WO2018051992A1 - 植物粉末の抽出物、及び水浄化剤 - Google Patents

植物粉末の抽出物、及び水浄化剤 Download PDF

Info

Publication number
WO2018051992A1
WO2018051992A1 PCT/JP2017/032941 JP2017032941W WO2018051992A1 WO 2018051992 A1 WO2018051992 A1 WO 2018051992A1 JP 2017032941 W JP2017032941 W JP 2017032941W WO 2018051992 A1 WO2018051992 A1 WO 2018051992A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
measurement
fraction
ethanol
extract
Prior art date
Application number
PCT/JP2017/032941
Other languages
English (en)
French (fr)
Inventor
貴則 藤田
竜 島田
雅彦 伊東
正人 長谷川
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017174021A external-priority patent/JP7131894B2/ja
Priority to RU2019110785A priority Critical patent/RU2019110785A/ru
Priority to MYPI2019001331A priority patent/MY192617A/en
Priority to CN201780057054.3A priority patent/CN109715261B/zh
Priority to US16/333,440 priority patent/US20190256387A1/en
Priority to KR1020197010107A priority patent/KR102438091B1/ko
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN202110551615.3A priority patent/CN113233564B/zh
Priority to BR112019004936A priority patent/BR112019004936A2/pt
Priority to EP17850893.3A priority patent/EP3513857B1/en
Publication of WO2018051992A1 publication Critical patent/WO2018051992A1/ja
Priority to US17/410,356 priority patent/US11866354B2/en
Priority to US18/177,182 priority patent/US11952297B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5272Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using specific organic precipitants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5263Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using natural chemical compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/716Glucans
    • A61K31/722Chitin, chitosan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/736Chitin; Chitosan; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/203Iron or iron compound
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates

