Kubota), and 1-N- [4- (6,7-dimethoxyquinolin-6-4-yl) oxyphenyl was obtained. The concentration of] -1-N ′-(4-fluorophenyl) cyclopropane-1,1-dicarboxamide was 2.00 mg / mL.
  • nanoparticle composition When the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series), 1-N- [4- (6,7-dimethoxyquinolin-6-4-yl) oxyphenyl] -1-N ′-(4 -Fluorophenyl) cyclopropane-1,1-dicarboxamide was a nanoparticle composition having an average particle size of 266 nm.
  • Example 116 1-N- [4- (6,7-Dimethoxyquinolin-6-4-yl) oxyphenyl] -1-N '-(4-fluorophenyl) cyclopropane-1,1-dicarboxyl in a zirconia container (Sinky) Weigh amide, then add hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, water, make suspension, zirconia balls (zirconia ground balls, YTZ diameter 1.0 mm, Nikkato) ) And put a lid.
  • HPC hydroxypropylcellulose
  • polysorbate 80 polysorbate 80
  • BAC benzalkonium chloride
  • D-mannitol water
  • make suspension zirconia balls
  • zirconia ground balls zirconia ground balls, YTZ diameter 1.0 mm, Nikkato
  • 1-N- [4- (6,7-dimethoxyquinolin-6-4-yl) oxyphenyl] -1-N ′-(4 -Fluorophenyl) cyclopropane-1,1-dicarboxamide was a nanoparticle composition having an average particle size of 642 nm.
  • Example 117 The nanoparticle composition prepared in Example 116 was purified using a micro-cooled centrifuge (3740, Kubota), and 1-N- [4- (6,7-dimethoxyquinolin-6-4-yl) oxyphenyl was obtained. The concentration of] -1-N ′-(4-fluorophenyl) cyclopropane-1,1-dicarboxamide was 0.97 mg / mL.
  • nanoparticle composition When the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series), 1-N- [4- (6,7-dimethoxyquinolin-6-4-yl) oxyphenyl] -1-N ′-(4 The average particle size of -fluorophenyl) cyclopropane-1,1-dicarboxamide was a nanoparticle composition having a particle size of 314 nm.
  • Example 118 1-N- [4- (6,7-Dimethoxyquinolin-6-4-yl) oxyphenyl] -1-N '-(4-fluorophenyl) cyclopropane-1,1-dicarboxyl in a zirconia container (Sinky)
  • the amide was weighed, and then hydroxypropylcellulose (hydroxypropylcellulose (HPC), water was added to form a suspension, and a zirconia ball (zirconia ground ball, YTZ diameter 0.1 mm, Nikkato) was placed on the lid.
  • HPC hydroxypropylcellulose
  • concentration of the nanoparticle composition was measured, 1-N- [4- (6,7-dimethoxyquinolin-6-4-yl) oxyphenyl] -1-N ′-(4-fluorophenyl) cyclopropane-1 Therefore, the concentration of 1-dicarboxamide was 8.94 mg / mL.
  • nanoparticle composition When the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series), 1-N- [4- (6,7-dimethoxyquinolin-6-4-yl) oxyphenyl] -1-N ′-(4 -Fluorophenyl) cyclopropane-1,1-dicarboxamide was a nanoparticle composition having an average particle size of 271 nm.
  • Example 119 The nanoparticle composition prepared in Example 118 was purified using a micro refrigerated centrifuge (3740, Kubota) to give 1-N- [4- (6,7-dimethoxyquinolin-6-4-yl) oxyphenyl.
  • the concentration of] -1-N ′-(4-fluorophenyl) cyclopropane-1,1-dicarboxamide was 2.31 mg / mL.
  • nanoparticle composition When the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series), 1-N- [4- (6,7-dimethoxyquinolin-6-4-yl) oxyphenyl] -1-N ′-(4 -Fluorophenyl) cyclopropane-1,1-dicarboxamide was a nanoparticle composition having an average particle size of 338 nm.
  • Example 120 The nanoparticle composition prepared in Example 118 was purified using a micro refrigerated centrifuge (3740, Kubota) to give 1-N- [4- (6,7-dimethoxyquinolin-6-4-yl) oxyphenyl.
  • the concentration of] -1-N ′-(4-fluorophenyl) cyclopropane-1,1-dicarboxamide was 1.06 mg / mL.
  • nanoparticle composition When the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series), 1-N- [4- (6,7-dimethoxyquinolin-6-4-yl) oxyphenyl] -1-N ′-(4 -Fluorophenyl) cyclopropane-1,1-dicarboxamide was a nanoparticle composition having an average particle size of 326 nm.
  • Example 121 1-N- [4- (6,7-Dimethoxyquinolin-6-4-yl) oxyphenyl] -1-N '-(4-fluorophenyl) cyclopropane-1,1-dicarboxyl in a zirconia container (Sinky)
  • the amide was weighed, then polysorbate 80 and water were added to form a suspension, and zirconia balls (zirconia crushed balls, YTZ diameter 0.1 mm, Nikkato) were placed and capped.
  • concentration of the nanoparticle composition was measured, 1-N- [4- (6,7-dimethoxyquinolin-6-4-yl) oxyphenyl] -1-N ′-(4-fluorophenyl) cyclopropane-1 Therefore, the concentration of 1-dicarboxamide was 4.97 mg / mL.
  • nanoparticle composition When the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series), 1-N- [4- (6,7-dimethoxyquinolin-6-4-yl) oxyphenyl] -1-N ′-(4 -Fluorophenyl) cyclopropane-1,1-dicarboxamide was a nanoparticle composition having an average particle size of 273 nm.
  • Example 122 1-N- [4- (6,7-Dimethoxyquinolin-6-4-yl) oxyphenyl] -1-N '-(4-fluorophenyl) cyclopropane-1,1-dicarboxyl in a zirconia container (Sinky)
  • the amide was weighed, then polysorbate 80 and water were added to form a suspension, and zirconia balls (zirconia crushed balls, YTZ diameter 0.1 mm, Nikkato) were placed and capped.
  • Wet grinding (Mill / Mix 2000rpm, 1 minute loop / 30 times / -10 ° C) using a rotating / revolving nano-pulverizer (NP-100, Sinky).
  • concentration of the nanoparticle composition was measured, 1-N- [4- (6,7-dimethoxyquinolin-6-4-yl) oxyphenyl] -1-N ′-(4-fluorophenyl) cyclopropane-1 Therefore, the concentration of 1-dicarboxamide was 5.11 mg / mL.
  • nanoparticle composition When the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series), 1-N- [4- (6,7-dimethoxyquinolin-6-4-yl) oxyphenyl] -1-N ′-(4 -Fluorophenyl) cyclopropane-1,1-dicarboxamide was a nanoparticle composition having an average particle size of 184 nm.
  • Example 123 The nanoparticle composition prepared in Example 122 was purified using a micro-cooled centrifuge (3740, Kubota) (17000 rpm, 1 minute), and 1-N- [4- (6,7-dimethoxyquinoline 6- The concentration of 4-yl) oxyphenyl] -1-N ′-(4-fluorophenyl) cyclopropane-1,1-dicarboxamide was 4.77 mg / mL.
  • Example 124 The nanoparticle composition prepared in Example 122 was purified using a micro-cooled centrifuge (3740, Kubota) (17000 rpm, 10 minutes), and 1-N- [4- (6,7-dimethoxyquinoline 6- The concentration of 4-yl) oxyphenyl] -1-N ′-(4-fluorophenyl) cyclopropane-1,1-dicarboxamide was 2.21 mg / mL.
  • nanoparticle composition When the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series), 1-N- [4- (6,7-dimethoxyquinolin-6-4-yl) oxyphenyl] -1-N ′-(4 -Fluorophenyl) cyclopropane-1,1-dicarboxamide was a nanoparticle composition having an average particle size of 158 nm.
  • Example 125 Weigh 6- (6,7-dimethoxyquinazolin-4-yl) oxy-N, 2-dimethyl-1-benzofuran-3-carboxamide (Shanghai Lollane, the same applies hereinafter) into a zirconia container (Sinky), then polysorbate 80 Water was added to form a suspension, and zirconia balls (zirconia crushed balls, YTZ diameter 0.1 mm, Nikkato) were placed and capped.
  • concentration of this nanoparticle composition was measured, the concentration of 6- (6,7-dimethoxyquinazolin-4-yl) oxy-N, 2-dimethyl-1-benzofuran-3-carboxamide was 0.48 mg / mL. It was.
  • the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series) to determine the 6- (6,7-dimethoxyquinazolin-4-yl) oxy-N, 2-dimethyl-1-benzofuran-3-carboxamide.
  • the average particle size was a nanoparticle composition having a size of 264 nm.
  • Example 126 Weigh 6- (6,7-dimethoxyquinazolin-4-yl) oxy-N, 2-dimethyl-1-benzofuran-3-carboxamide in a zirconia container (Sinky), then add polysorbate 80, water and suspend A zirconia ball (zirconia crushed ball, YTZ diameter 0.1 mm, Nikkato) was put into the liquid and the lid was put on.
  • a zirconia container Tinky
  • a zirconia ball zirconia crushed ball, YTZ diameter 0.1 mm, Nikkato
  • concentration of this nanoparticle composition was measured, the concentration of 6- (6,7-dimethoxyquinazolin-4-yl) oxy-N, 2-dimethyl-1-benzofuran-3-carboxamide was 0.44 mg / mL. It was.
  • the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series) to determine the 6- (6,7-dimethoxyquinazolin-4-yl) oxy-N, 2-dimethyl-1-benzofuran-3-carboxamide.
  • the average particle diameter was a 174 nm nanoparticle composition.
  • Example 127 Weigh 6- (6,7-dimethoxyquinazolin-4-yl) oxy-N, 2-dimethyl-1-benzofuran-3-carboxamide in a zirconia container (Sinky), then add polysorbate 80, water and suspend A zirconia ball (zirconia crushed ball, YTZ diameter 0.1 mm, Nikkato) was put into the liquid and the lid was put on.
  • a zirconia container Tinky
  • a zirconia ball zirconia crushed ball, YTZ diameter 0.1 mm, Nikkato
  • concentration of this nanoparticle composition was measured, the concentration of 6- (6,7-dimethoxyquinazolin-4-yl) oxy-N, 2-dimethyl-1-benzofuran-3-carboxamide was 5.22 mg / mL. It was.
  • the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series) to determine the 6- (6,7-dimethoxyquinazolin-4-yl) oxy-N, 2-dimethyl-1-benzofuran-3-carboxamide.
  • the average particle size was a nanoparticle composition having a particle size of 281 nm.
  • Example 128 The nanoparticle composition prepared in Example 127 was purified using a micro-cooled centrifuge (3740, Kubota), and 6- (6,7-dimethoxyquinazolin-4-yl) oxy-N, 2-dimethyl- The concentration of 1-benzofuran-3-carboxamide was 1.18 mg / mL. The nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series) to determine 6- (6,7-dimethoxyquinazolin-4-yl) oxy-N, 2-dimethyl-1-benzofuran-3-carboxamide. The average particle size of 218 nm was a nanoparticle composition.
  • Example 129 N- (3-ethynylphenyl) -7,8,10,11,13,14-hexahydro- [1,4,7,10] tetraoxacyclododecino [2,3-g in a zirconia container (Sinky) ] Weigh quinazolin-4-amine (Shanghai Lollane, the same applies below), then add hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, water, make a suspension, zirconia A ball (zirconia ground ball, YTZ diameter 0.1 mm, Nikkato) was placed and covered.
  • HPC hydroxypropylcellulose
  • polysorbate 80 polysorbate 80
  • BAC benzalkonium chloride
  • D-mannitol water
  • N- (3-ethynylphenyl) -7,8,10,11,13,14-hexahydro- [1,4,7,10] tetraoxacyclododecino The concentration of 2,3-g] quinazolin-4-amine was 5.32 mg / mL.
  • the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series) and N- (3-ethynylphenyl) -7,8,10,11,13,14-hexahydro- [1,4,7,10 ] Tetraoxacyclododecino [2,3-g] quinazolin-4-amine was a nanoparticle composition having an average particle size of 197 nm.
  • Example 130 The nanoparticle composition prepared in Example 129 was purified using a micro-cooled centrifuge (3740, Kubota), and N- (3-ethynylphenyl) -7,8,10,11,13,14-hexahydro
  • concentration of-[1,4,7,10] tetraoxacyclododecino [2,3-g] quinazolin-4-amine was 2.20 mg / mL.
  • the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series) and N- (3-ethynylphenyl) -7,8,10,11,13,14-hexahydro- [1,4,7,10 ] Tetraoxacyclododecino [2,3-g] quinazolin-4-amine was a nanoparticle composition having an average particle size of 196 nm.
  • Example 131 N- (3-ethynylphenyl) -7,8,10,11,13,14-hexahydro- [1,4,7,10] tetraoxacyclododecino [2,3-g in a zirconia container (Sinky) ] Weigh quinazolin-4-amine, then add hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, water to make a suspension, and add zirconia balls (zirconia ground balls, YTZ) (Diameter 0.1 mm, Nikkato) was put and covered.
  • HPC hydroxypropylcellulose
  • polysorbate 80 polysorbate 80
  • BAC benzalkonium chloride
  • BAC benzalkonium chloride
  • YTZ zirconia ground balls
  • N- (3-ethynylphenyl) -7,8,10,11,13,14-hexahydro- [1,4,7,10] tetraoxacyclododecino The concentration of 2,3-g] quinazolin-4-amine was 2.66 mg / mL.
  • the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series) and N- (3-ethynylphenyl) -7,8,10,11,13,14-hexahydro- [1,4,7,10 ] Tetraoxacyclododecino [2,3-g] quinazolin-4-amine was a nanoparticle composition having an average particle size of 196 nm.
  • HPC hydroxypropylcellulose
  • This nanoparticle composition was purified using a micro-cooled centrifuge (3740, Kubota) (17000 rpm, 19 minutes), and 3- (2-imidazo [1,2-b] pyridazin-3-ylethynyl) -4
  • concentration of -methyl-N- [4-[(4-methylpiperazin-1-yl) methyl] -3- (trifluoromethyl) phenyl] benzanide was 2.43 mg / mL.
  • nanoparticle composition When the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series), 3- (2-imidazo [1,2-b] pyridazin-3-ylethynyl) -4-methyl-N- [4-[( The average particle size of 4-methylpiperazin-1-yl) methyl] -3- (trifluoromethyl) phenyl] benzanide was a nanoparticle composition having a particle size of 194 nm.
  • Example 133 N-methyl-2-[[3-[(E) -2-pyridin-2-ylethenyl] -1H-indazol-6-yl] sulfanyl] benzamide in a zirconia container (Sinky) (Sun-shine Chemical, the same applies hereinafter)
  • HPC hydroxypropylcellulose
  • polysorbate 80 polysorbate 80
  • BAC benzalkonium chloride
  • D-mannitol water
  • zirconia balls zirconia ground balls, YTZ diameter 0.1 mm, Nikkato
  • the concentration of N-methyl-2-[[3-[(E) -2-pyridin-2-ylethenyl] -1H-indazol-6-yl] sulfanyl] benzamide was 9.46. mg / mL.
  • the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series) and N-methyl-2-[[3-[(E) -2-pyridin-2-ylethenyl] -1H-indazol-6-yl [Sulfanyl] benzamide was a nanoparticle composition with an average particle size of 127 nm.
  • Example 134 The nanoparticle composition prepared in Example 133 was purified using a micro-cooled centrifuge (3740, Kubota), and N-methyl-2-[[3-[(E) -2-pyridin-2-ylethenyl The concentration of] -1H-indazol-6-yl] sulfanyl] benzamide was 1.84 mg / mL.
  • the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series) and N-methyl-2-[[3-[(E) -2-pyridin-2-ylethenyl] -1H-indazol-6-yl
  • the average particle size of [sulfanyl] benzamide was a nanoparticle composition of 125 nm.
  • Example 135 N-methyl-2-[[3-[(E) -2-pyridin-2-ylethenyl] -1H-indazol-6-yl] sulfanyl] benzamide was weighed into a zirconia container (Sinky), and then hydroxypropylcellulose ( Add HPC, water, make a suspension, put a zirconia ball (zirconia pulverized ball, YTZ diameter 0.1 mm, Nikkato) and cover it with a rotating / revolving nano pulverizer (NP-100, sinky) Grind (Mill / Mix 2000 rpm, 1 minute loop / 30 times / -10 ° C), then add and dilute glucose solution (Mill / Mix 400 rpm, 5 minutes), screen remove zirconia balls (Clean Media 2000 rpm 1 minute, Mill / Mix 400 rpm, 1 minute) to obtain a nanoparticle composition.
  • NP-100 rotating / revolving nano pulver
  • HPC hydroxypropylcellulose
  • the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series) and N-methyl-2-[[3-[(E) -2-pyridin-2-ylethenyl] -1H-indazol-6-yl [Sulfanyl] benzamide was a nanoparticle composition with an average particle size of 159 nm.
  • Example 136 The nanoparticle composition prepared in Example 134 was purified using a micro-cooled centrifuge (3740, Kubota), and N-methyl-2-[[3-[(E) -2-pyridin-2-ylethenyl The concentration of] -1H-indazol-6-yl] sulfanyl] benzamide was 2.42 mg / mL.
  • the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series) and N-methyl-2-[[3-[(E) -2-pyridin-2-ylethenyl] -1H-indazol-6-yl
  • the average particle size of [sulfanyl] benzamide was a nanoparticle composition with 84 nm.
  • Example 141 In accordance with Example 133, N-methyl-2-[[3-[(E) -2-pyridin-2-ylethenyl] -1H-indazole-6 was obtained by changing the surfactant from polysorbate 80 to Tyloxapol.
  • a nanoparticle composition having an average particle size of 128 nm
  • Example 144 According to Example 133, N-methyl-2-[[3-[(E) -2-pyridin-2-ylethenyl] -1H-indazole was obtained by changing the surfactant from polysorbate 80 to sodium lauryl sulfate.
  • Example 145 Weigh N- (3-ethynylphenyl) -6,7-bis (2-methoxyethoxy) quinazolin-4-amine hydrochloride (LC Laboratories, the same applies hereinafter) into a zirconia container (Sinky), and then hydroxypropylcellulose (HPC ), Polysorbate 80, benzalkonium chloride (BAC), D-mannitol and water were added to form a suspension, and zirconia balls (zirconia crushed balls, YTZ diameter 0.1 mm, Nikkato) were placed and capped.
  • concentration of this nanoparticle composition was measured, the concentration of N- (3-ethynylphenyl) -6,7-bis (2-methoxyethoxy) quinazolin-4-amine hydrochloride was 10.10 mg / mL.
  • the average particle size of N- (3-ethynylphenyl) -6,7-bis (2-methoxyethoxy) quinazolin-4-amine hydrochloride was determined by measuring the nanoparticle composition using a Zeta Sizer (Malvern instruments Nano series). Was a 109 nm nanoparticle composition.
  • Example 148 According to Example 145, N- (3-ethynylphenyl) -6,7-bis (2-methoxyethoxy) quinazolin-4-amine hydrochloride was converted to N- (3-ethynylphenyl) -6,7-bis ( 2-methoxyethoxy) quinazolin-4-amine (COMBI-BLOCKS, the same shall apply hereinafter), thickening agent from hydroxypropylcellulose (HPC) to carboxymethylcellulose (CMC Na), 80 polysorbate from 0.025 to 0.001 parts by weight N- (3-ethynylphenyl) -6,7-bis (2-methoxyethoxy) quinazolin-4-amine, carboxy by removing benzalkonium chloride (BAC) and D-mannitol from the composition Methylcellulose (CMC Na), polysorbate 80, with aqueous glucose solution, composition is N- (3-ethynylphenyl) -6,7-bis
  • Example 149 According to Example 145, N- (3-ethynylphenyl) -6,7-bis (2-methoxyethoxy) quinazolin-4-amine hydrochloride was converted to N- (3-ethynylphenyl) -6,7-bis ( 2-Methoxyethoxy) quinazolin-4-amine, the thickening agent was changed from hydroxypropylcellulose (HPC) to carboxymethylcellulose (CMC Na), and the polysorbate 80 amount was changed from 0.025 parts by weight to 0.125 parts by weight.
  • HPC hydroxypropylcellulose
  • CMC Na carboxymethylcellulose
  • N- (3-ethynylphenyl) -6,7-bis (2-methoxyethoxy) quinazolin-4-amine hydrochloride, carboxymethylcellulose (CMC Na), Polysorbate 80, composition of N- (3-ethynylphenyl) -6,7-bis (2-methoxyethoxy) quinazolin-4-amine hydrochloride / carboxymethylcellulose (CMC Na) / polysorbate 80 1 part by weight with aqueous glucose solution /0.05 weight part / 0.125 weight Part, N- (3-ethynylphenyl) -6,7-bis (2-methoxyethoxy) quinazolin-4-amine hydrochloride concentration 6.76 mg / mL, average particle size 258 nm nanoparticle composition was obtained .
  • Example 150 According to Example 145, N- (3-ethynylphenyl) -6,7-bis (2-methoxyethoxy) quinazolin-4-amine hydrochloride was converted to N- (3-ethynylphenyl) -6,7-bis ( 2-methoxyethoxy) quinazolin-4-amine, hydroxypropylcellulose (HPC) content from 0.125 to 0.5 parts by weight, polysorbate 80 content from 0.025 to 0.1 parts by weight, benzalkonium chloride (BAC) content N- (3-ethynylphenyl) -6,7-bis (2-methoxyethoxy) quinazoline--by changing 0.00025 parts by weight to 0.001 parts by weight and D-mannitol from 0.025 parts by weight to 0.1 parts by weight.
  • HPC hydroxypropylcellulose
  • BAC benzalkonium chloride
  • Example 152 Weigh N- (3-chloro-4-fluorophenyl) -7-methoxy-6- (3-morpholin-4-ylpropoxy) quinazolin-4-amine (LC laboratories, the same applies below) into a zirconia container (Sinky) Then add hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, water, make a suspension, and add zirconia balls (zirconia ground balls, YTZ diameter 0.1 mm, Nikkato) And put the lid on.
  • HPC hydroxypropylcellulose
  • polysorbate 80 polysorbate 80
  • BAC benzalkonium chloride
  • D-mannitol water
  • zirconia balls zirconia ground balls, YTZ diameter 0.1 mm, Nikkato
  • concentration of this nanoparticle composition was 11.20.
  • nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series), N- (3-chloro-4-fluorophenyl) -7-methoxy-6- (3-morpholin-4-ylpropoxy) quinazoline
  • the average particle size of -4-amine was a nanoparticle composition having a size of 123 nm.
  • Example 153 In accordance with Example 152, the amount of hydroxypropylcellulose (HPC) is from 0.5 parts by weight to 0.125 parts by weight, the amount of polysorbate 80 is from 0.1 parts by weight to 0.025 parts by weight, and the amount of benzalkonium chloride (BAC) is from 0.001 parts by weight.
  • HPC hydroxypropylcellulose
  • polysorbate 80 is from 0.1 parts by weight to 0.025 parts by weight
  • BAC benzalkonium chloride
  • Example 154 According to Example 152, the surfactant was changed from polysorbate 80 to sodium lauryl sulfate, the amount of hydroxypropyl cellulose (HPC) was changed from 0.5 parts by weight to 0.125 parts by weight, and benzalkonium chloride (BAC) and D-mannitol were changed.
  • HPC hydroxypropyl cellulose
  • BAC benzalkonium chloride
  • N- (3-chloro-4-fluorophenyl) -7-methoxy-6- (3-morpholin-4-ylpropoxy) quinazolin-4-amine, hydroxypropylcellulose (HPC), lauryl Sodium sulfate, aqueous glucose solution, N- (3-chloro-4-fluorophenyl) -7-methoxy-6- (3-morpholin-4-ylpropoxy) quinazolin-4-amine / hydroxypropylcellulose (HPC) ) / Sodium lauryl sulfate 1 part by weight / 0.125 part by weight / 0.01 part by weight, N- (3-chloro-4-fluorophenyl) -7-methoxy-6- (3-morpholin-4-ylpropoxy) quinazoline- 4-amine concentration is 1 A nanoparticle composition having 1.11 mg / mL and an average particle size of 214 nm was obtained.
  • Example 155 According to Example 152, the surfactant was changed from polysorbate 80 to sodium lauryl sulfate, the amount of hydroxypropyl cellulose (HPC) was changed from 0.5 parts by weight to 0.125 parts by weight, and benzalkonium chloride (BAC) and D-mannitol were changed.
  • HPC hydroxypropyl cellulose
  • BAC benzalkonium chloride
  • N- (3-chloro-4-fluorophenyl) -7-methoxy-6- (3-morpholin-4-ylpropoxy) quinazolin-4-amine, hydroxypropylcellulose (HPC), lauryl Sodium sulfate, aqueous glucose solution, N- (3-chloro-4-fluorophenyl) -7-methoxy-6- (3-morpholin-4-ylpropoxy) quinazolin-4-amine / hydroxypropylcellulose (HPC) ) / Sodium lauryl sulfate 1 part by weight / 0.125 part by weight / 0.001 part by weight, N- (3-chloro-4-fluorophenyl) -7-methoxy-6- (3-morpholin-4-ylpropoxy) quinazoline- 4-amine concentration is A nanoparticle composition having 11.03 mg / mL and an average particle size of 432 nm was obtained.
  • Example 161 According to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N ′-(5-methylisoxazol-3-yl) urea hydrochloride hydrate To N- (3-chlorophenyl) -N- (6,7-dimethoxyquinazolin-4-yl) amine to give N- (3-chlorophenyl) -N- (6,7-dimethoxyquinazoline-4- Yl) amine, hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, aqueous glucose solution, the composition is N- (3-chlorophenyl) -N- (6,7-dimethoxyquinazoline- 4-yl) amine / hydroxypropylcellulose (HPC) / polysorbate 80 / benzalkonium chloride (BAC) / D-mannito
  • Example 162 According to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N ′-(5-methylisoxazol-3-yl) urea hydrochloride hydrate N- [2-[[2- (Dimethylamino) ethyl] methylamino] -5-[[4- (1H-indol-3-yl) -2-pyrimidinyl] amino] -4-methoxyphenyl] -2 N- [2-[[2- (dimethylamino) ethyl] methylamino] -5-[[4- (1H-indol-3-yl) -2-pyrimidinyl] amino] by changing to -propanamide -4-methoxyphenyl] -2-propanamide, hydroxypropylcellulose (HPC), polysorbate 80, benzalkonium chloride (BAC), D-mannitol, aqueous
  • Example 163 According to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N ′-(5-methylisoxazol-3-yl) urea hydrochloride hydrate N4- [3-Chloro-4- (thiazol-2-ylmethoxy) phenyl] -N6- [4 (R) -methyl-4,5-dihydroxyoxazol-2-yl] quinazoline-4,6-diamineditoluene N4- [3-Chloro-4- (thiazol-2-ylmethoxy) phenyl] -N6- [4 (R) -methyl-4,5-dihydroxyoxazol-2-yl] quinazoline by changing to sulfonate -4,6-diamine ditoluenesulfonate, hydroxypropyl cellulose (HPC), polysorbate 80, benzalkonium chloride
  • Example 164 According to Example 1, N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N ′-(5-methylisoxazol-3-yl) urea hydrochloride hydrate (2Z) -but-2-enedionic acid N- [3-([2- [3-fluoro-4- (4-methylpiperazin-1-yl) anilino] -1H-pyrrolo [2,3-d By changing to] pyrimidin-4-yl] oxy) phenyl] prop-2-enamide, (2Z) -but-2-enedionic acid N- [3-([2- [3-fluoro-4- ( 4-methylpiperazin-1-yl) anilino] -1H-pyrrolo [2,3-d] pyrimidin-4-yl] oxy) phenyl] prop-2-enamide, hydroxypropylcellulose (HPC), polysorbate 80, benzil chloride (2Z)
  • the nanoparticle composition was purified using a micro-cooled centrifuge (3740, Kubota) (13200 rpm, 15 minutes), and 4- ⁇ 4- [3- (4-chloro-3-trifluoromethylphenyl)- The concentration of ureido] -3-fluorophenoxy ⁇ pyridine-2-carboxylic acid methylamide was 1.72 mg / mL.
  • the concentration of this nanoparticle composition was 12.90 mg / mL.
  • the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series)
  • the average particle size of 2-carboxylic acid methylamide was a nanoparticle composition having a 451 nm.
  • Reference Example 13 The nanoparticle composition prepared in Reference Example 12 was purified using a micro-cooled centrifuge (3740, Kubota), and 4- ⁇ 4- [3- (4-chloro-3-trifluoromethylphenyl) -ureido The concentration of] -3-fluorophenoxy ⁇ pyridine-2-carboxylic acid methylamide was 2.06 mg / mL.
  • nanoparticle composition When the nanoparticle composition was measured using a Zeta Sizer (Malvern instruments Nano series), 4- ⁇ 4- [3- (4-chloro-3-trifluoromethylphenyl) -ureido] -3-fluorophenoxy ⁇ pyridine-
  • the average particle size of 2-carboxylic acid methylamide was a nanoparticle composition having a thickness of 234 nm.
  • Comparative Example 1 4- ⁇ 4- [3- (4-Chloro-3-trifluoromethylphenyl) -ureido] -3-fluorophenoxy ⁇ pyridine-2-carboxylic acid methylamide (Active Bio, the same applies hereinafter) is weighed in a polypropylene container, Next, light liquid paraffin (Nacalai Tesque, the same applies hereinafter) was added to form a suspension, and stainless beads (diameter: 3.0 mm, biomedical science) were placed and covered. Using a rotating / revolving mixer (Awatori Nertaro ARE-310, Shinki, the same shall apply hereinafter), wet pulverization was performed, and then light liquid paraffin was added and diluted.
  • wet pulverization is performed using a rotating / revolving mixer, and light liquid paraffin is added and diluted to 4- ⁇ 4- [3- (4-chloro-3-trifluoromethylphenyl) -ureido] -3- Fluorophenoxy ⁇ pyridine-2-carboxylic acid methylamide concentration 21.1 mg / mL microsuspension was obtained.
  • Comparative Example 2 Weigh [4- [N- (2,3-dimethyl-2H-indazol-6-yl) -N-methylamino] pyrimidin-2-ylamino] -2-methylbenzenesulfonamide hydrochloride in a container, then captisol (Captisol, CYDEX, the same below) Add aqueous solution, sodium dihydrogen phosphate (Wako Pure Chemical, the same below), sodium chloride (Wako Pure Chemical, the same below) and adjust to pH 5.0 using sodium hydroxide. A solution composition (pazopanib aqueous solution) was obtained.
  • HPC hydroxypropyl cellulose
  • BAC benzalkonium chloride
  • D-mannitol 0.5 weight
  • An aqueous glucose solution consisting of parts / 0.1 parts by weight / 0.001 parts by weight / 0.1 parts by weight was added and diluted.
  • HPC hydroxypropyl cellulose
  • polysorbate 80 / benzalkonium chloride
  • D-mannitol 0.5 parts by weight / 0.1 part by weight / 0.001 part by weight /0.1 part by weight glucose aqueous solution was added and diluted to give N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N ′-(5-methylisoxazole-3- Yl)
  • Urea hydrochloride hydrate concentration 0.46 mg / mL microsuspension was obtained.
  • N- [2-Chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N ' was measured using a laser diffraction / scattering particle size distribution analyzer (Microtrack, Nikkiso).
  • the particle diameter of-(5-methylisoxazol-3-yl) urea hydrochloride hydrate was D50 of 8.56 ⁇ m.
  • N- [2-Chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N ' was measured using a laser diffraction / scattering particle size distribution analyzer (Microtrack, Nikkiso).
  • the particle diameter of-(5-methylisoxazol-3-yl) urea hydrochloride hydrate was D50 of 4.80 ⁇ m.
  • HPC hydroxypropylcellulose
  • BAC benzalkonium chloride
  • HPC hydroxypropyl cellulose
  • BAC benzalkonium chloride
  • D-mannitol 0.5 weight
  • An aqueous glucose solution consisting of parts / 0.1 parts by weight / 0.001 parts by weight / 0.1 parts by weight was added and diluted.
  • HPC hydroxypropyl cellulose
  • polysorbate 80 / benzalkonium chloride
  • D-mannitol 0.5 parts by weight / 0.1 part by weight / 0.001 part by weight 1 / [[4-[(4-Fluoro-2-methyl-1H-indol-5-yl) oxy] -6-methoxyquinolin-7-yl] was added and diluted with an aqueous glucose solution comprising 0.1 parts by weight. Oxymethyl] cyclopropan-1-amine concentration 2.01 mg / mL microsuspension was obtained.
  • Comparative Example 7 4- [3-Chloro-4- (cyclopropylcarbamoylamino) phenoxy] -7-methoxyquinoline-6-carboxamide is weighed into a polypropylene container and then the composition is hydroxypropylcellulose (HPC) / polysorbate 80 / benzalkco chloride Add an aqueous glucose solution consisting of 0.5 parts by weight / 0.1 part by weight / 0.001 part by weight / 0.1 part by weight to make a suspension, and put stainless beads (diameter 3.0 mm, biomedical science) Covered.
  • HPC hydroxypropylcellulose
  • HPC hydroxypropyl cellulose
  • BAC benzalkonium chloride
  • D-mannitol 0.5 weight
  • An aqueous glucose solution consisting of parts / 0.1 parts by weight / 0.001 parts by weight / 0.1 parts by weight was added and diluted.
  • HPC hydroxypropyl cellulose
  • polysorbate 80 / benzalkonium chloride
  • D-mannitol 0.5 parts by weight / 0.1 part by weight / 0.001 part by weight /
  • a glucose aqueous solution consisting of 0.1 parts by weight was added and diluted, and a micro suspension with a concentration of 1.92 mg / mL 4- [3-chloro-4- (cyclopropylcarbamoylamino) phenoxy] -7-methoxyquinoline-6-carboxamide was added. Obtained.
  • HPC hydroxypropylcellulose
  • BAC benzalkonium chloride
  • HPC hydroxypropyl cellulose
  • BAC benzalkonium chloride
  • D-mannitol 0.5 weight
  • An aqueous glucose solution consisting of parts / 0.1 parts by weight / 0.001 parts by weight / 0.1 parts by weight was added and diluted.
  • HPC hydroxypropyl cellulose
  • BAC benzalkonium chloride
  • D-mannitol 0.5 parts by weight / 0.1 part by weight / 0.001 part by weight
  • a glucose aqueous solution consisting of 0.1 parts by weight was added and diluted.
  • HPC hydroxypropyl cellulose
  • BAC benzalkonium chloride
  • D-mannitol 0.5 weight
  • An aqueous glucose solution consisting of parts / 0.1 parts by weight / 0.001 parts by weight / 0.1 parts by weight was added and diluted.
  • HPC hydroxypropyl cellulose
  • BAC benzalkonium chloride
  • D-mannitol 0.5 weight
  • An aqueous glucose solution consisting of parts / 0.1 parts by weight / 0.001 parts by weight / 0.1 parts by weight was added and diluted.
  • HPC hydroxypropyl cellulose
  • polysorbate 80 / benzalkonium chloride
  • D-mannitol 0.5 parts by weight / 0.1 part by weight / 0.001 part by weight /0.1 part by weight glucose aqueous solution was added and diluted to give N- [4-[[3-chloro-4-[(3-fluorobenzyl) oxy] phenyl] amino] quinazolin-6-yl] acrylamide concentration 2.14 mg A microsuspension of / mL was obtained.
  • N- [4-[[3-Chloro-4-[(3-fluorobenzyl) oxy] phenyl] amino] was measured using a laser diffraction / scattering particle size distribution analyzer (Microtrack, Nikkiso).
  • the particle size of quinazolin-6-yl] acrylamide was D50 of 4.87 ⁇ m.
  • HPC hydroxypropylcellulose
  • BAC benzalkonium chloride
  • D-mannitol 1 weight
  • An aqueous glucose solution consisting of parts / 0.2 parts by weight / 0.002 parts by weight / 0.2 parts by weight was added and diluted.
  • HPC hydroxypropyl cellulose
  • polysorbate 80 / benzalkonium chloride
  • D-mannitol 1 part by weight / 0.2 part by weight / 0.002 part by weight / 0.2 part by weight glucose aqueous solution is added and diluted to give N- (3-ethynylphenyl) -7,8,10,11,13,14-hexahydro- [1,4,7,10] tetraoxacyclod
  • a microsuspension with a decino [2,3-g] quinazolin-4-amine concentration of 2.12 mg / mL was obtained.
  • the particle size of 4,7,10] tetraoxacyclododecino [2,3-g] quinazolin-4-amine was D44 of 11.44 ⁇ m.
  • HPC hydroxypropyl cellulose
  • BAC benzalkonium chloride
  • D-mannitol 0.5 weight
  • An aqueous glucose solution consisting of parts / 0.1 parts by weight / 0.001 parts by weight / 0.1 parts by weight was added and diluted.
  • HPC hydroxypropyl cellulose
  • polysorbate 80 / benzalkonium chloride
  • BAC benzalkonium chloride
  • D-mannitol 0.5 parts by weight / 0.1 part by weight / 0.001 part by weight / Glucose aqueous solution consisting of 0.1 parts by weight, diluted, N-methyl-2-[[3-[(E) -2-pyridin-2-ylethenyl] -1H-indazol-6-yl] sulfanyl] benzamide concentration A microsuspension of 2.32 mg / mL was obtained.
  • N-methyl-2-[[3-[(E) -2-pyridin-2-ylethenyl] -1H- was measured using a laser diffraction / scattering particle size distribution analyzer (Microtrac, Nikkiso).
  • the particle size of indazol-6-yl] sulfanyl] benzamide was D50 of 6.83 ⁇ m.
  • HPC hydroxypropyl cellulose
  • BAC benzalkonium chloride
  • HPC hydroxypropyl cellulose
  • polysorbate 80 polysorbate 80
  • BAC benzalkonium chloride
  • D-mannitol 0.125 parts by weight / 0.025 parts by weight / 0.00025 parts by weight
  • N- (3-ethynylphenyl) -6,7-bis (2-methoxyethoxy) quinazolin-4-amine hydrochloride is measured by measuring the microsuspension using a laser diffraction / scattering particle size distribution analyzer (Microtrack, Nikkiso).
  • the particle size of the salt was a microparticle composition having a D50 of 7.20 ⁇ m.
  • HPC hydroxypropyl cellulose
  • BAC benzalkonium chloride
  • HPC hydroxypropyl cellulose
  • polysorbate 80 / benzalkonium chloride
  • BAC benzalkonium chloride
  • D-mannitol 0.125 parts by weight / 0.025 parts by weight / 0.00025 parts by weight / Glucose aqueous solution consisting of 0.025 parts by weight
  • N- (3-Chloro-4-fluorophenyl) -7-methoxy-6- (3-morpholine-4 was measured using a laser diffraction / scattering particle size distribution analyzer (Microtrack, Nikkiso).
  • the particle diameter of -ylpropoxy) quinazolin-4-amine was a microparticle composition with a D50 of 7.07 ⁇ m.
  • Test Example 1 Pharmacokinetics of a single eye drop administration of the nanoparticle composition of the present invention and the microparticle composition of the comparative example to the rat
  • the nanoparticle composition of the present invention obtained in Example 19 and Example 24, and About the microparticle composition obtained in Comparative Example 3 and Comparative Example 4, the pharmacokinetics when a single eye drop administration (4 to 12 ⁇ L / eye, each group n 2) was evaluated to rats.
  • the nanoparticle composition was administered as a single instillation to the right eye of male Brown Norway rats, euthanized 4-7 hours after the instillation, and the right eyeball was removed. After washing the eyeball, an eyeball tissue sample (choroid / sclera) was collected.
  • Compound II N- [2-Chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate
  • the compound II has a nanoparticle composition with an average particle size of 1000 nm or less, and the migration to the choroid / sclera is dramatically improved.
  • Example 2 Pharmacokinetics of a single eye drop administration of the nanoparticle composition of the present invention to a rat according to Example 1, Example 7, Example 9, Example 15, Example 27, Example 29 and Example 39
  • the nanoparticle composition of the prepared invention was evaluated for pharmacokinetics when administered to a rat by a single eye drop.
  • compound II is preferably a nanoparticle composition having an average particle size of less than 400 nm in terms of migration to the choroid / sclera, and compound II has an average particle size of less than 200 nm to the choroid / sclera. It was found that the compound II is more preferable, and that the compound II having an average particle size of less than 120 nm is further preferable for the transfer to the choroid / sclera.
  • Example 3 Pharmacokinetics of a single eye drop administration of the nanoparticle composition of the present invention to a rat Nanoparticle composition of the present invention prepared according to Example 1 and Example 26 and Example 50, Example 52, The nanoparticle compositions of the present invention obtained in Example 53, Example 54, Example 57, and Example 96 were evaluated for pharmacokinetics when administered by single eye drop administration to rats.
  • Test Example 4 Pharmacokinetics when the nanoparticle composition of the present invention and the microparticle composition of the comparative example were administered to a rabbit by a single eye drop.
  • a nanoparticle composition of the present invention obtained with a nanoparticle composition prepared according to Example 1, a nanoparticle composition prepared according to Example 40 and a nanoparticle composition prepared according to Example 84 and prepared according to Comparative Example 5.
  • compound II is preferably a nanoparticle composition having an average particle diameter of less than 400 nm in terms of migration to the choroid / retina, and compound II has an average particle diameter of less than 150 nm to the choroid / retinal. It was found that the average particle size of Compound II is less than 70 nm, and it is further preferable for the transfer to the choroid / retina.
  • Test Example 5 Pharmacokinetics when the nanoparticle composition obtained in Reference Example and the microparticle composition of Comparative Example were administered by single eye drop administration to rabbits Nanoparticle composition obtained in Reference Examples 11-13 and Comparative Example 1
  • the pharmacokinetics of the microparticle composition prepared according to the above were evaluated when a single instillation (20 ⁇ L / eye (eye)) was administered to a Kbl: Dutch rabbit.
  • Test Example 6 Pharmacokinetics of the Nanoparticle Composition of the Present Invention Prepared According to Example 1 and the Microparticle Composition Prepared according to Comparative Example 1 to a Cynomolgus Monkey after Single Eye Drop Administration
  • the Nanoparticle of the Present Invention Prepared according to Example 1 The pharmacokinetics of the composition or the microparticle composition prepared according to Comparative Example 1 when a single eye drop was administered to a male cynomolgus monkey was evaluated.
  • the nanoparticle composition of the present invention prepared according to Example 1 was instilled into the right eye (50 ⁇ L / eye), and simultaneously the microparticle composition prepared according to Comparative Example 1 was instilled into the left eye (50 ⁇ L / eye).
  • the nanoparticle composition of the present invention prepared according to Example 1 or the microparticle composition prepared according to Comparative Example 1 is administered to male cynomolgus monkeys by a single eye drop
  • the nanoparticle composition of the present invention prepared according to Example 1 N- [2-chloro-4- (6,7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate (compound II) contained
  • the concentration in the choroid was significantly higher than the concentration in the choroid of regorafenib (Compound III) contained in the microparticle composition prepared according to Comparative Example 1.
  • Test Example 7 Antiangiogenic Effect of the Nanoparticle Composition of the Present Invention in a Rat Laser-Induced Choroidal Neovascular Model
  • a rat laser-induced choroidal neovascular model which is a typical wet age-related macular degeneration model
  • the purpose is to evaluate whether the nanoparticle composition of the present invention exhibits an angiogenesis-inhibiting effect.
  • Example 1 the right eye fundus is observed using a slit lamp, and lasers (wavelength: 532 nm, spot size: 80 ⁇ m, irradiation time: 0.05 sec, output: 120 mW) are used at eight locations on the retina using a multicolor laser photocoagulator.
  • a laser-induced choroidal neovascular model animal was produced by irradiation.
  • the medium of Example 1, the nanoparticle composition of the present invention obtained in Example 1 and Example 2 was instilled twice a day (5 ⁇ L / day) to a model animal from immediately after laser irradiation to 14 days after laser irradiation. eye 6 hours: 18 hour intervals).
  • Aflibercept (Eiria (registered trademark) intravitreal injection solution, Bayer Co., Ltd.) was injected intravitreally (5 ⁇ L / eye (eye), once) immediately after laser irradiation. 14 days after laser irradiation, 4% (v / v) FITC-dextran solution was administered to the tail vein (1 mL / mouse) under general anesthesia. Euthanasia was performed by over anesthesia by inhalation of isoflurane (Mylan Pharmaceutical Co., Ltd.), and the eyeball was removed. The removed eyeball was fixed with 0.1 mol / L phosphate buffer containing 4% paraformaldehyde (PFA) for 24 hours.
  • PFA paraformaldehyde
  • the iris and lens were excised to make the eye cup.
  • the retinal tissues other than retinal pigment epithelial cells were peeled off and the eye cup was divided.
  • FULLOROMOUNT (DBS) was dropped and sealed with a cover glass to prepare a sample, which was dried at 4 ° C. under light shielding for 24 hours.
  • a confocal microscope Nekon ECLIPSE TE 2000-U
  • a photograph of the choroidal neovascularization site was taken.
  • the inner area (unit: pixel) from the highest part where blood vessels were newly born and swelled was calculated by ImageJ (National Institutes of Health, USA). Then, the average area of each group was calculated by taking the average of the angiogenic areas at 3 or more places, where the unclear laser irradiation site was omitted, as the individual value from the data of 8 places per eye.
  • Bartlett's test was performed for the afribercept (Ilea (registered trademark) intravitreal injection solution, Bayer Co., Ltd.) administration group, Example 1 administration group and Example 2 administration group for the media group, and the variance was equal. In that case, the Dunnet test was performed. In addition, statistical analysis software (Stat Light, Yukkusu) was used for the test, and the significance level of each test was 5% (two-sided test). The results are shown in FIG.
  • Example 1 In a rat laser-induced choroidal neovascularization model, when the nanoparticle composition of the present invention obtained in Example 1 and Example 2 was administered by eye drops, angiogenesis equal to or better than that of aflibercept (Ilea, intravitreal injection) The inhibitory effect was confirmed.
  • Test Example 8 Pharmacological Action of Nanoparticle Composition of the Present Invention and Solution of Comparative Example in Cynomolgus Laser-Induced Choroidal Angiogenesis Model
  • cynomolgus laser-induced choroidal neovascularization which is a typical exudative age-related macular degeneration model
  • the objective is to evaluate whether the nanoparticle composition of the present invention exhibits pharmacological action in a model. 21 days before the start of drug administration, both eyes of animals (all cases) were irradiated with laser to produce an animal model.
  • a green laser (wavelength 532 nm, irradiation spot size 80 ⁇ m, irradiation time 0.1 sec, output 1000 mW) was applied to the fovea using a multicolor laser photocoagulator (MC-500, NIDEK Co., Ltd.). Irradiated around the avoided macular.
  • the vehicle, the nanoparticle composition of the present invention prepared according to Example 1 and the solution composition obtained in Comparative Example 2 were instilled into animals four times a day for 35 days.
  • aflibercept Ilea (registered trademark) intravitreal injection solution, Bayer Co., Ltd.
  • animals were injected intravitreally (once).
  • Ophthalmoscopic examinations were performed during the habituation period (day -1) and during the dosing period (days 7, 14, 21, 28 and 34). Using a portable slit lamp (SL-15, Kowa Co., Ltd.), the naked eye and light reflection inspection were performed. After instilling a mydriatic agent and confirming mydriasis, ketamine hydrochloride (50 mg / mL) is administered intramuscularly (0.2 mL / kg, 10 mg / kg). The fundus was examined using a portable slit lamp using the anterior segment, intermediate translucent body, and binocular binocular inverted ophthalmoscope (IO- ⁇ Small Pupil, Knights).
  • IO- ⁇ Small Pupil, Knights binocular binocular inverted ophthalmoscope
  • choroidal neovascularization grade evaluation As choroidal neovascularization grade evaluation, choroidal neovascularization grade evaluation was implemented for every irradiation spot. Fluorescence fundus angiography images were observed, and Grade was determined for each irradiation spot according to the criteria in Table 47.
  • Example 2 In the cynomolgus monkey laser-induced choroidal neovascularization model, when the nanoparticle composition of the present invention obtained in Example 1 was administered by instillation, an angiogenesis inhibitory effect equivalent to that of aflibercept (Eirea, intravitreal injection) was confirmed. The effect was significantly higher than that of the solution composition obtained in Comparative Example 2.
  • Test Example 9 Pharmacological Action of the Nanoparticle Composition of the Present Invention in a Mouse Hyperoxygen Retinopathy Model This test was conducted in a mouse oxygen-induced retinopathy model, which is a typical diabetic retinopathy model. The purpose is to evaluate whether the nanoparticle composition of the invention exhibits pharmacological action. After subjecting young (1 week old) 129SVE mice (10-12 mice / group) to high oxygen load treatment (75% oxygen, 5 days), prepared according to medium and Example 1 under normal oxygen The nanoparticle composition of the present invention was administered to the right eye twice a day (once at 8-9 o'clock and once at 16-17 o'clock) for 5 days (2 ⁇ L / eye).
  • ketamine / kyrazine was administered intraperitoneally and anesthetized, and Euthasol was administered intraperitoneally to euthanize the animal.
  • the eyeballs were removed and fixed by treatment with 4% paraformaldehyde for 1 hour at room temperature. Retinal tissues were collected from the fixed eyeball and stained with a calcium chloride buffer containing Isolectin-B4. After the eyeball was washed, a flat mount specimen was prepared, and the neovascular area in the retina (ratio of the neovascular area to the total tissue area of the retina) was evaluated under a microscope.
  • Test Example 10 Pharmacokinetics of a single eye drop administration of the nanoparticle composition of the present invention and the microparticle composition of the comparative example to rats
  • Example 101 Example 108 and Example 112
  • Reference Example 9 and Reference Example 10 About the obtained nanoparticle composition of the present invention and the microparticle compositions of Comparative Example 6, Comparative Example 7, Comparative Example 8, Comparative Example 9 and Comparative Example 10, a drug when administered to Brown-Norway rats by a single eye drop Kinetics were evaluated.
  • the nanoparticle compositions of the present invention obtained in Example 101, Example 108 and Example 112, Reference Example 9 and Reference Example 10, and Comparative Example 6, Comparative Example 7, Comparative Example 8, Comparative Example 9 and Comparative Example 11
  • the sample was centrifuged to collect the supernatant, and 0.1 vol% formic acid solution was added to prepare a measurement sample.
  • a constant amount of 50 vol% methanol solution was added to the collected choroid sample and homogenized, and acetonitrile was further added and stirred.
  • the sample was centrifuged to collect the supernatant, and 0.1 vol% formic acid solution was added to prepare a measurement sample.
  • the drug concentration in the measurement sample was measured using a liquid chromatograph-tandem mass spectrometer (LC / MS / MS). The results are shown in Table 50 and FIG.
  • Test Example 11 Pharmacokinetics of a single eye drop administration of the nanoparticle composition of the present invention and the microparticle composition of the comparative example to a rat.
  • the nanoparticle composition of the present invention obtained in Example 145 and the microparticle of Comparative Example 16 The particle composition was evaluated for pharmacokinetics after a single ophthalmic administration to Brown-Norway rats.
  • a certain amount of 50 vol% methanol solution was added to the collected choroid / sclera sample for homogenization, and acetonitrile was further added and stirred.
  • the sample was centrifuged to collect the supernatant, and 0.1 vol% formic acid solution was added to prepare a measurement sample.
  • Blood samples were centrifuged and plasma samples were collected.
  • Acetonitrile was added to the plasma sample and stirred, followed by centrifugation to collect the supernatant, and a 0.1 vol% formic acid solution was added to prepare a measurement sample.
  • the drug concentration in the measurement sample was measured using a liquid chromatograph-tandem mass spectrometer (LC / MS / MS). The results are shown in Table 51 and FIG.
  • Test Example 12 Pharmacokinetics of a single ophthalmic administration of the nanoparticle composition of the present invention and the microparticle composition of the comparative example to the rat
  • the particle composition was evaluated for pharmacokinetics after a single ophthalmic administration to Brown-Norway rats.
  • a certain amount of 50 vol% methanol solution was added to the collected choroid / sclera sample for homogenization, and acetonitrile was further added and stirred.
  • the sample was centrifuged to collect the supernatant, and 0.1 vol% formic acid solution was added to prepare a measurement sample.
  • Blood samples were centrifuged and plasma samples were collected.
  • Acetonitrile was added to the plasma sample and stirred, followed by centrifugation to collect the supernatant, and a 0.1 vol% formic acid solution was added to prepare a measurement sample.
  • the drug concentration in the measurement sample was measured using a liquid chromatograph-tandem mass spectrometer (LC / MS / MS). The results are shown in Table 52 and FIG.
  • Test Example 13 Pharmacokinetics of a single intravenous administration of vascular endothelial growth factor (VEGF) receptor inhibitor or epidermal growth factor (EGF) receptor inhibitor to rats N- [2-chloro-4- (6, 7-dimethoxyquinolin-4-yloxy) phenyl] -N '-(5-methylisoxazol-3-yl) urea hydrochloride hydrate, icotinib, aritinib, josartinib, brigatinib, cabozantinib, grezatinib, 4-[(3- Chloro-2-fluorophenyl) amino] -7-methoxyquinazolin-6-yl (2R) -2,4-dimethylpiperazine-1-carboxylate (AZD-3759), erlotinib, anlotinib, fluquitinib, dacomitinib, lenvatinib, levastinib , Nintedani
  • Each compound was dissolved in DMA, compound II and a solution of 4 compounds in DMA were mixed, and diluted with a physiological saline containing 3.3 (w / v)% Tween 80 to prepare 7 types of intravenous administration solutions.
  • the intravenous solution was administered to the tail vein of Brown Norway rats (0.5 mL / kg), blood was collected at 24, 72 and 168 hours after administration, then euthanized, and the eyeballs were removed.
  • a choroid / sclera sample was taken after the eyeball was washed.
  • a certain amount of 50 vol% methanol solution was added to the collected choroid / sclera sample for homogenization, and acetonitrile was further added and stirred.
  • the sample was centrifuged to collect the supernatant, and 0.1 vol% formic acid solution was added to prepare a measurement sample.
  • the drug concentration in the measurement sample was measured using a liquid chromatograph-tandem mass spectrometer (LC / MS / MS). The results are shown in Table 53 and Table 54.
  • Table yy shows the choroid / sclera half-life after intravenous administration of VEGF receptor inhibitors to rats.
  • Table 54 shows the half-life in choroid / sclera after intravenous administration of EGFR inhibitor to rats.
  • Test Example 14 Pharmacokinetics when the microparticle composition of Comparative Example 1 was administered to a single eye drop in rats
  • the microparticle composition was instilled into the right eye of male Brown Norway rats, euthanized 0.5 to 96 hours after instillation, and the right eyeball was removed.
  • a choroid / sclera sample was taken after the eyeball was washed.
  • a certain amount of 50 vol% methanol solution was added to the collected choroid / sclera sample for homogenization, and acetonitrile was further added and stirred.
  • the sample was centrifuged to collect the supernatant, and 10 mmol / L ammonium acetate solution was added to prepare a measurement sample.
  • the drug concentration in the measurement sample was measured using a liquid chromatograph-tandem mass spectrometer (LC / MS / MS).
  • the elimination half-life of Compound III in the choroid / sclera was calculated from the change in the concentration of Compound III in the choroid / sclera.
  • the elimination half-life in the choroid / sclera was 29.7 hours after a single eye drop administration to rats.

