WO2018047948A1 - 有機発光素子ならびにそれに用いる発光材料および化合物 - Google Patents

有機発光素子ならびにそれに用いる発光材料および化合物 Download PDF

Info

Publication number
WO2018047948A1
WO2018047948A1 PCT/JP2017/032510 JP2017032510W WO2018047948A1 WO 2018047948 A1 WO2018047948 A1 WO 2018047948A1 JP 2017032510 W JP2017032510 W JP 2017032510W WO 2018047948 A1 WO2018047948 A1 WO 2018047948A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
compound
substituted
carbazol
Prior art date
Application number
PCT/JP2017/032510
Other languages
English (en)
French (fr)
Inventor
横山 正幸
一剛 萩谷
安達 千波矢
Original Assignee
東洋紡株式会社
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社, 国立大学法人九州大学 filed Critical 東洋紡株式会社
Priority to US16/331,374 priority Critical patent/US11618730B2/en
Priority to KR1020197009832A priority patent/KR102391760B1/ko
Priority to EP17848886.2A priority patent/EP3511321B1/en
Priority to CN201780055482.2A priority patent/CN110225906A/zh
Priority to JP2018538490A priority patent/JP7028176B2/ja
Publication of WO2018047948A1 publication Critical patent/WO2018047948A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/54Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings
    • C07C13/547Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings at least one ring not being six-membered, the other rings being at the most six-membered
    • C07C13/567Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings at least one ring not being six-membered, the other rings being at the most six-membered with a fluorene or hydrogenated fluorene ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/16Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/22Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/572Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Definitions

  • the present invention relates to an organic light emitting device having high luminous efficiency.
  • the present invention also relates to a light emitting material and a compound used for the organic light emitting element.
  • organic light emitting devices such as organic electroluminescence devices (organic EL devices)
  • organic electroluminescence devices organic electroluminescence devices
  • various efforts have been made to increase the light emission efficiency by newly developing and combining electron transport materials, hole transport materials, light emitting materials, and the like constituting the organic electroluminescence element.
  • studies on organic electroluminescence devices using compounds having a carbazolyl group substituted with a perfluoroalkyl group can also be found.
  • Non-Patent Document 1 3,5,3 ′, 5′-tetramethyl-4,4′-bis [(2,7-ditrifluoromethyl) carbazol-9-yl] biphenyl is an organic electroluminescence. It is described that it can be used as a matrix material of an element.
  • Patent Document 1 describes that a cyanobenzene derivative represented by the following general formula (3) is used as a light emitting material of an organic light emitting device.
  • one of R 81 to R 85 is a cyano group
  • two of R 81 to R 85 are 9-carbazolyl groups optionally substituted with a specific substituent. The other two are defined to represent hydrogen atoms.
  • a substituent composed of a combination of a halogen atom and an alkyl group and groups listed in the substituent group is included in the substituent group that can be substituted with the 9-carbazolyl group.
  • Patent Document 2 discloses the following compound F-9 as a fluorescent luminescent dopant. Further, this document describes that a host compound represented by the following general formula (I) is used for a light emitting layer of an organic electroluminescence element.
  • X 101 represents NR 101 , an oxygen atom, a sulfur atom, CR 102 R 103 or SiR 102 R 103 , y 1 to y 8 represent CR 104 or a nitrogen atom, and R 101 to R 104 represent a hydrogen atom. Or it represents a substituent and Ar 101 and Ar 102 are specified to represent an aromatic ring.
  • an aromatic hydrocarbon ring group, a fluoromethyl group, and a cyano group are included in the substituent group represented by R 101 to R 104 , and the substituent is further included in the substituent group. It describes that it may be substituted with a substituent.
  • Non-Patent Document 2 describes 4CzCF 3 Ph and 5CzCF 3 Ph, which are materials combining trifluoromethylbenzene and a carbazolyl group.
  • Patent Document 3 describes that a donor-acceptor type material represented by the formula (1) is used as a light-emitting material of an organic light-emitting element.
  • the general formula (206) is described.
  • Z 1 and Z 2 each represents a hydrogen atom, a cyano group, an aryl group that may be substituted, or a heteroaryl group that may be substituted.
  • each document describes a general formula including a compound having a carbazolyl group substituted with a perfluoroalkyl group or a compound having such a structure.
  • the present inventors evaluated the light emission characteristics of the compounds described in each document, it was found that none of them was sufficiently satisfactory.
  • 3,5,3 ′, 5′-tetramethyl-4,4′-bis [(2,7-ditrifluoromethyl) carbazol-9-yl] biphenyl described in Non-Patent Document 1 is an organic electroluminescence. It is assumed that the device is used as a matrix material, and the document does not describe any light emission characteristics.
  • the general formula (I) includes a very wide range of compounds, and the range includes a compound having a carbazolyl group substituted with a perfluoroalkyl group. There is no compound having a carbazolyl group substituted with a perfluoromethyl group among the specific examples of the compound represented by).
  • Patent Document 1 describes the use of a compound represented by the general formula (3) (a cyanobenzene derivative having a carbazol-9-yl group) as a light emitting material.