Definitions

  • the present invention relates to an extract of plant powder used for purification of water such as industrial wastewater, and a water purification agent containing the extract.
  • a step of adding a base to wastewater in which heavy metal ions are dissolved, making the wastewater basic, insolubilizing at least part of the heavy metal ions to form a suspended solid, and an inorganic flocculant Contains a cation exchanger consisting of leafy vegetables such as Morohaya and Komatsuna.
  • a method of performing an adsorption process of passing wastewater through an adsorbed layer see, for example, Patent Document 1).
  • a coagulation method is proposed in which fine particles in a suspension are coagulated and separated by mixing or using a coagulant containing at least one of moroheiya, this dried product, or this extract and a polymer coagulant.
  • Patent Document 2 a water purification agent comprising a granulated product containing a mixture of a plant powder and a polymer flocculant, and a water purification method using the water purification agent have been proposed (for example, see Patent Document 3).
  • An object of the present invention is to specify an active ingredient in plant powder resulting from water purification, and to provide a water purification agent that can efficiently and reliably exhibit excellent water purification performance even with a small amount of waste water.
  • the fraction component 1 is a fraction component having a fraction molecular weight of 12,000 or more,
  • the ethanol-insoluble component of the fraction component 1 shows a peak derived from carboxylic acid in Fourier transform infrared spectroscopy (FT-IR) measurement, and cellulose in gas chromatography mass spectrometry (GC-MS) measurement.
  • FT-IR Fourier transform infrared spectroscopy
  • GC-MS gas chromatography mass spectrometry
  • the ethanol-dissolved component of the fraction component 1 is an extract characterized by showing a peak derived from a carboxylic acid in FT-IR measurement and a peak derived from a vegetable protein in GC-MS measurement.
  • the ethanol undissolved component and the ethanol soluble component of the fraction component 1 have peaks in the vicinity of 1700 (cm ⁇ 1 ) and 1600 (cm ⁇ 1 ) in the FT-IR measurement. 1>.
  • ⁇ 3> The extract according to any one of ⁇ 1> to ⁇ 2>, wherein the fraction component 1 contains 50% or more of a substance having a weight average molecular weight (Mw) of 300,000 or more.
  • An extract that is a fraction component 2 of a water extract of plant powder (hereinafter also referred to as component 2 in the present invention),
  • the fraction component 2 is a fraction component having a fraction molecular weight of less than 3,400,
  • the ethanol undissolved component of the fraction component 2 shows a peak derived from an amide group in FT-IR measurement,
  • the ethanol-soluble component of fraction component 2 is an extract characterized by showing a peak derived from an amide group in FT-IR measurement.
  • ⁇ 6> The ethanol-undissolved component and ethanol-soluble component of the fraction component 2 show a main peak between 1590 (cm ⁇ 1 ) and 1630 (cm ⁇ 1 ) in the FT-IR measurement, It is an extract as described in ⁇ 5>.
  • ⁇ 7> The ethanol-undissolved component and ethanol-soluble component of the fraction component 2 exhibit a peak of 1,8-diazacyclotetradecane-2,7-dione in GC-MS measurement, ⁇ 5 > To ⁇ 6>.
  • ⁇ 8> The extract according to any one of ⁇ 5> to ⁇ 7>, wherein the fraction component 2 contains 90% or more of a substance having a weight average molecular weight (Mw) of 200 to 2,500. .
  • ⁇ 9> The extract according to any one of ⁇ 5> to ⁇ 8>, wherein the fraction component 2 is a water-soluble chitosan.
  • a water purification agent comprising the extract according to any one of ⁇ 1> to ⁇ 4>.
  • ⁇ 12> A water purification agent comprising the extract according to any one of ⁇ 5> to ⁇ 10> in addition to the water purification agent according to ⁇ 11>.
  • ⁇ 13> A water purification agent comprising the extract according to any one of ⁇ 5> to ⁇ 10>.
  • a water purification agent containing plant powder When the plant powder is extracted with water, the extract component comprising the fraction component 1 having a molecular weight cut-off of 12,000 or more is contained in an amount of 0.5% by mass or more based on the plant powder.
  • the ethanol undissolved component of fraction component 1 shows a peak derived from carboxylic acid in FT-IR measurement, and a peak derived from cellulose in GC-MS measurement,
  • the water-dissolving agent characterized in that the ethanol-soluble component of fraction component 1 shows a peak derived from carboxylic acid in FT-IR measurement and a peak derived from vegetable protein in GC-MS measurement .
  • ⁇ 15> The ethanol-insoluble component and the ethanol-soluble component of the fraction component 1 have peaks in the vicinity of 1700 (cm ⁇ 1 ) and 1600 (cm ⁇ 1 ) in the FT-IR measurement. 14>.
  • ⁇ 16> The water purifier according to any one of ⁇ 14> to ⁇ 15>, wherein the fraction component 1 contains 50% or more of a substance having a weight average molecular weight (Mw) of 300,000 or more.
  • Mw weight average molecular weight
  • ⁇ 17> The water purifier according to any one of ⁇ 14> to ⁇ 16>, wherein the plant powder is a powder of a long bean burlap.
  • a water purification agent containing plant powder When the plant powder is extracted with water, it contains 0.05% by mass or more of the extracted component consisting of the fraction component 2 having a fractional molecular weight of less than 3,400, based on the plant powder.
  • the ethanol undissolved component of the fraction component 2 shows a peak derived from an amide group in FT-IR measurement
  • the water-dissolving agent is characterized in that the ethanol-dissolved component of the fraction component 2 shows a peak derived from an amide group in FT-IR measurement.
  • ⁇ 19> The ethanol-insoluble component and the ethanol-soluble component of the fraction component 2 show a main peak between 1590 (cm ⁇ 1 ) and 1630 (cm ⁇ 1 ) in the FT-IR measurement, ⁇ 18>
  • ⁇ 20> The ethanol undissolved component and ethanol-soluble component of the fraction component 2 exhibit a peak of 1,8-diazacyclotetradecane-2,7-dione in GC-MS measurement, > To ⁇ 19>.
  • ⁇ 21> The water purification agent according to any one of ⁇ 18> to ⁇ 20>, wherein the fraction component 2 contains 90% or more of a substance having a weight average molecular weight (Mw) of 200 to 2,500.
  • Mw weight average molecular weight
  • ⁇ 26> The water purifier according to ⁇ 25>, wherein the polymer flocculant is polyacrylamide.
  • the wastewater is wastewater containing an inorganic unnecessary material having at least one of nickel, fluorine, iron, copper, zinc, chromium, arsenic, cadmium, tin, and lead. This is a wastewater treatment method.
  • the present invention it is possible to provide a water purification agent that can efficiently and reliably exhibit excellent water purification performance even with a small amount with respect to waste water.
  • FIG. 1 is an image diagram for explaining a fraction component 1 (also referred to as component 1) and a fraction component 2 (also referred to as component 2) of the water extract of plant powder.
  • FIG. 2 is an image diagram for explaining a method of extracting the component 1 and the component 2.
  • FIG. 3 is a diagram showing experimental results of the water purification effect of component 1.
  • FIG. 4 shows the results of component 2 measured by the microscope IR.
  • FIG. 5 is a diagram showing experimental results of the water purification effect of component 2.
  • FIG. 6A shows the result of measuring the component 1 insoluble ethanol (component A) by Fourier transform infrared spectroscopy (FT-IR).
  • FT-IR Fourier transform infrared spectroscopy
  • FIG. 6B shows the result of measuring the ethanol-soluble component (component B) of component 1 by Fourier transform infrared spectroscopy (FT-IR).
  • FIG. 6C shows the result of measuring the component 2 insoluble ethanol (component G) by Fourier transform infrared spectroscopy (FT-IR).
  • FIG. 6D shows the result of measuring the ethanol-soluble component (component H) of component 2 by Fourier transform infrared spectroscopy (FT-IR).
  • FIG. 7A shows the result of measurement of the component 1 insoluble ethanol (component A) by gas chromatography mass spectrometry (GC-MS).
  • FIG. 7B shows the result of measuring the ethanol-soluble component (component B) of component 1 by gas chromatography mass spectrometry (GC-MS).
  • FIG. 7C shows the result of measurement of the component 2 insoluble ethanol (component G) by gas chromatography mass spectrometry (GC-MS).
  • FIG. 7D shows the results obtained by measuring the ethanol-soluble component (component H) of component 2 by gas chromatography mass spectrometry (GC-MS).
  • FIG. 8A shows the result of component 1 measured by gel permeation chromatograph (GPC).
  • FIG. 8B shows the result of measuring Component 2 by gel permeation chromatography (GPC).
  • FIG. 9 is a diagram showing an identification number of “Chuju 3” that can be used in the present invention.
  • FIG. 10 is a diagram showing an identification number of “medium red hemp” that can be used in the present invention.
  • the plant can be used without any particular limitation as long as it contains an effective amount of each of the component 1 and component 2, but preferred examples include long-bellied burlap (Chrysanthemum), moroheiya and the like. be able to.
  • the identification number is “Chinese Hemp 4”, National Identification Hemp 2013, and the identification number is Jinkan “Chong Hemp 3” with 1209006, “Chu Hemp 1” with XPD005-2005, or “Chinese Hemp” with appraisal number 1209001 can be preferably used.
  • the above-mentioned “middle burlap 4”, “middle burlap 3”, and “middle burlap” are more preferable, and “middle burlap 4” is particularly preferable.
  • the identification number of the above-mentioned “middle burlap No. 3” is shown in FIG.
  • the appraisal number of the “medium red linen” is shown in FIG.
  • the “middle burlap 4” has the following characteristics. Agricultural products: jute
  • fraction component 1 can be extracted according to the method shown in FIG. Specifically, after crushing the dried plant, the residue after extraction with ethyl acetate is further extracted with distilled water to obtain a supernatant, and components having a molecular weight cut off of 12,000 or more are separated from the supernatant by dialysis. To get it.
  • ⁇ Analysis result of fraction component 1 >> ⁇ analysis result of component A >>>
  • the ethanol-insoluble component of fraction component 1 (shown as component A in FIG. 1) was measured by Fourier transform infrared spectroscopy (FT-IR). The measurement results are shown in FIG. 6A.
  • FT-IR Fourier transform infrared spectroscopy
  • Such FT-IR measurement was carried out using FTS-7000e / UMA600, VARIAN, and a micro diamond cell.
  • the FT-IR measurement of Component B, Component G, and Component H described later was also performed under the same conditions.
  • component A shows a peak derived from carboxylic acid in the FT-IR measurement.
  • peaks are shown around 1700 (cm ⁇ 1 ) (ketone stretching) and 1600 (cm ⁇ 1 ) (amide stretching).
  • the component A was measured by gas chromatography mass spectrometry (GC-MS). The measurement results are shown in FIG. 7A.
  • the GC-MS measurement was performed in an ionization mode (EI +) manufactured by JMS-600H, manufactured by JEOL.
  • the GC-MS measurement of Component B, Component G, and Component H described later was also performed under the same conditions.
  • component A shows a peak derived from cellulose in the GC-MS measurement. Note that the peaks (A1) to (A20) in FIG. 7A are estimated to be attributed as follows.
  • ⁇ analysis result of component B >>>
  • the ethanol-soluble component of fraction component 1 (shown as component B in FIG. 1) was measured by FT-IR.
  • the measurement results are shown in FIG. 6B.
  • component B shows a peak derived from carboxylic acid in the FT-IR measurement. That is, peaks are shown around 1700 (cm ⁇ 1 ) (ketone stretching) and 1600 (cm ⁇ 1 ) (amide stretching).
  • the component B was measured by GC-MS.
  • FIG. 7B As shown in FIG. 7B, component B shows a peak derived from a vegetable protein in the GC-MS measurement. Note that the peaks (B1) to (B16) in FIG. 7B are estimated to be attributed as follows.