Abstract

本発明は、ナノ粒子の形態の、全身投与した場合に後眼部組織に滞留する性質を有する血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤を含む、眼科疾患治療剤に関する。

Description

医薬組成物
 本発明は、眼科疾患治療剤等に関する。具体的には、本発明は、ナノ粒子の形態の血管内皮増殖因子(Vascular endothelial growth factor:VEGF)受容体阻害剤または上皮成長因子(Epidermal Growth Factor:EGF)受容体阻害剤を含む、眼科疾患治療剤等に関する。
 近年、ナノ粒子の形態の有効成分を用いたドラッグデリバリーに関する研究が盛んに行われており、特許文献1~4には、ナノ粒子の形態の有効成分を含む医薬組成物が開示されている。また、特許文献5および6には、血管新生阻害剤等のナノ粒子の形態の有効成分を含む医薬組成物が開示されている。
 また、特許文献7には、(R)-(-)-2-(4-ブロモ-2-フルオロベンジル)-1,2,3,4-テトラヒドロピロロ[1,2-a]ピラジン-4-スピロ-3’-ピロリジン-1,2’,3,5’-テトラオン(以下、「化合物A」という)またはその生理的に許容される塩を含有する点眼用懸濁製剤が開示されている。
 しかしながら、特許文献7においては、化合物Aがアルドース還元酵素阻害作用を示す化合物であることが示されているところ、他のアルドース還元酵素阻害作用を示す化合物Bおよび化合物Cの懸濁製剤では網膜へ僅かしか到達しなかったことが開示されている。すなわち、特許文献7に開示される技術は、ナノ化により全ての化合物について後眼部組織への送達性が上がることが示されている訳ではない。
 そして、特許文献8には、薬学的有効な量のニンテダニブやパゾパニブ等のナノ化粒子を含む眼科用製剤が提示されている。
 しかしながら、特許文献8には、ニンテダニブやパゾパニブ等をナノ化したという具体的な開示はなく、どのような方法により各化合物をナノ化するのかについて、何ら開示もされていない。
米国特許第5518187号明細書 米国特許第5862999号明細書 米国特許第5718388号明細書 米国特許第5510118号明細書 米国特許第5145684号明細書 特表2011-514360号公報 国際公開第2016/039422号 国際公開第2016/209555号
 本発明の目的は、ナノ粒子の形態の血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤を含む、眼科疾患治療剤等を提供することにある。
 本発明は、以下のとおりである。
(1)
 ナノ粒子の形態の、全身投与した場合に後眼部組織に滞留する性質を有する血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤を含む、眼科疾患治療剤。
(2)
 全身投与した場合に後眼部組織に滞留する性質を有する血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤の脈絡膜/強膜中半減期が30時間以上である、(1)記載の眼科疾患治療剤。
(3)
 VEGF受容体阻害剤が、式(I)
Figure JPOXMLDOC01-appb-C000003
(式中、
およびRは、同一または異なって、C1-C6アルコキシ基を表し、
は、ハロゲン原子を表し、
およびRは、同一または異なって、水素原子、ハロゲン原子、C1-C4アルキル基、C1-C4アルコキシ基、C1-C4アルキルチオ基、トリフルオロメチル基、ニトロ基またはアミノ基を表し、
およびRは、同一または異なって、水素原子、ハロゲン原子、C1-C4アルキル基、C1-C4アルコキシ基、C1-C4アルキルチオ基、トリフルオロメチル基、ニトロ基、アミノ基、1または2のC1-C4アルキル基で置換されているアミノ基、C1-C4アルコキシカルボニルC1-C4アルキル基、C1-C4アルキルカルボニル基またはC3-C5シクロアルキル基を表す)で表される化合物もしくはその薬学的に許容可能な塩、またはそれらの水和物もしくは溶媒和物である、(1)または(2)記載の眼科疾患治療剤。
(4)
 RおよびRが、同一または異なって、水素原子またはハロゲン原子であり、RおよびRが、同一または異なって、水素原子、ハロゲン原子またはC1-C4アルキル基である、(3)記載の眼科疾患治療剤。
(5)
 Rが、塩素原子である、(3)または(4)記載の眼科疾患治療剤。
(6)
 Rが、C1-C4アルキル基であり、Rが、水素原子である、(3)~(5)のいずれかに記載の眼科疾患治療剤。
(7)
 RおよびRが、水素原子である、(3)~(6)のいずれかに記載の眼科疾患治療剤。
(8)
 VEGF受容体阻害剤が、式(II)
Figure JPOXMLDOC01-appb-C000004
で表される化合物もしくはその薬学的に許容可能な塩、またはそれらの水和物もしくは溶媒和物である、(1)または(2)記載の眼科疾患治療剤。
(9)
 VEGF受容体阻害剤が、アキシチニブ、アンロチニブ、カボザンチニブ、グレサチニブ、スニチニブ、ニンテダニブ、フルクィチニブ、レバスチニブ、レンバチニブからなる群から選択される化合物もしくはその薬学的に許容可能な塩、またはそれらの水和物もしくは溶媒和物である、(1)または(2)記載の眼科疾患治療剤。
(10)
 EGF受容体阻害剤が、アビチニブ、アリチニブ、イコチニブ、エルロチニブ、オシメルチニブ、N-[2-[[2-(ジメチルアミノ)エチル]メチルアミノ]-5-[[4-(1H-インドール-3-イル)-2-ピリミジニル]アミノ]-4-メトキシフェニル]-2-プロパンアミド(AZD-5104)、ゲフィチニブ、ダコミチニブ、テセバチニブ、ナザルチニブ、バルリチニブ、ブリガチニブ、ポジオチニブ、ラパチニブ、4-[(3-クロロ-2-フルオロフェニル)アミノ]-7-メトキシキナゾリン-6-イル(2R)-2,4-ジメチルピペラジン-1-カルボキシレート(AZD-3759)、N-(3-クロロフェニル)-N-(6,7-ジメトキシキナゾリン-4-イル)アミン(AG-1478)からなる群から選択される化合物もしくはその薬学的に許容可能な塩、またはそれらの水和物もしくは溶媒和物である、(1)または(2)記載の眼科疾患治療剤。
(11)
 VEGF受容体阻害剤またはEGF受容体阻害剤の平均粒子径が20~180nmである、(1)~(10)のいずれかに記載の眼科疾患治療剤。
(12)
 さらに、粘稠化剤、界面活性剤および分散媒から選ばれる1以上の成分を含む、(1)~(11)のいずれかに記載の眼科疾患治療剤。
(13)
 粘稠化剤が、カルボキシビニルポリマー、カルボキシメチルセルロースカルシウム、カルボキシメチルセルロースナトリウム、ポビドン、部分けん化ポリビニルアルコール、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルメチルセルロースフタレート、ヒドロキシエチルセルロース、非晶質セルロース、メチルセルロース、ケイ酸アルミニウムマグネシウムおよびトリエタノールアミンから選ばれる1以上の物質である、(12)記載の眼科疾患治療剤。
(14)
 界面活性剤が、ポリオキシエチレンヒマシ油、ステアリン酸ポリオキシル40、ステアリン酸スクロース、モノラウリン酸ポリオキシエチレンソルビタン、モノステアリン酸ポリオキシエチレンソルビタン、トリステアリン酸ポリオキシエチレンソルビタン、モノオレイン酸ポリオキシエチレンソルビタン、トリオレイン酸ポリオキシエチレンソルビタン、モノラウリン酸ソルビタン、L-α-ホスファチジルコリン(PC)、1,2-ジパルミトイルホスファチジルコリン(DPPC)、オレイン酸、天然レシチン、合成レシチン、オレイルポリオキシエチレンエーテル、ラウリルポリオキシエチレンエーテル、ジオレイン酸ジエチレングリコール、オレイン酸テトラヒドロフルフリル、オレイン酸エチル、ミリスチン酸イソプロピル、モノオレイン酸グリセリル、モノステアリン酸グリセリル、モノリシノール酸グリセリル、セチルアルコール、ステアリルアルコール、ポリエチレングリコール、チロキサポール、オクチルフェノールエトキシレート、アルキルグルコシドおよびポロキサマーから選ばれる1以上の物質である、(12)または(13)記載の眼科疾患治療剤。
(15)
 分散媒が、水、アルコール、流動パラフィン、溶質を含む水、溶質を含むアルコールまたは溶質を含む流動パラフィンである、(12)~(14)のいずれかに記載の眼科疾患治療剤。
(16)
 分散媒が、溶質を含む水である、(12)~(14)のいずれかに記載の眼科疾患治療剤。
(17)
 溶質が、塩化ナトリウム、グルコース、グリセロール、マンニトール、リン酸二水素ナトリウム、リン酸水素ナトリウム水和物、炭酸水素ナトリウム、トリスヒドロキシメチルアミノメタン、クエン酸水和物、ホウ酸およびホウ砂から選ばれる1以上の物質である、(15)または(16)記載の眼科疾患治療剤。
(18)
 さらに、防腐剤および包接物質から選ばれる1以上の成分を含む、(1)~(17)のいずれかに記載の眼科疾患治療剤。
(19)
 防腐剤が、塩化ベンザルコニウム、パラオキシ安息香酸メチル、パラオキシ安息香酸プロピル、クロロブタノール、エデト酸ナトリウム水和物、クロルヘキシジングルコン酸塩およびソルビン酸から選ばれる1以上の物質である、(18)記載の眼科疾患治療剤。
(20)
 包接物質が、α-シクロデキストリン、β-シクロデキストリン、2-ヒドロキシプロピル-β-シクロデキストリンおよびγ-シクロデキストリンから選ばれる1以上の物質である、(18)または(19)記載の眼科疾患治療剤。
(21)
 眼局所投与用である、(1)~(20)のいずれかに記載の眼科疾患治療剤。
(22)
 眼局所投与が、点眼投与、結膜下投与、テノン嚢下投与、硝子体内投与、上脈絡膜投与、眼周囲投与または眼内インプラントによる投与である、(21)記載の眼科疾患治療剤。
(23)
 眼科疾患治療剤が、液剤である、(1)~(22)のいずれかに記載の眼科疾患治療剤。
(24)
 眼科疾患治療剤が、点眼剤である、(1)~(23)のいずれかに記載の眼科疾患治療剤。
(25)
 眼科疾患が、血管内皮増殖因子(VEGF)関連疾患または上皮成長因子(EGF)関連疾患である、(1)~(24)のいずれかに記載の眼科疾患治療剤。
(26)
 VEGF関連疾患が、滲出型加齢性黄斑変性、萎縮型加齢性黄斑変性、脈絡膜新生血管、病的近視における脈絡膜新生血管、網膜静脈分枝閉塞症、黄斑浮腫、網膜中心静脈閉塞症に伴う黄斑浮腫、糖尿病黄斑浮腫、増殖性糖尿病網膜症、血管新生緑内障、網膜色素線条症、未熟児網膜症、Coats病、網膜静脈分枝閉塞症、網膜中心静脈閉塞症、嚢腫状黄斑浮腫、糖尿病網膜症による硝子体内出血、イールズ病、中心性漿液性脈絡網膜症、網膜上膜、ブドウ膜炎、多巣性脈絡膜炎、前部虚血性視神経症、角膜血管新生、翼状片、眼内黒色腫、グリオーマ後天性網膜血管腫、放射線網膜症、結節性硬化症、グリオーマ後天性網膜血管腫、結膜扁平上皮癌または高眼圧症である、(25)記載の眼科疾患治療剤。
(27)
 VEGF関連疾患が、滲出型加齢性黄斑変性、病的近視における脈絡膜新生血管、網膜静脈分枝閉塞症、網膜中心静脈閉塞症、網膜中心静脈閉塞症に伴う黄斑浮腫、糖尿病黄斑浮腫、増殖性糖尿病網膜症または血管新生緑内障である、(26)記載の眼科疾患治療剤。
(28)
 EGF関連疾患が、滲出型加齢性黄斑変性、萎縮型加齢性黄斑変性、脈絡膜新生血管、病的近視における脈絡膜新生血管、黄斑浮腫、網膜中心静脈閉塞症に伴う黄斑浮腫、糖尿病黄斑浮腫、増殖性糖尿病網膜症、緑内障、血管新生緑内障、眼炎症、網膜芽、網膜静脈分枝閉塞症、網膜中心静脈閉塞症、未熟児網膜症、網膜色素線条症、網膜動脈閉塞症、角膜血管新生、翼状片、ブドウ膜メラノーマ、ブドウ膜炎、網膜上膜、角膜上皮下線維症、ドライアイまたはマイボーム腺機能不全である、(25)記載の眼科疾患治療剤。
(29)
 EGF関連疾患が、滲出型加齢性黄斑変性、病的近視における脈絡膜新生血管、網膜静脈分枝閉塞症、網膜中心静脈閉塞症、網膜中心静脈閉塞症に伴う黄斑浮腫、糖尿病黄斑浮腫、増殖性糖尿病網膜症または血管新生緑内障である、(25)記載の眼科疾患治療剤。
(30)
 (1)~(29)のいずれかに記載の眼科疾患治療剤を投与することによる、血管内皮増殖因子(VEGF)関連疾患または上皮成長因子(EGF)関連疾患の治療方法。
(31)
 血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤をナノ粒子形態に粉砕する工程を含む、(1)~(29)のいずれかに記載の眼科疾患治療剤の製造方法。
(32)
 粉砕する工程において、さらに、粘稠化剤、界面活性剤および分散媒から選ばれる1以上の成分を添加して粉砕する、(31)記載の製造方法。
(33)
 粉砕する工程において、さらに、防腐剤および包接物質から選ばれる1以上の成分を添加して粉砕する、(31)または(32)記載の製造方法。
(34)
 粉砕が、湿式粉砕である、(31)~(33)のいずれかに記載の製造方法。
(35)
 湿式粉砕が、
 血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤に分散媒を添加し、次いで粉砕する工程を含む、(33)記載の製造方法。
 本発明により、ナノ粒子の形態の血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤を含む、眼科疾患治療剤等を提供することができる。
実施例19および実施例24で得られた本発明の医薬組成物(ナノ粒子組成物)、ならびに比較例3および比較例4で得られたマイクロ粒子組成物について、ラットに単回点眼投与(4~12μL/目(eye))したときの薬物動態を評価した。縦軸は脈絡膜/強膜中の化合物IIの濃度 (ng/g)を示し、横軸は実施例および比較例番号を示す。 媒体、実施例1および実施例2で得られた本発明の医薬組成物(ナノ粒子組成物)について、ラットにレーザー照射直後からレーザー照射後14日まで1日2回で点眼投与した際の血管新生抑制効果を評価した。アフリベルセプト(アイリーア(登録商標)硝子体内注射液、バイエル株式会社)は、ラットの眼にレーザー照射直後に硝子体内注射し、投与14日後の血管新生抑制効果を評価した。縦軸は脈絡膜新生血管面積(Choroidal neovascularization area)(ピクセル(pixel))を示し、横軸は投与した物質名または実施例番号を示す。*は、媒体群に対するアフリベルセプト、実施例1および実施例2投与群のDunnet 検定における有意差(p<0.05)を示す。 カニクイザルの眼にレーザーを照射し、レーザー誘発脈絡膜血管新生モデルを作製した。蛍光眼底造影検査より、照射スポットごとに脈絡膜血管新生Grade評価を実施し、Grade 4(造影前期または中期の鮮明な過蛍光と損傷領域以外の後期蛍光漏出)の出現率を算出した。媒体、実施例1に従って調製した本発明の医薬組成物(ナノ粒子組成物)ならびに比較例2で得られた溶液組成物について、当該動物モデルへ1日4回で35日間点眼投与した際の血管新生抑制効果を評価した。当該動物モデルへアフリベルセプト(アイリーア(登録商標)硝子体内注射液、バイエル株式会社)を硝子体内注射し、投与35日後までの血管新生抑制効果を評価した。縦軸はGrade 4の出現率(% of Grade 4 lesion)を示し、横軸は薬剤の投与期間または投与後の期間を示す(例えば、-1は投与開始日の前日、7は投与開始7日目を指す)。なお、◆は実施例1の媒体投与群、●は実施例1投与群、▲は比較例2投与群、■はアフリベルセプト投与群をそれぞれ示す。 媒体および実施例1に従って調製した本発明の医薬組成物(ナノ粒子組成物)について、幼弱マウスを高酸素負荷処置(75%酸素下、5日間)に供した後、通常酸素下に戻して1日2回で5日間点眼投与した際の網膜における血管新生抑制効果を評価した。縦軸は網膜中の新生血管面積(網膜の総組織面積に対する新生血管面積の割合、%)を示し、横軸は投与した物質名または実施例番号を示す。***は、媒体群に対する実施例1に従って調製した本発明の医薬組成物(ナノ粒子組成物)投与群のunpaired t-testにおける有意差(p?0.001)を示す。 実施例101、実施例108および実施例112、参考例9および参考例10に従って得られた化合物IV~VIIIを含む本発明の医薬組成物(ナノ粒子組成物)ならびに比較例6、比較例7、比較例8、比較例9および比較例10で得られた化合物IV~VIIIを含むマイクロ粒子組成物について、ラットに単回点眼投与(5 μL/目(eye))したときの薬物動態を評価した。縦軸は脈絡膜/強膜中の化合物IV~VIIIの濃度(ng/g)を製剤濃度(mg/mL)で除したものを示し、横軸は化合物番号および粒子サイズを示す。 実施例145で得られた化合物IXを含む本発明の医薬組成物(ナノ粒子組成物)および比較例16で得られたマイクロ粒子組成物について、ラットに単回点眼投与(5 μL/目(eye))したときの薬物動態を評価した。縦軸は脈絡膜/強膜中の化合物IXの濃度 (ng/g)を製剤濃度(mg/mL)で除したものを示し、横軸は化合物番号および粒子サイズを示す。 実施例153で得られた化合物Xを含む本発明の医薬組成物(ナノ粒子組成物)および比較例17で得られたマイクロ粒子組成物について、ラットに単回点眼投与(5 μL/目(eye))したときの薬物動態を評価した。縦軸は脈絡膜/強膜中の化合物Xの濃度 (ng/g)を製剤濃度(mg/mL)で除したものを示し、横軸は化合物番号および粒子サイズを示す。
 本発明の眼科疾患治療剤は、有効成分として、全身投与した場合に後眼部組織に滞留する性質を有する血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤を含む。
 血管内皮増殖因子(VEGF)受容体阻害剤としては、血管内皮増殖因子(VEGF)受容体に対して阻害活性を有し、かつ全身投与した場合に後眼部組織に滞留する性質を有する公知の物質を用いることができ、特に限定されるものではない。
 上皮成長因子(EGF)受容体阻害剤としては、上皮成長因子(EGF)受容体に対して阻害活性を有し、かつ全身投与した場合に後眼部組織に滞留する性質を有する公知の物質を用いることができ、特に限定されるものではない。
 眼科疾患治療剤には、1種の血管内皮増殖因子(VEGF)受容体阻害剤を含んでいてもよく、2種以上の血管内皮増殖因子(VEGF)受容体阻害剤を含んでいてもよい。
 眼科疾患治療剤には、1種の上皮成長因子(EGF)受容体阻害剤を含んでいてもよく、2種以上の上皮成長因子(EGF)受容体阻害剤を含んでいてもよい。
 眼科疾患治療剤には、1種以上の血管内皮増殖因子(VEGF)受容体阻害剤と1種以上の上皮成長因子(EGF)受容体阻害剤を含んでいてもよい。
 本発明の眼科疾患治療剤に使用される血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤における「全身投与した場合に後眼部組織に滞留する性質」について、「後眼部組織」とは脈絡膜、網膜、強膜、視神経を指し、好ましくは脈絡膜/強膜および網膜を指し、さらに好ましくは脈絡膜/強膜を指す。本発明の眼科疾患治療剤に使用される血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤における「全身投与した場合に後眼部組織に滞留する性質」について、「滞留する性質」とは、具体的には、化合物をBrown Norwayラットに投与(好ましくは静脈注射投与)した際の脈絡膜/強膜中半減期が30時間以上であることを意味し、35時間以上であることが好ましく、40時間以上であることがより好ましい。ここで、後眼部組織(脈絡膜/強膜や網膜等)に滞留する化合物は、滞留しない化合物と比較して、組織中のターゲット(VEGF受容体またはEGF受容体)近傍により長く局在する。従って、化合物の作用機序(VEGF受容体またはEGF受容体のリン酸化阻害作用)に基づく作用がより長時間保持され、最終的に薬理作用(血管新生阻害作用、血管透過性の亢進の抑制作用、その他のVEGF受容体またはEGF受容体のリン酸化阻害作用に基づく薬理作用)がより強く発現する。また、後眼部組織に滞留する化合物は、滞留しない化合物と比較して、連続(反復)投与によって組織中に化合物が蓄積し、組織中曝露が増加する。これらの作用の結果として、後眼部組織における化合物の薬理作用がより強く発現する。
 全身投与の方法としては、特に限定されるものではないが、経口投与、静脈注射投与、筋肉内注射投与・皮下注射投与、舌下投与、経鼻投与、点眼投与、吸入投与、経皮投与が挙げられ、好ましくは経口投与、静脈注射投与、筋肉内注射投与・皮下注射投与、点眼投与であり、より好ましくは、経口投与、静脈注射投与である。全身投与の対象は哺乳動物であれば特に限定されないが、ヒト、サル(例えば、カニクイザル)、ウサギ(例えば、Kbl:Dutch)、マウス(例えば、129SVE)、ラット(例えば、Brown Norway)が好ましく、ヒト、サル、ラットがより好ましい。
 全身投与した場合に後眼部組織に滞留する性質を有する化合物であるか否かは、例えば以下の手法により測定することができる。血管内皮増殖因子(VEGF)受容体阻害剤またはは上皮成長因子(EGF)受容体阻害剤をジメチルアセトアミド(DMA)等の有機溶媒に溶解し、その後にモノオレイン酸ポリオキシエチレンソルビタン(ポリソルベート80、Tween80)等を含有する生理食塩水で希釈し、静脈内投与液を調製する。この静脈内投与液をBrown Norwayラットに投与し、投与後一定間隔、例えば24、72および168時間後に採血した後に安楽死させるとともに、眼球を摘出し、ここから脈絡膜/強膜、網膜、視神経等の後眼部組織を採取する。採取した後眼部組織に、一定量の有機溶媒を含有する水溶液(例えば50vol%メタノール溶液等)を添加してホモジナイズ等を行い、測定試料を調製する。この測定試料中の薬物濃度を液体クロマトグラフ-タンデム型質量分析計(LC/MS/MS)を用いて測定することにより、全身投与した場合における後眼部組織中の化合物濃度を測定することができる。さらに、後眼部組織中の化合物濃度の経時推移より、後眼部組織中の消失半減期を算出することができる。
 ナノ粒子の形態の眼科疾患治療剤として使用可能な血管内皮増殖因子(VEGF)受容体阻害剤としては、式(I)または式(II)で表される化合物、式(I)または式(II)で表される化合物の薬学的に許容可能な塩、式(I)または式(II)で表される化合物の水和物、式(I)または式(II)で表される化合物の溶媒和物、式(I)または式(II)で表される化合物の薬学的に許容可能な塩の水和物、または式(I)または式(II)で表される化合物の薬学的に許容可能な塩の溶媒和物が挙げられる。ナノ粒子の形態の眼科疾患治療剤として使用可能な血管内皮増殖因子(VEGF)受容体阻害剤としては、アキシチニブ、カボザンチニブ、レゴラフェニブ、ポナチニブ、レンバチニブ、スニチニブ、ソラフェニブ、パゾパニブ、バンデタニブ、ニンテダニブ、ginsenoside Rg3 (Jilin Yatai Pharmaceuticals)、アパチニブ、アンロチニブ、フルクィンチニブ、ファミチニブ、スルファチニブ、muparfostat(Medigen Biotechnology)、レバスチニブ、グレサチニブ、X-82(TyrogeneX)、ODM-203(Orion)、PAN-90806(PanOptica)、ルシタニブ、TAS-115(Taiho Pharmaceutical)、ENMD-2076(CASI Pharmaceuticals)、アルベンダゾール、フェンレチニド、AN-019(Natco Pharma)、CTO(Tactical Therapeutics)、プクィチニブ、これらの薬学的に許容可能な塩、またはこれらの水和物もしくは溶媒和物が挙げられる。
 これらの中で、全身投与した場合に後眼部組織に滞留する性質を有する血管内皮増殖因子(VEGF)受容体阻害剤としては、式(I)または式(II)で表される化合物、式(I)または式(II)で表される化合物の薬学的に許容可能な塩、式(I)または式(II)で表される化合物の水和物、式(I)または式(II)で表される化合物の溶媒和物、式(I)または式(II)で表される化合物の薬学的に許容可能な塩の水和物、または式(I)または式(II)で表される化合物の薬学的に許容可能な塩の溶媒和物が挙げられる。全身投与した場合に後眼部組織に滞留する性質を有するVEGF受容体阻害剤としては、アキシチニブ、アンロチニブ、カボザンチニブ、グレサチニブ、スニチニブ、ニンテダニブ、フルクィチニブ、レバスチニブ、レンバチニブ、これらの薬学的に許容可能な塩、またはこれらの水和物もしくは溶媒和物でが挙げられる。
 ナノ粒子の形態の眼科疾患治療剤として使用可能な上皮成長因子(EGF)受容体阻害剤としては、オシメルチニブ、エルロチニブ、ラパチニブ、イコチニブ、ゲフィチニブ、アファチニブ、オルムチニブ、AZD-3759(AstraZeneca)、アリチニブ、ナザルチニブ、テセバチニブ、ポジオチニブ、ダコミチニブ、バルリチニブ、アビチニブ、S-222611(Shionogi)、ブリガチニブ、AP-32788(ARIAD Pharmaceuticals)、ネラチニブ、ナクオチニブ、アジラフェニブ、PF-06747775(Pfizer)、セリアチニブ、SKLB-1028(Sichuan University)、NRC-2694-A(Natco Pharma)、エピチニブ、Hemay-020(Tianjin Hemay Bio-Tech)、PB-357(PUMA BIOTECHNOLOGY/Pfizer)、ツカチニブ、TAS-121(Taiho Pharmaceutical)、QLNC-120(Qilu Pharmaceutical)、ピロチニブ、Hemay-022(Tianjin Hemay Bio-Tech)、シモチニブ、AG-1478、これらの薬学的に許容可能な塩、またはこれらの水和物もしくは溶媒和物が挙げられる。
 これらの中で、全身投与した場合に後眼部組織に滞留する性質を有する上皮成長因子(EGF)受容体阻害剤としては、アビチニブ、アリチニブ、イコチニブ、エルロチニブ、オシメルチニブ、N-[2-[[2-(ジメチルアミノ)エチル]メチルアミノ]-5-[[4-(1H-インドール-3-イル)-2-ピリミジニル]アミノ]-4-メトキシフェニル]-2-プロパンアミド(AZD-5104)、ゲフィチニブ、ダコミチニブ、テセバチニブ、ナザルチニブ、バルリチニブ、ブリガチニブ、ポジオチニブ、ラパチニブ、4-[(3-クロロ-2-フルオロフェニル)アミノ]-7-メトキシキナゾリン-6-イル(2R)-2,4-ジメチルピペラジン-1-カルボキシレート(AZD-3759)、N-(3-クロロフェニル)-N-(6,7-ジメトキシキナゾリン-4-イル)アミン(AG-1478)、これらの薬学的に許容可能な塩、またはこれらの水和物もしくは溶媒和物が挙げられる。
 本発明の眼科疾患治療剤が含む血管内皮増殖因子(VEGF)受容体阻害剤としては、例えば、式(I)
Figure JPOXMLDOC01-appb-C000005
(式中、
およびRは、同一または異なって、C1-C6アルコキシ基を表し、
は、ハロゲン原子を表し、
およびRは、同一または異なって、水素原子、ハロゲン原子、C1-C4アルキル基、C1-C4アルコキシ基、C1-C4アルキルチオ基、トリフルオロメチル基、ニトロ基またはアミノ基を表し、
およびRは、同一または異なって、水素原子、ハロゲン原子、C1-C4アルキル基、C1-C4アルコキシ基、C1-C4アルキルチオ基、トリフルオロメチル基、ニトロ基、アミノ基、1または2のC1-C4アルキル基で置換されているアミノ基、C1-C4アルコキシカルボニルC1-C4アルキル基、C1-C4アルキルカルボニル基またはC3-C5シクロアルキル基を表す)で表される化合物もしくはその薬学的に許容可能な塩、またはそれらの水和物もしくは溶媒和物が挙げられる。
 血管内皮増殖因子(VEGF)受容体阻害剤としては、式(I)で表される化合物、式(I)で表される化合物の薬学的に許容可能な塩、式(I)で表される化合物の水和物、式(I)で表される化合物の溶媒和物、式(I)で表される化合物の薬学的に許容可能な塩の水和物、または式(I)で表される化合物の薬学的に許容可能な塩の溶媒和物である。
 式(I)中のRおよびRは、同一または異なって、C1-C6アルコキシ基を表し、それぞれメトキシ基であることが好ましい。
 式(I)中のRは、ハロゲン原子を表し、塩素原子であることが好ましい。
 式(I)中のRおよびRは、同一または異なって、水素原子、ハロゲン原子、C1-C4アルキル基、C1-C4アルコキシ基、C1-C4アルキルチオ基、トリフルオロメチル基、ニトロ基またはアミノ基を表し、同一または異なって、水素原子またはハロゲン原子であることが好ましく、それぞれ水素原子またはハロゲン原子であることがより好ましく、それぞれ水素原子であることがさらに好ましい。
 式(I)中のRおよびRは、同一または異なって、水素原子、ハロゲン原子、C1-C4アルキル基、C1-C4アルコキシ基、C1-C4アルキルチオ基、トリフルオロメチル基、ニトロ基、アミノ基、1または2のC1-C4アルキル基で置換されているアミノ基、C1-C4アルコキシカルボニルC1-C4アルキル基、C1-C4アルキルカルボニル基またはC3-C5シクロアルキル基を表し、同一または異なって、水素原子、ハロゲン原子、C1-C4アルキル基またはC1-C4アルコキシ基であることが好ましく、RがC1-C4アルキル基であり、かつRが水素原子であることがより好ましく、Rがメチル基であり、かつRが水素原子であることがさらに好ましい。
 式(I)中の各置換基の組み合わせとしては、RおよびRが、同一または異なって、水素原子またはハロゲン原子であり、かつRおよびRが、同一または異なって、水素原子、ハロゲン原子またはC1-C4アルキル基であることが好ましく、Rが塩素原子であり、RおよびRが、同一または異なって、水素原子またはハロゲン原子であり、かつRおよびRが、同一または異なって、水素原子、ハロゲン原子またはC1-C4アルキル基であることがより好ましく、Rが塩素原子であり、RおよびRが水素原子であり、RがC1-C4アルキル基であり、かつRが水素原子であることがより好ましい。
 血管内皮増殖因子(VEGF)受容体阻害剤としては、式(II)
Figure JPOXMLDOC01-appb-C000006
で表される化合物もしくはその薬学的に許容可能な塩、またはそれらの水和物もしくは溶媒和物であることが好ましい。
 本発明における式(I)で表される化合物や式(II)で表される化合物は、特開2003-12668号公報に開示された方法、またはこれに準じた方法で製造することができる。
 本発明の眼科疾患治療剤が含む血管内皮増殖因子(VEGF)受容体阻害剤としては、上述の通りであり、これら化合物(遊離体)もしくはその薬学的に許容可能な塩、またはそれらの水和物もしくは溶媒和物が挙げられる。
 本発明における血管内皮増殖因子(VEGF)受容体阻害剤は、従来公知の方法、またはこれに準じた方法で製造することができる。
 血管内皮増殖因子(VEGF)受容体阻害剤が、式(I)で表される化合物や式(II)で表される化合物である場合には、特開2003-12668号公報に開示された方法、またはこれに準じた方法で製造することができる。
 本発明における上皮成長因子(EGF)受容体阻害剤は、従来公知の方法、またはこれに準じた方法で製造することができる。
 本発明において用いられる血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤が、薬学的に許容可能な塩である場合には、例えば、塩酸塩、フッ化水素酸塩、臭化水素酸塩、ヨウ化水素酸塩等のハロゲン化水素酸塩、硫酸塩、リン酸塩、硝酸塩、過塩素酸塩等の無機酸塩、酢酸塩、クエン酸塩、フマル酸塩、コハク酸塩、酒石酸塩、シュウ酸塩、マレイン酸塩、リンゴ酸塩、乳酸塩、アスコルビン酸塩等の有機酸塩、メシル酸塩、トリフルオロメタンスルホン酸塩、エタンスルホン酸塩等の低級アルキルスルホン酸塩、ベンゼンスルホン酸塩、トシル酸塩等のアリールスルホン酸塩、グリシン酸塩、フェニルアラニン酸塩、グルタミン酸塩、アスパラギン酸塩等のアミノ酸塩、ナトリウム塩、カリウム塩等のアルカリ金属塩、カルシウム塩、マグネシウム塩等のアルカリ土類金属塩、アミン塩等の有機塩基塩等が挙げられる。
本発明における式(I)で表される化合物またはその薬学的に許容される塩には、その分子内塩や付加物、それらの溶媒和物、あるいは水和物等のいずれも含まれる。
 本発明において用いられる血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤は、化合物(遊離体もしくはフリー体)またはその薬学的に許容可能な塩、またはそれらの水和物もしくは溶媒和物であってもよい。
 化合物または薬学的に許容可能な塩の水和物としては、水和する水の数は特に限定されず、一水和物、二水和物、三水和物であってよい。
 また、化合物または薬学的に許容可能な塩の溶媒和物としては、溶媒和する溶媒の数は特に限定されず、一溶媒和物、二溶媒和物、三溶媒和物であってよい。
 溶媒和する溶媒としては、例えば、メタノール、エタノール等のアルコールが挙げられる。化合物または薬学的に許容可能な塩の溶媒和物としては、メタノール和物、エタノール和物等のアルコール和物が挙げられる。
 本発明において用いられる血管内皮増殖因子(VEGF)受容体阻害剤が、式(I)で表される化合物もしくはその薬学的に許容可能な塩、またはそれらの水和物もしくは溶媒和物である場合には、遊離体(フリー体)、無機酸塩もしくは有機酸塩、または遊離体(フリー体)、無機酸塩もしくは有機酸塩の水和物であることが好ましく、式(I)で表される化合物の塩酸塩または式(I)で表される化合物の塩酸塩の水和物であることがより好ましい。
 本発明においては、血管内皮増殖因子(VEGF)受容体阻害剤としては、式(II)で表される化合物の塩酸塩または式(II)で表される化合物の塩酸塩の水和物であることがより好ましい。
 本発明の眼科疾患治療剤は、ナノ粒子の形態の血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤を含むが、ナノ粒子の形態以外の形態である血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤を含んでいてもよい。
 ナノ粒子の形態以外の形態としては、例えばマイクロ粒子の形態等が挙げられる。
 本発明の眼科疾患治療剤において、ナノ粒子の形態以外の形態の血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤の含有量は、ナノ粒子の形態の血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤の含有量の20質量%以下であればよい。
 血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤の総量の60質量%~100質量%がナノ粒子の形態であることが好ましく、70質量%~100質量%がナノ粒子の形態であることがより好ましく、80質量%~100質量%がナノ粒子の形態であることがさらに好ましい。
 本発明において、ナノ粒子の形態とは、物質がナノメートルオーダーの粒子形態であることを意味し、一般的には平均粒子径が10~1000nmである粒子形態を意味する。
 本発明の眼科疾患治療剤に含まれるナノ粒子の形態の血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤は、粉砕または結晶化により調製されたものが好ましい。
 本発明の眼科疾患治療剤に含まれるナノ粒子の形態の血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤は、平均粒子径として、400nm以下であれば特に限定されないが、10~400nmであることが好ましく、10~300nmであることがより好ましく、10~200nmであることがさらに好ましく、20~180nm以下であることがよりさらに好ましく、30~150nm以下であることがよりさらに好ましく、50~130nm以下であることが特に好ましい。
 本発明における血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤の平均粒子径の測定方法は、特に限定されるものではない。該平均粒子径の測定は、例えば動的光散乱法を用いるとともに、測定条件として、散乱角173°、波長633nmにて行うことができる。また、本発明における血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤のメジアン径(D50)の測定方法は、特に限定されるものではない。例えば、レーザー回折・散乱式粒度分布測定装置で、測定条件2 mV He-Neレーザ(波長632.8nm)焦点距離100 nmにより測定することができる。
 血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤の含有量は、特に限定されるものではないが、例えば、眼科疾患治療剤100重量部に対して、0.01~20重量部であることが好ましく、0.01~15重量部であることがより好ましく、0.01~10重量部であることがさらに好ましい。
 本発明の眼科疾患治療剤には、血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤以外に、粘稠化剤、界面活性剤および分散媒から選ばれる1以上の成分、あるいは、防腐剤および包接物質から選ばれる1以上の成分がさらに含まれていてもよい。
 本発明の眼科疾患治療剤には、血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤以外に、粘稠化剤、界面活性剤および分散媒から選ばれる1以上の成分とともに、防腐剤および包接物質から選ばれる1以上の成分がさらに含まれていることが好ましい。
 粘稠化剤、界面活性剤、分散媒、防腐剤および包接物質は、各成分中の1種の成分を用いてもよく、各成分中の2種以上の成分を用いてよい。
 本発明の眼科疾患治療剤に用いられる粘稠化剤としては、例えば、カルボキシビニルポリマー、カルボキシメチルセルロースカルシウム、カルボキシメチルセルロースナトリウム、ポビドン(ポリビニルピロリドン)、部分けん化ポリビニルアルコール、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルメチルセルロースフタレート、ヒドロキシエチルセルロース、非晶質セルロース、メチルセルロース、ケイ酸アルミニウムマグネシウムおよびトリエタノールアミン等が挙げられる。
 粘稠化剤としては、ポリビニルアルコール、ポビドン(ポリビニルピロリドン)、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースおよびヒドロキシメチルセルロース等が好ましい。
 粘稠化剤は、1種を使用してもよく、2種以上を組み合わせて使用してもよい。
 本発明の眼科疾患治療剤において、粘稠化剤の含有量は、特に限定されるものではないが、例えば、眼科疾患治療剤100重量部に対して、0.01~5重量部であることが好ましく、0.05~3重量部であることがより好ましく、0.1~2.5重量部であることがさらに好ましい。
 本発明の眼科疾患治療剤に用いられる界面活性剤としては、例えば、ポリオキシエチレンヒマシ油、ステアリン酸ポリオキシル40、ステアリン酸スクロース、モノラウリン酸ポリオキシエチレンソルビタン、モノステアリン酸ポリオキシエチレンソルビタン、トリステアリン酸ポリオキシエチレンソルビタン、モノオレイン酸ポリオキシエチレンソルビタン(ポリソルベート80、Tween(登録商標)80)、トリオレイン酸ポリオキシエチレンソルビタン、モノラウリン酸ソルビタン、ラウリル硫酸ナトリウム、L-α-ホスファチジルコリン(PC)、1,2-ジパルミトイルホスファチジルコリン(DPPC)、オレイン酸、天然レシチン、合成レシチン、オレイルポリオキシエチレンエーテル、ラウリルポリオキシエチレンエーテル、ジオレイン酸ジエチレングリコール、オレイン酸テトラヒドロフルフリル、オレイン酸エチル、ミリスチン酸イソプロピル、モノオレイン酸グリセリル、モノステアリン酸グリセリル、モノリシノール酸グリセリル、セチルアルコール、ステアリルアルコール、ポリエチレングリコール、チロキサポール、オクチルフェノールエトキシレート、アルキルグルコシドおよびポロキサマー等が挙げられる。
 界面活性剤としては、モノオレイン酸ポリオキシエチレンソルビタンおよびポロキサマーが好ましく、この中でもモノオレイン酸ポリオキシエチレンソルビタン(ポリソルベート80)、ポロキサマー(プルロニック(登録商標)F-127)がより好ましい。
 界面活性剤は、1種を使用してもよく、2種以上を組み合わせて使用してもよい。
 本発明の眼科疾患治療剤において、界面活性剤の含有量は、特に限定されるものではないが、例えば、眼科疾患治療剤100重量部に対して、0~5重量部であることが好ましく、0~3重量部であることがより好ましく、0~1.0重量部であることがさらに好ましい。
 粘稠化剤および界面活性剤を組み合わせて使用する場合、粘稠化剤および界面活性剤の組合せは、特に限定されるものではないが、例えば、ヒドロキシプロピルメチルセルロースとモノオレイン酸ポリオキシエチレンソルビタン、ヒドロキシプロピルセルロースとモノオレイン酸ポリオキシエチレンソルビタン、ヒドロキシプロピルセルロースとチロキサポール、ポビドンとモノオレイン酸ポリオキシエチレンソルビタン、ポリビニルアルコールとモノオレイン酸ポリオキシエチレンソルビタン、ポロキサマーとモノオレイン酸ポリオキシエチレンソルビタン等の組合せが挙げられる。
 粘稠化剤および界面活性剤の組合せは、ヒドロキシプロピルセルロースとモノオレイン酸ポリオキシエチレンソルビタン、ポビドンとモノオレイン酸ポリオキシエチレンソルビタン、ポリビニルアルコールとモノオレイン酸ポリオキシエチレンソルビタン、ポロキサマーとモノオレイン酸ポリオキシエチレンソルビタンの組合せが好ましく、ヒドロキシプロピルセルロースとモノオレイン酸ポリオキシエチレンソルビタン、ポビドンとモノオレイン酸ポリオキシエチレンソルビタン、ポロキサマーとモノオレイン酸ポリオキシエチレンソルビタンの組合せがより好ましい。
 粘稠化剤および界面活性剤を組み合わせて使用する場合の、粘稠化剤および界面活性剤の重量比は、特に限定されるものではないが、界面活性剤/粘稠化剤として、例えば、0~500であり、0~60が好ましく、0~10がより好ましい。
 本発明の眼科疾患治療剤に用いられる分散媒としては、例えば、水、アルコール、流動パラフィン、溶質を含む水、溶質を含むアルコール、溶質を含む流動パラフィン等が挙げられる。
 分散媒としては、水、流動パラフィン、溶質を含む水が好ましく、水、溶質を含む水がより好ましい。
 分散媒は、1種を使用してもよく、2種以上を組み合わせて使用してもよい。
 本発明の眼科疾患治療剤において、分散媒の含有量は特に限定されるものではなく、眼科疾患治療剤において、眼科疾患治療剤100重量部あたりの含有量として眼科疾患治療剤に含まれる分散媒以外の他の成分の含有量を調整し、その残余の含有量となるように分散媒が含まれていればよい。具体的には、眼科疾患治療剤に含まれる分散媒以外の他の成分の含有量の和に対して、眼科疾患治療剤が100重量部となるように、眼科疾患治療剤に分散媒が含まれていればよい。分散媒の含有量はいが、例えば、眼科疾患治療剤100重量部に対して、68~99.9重量部であることが好ましく、78~99.9重量部であることがより好ましく、85~99.9重量部であることがより好ましい。
 分散媒に含まれる溶質としては特に、限定されるものではないが、例えば医薬の分野において等張化剤として使用されるものが好ましい。
 等張化剤としては、例えば、塩化ナトリウム、グルコース(ブドウ糖)、グリセロール、マンニトール、リン酸二水素ナトリウム、リン酸水素ナトリウム水和物、炭酸水素ナトリウム、トリスヒドロキシメチルアミノメタン、クエン酸水和物、ホウ酸、ホウ砂、リン酸等が挙げられる。
 等張化剤は、塩化ナトリウム、グルコース(ブドウ糖)、グリセロール、マンニトールが好ましい。
 等張化剤は、1種を使用してもよく、2種以上組み合わせて使用してもよい。
 本発明の眼科疾患治療剤において、溶質の含有量は、特に限定されるものではないが、水、アルコール、または流動パラフィン100重量部に対し、0~50重量部であることが好ましく、0~25重量部であることがより好ましい。
 本発明の眼科疾患治療剤に用いられる防腐剤としては、例えば、塩化ベンザルコニウム、パラオキシ安息香酸メチル、パラオキシ安息香酸プロピル、クロロブタノール、エデト酸ナトリウム水和物、クロルヘキシジングルコン酸塩、ソルビン酸等が挙げられる。
 防腐剤としては、塩化ベンザルコニウムが好ましい。
 防腐剤は、1種を使用してもよく、2種以上を組み合わせて使用してもよい。
 本発明の眼科疾患治療剤において、防腐剤の含有量は、特に限定されるものではないが、例えば、眼科疾患治療剤100重量部に対して、0~1重量部であることが好まし、0~0.75重量部であることがより好ましく、0~0.5重量部であることがさらに好ましく、または防腐剤の含有量は、特に限定されるものではないが、例えば、血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤100重量部に対して、0~100重量部であることが好ましく、0~75重量部であることがより好ましく、0~50重量部であることがさらに好ましい。
 本発明の眼科疾患治療剤に用いられる包接物質は分子を取り込む性質を有する限りにおいて特に限定されるものではないが、例えば、α-シクロデキストリン、β-シクロデキストリン、2-ヒドロキシプロピル-β-シクロデキストリン(HP-β-CD)、γ-シクロデキストリン等が挙げられる。
 包接物質としては、β-シクロデキストリン、2-ヒドロキシプロピル-β-シクロデキストリンが好ましく、2-ヒドロキシプロピル-β-シクロデキストリン(HP-β-CD)がより好ましい。
 包接物質は、1種を使用してもよく、2種以上を組み合わせて使用してもよい。
 本発明の眼科疾患治療剤において、包接物質の含有量は、特に限定されるものではないが、例えば、眼科疾患治療剤100重量部に対して、0~1重量部であることが好まし、0~0.75重量部であることがより好ましく、0~0.5重量部であることがさらに好ましい。
 本発明の眼科疾患治療剤は眼局所投与される。眼局所投与としては、点眼投与、結膜下投与、テノン嚢下投与、硝子体内投与、上脈絡膜投与(suprachoroidal injection)、眼周囲投与(periocular injection)、または眼内インプラントによる投与もしくはその他のドラッグデリバリーデバイスによる投与等が挙げられ、点眼投与が好ましい。
 本発明の医薬組成物は、哺乳動物等に投与することにより、血管内皮増殖因子(VEGF)関連疾患または上皮成長因子(EGF)関連疾患の予防や治療等に用いることができる。
 血管内皮増殖因子(VEGF)関連疾患としては、例えば滲出型加齢性黄斑変性(wet-type (neovascular or exudative) age related macular degeneration、wet-AMD)、萎縮型加齢性黄斑変性、脈絡膜新生血管、病的近視における脈絡膜新生血管、網膜静脈分枝閉塞症、黄斑浮腫、網膜中心静脈閉塞症に伴う黄斑浮腫、糖尿病黄斑浮腫、増殖性糖尿病網膜症、血管新生緑内障、網膜色素線条症、未熟児網膜症、Coats病、網膜静脈分枝閉塞症、網膜中心静脈閉塞症、嚢腫状黄斑浮腫、糖尿病網膜症による硝子体内出血、イールズ病、中心性漿液性脈絡網膜症、網膜上膜、ブドウ膜炎、多巣性脈絡膜炎、前部虚血性視神経症、角膜血管新生、翼状片、眼内黒色腫、グリオーマ後天性網膜血管腫、放射線網膜症、結節性硬化症、グリオーマ後天性網膜血管腫、結膜扁平上皮癌または高眼圧症等が挙げられる。
 血管内皮増殖因子(VEGF)関連疾患は、滲出型加齢性黄斑変性、病的近視における脈絡膜新生血管、網膜静脈分枝閉塞症、網膜中心静脈閉塞症、網膜中心静脈閉塞症に伴う黄斑浮腫、糖尿病黄斑浮腫、増殖性糖尿病網膜症または血管新生緑内障であることが好適である。
 上皮成長因子(EGF)関連疾患としては、例えば滲出型加齢性黄斑変性(wet-type (neovascular or exudative) age related macular degeneration、wet-AMD)、萎縮型加齢性黄斑変性、脈絡膜新生血管、病的近視における脈絡膜新生血管、黄斑浮腫、網膜中心静脈閉塞症に伴う黄斑浮腫、糖尿病黄斑浮腫、増殖性糖尿病網膜症、緑内障、血管新生緑内障、眼炎症、網膜芽、網膜静脈分枝閉塞症、網膜中心静脈閉塞症、未熟児網膜症、網膜色素線条症、網膜動脈閉塞症、角膜血管新生、翼状片、ブドウ膜メラノーマ、ブドウ膜炎、網膜上膜、角膜上皮下線維症、ドライアイ、マイボーム腺機能不全等が挙げられる。
 上皮成長因子(EGF)関連疾患は、滲出型加齢性黄斑変性、病的近視における脈絡膜新生血管、網膜静脈分枝閉塞症、網膜中心静脈閉塞症、網膜中心静脈閉塞症に伴う黄斑浮腫、糖尿病黄斑浮腫、増殖性糖尿病網膜症または血管新生緑内障であることが好適である。
 本発明の医薬組成物は血管内皮増殖因子(VEGF)関連疾患または上皮成長因子(EGF)関連疾患の治療や予防等に用いることができるが、この中でも、既存の抗VEGF阻害薬(硝子体内注射剤)で適応が取得されている滲出型加齢性黄斑変性(wet-type (neovascular or exudative) age related macular degeneration、wet-AMD)、網膜中心静脈閉塞症に伴う黄斑浮腫、病的近視における脈絡膜新生血管および糖尿病黄斑浮腫、ならびに、適応外であっても臨床において抗VEGF阻害薬(硝子体内注射剤)の治療効果が報告されている増殖性糖尿病網膜症、血管新生緑内障、ブドウ膜炎および未熟児網膜症等の眼科疾患の予防や治療等に用いることが好ましい。
 上皮成長因子(EGF)関連疾患においては、眼内における血管新生や血管透過性の亢進により病態が引き起こされていると考えられる。本発明の医薬組成物は上皮成長因子(EGF)関連疾患の治療や予防等に用いることができるが、この中でも、眼内における血管新生阻害作用や血管透過性の亢進の抑制作用による有効性が確認されているる滲出型加齢性黄斑変性(wet-type (neovascular or exudative) age related macular degeneration、wet-AMD)、網膜中心静脈閉塞症に伴う黄斑浮腫、病的近視における脈絡膜新生血管および糖尿病黄斑浮腫等の眼科疾患の予防や治療等に用いることが好ましい。
 上記のような眼科疾患では、例えば臨床において抗VEGF阻害薬の硝子体内注射によって良好な治療効果(最高矯正視力の回復、病態により肥厚した網膜の菲薄化等の組織学的な改善、等々)が認められており、また、非臨床においてEGF阻害薬の投与により網膜中や脈絡膜中の血管新生阻害や血管透過性の亢進の抑制が確認されており臨床での有効性が期待されている。しかしながら、例えば既存の抗VEGF阻害薬(硝子体内注射剤)は、治療効果は高いものの、投与経路が硝子体内注射であること、高い再発率などにより継続的な治療が必要であることから、患者本人、家族および医療従事者の負担が極めて大きく、社会的な問題となっている。このような事情から、上記のような眼科疾患においては、患者本人、家族および医療従事者等の負担軽減の観点から硝子体内注射以外の非侵襲的かつ簡便な経路で投与可能な薬剤(経口剤や点眼剤等)の開発が望まれており、点眼等の経路により有効成分を患者に投与できる点において、本発明の眼科疾患治療剤は有用である。
 本発明の眼科疾患治療剤の形状は特に限定されないが、液剤(液状製剤)であることが好ましく、液剤としては、懸濁製剤、溶液製剤であることがより好ましい。
 本発明の眼科疾患治療剤の成分の一部もしくは全部、またはそれらを凍結乾燥した粉末を、水等に溶解または分散して、本発明の眼科疾患治療剤としてもよい。