  • a perfluoroalkyl group is preferable as a substituent of the carbazol-9-yl group, nor does it describe a specific example of a compound having such a structure.
  • Non-Patent Document 2 are light-emitting materials using perfluoromethylbenzene as an electron acceptor and a carbazolyl group as an electron donor. These compounds use a perfluoromethyl group as an acceptor, but have not studied any substitution of a perfluoromethyl group to a carbazolyl group.
  • Patent Document 3 describes that a compound represented by the general formula (206) is used as a light emitting material.
  • a donor group-containing modifying group including a carbazolyl group is preferably an electron-donating modifying group
  • an electron-withdrawing modifying group is described as a perfluoroalkyl group. Absent.
  • an acceptor group such as a cyano group, a perfluoromethyl group, and a triazinyl group, and a carbazol-9-yl group were used. It has been found that a compound having a structure in which the aromatic ring is substituted with is more useful if the HOMO level and the LUMO level can be further lowered. Oxidation is difficult when the HOMO and LUMO levels are lowered, so when the LUMO level of the luminescent material is lowered, the degradation of radical species and excitons generated during the light emission process due to reaction with water and oxygen is suppressed. Is expected to be.
  • Non-Patent Documents 1 and 2 and Patent Documents 1, 2 and 3 do not describe measures for lowering the HOMO level and LUMO level.
  • the present inventors have deepened the HOMO level and the LUMO level for a compound having a structure in which an aromatic ring is substituted with a carbazol-9-yl group and an acceptor group, Studies were carried out for the purpose of obtaining high luminous efficiency.
  • a general formula of a compound useful as a light-emitting material has been derived, and further studies have been conducted with the aim of generalizing the structure of an organic light-emitting device having high luminous efficiency.
  • the present inventors have found that in a compound in which a carbazol-9-yl group and a Hammett ⁇ p-positive structural unit form a ⁇ -electron conjugated system, When both the 2-position and the 7-position of the carbazol-9-yl group are substituted with a perfluoroalkyl group, the HOMO level and the LUMO level are compared with a compound in which the carbazol-9-yl group is not substituted with a perfluoroalkyl group. It has been found that at the same time when the levels are lowered, the emission efficiency is remarkably increased, the emission wavelength is shortened, and an emission spectrum with a narrow half-value width is obtained.
  • a compound in which a carbazol-9-yl group substituted with a perfluoroalkyl group at such a specific position and a Hammett's ⁇ p-positive structural unit forms a ⁇ -electron conjugated system is a light-emitting material for an organic electroluminescence device It was revealed that it is extremely useful. Furthermore, it has been found that there is a compound useful as a delayed fluorescent material among these compounds, and it has been clarified that an organic light-emitting device with high luminous efficiency can be provided at low cost. Based on these findings, the present inventors have provided the following present invention as means for solving the above problems.
  • a carbazol-9-yl group substituted at the 2-position and the 7-position with a perfluoroalkyl group and a structural unit having a positive Hammett ⁇ p (excluding an aromatic hydrocarbon group) are directly bonded to each other.
  • a ⁇ -conjugated linking group in which at least a part of the carbazol-9-yl group and the Hammett's ⁇ p are positive and the ⁇ -conjugated linking group are present
  • a compound in which a conjugated linking group forms a ⁇ -electron conjugated system [2]
  • the compound according to [1] which has a structure represented by the following general formula (1).
  • D represents a group having a negative Hammett ⁇ p
  • A represents a group composed of a structural unit having a positive Hammett ⁇ p
  • m represents an integer of 1 or more.
  • a plurality of D may be the same or different.
  • At least one of D is a group containing a carbazol-9-yl group substituted at the 2-position and the 7-position with a perfluoroalkyl group.
  • the linking group forms a ⁇ electron conjugated system.
  • [3] The compound according to [2], wherein at least one of D in the general formula (1) is a carbazol-9-yl group substituted at the 2-position and the 7-position with a perfluoroalkyl group .
  • [4] The compound according to [2], wherein all of D in the general formula (1) are carbazol-9-yl groups substituted at the 2-position and the 7-position with a perfluoroalkyl group.
  • [5] The compound according to any one of [2] to [4], wherein A in the general formula (1) contains an aromatic ring.
  • [6] The compound according to [5], wherein A in the general formula (1) includes an aromatic hydrocarbon ring.
  • a in the general formula (1) is a fluorine atom, acyl group, acyloxy group, alkoxycarbonyl group, aryloxycarbonyl group, cyano group, phosphine oxide group, sulfonyl group, perfluoroalkyl group, phosphine oxide group, amide.
  • Z represents a cyano group, a perfluoroalkyl group, a substituted or unsubstituted triazinyl group or a substituted or unsubstituted pyrimidinyl group, and at least one of R 1 to R 5 represents the 2-position and 7 The position represents a carbazol-9-yl group substituted with a perfluoroalkyl group, and the remaining R 1 to R 5 each independently represents a hydrogen atom or a substituent.
  • R 2 in the general formula (2) is a cyano group or a perfluoromethyl group.