  • Component 1 is considered to be composed of uronic acid or a carboxylic acid having a galacturonic acid-like structure. Thereby, it is considered that Component 1 adsorbs inorganic ions and exhibits an excellent effect on water purification. Moreover, the said component 1 was measured by the gel permeation chromatograph (GPC). The measurement results are shown in FIG. 8A. The GPC measurement concerned was measured using TSKgel GMPW by GPC SYSTEM21 and Shodex. In addition, the GPC measurement of the component 2 mentioned later was also measured on the same conditions. From the results of FIG. 8A, it can be seen that Component 1 contains 50 (area)% or more of a substance having a weight average molecular weight (Mw) of 300,000 or more.
  • Mw weight average molecular weight
  • fraction component 2 can be extracted according to the method shown in FIG. Specifically, a fractional molecular weight of 3, obtained by further dialysis of a component having a molecular weight of less than 6,000 obtained by further dialysis of a component having a molecular weight of less than 12,000 obtained by the dialysis operation. Obtained by separating less than 400 components.
  • ⁇ Analysis result of fraction component 2 >> ⁇ analysis result of component G >>>
  • the ethanol undissolved component of fraction component 2 (indicated by component G in FIG. 1) was measured by FT-IR.
  • the measurement results are shown in FIG. 6C.
  • the component G shows a peak derived from an amide group in the FT-IR measurement. That is, a main peak (amide stretch) is shown between 1590 (cm ⁇ 1 ) and 1630 (cm ⁇ 1 ).
  • the component G was measured by GC-MS.
  • the measurement results are shown in FIG. 7C.
  • the component G shows a peak of 1,8-diazacyclotetradecane-2,7-dione in the GC-MS measurement.
  • peaks (C1) to (C13) in FIG. 7C are attributed as follows.
  • "x" attached to the above symbol represents a peak of a fragment derived from a polysaccharide such as chitin and chitosan. “ ⁇ ” attached to the above sign represents a peak of a fragment derived from gluten (plant protein).
  • ⁇ analysis result of component H >>> The ethanol-soluble component of fraction component 2 (shown as component H in FIG. 1) was measured by FT-IR. The measurement results are shown in FIG. 6D. As shown in FIG. 6D, Component H shows a peak derived from an amide group in the FT-IR measurement. That is, a main peak (amide stretch) is shown between 1590 (cm ⁇ 1 ) and 1630 (cm ⁇ 1 ). The component H was measured by GC-MS. The measurement results are shown in FIG. 7D. As shown in FIG. 7D, component H shows a peak of 1,8-diazacyclotetradecane-2,7-dione in the GC-MS measurement.
  • peaks (D1) to (D17) in FIG. 7C are estimated to be attributed as follows.
  • X attached to the above symbol represents a peak of a fragment derived from a polysaccharide such as chitin / chitosan.
  • attached to the above sign represents a peak of a fragment derived from gluten (plant protein).
  • FIG. 4 shows the measurement results of microinfrared spectroscopy (microIR) comparing the extract of component 2 with chitosan.
  • microIR microinfrared spectroscopy
  • the component 2 exhibits a water purification effect by a mechanism different from the zeta potential, which cannot be explained only by the condensation effect exhibited by the zeta ace. Moreover, as shown in FIG. 5, the component 2 is close to the result when chitosan is added to the waste water, and from this result, the component 2 is considered to be chitosans.
  • the water purification agent of the present invention contains plant powder.
  • a plant powder As a 1st aspect of the water purifier of this invention, it is good for a plant powder to contain the said component 1 and / or the said component 2 which are the said (extract of a plant powder). This is because even with a small amount of addition, the water purification action can be efficiently and effectively exhibited.
  • a 2nd aspect of the water purifier of this invention it is good to contain the plant powder containing predetermined
  • the water purifier of this invention contains the said component 1 and / or the said component 2 extracted by the said manufacturing method.
  • the water purifier of the present invention preferably contains both the component 1 and the component 2 extracted by the above production method.
  • FIG. 3 and FIG. 5 although the component 1 and the component 2 both have a water purification function, it is surmised that there is a difference in the mechanism thereof. Function can be expressed from multiple approaches. Therefore, a water purifier containing both the component 1 and the component 2 is more preferable.
  • the water purifier of the present invention contains a plant powder containing the component 1 and / or the component 2 extracted component.
  • the component 1 is contained in an amount of 0.5% by mass or more based on the plant powder. More preferably, it contains 0.7 mass%, More preferably, it contains 0.9 mass%.
  • the said component 2 contains 0.05 mass% or more with respect to the said plant powder. More preferably, it contains 0.07 mass%.
  • the component 1 and the component 2 were extracted from a dried product of Nagatoro burlap containing all leaves, stems, and roots.
  • Table 1 the results shown in Table 1 below were obtained as a result of one experimental example.
  • reference numerals (1) to (5) in Table 1 correspond to reference numerals (1) to (5) in FIG. That is, when the raw material of the plant powder is 100 parts by mass, 0.9 part by mass of component 1 is extracted and 0.07 part by mass of component 2 is extracted (results of (2) and (5) in Table 1) reference).
  • the water purification agent may contain additives such as a polymer flocculant, a filler, a thickener, a colorant, and a thixotropic agent.
  • the polymer flocculant is not particularly limited as long as it exhibits the effect of removing the inorganic unnecessary substances in the waste water, as in the case of the above-mentioned plant powder.
  • polyacrylamide PAM
  • polyacrylamide poly Examples thereof include a partially hydrolyzed acrylamide salt, sodium alginate, sodium polyacrylate, and CMC sodium salt.
  • polyacrylamide can be preferably used.
  • examples of the polyacrylamide include commercially available Flopan AN 956, Flopan AN 995SH, FA 920SH, FO 4490, AN 923 (manufactured by SNF Corporation).
  • the proportion of the component 1 is preferably 0.5% by mass or more based on the total amount of the water purification agent. Moreover, the ratio for which the said component 2 accounts is good in it being 0.05 mass% or more with respect to water purification agent whole quantity.
  • the wastewater treatment method of the present invention removes inorganic unnecessary substances in the wastewater by using the above-described water purifier of the present invention for wastewater.
  • the inorganic unnecessary materials include inorganic unnecessary materials having at least one of nickel, fluorine, iron, copper, zinc, chromium, arsenic, cadmium, and lead.
  • the water purification agent of the present invention can be added after the insolubilization step of adding a base to the wastewater, making the wastewater basic, insolubilizing at least a part of the heavy metal ions, and forming a suspended solid.
  • the water purification agent of the present invention can be added after the insolubilization step of adding a base to the wastewater, making the wastewater basic, insolubilizing at least a part of the heavy metal ions, and forming a suspended solid.
  • Example 1 As the plant, Appraisal Number 2013, “Chu Hemp No. 4” by Nagase Institute of Agricultural Sciences of Agricultural Science of China was used. A dried product (containing 0.56% by mass of component 1) of a plant containing all the leaves, stems, and roots of Chuju (No. 4) (the proportion of leaves in the plant was 8% by mass) was used. Middle burlap No. 4 was used after being dried and pulverized, and then subjected to fractionation by sieving so as to use 250 ⁇ m or less. In addition, it was confirmed by performing the following extraction operation that component 1 contained 0.56% by mass in the dried product of medium burlap No. 4 used in this example.
  • ethyl acetate was added to the dried product of Chu Hemp No. 4 to make a 10% by mass solution, allowed to stand at room temperature (23 ° C.) for 8 hours, and filtered through filter paper. The residue was washed with ethyl acetate. Thereafter, the mixture was further extracted with distilled water to obtain a supernatant, and a component having a fractional molecular weight of 12,000 or more was separated from the supernatant by dialysis to obtain component 1. Then, the ratio of the component 1 with respect to the dried material of the central jute 4 which is a raw material was calculated
  • Ni ion concentration 60 ppm.
  • Table 3 shows the results of the nickel ion concentration when the water purifier of the present invention was added. As shown in Table 3, a decrease in nickel ion concentration was confirmed. If the nickel ion concentration is 8 ppm or less, it can be determined that there is no practical problem.
  • Example 2 In Example 1, as the dried product of Chu Hemp No. 4, the same as in Example 1, except that the dried material (component 1 was contained by 0.7% by mass) in which the proportion of the leaves was 10% by mass was changed. The experiment was conducted. As shown in Table 3 below, in Example 2, a decrease in nickel ion concentration was confirmed.
  • Example 3 In Example 1, as the dried product of Chu Hemp 4 No. 4 except that it was changed to a dried product (containing 7.0% by mass of component 1) in which the proportion of leaves was 100% by mass, the same as Example 1 The experiment was conducted. As shown in Table 3 below, in Example 3, a decrease in nickel ion concentration was confirmed.
  • Example 1 As the dried product of Chu Hemp 4 No. 4 except that it was changed to a dried product containing mainly stems and roots and not containing leaves (containing 0.1% by mass of component 1). The experiment was conducted in the same manner. As shown in Table 3 below, in Comparative Example 1, there was little decrease in the nickel ion concentration.
  • Example 2 In Example 1, as the dried product of Chu Hemp No. 4, the same as in Example 1, except that the dried product (containing component 1 at 0.21% by mass) in which the proportion of the leaves was 3% by mass was changed. The experiment was conducted. As shown in Table 3 below, in Comparative Example 2, a sufficient decrease in nickel ion concentration was not obtained.
  • Example 3 In Example 1, as the dried product of Chu Hemp 4 No. 4 except that it was changed to a dried product (component 1 containing 0.35% by mass) in which the proportion of leaves was 5% by mass, the same as Example 1 The experiment was conducted. As shown in Table 3 below, in Comparative Example 3, a sufficient decrease in the concentration of nickel ions was not obtained.
  • Example 4 The same procedure as in Example 1 was conducted except that, in Example 1, the extract of component 1 of the dry product of Chu-Hama 4 was used instead of the dry product of Chu-Hara 4 and the extract was added directly at 50 ppm. The experiment was conducted. As shown in Table 3 below, in Example 4, a decrease in nickel ion concentration was confirmed.
  • Example 5 In Example 4, the experiment was conducted in the same manner as in Example 4 except that the amount of the extract of component 1 of the dried product of Chu Hemp 4 was changed to 5 ppm. As shown in Table 3 below, even with such a small addition amount, the same excellent nickel ion concentration decrease as in Example 4 was confirmed.
  • Example 6 In Example 1, as the type of plant, instead of Chu Huang 4, the appraisal number by the Chinese Academy of Agricultural Sciences, Agricultural Sciences Institute of Agricultural Sciences, 1900006, “Chu Hemp 3” was used. The experiment was performed in the same manner as in Example 1 except for the above. Although Example 1 was more effective in reducing nickel ion concentration, Example 6 also showed a good nickel ion concentration reducing effect as in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Peptides Or Proteins (AREA)
  • Compounds Of Unknown Constitution (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