 本発明の眼科疾患治療剤におけるナノ粒子の形態の血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤の製造方法は特に限定されないが、粉砕等の製剤学の技術分野において一般的に用いられるナノ粒子化方法により製造することができる。
 ナノ粒子化方法としては、例えば、市販の器具(ジルコニア容器、ジルコニアボール等)や市販のナノ粉砕機等を用いて、血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤を粉砕し、次いで市販の遠心機等を用いて精製等することにより、ナノ粒子の形態の血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤を製造することができる。また、血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤の溶液より、液相ないし気相で刺激を与えることにより晶析させて、ナノ粒子の形態の血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤を製造することができる。
 粉砕工程においては、血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤に加え、粘稠化剤、界面活性剤、分散媒、防腐剤および包接物質から選ばれる1以上の成分を添加して粉砕してもよい。
 粉砕工程においては、粘稠化剤、界面活性剤および分散媒から選ばれる1以上の成分を添加し、さらに防腐剤および包接物質から選ばれる1以上の成分を添加して粉砕してもよい。
 粉砕の方法は特に限定されるものではないが、例えば、乾式粉砕、湿式粉砕等が挙げられ、湿式粉砕が好ましい。
 血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤に分散媒を添加し、次いで粉砕する湿式粉砕がより好ましい。
 精製の方法は特に限定されるものではないが、市販の遠心機等を用いて精製することが挙げられる。
 以下に、参考例、実施例、試験例に基づいて本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。
参考例1
 N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物は、特開2003-12668号公報に開示された方法に従い調製した。
実施例1
 ジルコニア容器(シンキー)にN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物を秤量し、次いでヒドロキシプロピルセルロース(ヒドロキシプロピルセルロース(HPC)、和光純薬、以下同じ)、ポリソルベート80(純正化学、以下同じ)、塩化ベンザルコニウム(塩化ベンザルコニウム(BAC)、ナカライテスク、以下同じ)、D-マンニトール(純正化学、以下同じ)、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/30回/-10℃)を行い、その後、グルコース水溶液(5質量%、以下同じ)を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部とした。
 このナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い(13200rpm、28分)、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の濃度を1.28 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の平均粒子径は114 nmのナノ粒子組成物であった。
実施例2
 実施例1に準じて、精製条件を13200rpm、5.5分に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が5.36 mg/mL、平均粒子径が169 nmのナノ粒子組成物を得た。
実施例3
 実施例1に準じて、精製条件を13200rpm、2分に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が6.50mg/mL、平均粒子径が151 nmのナノ粒子組成物を得た。
実施例4
 実施例1に準じて、精製条件を13200rpm、20分に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が0.54 mg/mL、平均粒子径が122 nmのナノ粒子組成物を得た。
Figure JPOXMLDOC01-appb-T000007
実施例5
 実施例1に準じて、ヒドロキシプロピルセルロース(HPC)量を0.5重量部から0.75重量部に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.75重量部/0.1重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.49 mg/mL、平均粒子径が198 nmのナノ粒子組成物を得た。
実施例6
 実施例1に準じて、ヒドロキシプロピルセルロース(HPC)量を0.5重量部から1.0重量部に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/1.00重量部/0.1重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.29 mg/mL、平均粒子径が175 nmのナノ粒子組成物を得た。
実施例7
 実施例1に準じて、ヒドロキシプロピルセルロース(HPC)量を0.5重量部から1.25重量部に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/1.25重量部/0.1重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.42 mg/mL、平均粒子径が188 nmのナノ粒子組成物を得た。
実施例8
 実施例1に準じて、ヒドロキシプロピルセルロース(HPC)量を0.5重量部から2.5重量部に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/2.5重量部/0.1重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.44 mg/mL、平均粒子径が471 nmのナノ粒子組成物を得た。
Figure JPOXMLDOC01-appb-T000008
実施例9
 実施例1に準じて、ポリソルベート80量を0.1重量部から1.0重量部に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/1.0重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.36 mg/mL、平均粒子径が179 nmのナノ粒子組成物を得た。
実施例10
 実施例1に準じて、ポリソルベート80量を0.1重量部から0.001重量部に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.001重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.51 mg/mL、平均粒子径が117 nmのナノ粒子組成物を得た。
実施例11
 実施例1に準じて、ポリソルベート80を組成から除くことにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.17 mg/mL、平均粒子径が105 nmのナノ粒子組成物を得た。
Figure JPOXMLDOC01-appb-T000009
実施例12
 実施例1に準じて、D-マンニトール量を0.1重量部から1.0重量部に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/1.0重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.13 mg/mL、平均粒子径が140 nmのナノ粒子組成物を得た。
実施例13
 実施例1に準じて、D-マンニトール量を0.1重量部から0.5重量部に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.5重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.53 mg/mL、平均粒子径が124 nmのナノ粒子組成物を得た。
実施例14
 実施例1に準じて、D-マンニトールを組成から除くことにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)=1重量部/0.5重量部/0.1重量部/0.001重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が0.50 mg/mL、平均粒子径が138 nmのナノ粒子組成物を得た。
Figure JPOXMLDOC01-appb-T000010
実施例15
 ジルコニア容器にN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物を秤量し、次いでヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.05 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕を行い、その後、グルコース水溶液を添加、希釈し、ジルコニアボールをスクリーン除去し、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部とした。
 このナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い(10000rpm、1分)、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の濃度を0.65 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の平均粒子径は426 nmのナノ粒子組成物であった。
実施例16
 ジルコニア容器にN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物を秤量し、次いでヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径1.0 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕を行い、その後、グルコース水溶液を添加、希釈し、ジルコニアボールをスクリーン除去し、ナノ粒子組成物ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部とした。
 このナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の濃度を1.35 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の平均粒子径は154 nmのナノ粒子組成物であった。
実施例17
 ジルコニア容器にN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物を秤量し、次いでヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径3.0 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕を行い、その後、グルコース水溶液を添加、希釈し、ジルコニアボールをスクリーン除去し、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部とした。
 このナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の濃度を1.17 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の平均粒子径は155 nmのナノ粒子組成物であった。
Figure JPOXMLDOC01-appb-T000011
実施例18
 実施例1に準じて、グルコース水溶液をグリセロール水溶液(8.2質量%、以下同じ)に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グリセロール水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が4.09 mg/mL、平均粒子径が164 nmのナノ粒子組成物を得た。
実施例19
 実施例1に準じて、グルコース水溶液をグリセロール水溶液に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グリセロール水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が0.49 mg/mL、平均粒子径が133 nmのナノ粒子組成物を得た。
実施例20
 実施例1に準じて、グルコース水溶液をグリセロール水溶液に変更し、D-マンニトールを組成から除くことにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、グリセロール水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)=1重量部/0.5重量部/0.1重量部/0.001重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が0.76 mg/mL、平均粒子径が148 nmのナノ粒子組成物を得た。
実施例21
 実施例1に準じて、グルコース水溶液をグリセロール水溶液に変更し、D-マンニトールを組成から除くことにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、グリセロール水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)=1重量部/0.5重量部/0.1重量部/0.001重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が0.18 mg/mL、平均粒子径が119 nmのナノ粒子組成物を得た。
実施例22
 実施例1に準じて、グルコース水溶液を生理食塩水に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、生理食塩水により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が3.21 mg/mL、平均粒子径が266 nmのナノ粒子組成物を得た。
実施例23
 実施例1に準じて、グルコース水溶液を生理食塩水に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、生理食塩水により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.3重量部/0.1重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が0.24 mg/mL、平均粒子径が252 nmのナノ粒子組成物を得た。
Figure JPOXMLDOC01-appb-T000012
実施例24
 実施例1に準じて、粘稠化剤をヒドロキシプロピルセルロース(HPC)からヒドロキシプロピルメチルセルロース(HPMC)に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルメチルセルロース(ヒドロキシプロピルメチルセルロース(HPMC)、信越化学工業、以下同じ)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルメチルセルロース(HPMC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が0.54 mg/mL、平均粒子径が153 nmのナノ粒子組成物を得た。
実施例25
 実施例1に準じて、組成に包摂物質(ヒドロキシプロピル-β-シクロデキストリン(HP-β-CD))を加えることにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、ヒドロキシプロピル-β-シクロデキストリン(ヒドロキシプロピル-β-シクロデキストリン(HP-β-CD)、シグマアルドリッチ、以下同じ)、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール/ヒドロキシプロピル-β-シクロデキストリン(HP-β-CD)=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部/0.5重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が0.27 mg/mL、平均粒子径が32 nmのナノ粒子組成物を得た。
実施例26
 実施例1に準じて、粘稠化剤をヒドロキシプロピルセルロース(HPC)からポリビニルアルコール(PVA)に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ポリビニルアルコール(ポリビニルアルコール(PVA)、シグマアルドリッチ、以下同じ)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ポリビニルアルコール(PVA)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.53 mg/mL、平均粒子径が139 nmのナノ粒子組成物を得た。
実施例27
 実施例1に準じて、粘稠化剤をヒドロキシプロピルセルロース(HPC)からポリビニルピロリドン(PVP)に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ポリビニルピロリドン(ポリビニルピロリドン(PVP)、純正化学、以下同じ)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ポリビニルピロリドン(PVP)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.44 mg/mL、平均粒子径が89 nmのナノ粒子組成物を得た。
実施例28
 ジルコニア容器にN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物を秤量し、次いでポリオキシエチレン(196)ポリオキシプロピレン(67)グリコール(プルロニック(登録商標)F-127、シグマアルドリッチ、以下同じ)、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕を行い、その後、水を添加、希釈し、ジルコニアボールをスクリーン除去し、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/プルロニック(登録商標)F-127=1重量部/0.15重量部とした。
 このナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い(13200rpm、60分)、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の濃度を8.13 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の平均粒子径は147 nmのナノ粒子組成物であった。
実施例29
 実施例28に準じて、プルロニック(登録商標)F-127量を0.15重量部から0.5重量部に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、プルロニック(登録商標)F-127、水により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/プルロニック(登録商標)F-127=1重量部/0.5重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.00 mg/mL、平均粒子径が86 nmのナノ粒子組成物を得た。
Figure JPOXMLDOC01-appb-T000013
実施例30
 実施例1に準じて、界面活性剤をポリソルベート80から12-Hydroxy-octadecanoic acid polymer with α-hydro-ω-hydroxypoly(oxy-1,2-ethanediyl) (Solutol(登録商標)HS15、BASF、以下同じ)に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、Solutol(登録商標)HS15、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/Solutol(登録商標)HS15/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.52 mg/mL、平均粒子径が132 nmのナノ粒子組成物を得た。
実施例31
 実施例1に準じて、界面活性剤をポリソルベート80から4-(1,1,3,3-テトラメチルブチル)フェノールポリマー (ホルムアルデヒドおよびオキシラン含有)(Tyloxapol、シグマアルドリッチ、以下同じ)に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、Tyloxapol、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/Tyloxapol/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.51 mg/mL、平均粒子径が114 nmのナノ粒子組成物を得た。
実施例32
 実施例1に準じて、界面活性剤をポリソルベート80からポリエチレングリコールモノ-p-イソオクチルフェニルエーテル(トリトン(登録商標)X100、ナカライテスク、以下同じ)に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、トリトン(登録商標)X100(ナカライテスク、以下同じ)、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/トリトン(登録商標)X100/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.04 mg/mL、平均粒子径が132 nmのナノ粒子組成物を得た。
実施例33
 実施例1に準じて、界面活性剤をポリソルベート80からポリオキシエチレンヒマシ油(Cremophor(登録商標)EL、シグマアルドリッチ、以下同じ)に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、Cremophor(登録商標)EL、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/Cremophor(登録商標)EL/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.12 mg/mL、平均粒子径が125 nmのナノ粒子組成物を得た。
実施例34
 実施例1に準じて、界面活性剤をポリソルベート80からn-オクチル-β-D-グルコシドに変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、n-オクチル-β-D-グルコシド(和光純薬、以下同じ)、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/n-オクチル-β-D-グルコシド /塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.23 mg/mL、平均粒子径が120 nmのナノ粒子組成物を得た。
実施例35
 実施例1に準じて、界面活性剤をポリソルベート80からラウリル硫酸ナトリウムに、ヒドロキシプロピルセルロース(HPC)量を0.5重量部から0.25重量部に、変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ラウリル硫酸ナトリウム(ナカライテスク、以下同じ)、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ラウリル硫酸ナトリウム/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.25重量部/0.0005重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が3.57 mg/mL、平均粒子径が70 nmのナノ粒子組成物を得た。
実施例36
 実施例1に準じて、ヒドロキシプロピルセルロース(HPC)量を0.5重量部から0.1重量部に、界面活性剤をポリソルベート80からラウリル硫酸ナトリウムに変更し、塩化ベンザルコニウム(BAC)およびD-マンニトールを組成から除くことにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ラウリル硫酸ナトリウム、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ラウリル硫酸ナトリウム=1重量部/0.1重量部/0.0025重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が2.74 mg/mL、平均粒子径が66 nmのナノ粒子組成物を得た。
実施例37
 実施例1に準じて、ヒドロキシプロピルセルロース(HPC)量を0.5重量部から0.1重量部に、界面活性剤をポリソルベート80からラウリル硫酸ナトリウムに変更し、塩化ベンザルコニウム(BAC)を組成から除くことにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ラウリル硫酸ナトリウム、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ラウリル硫酸ナトリウム/D-マンニトール=1重量部/0.1重量部/0.0025重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が2.47 mg/mL、平均粒子径が97 nmのナノ粒子組成物を得た。
Figure JPOXMLDOC01-appb-T000014
実施例38
 実施例1に準じて、塩化ベンザルコニウム(BAC)を組成から除くことにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/ D-マンニトール=1重量部/0.5重量部/0.1重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.23 mg/mL、平均粒子径が121 nmのナノ粒子組成物を得た。
実施例39
 実施例1に準じて、塩化ベンザルコニウム(BAC)量を0.001重量部から0.01重量部に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.01重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.57 mg/mL、平均粒子径が111 nmのナノ粒子組成物を得た。
実施例40
 実施例1に準じて、ヒドロキシプロピルセルロース(HPC)量を0.5重量部から0.3重量部に、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトールを組成から除くことにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)=1重量部/0.3重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.25 mg/mL、平均粒子径が81 nmのナノ粒子組成物を得た。
実施例41
 実施例1に準じて、ヒドロキシプロピルセルロース(HPC)量を0.5重量部から0.3重量部に、塩化ベンザルコニウム(BAC)、D-マンニトールを組成から除くことにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80=1重量部/0.3重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が2.04 mg/mL、平均粒子径が89 nmのナノ粒子組成物を得た。
実施例42
 実施例1に準じて、ヒドロキシプロピルセルロース(HPC)量を0.5重量部から0.3重量部に、ポリソルベート80量を0.1重量部から0.01重量部に、塩化ベンザルコニウム(BAC)、D-マンニトールを組成から除くことにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80=1重量部/0.3重量部/0.01重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.74 mg/mL、平均粒子径が73 nmのナノ粒子組成物を得た。
実施例43
 実施例1に準じて、ヒドロキシプロピルセルロース(HPC)量を0.5重量部から0.15重量部に、塩化ベンザルコニウム(BAC)、D-マンニトールを組成から除くことにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80=1重量部/0.15重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が4.89 mg/mL、平均粒子径が111 nmのナノ粒子組成物を得た。
実施例44
 実施例1に準じて、ヒドロキシプロピルセルロース(HPC)量を0.5重量部から0.15重量部に、ポリソルベート80量を0.1重量部から0.01重量部に、塩化ベンザルコニウム(BAC)、D-マンニトールを組成から除くことにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80=1重量部/0.15重量部/0.01重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が3.52 mg/mL、平均粒子径が67 nmのナノ粒子組成物を得た。
実施例45
 実施例1に準じて、ヒドロキシプロピルセルロース(HPC)量を0.5重量部から0.1重量部に、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトールを組成から除くことにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)=1重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が2.51 mg/mL、平均粒子径が69 nmのナノ粒子組成物を得た。
実施例46
 実施例1に準じて、ヒドロキシプロピルセルロース(HPC)量を0.5重量部から0.1重量部に、ポリソルベート80、塩化ベンザルコニウム(BAC)を組成から除くことにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ D-マンニトール=1重量部/0.1重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が2.23 mg/mL、平均粒子径が60 nmのナノ粒子組成物を得た。
実施例47
 実施例1に準じて、ヒドロキシプロピルセルロース(HPC)量を0.5重量部から0.1重量部に、ポリソルベート80量を0.1重量部から0.02重量部に、塩化ベンザルコニウム(BAC)量を0.001重量部から0.0002重量部に、D-マンニトールを量を0.1重量部から0.02重量部に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.1重量部/0.02重量部/0.0002重量部/0.02重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が2.51 mg/mL、平均粒子径が67 nmのナノ粒子組成物を得た。
実施例48
 実施例1に準じて、ヒドロキシプロピルセルロース(HPC)量を0.5重量部から0.1重量部に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.1重量部/0.1重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.75 mg/mL、平均粒子径が82 nmのナノ粒子組成物を得た。
実施例49
 実施例1に準じて、ヒドロキシプロピルセルロース(HPC)量を0.5重量部から0.05重量部に、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトールを組成から除くことにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)=1重量部/0.05重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が2.00 mg/mL、平均粒子径が66 nmのナノ粒子組成物を得た。
実施例50
 ジルコニア容器(シンキー)にN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物を秤量し、次いでヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/30回/-10℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部とした。
 このナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行った後(13200rpm、25分)、pH3に調整し、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の濃度を1.31 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の平均粒子径は133 nmのナノ粒子組成物であった。
実施例51
 実施例1に準じて、グルコース水溶液をD-マンニトール水溶液(10質量%、以下同じ)に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)=1重量部/0.5重量部/0.1重量部/0.001重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.49 mg/mL、平均粒子径が98 nmのナノ粒子組成物を得た。
実施例52
 実施例1に準じて、グルコース水溶液をクエン酸水溶液(1質量%)に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、クエン酸水和物水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.35 mg/mL、平均粒子径が137 nmのナノ粒子組成物を得た。
実施例53
 実施例1に準じて、グルコース水溶液をリン酸水溶液(6.2質量%、以下同じ)に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、リン酸水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が0.75 mg/mL、平均粒子径が227 nmのナノ粒子組成物を得た。
実施例54
 ジルコニア容器(シンキー)にN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物を秤量し、次いでヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/30回/-10℃)を行い、その後、グリセロール水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部とした。
 このナノ粒子組成物を、グルコース水溶液を用いて希釈を行い、濃度を測定すると、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の濃度は1.30 mg/mLであった。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の平均粒子径は203 nmのナノ粒子組成物であった。
Figure JPOXMLDOC01-appb-T000015
実施例55
 実施例1に準じて、粘稠化剤にポリビニルピロリドン(PVP)を追加することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリビニルピロリドン(PVP)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリビニルピロリドン(PVP)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.23 mg/mL、平均粒子径が149 nmのナノ粒子組成物を得た。
実施例56
 実施例1に準じて、界面活性剤にレシチンを追加することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、レシチン(ナカライテスク)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/レシチン/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.35 mg/mL、平均粒子径が144 nmのナノ粒子組成物を得た。
実施例57
 実施例1に準じて、界面活性剤にポリエチレングリコールを追加することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリエチレングリコール(シグマアルドリッチ、以下同じ)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリエチレングリコール/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.01重量部/0.1重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.62 mg/mL、平均粒子径が128 nmのナノ粒子組成物を得た。
実施例58
 実施例1に準じて、界面活性剤にポリエチレングリコールを追加することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ポリビニルピロリドン(PVP)、ポリエチレングリコール、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ポリビニルピロリドン(PVP)/ポリエチレングリコール/塩化ベンザルコニウム(BAC)/ D-マンニトール=1重量部/0.5重量部/0.01重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が2.86 mg/mL、平均粒子径が65 nmのナノ粒子組成物を得た。
実施例59
 実施例1に準じて、粘稠化剤をヒドロキシプロピルセルロース(HPC)からポリビニルピロリドン(PVP)に、界面活性剤をポリソルベート80からラウリル硫酸ナトリウムに変更し、塩化ベンザルコニウム(BAC)、D-マンニトールを組成から除くことにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ポリビニルピロリドン(PVP)、ラウリル硫酸ナトリウム、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ポリビニルピロリドン(PVP)/ラウリル硫酸ナトリウム=1重量部/0.1重量部/0.0025重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が2.44 mg/mL、平均粒子径が89 nmのナノ粒子組成物を得た。
Figure JPOXMLDOC01-appb-T000016
実施例60
 実施例1に準じて、粘稠化剤をヒドロキシプロピルセルロース(HPC)からポリオキシエチレン(160)ポリオキシプロピレン(30)グリコール(プルロニック(登録商標)F-68、シグマアルドリッチ、以下同じ)に変更し、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトールを組成から除くことにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、プルロニック(登録商標)F-68、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/プルロニック(登録商標)F-68=1重量部/0.5重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.24 mg/mL、平均粒子径が94 nmのナノ粒子組成物を得た。
実施例61
 実施例1に準じて、粘稠化剤をヒドロキシプロピルセルロース(HPC)からプルロニック(登録商標)F-127に、ポリソルベート80量を0.1重量部から0.02重量部に変更し、塩化ベンザルコニウム(BAC)、D-マンニトールを組成から除くことにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、プルロニック(登録商標)F-127、ポリソルベート80、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/プルロニック(登録商標)F-127/ポリソルベート80=1重量部/0.1重量部/0.02重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が2.19 mg/mL、平均粒子径が84 nmのナノ粒子組成物を得た。
実施例62
 実施例1に準じて、粘稠化剤をヒドロキシプロピルセルロース(HPC)からポリビニルピロリドン(PVP)に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ポリビニルピロリドン(PVP)、ポリソルベート80、塩化ベンザルコニウム(BAC)、 D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ポリビニルピロリドン(PVP)/ポリソルベート80/塩化ベンザルコニウム(BAC)/ D-マンニトール=1重量部/0.25重量部/0.1重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.56 mg/mL、平均粒子径が176 nmのナノ粒子組成物を得た。
実施例63
 実施例1に準じて、粘稠化剤をヒドロキシプロピルセルロース(HPC)からポリビニルピロリドン(PVP)に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ポリビニルピロリドン(PVP)、ポリソルベート80、塩化ベンザルコニウム(BAC)、 D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ポリビニルピロリドン(PVP)/ポリソルベート80/塩化ベンザルコニウム(BAC)/ D-マンニトール=1重量部/1.0重量部/0.1重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.35 mg/mL、平均粒子径が149 nmのナノ粒子組成物を得た。
実施例64
 実施例1に準じて、粘稠化剤をヒドロキシプロピルセルロース(HPC)からヒドロキシプロピル-β-シクロデキストリン(HP-β-CD)に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピル-β-シクロデキストリン(HP-β-CD)、ポリソルベート80、塩化ベンザルコニウム(BAC)、 D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピル-β-シクロデキストリン(HP-β-CD)/ポリソルベート80/塩化ベンザルコニウム(BAC)/ D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.61 mg/mL、平均粒子径が85 nmのナノ粒子組成物を得た。
実施例65
 実施例1に準じて粘稠化剤をヒドロキシプロピルセルロース(HPC)からプルロニック(登録商標)F-127に、グルコース水溶液をD-マンニトール水溶液に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、プルロニック(登録商標)F-127、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ プルロニック(登録商標)F-127/ポリソルベート80/塩化ベンザルコニウム(BAC)=1重量部/0.5重量部/0.1重量部/0.001重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.44 mg/mL、平均粒子径が119 nmのナノ粒子組成物を得た。
実施例66
 実施例1に準じて、粘稠化剤をヒドロキシプロピルセルロース(HPC)からポリビニルピロリドン(PVP)に、グルコース水溶液をD-マンニトール水溶液に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ポリビニルピロリドン(PVP)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ポリビニルピロリドン(PVP)/ポリソルベート80/塩化ベンザルコニウム(BAC)=1重量部/0.5重量部/0.1重量部/0.001重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.43 mg/mL、平均粒子径が137 nmのナノ粒子組成物を得た。
実施例67
 ジルコニア容器(シンキー)にN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物を秤量し、次いでプルロニック(登録商標)F-127、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/30回/-10℃)を行い、その後、グリセロール水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/プルロニック(登録商標)F-127/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部とした。
 このナノ粒子組成物を、グリセロール水溶液を用いて希釈を行い、濃度を測定すると、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の濃度は1.31 mg/mLであった。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の平均粒子径は432 nmのナノ粒子組成物であった。
Figure JPOXMLDOC01-appb-T000017
実施例68
 ジルコニア容器(シンキー)にN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物を秤量し、次いでヒドロキシプロピルセルロース(HPC)、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 1700rpm, 1分loop/10回/-10℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)=1重量部/0.1重量部とした。
 このナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い(13200rpm、60分)、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の濃度を2.37 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の平均粒子径は76 nmのナノ粒子組成物であった。
実施例69
 実施例68に準じて、ヒドロキシプロピルセルロース(HPC)量を0.1重量部から0.3重量部に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)=1重量部/0.3重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.90 mg/mL、平均粒子径が90 nmのナノ粒子組成物を得た。
実施例70
 ジルコニア容器(シンキー)にN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物を秤量し、次いでヒドロキシプロピルセルロース(HPC)、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/10回/-10℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)=1重量部/0.3重量部とした。
 このナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い(13200rpm、100分)、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の濃度を1.90 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の平均粒子径は75 nmのナノ粒子組成物であった。
実施例71
 ジルコニア容器(シンキー)にN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物を秤量し、次いでヒドロキシプロピルセルロース(HPC)、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 1700rpm, 1分loop/30回/-10℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)=1重量部/0.3重量部とした。
 このナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い(13200rpm、40分)、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の濃度を1.33 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の平均粒子径は105 nmのナノ粒子組成物であった。
実施例72
 実施例71に準じて、粘稠化剤をヒドロキシプロピルセルロース(HPC)からポリビニルピロリドン(PVP)に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ポリビニルピロリドン(PVP)、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ポリビニルピロリドン(PVP)=1重量部/0.3重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.91 mg/mL、平均粒子径が62 nmのナノ粒子組成物を得た。