  • R 1 and R 3 to R 5 are carbazol-9-yl groups substituted at the 2nd and 7th positions with a perfluoroalkyl group [12] ] The compound of description. [14] The compound according to [11], wherein R 3 in the general formula (2) is a cyano group or a perfluoromethyl group. [15] R 1 , R 2 , R 4 and R 5 in the general formula (2) are carbazol-9-yl groups substituted at the 2nd and 7th positions with a perfluoroalkyl group, The compound according to [14].
  • the carbazol-9-yl group substituted at the 2nd and 7th positions with a perfluoroalkyl group has a structure represented by the following general formula (11) [1] to [15] ] The compound of any one of these.
  • R 21 , R 23 to R 26 and R 28 each independently represents a hydrogen atom or a substituent, and R 22 and R 27 each represents a perfluoroalkyl group.
  • R 21 , R 23 to R 26 and R 28 in the general formula (11) is a substituted or unsubstituted carbazolyl group.
  • [22] A light emitting material containing the compound according to any one of [1] to [21].
  • An organic light-emitting device comprising the compound according to any one of [1] to [21].
  • the organic light-emitting device according to [23] which has a light-emitting layer containing the compound according to any one of [1] to [21] on a substrate.
  • the organic light-emitting device according to [23] or [24] which emits delayed fluorescence.
  • the organic light-emitting element according to any one of [23] to [25] which is an organic electroluminescence element.
  • a delayed phosphor having a structure represented by the general formula (1).
  • the compound of the present invention has a deep HOMO level and a LUMO level, and has high luminous efficiency. For this reason, the compound of this invention is useful as a luminescent material, and the organic light emitting element which has the outstanding luminescent property is realizable by using it as a luminescent material of an organic light emitting element. Moreover, since the compound of this invention can radiate
  • 1 is a 1 H NMR spectrum of Compound 1.
  • 1 is a 1 H NMR spectrum of Compound 2.
  • 1 is a 1 H NMR spectrum of Compound 4.
  • 2 is a transient decay curve of emission intensity of a doped film of Compound 1. It is a graph which shows the temperature dependence of the photoluminescence quantum yield of the compound 1 and the comparative compound 2. It is a graph which shows the temperature dependence of the photoluminescence quantum yield of the compound 2 and the comparative compound 4.
  • 3 is a graph showing current density-voltage-luminance characteristics of an organic electroluminescence device using Compound 1.
  • 2 is an emission spectrum of an organic electroluminescence device using Compound 1 and Comparative Compound 2.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • a carbazol-9-yl group substituted at the 2-position and 7-position with a perfluoroalkyl group and a structural unit having a positive Hammett ⁇ p are directly A structure having a bond or a ⁇ -conjugated linking group, wherein at least a part of the carbazol-9-yl group, Hammett's ⁇ p is positive, and the ⁇ -conjugated linking group are present Is a compound in which the ⁇ -conjugated linking group forms a ⁇ -electron conjugated system.
  • the light emitting material of the present invention is characterized by containing such a compound of the present invention, and the organic light emitting device of the present invention is also characterized by containing such a compound of the present invention.
  • the compound of the present invention has a carbazol-9-yl group substituted at the 2-position and the 7-position with a perfluoroalkyl group.
  • the perfluoroalkyl group here is bonded to the carbon atom of the alkyl group.
  • all hydrogen atoms are substituted with fluorine atoms, and may be any of linear, branched, and cyclic.
  • the number of carbon atoms of the perfluoroalkyl group is not particularly limited, but is preferably 1 to 6, and more preferably 1 to 3.
  • Specific examples include trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group, heptafluoroisopropyl group, nonafluorobutyl group, nonafluoro-t-butyl group, undecafluoropentyl group, tridecafluorohexyl group, undecafluoro group.
  • a cyclohexyl group can be mentioned.
  • the carbazol-9-yl group substituted at the 2-position and the 7-position with a perfluoroalkyl group preferably has a structure represented by the following general formula (11).
  • R 21 , R 23 to R 26 and R 28 each independently represents a hydrogen atom or a substituent
  • R 22 and R 27 each represents a perfluoroalkyl group.
  • R 21 , R 23 to R 26 and R 28 have a substituent, any of them may be a substituent, and the number of substituents is not particularly limited.
  • the number of substituents in R 21 , R 23 to R 26 and R 28 is preferably 0 to 4, more preferably 0 to 2, for example, 0.
  • the Hammett ⁇ p of the group represented by the general formula (11) is about ⁇ 0.4.
  • R 21 , R 23 to R 26 , and R 28 When two or more of R 21 , R 23 to R 26 , and R 28 are substituents, the two or more substituents may be the same or different, but may be the same. preferable. Further, when R 21 , R 23 to R 26 , and R 28 have a substituent, at least one of R 23 to R 26 is preferably a substituent. For example, when R 23 and R 26 are substituents, the case where R 24 and R 25 are substituents can be preferably exemplified, and it is particularly preferable that R 23 and R 26 are substituents. When R 23 and R 26 are substituents, the oxidation resistance of the compound tends to be improved.
  • the substituent represented by R 23 and R 26 is preferably an alkyl group having 1 to 10 carbon atoms, an aryl group, or a heteroaryl group, and preferably an alkyl group having 1 to 5 carbon atoms or an aryl group. Are more preferable, and a methyl group, a tert-butyl group, and a phenyl group are more preferable.