植物粉末の水抽出物の分画成分1である抽出物であって、前記分画成分1が、分画分子量12,000以上の分画成分であり、前記分画成分1のエタノール未溶解成分が、フーリエ変換赤外分光法(FT-IR)測定において、カルボン酸由来のピークを示し、かつガスクロマトグラフィー質量分析法(GC-MS)測定において、セルロース由来のピークを示し、前記分画成分1のエタノール溶解成分が、FT-IR測定において、カルボン酸由来のピークを示し、かつGC-MS測定において、植物性タンパク質由来のピークを示すことを特徴とする抽出物、及び該抽出物を含有する水浄化剤である。

Description

植物粉末の抽出物、及び水浄化剤
 本発明は、工業排水などの水の浄化に使用する、植物粉末の抽出物、該抽出物を含有する水浄化剤に関する。
 近年、工場に於いて種々の製品を製造する過程において、無機イオンとして金属イオンやフッ素イオン等の環境負荷物質を含む廃液が大量に発生している。
 一方、これらの無機イオンの排出に関する規制は徐々に厳しくなっている。この排出規制を遵守するために、無機イオンを含む排水から無機イオンを効果的に除去することができ、しかもできるだけ簡易に、低コストで実施できる無機イオンの除去方法が求められている。
 従来、工場排水などから不純物イオンを除去する方法としては、凝集沈殿法、イオン交換法、活性炭などの吸着剤への吸着法、電気的吸着法、および磁気吸着法などが提案されている。
 例えば、凝集沈殿法として、重金属イオンが溶解した排水に塩基を加え、排水を塩基性にして、重金属イオンの少なくとも一部を不溶化し、懸濁固形物を形成させる工程と、排水に無機凝集剤を加え、懸濁固形物を凝結沈降させる工程と、排水に高分子凝集剤を加え、懸濁固形物を巨大フロック化する工程と、モロヘイヤ、小松菜などの葉菜からなる陽イオン交換体が含有されている吸着層に排水を通水する吸着工程を行う方法が提案されている(例えば、特許文献1参照)。
 また、モロヘイヤ、又はこの乾燥物、又はこの抽出物の少なくともいずれかを含有する凝集剤と、高分子凝集剤とを混合或いは併用して懸濁液中の微粒子を凝集分離する凝集方法が提案されている(例えば、特許文献2参照)。
 さらに、植物粉末と高分子凝集剤との混合物を含む造粒物からなる水浄化剤、及び該水浄化剤を使用した水浄化方法が提案されている(例えば、特許文献3参照)。
 しかし、従来、植物粉末が、排水の水浄化に使用できることは知られていたが、水浄化に何が起因しているか、その具体的な成分については明らかにされておらず、排水の水浄化に植物粉末を使用するうえで研究の余地があった。
特開2011-194385号公報 特開平11-114313号公報 特開2016-73898号公報
 本発明は、水浄化に起因する植物粉末における有効成分を特定し、排水に対し、少量でも効率よく、かつ確実に優れた水浄化性能を発揮できる水浄化剤を提供することを目的とする。
 前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 植物粉末の水抽出物の分画成分1(以下、本発明では成分1ともいう)である抽出物であって、
 前記分画成分1が、分画分子量12,000以上の分画成分であり、
 前記分画成分1のエタノール未溶解成分が、フーリエ変換赤外分光法(FT-IR)測定において、カルボン酸由来のピークを示し、かつガスクロマトグラフィー質量分析法(GC-MS)測定において、セルロース由来のピークを示し、
 前記分画成分1のエタノール溶解成分が、FT-IR測定において、カルボン酸由来のピークを示し、かつGC-MS測定において、植物性タンパク質由来のピークを示すことを特徴とする抽出物である。
<2> 前記分画成分1のエタノール未溶解成分及びエタノール溶解成分が、FT-IR測定において、1700(cm-1)付近と1600(cm-1)付近にピークを示すものである、前記<1>に記載の抽出物である。
<3> 前記分画成分1が、重量平均分子量(Mw)30万以上の物質を50%以上含有している、前記<1>から<2>のいずれかに記載の抽出物である。
<4> 前記植物粉末が、長朔黄麻の粉末である、前記<1>から<3>のいずれかに記載の抽出物である。
<5> 植物粉末の水抽出物の分画成分2(以下、本発明では成分2ともいう)である抽出物であって、
 前記分画成分2が、分画分子量3,400未満の分画成分であり、
 前記分画成分2のエタノール未溶解成分が、FT-IR測定において、アミド基由来のピークを示し、
 前記分画成分2のエタノール溶解成分が、FT-IR測定において、アミド基由来のピークを示すことを特徴とする抽出物である。
<6> 前記分画成分2のエタノール未溶解成分及びエタノール溶解成分が、FT-IR測定において、1590(cm-1)~1630(cm-1)の間に主ピークを示すものである、前記<5>に記載の抽出物である。
<7> 前記分画成分2のエタノール未溶解成分及びエタノール溶解成分が、GC-MS測定において、1,8-ジアザシクロテトラデカン-2,7-ジオンのピークを示すものである、前記<5>から<6>のいずれかに記載の抽出物である。
<8> 前記分画成分2が、重量平均分子量(Mw)200~2,500の物質を90%以上含有している、前記<5>から<7>のいずれかに記載の抽出物である。
<9> 前記分画成分2が、水溶性のキトサン類である、前記<5>から<8>のいずれかに記載の抽出物である。
<10> 前記植物粉末が、長朔黄麻の粉末である、前記<5>から<9>のいずれかに記載の抽出物である。
<11> 前記<1>から<4>のいずれかに記載の抽出物を含有することを特徴とする水浄化剤である。
<12> 前記<11>に記載の水浄化剤に、さらに前記<5>から<10>のいずれかに記載の抽出物を含有する水浄化剤である。
<13> 前記<5>から<10>のいずれかに記載の抽出物を含有することを特徴とする水浄化剤である。
<14> 植物粉末を含有する水浄化剤であって、
 前記植物粉末を水抽出した場合、分画分子量12,000以上の分画成分1からなる抽出成分を前記植物粉末に対して0.5質量%以上含有し、
 前記分画成分1のエタノール未溶解成分が、FT-IR測定において、カルボン酸由来のピークを示し、かつGC-MS測定において、セルロース由来のピークを示し、
 前記分画成分1のエタノール溶解成分が、FT-IR測定において、カルボン酸由来のピークを示し、かつGC-MS測定において、植物性タンパク質由来のピークを示すことを特徴とする水浄化剤である。
<15> 前記分画成分1のエタノール未溶解成分及びエタノール溶解成分が、FT-IR測定において、1700(cm-1)付近と1600(cm-1)付近にピークを示すものである、前記<14>に記載の水浄化剤である。
<16> 前記分画成分1が、重量平均分子量(Mw)30万以上の物質を50%以上含有している、前記<14>から<15>のいずれかに記載の水浄化剤である。
<17> 前記植物粉末が、長朔黄麻の粉末である、前記<14>から<16>のいずれかに記載の水浄化剤である。
<18> 植物粉末を含有する水浄化剤であって、
 前記植物粉末を水抽出した場合、分画分子量3,400未満の分画成分2からなる抽出成分を前記植物粉末に対して0.05質量%以上含有し、
 前記分画成分2のエタノール未溶解成分が、FT-IR測定において、アミド基由来のピークを示し、
 前記分画成分2のエタノール溶解成分が、FT-IR測定において、アミド基由来のピークを示すことを特徴とする水浄化剤である。
<19> 前記分画成分2のエタノール未溶解成分及びエタノール溶解成分が、FT-IR測定において、1590(cm-1)~1630(cm-1)の間に主ピークを示すものである、前記<18>に記載の水浄化剤である。
<20> 前記分画成分2のエタノール未溶解成分及びエタノール溶解成分が、GC-MS測定において、1,8-ジアザシクロテトラデカン-2,7-ジオンのピークを示すものである、前記<18>から<19>のいずれかに記載の水浄化剤である。
<21> 前記分画成分2が、重量平均分子量(Mw)200~2,500の物質を90%以上含有している、前記<18>から<20>のいずれかに記載の水浄化剤である。
<22> 前記分画成分2が、水溶性のキトサン類である、前記<18>から<21>のいずれかに記載の水浄化剤である。
<23> 前記植物粉末が、長朔黄麻の粉末である、前記<18>から<22>のいずれかに記載の水浄化剤である。
<24> 前記<18>から<23>のいずれかに記載の水浄化剤である、前記<14>から<17>のいずれかに記載の水浄化剤である。
<25> 高分子凝集剤を含有する、前記<11>から<24>のいずれかに記載の水浄化剤である。
<26> 前記高分子凝集剤がポリアクリルアミドである、前記<25>に記載の水浄化剤である。
<27> 前記<11>から<26>のいずれかに記載の水浄化剤を、排水に供することにより、排水中の無機系不要物を除去することを特徴とする排水処理方法である。
<28> 前記排水が、ニッケル、フッ素、鉄、銅、亜鉛、クロム、ヒ素、カドミウム、錫、及び鉛の少なくともいずれかを有する無機系不要物を含有する排水である、前記<27>に記載の排水処理方法である。
 本発明によれば、排水に対し、少量でも効率よく、かつ確実に優れた水浄化性能を発揮できる水浄化剤を提供することができる。
図1は、植物粉末の水抽出物のうち、本発明の対象とする分画成分1(成分1ともいう)及び分画成分2(成分2ともいう)を説明するためのイメージ図である。 図2は、成分1及び成分2を抽出する方法を説明するためのイメージ図である。 図3は、成分1の水浄化効果の実験結果を示す図である。 図4は、成分2の顕微鏡IRにより測定した結果である。 図5は、成分2の水浄化効果の実験結果を示す図である。 図6Aは、成分1のエタノール未溶解成分(成分A)をフーリエ変換赤外分光法(FT-IR)により測定した結果である。 図6Bは、成分1のエタノール溶解成分(成分B)をフーリエ変換赤外分光法(FT-IR)により測定した結果である。 図6Cは、成分2のエタノール未溶解成分(成分G)をフーリエ変換赤外分光法(FT-IR)により測定した結果である。 図6Dは、成分2のエタノール溶解成分(成分H)をフーリエ変換赤外分光法(FT-IR)により測定した結果である。 図7Aは、成分1のエタノール未溶解成分(成分A)をガスクロマトグラフィー質量分析法(GC-MS)により測定した結果である。 図7Bは、成分1のエタノール溶解成分(成分B)をガスクロマトグラフィー質量分析法(GC-MS)により測定した結果である。 図7Cは、成分2のエタノール未溶解成分(成分G)をガスクロマトグラフィー質量分析法(GC-MS)により測定した結果である。 図7Dは、成分2のエタノール溶解成分(成分H)をガスクロマトグラフィー質量分析法(GC-MS)により測定した結果である。 図8Aは、成分1をゲル浸透クロマトグラフ(GPC)により測定した結果である。 図8Bは、成分2をゲル浸透クロマトグラフ(GPC)により測定した結果である。 図9は、本発明で使用し得る「中黄麻3号」の鑑定番号を示す図である。 図10は、本発明で使用し得る「中紅麻」の鑑定番号を示す図である。