実施例73
 実施例68に準じて、粘稠化剤をヒドロキシプロピルセルロース(HPC)からポリビニルピロリドン(PVP)に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ポリビニルピロリドン(PVP)、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ポリビニルピロリドン(PVP)=1重量部/0.3重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.21 mg/mL、平均粒子径が77 nmのナノ粒子組成物を得た。
実施例74
 実施例71に準じて、粘稠化剤をヒドロキシプロピルセルロース(HPC)からポリビニルピロリドン(PVP)に変更し、ポリソルベート量を0重量部から0.1重量部に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ポリビニルピロリドン(PVP)、ポリソルベート80、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ポリビニルピロリドン(PVP)/ポリソルベート80=1重量部/0.3重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.75 mg/mL、平均粒子径が81 nmのナノ粒子組成物を得た。
実施例75
 実施例71に準じて、粘稠化剤をヒドロキシプロピルセルロース(HPC)からポリビニルピロリドン(PVP)に変更し、ポリソルベート量を0重量部から0.01重量部に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ポリビニルピロリドン(PVP)、ポリソルベート80、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ポリビニルピロリドン(PVP)/ポリソルベート80=1重量部/0.3重量部/0.01重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.65 mg/mL、平均粒子径が60 nmのナノ粒子組成物を得た。
実施例76
 実施例71に準じて、粘稠化剤をヒドロキシプロピルセルロース(HPC)からポリビニルピロリドン(PVP)に変更し、ポリソルベート量を0重量部から0.1重量部に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ポリビニルピロリドン(PVP)、ポリソルベート80、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ポリビニルピロリドン(PVP)/ポリソルベート80=1重量部/0.15重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.95 mg/mL、平均粒子径が70 nmのナノ粒子組成物を得た。
実施例77
 実施例71に準じて、粘稠化剤をヒドロキシプロピルセルロース(HPC)からポリビニルピロリドン(PVP)に変更し、ポリソルベート量を0重量部から0.01重量部に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ポリビニルピロリドン(PVP)、ポリソルベート80、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ポリビニルピロリドン(PVP)/ポリソルベート80=1重量部/0.15重量部/0.01重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.97 mg/mL、平均粒子径が57 nmのナノ粒子組成物を得た。
実施例78
 実施例71に準じて、粘稠化剤をヒドロキシプロピルセルロース(HPC)からプルロニック(登録商標)F-127に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、プルロニック(登録商標)F-127、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ プルロニック(登録商標)F-127=1重量部/0.3重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が2.59 mg/mL、平均粒子径が96 nmのナノ粒子組成物を得た。
実施例79
 実施例68に準じて、粘稠化剤をヒドロキシプロピルセルロース(HPC)からプルロニック(登録商標)F-127に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、プルロニック(登録商標)F-127、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ プルロニック(登録商標)F-127=1重量部/0.3重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.48 mg/mL、平均粒子径が133 nmのナノ粒子組成物を得た。
Figure JPOXMLDOC01-appb-T000018
実施例80
 ジルコニア容器(シンキー)にN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物を秤量し、次いでヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/30回/-10℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/ D-マンニトール=0.1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部とした。
 このナノ粒子組成物の濃度を測定すると、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の濃度は0.90 mg/mLであった。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の平均粒子径は400 nmのナノ粒子組成物であった。
実施例81
 実施例80に準じて、ヒドロキシプロピルセルロース(HPC)量を0.5重量部から0.05重量部に、ポリソルベート80量を0.1重量部から0.01重量部に、塩化ベンザルコニウム(BAC)量を0.001重量部から0.0001重量部に、D-マンニトール量を0.1重量部から0.01重量部に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/ D-マンニトール=0.1重量部/0.05重量部/0.01重量部/0.0001重量部/0.01重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が1.12 mg/mL、平均粒子径が226 nmのナノ粒子組成物を得た。
実施例82
 実施例80に準じて、粘稠化剤をヒドロキシプロピルセルロース(HPC)からヒドロキシプロピルメチルセルロース(HPMC)に変更し、ポリソルベート80量を0.1重量部から0.01重量部に、塩化ベンザルコニウム(BAC)量を0.001重量部から0.0001重量部に、D-マンニトール量を0.1重量部から0.01重量部に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルメチルセルロース(HPMC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルメチルセルロース(HPMC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/ D-マンニトール=0.1重量部/0.05重量部/0.01重量部/0.0001重量部/0.01重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が0.77 mg/mL、平均粒子径が268 nmのナノ粒子組成物を得た。
実施例83
 実施例80に準じて、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物量を0.1重量部から0.2重量部に変更することにより、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/ D-マンニトール=0.2重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が2.07 mg/mL、平均粒子径が258 nmのナノ粒子組成物を得た。
実施例84
 ジルコニア容器(シンキー)にN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物を秤量し、次いでヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径1.0 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/30回/-10℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/ D-マンニトール=0.2重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部とした。
 このナノ粒子組成物の濃度を測定すると、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の濃度は2.05 mg/mLであった。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の平均粒子径は365 nmのナノ粒子組成物であった。
Figure JPOXMLDOC01-appb-T000019
参考例2
 1-(2-(tert-ブチル)-4-(3,5-ジメチルイソオキサゾール-4-イル)-1H-イミダゾール-5-イル)-3-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-3-フルオロフェニル)ウレアは、特開2003-12668号公報に開示された方法に従い調製した。
実施例85
 ジルコニア容器(シンキー)に1-(2-(tert-ブチル)-4-(3,5-ジメチルイソオキサゾール-4-イル)-1H-イミダゾール-5-イル)-3-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-3-フルオロフェニル)ウレアを秤量し、次いでヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/30回/-10℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。ナノ粒子組成物の組成は、1-(2-(tert-ブチル)-4-(3,5-ジメチルイソオキサゾール-4-イル)-1H-イミダゾール-5-イル)-3-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-3-フルオロフェニル)ウレア/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/ D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部とした。
 このナノ粒子組成物の濃度を測定すると1-(2-(tert-ブチル)-4-(3,5-ジメチルイソオキサゾール-4-イル)-1H-イミダゾール-5-イル)-3-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-3-フルオロフェニル)ウレアの濃度は7.80 mg/mLであった。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、1-(2-(tert-ブチル)-4-(3,5-ジメチルイソオキサゾール-4-イル)-1H-イミダゾール-5-イル)-3-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-3-フルオロフェニル)ウレアの平均粒子径は211 nmのナノ粒子組成物であった。
実施例86
 実施例85で調製したナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い、1-(2-(tert-ブチル)-4-(3,5-ジメチルイソオキサゾール-4-イル)-1H-イミダゾール-5-イル)-3-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-3-フルオロフェニル)ウレアの濃度を0.77 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、1-(2-(tert-ブチル)-4-(3,5-ジメチルイソオキサゾール-4-イル)-1H-イミダゾール-5-イル)-3-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-3-フルオロフェニル)ウレアの平均粒子径は133 nmのナノ粒子組成物であった。
参考例3
 1-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-2-フルオロフェニル)-3-(1,5,5-トリメチル-4,5,6,7-テトラヒドロ-1H-インダゾール-3-イル)ウレア塩酸塩は、特開2003-12668号公報に開示された方法に従い調製した。
実施例87
 実施例85に準じて、1-(2-(tert-ブチル)-4-(3,5-ジメチルイソオキサゾール-4-イル)-1H-イミダゾール-5-イル)-3-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-3-フルオロフェニル)ウレアを1-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-2-フルオロフェニル)-3-(1,5,5-トリメチル-4,5,6,7-テトラヒドロ-1H-インダゾール-3-イル)ウレア塩酸塩に変更することにより、1-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-2-フルオロフェニル)-3-(1,5,5-トリメチル-4,5,6,7-テトラヒドロ-1H-インダゾール-3-イル)ウレア塩酸塩、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成が1-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-2-フルオロフェニル)-3-(1,5,5-トリメチル-4,5,6,7-テトラヒドロ-1H-インダゾール-3-イル)ウレア塩酸塩/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、1-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-2-フルオロフェニル)-3-(1,5,5-トリメチル-4,5,6,7-テトラヒドロ-1H-インダゾール-3-イル)ウレア塩酸塩濃度が13.27 mg/mL、平均粒子径が368 nmのナノ粒子組成物を得た。
実施例88
 実施例87で調製したナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い、1-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-2-フルオロフェニル)-3-(1,5,5-トリメチル-4,5,6,7-テトラヒドロ-1H-インダゾール-3-イル)ウレア塩酸塩の濃度を3.75 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、1-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-2-フルオロフェニル)-3-(1,5,5-トリメチル-4,5,6,7-テトラヒドロ-1H-インダゾール-3-イル)ウレア塩酸塩の平均粒子径は617 nmのナノ粒子組成物であった。
参考例4
 1-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-3-フルオロフェニル)-3-(1,5,5-トリメチル-4,5,6,7-テトラヒドロ-1H-インダゾール-3-イル)ウレア塩酸塩は、特開2003-12668号公報に開示された方法に従い調製した。
実施例89
 実施例85に準じて、1-(2-(tert-ブチル)-4-(3,5-ジメチルイソオキサゾール-4-イル)-1H-イミダゾール-5-イル)-3-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-3-フルオロフェニル)ウレアを1-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-3-フルオロフェニル)-3-(1,5,5-トリメチル-4,5,6,7-テトラヒドロ-1H-インダゾール-3-イル)ウレア塩酸塩に変更することにより、1-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-3-フルオロフェニル)-3-(1,5,5-トリメチル-4,5,6,7-テトラヒドロ-1H-インダゾール-3-イル)ウレア塩酸塩、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成が1-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-3-フルオロフェニル)-3-(1,5,5-トリメチル-4,5,6,7-テトラヒドロ-1H-インダゾール-3-イル)ウレア塩酸塩/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、1-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-3-フルオロフェニル)-3-(1,5,5-トリメチル-4,5,6,7-テトラヒドロ-1H-インダゾール-3-イル)ウレア塩酸塩濃度が6.98 mg/mL、平均粒子径が260 nmのナノ粒子組成物を得た。
参考例5
 1-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)フェニル)-3-(5-イソプロピルイソオキサゾール-3-イル)ウレアは、特開2003-12668号公報に開示された方法に従い調製した。
実施例90
 実施例85に準じて、1-(2-(tert-ブチル)-4-(3,5-ジメチルイソオキサゾール-4-イル)-1H-イミダゾール-5-イル)-3-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-3-フルオロフェニル)ウレアを1-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)フェニル)-3-(5-イソプロピルイソオキサゾール-3-イル)ウレアに変更することにより、1-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)フェニル)-3-(5-イソプロピルイソオキサゾール-3-イル)ウレア、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成が1-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)フェニル)-3-(5-イソプロピルイソオキサゾール-3-イル)ウレア/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、1-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)フェニル)-3-(5-イソプロピルイソオキサゾール-3-イル)ウレア濃度が5.22 mg/mL、平均粒子径が169 nmのナノ粒子組成物を得た。
実施例91
 実施例90で調製したナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い、1-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)フェニル)-3-(5-イソプロピルイソオキサゾール-3-イル)ウレアの濃度を1.34 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、1-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)フェニル)-3-(5-イソプロピルイソオキサゾール-3-イル)ウレアの平均粒子径は145 nmのナノ粒子組成物であった。
参考例6
 1-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)フェニル)-3-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩は、特開2003-12668号公報に開示された方法に従い調製した。
実施例92
 実施例85に準じて、1-(2-(tert-ブチル)-4-(3,5-ジメチルイソオキサゾール-4-イル)-1H-イミダゾール-5-イル)-3-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-3-フルオロフェニル)ウレアを1-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)フェニル)-3-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩に変更することにより、1-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)フェニル)-3-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成が1-(4-((6,7-ジメトキシキノリン -4-イル)オキシ)フェニル)-3-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、1-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)フェニル)-3-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩濃度が10.69 mg/mL、平均粒子径が269 nmのナノ粒子組成物を得た。
実施例93
 実施例92で調製したナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い、1-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)フェニル)-3-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩の濃度を1.34 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、1-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)フェニル)-3-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩の平均粒子径は169 nmのナノ粒子組成物であった。
参考例7
 1-(5-(tert-ブチル)イソオキサゾール-3-イル)-3-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-3-メトキシフェニル)ウレア塩酸塩は、特開2003-12668号公報に開示された方法に従い調製した。
実施例94
 実施例85に準じて、1-(2-(tert-ブチル)-4-(3,5-ジメチルイソオキサゾール-4-イル)-1H-イミダゾール-5-イル)-3-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-3-フルオロフェニル)ウレアを1-(5-(tert-ブチル)イソオキサゾール-3-イル)-3-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-3-メトキシフェニル)ウレア塩酸塩に変更することにより、1-(5-(tert-ブチル)イソオキサゾール-3-イル)-3-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-3-メトキシフェニル)ウレア塩酸塩、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成が1-(5-(tert-ブチル)イソオキサゾール-3-イル)-3-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-3-メトキシフェニル)ウレア塩酸塩/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、1-(5-(tert-ブチル)イソオキサゾール-3-イル)-3-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-3-メトキシフェニル)ウレア塩酸塩濃度が10.86 mg/mL、平均粒子径が163 nmのナノ粒子組成物を得た。
実施例95
 実施例94で調製したナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い、1-(5-(tert-ブチル)イソオキサゾール-3-イル)-3-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-3-メトキシフェニル)ウレア塩酸塩の濃度を1.54 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、1-(5-(tert-ブチル)イソオキサゾール-3-イル)-3-(4-((6,7-ジメトキシキノリン-4-イル)オキシ)-3-メトキシフェニル)ウレア塩酸塩の平均粒子径は83 nmのナノ粒子組成物であった。
Figure JPOXMLDOC01-appb-T000020
実施例96
 ジルコニア容器(シンキー)にN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物を秤量し、次いでヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/30回/-10℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部とした。
 このナノ粒子組成物を、グリセロールを用いて希釈を行い、ナノ粒子組成物の組成を、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=0.25重量部/0.125重量部/0.025重量部/0.00025重量部/0.025重量部とした。
 このナノ粒子組成物の濃度を測定すると、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の濃度は2.06 mg/mLであった。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の平均粒子径は206 nmのナノ粒子組成物であった。
Figure JPOXMLDOC01-appb-T000021
参考例8
 ジルコニア容器(シンキー)に[4-[N-(2,3-ジメチル-2H-インダゾール-6-イル)-N-メチルアミノ]ピリミジン-2-イルアミノ]-2-メチルベンゼンスルホンアミド塩酸塩(Synkinase、以下同じ)を秤量し、次いでヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC、D-マンニトール、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/30回/-10℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、懸濁液を得た。
 懸濁液の組成は、[4-[N-(2,3-ジメチル-2H-インダゾール-6-イル)-N-メチルアミノ]ピリミジン-2-イルアミノ]-2-メチルベンゼンスルホンアミド塩酸塩/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1.0重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部とした。
 この懸濁液の濃度を測定すると、[4-[N-(2,3-ジメチル-2H-インダゾール-6-イル)-N-メチルアミノ]ピリミジン-2-イルアミノ]-2-メチルベンゼンスルホンアミド塩酸塩の濃度は3.97 mg/mLであった。
 懸濁液を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行ったところ(13200rpm、3分)、上清は澄明な液となった。すなわち、この方法では、ナノ粒子組成物は得られず、[4-[N-(2,3-ジメチル-2H-インダゾール-6-イル)-N-メチルアミノ]ピリミジン-2-イルアミノ]-2-メチルベンゼンスルホンアミド塩酸塩の濃度2.94 mg/mLの溶液が得られた。
実施例98
 ジルコニア容器(シンキー)に1-[[4-[(4-フルオロ-2-メチル-1H-インドール-5-イル)オキシ]-6-メトキシキノリン-7-イル]オキシメチル]シクロプロパン-1-アミン(Shanghai Lollane、以下同じ)を秤量し、次いでヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウムBAC、D-マンニトール、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/60回/-10℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、1-[[4-[(4-フルオロ-2-メチル-1H-インドール-5-イル)オキシ]-6-メトキシキノリン-7-イル]オキシメチル]シクロプロパン-1-アミン/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部とした。
 このナノ粒子組成物の濃度を測定すると、1-[[4-[(4-フルオロ-2-メチル-1H-インドール-5-イル)オキシ]-6-メトキシキノリン-7-イル]オキシメチル]シクロプロパン-1-アミンの濃度は9.69 mg/mLであった。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、1-[[4-[(4-フルオロ-2-メチル-1H-インドール-5-イル)オキシ]-6-メトキシキノリン-7-イル]オキシメチル]シクロプロパン-1-アミンの平均粒子径は164 nmのナノ粒子組成物であった。
実施例99
 実施例98で調製したナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い(17000rpm、5分)、1-[[4-[(4-フルオロ-2-メチル-1H-インドール-5-イル)オキシ]-6-メトキシキノリン-7-イル]オキシメチル]シクロプロパン-1-アミンの濃度を6.67 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、1-[[4-[(4-フルオロ-2-メチル-1H-インドール-5-イル)オキシ]-6-メトキシキノリン-7-イル]オキシメチル]シクロプロパン-1-アミンの平均粒子径は188 nmのナノ粒子組成物であった。
実施例100
 実施例98で調製したナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い(17000rpm、15分)、1-[[4-[(4-フルオロ-2-メチル-1H-インドール-5-イル)オキシ]-6-メトキシキノリン-7-イル]オキシメチル]シクロプロパン-1-アミンの濃度を4.78 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、1-[[4-[(4-フルオロ-2-メチル-1H-インドール-5-イル)オキシ]-6-メトキシキノリン-7-イル]オキシメチル]シクロプロパン-1-アミンの平均粒子径は165 nmのナノ粒子組成物であった。
実施例101
 実施例98と同様の方法で調製したナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い(17000rpm、100分)、1-[[4-[(4-フルオロ-2-メチル-1H-インドール-5-イル)オキシ]-6-メトキシキノリン-7-イル]オキシメチル]シクロプロパン-1-アミンの濃度を2.34 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、1-[[4-[(4-フルオロ-2-メチル-1H-インドール-5-イル)オキシ]-6-メトキシキノリン-7-イル]オキシメチル]シクロプロパン-1-アミンの平均粒子径は106 nmのナノ粒子組成物であった。
実施例102
 実施例98で調製したナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い(17000rpm、75分)、1-[[4-[(4-フルオロ-2-メチル-1H-インドール-5-イル)オキシ]-6-メトキシキノリン-7-イル]オキシメチル]シクロプロパン-1-アミンの濃度を1.77 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、1-[[4-[(4-フルオロ-2-メチル-1H-インドール-5-イル)オキシ]-6-メトキシキノリン-7-イル]オキシメチル]シクロプロパン-1-アミンの平均粒子径は118 nmのナノ粒子組成物であった。
Figure JPOXMLDOC01-appb-T000022
参考例9
 ジルコニア容器(シンキー)に4-[3-クロロ-4-(シクロプロピルカルバモイルアミノ)フェノキシ]-7-メトキシキノリン-6-カルボキシアミド(Shanghai Lollane、以下同じ)を秤量し、次いでヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/10回/-10℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、4-[3-クロロ-4-(シクロプロピルカルバモイルアミノ)フェノキシ]-7-メトキシキノリン-6-カルボキシアミド/ヒドロキシプロピルセルロース(HPC)/Tween80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部とした。
 このナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い(17000rpm、10分)、4-[3-クロロ-4-(シクロプロピルカルバモイルアミノ)フェノキシ]-7-メトキシキノリン-6-カルボキシアミドの濃度を2.39 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、4-[3-クロロ-4-(シクロプロピルカルバモイルアミノ)フェノキシ]-7-メトキシキノリン-6-カルボキシアミドの平均粒子径は228 nmのナノ粒子組成物であった。
Figure JPOXMLDOC01-appb-T000023
参考例10
 ジルコニア容器(シンキー)に(3Z)-3-[({4-[N-メチル-2-(4-メチルピペラジン-1-イル)アセトアミド]フェニル}アミノ)(フェニル)メチリデン]-2-オキソ-2・3-ジヒドロ-1H-インドール-6-カルボン酸メチル(RennoTech、以下同じ)を秤量し、次いでヒドロキシプロピルセルロース(HPC、ポリソルベート80、塩化ベンザルコニウム(BAC、D-マンニトール、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/30回/-10℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、(3Z)-3-[({4-[N-メチル-2-(4-メチルピペラジン-1-イル)アセトアミド]フェニル}アミノ)(フェニル)メチリデン]-2-オキソ-2・3-ジヒドロ-1H-インドール-6-カルボン酸メチル/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部とした。
 このナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い(17000rpm、20分)、(3Z)-3-[({4-[N-メチル-2-(4-メチルピペラジン-1-イル)アセトアミド]フェニル}アミノ)(フェニル)メチリデン]-2-オキソ-2・3-ジヒドロ-1H-インドール-6-カルボン酸メチルの濃度を1.60 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、(3Z)-3-[({4-[N-メチル-2-(4-メチルピペラジン-1-イル)アセトアミド]フェニル}アミノ)(フェニル)メチリデン]-2-オキソ-2・3-ジヒドロ-1H-インドール-6-カルボン酸メチルの平均粒子径は147 nmのナノ粒子組成物であった。
Figure JPOXMLDOC01-appb-T000024
実施例105
 ジルコニア容器(シンキー)に(E)-N-[4-(3-クロロ-4-フルオロアニリノ)-7-メトキシキナゾリン-6-イル]-4-ピペリジン-1-イルブチ-2-エンアミド(RennoTech、以下同じ)を秤量し、次いでヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/30回/-10℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、(E)-N-[4-(3-クロロ-4-フルオロアニリノ)-7-メトキシキナゾリン-6-イル]-4-ピペリジン-1-イルブチ-2-エンアミド/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部とした。
 このナノ粒子組成物の濃度を測定すると、(E)-N-[4-(3-クロロ-4-フルオロアニリノ)-7-メトキシキナゾリン-6-イル]-4-ピペリジン-1-イルブチ-2-エンアミドの濃度は8.32 mg/mLであった。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、(E)-N-[4-(3-クロロ-4-フルオロアニリノ)-7-メトキシキナゾリン-6-イル]-4-ピペリジン-1-イルブチ-2-エンアミドの平均粒子径は170 nmのナノ粒子組成物であった。
実施例106
 実施例105で調製したナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い(17000rpm、5分)、(E)-N-[4-(3-クロロ-4-フルオロアニリノ)-7-メトキシキナゾリン-6-イル]-4-ピペリジン-1-イルブチ-2-エンアミドの濃度を6.10 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、(E)-N-[4-(3-クロロ-4-フルオロアニリノ)-7-メトキシキナゾリン-6-イル]-4-ピペリジン-1-イルブチ-2-エンアミドの平均粒子径は152 nmのナノ粒子組成物であった。
実施例107
 実施例105で調製したナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い(17000rpm、10分)、(E)-N-[4-(3-クロロ-4-フルオロアニリノ)-7-メトキシキナゾリン-6-イル]-4-ピペリジン-1-イルブチ-2-エンアミドの濃度を4.66 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、(E)-N-[4-(3-クロロ-4-フルオロアニリノ)-7-メトキシキナゾリン-6-イル]-4-ピペリジン-1-イルブチ-2-エンアミドの平均粒子径は138 nmのナノ粒子組成物であった。
実施例108
 実施例105と同様の方法で調製したナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い(17000rpm、60分)、 (E)-N-[4-(3-クロロ-4-フルオロアニリノ)-7-メトキシキナゾリン-6-イル]-4-ピペリジン-1-イルブチ-2-エンアミドの濃度を2.39 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、(E)-N-[4-(3-クロロ-4-フルオロアニリノ)-7-メトキシキナゾリン-6-イル]-4-ピペリジン-1-イルブチ-2-エンアミドの平均粒子径は94 nmのナノ粒子組成物であった。
実施例109
 実施例105で調製したナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い(17000rpm、30分)、(E)-N-[4-(3-クロロ-4-フルオロアニリノ)-7-メトキシキナゾリン-6-イル]-4-ピペリジン-1-イルブチ-2-エンアミドの濃度を1.35 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、(E)-N-[4-(3-クロロ-4-フルオロアニリノ)-7-メトキシキナゾリン-6-イル]-4-ピペリジン-1-イルブチ-2-エンアミドの平均粒子径は93 nmのナノ粒子組成物であった。
Figure JPOXMLDOC01-appb-T000025
実施例110
 ジルコニア容器(シンキー)にN-[4-[[3-クロロ-4-[(3-フルオロベンジル)オキシ]フェニル]アミノ]キナゾリン-6-イル]アクリルアミド(Shanghai Lollane、以下同じ)を秤量し、次いでヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/60回/-10℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、N-[4-[[3-クロロ-4-[(3-フルオロベンジル)オキシ]フェニル]アミノ]キナゾリン-6-イル]アクリルアミド/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部とした。
 このナノ粒子組成物の濃度を測定すると、N-[4-[[3-クロロ-4-[(3-フルオロベンジル)オキシ]フェニル]アミノ]キナゾリン-6-イル]アクリルアミドの濃度は8.93 mg/mLであった。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、N-[4-[[3-クロロ-4-[(3-フルオロベンジル)オキシ]フェニル]アミノ]キナゾリン-6-イル]アクリルアミドの平均粒子径は334 nmのナノ粒子組成物であった。
実施例111
 実施例110で調製したナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い、N-[4-[[3-クロロ-4-[(3-フルオロベンジル)オキシ]フェニル]アミノ]キナゾリン-6-イル]アクリルアミドの濃度を4.25 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、N-[4-[[3-クロロ-4-[(3-フルオロベンジル)オキシ]フェニル]アミノ]キナゾリン-6-イル]アクリルアミドの平均粒子径は252 nmのナノ粒子組成物であった。
実施例112
 実施例110と同様の方法で調製したナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い、N-[4-[[3-クロロ-4-[(3-フルオロベンジル)オキシ]フェニル]アミノ]キナゾリン-6-イル]アクリルアミドの濃度を2.45 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、N-[4-[[3-クロロ-4-[(3-フルオロベンジル)オキシ]フェニル]アミノ]キナゾリン-6-イル]アクリルアミドの平均粒子径は204 nmのナノ粒子組成物であった。
実施例113
 実施例110で調製したナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い、N-[4-[[3-クロロ-4-[(3-フルオロベンジル)オキシ]フェニル]アミノ]キナゾリン-6-イル]アクリルアミドの濃度を1.40 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、N-[4-[[3-クロロ-4-[(3-フルオロベンジル)オキシ]フェニル]アミノ]キナゾリン-6-イル]アクリルアミドの平均粒子径は185 nmのナノ粒子組成物であった。
Figure JPOXMLDOC01-appb-T000026
実施例114
 ジルコニア容器(シンキー)に1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミド(Shanghai Lollane、以下同じ)を秤量し、次いでヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/30回/-10℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミド/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部とした。
 このナノ粒子組成物の濃度を測定すると、1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミドの濃度は10.77 mg/mLであった。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミドの平均粒子径は432 nmのナノ粒子組成物であった。
実施例115
 実施例114で調製したナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い、1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミドの濃度を2.00 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミドの平均粒子径は266 nmのナノ粒子組成物であった。
実施例116
 ジルコニア容器(シンキー)に1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミドを秤量し、次いでヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径1.0 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/10回/-10℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミド/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部とした。
 このナノ粒子組成物の濃度を測定すると、1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミドの濃度は9.62 mg/mLであった。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミドの平均粒子径は642 nmのナノ粒子組成物であった。
実施例117
 実施例116で調製したナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い、1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミドの濃度を0.97 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミドの平均粒子径は314 nmのナノ粒子組成物であった。
実施例118
 ジルコニア容器(シンキー)に1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミドを秤量し、次いでヒドロキシプロピルセルロース(ヒドロキシプロピルセルロース(HPC)、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/30回/-10℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミド/ヒドロキシプロピルセルロース(HPC)=1重量部/0.3重量部とした。
 このナノ粒子組成物の濃度を測定すると、1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミドの濃度は8.94 mg/mLであった。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミドの平均粒子径は271 nmのナノ粒子組成物であった。
実施例119
 実施例118で調製したナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い、1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミドの濃度を2.31 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミドの平均粒子径は338 nmのナノ粒子組成物であった。
実施例120
 実施例118で調製したナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い、1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミドの濃度を1.06 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミドの平均粒子径は326 nmのナノ粒子組成物であった。
実施例121
 ジルコニア容器(シンキー)に1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミドを秤量し、次いでポリソルベート80、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/30回/-10℃、Mill/Mix 2000rpm, 1分loop/30回/-5℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミド/ポリソルベート80=0.5重量部/0.5重量部とした。
 このナノ粒子組成物の濃度を測定すると、1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミドの濃度は4.97 mg/mLであった。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミドの平均粒子径は273 nmのナノ粒子組成物であった。
実施例122