  • R 21 , R 23 to R 26 and R 28 represent a perfluoroalkyl group as a substituent is not excluded from the present invention. However, than the organic light emitting device using the compound R 23 and R 26 is a perfluoroalkyl group, who organic light emitting device using the compound R 23 and R 26 is not a perfluoroalkyl group performance is excellent .
  • Examples of the substituent that can be taken by R 21 , R 23 to R 26 and R 28 in the general formula (11) include, for example, a hydroxy group, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms.
  • substituents are a halogen atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, carbon A substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms, a substituted or unsubstituted diarylamino group having 12 to 40 carbon atoms, and a substituted or unsubstituted carbazolyl group having 12 to 40 carbon atoms.
  • substituents are a fluorine atom, a chlorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, and a substituted group having 1 to 10 carbon atoms.
  • R 23 and R 26 in the general formula (11) are preferably substituents, more preferably an alkyl group having 1 to 20 carbon atoms, and an aryl group having 6 to 40 carbon atoms, More preferably, they are 10 alkyl groups and aryl groups having 6 to 15 carbon atoms.
  • the alkyl group in the present specification may be linear, branched or cyclic, and more preferably has 1 to 6 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, a propyl group, and butyl. Group, t-butyl group, pentyl group, hexyl group, isopropyl group and cyclohexyl group.
  • the alkoxy group may be linear, branched or cyclic, and more preferably has 1 to 6 carbon atoms, and specific examples include methoxy group, ethoxy group, propoxy group, butoxy group, t-butoxy group. Group, pentyloxy group, hexyloxy group, isopropoxy group.
  • the two alkyl groups of the dialkylamino group may be the same or different from each other, but are preferably the same.
  • the two alkyl groups of the dialkylamino group may each independently be linear, branched or cyclic, and more preferably have 1 to 6 carbon atoms. Specific examples include a methyl group, an ethyl group, Examples thereof include a propyl group, a butyl group, a pentyl group, a hexyl group, and an isopropyl group.
  • the aryl group may be a single ring or a fused ring, and specific examples thereof include a phenyl group and a naphthyl group.
  • the heteroaryl group may be a monocyclic ring or a fused ring, and specific examples thereof include pyridyl group, pyridazyl group, pyrimidyl group, triazyl group, triazolyl group, benzotriazolyl group, and carbazolyl group.
  • These heteroaryl groups may be a group bonded through a hetero atom or a group bonded through a carbon atom constituting a heteroaryl ring.
  • Some or all of the hydrogen atoms present in the groups described in this paragraph may be substituted with substituents.
  • some or all of the hydrogen atoms of the alkyl group, aryl group, and heteroaryl group may be substituted with a fluorine atom.
  • R 21 , R 23 to R 26 , and R 28 can be, for example, a carbazolyl group, and examples of the carbazolyl group include a carbazol-2-yl group, a carbazol-3-yl group, and a carbazole-9- Il group can be exemplified.
  • R 21 , R 23 to R 26 , and R 28 is a carbazolyl group
  • HOMO is widely delocalized, so that the light emission characteristics and stability of the material can be improved.
  • the carbazolyl group may be unsubstituted or substituted with a substituent.
  • a carbazolyl group in which Hammett's ⁇ p is substituted with a positive group. This suppresses charge transfer between the carbazolyl group substituted with a perfluoroalkyl group and the carbazolyl group substituted with R 21 , R 23 to R 26 , and R 28 , thereby obtaining more efficient light emission. It can.
  • a carbazolyl group substituted with a perfluoroalkyl group or a cyano group can be exemplified.
  • the substitution position of the perfluoroalkyl group or cyano group is not particularly limited, but for example, carbazole- Examples of the 2-yl group include at least one of the 6-position and the 8-position, the carbazol-3-yl group as the 7-position, and the carbazol-9-yl group as at least one of the 2-position and the 7-position. .
  • the substituent include an alkyl group having 1 to 20 carbon atoms and 6 to 40 carbon atoms. And more specifically, an alkyl group having 1 to 10 carbon atoms and an aryl group having 6 to 15 carbon atoms can be exemplified. If the 3rd, 6th, and 9th positions are substituted, it is less susceptible to oxidation and dimerization can be suppressed, which is advantageous in terms of stability.
  • R 21 may be, for example, at least one of R 23 ⁇ R 26, may be a R 23 and R 26.
  • the number of carbazole rings present in the molecule of the compound represented by the general formula (1) is preferably 4 or less.
  • the compound of the present invention has a structural unit having a positive Hammett ⁇ p.
  • structural unit having a positive Hammett ⁇ p here means an electron-withdrawing structural unit.
  • an atom in which an electron-withdrawing structural unit is substituted with an electron-donating structural unit is included, and an atomic group that exhibits electron withdrawing as a whole is not included.
  • a virtual atomic group in which an electron-donating structural unit included in the atomic group is replaced with a hydrogen atom is assumed, and
  • the Hammett ⁇ p of the virtual atomic group is positive, it is determined that the electron-withdrawing structural unit included in the virtual atomic group is a structural unit having a positive Hammett ⁇ p.