(植物粉末の抽出物)
 本発明者らは、植物粉末の水浄化機能について、鋭意研究を重ねたところ、植物粉末において、水浄化に寄与する有効成分を見出した。
 植物粉末の水抽出物のうち、図1で示す分画分子量12,000以上の分画成分1(本発明では、成分1ともいう)、及び分画分子量3,400未満の分画成分2(本発明では成分2ともいう)のそれぞれの抽出成分に、優れた水浄化作用があることが確認できた。
 ここで、植物としては、前記成分1及び成分2をそれぞれ有効量含有する植物であれば、特に制限はなく用いることができるが、好ましくは、長朔黄麻(チョウサクコウマ)、モロヘイヤなどを挙げることができる。
 特に、長朔黄麻として、中国の長沙市産の長朔黄麻、又は中国農業科学院麻類研究所による鑑定番号が国鑑麻2013の「中黄麻4号」、鑑定番号が皖品鑑登字第1209006の「中黄麻3号」、鑑定番号がXPD005-2005の「中黄麻1号」、若しくは鑑定番号が皖品鑑登字第1209001の「中紅麻」などが好ましく使用できる。
 中でも、前記「中黄麻4号」、前記「中黄麻3号」、及び前記「中紅麻」がより好ましく、前記「中黄麻4号」が特に好ましい。
 尚、前記「中黄麻3号」の鑑定番号を図9に示す。前記「中紅麻」の鑑定番号を図10に示す。
 前記「中黄麻4号」は、以下の特性を有する。
 農産物種類:黄麻
<分画成分1からなる抽出物>
<<分画成分1の抽出方法>>
 分画成分1は、図2で示す方法に従って抽出することができる。具体的には、乾燥植物を粉砕後、酢酸エチルによって抽出後の残渣をさらに蒸留水によって抽出して、上澄みを得、その上澄から透析操作によって、分画分子量12,000以上の成分を分離することにより得る。
<<分画成分1の分析結果>>
<<<成分Aの分析結果>>
 分画成分1のエタノール未溶解成分(図1中、成分Aで示す)をフーリエ変換赤外分光法(FT-IR)により測定した。測定結果を図6Aに示す。係るFT-IR測定は、FTS-7000e/UMA600、VARIAN、顕微ダイヤモンドセルによって、測定した。尚、後述する成分B、成分G、成分HのFT-IR測定も同様の条件で測定した。
 図6Aで示されるように、成分Aは、FT-IR測定において、カルボン酸由来のピークを示す。つまり、1700(cm-1)付近(ケトン伸縮)と1600(cm-1)付近(アミド伸縮)にピークを示している。
 また、前記成分Aをガスクロマトグラフィー質量分析法(GC-MS)により測定した。測定結果を図7Aに示す。係るGC-MS測定は、JMS-600H、JEOL製によってIonization mode:EI+にて測定した。尚、後述する成分B、成分G、成分HのGC-MS測定も同様の条件で測定した。
 図7Aで示されるように、成分Aは、GC-MS測定において、セルロース由来のピークを示す。
 なお、図7Aにおけるピーク(A1)~(A20)はそれぞれ以下のように帰属されると推定される。
 (A1):CO
 (A2):アセトアルデヒド
 (A3)○:エタノール
 (A4)○:アセチルホルムアルデヒド
 (A5)○:ジアセチル
 (A6)○:酢酸
 (A7)○:アセトール
 (A8)△:トルエン
 (A9)○:アセチルオキシ酢酸
 (A10)○:3-フルアルデヒド
 (A11)○:ピルビン酸メチルエステル
 (A12)○:フルフラール(2-フルアルデヒド)
 (A13)○:下記化合物
Figure JPOXMLDOC01-appb-C000001
 (A14)○:下記化合物
Figure JPOXMLDOC01-appb-C000002
 (A15)○:下記化合物
Figure JPOXMLDOC01-appb-C000003
 (A16)△:フェノール
 (A17)△:4-ピリジノール
 (A18)△:クレゾール
 (A19)△:インドール
 (A20):アセチルクエン酸トリブチル
 上記符号に付された「○」は、セルロース由来のフラグメントのピークであることを表す。
 上記符号に付された「△」は、グルテン(植物タンパク質)由来のフラグメントのピークであることを表す。
<<<成分Bの分析結果>>
 分画成分1のエタノール溶解成分(図1中、成分Bで示す)をFT-IRにより測定した。測定結果を図6Bに示す。
 図6Bで示されるように、成分Bは、FT-IR測定において、カルボン酸由来のピークを示す。つまり、1700(cm-1)付近(ケトン伸縮)と1600(cm-1)付近(アミド伸縮)にピークを示している。
 また、前記成分BをGC-MSにより測定した。測定結果を図7Bに示す。
 図7Bで示されるように、成分Bは、GC-MS測定において、植物性タンパク質由来のピークを示す。
 なお、図7Bにおけるピーク(B1)~(B16)はそれぞれ以下のように帰属されると推定される。
 (B1):CO
 (B2):アセトアルデヒド
 (B3)○:ジアセチル
 (B4)□:酢酸
 (B5)○:下記化合物
Figure JPOXMLDOC01-appb-C000004
 (B6)□:無水酢酸
 (B7)○:ピルビン酸メチルエステル
 (B8)○:フルフラール(2-フルアルデヒド)
 (B9)○:下記化合物
Figure JPOXMLDOC01-appb-C000005
 (B10)○:下記化合物
Figure JPOXMLDOC01-appb-C000006
 (B11)△:フェノール
 (B12)△:クレゾール
 (B13)○:下記化合物
Figure JPOXMLDOC01-appb-C000007
 (B14)△:インドール
 (B15):ハイドロキノン
 (B16):オレイン酸アミド
 上記符号に付された「○」は、セルロース由来のフラグメントのピークであることを表す。
 上記符号に付された「□」は、酢酸セルロース由来のフラグメントのピークであることを表す。
 上記符号に付された「△」は、グルテン(植物タンパク質)由来のフラグメントのピークであることを表す。
 上記成分A及び成分BのFT-IR測定及びGC-MS測定の結果より、成分1は、ウロン酸やガラクツロン酸類似構造のカルボン酸からなると考えられる。これにより、成分1は、無機イオンを吸着し、水浄化に優れた効果を発揮するものと思われる。
 また、前記成分1をゲル浸透クロマトグラフ(GPC)により測定した。測定結果を図8Aに示す。係るGPC測定は、GPC SYSTEM21、Shodexによって、TSKgel GMPWを用いて測定した。尚、後述する成分2のGPC測定も同様の条件で測定した。
 図8Aの結果から、成分1は、重量平均分子量(Mw)30万以上の物質を50(面積)%以上含有することがわかる。
<<分画成分1の水浄化作用>>
 成分1の抽出物を使用して、水の浄化作用を実験した。図3に結果を示す。
 図3中、(i)は、成分1の抽出物を直接、Niを含有する水に添加した時のNiイオン濃度の変化を示す。一方、図3中、(ii)は、水浄化剤として、市販されている高分子凝集剤(ポリアクリルアミド:PAM)を、Niを含有する水に添加した時のNiイオン濃度の変化を示す。
 図3の結果から、成分1は、PAMに比べ、少ない量で、水質を向上(Niイオン濃度が低下)できることが確認できた。
<分画成分2からなる抽出物>
<<分画成分2の抽出方法>>
 分画成分2は、図2で示す方法に従って抽出することができる。具体的には、上記透析操作によって得られた、分画分子量12,000未満の成分をさらに透析して得た分画分子量6,000未満の成分をさらに透析して得た分画分子量3,400未満の成分を分離することにより得る。
<<分画成分2の分析結果>>
<<<成分Gの分析結果>>
 分画成分2のエタノール未溶解成分(図1中、成分Gで示す)をFT-IRにより測定した。測定結果を図6Cに示す。
 図6Cで示されるように、成分Gは、FT-IR測定において、アミド基由来のピークを示す。つまり、1590(cm-1)~1630(cm-1)の間に(アミド伸縮)主ピークを示している。
 また、前記成分GをGC-MSにより測定した。測定結果を図7Cに示す。
 図7Cで示されるように、成分Gは、GC-MS測定において、1,8-ジアザシクロテトラデカン-2,7-ジオンのピークを示す。
 なお、図7Cにおけるピーク(C1)~(C13)はそれぞれ以下のように帰属されると推定される。
 (C1):CO
 (C2):アセトン
 (C3):アセトール
 (C4)△:トルエン
 (C5)×:ピロール
 (C6):シクロペンタノン
 (C7):下記化合物
Figure JPOXMLDOC01-appb-C000008
 (C8)△:クレゾール
 (C9)×:2-ピロリジノン
 (C10)×:インドール
 (C11):ハイドロキノン
 (C12):アセチルクエン酸トリブチル
 (C13)×:1,8-ジアザシクロテトラデカン-2,7-ジオン
 上記符号に付された「×」は、キチン・キトサン等の多糖類由来のフラグメントのピークであることを表す。
 上記符号に付された「△」は、グルテン(植物タンパク質)由来のフラグメントのピークであることを表す。
<<<成分Hの分析結果>>
 分画成分2のエタノール溶解成分(図1中、成分Hで示す)をFT-IRにより測定した。測定結果を図6Dに示す。
 図6Dで示されるように、成分Hは、FT-IR測定において、アミド基由来のピークを示す。つまり、1590(cm-1)~1630(cm-1)の間に(アミド伸縮)主ピークを示している。
 また、前記成分HをGC-MSにより測定した。測定結果を図7Dに示す。
 図7Dで示されるように、成分Hは、GC-MS測定において、1,8-ジアザシクロテトラデカン-2,7-ジオンのピークを示す。
 なお、図7Cにおけるピーク(D1)~(D17)はそれぞれ以下のように帰属されると推定される。
 (D1):CO
 (D2):メチルエチルケトン
 (D3):酢酸
 (D4)○:アセトール
 (D5)△:トルエン
 (D6)×:ピロール
 (D7):スチレン
 (D8)×:2-メチルー1H-ピロール
 (D9)×:下記化合物
Figure JPOXMLDOC01-appb-C000009
 (D10)△:フェノール
 (D11):p-メトキシトルエン
 (D12)△:クレゾール
 (D13):p-エチルフェノール
 (D14)×:インドール