 ジルコニア容器(シンキー)に1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミドを秤量し、次いでポリソルベート80、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/30回/-10℃)を行い、ポリソルベート80水溶液を添加後、湿式粉砕(Mill/Mix 2000rpm, 1分loop/30回/-5℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミド/ポリソルベート80=0.5重量部/0.5重量部とした。
 このナノ粒子組成物の濃度を測定すると、1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミドの濃度は5.11 mg/mLであった。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミドの平均粒子径は184 nmのナノ粒子組成物であった。
実施例123
 実施例122で調製したナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い(17000rpm、1分)、1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミドの濃度を4.77 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミドの平均粒子径は187 nmのナノ粒子組成物であった。
実施例124
 実施例122で調製したナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い(17000rpm、10分)、1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミドの濃度を2.21 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミドの平均粒子径は158 nmのナノ粒子組成物であった。
Figure JPOXMLDOC01-appb-T000027
実施例125
 ジルコニア容器(シンキー)に6-(6,7-ジメトキシキナゾリン-4-イル)オキシ-N,2-ジメチル-1-ベンゾフラン-3-カルボキシアミド(Shanghai Lollane、以下同じ)を秤量し、次いでポリソルベート80、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/30回/-10℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、6-(6,7-ジメトキシキナゾリン-4-イル)オキシ-N,2-ジメチル-1-ベンゾフラン-3-カルボキシアミド/ポリソルベート80=0.5重量部/0.5重量部とした。
 このナノ粒子組成物の濃度を測定すると、6-(6,7-ジメトキシキナゾリン-4-イル)オキシ-N,2-ジメチル-1-ベンゾフラン-3-カルボキシアミドの濃度は0.48 mg/mLであった。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、6-(6,7-ジメトキシキナゾリン-4-イル)オキシ-N,2-ジメチル-1-ベンゾフラン-3-カルボキシアミドの平均粒子径は264 nmのナノ粒子組成物であった。
実施例126
 ジルコニア容器(シンキー)に6-(6,7-ジメトキシキナゾリン-4-イル)オキシ-N,2-ジメチル-1-ベンゾフラン-3-カルボキシアミドを秤量し、次いでポリソルベート80、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/30回/-10℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、6-(6,7-ジメトキシキナゾリン-4-イル)オキシ-N,2-ジメチル-1-ベンゾフラン-3-カルボキシアミド/ポリソルベート80=0.5重量部/0.25重量部とした。
 このナノ粒子組成物の濃度を測定すると、6-(6,7-ジメトキシキナゾリン-4-イル)オキシ-N,2-ジメチル-1-ベンゾフラン-3-カルボキシアミドの濃度は0.44 mg/mLであった。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、6-(6,7-ジメトキシキナゾリン-4-イル)オキシ-N,2-ジメチル-1-ベンゾフラン-3-カルボキシアミドの平均粒子径は174 nmのナノ粒子組成物であった。
実施例127
 ジルコニア容器(シンキー)に6-(6,7-ジメトキシキナゾリン-4-イル)オキシ-N,2-ジメチル-1-ベンゾフラン-3-カルボキシアミドを秤量し、次いでポリソルベート80、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/60回/-10℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、6-(6,7-ジメトキシキナゾリン-4-イル)オキシ-N,2-ジメチル-1-ベンゾフラン-3-カルボキシアミド/ポリソルベート80=0.5重量部/0.25重量部とした。
 このナノ粒子組成物の濃度を測定すると、6-(6,7-ジメトキシキナゾリン-4-イル)オキシ-N,2-ジメチル-1-ベンゾフラン-3-カルボキシアミドの濃度は5.22 mg/mLであった。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、6-(6,7-ジメトキシキナゾリン-4-イル)オキシ-N,2-ジメチル-1-ベンゾフラン-3-カルボキシアミドの平均粒子径は281 nmのナノ粒子組成物であった。
 実施例128
 実施例127で調製したナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い、6-(6,7-ジメトキシキナゾリン-4-イル)オキシ-N,2-ジメチル-1-ベンゾフラン-3-カルボキシアミドの濃度を1.18 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、6-(6,7-ジメトキシキナゾリン-4-イル)オキシ-N,2-ジメチル-1-ベンゾフラン-3-カルボキシアミドドの平均粒子径は218 nmのナノ粒子組成物であった。
Figure JPOXMLDOC01-appb-T000028
実施例129
 ジルコニア容器(シンキー)にN-(3-エチニルフェニル)-7,8,10,11,13,14-ヘキサヒドロ-[1,4,7,10]テトラオキサシクロドデシノ[2,3-g]キナゾリン-4-アミン(Shanghai Lollane、以下同じ)を秤量し、次いでヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/30回/-10℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、N-(3-エチニルフェニル)-7,8,10,11,13,14-ヘキサヒドロ-[1,4,7,10]テトラオキサシクロドデシノ[2,3-g]キナゾリン-4-アミン/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=0.5重量部/1重量部/0.2重量部/0.002重量部/0.2重量部とした。
 このナノ粒子組成物の濃度を測定すると、N-(3-エチニルフェニル)-7,8,10,11,13,14-ヘキサヒドロ-[1,4,7,10]テトラオキサシクロドデシノ[2,3-g]キナゾリン-4-アミンの濃度は5.32 mg/mLであった。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、N-(3-エチニルフェニル)-7,8,10,11,13,14-ヘキサヒドロ-[1,4,7,10]テトラオキサシクロドデシノ[2,3-g]キナゾリン-4-アミンの平均粒子径は197 nmのナノ粒子組成物であった。
実施例130
 実施例129で調製したナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い、N-(3-エチニルフェニル)-7,8,10,11,13,14-ヘキサヒドロ-[1,4,7,10]テトラオキサシクロドデシノ[2,3-g]キナゾリン-4-アミンの濃度を2.20 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、N-(3-エチニルフェニル)-7,8,10,11,13,14-ヘキサヒドロ-[1,4,7,10]テトラオキサシクロドデシノ[2,3-g]キナゾリン-4-アミンの平均粒子径は196 nmのナノ粒子組成物であった。
実施例131
 ジルコニア容器(シンキー)にN-(3-エチニルフェニル)-7,8,10,11,13,14-ヘキサヒドロ-[1,4,7,10]テトラオキサシクロドデシノ[2,3-g]キナゾリン-4-アミンを秤量し、次いでヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/30回/-10℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、N-(3-エチニルフェニル)-7,8,10,11,13,14-ヘキサヒドロ-[1,4,7,10]テトラオキサシクロドデシノ[2,3-g]キナゾリン-4-アミン/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=0.25重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部とした。
 このナノ粒子組成物の濃度を測定すると、N-(3-エチニルフェニル)-7,8,10,11,13,14-ヘキサヒドロ-[1,4,7,10]テトラオキサシクロドデシノ[2,3-g]キナゾリン-4-アミンの濃度は2.66 mg/mLであった。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、N-(3-エチニルフェニル)-7,8,10,11,13,14-ヘキサヒドロ-[1,4,7,10]テトラオキサシクロドデシノ[2,3-g]キナゾリン-4-アミンの平均粒子径は196 nmのナノ粒子組成物であった。
Figure JPOXMLDOC01-appb-T000029
実施例132
 ジルコニア容器(シンキー)に3-(2-イミダゾ[1,2-b]ピリダジン-3-イルエチニル)-4-メチル-N-[4-[(4-メチルピペラジン-1-イル)メチル]-3-(トリフルオロメチル)フェニル]ベンザニド(PharmaBlock、以下同じ)を秤量し、次いでヒドロキシプロピルセルロース(HPC)、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/30回/-10℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、3-(2-イミダゾ[1,2-b]ピリダジン-3-イルエチニル)-4-メチル-N-[4-[(4-メチルピペラジン-1-イル)メチル]-3-(トリフルオロメチル)フェニル]ベンザニド/ヒドロキシプロピルセルロース(HPC)=1重量部/0.3重量部とした。
 このナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い(17000rpm、19分)、3-(2-イミダゾ[1,2-b]ピリダジン-3-イルエチニル)-4-メチル-N-[4-[(4-メチルピペラジン-1-イル)メチル]-3-(トリフルオロメチル)フェニル]ベンザニドの濃度を2.43 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、3-(2-イミダゾ[1,2-b]ピリダジン-3-イルエチニル)-4-メチル-N-[4-[(4-メチルピペラジン-1-イル)メチル]-3-(トリフルオロメチル)フェニル]ベンザニドの平均粒子径は194 nmのナノ粒子組成物であった。
Figure JPOXMLDOC01-appb-T000030
実施例133
 ジルコニア容器(シンキー)にN-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミド(Sun-shine Chemical、以下同じ)を秤量し、次いでヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/30回/-10℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、N-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミド/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1.0重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部とした。
 このナノ粒子組成物の濃度を測定すると、N-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミドの濃度は9.46mg/mLであった。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、N-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミドの平均粒子径は127 nmのナノ粒子組成物であった。
実施例134
 実施例133で調製したナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い、N-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミドの濃度を1.84 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、N-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミドの平均粒子径は125 nmのナノ粒子組成物であった。
実施例135
 ジルコニア容器(シンキー)にN-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミドを秤量し、次いでヒドロキシプロピルセルロース(HPC、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/30回/-10℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、N-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミド/ヒドロキシプロピルセルロース(HPC)=1重量部/0.3重量部とした。
 このナノ粒子組成物の濃度を測定すると、N-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミドの濃度は9.23 mg/mLであった。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、N-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミドの平均粒子径は159 nmのナノ粒子組成物であった。
実施例136
 実施例134で調製したナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い、N-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミドの濃度を2.42 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、N-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミドの平均粒子径は84 nmのナノ粒子組成物であった。
Figure JPOXMLDOC01-appb-T000031
実施例137
 実施例133に準じて、粘稠化剤をヒドロキシプロピルセルロース(HPC)からヒドロキシプロピルメチルセルロース(HPMC)に変更することにより、N-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミド、ヒドロキシプロピルメチルセルロース(HPMC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミド/ヒドロキシプロピルメチルセルロース(HPMC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、N-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミド濃度が1.44 mg/mL、平均粒子径が225 nmのナノ粒子組成物を得た。
実施例138
 実施例133に準じて、粘稠化剤をヒドロキシプロピルセルロース(HPC)からポリビニルアルコール(PVA)に変更することにより、N-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミド、ポリビニルアルコール(PVA)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミド/ポリビニルアルコール(PVA)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、N-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミド濃度が2.19 mg/mL、平均粒子径が166 nmのナノ粒子組成物を得た。
実施例139
 実施例133に準じて、粘稠化剤をヒドロキシプロピルセルロース(HPC)からプルロニック(登録商標)F-127に変更することにより、N-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミド、プルロニック(登録商標)F-127、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミド/プルロニック(登録商標)F-127/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、N-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミド濃度が3.94 mg/mL、平均粒子径が111 nmのナノ粒子組成物を得た。
Figure JPOXMLDOC01-appb-T000032
実施例140
 実施例133に準じて、界面活性剤をポリソルベート80からSolutol(登録商標)HS15に変更することにより、N-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミド、ヒドロキシプロピルセルロース(HPC)、Solutol(登録商標)HS15、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミド/ヒドロキシプロピルセルロース(HPC)/Solutol(登録商標)HS15/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、N-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミド濃度が0.85 mg/mL、平均粒子径が129 nmのナノ粒子組成物を得た。
実施例141
 実施例133に準じて、界面活性剤をポリソルベート80からTyloxapolに変更することにより、N-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミド、ヒドロキシプロピルセルロース(HPC)、Tyloxapol、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミド/ヒドロキシプロピルセルロース(HPC)/Tyloxapol/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、N-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミド濃度が1.17 mg/mL、平均粒子径が128 nmのナノ粒子組成物を得た。
実施例142
 実施例133に準じて、界面活性剤をポリソルベート80からCremophor(登録商標)ELに変更することにより、N-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミド、ヒドロキシプロピルセルロース(HPC)、Cremophor(登録商標)EL、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミド/ヒドロキシプロピルセルロース(HPC)/Cremophor(登録商標)EL/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、N-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミド濃度が1.03 mg/mL、平均粒子径が127 nmのナノ粒子組成物を得た。
実施例143
 実施例133に準じて、界面活性剤をポリソルベート80からn-オクチル-β-D-グルコシドに変更することにより、N-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミド、ヒドロキシプロピルセルロース(HPC)、n-オクチル-β-D-グルコシド、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミド/ヒドロキシプロピルセルロース(HPC)/n-オクチル-β-D-グルコシド /塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、N-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミド濃度が0.90 mg/mL、平均粒子径が131 nmのナノ粒子組成物を得た。
実施例144
 実施例133に準じて、界面活性剤をポリソルベート80からラウリル硫酸ナトリウムに変更することにより、N-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミド、ヒドロキシプロピルセルロース(HPC)、ラウリル硫酸ナトリウム、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミド/ヒドロキシプロピルセルロース(HPC)/ラウリル硫酸ナトリウム/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、N-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミド濃度が3.24 mg/mL、平均粒子径が116 nmのナノ粒子組成物を得た。
Figure JPOXMLDOC01-appb-T000033
実施例145
 ジルコニア容器(シンキー)にN-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン塩酸塩(LC Laboratories、以下同じ)を秤量し、次いでヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/30回/-10℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、N-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン塩酸塩/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.125重量部/0.025重量部/0.00025重量部/0.025重量部とした。
 このナノ粒子組成物の濃度を測定すると、N-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン塩酸塩の濃度は10.10 mg/mLであった。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、N-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン塩酸塩の平均粒子径は109 nmのナノ粒子組成物であった。
Figure JPOXMLDOC01-appb-T000034
実施例146
 実施例145に準じて、界面活性剤をポリソルベート80からラウリル硫酸ナトリウムに変更し、塩化ベンザルコニウム(BAC)、D-マンニトールを組成から除くことにより、N-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン塩酸塩、ヒドロキシプロピルセルロース(HPC)、ラウリル硫酸ナトリウム、グルコース水溶液により、組成がN-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン塩酸塩/ヒドロキシプロピルセルロース(HPC)/ラウリル硫酸ナトリウム=1重量部/0.125重量部/0.01重量部、N-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン塩酸塩濃度が10.23 mg/mL、平均粒子径が111 nmのナノ粒子組成物を得た。
実施例147
 実施例145に準じて、界面活性剤をポリソルベート80からラウリル硫酸ナトリウムに変更し、塩化ベンザルコニウム(BAC)、D-マンニトールを組成から除くことにより、N-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン塩酸塩、ヒドロキシプロピルセルロース(HPC)、ラウリル硫酸ナトリウム、グルコース水溶液により、組成がN-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン塩酸塩/ヒドロキシプロピルセルロース(HPC)/ラウリル硫酸ナトリウム=1重量部/0.125重量部/0.001重量部、N-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン塩酸塩濃度が9.87 mg/mL、平均粒子径が114 nmのナノ粒子組成物を得た。
Figure JPOXMLDOC01-appb-T000035
実施例148
 実施例145に準じて、N-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン塩酸塩をN-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン(COMBI-BLOCKS、以下同じ)に、粘稠化剤をヒドロキシプロピルセルロース(HPC)からカルボキシメチルセルロース(CMC Na)に、ポリソルベート80量を0.025重量部から0.001重量部に変更し、塩化ベンザルコニウム(BAC)、D-マンニトールを組成から除くことにより、N-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン、カルボキシメチルセルロース(CMC Na)、ポリソルベート80、グルコース水溶液により、組成がN-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン/カルボキシメチルセルロース(CMC Na)/ポリソルベート80=1重量部/0.05重量部/0.001重量部、N-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン濃度が8.18 mg/mL、平均粒子径が205 nmのナノ粒子組成物を得た。
Figure JPOXMLDOC01-appb-T000036
実施例149
 実施例145に準じて、N-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン塩酸塩をN-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミンに、粘稠化剤をヒドロキシプロピルセルロース(HPC)からカルボキシメチルセルロース(CMC Na)に、ポリソルベート80量を0.025重量部から0.125重量部に変更し、塩化ベンザルコニウム(BAC)、D-マンニトールを組成から除くことにより、N-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン塩酸塩、カルボキシメチルセルロース(CMC Na)、ポリソルベート80、グルコース水溶液により、組成がN-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン塩酸塩/カルボキシメチルセルロース(CMC Na)/ポリソルベート80=1重量部/0.05重量部/0.125重量部、N-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン塩酸塩濃度が6.76 mg/mL、平均粒子径が258 nmのナノ粒子組成物を得た。
Figure JPOXMLDOC01-appb-T000037
実施例150
 実施例145に準じて、N-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン塩酸塩をN-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミンに、ヒドロキシプロピルセルロース(HPC)量を0.125重量部から0.5重量部に、ポリソルベート80量を0.025重量部から0.1重量部に、塩化ベンザルコニウム(BAC)量を0.00025重量部から0.001重量部に、D-マンニトール量を0.025重量部から0.1重量部に変更することにより、N-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、N-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン濃度が9.33 mg/mL、平均粒子径が114 nmのナノ粒子組成物を得た。
実施例151
 実施例145に準じて、N-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン塩酸塩をN-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミンに変更することにより、N-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.125重量部/0.025重量部/0.00025重量部/0.025重量部、N-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン濃度が10.34 mg/mL、平均粒子径が76 nmのナノ粒子組成物を得た。
Figure JPOXMLDOC01-appb-T000038
実施例152
 ジルコニア容器(シンキー)にN-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミン(LC laboratories、以下同じ)を秤量し、次いでヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、水を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/30回/-10℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、N-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミン/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部とした。
 このナノ粒子組成物の濃度を測定すると、N-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミンの濃度は11.20 mg/mLであった。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、N-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミンの平均粒子径は123 nmのナノ粒子組成物であった。
実施例153
 実施例152に準じて、ヒドロキシプロピルセルロース(HPC)量を0.5重量部から0.125重量部に、ポリソルベート80量を0.1重量部から0.025重量部に、塩化ベンザルコニウム(BAC)量を0.001重量部から0.00025重量部に、D-マンニトール量を0.1重量部から0.025重量部に変更することにより、N-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミン、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミン/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.125重量部/0.025重量部/0.00025重量部/0.025重量部、N-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミン濃度が11.31 mg/mL、平均粒子径が147 nmのナノ粒子組成物を得た。
Figure JPOXMLDOC01-appb-T000039
実施例154
 実施例152に準じて、界面活性剤をポリソルベート80からラウリル硫酸ナトリウムに、ヒドロキシプロピルセルロース(HPC)量を0.5重量部から0.125重量部に変更し、塩化ベンザルコニウム(BAC)、D-マンニトールを組成から除くことにより、N-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミン、ヒドロキシプロピルセルロース(HPC)、ラウリル硫酸ナトリウム、グルコース水溶液により、組成がN-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミン/ヒドロキシプロピルセルロース(HPC)/ラウリル硫酸ナトリウム=1重量部/0.125重量部/0.01重量部、N-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミン濃度が11.11 mg/mL、平均粒子径が214 nmのナノ粒子組成物を得た。
実施例155
 実施例152に準じて、界面活性剤をポリソルベート80からラウリル硫酸ナトリウムに、ヒドロキシプロピルセルロース(HPC)量を0.5重量部から0.125重量部に変更し、塩化ベンザルコニウム(BAC)、D-マンニトールを組成から除くことにより、N-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミン、ヒドロキシプロピルセルロース(HPC)、ラウリル硫酸ナトリウム、グルコース水溶液により、組成がN-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミン/ヒドロキシプロピルセルロース(HPC)/ラウリル硫酸ナトリウム=1重量部/0.125重量部/0.001重量部、N-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミン濃度が11.03 mg/mL、平均粒子径が432 nmのナノ粒子組成物を得た。
Figure JPOXMLDOC01-appb-T000040
実施例156
 実施例152に準じて、粘稠化剤をヒドロキシプロピルセルロース(HPC)からカルボキシメチルセルロースナトリウム(CMC Na)に変更し、塩化ベンザルコニウム(BAC)、D-マンニトールを組成から除くことにより、N-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミン、カルボキシメチルセルロースナトリウム(CMC Na)、ポリソルベート80、グルコース水溶液により、組成がN-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミン/カルボキシメチルセルロースナトリウム(CMC Na)/ポリソルベート80=1重量部/0.05重量部/0.1重量部、N-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミン濃度が13.47 mg/mL、平均粒子径が264 nmのナノ粒子組成物を得た。
実施例157
 実施例152に準じて、粘稠化剤をヒドロキシプロピルセルロース(HPC)からカルボキシメチルセルロースナトリウム(CMC Na)に、ポリソルベート量を0.1重量部から0.001重量部に変更し、塩化ベンザルコニウム(BAC)、D-マンニトールを組成から除くことにより、N-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミン、カルボキシメチルセルロースナトリウム(CMC Na)、ポリソルベート80、グルコース水溶液により、組成がN-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミン/カルボキシメチルセルロースナトリウム(CMC Na)/ポリソルベート80=1重量部/0.05重量部/0.001重量部、N-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミン濃度が12.77 mg/mL、平均粒子径が252 nmのナノ粒子組成物を得た。
実施例158
 実施例152に準じて、粘稠化剤をヒドロキシプロピルセルロース(HPC)からカルボキシメチルセルロースナトリウム(CMC Na)に変更し、塩化ベンザルコニウム(BAC)、D-マンニトールを組成から除くことにより、N-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミン、カルボキシメチルセルロースナトリウム(CMC Na)、ポリソルベート80、グルコース水溶液により、組成がN-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミン/カルボキシメチルセルロースナトリウム(CMC Na)/ポリソルベート80=1重量部/0.025重量部/0.1重量部、N-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミン濃度が13.16 mg/mL、平均粒子径が220 nmのナノ粒子組成物を得た。
実施例159
 実施例152に準じて、粘稠化剤をヒドロキシプロピルセルロース(HPC)からカルボキシメチルセルロースナトリウム(CMC Na)に、ポリソルベート量を0.1重量部から0.001重量部に変更し、塩化ベンザルコニウム(BAC)、D-マンニトールを組成から除くことにより、N-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミン、カルボキシメチルセルロースナトリウム(CMC Na)、ポリソルベート80、グルコース水溶液により、組成がN-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミン/カルボキシメチルセルロースナトリウム(CMC Na)/ポリソルベート80=1重量部/0.025重量部/0.001重量部、N-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミン濃度が12.47 mg/mL、平均粒子径が187 nmのナノ粒子組成物を得た。
Figure JPOXMLDOC01-appb-T000041
実施例160
 実施例152に準じて、粘稠化剤をヒドロキシプロピルセルロース(HPC)からカルボキシメチルセルロースナトリウム(CMC Na)に、界面活性剤をポリソルベート80からラウリル硫酸ナトリウムに変更し、塩化ベンザルコニウム(BAC)、D-マンニトールを組成から除くことにより、N-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミン、カルボキシメチルセルロースナトリウム(CMC Na)、ラウリル硫酸ナトリウム(、グルコース水溶液により、組成がN-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミン/カルボキシメチルセルロースナトリウム(CMC Na)/ラウリル硫酸ナトリウム=1重量部/0.05重量部/0.001重量部、N-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミン濃度が10.70 mg/mL、平均粒子径が255 nmのナノ粒子組成物を得た。
Figure JPOXMLDOC01-appb-T000042
実施例161
 実施例1に準じて、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物をN-(3-クロロフェニル)-N-(6,7-ジメトキシキナゾリン-4-イル)アミンに変更することにより、N-(3-クロロフェニル)-N-(6,7-ジメトキシキナゾリン-4-イル)アミン、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-(3-クロロフェニル)-N-(6,7-ジメトキシキナゾリン-4-イル)アミン/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、平均粒子径が1000 nm以下のナノ粒子組成物が得られる。
実施例162
 実施例1に準じて、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物をN-[2-[[2-(ジメチルアミノ)エチル]メチルアミノ]-5-[[4-(1H-インドール-3-イル)-2-ピリミジニル]アミノ]-4-メトキシフェニル]-2-プロパンアミドに変更することにより、N-[2-[[2-(ジメチルアミノ)エチル]メチルアミノ]-5-[[4-(1H-インドール-3-イル)-2-ピリミジニル]アミノ]-4-メトキシフェニル]-2-プロパンアミド、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN-[2-[[2-(ジメチルアミノ)エチル]メチルアミノ]-5-[[4-(1H-インドール-3-イル)-2-ピリミジニル]アミノ]-4-メトキシフェニル]-2-プロパンアミド/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、平均粒子径が1000 nm以下のナノ粒子組成物が得られる。
実施例163
 実施例1に準じて、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物をN4-[3-クロロ-4-(チアゾール-2-イルメトキシ)フェニル]-N6-[4(R)-メチル-4,5-ジヒドロキシオキサゾール-2-イル]キナゾリン-4,6-ジアミン二トルエンスルホン酸塩に変更することにより、N4-[3-クロロ-4-(チアゾール-2-イルメトキシ)フェニル]-N6-[4(R)-メチル-4,5-ジヒドロキシオキサゾール-2-イル]キナゾリン-4,6-ジアミン二トルエンスルホン酸塩、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成がN4-[3-クロロ-4-(チアゾール-2-イルメトキシ)フェニル]-N6-[4(R)-メチル-4,5-ジヒドロキシオキサゾール-2-イル]キナゾリン-4,6-ジアミン二トルエンスルホン酸塩/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、平均粒子径が1000 nm以下のナノ粒子組成物が得られる。
実施例164
 実施例1に準じて、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物を(2Z)-ブタ-2-エンジオニック酸 N-[3-([2-[3-フルオロ-4-(4-メチルピペラジン-1-イル)アニリノ]-1H-ピロロ[2,3-d]ピリミジン-4-イル]オキシ)フェニル]プロパ-2-エンアミドに変更することにより、(2Z)-ブタ-2-エンジオニック酸 N-[3-([2-[3-フルオロ-4-(4-メチルピペラジン-1-イル)アニリノ]-1H-ピロロ[2,3-d]ピリミジン-4-イル]オキシ)フェニル]プロパ-2-エンアミド、ヒドロキシプロピルセルロース(HPC)、ポリソルベート80、塩化ベンザルコニウム(BAC)、D-マンニトール、グルコース水溶液により、組成が(2Z)-ブタ-2-エンジオニック酸 N-[3-([2-[3-フルオロ-4-(4-メチルピペラジン-1-イル)アニリノ]-1H-ピロロ[2,3-d]ピリミジン-4-イル]オキシ)フェニル]プロパ-2-エンアミド/ヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.1重量部/0.001重量部/0.1重量部、平均粒子径が1000 nm以下のナノ粒子組成物が得られる。
参考例11
 ジルコニア容器(シンキー)に4-{4-[3-(4-クロロ-3-トリフルオトメチルフェニル)-ウレイド]-3-フルオロフェノキシ}ピリジン-2-カルボン酸メチルアミド(Active Bio、以下同じ)を秤量し、次いでヒドロキシプロピルセルロース(ヒドロキシプロピルセルロース(HPC)、和光純薬、以下同じ)、Tween80(純正化学、以下同じ)、塩化ベンザルコニウム(塩化ベンザルコニウム(BAC)、ナカライテスク、以下同じ)、D-マンニトール(純正化学、以下同じ)、グルコース水溶液を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径0.1 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/30回/-10℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、4-{4-[3-(4-クロロ-3-トリフルオトメチルフェニル)-ウレイド]-3-フルオロフェノキシ}ピリジン-2-カルボン酸メチルアミド/ヒドロキシプロピルセルロース(HPC)/Tween80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.125重量部/0.025重量部/0.00025重量部/0.025重量部とした。
 このナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い(13200rpm、15分)、4-{4-[3-(4-クロロ-3-トリフルオトメチルフェニル)-ウレイド]-3-フルオロフェノキシ}ピリジン-2-カルボン酸メチルアミドの濃度を1.72 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、4-{4-[3-(4-クロロ-3-トリフルオトメチルフェニル)-ウレイド]-3-フルオロフェノキシ}ピリジン-2-カルボン酸メチルアミドの平均粒子径は97 nmのナノ粒子組成物であった。
参考例12
 ジルコニア容器(シンキー)に4-{4-[3-(4-クロロ-3-トリフルオトメチルフェニル)-ウレイド]-3-フルオロフェノキシ}ピリジン-2-カルボン酸メチルアミドを秤量し、次いでヒドロキシプロピルセルロース(ヒドロキシプロピルセルロース(HPC)、和光純薬、以下同じ)、Tween80(純正化学、以下同じ)、塩化ベンザルコニウム(塩化ベンザルコニウム(BAC)、ナカライテスク、以下同じ)、D-マンニトール(純正化学、以下同じ)、グルコース水溶液を添加、懸濁液とし、ジルコニアボール(ジルコニア粉砕ボール、YTZ 直径1.0 mm、ニッカトー)を入れて蓋をした。自転・公転ナノ粉砕機(NP-100、シンキー)を用いて、湿式粉砕(Mill/Mix 2000rpm, 1分loop/10回/-10℃)を行い、その後、グルコース水溶液を添加、希釈し(Mill/Mix 400rpm, 5分)、ジルコニアボールをスクリーン除去し(Clean Media 2000rpm, 1分、Mill/Mix 400rpm, 1分)、ナノ粒子組成物を得た。
 ナノ粒子組成物の組成は、4-{4-[3-(4-クロロ-3-トリフルオトメチルフェニル)-ウレイド]-3-フルオロフェノキシ}ピリジン-2-カルボン酸メチルアミド/ヒドロキシプロピルセルロース(HPC)/Tween80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.5重量部/0.01重量部/0.001重量部/0.01重量部とした。
 このナノ粒子組成物の濃度を測定すると、4-{4-[3-(4-クロロ-3-トリフルオトメチルフェニル)-ウレイド]-3-フルオロフェノキシ}ピリジン-2-カルボン酸メチルアミドの濃度は12.90 mg/mLであった。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、4-{4-[3-(4-クロロ-3-トリフルオトメチルフェニル)-ウレイド]-3-フルオロフェノキシ}ピリジン-2-カルボン酸メチルアミドの平均粒子径は451 nmのナノ粒子組成物であった。
参考例13
 参考例12で調製したナノ粒子組成物を、マイクロ冷却遠心機(3740、クボタ)を用いて精製を行い、4-{4-[3-(4-クロロ-3-トリフルオトメチルフェニル)-ウレイド]-3-フルオロフェノキシ}ピリジン-2-カルボン酸メチルアミドの濃度を2.06 mg/mLとした。
 ナノ粒子組成物をZeta Sizer (Malvern instruments Nano series)を用いて測定すると、4-{4-[3-(4-クロロ-3-トリフルオトメチルフェニル)-ウレイド]-3-フルオロフェノキシ}ピリジン-2-カルボン酸メチルアミドの平均粒子径は234 nmのナノ粒子組成物であった。
比較例1
 ポリプロピレン容器に4-{4-[3-(4-クロロ-3-トリフルオトメチルフェニル)-ウレイド]-3-フルオロフェノキシ}ピリジン-2-カルボン酸メチルアミド(Active Bio、以下同じ)を秤量し、次いで軽質流動パラフィン(ナカライテスク、以下同じ)を添加、懸濁液とし、ステンレスビーズ(直径3.0 mm、バイオメディカルサイエンス)を入れて蓋をした。自転・公転ミキサー(あわとり練太郎ARE-310、シンキ―、以下同じ)を用いて、湿式粉砕を行い、その後、軽質流動パラフィンを添加、希釈した。その後、自転・公転ミキサーを用いて、湿式粉砕を行い、軽質流動パラフィンを添加、希釈し、4-{4-[3-(4-クロロ-3-トリフルオトメチルフェニル)-ウレイド]-3-フルオロフェノキシ}ピリジン-2-カルボン酸メチルアミド濃度21.1 mg/mLのマイクロサスペンジョンを得た。
 マイクロサスペンションをレーザー回折・散乱式粒度分布測定装置(マイクロトラック、日機装)を用いて測定すると、4-{4-[3-(4-クロロ-3-トリフルオトメチルフェニル)-ウレイド]-3-フルオロフェノキシ}ピリジン-2-カルボン酸メチルアミドの粒子径はD50が5.15μmであるマイクロ粒子組成物が調製されていることが確認された。
比較例2
 容器に[4-[N-(2,3-ジメチル-2H-インダゾール-6-イル)-N-メチルアミノ]ピリミジン-2-イルアミノ]-2-メチルベンゼンスルホンアミド塩酸塩を秤量し、次いでカプチゾル(Captisol、CYDEX、以下同じ)水溶液、リン酸二水素ナトリウム(和光純薬、以下同じ)、塩化ナトリウム(和光純薬、以下同じ)を添加し、水酸化ナトリウムを用いてpH5.0に調整し、溶液組成物(パゾパニブ水溶液)を得た。溶液組成物の組成は、[4-[N-(2,3-ジメチル-2H-インダゾール-6-イル)-N-メチルアミノ]ピリミジン-2-イルアミノ]-2-メチルベンゼンスルホンアミド塩酸塩/Captisol/リン酸塩/塩化ナトリウム=5 mg/mL/70 mg/mL/3.45 mg/mL/1.45 mg/mLとした。