  • preferred Hammett ⁇ p structural units include aromatic heterocyclic groups (for example, pyridine ring group, pyrimidine ring group, triazine ring group), cyano group, —CO— , —SO 2 — and the like.
  • An aromatic hydrocarbon ring group such as a group consisting of a benzene ring is also included in a structural unit having a positive Hammett ⁇ p, but the compound of the present invention is not limited to such an aromatic hydrocarbon ring group. At least one Hammett ⁇ p has a positive structural unit.
  • K H represents an acid dissociation equilibrium constant of benzoic acid having no substituent
  • K X represents an acid dissociation equilibrium constant of benzoic acid substituted at the para position with a substituent.
  • a Hammett ⁇ p being a positive value means that the substituent is an acceptor group (electron-withdrawing group), and a Hammett ⁇ p being a negative value means that the substituent is a substituent.
  • the structural unit having a positive Hammett ⁇ p contained in the compound of the present invention preferably has a Hammett ⁇ p of 0.05 or more, more preferably 0.1 or more, and preferably 0.3 or more. Further preferred.
  • Preferred examples of the Hammett ⁇ p positive substituent include, for example, a fluorine atom, an acyl group, an acyloxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, a cyano group, a phosphine oxide group, a sulfonyl group, a perfluoroalkyl group, and a phosphine oxide group.
  • the structural unit having a positive Hammett ⁇ p may be regarded as “the structural unit having a positive Hammett ⁇ p” unless substituted with an electron-donating group. it can. From the viewpoint of luminescence, durability, and electrochemical stability, it is preferable to select a structural unit other than a bromine atom, an iodine atom, or a nitro group as a structural unit having a positive Hammett ⁇ p. These structural units may be selected if they have an atom or nitro group but do not adversely affect the light-emitting property, durability, and electrochemical stability so as to impair practicality.
  • the carbazol-9-yl group substituted at the 2-position and the 7-position with a perfluoroalkyl group and the structural unit having a positive Hammett ⁇ p are directly It includes a structure bonded or bonded through a ⁇ -conjugated linking group. At least a part of the carbazol-9-yl group, a structural unit having a positive Hammett ⁇ p, and a ⁇ -conjugated linking group, if present, form a ⁇ -electron conjugated system. .
  • the type of the ⁇ -conjugated linking group is not particularly limited as long as it can form a ⁇ -electron conjugated system, and interacts with the ⁇ * orbital or the empty p orbital where the electrons of the ⁇ orbit are in a spatially close position.
  • hyperconjugation may be used.
  • the aromatic hydrocarbon ring constituting the aromatic hydrocarbon linking group preferably has 6 to 40 carbon atoms, more preferably a condensed ring having a structure in which a benzene ring or a plurality of benzene rings are condensed.
  • the aromatic hydrocarbon ring include benzene ring, naphthalene ring, fluorene ring, phenanthrene ring, anthracene ring, triphenylene ring, pyrene ring, chrysene ring, tetracene ring, benzopyrene ring, perylene ring, coronene ring, corannulene ring, phenalene ring.
  • a benzene ring and a naphthalene ring are preferable, and a benzene ring is more preferable.
  • Specific examples of the aromatic hydrocarbon linking group include a phenylene group, 1,2-naphthylene group, 1,3-naphthylene group, 1,4-naphthylene group, 1,5-naphthylene group, 1,8-naphthylene group, A 2,3-naphthylene group, a 2,6-naphthylene group, a 2,7-naphthylene group, and the like can be given.
  • the compound of the present invention preferably has a structure represented by the following general formula (1). Moreover, it is preferable that the luminescent material of this invention contains the compound represented by following General formula (1). Furthermore, the organic light-emitting device of the present invention preferably contains a compound represented by the following general formula (1). Below, the compound represented by General formula (1) is demonstrated.
  • D represents a group in which Hammett's ⁇ p is negative. At least one of D is a group containing a carbazol-9-yl group substituted at the 2-position and the 7-position with a perfluoroalkyl group.
  • m represents an integer of 1 or more, but m is preferably 2 or more. For example, 3 or more or 4 or more can be selected.
  • one of the plurality of Ds, which is a carbazol-9-yl group substituted at the 2nd and 7th positions with a perfluoroalkyl group may be 2 There may be more than one.
  • all of the plurality of D may be carbazol-9-yl groups in which the 2-position and the 7-position are substituted with a perfluoroalkyl group, and a part of D is a 2-position and a 7-position.
  • two or more Ds represent a carbazol-9-yl group substituted at the 2-position and the 7-position with a perfluoroalkyl group, they may be the same or different, but are preferably the same .
  • the remaining D can be Examples of the group having negative ⁇ p include a substituted amino group, an alkoxy group, and an alkyl group.
  • examples of the substituent of the substituted amino group include an aryl group having 6 to 40 carbon atoms, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and the like. May be bonded to each other to form a heteroaryl group.
  • the substituted amino group and heteroaryl group include groups represented by the following general formulas (12) to (15).
  • R 31 to R 38 each independently represents a hydrogen atom or a substituent.
  • R 32 and R 37 are substituents other than the perfluoroalkyl group.