 (D15):ハイドロキノン
 (D16):アセチルクエン酸トリブチル
 (D17)×:1,8-ジアザシクロテトラデカン-2,7-ジオン
 上記符号に付された「○」は、セルロース由来のフラグメントのピークであることを表す。
 上記符号に付された「×」は、キチン・キトサン等の多糖類由来のフラグメントのピークであることを表す。
 上記符号に付された「△」は、グルテン(植物タンパク質)由来のフラグメントのピークであることを表す。
 前記成分2の抽出物とキトサンとを比較した顕微赤外分光法(顕微IR)の測定結果を図4に示す。
 上記成分G及び成分HのFT-IR測定及びGC-MS測定の結果、並びに上記図4の結果より、成分2は、水溶性のキトサン類であると考えられる。通常、甲殻類等から抽出されるキトサン(キチン)類は、非水溶性であるが、無機イオンの吸着には水溶性キトサンが効果を及ぼすと考えられる。
 尚、本発明において、水溶性とは、水に50質量%以上溶けるものをいう。
 また、前記成分2をGPCにより測定した。測定結果を図8Bに示す。
 図8Bの結果から、成分2は、重量平均分子量(Mw)200~2,500の物質を90(面積)%以上含有することがわかる。
<<分画成分2の水浄化作用>>
 成分2の抽出物を使用して、水の浄化作用を実験した。図5に結果を示す。
 図5中、(i)は、成分2の抽出物を直接、Niを含有する水に添加した時のNiイオン濃度の変化を示す。一方、図5中、(ii)は、凝結剤として、市販されているゼータエースを、(iii)は、キトサンを、Niを含有する水に添加した時のNiイオン濃度の変化を示す。
 図5の結果から、ゼータエースは、添加するほどフロック成長が抑制され水質レベルが低下したのに対し、成分2は、添加量にかかわらず水質が向上(Niイオン濃度が低下)した。成分2には、ゼータエースが示す凝結効果だけでは説明のつかない、ゼータ電位とは異なるメカニズムにより水浄化効果が発揮されていると考えられる。
 また、図5で示されているように、成分2は、キトサンを排水に添加した場合の結果と近似しており、この結果からも成分2は、キトサン類であると考えられる。
(水浄化剤)
 本発明の水浄化剤は、植物粉末を含有する。
 本発明の水浄化剤の第1の態様として、植物粉末が、上記(植物粉末の抽出物)である前記成分1及び/又は前記成分2を含有するものであるとよい。
 少量の添加量でも、効率よく効果的に水浄化作用を示すことができるからである。
 また、本発明の水浄化剤の第2の態様として、前記成分1及び/又は前記成分2の抽出成分を所定の有効量含む植物粉末を含有するものであるとよい。
<第1の態様>
 本発明の水浄化剤は、上記製造方法により抽出された前記成分1及び/又は前記成分2を含有する。
 特に、本発明の水浄化剤は、上記製造方法により抽出された前記成分1と前記成分2とを両方含有することが好ましい。図3及び図5で示されるように、前記成分1と前記成分2は、ともに水浄化機能を有するもののそのメカニズムには違いがあると推察されるため、両成分を含有させることにより、水浄化機能を複数のアプローチから発現させることができる。よって、前記成分1と前記成分2をともに含有する水浄化剤がより好ましい。
<第2の態様>
 本発明の水浄化剤は、前記成分1及び/又は前記成分2の抽出成分を含む植物粉末を含有する。
 ここで、前記成分1は、実施例で示すように、前記植物粉末に対して0.5質量%以上含有する。より好ましくは、0.7質量%、さらに好ましくは0.9質量%含有する。
 また、前記成分2は、前記植物粉末に対して0.05質量%以上含有する。より好ましくは、0.07質量%含有する。
 図2で示されるフローチャートに従い、葉・茎・根の全てを含有する長朔黄麻の乾燥物に対し、前記成分1及び前記成分2の抽出を行った。各抽出成分の収率は、1実験例の結果として、下記表1で示される結果が得られた。ここで、表1中の符号(1)~(5)は、図2中の符号(1)~(5)に対応している。つまり、植物粉末の原材料を100質量部としたとき、成分1は0.9質量部抽出され、成分2は0.07質量部抽出された(表1中の(2)及び(5)の結果参照)。
 次に、葉のみ含有する長朔黄麻の乾燥物に対し、前記成分1及び前記成分2の抽出を行ったときの各抽出成分の収率の結果も以下に示す(下記表2)。
 下記表1及び下記表2からわかるように、前記成分1及び前記成分2の収率は、原材料である植物粉末により変わってくる。そこで、植物の葉・茎・根の割合を変えることにより、前記成分1及び前記成分2の含有量がそれぞれ所望の範囲に入るように適宜調整するとよい。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
<その他の添加剤>
 前記水浄化剤には、前記植物の粉末以外にその他の添加剤として、例えば、高分子凝集剤、フィラー、増粘剤、着色剤、チキソ性付与剤等の添加物を含有させてもよい。
<<高分子凝集剤>>
 前記高分子凝集剤としては、上記植物の粉末と同様と同様、排水中の前記無機系不要物を除去する効果を示すものであれば、特に制限はなく、例えば、ポリアクリルアミド(PAM)、ポリアクリルアミドの部分加水分解塩、アルギン酸ナトリウム、ポリアクリル酸ナトリウム、CMCナトリウム塩などを挙げることができる。これらの中でも、ポリアクリルアミドが好ましく使用できる。該ポリアクリルアミドとしては、例えば、市販されているFlopan AN 956、Flopan AN 995SH、FA 920SH、FO 4490、AN 923(株式会社エス・エヌ・エフ製)などを用いることができる。
 高分子凝集剤等の他の添加剤も含有する前記水浄化剤において、前記成分1の占める割合は、水浄化剤全量に対し、0.5質量%以上であるとよい。
 また、前記成分2の占める割合は、水浄化剤全量に対し、0.05質量%以上であるとよい。
(排水処理方法)
 本発明の排水処理方法は、上述した本発明の水浄化剤を排水に供することにより排水中の無機系不要物を除去するものである。
 前記無機系不要物としては、例えば、ニッケル、フッ素、鉄、銅、亜鉛、クロム、ヒ素、カドミウム、及び鉛の少なくともいずれかを有する無機系不要物が挙げられる。
 本発明の排水処理方法について具体的に説明する。
 例えば、排水に塩基を加え、排水を塩基性にして、前記重金属イオンの少なくとも一部を不溶化し、懸濁固形物を形成させる不溶化工程の後に本発明の水浄化剤を添加することができる。
 前記水浄化剤を排水に供することにより、無機系不要物を凝集沈降させ、沈降分離された沈殿物を取り除くことにより、排水は浄化される。
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
(実施例1)
 植物として、長朔黄麻の中国農業科学院麻類研究所による鑑定番号2013、「中黄麻4号」を使用した。
 中黄麻4号の葉・茎・根の全てを含有する植物(該植物において葉の占める割合を8質量%とした)の乾燥物(成分1を0.56質量%含有)を用いた。
 中黄麻4号は、乾燥して粉砕した後、250μm以下のものを使用するよう、ふるいによる分別を行なったものを使用した。
 尚、本実施例で使用した中黄麻4号の乾燥物中に、成分1が0.56質量%含有されていることは、以下の抽出操作を行うことにより、確認した。
 つまり、中黄麻4号の乾燥物に対して酢酸エチルを加え10質量%溶液とし、室温(23℃)で8時間静置し、濾紙による濾過を行なった。残渣は酢酸エチルで洗浄した。その後、さらに蒸留水によって抽出して、上澄みを得、その上澄から透析操作によって、分画分子量12,000以上の成分を分離して成分1を得た。そこで、原料である中黄麻4号の乾燥物に対する成分1の割合を求めた。
 ニッケルを含有する排水に対し、1次凝集剤として、FeClを250ppm添加し、次に上記成分1を0.56質量%含有する長朔黄麻の乾燥物を含有する水浄化剤を添加した。
 初期のNiイオン濃度は、60ppmであった。
 下記表3に、本発明の水浄化剤を添加した時のニッケルイオン濃度の結果を示した。表3で示すように、ニッケルイオン濃度の低下が確認できた。ニッケルイオン濃度が8ppm以下であれば、実用上問題ないと判断できる。
(実施例2)
 実施例1において、中黄麻4号の乾燥物として、葉の占める割合を10質量%とした乾燥物(成分1を0.7質量%含有)に変えた他は、実施例1と同様にして実験を行なった。下記表3で示すように、実施例2は、ニッケルイオン濃度の低下が確認できた。
(実施例3)
 実施例1において、中黄麻4号の乾燥物として、葉の占める割合を100質量%とした乾燥物(成分1を7.0質量%含有)に変えた他は、実施例1と同様にして実験を行なった。下記表3で示すように、実施例3は、ニッケルイオン濃度の低下が確認できた。
(比較例1)
 実施例1において、中黄麻4号の乾燥物として、茎・根を主に含有する、葉を含有しない乾燥物(成分1を0.1質量%含有)に変えた他は、実施例1と同様にして実験を行なった。下記表3で示すように、比較例1では、ニッケルイオンの濃度の低下は少なかった。
(比較例2)
 実施例1において、中黄麻4号の乾燥物として、葉の占める割合を3質量%とした乾燥物(成分1を0.21質量%含有)に変えた他は、実施例1と同様にして実験を行なった。下記表3で示すように、比較例2では、十分なニッケルイオンの濃度の低下は得られなかった。
(比較例3)
 実施例1において、中黄麻4号の乾燥物として、葉の占める割合を5質量%とした乾燥物(成分1を0.35質量%含有)に変えた他は、実施例1と同様にして実験を行なった。下記表3で示すように、比較例3では、十分なニッケルイオンの濃度の低下は得られなかった。
(実施例4)
 実施例1において、中黄麻4号の乾燥物に変えて、中黄麻4号の乾燥物の成分1の抽出物を用い、係る抽出物を50ppm、直接添加した他は、実施例1と同様にして実験を行なった。下記表3で示すように、実施例4は、ニッケルイオン濃度の低下が確認できた。
(実施例5)
 実施例4において、中黄麻4号の乾燥物の成分1の抽出物の添加量を5ppmに変えて添加した他は、実施例4と同様にして実験を行なった。下記表3で示すように、このように少ない添加量であっても、実施例4と同様の優れたニッケルイオン濃度の低下が確認できた。
(実施例6)
 実施例1において、植物の種類として、中黄麻4号に変えて、長朔黄麻の中国農業科学院麻類研究所による鑑定番号、皖品鑑登字第1209006、「中黄麻3号」を使用した以外は、実施例1と同様に実験を行った。
 実施例1の方がニッケルイオンの濃度低下効果は優れていたが、実施例6もほぼ実施例1と同様、良好なニッケルイオンの濃度低下効果を示した。
Figure JPOXMLDOC01-appb-T000012