比較例3
 ポリプロピレン容器にN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物を秤量し、次いで組成がヒドロキシプロピルセルロース(HPC)/ ポリソルベート80/塩化ベンザルコニウム(BAC)/ D-マンニトール=0.5重量部/0.1重量部/0.001重量部/0.1重量部からなるグルコース水溶液を添加、懸濁液とし、ステンレスビーズ(直径3.0 mm、バイオメディカルサイエンス)を入れて蓋をした。自転・公転ミキサー(あわとり練太郎ARE-310)を用いて、湿式粉砕を行い、その後、組成がヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=0.5重量部/0.1重量部/0.001重量部/0.1重量部からなるグルコース水溶液を添加、希釈した。その後、自転・公転ミキサーを用いて、湿式粉砕を行い、組成がヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=0.5重量部/0.1重量部/0.001重量部/0.1重量部からなるグルコース水溶液を添加、希釈し、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度0.46 mg/mLのマイクロサスペンジョンを得た。
 マイクロサスペンションをレーザー回折・散乱式粒度分布測定装置(マイクロトラック、日機装)を用いて測定すると、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の粒子径はD50が8.56μmであった。
比較例4
 4-{4-[3-(4-クロロ-3-トリフルオトメチルフェニル)-ウレイド]-3-フルオロフェノキシ}ピリジン-2-カルボン酸メチルアミドの代わりにN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物を用い、比較例1に準じて、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度が0.17 mg/mL、D50が6.83 μmのマイクロ粒子組成物を得た。
Figure JPOXMLDOC01-appb-T000043
比較例5
 ポリプロピレン容器にN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物を秤量し、リン酸緩衝生理食塩水水溶液を添加、懸濁液とし、ステンレスビーズ(直径3.0 mm、バイオメディカルサイエンス)を入れて蓋をした。自転・公転ミキサー(あわとり練太郎ARE-310)を用いて、湿式粉砕を行い、その後、リン酸緩衝生理食塩水水溶液を添加、希釈した。その後、自転・公転ミキサーを用いて、湿式粉砕を行い、リン酸緩衝生理食塩水水溶液を添加、希釈し、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物濃度5.27 mg/mLのマイクロサスペンジョンを得た。
 マイクロサスペンションをレーザー回折・散乱式粒度分布測定装置(マイクロトラック、日機装)を用いて測定すると、N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物の粒子径はD50が4.80 μmであった。
比較例6
 ポリプロピレン容器に1-[[4-[(4-フルオロ-2-メチル-1H-インドール-5-イル)オキシ]-6-メトキシキノリン-7-イル]オキシメチル]シクロプロパン-1-アミンを秤量し、次いで組成がヒドロキシプロピルセルロース(HPC)/ ポリソルベート80/塩化ベンザルコニウム(BAC)/ D-マンニトール=0.5重量部/0.1重量部/0.001重量部/0.1重量部からなるグルコース水溶液を添加、懸濁液とし、ステンレスビーズ(直径3.0 mm、バイオメディカルサイエンス)を入れて蓋をした。自転・公転ミキサー(あわとり練太郎ARE-310)を用いて、湿式粉砕を行い、その後、組成がヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=0.5重量部/0.1重量部/0.001重量部/0.1重量部からなるグルコース水溶液を添加、希釈した。その後、自転・公転ミキサーを用いて、湿式粉砕を行い、組成がヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=0.5重量部/0.1重量部/0.001重量部/0.1重量部からなるグルコース水溶液を添加、希釈し、1-[[4-[(4-フルオロ-2-メチル-1H-インドール-5-イル)オキシ]-6-メトキシキノリン-7-イル]オキシメチル]シクロプロパン-1-アミン濃度2.01 mg/mLのマイクロサスペンジョンを得た。
 マイクロサスペンションをレーザー回折・散乱式粒度分布測定装置(マイクロトラック、日機装)を用いて測定すると、1-[[4-[(4-フルオロ-2-メチル-1H-インドール-5-イル)オキシ]-6-メトキシキノリン-7-イル]オキシメチル]シクロプロパン-1-アミンの粒子径はD50が4.84μmであった。
比較例7
 ポリプロピレン容器に4-[3-クロロ-4-(シクロプロピルカルバモイルアミノ)フェノキシ]-7-メトキシキノリン-6-カルボキシアミドを秤量し、次いで組成がヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/ D-マンニトール=0.5重量部/0.1重量部/0.001重量部/0.1重量部からなるグルコース水溶液を添加、懸濁液とし、ステンレスビーズ(直径3.0 mm、バイオメディカルサイエンス)を入れて蓋をした。自転・公転ミキサー(あわとり練太郎ARE-310)を用いて、湿式粉砕を行い、その後、組成がヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=0.5重量部/0.1重量部/0.001重量部/0.1重量部からなるグルコース水溶液を添加、希釈した。その後、自転・公転ミキサーを用いて、湿式粉砕を行い、組成がヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=0.5重量部/0.1重量部/0.001重量部/0.1重量部からなるグルコース水溶液を添加、希釈し、4-[3-クロロ-4-(シクロプロピルカルバモイルアミノ)フェノキシ]-7-メトキシキノリン-6-カルボキシアミド濃度1.92 mg/mLのマイクロサスペンジョンを得た。
 マイクロサスペンションをレーザー回折・散乱式粒度分布測定装置(マイクロトラック、日機装)を用いて測定すると、4-[3-クロロ-4-(シクロプロピルカルバモイルアミノ)フェノキシ]-7-メトキシキノリン-6-カルボキシアミドの粒子径はD50が4.59μmであった。
比較例8
 ポリプロピレン容器に(3Z)-3-[({4-[N-メチル-2-(4-メチルピペラジン-1-イル)アセトアミド]フェニル}アミノ)(フェニル)メチリデン]-2-オキソ-2・3-ジヒドロ-1H-インドール-6-カルボン酸メチルを秤量し、次いで組成がヒドロキシプロピルセルロース(HPC)/ ポリソルベート80/塩化ベンザルコニウム(BAC)/ D-マンニトール=0.5重量部/0.1重量部/0.001重量部/0.1重量部からなるグルコース水溶液を添加、懸濁液とし、ステンレスビーズ(直径3.0 mm、バイオメディカルサイエンス)を入れて蓋をした。自転・公転ミキサー(あわとり練太郎ARE-310)を用いて、湿式粉砕を行い、その後、組成がヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=0.5重量部/0.1重量部/0.001重量部/0.1重量部からなるグルコース水溶液を添加、希釈した。その後、自転・公転ミキサーを用いて、湿式粉砕を行い、組成がヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=0.5重量部/0.1重量部/0.001重量部/0.1重量部からなるグルコース水溶液を添加、希釈した。その後、自転・公転ミキサーを用いて、湿式粉砕を行い、(3Z)-3-[({4-[N-メチル-2-(4-メチルピペラジン-1-イル)アセトアミド]フェニル}アミノ)(フェニル)メチリデン]-2-オキソ-2・3-ジヒドロ-1H-インドール-6-カルボン酸メチル濃度1.13 mg/mLのマイクロサスペンジョンを得た。
 マイクロサスペンションをレーザー回折・散乱式粒度分布測定装置(マイクロトラック、日機装)を用いて測定すると、(3Z)-3-[({4-[N-メチル-2-(4-メチルピペラジン-1-イル)アセトアミド]フェニル}アミノ)(フェニル)メチリデン]-2-オキソ-2・3-ジヒドロ-1H-インドール-6-カルボン酸メチルの粒子径はD50が5.37μmであった。
比較例9
 ポリプロピレン容器に(E)-N-[4-(3-クロロ-4-フルオロアニリノ)-7-メトキシキナゾリン-6-イル]-4-ピペリジン-1-イルブチ-2-エンアミドを秤量し、次いで組成がヒドロキシプロピルセルロース(HPC)/ ポリソルベート80/塩化ベンザルコニウム(BAC)/ D-マンニトール=0.5重量部/0.1重量部/0.001重量部/0.1重量部からなるグルコース水溶液を添加、懸濁液とし、ステンレスビーズ(直径3.0 mm、バイオメディカルサイエンス)を入れて蓋をした。自転・公転ミキサー(あわとり練太郎ARE-310)を用いて、湿式粉砕を行い、その後、組成がヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=0.5重量部/0.1重量部/0.001重量部/0.1重量部からなるグルコース水溶液を添加、希釈した。その後、自転・公転ミキサーを用いて、湿式粉砕を行い、組成がヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=0.5重量部/0.1重量部/0.001重量部/0.1重量部からなるグルコース水溶液を添加、希釈し、(E)-N-[4-(3-クロロ-4-フルオロアニリノ)-7-メトキシキナゾリン-6-イル]-4-ピペリジン-1-イルブチ-2-エンアミド濃度2.01 mg/mLのマイクロサスペンジョンを得た。
 マイクロサスペンションをレーザー回折・散乱式粒度分布測定装置(マイクロトラック、日機装)を用いて測定すると、(E)-N-[4-(3-クロロ-4-フルオロアニリノ)-7-メトキシキナゾリン-6-イル]-4-ピペリジン-1-イルブチ-2-エンアミドの粒子径はD50が4.43μmであった。
比較例10
 ポリプロピレン容器にN-[4-[[3-クロロ-4-[(3-フルオロベンジル)オキシ]フェニル]アミノ]キナゾリン-6-イル]アクリルアミドを秤量し、次いで組成がヒドロキシプロピルセルロース(HPC)/ ポリソルベート80/塩化ベンザルコニウム(BAC)/ D-マンニトール=0.5重量部/0.1重量部/0.001重量部/0.1重量部からなるグルコース水溶液を添加、懸濁液とし、ステンレスビーズ(直径3.0 mm、バイオメディカルサイエンス)を入れて蓋をした。自転・公転ミキサー(あわとり練太郎ARE-310)を用いて、湿式粉砕を行い、その後、組成がヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=0.5重量部/0.1重量部/0.001重量部/0.1重量部からなるグルコース水溶液を添加、希釈した。その後、自転・公転ミキサーを用いて、湿式粉砕を行い、組成がヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=0.5重量部/0.1重量部/0.001重量部/0.1重量部からなるグルコース水溶液を添加、希釈し、N-[4-[[3-クロロ-4-[(3-フルオロベンジル)オキシ]フェニル]アミノ]キナゾリン-6-イル]アクリルアミド濃度2.14 mg/mLのマイクロサスペンジョンを得た。
 マイクロサスペンションをレーザー回折・散乱式粒度分布測定装置(マイクロトラック、日機装)を用いて測定すると、N-[4-[[3-クロロ-4-[(3-フルオロベンジル)オキシ]フェニル]アミノ]キナゾリン-6-イル]アクリルアミドの粒子径はD50が4.87μmであった。
比較例11
 ポリプロピレン容器に1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミドを秤量し、次いで組成がポリソルベート80=0.5重量部からなるグルコース水溶液を添加、懸濁液とし、ステンレスビーズ(直径3.0 mm、バイオメディカルサイエンス)を入れて蓋をした。自転・公転ミキサー(あわとり練太郎ARE-310)を用いて、湿式粉砕を行い、その後、組成がポリソルベート80=0.5重量部からなるグルコース水溶液を添加、希釈した。その後、自転・公転ミキサーを用いて、湿式粉砕を行い、組成がポリソルベート80=0.5重量部からなるグルコース水溶液を添加、希釈し、1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミド濃度2.20 mg/mLのマイクロサスペンジョンを得た。
 マイクロサスペンションをレーザー回折・散乱式粒度分布測定装置(マイクロトラック、日機装)を用いて測定すると、1-N-[4-(6,7-ジメトキシキノリン6-4-イル)オキシフェニル]-1-N'-(4-フルオロフェニル)シクロプロパン-1,1-ジカルボキシアミドの粒子径はD50が2.61μmであった。
比較例12
 ポリプロピレン容器に6-(6,7-ジメトキシキナゾリン-4-イル)オキシ-N,2-ジメチル-1-ベンゾフラン-3-カルボキシアミドを秤量し、次いで組成がポリソルベート80=0.5重量部からなるグルコース水溶液を添加、懸濁液とし、ステンレスビーズ(直径3.0 mm、バイオメディカルサイエンス)を入れて蓋をした。自転・公転ミキサー(あわとり練太郎ARE-310)を用いて、湿式粉砕を行い、その後、組成がポリソルベート80=0.5重量部からなるグルコース水溶液を添加、希釈した。その後、自転・公転ミキサーを用いて、湿式粉砕を行い、組成がポリソルベート80=0.5重量部からなるグルコース水溶液を添加、希釈し、6-(6,7-ジメトキシキナゾリン-4-イル)オキシ-N,2-ジメチル-1-ベンゾフラン-3-カルボキシアミド濃度2.00 mg/mLのマイクロサスペンジョンを得た。
 マイクロサスペンションをレーザー回折・散乱式粒度分布測定装置(マイクロトラック、日機装)を用いて測定すると、6-(6,7-ジメトキシキナゾリン-4-イル)オキシ-N,2-ジメチル-1-ベンゾフラン-3-カルボキシアミドの粒子径はD50が2.73μmであった。
比較例13
 ポリプロピレン容器にN-(3-エチニルフェニル)-7,8,10,11,13,14-ヘキサヒドロ-[1,4,7,10]テトラオキサシクロドデシノ[2,3-g]キナゾリン-4-アミンを秤量し、次いで組成がヒドロキシプロピルセルロース(HPC)/ ポリソルベート80/塩化ベンザルコニウム(BAC)/ D-マンニトール=1重量部/0.2重量部/0.002重量部/0.2重量部からなるグルコース水溶液を添加、懸濁液とし、ステンレスビーズ(直径3.0 mm、バイオメディカルサイエンス)を入れて蓋をした。自転・公転ミキサー(あわとり練太郎ARE-310)を用いて、湿式粉砕を行い、その後、組成がヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.2重量部/0.002重量部/0.2重量部からなるグルコース水溶液を添加、希釈した。その後、自転・公転ミキサーを用いて、湿式粉砕を行い、組成がヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=1重量部/0.2重量部/0.002重量部/0.2重量部からなるグルコース水溶液を添加、希釈し、N-(3-エチニルフェニル)-7,8,10,11,13,14-ヘキサヒドロ-[1,4,7,10]テトラオキサシクロドデシノ[2,3-g]キナゾリン-4-アミン濃度2.12 mg/mLのマイクロサスペンジョンを得た。
 マイクロサスペンションをレーザー回折・散乱式粒度分布測定装置(マイクロトラック、日機装)を用いて測定すると、N-(3-エチニルフェニル)-7,8,10,11,13,14-ヘキサヒドロ-[1,4,7,10]テトラオキサシクロドデシノ[2,3-g]キナゾリン-4-アミンの粒子径はD50が11.44μmであった。
比較例14
 ポリプロピレン容器に3-(2-イミダゾ[1,2-b]ピリダジン-3-イルエチニル)-4-メチル-N-[4-[(4-メチルピペラジン-1-イル)メチル]-3-(トリフルオロメチル)フェニル]ベンザニドを秤量し、次いで組成がヒドロキシプロピルセルロース(HPC)=0.3重量部からなるグルコース水溶液を添加、懸濁液とし、ステンレスビーズ(直径3.0 mm、バイオメディカルサイエンス)を入れて蓋をした。自転・公転ミキサー(あわとり練太郎ARE-310)を用いて、湿式粉砕を行い、その後、組成がヒドロキシプロピルセルロース(HPC)=0.3重量部からなるグルコース水溶液を添加、希釈した。その後、自転・公転ミキサーを用いて、湿式粉砕を行い、組成がヒドロキシプロピルセルロース(HPC)=0.3重量部からなるグルコース水溶液を添加、希釈し、3-(2-イミダゾ[1,2-b]ピリダジン-3-イルエチニル)-4-メチル-N-[4-[(4-メチルピペラジン-1-イル)メチル]-3-(トリフルオロメチル)フェニル]ベンザニド濃度2.59 mg/mLのマイクロサスペンジョンを得た。
 マイクロサスペンションをレーザー回折・散乱式粒度分布測定装置(マイクロトラック、日機装)を用いて測定すると、3-(2-イミダゾ[1,2-b]ピリダジン-3-イルエチニル)-4-メチル-N-[4-[(4-メチルピペラジン-1-イル)メチル]-3-(トリフルオロメチル)フェニル]ベンザニドの粒子径はD50が4.42 μmであった。
比較例15
 ポリプロピレン容器にN-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミドを秤量し、次いで組成がヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=0.5重量部/0.1重量部/0.001重量部/0.1重量部からなるグルコース水溶液を添加、懸濁液とし、ステンレスビーズ(直径3.0 mm、バイオメディカルサイエンス)を入れて蓋をした。自転・公転ミキサー(あわとり練太郎ARE-310)を用いて、湿式粉砕を行い、その後、組成がヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=0.5重量部/0.1重量部/0.001重量部/0.1重量部からなるグルコース水溶液を添加、希釈した。その後、自転・公転ミキサーを用いて、湿式粉砕を行い、組成がヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=0.5重量部/0.1重量部/0.001重量部/0.1重量部からなるグルコース水溶液を添加、希釈し、N-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミド濃度2.32 mg/mLのマイクロサスペンジョンを得た。
 マイクロサスペンションをレーザー回折・散乱式粒度分布測定装置(マイクロトラック、日機装)を用いて測定すると、N-メチル-2-[[3-[(E)-2-ピリジン-2-イルエテニル]-1H-インダゾール-6-イル]スルファニル]ベンザミドの粒子径はD50が6.83 μmであった。
比較例16
 ポリプロピレン容器にN-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン塩酸塩を秤量し、次いで組成がヒドロキシプロピルセルロース(HPC)/ ポリソルベート80/塩化ベンザルコニウム(BAC)/ D-マンニトール=0.125重量部/0.025重量部/0.00025重量部/0.025重量部からなるグルコース水溶液を添加、懸濁液とし、ステンレスビーズ(直径3.0 mm、バイオメディカルサイエンス)を入れて蓋をした。自転・公転ミキサー(あわとり練太郎ARE-310)を用いて、湿式粉砕を行い、その後、組成がヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=0.125重量部/0.025重量部/0.00025重量部/0.025重量部からなるグルコース水溶液を添加、希釈した。その後、自転・公転ミキサーを用いて、湿式粉砕を行い、組成がヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=0.125重量部/0.025重量部/0.00025重量部/0.025重量部からなるグルコース水溶液を添加、希釈し、N-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン塩酸塩濃度10.24 mg/mLのマイクロサスペンジョンを得た。
 マイクロサスペンションをレーザー回折・散乱式粒度分布測定装置(マイクロトラック、日機装)を用いて測定すると、N-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン塩酸塩の粒子径はD50が7.20 μmのマイクロ粒子組成物であった。
比較例17
 ポリプロピレン容器にN-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミンを秤量し、次いで組成がヒドロキシプロピルセルロース(HPC)/ ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=0.125重量部/0.025重量部/0.00025重量部/0.025重量部からなるグルコース水溶液を添加、懸濁液とし、ステンレスビーズ(直径3.0 mm、バイオメディカルサイエンス)を入れて蓋をした。自転・公転ミキサー(あわとり練太郎ARE-310)を用いて、湿式粉砕を行い、その後、組成がヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=0.125重量部/0.025重量部/0.00025重量部/0.025重量部からなるグルコース水溶液を添加、希釈した。その後、自転・公転ミキサーを用いて、湿式粉砕を行い、組成がヒドロキシプロピルセルロース(HPC)/ポリソルベート80/塩化ベンザルコニウム(BAC)/D-マンニトール=0.125重量部/0.025重量部/0.00025重量部/0.025重量部からなるグルコース水溶液を添加、希釈し、N-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミン濃度11.85 mg/mLのマイクロサスペンジョンを得た。
 マイクロサスペンションをレーザー回折・散乱式粒度分布測定装置(マイクロトラック、日機装)を用いて測定すると、N-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミンの粒子径はD50が7.07 μmのマイクロ粒子組成物であった。
試験例1 本発明のナノ粒子組成物および比較例のマイクロ粒子組成物をラットに単回点眼投与したときの薬物動態
 実施例19および実施例24で得られた本発明のナノ粒子組成物、ならびに比較例3および比較例4で得られたマイクロ粒子組成物について、ラットに単回点眼投与(4~12μL/eye、各群n=2)したときの薬物動態を評価した。ナノ粒子組成物を雄性Brown Norwayラットの右眼に単回点眼投与し、点眼投与後4~7時間に安楽死させ、右眼球を摘出した。眼球を洗浄後に眼球組織試料(脈絡膜/強膜)を採取した。
 採取した眼球組織試料に一定量の50vol%メタノール溶液を添加してホモジナイズし、さらにアセトニトリルを添加して撹拌した。試料を遠心分離して上清を採取し、10 mmol/Lの酢酸アンモニウム溶液を添加して測定試料とした。
 測定試料中の薬物濃度を液体クロマトグラフ-タンデム型質量分析計(LC/MS/MS)を用いて測定した。結果を表38および図1に示す。
Figure JPOXMLDOC01-appb-T000044
脈絡膜・強膜中濃度、脈絡膜・強膜中濃度/製剤濃度は平均値 (n=2)
化合物II: N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物
 表38より、化合物IIは平均粒子径1000 nm以下のナノ粒子組成物とすることで、飛躍的に脈絡膜・強膜への移行性が高まることが判明した。
試験例2 本発明のナノ粒子組成物をラットに単回点眼投与したときの薬物動態
 実施例1、実施例7、実施例9、実施例15、実施例27、実施例29および実施例39に従って調製した発明のナノ粒子組成物について、ラットに単回点眼投与したときの薬物動態を評価した。ナノ粒子組成物を雄性Brown Norwayラットの右眼に単回点眼投与し(5μL/eye、各群n=2)、点眼投与後4時間に安楽死させ、右眼球を摘出した。眼球を洗浄後に脈絡膜/強膜試料を採取した。
 採取した脈絡膜/強膜試料に一定量の50vol%メタノール溶液を添加してホモジナイズし、さらにアセトニトリルを添加して撹拌した。試料を遠心分離して上清を採取し、10 mmol/Lの酢酸アンモニウム溶液を添加して測定試料とした。
 測定試料中の薬物濃度を液体クロマトグラフ-タンデム型質量分析計(LC/MS/MS)を用いて測定した。結果を表39に示す。
Figure JPOXMLDOC01-appb-T000045
脈絡膜・強膜中濃度、脈絡膜・強膜中濃度/製剤濃度は平均値 (n=3)
化合物II: N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物
 表39より、化合物IIは平均粒子径400nm未満のナノ粒子組成物とすることが脈絡膜・強膜への移行性で好ましく、化合物IIは平均粒子径200nm未満であることが脈絡膜・強膜への移行性でより好ましく、化合物IIは平均粒子径120nm未満であることが脈絡膜・強膜への移行性でさらに好ましいことが判明した。
試験例3 本発明のナノ粒子組成物をラットに単回点眼投与したときの薬物動態
 実施例1および実施例26に準じて調製した本発明のナノ粒子組成物ならびに実施例50、実施例52、実施例53、実施例54、実施例57および実施例96で得られた本発明のナノ粒子組成物について、ラットに単回点眼投与したときの薬物動態を評価した。ナノ粒子組成物を雄性Brown Norwayラットの右眼に単回点眼投与し(5μL/eye、各群n=2)、点眼投与後4時間に安楽死させ、右眼球を摘出した。眼球を洗浄後に脈絡膜/強膜試料を採取した。
 採取した脈絡膜/強膜試料に一定量の50vol%メタノール溶液を添加してホモジナイズし、さらにアセトニトリルを添加して撹拌した。試料を遠心分離して上清を採取し、10 mmol/Lの酢酸アンモニウム溶液を添加して測定試料とした。
 測定試料中の薬物濃度を液体クロマトグラフ-タンデム型質量分析計(LC/MS/MS)を用いて測定した。結果を表40に示す。
Figure JPOXMLDOC01-appb-T000046
脈絡膜・強膜中濃度、脈絡膜・強膜中濃度/製剤濃度は平均値 (n=3)
化合物II: N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物
 表40より、化合物IIはナノ粒子であれば、その製剤組成によらず、脈絡膜・強膜への移行性が高かった。一方、分散媒をグリセロールとした眼軟膏の実施例96のみ脈絡膜・強膜中への移行性が低下した。
試験例4 本発明のナノ粒子組成物および比較例のマイクロ粒子組成物をウサギに単回点眼投与したときの薬物動態
 実施例1および実施例40に従って調製した本発明のナノ粒子組成物、実施例84で得られた本発明のナノ粒子組成物ならびに比較例5に従って調製したマイクロ粒子組成物について、Kbl:Dutchウサギに単回点眼投与(20 μL/eye(目))したときの薬物動態を評価した。実施例1に従って調製したナノ粒子組成物、実施例40に従って調製したナノ粒子組成物および実施例84に従って調製したナノ粒子組成物で得られた本発明のナノ粒子組成物ならびに比較例5に従って調製したマイクロ粒子組成物を動物の右眼に単回点眼投与した(各条件n=3)。点眼投与後1.5時間に安楽死させ、眼球を摘出した。眼球を洗浄後に脈絡膜/網膜試料を採取した。
 採取した脈絡膜/網膜試料に一定量の50vol%メタノール溶液を添加してホモジナイズし、さらにアセトニトリルを添加して撹拌した。試料を遠心分離して上清を採取し、10 mmol/Lの酢酸アンモニウム溶液を添加して測定試料とした。
 測定試料中の化合物IIの濃度を液体クロマトグラフ-タンデム型質量分析計(LC/MS/MS)を用いて測定した。結果を表41、および表42に示す。
Figure JPOXMLDOC01-appb-T000047
平均値(n=3)
化合物II: N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物
Figure JPOXMLDOC01-appb-T000048
平均値(n=3)
 表41および表42より、化合物IIは平均粒子径400nm未満のナノ粒子組成物とすることが脈絡膜・網膜への移行性で好ましく、化合物IIは平均粒子径150nm未満であることが脈絡膜・網膜への移行性でより好ましく、化合物IIは平均粒子径70nm未満であることが脈絡膜・網膜への移行性でさらに好ましいことが判明した。
 表41および表42より、ウサギにおいて、本発明のナノ粒子組成物および比較例のマイクロ粒子組成物をウサギに単回点眼投与したとき、粒子径が小さいほど化合物IIの脈絡膜/網膜への移行性が高いことがわかった。
試験例5 参考例で得られたナノ粒子組成物および比較例のマイクロ粒子組成物をウサギに単回点眼投与したときの薬物動態
 参考例11~13で得られたナノ粒子組成物ならびに比較例1に従って調製したマイクロ粒子組成物について、Kbl:Dutchウサギに単回点眼投与(20 μL/eye(目))したときの薬物動態を評価した。参考例11~13で得られたナノ粒子組成物ならびに比較例1に従って調製したマイクロ粒子組成物を動物の左眼に単回点眼投与した(各条件n=3)。点眼投与後1.5時間に安楽死させ、眼球を摘出した。眼球を洗浄後に脈絡膜/網膜試料を採取した。
 採取した脈絡膜/網膜試料に一定量の50vol%メタノール溶液を添加してホモジナイズし、さらにアセトニトリルを添加して撹拌した。試料を遠心分離して上清を採取し、10 mmol/Lの酢酸アンモニウム溶液を添加して測定試料とした。
 測定試料中の化合物IIIの濃度を液体クロマトグラフ-タンデム型質量分析計(LC/MS/MS)を用いて測定した。結果を表43に示す。
Figure JPOXMLDOC01-appb-T000049
平均値(n=3)
定量下限未満:1 ng/g未満
化合物III: 4-{4-[3-(4-クロロ-3-トリフルオトメチルフェニル)-ウレイド]-3-フルオロフェノキシ}ピリジン-2-カルボン酸メチルアミド(レゴラフェニブ)
 表43より、参考例で得られたナノ粒子組成物および比較例のマイクロ粒子組成物をウサギに単回点眼投与したとき、評価したいずれの粒子径においても化合物IIIの脈絡膜への移行性は極めて低いことが判明した。
試験例6 実施例1に従って調製した本発明のナノ粒子組成物および比較例1に従って調製したマイクロ粒子組成物をカニクイザルに単回点眼投与したときの薬物動態
 実施例1に従って調製した本発明のナノ粒子組成物または比較例1に従って調製したマイクロ粒子組成物について、雄性カニクイザルに単回点眼投与したときの薬物動態を評価した。実施例1に従って調製した本発明のナノ粒子組成物を右眼に点眼投与(50 μL/eye(目))し、同時に、比較例1に従って調製したマイクロ粒子組成物を左眼に点眼投与(50 μL/eye(目))した。点眼投与後4時間または48時間(各時点n=2)に採血した後に安楽死させ、眼球を摘出した。眼球を洗浄後に脈絡膜組織を採取した。
 採取した脈絡膜試料に50vol%メタノール溶液を一定量添加してホモジナイズし、さらにアセトニトリルを添加して撹拌した。試料を遠心分離して上清を採取し、10 mmol/Lの酢酸アンモニウム溶液を添加したものを測定試料とした。測定試料中の薬物濃度を液体クロマトグラフ-タンデム型質量分析計(LC/MS/MS)を用いて測定し、眼組織試料中の薬物濃度を算出した。結果を表44に示す。
Figure JPOXMLDOC01-appb-T000050
平均値(n=2)
化合物II: N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物
化合物III: レゴラフェニブ(4-{4-[3-(4-クロロ-3-トリフルオトメチルフェニル)-ウレイド]-3-フルオロフェノキシ}ピリジン-2-カルボン酸メチルアミド)
 実施例1に従って調製した本発明のナノ粒子組成物または比較例1に従って調製したマイクロ粒子組成物について、雄性カニクイザルに単回点眼投与したとき、実施例1に従って調製した本発明のナノ粒子組成物に含まれるN-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物(化合物II)の脈絡膜中濃度は、比較例1に従って調製したマイクロ粒子組成物に含まれるレゴラフェニブ(化合物III)の脈絡膜中濃度よりも顕著に高かった。
試験例7 ラットのレーザー惹起脈絡膜新生血管モデルにおける本発明のナノ粒子組成物の血管新生抑制効果
 本試験は、代表的な滲出型加齢性黄斑変性症モデルであるラットのレーザー惹起脈絡膜新生血管モデルにおいて、本発明のナノ粒子組成物が血管新生抑制効果を示すか否かを評価することが目的である。
 雄性Brown Norwayラット(各群n=12~13)の眼球を検査用散瞳点眼剤で散瞳させ、塩酸ケタミン/塩酸キシラジン(7:1、v/v)混合溶液を大腿筋肉内に投与(1 mL/kg)して全身麻酔を施した。その後、スリットランプを用いて右眼眼底を観察し、マルチカラーレーザー光凝固装置を用いて、網膜の8ヵ所にレーザー(波長 532 nm、スポットサイズ 80 μm、照射時間 0.05 sec、出力 120 mW)を照射することでレーザー惹起脈絡膜新生血管モデル動物を作製した。
 実施例1の媒体、実施例1および実施例2で得られた本発明のナノ粒子組成物について、レーザー照射直後からレーザー照射後14日までモデル動物に1日2回で点眼投与した(5μL/eyeで6時間:18時間の間隔)。アフリベルセプト(アイリーア(登録商標)硝子体内注射液、バイエル株式会社)をレーザー照射直後に硝子体内注射(5 μL/eye(目)、1回)した。
 レーザー照射14日後、全身麻酔下で4%(v/v)FITC-dextran溶液を尾静脈に投与(1mL/匹)した。イソフルラン(マイラン製薬株式会社)吸入による過麻酔により安楽死させ、眼球を摘出した。摘出した眼球は、4%パラホルムアルデヒド(PFA)を含む0.1 mol/Lリン酸緩衝液で24時間固定した。
 脈絡膜フラットマウント標本を作製するため、実体顕微鏡(EZ-4、ライカマイクロシステムズ株式会社)下で、固定後の眼球の角膜輪部に注射針を用いて穴を開け、その穴を起点に角膜全体、虹彩および水晶体を切除して眼杯の状態にした。網膜色素上皮細胞以外の網膜組織を剥がし、眼杯を分割した。FULLOROMOUNT(DBS社)を滴下し、カバーガラスで封入して標本を作製し、4℃、遮光下で24時間乾燥させた。
 共焦点顕微鏡(Nikon ECLIPSE TE 2000-U)を用いて、脈絡膜血管新生部位の写真を撮影した。脈絡膜血管新生の評価として、ImageJ(アメリカ国立衛生研究所)で、血管が新生し、盛り上がっている一番高い部分より内側の面積(単位:ピクセル(pixel))を算出した。そして、1眼8箇所のデータのうち、不明瞭なレーザー照射部位を省いた3ヵ所以上の血管新生面積の平均を個体値とし、各群の平均面積を算出した。また、統計処理として、媒体群に対するアフリベルセプト(アイリーア(登録商標)硝子体内注射液、バイエル株式会社)投与群、実施例1投与群および実施例2投与群のBartlett 検定を実施し、等分散である場合はDunnet 検定を実施した。なお、検定には統計解析ソフト(Stat Light、ユックムス株式会社)を用い、いずれの検定も有意水準は5%(両側検定)とした。結果を図2および表45に示す。
Figure JPOXMLDOC01-appb-T000051
平均値(n = 12~13)
*: p < 0.05、媒体vsアフリベルセプト、実施例1および実施例2
 ラットのレーザー惹起脈絡膜新生血管モデルにおいて、実施例1および実施例2で得られた本発明のナノ粒子組成物を点眼投与したとき、アフリベルセプト(アイリーア、硝子体内注射)と同等以上の血管新生抑制効果が確認された。
試験例8 カニクイザルレーザー誘発脈絡膜血管新生モデルにおける本発明のナノ粒子組成物および比較例の溶液の薬理作用
 本試験は、代表的な滲出型加齢性黄斑変性症モデルであるカニクイザルレーザー誘発脈絡膜血管新生モデルにおいて、本発明のナノ粒子組成物が薬理作用を示すか否かを評価することが目的である。
 薬剤の投与開始21日前に、動物(全例)の両眼にレーザーを照射し、動物モデルを作製した。散瞳剤を照射する動物の眼に点眼し,散瞳を確認した後,塩酸ケタミン(50 mg/mL)およびキシラジン水溶液(20 mg/mL)の混合液[7:1(v/v)]を筋肉内投与(0.2 mL/kg,10 mg/kg)した。網膜レーザーレンズ接眼部に特殊コンタクトレンズ角膜装着補助剤(スコピゾル眼科用液)を適量滴下した。照射眼に網膜レーザーレンズを圧着し,黄斑を確認した。黄斑の確認後,マルチカラーレーザー光凝固装置(MC-500,株式会社ニデック)を用いて,緑色レーザー(波長532 nm、照射スポットサイズ 80 μm,照射時間 0.1秒間,出力 1000 mW)を中心窩を避けた黄斑周囲に8ヶ所照射した。
 表46に示す試験構成で、媒体、実施例1に従って調製した本発明のナノ粒子組成物ならびに比較例2で得られた溶液組成物について、動物へ1日4回で35日間点眼投与した。アフリベルセプト(アイリーア(登録商標)硝子体内注射液、バイエル株式会社)については、動物に硝子体内注射(1回)した。
Figure JPOXMLDOC01-appb-T000052
 検眼鏡的検査を馴化期間中(-1日目)および投与期間中(投与7,14,21,28および34日目)に実施した。ポータブルスリットランプ(SL-15,興和株式会社)を用いて肉眼および対光反射検査を実施した。散瞳剤を点眼して散瞳を確認した後,塩酸ケタミン(50 mg/mL)を筋肉内投与(0.2 mL/kg,10 mg/kg)する.ポータブルスリットランプを用いて前眼部および中間透光体,額帯式双眼倒像検眼鏡(IO-αSmall Pupil,株式会社ナイツ)を用いて眼底を検査した。全例について眼底カメラ(VX-10α,興和株式会社)を用いて眼底の写真撮影を実施した。
 蛍光眼底造影検査を馴化期間中(-1日目)および投与期間中(投与7,14,21,28および34日目)に実施した。検査として、肉眼および検眼鏡的検査の散瞳および麻酔下で,造影剤(フルオレサイト静注500 mg,日本アルコン株式会社)を前腕の橈側皮静脈から投与(0.1 mL/kg,0.1 mL/s)した。造影剤投与約1,3,5分後に眼底カメラを用いて撮影を実施した。脈絡膜血管新生Grade評価として、照射スポットごとに脈絡膜血管新生Grade評価を実施した。蛍光眼底造影の画像を観察し,表47の基準に従って,照射スポットごとにGradeを決定した。
Figure JPOXMLDOC01-appb-T000053
a)造影剤投与約1分後の蛍光眼底画像
b)造影剤投与約3分後の蛍光眼底画像
c)造影剤投与約5分後の蛍光眼底画像
 検査時点ごとに各眼のGrade 1~4の出現率を以下の式によりそれぞれ算出した。
  Grade 出現率(%)= 照射スポット数/8 × 100
 Grade 4の出現率の結果を表48と図3に示す。
Figure JPOXMLDOC01-appb-T000054
平均値 (n=6)
標準誤差 (n=6)
 カニクイザルレーザー誘発脈絡膜血管新生モデルにおいて実施例1で得られた本発明のナノ粒子組成物を点眼投与したとき、アフリベルセプト(アイリーア、硝子体内注射)と同等の血管新生抑制効果が確認され、その効果は比較例2で得られた溶液組成物と比較して顕著に高かった。
試験例9 マウス高酸素負荷網膜症モデルにおける本発明のナノ粒子組成物の薬理作用
 本試験は、代表的な糖尿病網膜症モデルであるマウス高酸素負荷網膜症(oxygen-induced retinopathy)モデルにおいて、本発明のナノ粒子組成物が薬理作用を示すか否かを評価することが目的である。
 幼弱(1週齢)の129SVEマウス(各群10~12匹)を高酸素負荷処置(75%酸素下、5日間)に供した後、通常酸素下で媒体および実施例1に準じて調製した本発明のナノ粒子組成物を1日2回(8-9時の間に1回、16-17時の間に1回)で右眼に5日間点眼投与(2 μL/eye(目))した。投与期間終了後、ケタミン/キラジンを腹腔内投与して麻酔し、Euthasolを腹腔内投与して動物を安楽死させた。眼球を摘出し、室温下で4%パラホルムアルデヒドで1時間処置して固定した。固定化した眼球から網膜組織を分取し、Isolectin-B4を含有する塩化カルシウム緩衝液で染色した。眼球を洗浄後、フラットマウント標本を作成し、顕微鏡下で網膜中の新生血管面積(網膜の総組織面積に対する新生血管面積の割合)を評価した。
 統計処理として、unpaired t-testで媒体群に対する実施例1に従って調製した本発明の医薬組成物投与群の有意差を検定した。検定には統計解析ソフトとしてGraphpad Prismを用い、いずれの検定も有意水準は5%とした。
 結果を表49および図4に示す。
Figure JPOXMLDOC01-appb-T000055
 マウス高酸素負荷網膜症モデルにおいて、実施例1に準じて調製した本発明の医薬組成物を1日2回で点眼投与したとき、媒体群と比較して有意(p?0.001; Unpaired student t-test)な網膜中における血管新生抑制効果が認められた。
試験例10 本発明のナノ粒子組成物および比較例のマイクロ粒子組成物をラットに単回点眼投与したときの薬物動態
 実施例101、実施例108および実施例112、参考例9および参考例10で得られた本発明のナノ粒子組成物ならびに比較例6、比較例7、比較例8、比較例9および比較例10のマイクロ粒子組成物について、Brown-Norwayラットに単回点眼投与したときの薬物動態を評価した。実施例101、実施例108および実施例112、参考例9および参考例10で得られた本発明のナノ粒子組成物ならびに比較例6、比較例7、比較例8、比較例9および比較例11のマイクロ粒子組成物を動物の右眼に単回点眼投与した(各条件n=2)。点眼投与後1.5時間に採血した後に安楽死させ、両眼球を摘出した。眼球を洗浄後に脈絡膜/強膜試料を採取した。
 採取した脈絡膜/網膜試料に一定量の50vol%メタノール溶液を添加してホモジナイズし、さらにアセトニトリルを添加して撹拌した。試料を遠心分離して上清を採取し、0.1 vol%のギ酸溶液を添加して測定試料とした。
 採取した脈絡膜試料に一定量の50vol%メタノール溶液を添加してホモジナイズし、さらにアセトニトリルを添加して撹拌した。試料を遠心分離して上清を採取し、0.1 vol%のギ酸溶液を添加して測定試料とした。
 測定試料中の薬物濃度を液体クロマトグラフ-タンデム型質量分析計(LC/MS/MS)を用いて測定した。結果を表50および図5に示す。
Figure JPOXMLDOC01-appb-T000056
化合物IV: アンロチニブ(1-[[4-[(4-フルオロ-2-メチル-1H-インドール-5-イル)オキシ]-6-メトキシキノリン-7-イル]オキシメチル]シクロプロパン-1-アミン)
化合物V: レンバチニブ(4-[3-クロロ-4-(シクロプロピルカルバモイルアミノ)フェノキシ]-7-メトキシキノリン-6-カルボキシアミド)
化合物VI: ニンテダニブ((3Z)-3-[({4-[N-メチル-2-(4-メチルピペラジン-1-イル)アセトアミド]フェニル}アミノ)(フェニル)メチリデン]-2-オキソ-2・3-ジヒドロ-1H-インドール-6-カルボン酸メチル)
化合物VII: ダコミチニブ((E)-N-[4-(3-クロロ-4-フルオロアニリノ)-7-メトキシキナゾリン-6-イル]-4-ピペリジン-1-イルブチ-2-エンアミド)
化合物VIII: アリチニブ(N-[4-[[3-クロロ-4-[(3-フルオロベンジル)オキシ]フェニル]アミノ]キナゾリン-6-イル]アクリルアミド)
 表50より、マイクロ粒子組成物とナノ粒子組成物を比較したとき、化合物Vと化合物VIは脈絡膜/強膜への移行性が全く変わらない一方で、化合物IVではナノ粒子組成物で中程度に移行性が向上し、化合物VIIと化合物VIIIでは飛躍的向上することが分かった。
試験例11 本発明のナノ粒子組成物および比較例のマイクロ粒子組成物をラットに単回点眼投与したときの薬物動態
 実施例145で得られた本発明のナノ粒子組成物ならびに比較例16のマイクロ粒子組成物について、Brown-Norwayラットに単回点眼投与したときの薬物動態を評価した。実施例145で得られた本発明のナノ粒子組成物ならびに比較例16のマイクロ粒子組成物を動物の右眼に単回点眼投与した(各条件n=2)。点眼投与後1.5時間に採血した後に安楽死させ、両眼球を摘出した。眼球を洗浄後に脈絡膜/強膜試料を採取した。
 採取した脈絡膜/強膜試料に一定量の50vol%メタノール溶液を添加してホモジナイズし、さらにアセトニトリルを添加して撹拌した。試料を遠心分離して上清を採取し、0.1 vol%のギ酸溶液を添加して測定試料とした。血液試料を遠心分離し、血漿試料を採取した。血漿試料にアセトニトリルを添加して撹拌後、遠心分離して上清を採取し、0.1 vol%のギ酸溶液を添加して測定試料とした。
 測定試料中の薬物濃度を液体クロマトグラフ-タンデム型質量分析計(LC/MS/MS)を用いて測定した。結果を表51および図6に示す。
Figure JPOXMLDOC01-appb-T000057
化合物IX: エルロチニブ塩酸塩(N-(3-エチニルフェニル)-6,7-ビス(2-メトキシエトキシ)キナゾリン-4-アミン塩酸塩)
 表51より、マイクロ粒子組成物とナノ粒子組成物を比較したとき、ナノ粒子組成物の方が飛躍的に脈絡膜/強膜への移行性が向上することが分かった。
試験例12 本発明のナノ粒子組成物および比較例のマイクロ粒子組成物をラットに単回点眼投与したときの薬物動態
 実施例153で得られた本発明のナノ粒子組成物ならびに比較例17のマイクロ粒子組成物について、Brown-Norwayラットに単回点眼投与したときの薬物動態を評価した。実施例153で得られた本発明のナノ粒子組成物ならびに比較例17のマイクロ粒子組成物を動物の右眼に単回点眼投与した(各条件n=2)。点眼投与後4時間に採血した後に安楽死させ、両眼球を摘出した。眼球を洗浄後に脈絡膜/強膜試料を採取した。
 採取した脈絡膜/強膜試料に一定量の50vol%メタノール溶液を添加してホモジナイズし、さらにアセトニトリルを添加して撹拌した。試料を遠心分離して上清を採取し、0.1 vol%のギ酸溶液を添加して測定試料とした。血液試料を遠心分離し、血漿試料を採取した。血漿試料にアセトニトリルを添加して撹拌後、遠心分離して上清を採取し、0.1 vol%のギ酸溶液を添加して測定試料とした。
 測定試料中の薬物濃度を液体クロマトグラフ-タンデム型質量分析計(LC/MS/MS)を用いて測定した。結果を表52および図7に示す。
Figure JPOXMLDOC01-appb-T000058
化合物X: ゲフィチニブ(N-(3-クロロ-4-フルオロフェニル)-7-メトキシ-6-(3-モルフォリン-4-イルプロポキシ)キナゾリン-4-アミン)
 表52より、マイクロ粒子組成物とナノ粒子組成物を比較したとき、ナノ粒子組成物の方が飛躍的に脈絡膜/強膜への移行性が向上することが分かった。
試験例13 血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤をラットに単回静脈内投与したときの薬物動態
 N-[2-クロロ-4-(6,7-ジメトキシキノリン-4-イルオキシ)フェニル]-N’-(5-メチルイソオキサゾール-3-イル)ウレア塩酸塩水和物、イコチニブ、アリチニブ、ナザルチニブ、ブリガチニブ、カボザンチニブ、グレザチニブ、4-[(3-クロロ-2-フルオロフェニル)アミノ]-7-メトキシキナゾリン-6-イル (2R)-2,4-ジメチルピペラジン-1-カルボキシレート(AZD-3759)、エルロチニブ、アンロチニブ、フルクィチニブ、ダコミチニブ、レンバチニブ、レバスチニブ、ニンテダニブ、ポジオチニブ、スニチニブ、ラパチニブ、テセバチニブ、ゲフィチニブ、N-(3-クロロフェニル)-N-(6,7-ジメトキシキナゾリン-4-イル)アミン(AG-1478)、N-[2-[[2-(ジメチルアミノ)エチル]メチルアミノ]-5-[[4-(1H-インドール-3-イル)-2-ピリミジニル]アミノ]-4-メトキシフェニル]-2-プロパンアミド(AZD-5104)、アキシチニブ、バルリチニブ、アビチニブ(カセット評価した化合物を全て記載)について、ラットに単回静脈内投与したときの薬物動態を評価した。各化合物をDMAに溶解し、化合物IIおよび4化合物のDMA溶液を混合させ、3.3(w/v)%Tween80含有生理食塩水で希釈することで7種類の静脈内投与液を調製した。静脈内投与液をBrown Norwayラットの尾静脈に投与(0.5 mL/kg)し、投与後24、72および168時間に採血した後に安楽死させ、眼球を摘出した。眼球を洗浄後に脈絡膜/強膜試料を採取した。
 採取した脈絡膜/強膜試料に一定量の50 vol%メタノール溶液を添加してホモジナイズし、さらにアセトニトリルを添加して撹拌した。試料を遠心分離して上清を採取し、0.1 vol%ギ酸溶液を添加して測定試料とした。測定試料中の薬物濃度を液体クロマトグラフ-タンデム型質量分析計(LC/MS/MS)を用いて測定した。結果を表53および表54に示す。
 表yyは、VEGF受容体阻害薬をラットへ静脈内投与後の脈絡膜/強膜中半減期を示す。
Figure JPOXMLDOC01-appb-T000059
 表54は、EGFR阻害薬をラットへ静脈内投与後の脈絡膜/強膜中半減期を示す。
Figure JPOXMLDOC01-appb-T000060
試験例14 比較例1のマイクロ粒子組成物をラットに単回点眼投与したときの薬物動態
 比較例1で得られたマイクロ粒子組成物について、ラットに単回点眼投与(10μL/eye、各時点n=2)したときの薬物動態を評価した。マイクロ粒子組成物を雄性Brown Norwayラットの右眼に点眼投与し、点眼投与後0.5~96時間に安楽死させ、右眼球を摘出した。眼球を洗浄後に脈絡膜/強膜試料を採取した。
 採取した脈絡膜/強膜試料に一定量の50vol%メタノール溶液を添加してホモジナイズし、さらにアセトニトリルを添加して撹拌した。試料を遠心分離して上清を採取し、10 mmol/Lの酢酸アンモニウム溶液を添加して測定試料とした。
 測定試料中の薬物濃度を液体クロマトグラフ-タンデム型質量分析計(LC/MS/MS)を用いて測定した。また、脈絡膜/強膜中の化合物IIIの濃度推移より、脈絡膜/強膜中の化合物IIIの消失半減期を算出した。
 比較例1で得られたマイクロ粒子組成物について、ラットに単回点眼投与したときの脈絡膜/強膜中の消失半減期は29.7時間であった。
 