  • R 41 to R 46 , R 51 to R 62 and R 71 to R 80 each independently represent a hydrogen atom or a substituent.
  • the substitution position and the number of substitutions when the groups represented by the general formulas (12) to (15) have a substituent are not particularly limited.
  • the number of substitutions for each group is preferably 0 to 6, more preferably 0 to 4, for example, 0 to 2 is also preferable. When having a plurality of substituents, they may be the same or different from each other, but are preferably the same.
  • any of R 32 to R 37 is preferably a substituent.
  • the case where R 32 and R 37 are substituents, the case where R 33 and R 36 are substituents, and the case where R 34 and R 35 are substituents can be preferably exemplified.
  • any of R 42 to R 46 is preferably a substituent.
  • a case where R 42 is a substituent and a case where R 43 is a substituent can be preferably exemplified.
  • any of R 52 to R 60 is preferably a substituent.
  • any of R 52 to R 54 is a substituent and a case where any of R 55 to R 60 is a substituent can be preferably exemplified.
  • the group represented by the general formula (15) has a substituent
  • any of R 72 to R 74 and R 77 to R 79 is preferably a substituent.
  • R 73 and R 78 are substituents
  • R 74 and R 77 are substituents
  • R 72 , R 74 , R 77 and R 79 are The case where it is a substituent can be illustrated preferably.
  • R 74 and R 77 are substituents
  • the substituents at this time are particularly preferably each independently a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, and preferably has 1 to 6 carbon atoms.
  • R 75 and R 76 may be bonded to each other to form a linking group.
  • the number of atoms of the connecting chain constituting the connecting group is preferably 1 or 2.
  • Specific examples of the linking chain include —O—, —S—, —C ( ⁇ O) —, —N (R 81 ) —, —C (R 82 ) (R 83 ) —, —C ( ⁇ O) —. N (R 84 ) —.
  • R 81 to R 84 each independently represents a hydrogen atom or a substituent, and examples of the substituent include an alkyl group having 1 to 10 carbon atoms and an aryl group having 6 to 14 carbon atoms.
  • R 75 and R 76 may combine with each other to form a cyclic structure (spiro structure).
  • R 21 , R 23 to R 26 , and R 28 in the general formula (11) can be referred to.
  • A represents a group consisting of structural units having a positive Hammett ⁇ p.
  • the “structural unit in which Hammett's ⁇ p is positive” has the meaning described in the above-mentioned [Compound of the present invention] column.
  • A may consist of only a structural unit (electron-withdrawing structural unit) having a positive Hammett ⁇ p, or a combination of two or more Hammetts having a positive ⁇ p ⁇ p. There may be.
  • an atomic group including structural units having positive Hammett ⁇ p's positive ⁇ p is regarded as A.
  • A includes an aromatic ring as a structural unit in which Hammett's ⁇ p is positive.
  • the aromatic ring may be an aromatic hydrocarbon ring or an aromatic heterocycle, but is preferably an aromatic hydrocarbon ring.
  • the heteroatom in the aromatic heterocycle is preferably at least one of N, O, and S.
  • the aromatic heterocycle preferably has 3 to 40 carbon atoms, more preferably a condensed ring having a structure in which a 5-membered ring, a 6-membered ring, or a 5-membered ring and a 6-membered ring are condensed. .
  • aromatic heterocycle examples include furan ring, thiophene ring, pyrrole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, pyrazole ring, furazane ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine Ring, triazine ring, thiadiazole ring, imide ring, etc., furan ring, thiophene ring, pyrrole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, pyrazole ring, furazane ring, triazine It is preferably a ring, a thiadiazole ring, or an imide ring.
  • the substituent bonded to the aromatic ring contained in A of the general formula (1) corresponds to a substituent having a negative Hammett ⁇ p corresponding to D, and a substituent having a positive Hammett ⁇ p is regarded as a part of A. It is.
  • the linking group forms a ⁇ electron conjugated system.
  • the compound represented by the general formula (1) is preferably a compound represented by the following general formula (2).
  • Z represents a cyano group, a perfluoroalkyl group, a substituted or unsubstituted triazinyl group or a substituted or unsubstituted pyrimidinyl group, and at least one of R 1 to R 5 is in the 2nd and 7th positions.
  • R 1 to R 5 may each independently be a cyano group, a perfluoroalkyl group, a substituted or unsubstituted triazinyl group, or a substituted or unsubstituted pyrimidinyl group.
  • Z and any one of R 1 to R 5 is a cyano group or a perfluoroalkyl group
  • a combination of the group is a combination of Z and R 2 or a combination of Z and R 3 It can be illustrated.
  • Z and any two of R 1 to R 5 are a cyano group or a perfluoroalkyl group
  • combinations of those groups are combinations of Z, R 1 and R 2 , Z and R 1 And a combination of R 3 can be exemplified.
  • any three of R 1 to R 5 are a cyano group or a perfluoroalkyl group
  • a combination of Z, R 1 , R 3 and R 4 is exemplified as a combination of those groups. be able to.
  • Z and R 2 , or Z and R 3 are a cyano group or a perfluoroalkyl group is preferable.