Claims (14)

  1.  植物粉末の水抽出物の分画成分1である抽出物であって、
     前記分画成分1が、分画分子量12,000以上の分画成分であり、
     前記分画成分1のエタノール未溶解成分が、フーリエ変換赤外分光法(FT-IR)測定において、カルボン酸由来のピークを示し、かつガスクロマトグラフィー質量分析法(GC-MS)測定において、セルロース由来のピークを示し、
     前記分画成分1のエタノール溶解成分が、FT-IR測定において、カルボン酸由来のピークを示し、かつGC-MS測定において、植物性タンパク質由来のピークを示すことを特徴とする抽出物。
  2.  植物粉末の水抽出物の分画成分2である抽出物であって、
     前記分画成分2が、分画分子量3,400未満の分画成分であり、
     前記分画成分2のエタノール未溶解成分が、FT-IR測定において、アミド基由来のピークを示し、
     前記分画成分2のエタノール溶解成分が、FT-IR測定において、アミド基由来のピークを示すことを特徴とする抽出物。
  3.  前記分画成分2のエタノール未溶解成分及びエタノール溶解成分が、GC-MS測定において、1,8-ジアザシクロテトラデカン-2,7-ジオンのピークを示すものである、請求項2に記載の抽出物。
  4.  前記分画成分2が、水溶性のキトサン類である、請求項2から3のいずれかに記載の抽出物。
  5.  請求項1から4のいずれかに記載の抽出物を含有することを特徴とする水浄化剤。
  6.  植物粉末を含有する水浄化剤であって、
     前記植物粉末を水抽出した場合、分画分子量12,000以上の分画成分1からなる抽出成分を前記植物粉末に対して0.5質量%以上含有し、
     前記分画成分1のエタノール未溶解成分が、FT-IR測定において、カルボン酸由来のピークを示し、かつGC-MS測定において、セルロース由来のピークを示し、
     前記分画成分1のエタノール溶解成分が、FT-IR測定において、カルボン酸由来のピークを示し、かつGC-MS測定において、植物性タンパク質由来のピークを示すことを特徴とする水浄化剤。
  7.  植物粉末を含有する水浄化剤であって、
     前記植物粉末を水抽出した場合、分画分子量3,400未満の分画成分2からなる抽出成分を前記植物粉末に対して0.05質量%以上含有し、
     前記分画成分2のエタノール未溶解成分が、FT-IR測定において、アミド基由来のピークを示し、
     前記分画成分2のエタノール溶解成分が、FT-IR測定において、アミド基由来のピークを示すことを特徴とする水浄化剤。
  8.  前記分画成分2のエタノール未溶解成分及びエタノール溶解成分が、GC-MS測定において、1,8-ジアザシクロテトラデカン-2,7-ジオンのピークを示すものである、請求項7に記載の水浄化剤。
  9.  前記分画成分2が、水溶性のキトサン類である、請求項7から8のいずれかに記載の水浄化剤。
  10.  請求項7から9のいずれかに記載の水浄化剤である、請求項6に記載の水浄化剤。
  11.  高分子凝集剤を含有する、請求項5から10のいずれかに記載の水浄化剤。
  12.  前記高分子凝集剤がポリアクリルアミドである、請求項11に記載の水浄化剤。
  13.  請求項5から12のいずれかに記載の水浄化剤を、排水に供することにより、排水中の無機系不要物を除去することを特徴とする排水処理方法。
  14.  前記排水が、ニッケル、フッ素、鉄、銅、亜鉛、クロム、ヒ素、カドミウム、錫、及び鉛の少なくともいずれかを有する無機系不要物を含有する排水である、請求項13に記載の排水処理方法。

     
PCT/JP2017/032941 2016-09-16 2017-09-12 植物粉末の抽出物、及び水浄化剤 WO2018051992A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP17850893.3A EP3513857B1 (en) 2016-09-16 2017-09-12 Extract of plant powder, and water purifier
MYPI2019001331A MY192617A (en) 2016-09-16 2017-09-12 Extract of plant powder, and water purifier
CN201780057054.3A CN109715261B (zh) 2016-09-16 2017-09-12 植物粉末的提取物、及水净化剂
US16/333,440 US20190256387A1 (en) 2016-09-16 2017-09-12 Extract of plant powder, and water purifier
KR1020197010107A KR102438091B1 (ko) 2016-09-16 2017-09-12 식물 분말의 추출물, 및 물 정화제
RU2019110785A RU2019110785A (ru) 2016-09-16 2017-09-12 Экстракт растительного порошка и водоочиститель
CN202110551615.3A CN113233564B (zh) 2016-09-16 2017-09-12 植物粉末的提取物、及水净化剂
BR112019004936A BR112019004936A2 (pt) 2016-09-16 2017-09-12 extrato de pó vegetal, e purificador de água
US17/410,356 US11866354B2 (en) 2016-09-16 2021-08-24 Extract of plant powder, and water purifier
US18/177,182 US11952297B2 (en) 2016-09-16 2023-03-02 Extract of plant powder, and water purifier

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016181619 2016-09-16
JP2016-181619 2016-09-16
JP2017-174021 2017-09-11
JP2017174021A JP7131894B2 (ja) 2016-09-16 2017-09-11 抽出物の製造方法、抽出物、水浄化剤、及び排水処理方法

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US16/333,440 A-371-Of-International US20190256387A1 (en) 2016-09-16 2017-09-12 Extract of plant powder, and water purifier
US17/410,356 Division US11866354B2 (en) 2016-09-16 2021-08-24 Extract of plant powder, and water purifier
US18/177,182 Continuation US11952297B2 (en) 2016-09-16 2023-03-02 Extract of plant powder, and water purifier

Publications (1)

Publication Number Publication Date
WO2018051992A1 true WO2018051992A1 (ja) 2018-03-22