Claims (35)

  1.  ナノ粒子の形態の、全身投与した場合に後眼部組織に滞留する性質を有する血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤を含む、眼科疾患治療剤。
  2.  全身投与した場合に後眼部組織に滞留する性質を有する血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤の脈絡膜/強膜中半減期が30時間以上である、請求項1記載の眼科疾患治療剤。
  3.  VEGF受容体阻害剤が、式(I)
    Figure JPOXMLDOC01-appb-C000001
    (式中、
    およびRは、同一または異なって、C1-C6アルコキシ基を表し、
    は、ハロゲン原子を表し、
    およびRは、同一または異なって、水素原子、ハロゲン原子、C1-C4アルキル基、C1-C4アルコキシ基、C1-C4アルキルチオ基、トリフルオロメチル基、ニトロ基またはアミノ基を表し、
    およびRは、同一または異なって、水素原子、ハロゲン原子、C1-C4アルキル基、C1-C4アルコキシ基、C1-C4アルキルチオ基、トリフルオロメチル基、ニトロ基、アミノ基、1または2のC1-C4アルキル基で置換されているアミノ基、C1-C4アルコキシカルボニルC1-C4アルキル基、C1-C4アルキルカルボニル基またはC3-C5シクロアルキル基を表す)で表される化合物もしくはその薬学的に許容可能な塩、またはそれらの水和物もしくは溶媒和物である、請求項1または2記載の眼科疾患治療剤。
  4.  RおよびRが、同一または異なって、水素原子またはハロゲン原子であり、RおよびRが、同一または異なって、水素原子、ハロゲン原子またはC1-C4アルキル基である、請求項3記載の眼科疾患治療剤。
  5.  Rが、塩素原子である、請求項3または4記載の眼科疾患治療剤。
  6.  Rが、C1-C4アルキル基であり、Rが、水素原子である、請求項3~5のいずれかに記載の眼科疾患治療剤。
  7.  RおよびRが、水素原子である、請求項3~6のいずれかに記載の眼科疾患治療剤。
  8.  VEGF受容体阻害剤が、式(II)
    Figure JPOXMLDOC01-appb-C000002
    で表される化合物もしくはその薬学的に許容可能な塩、またはそれらの水和物もしくは溶媒和物である、請求項1または2記載の眼科疾患治療剤。
  9.  VEGF受容体阻害剤が、アキシチニブ、アンロチニブ、カボザンチニブ、グレサチニブ、スニチニブ、ニンテダニブ、フルクィチニブ、レバスチニブ、レンバチニブからなる群から選択される化合物もしくはその薬学的に許容可能な塩、またはそれらの水和物もしくは溶媒和物である、請求項1または2記載の眼科疾患治療剤。
  10.  EGF受容体阻害剤が、アビチニブ、アリチニブ、イコチニブ、エルロチニブ、オシメルチニブ、N-[2-[[2-(ジメチルアミノ)エチル]メチルアミノ]-5-[[4-(1H-インドール-3-イル)-2-ピリミジニル]アミノ]-4-メトキシフェニル]-2-プロパンアミド(AZD-5104)、ゲフィチニブ、ダコミチニブ、テセバチニブ、ナザルチニブ、バルリチニブ、ブリガチニブ、ポジオチニブ、ラパチニブ、4-[(3-クロロ-2-フルオロフェニル)アミノ]-7-メトキシキナゾリン-6-イル(2R)-2,4-ジメチルピペラジン-1-カルボキシレート(AZD-3759)、N-(3-クロロフェニル)-N-(6,7-ジメトキシキナゾリン-4-イル)アミン(AG-1478)からなる群から選択される化合物もしくはその薬学的に許容可能な塩、またはそれらの水和物もしくは溶媒和物である、請求項1または2記載の眼科疾患治療剤。
  11.  VEGF受容体阻害剤またはEGF受容体阻害剤の平均粒子径が20~180nmである、請求項1~10のいずれかに記載の眼科疾患治療剤。
  12.  さらに、粘稠化剤、界面活性剤および分散媒から選ばれる1以上の成分を含む、請求項1~11のいずれかに記載の眼科疾患治療剤。
  13.  粘稠化剤が、カルボキシビニルポリマー、カルボキシメチルセルロースカルシウム、カルボキシメチルセルロースナトリウム、ポビドン、部分けん化ポリビニルアルコール、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルメチルセルロースフタレート、ヒドロキシエチルセルロース、非晶質セルロース、メチルセルロース、ケイ酸アルミニウムマグネシウムおよびトリエタノールアミンから選ばれる1以上の物質である、請求項12記載の眼科疾患治療剤。
  14.  界面活性剤が、ポリオキシエチレンヒマシ油、ステアリン酸ポリオキシル40、ステアリン酸スクロース、モノラウリン酸ポリオキシエチレンソルビタン、モノステアリン酸ポリオキシエチレンソルビタン、トリステアリン酸ポリオキシエチレンソルビタン、モノオレイン酸ポリオキシエチレンソルビタン、トリオレイン酸ポリオキシエチレンソルビタン、モノラウリン酸ソルビタン、L-α-ホスファチジルコリン(PC)、1,2-ジパルミトイルホスファチジルコリン(DPPC)、オレイン酸、天然レシチン、合成レシチン、オレイルポリオキシエチレンエーテル、ラウリルポリオキシエチレンエーテル、ジオレイン酸ジエチレングリコール、オレイン酸テトラヒドロフルフリル、オレイン酸エチル、ミリスチン酸イソプロピル、モノオレイン酸グリセリル、モノステアリン酸グリセリル、モノリシノール酸グリセリル、セチルアルコール、ステアリルアルコール、ポリエチレングリコール、チロキサポール、オクチルフェノールエトキシレート、アルキルグルコシドおよびポロキサマーから選ばれる1以上の物質である、請求項12または13記載の眼科疾患治療剤。
  15.  分散媒が、水、アルコール、流動パラフィン、溶質を含む水、溶質を含むアルコールまたは溶質を含む流動パラフィンである、請求項12~14のいずれかに記載の眼科疾患治療剤。
  16.  分散媒が、溶質を含む水である、請求項12~14のいずれかに記載の眼科疾患治療剤。
  17.  溶質が、塩化ナトリウム、グルコース、グリセロール、マンニトール、リン酸二水素ナトリウム、リン酸水素ナトリウム水和物、炭酸水素ナトリウム、トリスヒドロキシメチルアミノメタン、クエン酸水和物、ホウ酸およびホウ砂から選ばれる1以上の物質である、請求項15または16記載の眼科疾患治療剤。
  18.  さらに、防腐剤および包接物質から選ばれる1以上の成分を含む、請求項1~17のいずれかに記載の眼科疾患治療剤。
  19.  防腐剤が、塩化ベンザルコニウム、パラオキシ安息香酸メチル、パラオキシ安息香酸プロピル、クロロブタノール、エデト酸ナトリウム水和物、クロルヘキシジングルコン酸塩およびソルビン酸から選ばれる1以上の物質である、請求項18記載の眼科疾患治療剤。
  20.  包接物質が、α-シクロデキストリン、β-シクロデキストリン、2-ヒドロキシプロピル-β-シクロデキストリンおよびγ-シクロデキストリンから選ばれる1以上の物質である、請求項18または19記載の眼科疾患治療剤。
  21.  眼局所投与用である、請求項1~20のいずれかに記載の眼科疾患治療剤。
  22.  眼局所投与が、点眼投与、結膜下投与、テノン嚢下投与、硝子体内投与、上脈絡膜投与、眼周囲投与または眼内インプラントによる投与である、請求項21記載の眼科疾患治療剤。
  23.  眼科疾患治療剤が、液剤である、請求項1~22のいずれかに記載の眼科疾患治療剤。
  24.  眼科疾患治療剤が、点眼剤である、請求項1~23のいずれかに記載の眼科疾患治療剤。
  25.  眼科疾患が、血管内皮増殖因子(VEGF)関連疾患または上皮成長因子(EGF)関連疾患である、請求項1~24のいずれかに記載の眼科疾患治療剤。
  26.  VEGF関連疾患が、滲出型加齢性黄斑変性、萎縮型加齢性黄斑変性、脈絡膜新生血管、病的近視における脈絡膜新生血管、網膜静脈分枝閉塞症、黄斑浮腫、網膜中心静脈閉塞症に伴う黄斑浮腫、糖尿病黄斑浮腫、増殖性糖尿病網膜症、血管新生緑内障、網膜色素線条症、未熟児網膜症、Coats病、網膜静脈分枝閉塞症、網膜中心静脈閉塞症、嚢腫状黄斑浮腫、糖尿病網膜症による硝子体内出血、イールズ病、中心性漿液性脈絡網膜症、網膜上膜、ブドウ膜炎、多巣性脈絡膜炎、前部虚血性視神経症、角膜血管新生、翼状片、眼内黒色腫、グリオーマ後天性網膜血管腫、放射線網膜症、結節性硬化症、グリオーマ後天性網膜血管腫、結膜扁平上皮癌または高眼圧症である、請求項25記載の眼科疾患治療剤。
  27.  VEGF関連疾患が、滲出型加齢性黄斑変性、病的近視における脈絡膜新生血管、網膜静脈分枝閉塞症、網膜中心静脈閉塞症、網膜中心静脈閉塞症に伴う黄斑浮腫、糖尿病黄斑浮腫、増殖性糖尿病網膜症または血管新生緑内障である、請求項26記載の眼科疾患治療剤。
  28.  EGF関連疾患が、滲出型加齢性黄斑変性、萎縮型加齢性黄斑変性、脈絡膜新生血管、病的近視における脈絡膜新生血管、黄斑浮腫、網膜中心静脈閉塞症に伴う黄斑浮腫、糖尿病黄斑浮腫、増殖性糖尿病網膜症、緑内障、血管新生緑内障、眼炎症、網膜芽、網膜静脈分枝閉塞症、網膜中心静脈閉塞症、未熟児網膜症、網膜色素線条症、網膜動脈閉塞症、角膜血管新生、翼状片、ブドウ膜メラノーマ、ブドウ膜炎、網膜上膜、角膜上皮下線維症、ドライアイまたはマイボーム腺機能不全である、請求項25記載の眼科疾患治療剤。
  29.  EGF関連疾患が、滲出型加齢性黄斑変性、病的近視における脈絡膜新生血管、網膜静脈分枝閉塞症、網膜中心静脈閉塞症、網膜中心静脈閉塞症に伴う黄斑浮腫、糖尿病黄斑浮腫、増殖性糖尿病網膜症または血管新生緑内障である、請求項28記載の眼科疾患治療剤。
  30.  請求項1~29のいずれかに記載の眼科疾患治療剤を投与することによる、血管内皮増殖因子(VEGF)関連疾患または上皮成長因子(EGF)関連疾患の治療方法。
  31.  血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤をナノ粒子形態に粉砕する工程を含む、請求項1~29のいずれかに記載の眼科疾患治療剤の製造方法。
  32.  粉砕する工程において、さらに、粘稠化剤、界面活性剤および分散媒から選ばれる1以上の成分を添加して粉砕する、請求項31記載の製造方法。
  33.  粉砕する工程において、さらに、防腐剤および包接物質から選ばれる1以上の成分を添加して粉砕する、請求項31または32記載の製造方法。
  34.  粉砕が、湿式粉砕である、請求項31~33のいずれかに記載の製造方法。
  35.  湿式粉砕が、
     血管内皮増殖因子(VEGF)受容体阻害剤または上皮成長因子(EGF)受容体阻害剤に分散媒を添加し、次いで粉砕する工程を含む、請求項33記載の製造方法。
PCT/JP2017/033161 2016-09-13 2017-09-13 医薬組成物 WO2018052053A1 (ja)