  • at least one of Z and R 1 to R 5 is a group selected from a cyano group, a perfluoroalkyl group, a substituted or unsubstituted triazinyl group, and a substituted or unsubstituted pyrimidinyl group, these groups are the same Or different.
  • At least one of R 1 to R 5 represents a carbazol-9-yl group substituted at the 2nd and 7th positions with a perfluoroalkyl group.
  • the 2-position and the 7-position in the above-mentioned are a perfluoroalkyl group.
  • two or more of R 1 to R 5 represent a carbazol-9-yl group substituted at the 2-position and the 7-position with a perfluoroalkyl group, they may be the same or different.
  • any one of R 1 to R 5 is a carbazol-9-yl group substituted at the 2-position and 7-position with a perfluoroalkyl group
  • any of R 1 to R 3 may be used.
  • a combination of R 1 and R 2 a combination of R 2 and R 3 , R 3 and R A combination of 4, a combination of R 1 and R 3, a combination of R 2 and R 4 and the like can be exemplified, and a combination of R 2 and R 3 or a combination of R 3 and R 4 is preferable.
  • Z represents a cyano group, a perfluoroalkyl group, a substituted or unsubstituted triazinyl group, or a substituted or unsubstituted pyrimidinyl group, and at least one of R 1 to R 5 One represents a carbazol-9-yl group substituted at the 2-position and 7-position with a perfluoroalkyl group, and the remaining R 1 to R 5 each independently represents a hydrogen atom or a substituent.
  • Preferred substituents that can be substituted on R 1 to R 5 , a triazinyl group and a pyrimidinyl group include, for example, a hydroxy group, a halogen atom, an alkyl group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms.
  • substituents that can be substituted with a substituent may be further substituted. More preferred substituents are a hydroxy group, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, and a substituted or unsubstituted group having 1 to 20 carbon atoms.
  • substituents are a hydroxy group, a fluorine atom, a chlorine atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, and a substituted group having 1 to 10 carbon atoms.
  • R 1 to R 5 examples include groups represented by the above general formulas (12) to (15). Regarding the explanation and preferred range of the groups represented by the general formulas (12) to (15), the explanation of the groups represented by the general formulas (12) to (15) in the general formula (1) Can be referred to.
  • the number of hydrogen atoms among R 1 to R 5 is preferably 3 or less, more preferably 2 or less, and also preferably 0.
  • Z and R 2 in the general formula (2) are a cyano group or a perfluoromethyl group, and at least one of R 1 and R 4 is substituted with a perfluoroalkyl group at the 2-position and the 7-position.
  • a carbazol-9-yl group are a cyano group or a perfluoromethyl group, and at least one of R 1 , R 2 , R 4 , and R 5 is substituted with a perfluoroalkyl group at the 2-position and the 7-position.
  • it is a carbazol-9-yl group.
  • the case where it is a 9-yl group can be mentioned.
  • the case of an yl group can also be mentioned.
  • Z and R 2 are a cyano group or a perfluoromethyl group, and R 1 , R 3 , R 4 and R 5 are substituted with a perfluoroalkyl group at the 2-position and the 7-position.
  • the case where it is a carbazol-9-yl group can also be mentioned.
  • Z and R 3 are a cyano group or a perfluoromethyl group, and R 1 , R 2 , R 4 and R 5 are substituted with a perfluoroalkyl group at the 2-position and the 7-position.
  • the case where it is a carbazol-9-yl group can also be mentioned.
  • the compound represented by the general formula (2) includes the substitution position and the number of substitutions of the carbazol-9-yl group substituted at the 2-position and the 7-position with a perfluoroalkyl group, and the benzene ring in the carbazolyl group.
  • the symmetry and linearity of the molecular structure can be controlled by selecting the binding site to the carbazolyl group, the position and number of substitution of the carbazolyl group introduced into the carbazolyl group, the binding site of the carbazolyl group to the carbazolyl group, etc. . For example, if the symmetry of the molecule is high, there is an advantage that the transition probability of electrons becomes high.
  • the molecule is linear because polarization increases and quantum yield increases.
  • the introduction of a cyano group, a perfluoroalkyl group, or a heterocyclic ring acts in the direction of increasing the molecular polarization.
  • Y represents a substituent selected from a cyano group or a pearl fluoromethyl group.
  • the molecular weight of the compound of the present invention is preferably 2000 or less, and more preferably 1650 or less, for example, when the organic layer containing the compound of the present invention is intended to be formed by vapor deposition. preferable.
  • the lower limit of the molecular weight is usually 247 or more, preferably 290 or more.
  • the compound of the present invention may be formed by a coating method regardless of the molecular weight. If a coating method is used, a film can be formed even with a compound having a relatively large molecular weight.
  • the compound of the present invention has a structure in which the carbazol-9-yl group is substituted with a perfluoroalkyl group, so that the carbazol-9-yl group is substituted with another substituent such as a cyano group.
  • the carbazol-9-yl group is substituted with another substituent such as a cyano group.
  • it has the characteristic that it is easy to carry out vapor phase growth and is easy to melt
  • a compound containing a plurality of characteristic structures of the compound of the present invention in the molecule for the light emitting layer of the organic light emitting device.