Family

ID=61618803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032941 WO2018051992A1 (ja) 2016-09-16 2017-09-12 植物粉末の抽出物、及び水浄化剤

Country Status (5)

Country Link
US (1) US11952297B2 (ja)
JP (1) JP2022132314A (ja)
CN (2) CN113233564B (ja)
MY (1) MY192617A (ja)
WO (1) WO2018051992A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341014A (ja) * 1989-07-07 1991-02-21 Ichimaru Pharcos Co Ltd モロヘイヤ抽出物含有化粧料
JPH0770208A (ja) * 1993-09-07 1995-03-14 Kyodo Nyugyo Kk モロヘイヤ粘性多糖体の製造法
JPH0769910A (ja) * 1993-09-01 1995-03-14 Otsuka Pharmaceut Co Ltd 脂質代謝改善及び血糖上昇抑制組成物
JPH11114313A (ja) * 1997-10-09 1999-04-27 Sony Corp 凝集剤及びこれを用いた凝集方法
JP2011194385A (ja) * 2010-03-24 2011-10-06 Sony Corp 陽イオン交換体、及び排水中の重金属イオンの除去方法
JP2014008428A (ja) * 2012-06-28 2014-01-20 Sony Corp 凝集剤混合物及び凝集方法
JP2016073898A (ja) * 2014-10-03 2016-05-12 デクセリアルズ株式会社 水浄化剤、及び水浄化方法
JP2016153470A (ja) * 2015-02-12 2016-08-25 国立大学法人京都大学 多糖類のナノファイバー、分散媒及びモノマーを含む分散体、並びにその分散体から得られる樹脂組成物

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1348717B1 (en) * 1997-04-16 2008-07-16 Sony Corporation Method for producing a high molecular flocculant
JP3049279B2 (ja) 1997-08-19 2000-06-05 工業技術院長 キトサン及びその製造方法と、高分子凝集剤
JP2000140509A (ja) 1998-11-16 2000-05-23 Kansai Kako Kk 新規な凝集剤とそれを用いる汚泥処理方法
US20070112183A1 (en) * 2003-05-07 2007-05-17 Research Institute For Production Development Chitin oligomer composition and/or chitosan oligomer composition and processes for preparation thereof
US20060216362A1 (en) 2003-05-19 2006-09-28 Tatsuji Enoki Remedy
JP2008126168A (ja) 2006-11-22 2008-06-05 Fuji Eng Kk 廃水の凝集沈殿処理方法
CN101214253B (zh) * 2008-01-07 2011-09-21 中国人民解放军第二军医大学 知母皂苷b-ⅱ用于制备抗抑郁产品的用途
TWI445671B (zh) * 2010-03-24 2014-07-21 Sony Corp 陽離子交換器及移除廢水中重金屬離子之方法
JP5640419B2 (ja) 2010-03-24 2014-12-17 ソニー株式会社 排水中の重金属イオンの除去方法
CN102583681B (zh) * 2011-01-14 2014-07-02 索尼公司 植物来源的凝聚剂、凝聚剂混合物、凝聚方法以及制备植物来源的凝聚剂的方法
CN102247814A (zh) * 2011-05-17 2011-11-23 中国农业科学院麻类研究所 用于重金属废水处理的生物质吸附剂及重金属废水处理方法
GB201116050D0 (en) 2011-09-16 2011-11-02 Ntnu Technology Transfer As Ionic gel
CN102432692A (zh) * 2011-12-27 2012-05-02 西华师范大学 华美牛肝菌多糖
PE20160473A1 (es) * 2013-05-29 2016-05-22 Aguas De Manizales S A E S P Composiciones para tratamiento de aguas y metodos para uso de las mismas
CN103641936B (zh) * 2013-12-09 2016-03-23 吴彪 一种采用超滤和纳滤制备水溶性壳寡糖的方法
CN104562632B (zh) 2015-01-12 2016-08-24 哈尔滨工业大学 一种微波快速改性黄麻制备重金属离子交换纤维的方法及应用
CN105478085B (zh) * 2015-12-16 2018-06-29 湖南广播电视大学 以黄麻为原料的吸附剂的制备和应用
JP7131894B2 (ja) 2016-09-16 2022-09-06 デクセリアルズ株式会社 抽出物の製造方法、抽出物、水浄化剤、及び排水処理方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341014A (ja) * 1989-07-07 1991-02-21 Ichimaru Pharcos Co Ltd モロヘイヤ抽出物含有化粧料
JPH0769910A (ja) * 1993-09-01 1995-03-14 Otsuka Pharmaceut Co Ltd 脂質代謝改善及び血糖上昇抑制組成物
JPH0770208A (ja) * 1993-09-07 1995-03-14 Kyodo Nyugyo Kk モロヘイヤ粘性多糖体の製造法
JPH11114313A (ja) * 1997-10-09 1999-04-27 Sony Corp 凝集剤及びこれを用いた凝集方法
JP2011194385A (ja) * 2010-03-24 2011-10-06 Sony Corp 陽イオン交換体、及び排水中の重金属イオンの除去方法
JP2014008428A (ja) * 2012-06-28 2014-01-20 Sony Corp 凝集剤混合物及び凝集方法
JP2016073898A (ja) * 2014-10-03 2016-05-12 デクセリアルズ株式会社 水浄化剤、及び水浄化方法
JP2016153470A (ja) * 2015-02-12 2016-08-25 国立大学法人京都大学 多糖類のナノファイバー、分散媒及びモノマーを含む分散体、並びにその分散体から得られる樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TETSUJI OKUDA: "Practical Purification of Coagulation Active Component Extracted from Moringa oleifera seeds by Salt Solution and Its Performance", PROCEEDINGS OF ENVIRONMENTAL AND ENGINEERING RESEARCH, vol. 43, 2006, pages 605 - 610, XP055497397 *

Also Published As

Publication number Publication date
CN113233564A (zh) 2021-08-10
CN113233564B (zh) 2023-08-08
CN109715261B (zh) 2021-12-17
US11952297B2 (en) 2024-04-09
US20230242423A1 (en) 2023-08-03
CN109715261A (zh) 2019-05-03
MY192617A (en) 2022-08-29
JP2022132314A (ja) 2022-09-08

Similar Documents

Publication Publication Date Title
JP7131894B2 (ja) 抽出物の製造方法、抽出物、水浄化剤、及び排水処理方法
Cao et al. Membrane filtration-based recovery of extracellular polymer substances from excess sludge and analysis of their heavy metal ion adsorption properties
Kusvuran et al. A study: Removal of Cu (II), Cd (II), and Pb (II) ions from real industrial water and contaminated water using activated sludge biomass
WO2012077033A3 (en) Organic-inorganic composite material for removal of anionic pollutants from water and process for the preparation thereof
Ding et al. Removal of Zn (II) ions by dialdehyde 8-aminoquinoline starch from aqueous solution
US9187345B2 (en) Chitosan derivative, a method for its preparation and its use as an adsorption agent
WO2018051992A1 (ja) 植物粉末の抽出物、及び水浄化剤
Sun et al. Adsorption properties of Cu (II) ions onto N-succinyl-chitosan and crosslinked N-succinyl-chitosan template resin
Ahmed et al. Evaluation of agrowaste species for removal of heavy metals from synthetic wastewater
CN102827681A (zh) 一种废液压油再生工艺
WO2016158256A1 (ja) 水浄化剤、及び水浄化方法
WO2019194688A1 (en) Methods of preparing modified biopolymer-silica nanocomposite materials for arsenic removal from contaminated water and compositions therefrom
JP5046052B2 (ja) 金属イオンの吸着剤、並びにそれを用いた吸着方法
TWI756264B (zh) 水淨化用分散液、該水淨化用分散液的製造方法、以及排放水處理方法
CN105273109A (zh) 一种从原子转移自由基聚合体系反应产物中去除铜的方法
CN107176664B (zh) 一种二氧化硅负载的高氯酸-黄原酸盐在工业废水除铬中的应用
CN115926158B (zh) 一种高效去除水中全氟和多氟烷基物质(pfas)的富氮聚合物的制备方法及其应用
KR20160064945A (ko) 캐슈넛 쉘 오일의 회분 저감 및 산화안정성 향상 방법
JP2011074185A (ja) スチレン系ポリマー
JP7190959B2 (ja) 水浄化剤、及び水浄化方法
Ahmed et al. Research Article Evaluation of Agrowaste Species for Removal of Heavy Metals from Synthetic Wastewater
YİGİT et al. Nickel and Copper Removal from Aqueous Media using Polyaniline/Sugar Beet Pulp (PANI/SBP) Composite
CN104230054A (zh) 废水中镍离子的去除方法
CN117819686A (zh) 鱼腥草多糖作为絮凝剂在重金属离子废水处理中的用途
JP2023012134A (ja) 水浄化剤及びその製造方法、並びに水浄化方法

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019004936

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197010107

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017850893

Country of ref document: EP

Effective date: 20190416

ENP Entry into the national phase

Ref document number: 112019004936

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190313