Priority Applications (22)

Application Number Priority Date Filing Date Title
CN201780053073.9A CN109641056A (zh) 2016-09-13 2017-09-13 药物组合物
MX2019002861A MX2019002861A (es) 2016-09-13 2017-09-13 Composicion farmaceutica.
ES17850954T ES2912105T3 (es) 2016-09-13 2017-09-13 Composición medicinal que comprende tivozanib.
BR112019004857A BR112019004857A2 (pt) 2016-09-13 2017-09-13 composições farmacêuticas
PL17850954T PL3513809T3 (pl) 2016-09-13 2017-09-13 Kompozycja lecznicza zawierająca tiwozanib
DK17850954.3T DK3513809T3 (da) 2016-09-13 2017-09-13 Medicinsk sammensætning, som omfatter tivozanib
LTEPPCT/JP2017/033161T LT3513809T (lt) 2016-09-13 2017-09-13 Medicininė kompozicija, apimanti tivozanibą
HRP20220489TT HRP20220489T1 (hr) 2016-09-13 2017-09-13 Medicinski pripravak koji sadrži tivozanib
MYPI2019001248A MY197845A (en) 2016-09-13 2017-09-13 Pharmaceutical composition
KR1020197008652A KR102340311B1 (ko) 2016-09-13 2017-09-13 의약 조성물
EP22150617.3A EP4000634A1 (en) 2016-09-13 2017-09-13 Medicinal composition comprising tivozanib
AU2017326791A AU2017326791B2 (en) 2016-09-13 2017-09-13 Medicinal composition
EA201990706A EA038692B1 (ru) 2016-09-13 2017-09-13 Фармацевтическая композиция
SI201731114T SI3513809T1 (sl) 2016-09-13 2017-09-13 Medicinski sestavek, ki vsebuje tivozanib
CA3036474A CA3036474A1 (en) 2016-09-13 2017-09-13 Therapeutic agent for an ophthalmic disease comprising a vegf receptor inhibitor
EP17850954.3A EP3513809B9 (en) 2016-09-13 2017-09-13 Medicinal composition comprising tivozanib
US16/332,033 US10894043B2 (en) 2016-09-13 2017-09-13 Pharmaceutical composition
JP2017548494A JP6328860B1 (ja) 2016-09-13 2017-09-13 医薬組成物
RS20220385A RS63136B9 (sr) 2016-09-13 2017-09-13 Lekoviti sastav koji sadrži tivozanib
PH12019500423A PH12019500423A1 (en) 2016-09-13 2019-02-27 Pharmaceutical composition
IL265260A IL265260B (en) 2016-09-13 2019-03-10 pharmaceutical preparations
US17/106,671 US11951103B2 (en) 2016-09-13 2020-11-30 Pharmaceutical composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016178599 2016-09-13
JP2016-178599 2016-09-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/332,033 A-371-Of-International US10894043B2 (en) 2016-09-13 2017-09-13 Pharmaceutical composition
US17/106,671 Continuation US11951103B2 (en) 2016-09-13 2020-11-30 Pharmaceutical composition

Publications (1)

Publication Number Publication Date
WO2018052053A1 true WO2018052053A1 (ja) 2018-03-22

Family

ID=61619580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033161 WO2018052053A1 (ja) 2016-09-13 2017-09-13 医薬組成物

Country Status (24)

Country Link
US (2) US10894043B2 (ja)
EP (2) EP4000634A1 (ja)
JP (3) JP6328860B1 (ja)
KR (1) KR102340311B1 (ja)
CN (1) CN109641056A (ja)
AU (1) AU2017326791B2 (ja)
BR (1) BR112019004857A2 (ja)
CA (1) CA3036474A1 (ja)
DK (1) DK3513809T3 (ja)
EA (1) EA038692B1 (ja)
ES (1) ES2912105T3 (ja)
HR (1) HRP20220489T1 (ja)
HU (1) HUE058271T2 (ja)
IL (1) IL265260B (ja)
LT (1) LT3513809T (ja)
MX (1) MX2019002861A (ja)
MY (1) MY197845A (ja)
PH (1) PH12019500423A1 (ja)
PL (1) PL3513809T3 (ja)
PT (1) PT3513809T (ja)
RS (1) RS63136B9 (ja)
SI (1) SI3513809T1 (ja)
TW (1) TWI752083B (ja)
WO (1) WO2018052053A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110404079A (zh) * 2018-04-27 2019-11-05 北京睿创康泰医药研究院有限公司 一种不含碳酸盐、低基因毒性杂质含量的喹啉衍生物或其盐的药物组合物
CN110693886A (zh) * 2018-07-09 2020-01-17 天津医科大学 防治脑海绵状血管畸形病变的药物
US10966966B2 (en) 2019-08-12 2021-04-06 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11185535B2 (en) 2019-12-30 2021-11-30 Deciphera Pharmaceuticals, Llc Amorphous kinase inhibitor formulations and methods of use thereof
US11266635B2 (en) 2019-08-12 2022-03-08 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11395818B2 (en) 2019-12-30 2022-07-26 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluorophenyl)-3-phenylurea
US11779572B1 (en) 2022-09-02 2023-10-10 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11969414B2 (en) 2022-07-20 2024-04-30 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110051859B (zh) * 2019-06-06 2020-06-12 鲁南制药集团股份有限公司 一种阿昔替尼环糊精包合物
WO2021107033A1 (ja) * 2019-11-29 2021-06-03 千寿製薬株式会社 医薬組成物
US20220031629A1 (en) * 2020-07-31 2022-02-03 Altaire Pharmaceuticals, Inc. Ophthalmic compositions for removing meibum or inhibiting meibum buildup
WO2024002147A1 (zh) * 2022-06-29 2024-01-04 正大天晴药业集团股份有限公司 喹啉衍生物或其盐环糊精包合物

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145684A (en) 1991-01-25 1992-09-08 Sterling Drug Inc. Surface modified drug nanoparticles
US5510118A (en) 1995-02-14 1996-04-23 Nanosystems Llc Process for preparing therapeutic compositions containing nanoparticles
US5518187A (en) 1992-11-25 1996-05-21 Nano Systems L.L.C. Method of grinding pharmaceutical substances
US5718388A (en) 1994-05-25 1998-02-17 Eastman Kodak Continuous method of grinding pharmaceutical substances
US5862999A (en) 1994-05-25 1999-01-26 Nano Systems L.L.C. Method of grinding pharmaceutical substances
JP2003012668A (ja) 2001-04-27 2003-01-15 Kirin Brewery Co Ltd アゾリル基を有するキノリン誘導体およびキナゾリン誘導体
JP2004217649A (ja) * 2002-12-27 2004-08-05 Santen Pharmaceut Co Ltd 滲出型加齢黄斑変性治療剤
WO2009067548A1 (en) * 2007-11-19 2009-05-28 The Regents Of The University Of California Novel assay for inhibitors of egfr
JP2011514360A (ja) 2008-03-14 2011-05-06 エラン ファーマ インターナショナル,リミティド 血管新生阻害剤のナノ粒子組成物
JP2015519331A (ja) * 2012-05-03 2015-07-09 カラ ファーマシューティカルズ インコーポレイテッド 改善された粘膜輸送を示す医薬用ナノ粒子
WO2016039422A1 (ja) 2014-09-11 2016-03-17 大日本住友製薬株式会社 点眼用懸濁製剤
JP2016513108A (ja) * 2013-02-15 2016-05-12 カラ ファーマシューティカルズ インコーポレイテッド 治療用化合物およびその使用
WO2016209555A1 (en) 2015-06-22 2016-12-29 Allgenesis Biotherapeutics Inc. Ophthalmic formulations of tyrosine kinase inhibitors, methods of use thereof, and preparation methods thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT1559715E (pt) 2002-10-21 2007-10-24 Kirin Pharma Kk Formas cristalinas de sais de n-[2-cloro-4-[6, 7-dimetoxi-4-quinolil)oxi]finil]-n'-(5-metil-3-isoxazolil) ureia
AU2003292838A1 (en) * 2002-12-27 2004-07-29 Kirin Beer Kabushiki Kaisha Therapeutic agent for wet age-related macular degeneration
GB0625844D0 (en) * 2006-12-22 2007-02-07 Daniolabs Ltd The treatment of macular degeneration
CN102408418A (zh) 2011-10-21 2012-04-11 武汉迈德森医药科技有限公司 Tivozanib酸性盐及其制备方法和晶型
CA2865132A1 (en) * 2012-02-22 2013-08-29 Trustees Of Tufts College Compositions and methods for ocular delivery of a therapeutic agent
US9827191B2 (en) 2012-05-03 2017-11-28 The Johns Hopkins University Compositions and methods for ophthalmic and/or other applications
KR101935780B1 (ko) 2012-06-01 2019-01-07 엘지디스플레이 주식회사 액정표시장치 제조라인
CA2816502A1 (en) 2012-05-24 2013-11-24 Cablofil, Inc. Bonding clip
WO2014127335A1 (en) * 2013-02-15 2014-08-21 Kala Pharmaceuticals, Inc. Therapeutic compounds and uses thereof

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145684A (en) 1991-01-25 1992-09-08 Sterling Drug Inc. Surface modified drug nanoparticles
US5518187A (en) 1992-11-25 1996-05-21 Nano Systems L.L.C. Method of grinding pharmaceutical substances
US5718388A (en) 1994-05-25 1998-02-17 Eastman Kodak Continuous method of grinding pharmaceutical substances
US5862999A (en) 1994-05-25 1999-01-26 Nano Systems L.L.C. Method of grinding pharmaceutical substances
US5510118A (en) 1995-02-14 1996-04-23 Nanosystems Llc Process for preparing therapeutic compositions containing nanoparticles
JP2003012668A (ja) 2001-04-27 2003-01-15 Kirin Brewery Co Ltd アゾリル基を有するキノリン誘導体およびキナゾリン誘導体
JP2004217649A (ja) * 2002-12-27 2004-08-05 Santen Pharmaceut Co Ltd 滲出型加齢黄斑変性治療剤
WO2009067548A1 (en) * 2007-11-19 2009-05-28 The Regents Of The University Of California Novel assay for inhibitors of egfr
JP2011514360A (ja) 2008-03-14 2011-05-06 エラン ファーマ インターナショナル,リミティド 血管新生阻害剤のナノ粒子組成物
JP2015519331A (ja) * 2012-05-03 2015-07-09 カラ ファーマシューティカルズ インコーポレイテッド 改善された粘膜輸送を示す医薬用ナノ粒子
JP2016513108A (ja) * 2013-02-15 2016-05-12 カラ ファーマシューティカルズ インコーポレイテッド 治療用化合物およびその使用
WO2016039422A1 (ja) 2014-09-11 2016-03-17 大日本住友製薬株式会社 点眼用懸濁製剤
WO2016209555A1 (en) 2015-06-22 2016-12-29 Allgenesis Biotherapeutics Inc. Ophthalmic formulations of tyrosine kinase inhibitors, methods of use thereof, and preparation methods thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUU V A ET AL.: "Light-responsive nanoparticle depot to control release of a small molecule angiogenesis inhibitor in the posterior segment of the eye", J CONTROL RELEASE, vol. 200, 2015, pages 71 - 77, XP029222017, DOI: doi:10.1016/j.jconrel.2015.01.001 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110404079A (zh) * 2018-04-27 2019-11-05 北京睿创康泰医药研究院有限公司 一种不含碳酸盐、低基因毒性杂质含量的喹啉衍生物或其盐的药物组合物
CN110404079B (zh) * 2018-04-27 2023-01-24 北京睿创康泰医药研究院有限公司 一种不含碳酸盐、低基因毒性杂质含量的喹啉衍生物或其盐的药物组合物
CN110693886B (zh) * 2018-07-09 2022-12-06 天津医科大学 防治脑海绵状血管畸形病变的药物
CN110693886A (zh) * 2018-07-09 2020-01-17 天津医科大学 防治脑海绵状血管畸形病变的药物
US11576904B2 (en) 2019-08-12 2023-02-14 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US10966966B2 (en) 2019-08-12 2021-04-06 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11813251B2 (en) 2019-08-12 2023-11-14 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11426390B2 (en) 2019-08-12 2022-08-30 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11433056B1 (en) 2019-08-12 2022-09-06 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11266635B2 (en) 2019-08-12 2022-03-08 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11529336B2 (en) 2019-08-12 2022-12-20 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11534432B2 (en) 2019-08-12 2022-12-27 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11344536B1 (en) 2019-08-12 2022-05-31 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11793795B2 (en) 2019-12-30 2023-10-24 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluorophenyl)-3-phenylurea
US11844788B1 (en) 2019-12-30 2023-12-19 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluoropheyl)-3-phenylurea
US11612591B2 (en) 2019-12-30 2023-03-28 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluorophenyl)-3-phenylurea
US11918564B1 (en) 2019-12-30 2024-03-05 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluoropheyl)-3-phenylurea
US11185535B2 (en) 2019-12-30 2021-11-30 Deciphera Pharmaceuticals, Llc Amorphous kinase inhibitor formulations and methods of use thereof
US11801237B2 (en) 2019-12-30 2023-10-31 Deciphera Pharmaceuticals, Llc Amorphous kinase inhibitor formulations and methods of use thereof
US11395818B2 (en) 2019-12-30 2022-07-26 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluorophenyl)-3-phenylurea
US11576903B2 (en) 2019-12-30 2023-02-14 Deciphera Pharmaceuticals, Llc Amorphous kinase inhibitor formulations and methods of use thereof
US11850241B1 (en) 2019-12-30 2023-12-26 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluoropheyl)-3-phenylurea
US11850240B1 (en) 2019-12-30 2023-12-26 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluoropheyl)-3-phenylurea
US11896585B2 (en) 2019-12-30 2024-02-13 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluorophenyl)-3-phenylurea
US11903933B2 (en) 2019-12-30 2024-02-20 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluoropheyl)-3-phenylurea
US11911370B1 (en) 2019-12-30 2024-02-27 Deciphera Pharmaceuticals, Llc Compositions of 1-(4-bromo-5-(1-ethyl-7-(methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluoropheyl)-3-phenylurea
US11969414B2 (en) 2022-07-20 2024-04-30 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11779572B1 (en) 2022-09-02 2023-10-10 Deciphera Pharmaceuticals, Llc Methods of treating gastrointestinal stromal tumors
US11969415B1 (en) 2023-11-22 2024-04-30 Deciphera Pharmaceuticals, Llc (methylamino)-2-oxo-1,2-dihydro-1,6-naphthyridin-3-yl)-2-fluoropheyl)-3-phenylurea

Also Published As

Publication number Publication date
PT3513809T (pt) 2022-05-02
LT3513809T (lt) 2022-05-10
DK3513809T3 (da) 2022-05-02
CN109641056A (zh) 2019-04-16
TWI752083B (zh) 2022-01-11
EP3513809A4 (en) 2020-06-03
JP7162708B2 (ja) 2022-10-28
MY197845A (en) 2023-07-20
IL265260A (en) 2019-05-30
US20190365737A1 (en) 2019-12-05
RS63136B1 (sr) 2022-05-31
AU2017326791A1 (en) 2019-03-28
EP4000634A1 (en) 2022-05-25
JP2018087229A (ja) 2018-06-07
SI3513809T1 (sl) 2022-07-29
US11951103B2 (en) 2024-04-09
JP6935973B2 (ja) 2021-09-15
KR102340311B1 (ko) 2021-12-20
EA038692B1 (ru) 2021-10-05
PH12019500423A1 (en) 2019-05-27
HUE058271T2 (hu) 2022-07-28
JP2021183637A (ja) 2021-12-02
MX2019002861A (es) 2019-11-18
EA201990706A1 (ru) 2019-08-30
IL265260B (en) 2022-05-01
PL3513809T3 (pl) 2022-07-04
US10894043B2 (en) 2021-01-19
KR20190050794A (ko) 2019-05-13
AU2017326791B2 (en) 2022-11-17
JP6328860B1 (ja) 2018-05-23
TW201811330A (zh) 2018-04-01
US20210077481A1 (en) 2021-03-18
HRP20220489T1 (hr) 2022-05-27
CA3036474A1 (en) 2018-03-22
EP3513809A1 (en) 2019-07-24
ES2912105T9 (es) 2022-10-06
ES2912105T3 (es) 2022-05-24
EP3513809B1 (en) 2022-03-02
RS63136B9 (sr) 2022-10-31
BR112019004857A2 (pt) 2019-06-11
JPWO2018052053A1 (ja) 2018-09-13
EP3513809B9 (en) 2022-07-13

Similar Documents

Publication Publication Date Title
JP6328860B1 (ja) 医薬組成物
CA2989121C (en) Ophthalmic formulations of tyrosine kinase inhibitors, methods of use thereof, and preparation methods thereof
JP6487452B2 (ja) ブリンゾラミドを含む医薬組成物
JP7176042B2 (ja) 薬物送達および前眼部保護のための眼用製剤
EA034839B1 (ru) Офтальмологический раствор
CN106714803B (zh) 眼用混悬液制剂
JP2019163227A (ja) 医薬組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017548494

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3036474

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197008652

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019004857

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017326791

Country of ref document: AU

Date of ref document: 20170913

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017850954

Country of ref document: EP

Effective date: 20190415

ENP Entry into the national phase

Ref document number: 112019004857

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190313