  • a polymer obtained by polymerizing a polymerizable monomer having a characteristic structure of the compound of the present invention is used in a light emitting layer of an organic light emitting device.
  • a repeating unit is prepared by preparing a monomer having a polymerizable functional group in any one of D and A in the general formula (1) and polymerizing the monomer alone or copolymerizing with other monomers.
  • any one of D and A in the general formula (1) is represented by the following general formula (17) or (18). The thing which has a structure which can be mentioned.
  • L 1 and L 2 represent a linking group.
  • the linking group preferably has 0 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, and still more preferably 2 to 10 carbon atoms. And preferably has a structure represented by - linking group -X 11 -L 11.
  • X 11 represents an oxygen atom or a sulfur atom, and is preferably an oxygen atom.
  • L 11 represents a linking group, and is preferably a substituted or unsubstituted alkylene group, or a substituted or unsubstituted arylene group, and is a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted group A phenylene group is more preferable.
  • R 101 , R 102 , R 103 and R 104 each independently represent a substituent.
  • it is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, or a halogen atom, more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms.
  • An unsubstituted alkoxy group having 1 to 3 carbon atoms, a fluorine atom, and a chlorine atom and more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms and an unsubstituted alkoxy group having 1 to 3 carbon atoms.
  • the structure of the repeating unit include those obtained by introducing the structures represented by the following formulas (21) to (24) into either D or A in the general formula (1).
  • the number of structures represented by the following formulas (21) to (24) to be introduced into any one of D and A in the general formula (1) may be two or more, it is preferably one.
  • n represents the number of repeating units, and the range thereof is not particularly limited.
  • a hydroxy group is introduced into at least one of D and A in the general formula (1), and the following compounds are reacted using the hydroxyl group as a linker. It can be synthesized by introducing a polymerizable group and polymerizing the polymerizable group.
  • the polymer containing the structure represented by the general formula (1) in the molecule may be a polymer composed only of repeating units having the structure represented by the general formula (1), or other structures may be used. It may be a polymer containing repeating units.
  • the repeating unit having a structure represented by the general formula (1) contained in the polymer may be a single type or two or more types. Examples of the repeating unit not having the structure represented by the general formula (1) include those derived from monomers used in ordinary copolymerization. Examples thereof include a repeating unit derived from a monomer having an ethylenically unsaturated bond such as ethylene and styrene.
  • the above compounds of the present invention are novel compounds.
  • the method for synthesizing the compound of the present invention is not particularly limited.
  • the compound of the present invention can be synthesized by appropriately combining known synthesis methods and conditions. For example, it can be synthesized by reacting 2,7-ditrifluoromethylcarbazole and fluoride, and the specific reaction conditions can be referred to the synthesis examples described later.
  • At least a part of a carbazol-9-yl group, at least a part of a group having a positive Hammett ⁇ p, and a ⁇ -conjugated linking group, if present, are ⁇ -electron conjugated. It has a structure that forms a system. Since the compound of the present invention has such a structure, both the HOMO level and the LUMO level are deep, and it is considered that the degradation of the radical species and excitons generated in the light emission process due to the reaction with moisture and oxygen is suppressed. It is done.
  • the substitution positions of the perfluoroalkyl group in the carbazol-9-yl group are the 2nd and 7th positions, so that when the perfluoroalkyl group is not present, Compared with a certain case, remarkably high light emission efficiency can be obtained, and light with a shorter wavelength and a narrow half-value width of the emission spectrum can be emitted.
  • the compound represented by the general formula (1) such excellent emission characteristics are realized because the difference ⁇ E ST between the excited singlet energy level E S1 and the excited triplet energy level E T1 is small. It is presumed that this is because vibration relaxation (nonradiative deactivation) after being in an excited state is small.
  • a compound in which the 2-position and 7-position of the carbazol-9-yl group are substituted with a perfluoroalkyl group is a compound in which the 3-position and 6-position of the carbazol-9-yl group are substituted with a perfluoroalkyl group Compared with, the vibrational relaxation after being in the excited state is small, and it is presumed that radiation deactivation occurs from a higher excited singlet energy level with respect to the ground level.
  • the compound of the present invention has good light emission characteristics and high light resistance.
  • the compound of this invention is useful as a luminescent material or host material of an organic light emitting element, and can be used effectively as a material of the light emitting layer of an organic light emitting element.
  • the compound of the present invention includes a delayed fluorescent material (delayed phosphor) that emits fluorescence (delayed fluorescence) via the above-described inverse intersystem crossing together with normal fluorescence.
  • the present invention relates to the invention of the delayed phosphor having the characteristic structure of the present invention, the invention of using the compound of the present invention as the delayed phosphor, and the invention of the method of emitting delayed fluorescence using the compound of the present invention. Also provide.
  • An organic light emitting device using such a compound as a light emitting material emits delayed fluorescence and has a feature of high luminous efficiency. The principle will be described below by taking an organic electroluminescence element as an example.
  • the organic electroluminescence element carriers are injected into the light emitting material from both positive and negative electrodes to generate an excited light emitting material and emit light.
  • 25% of the generated excitons are excited to the excited singlet state, and the remaining 75% are excited to the excited triplet state. Therefore, the use efficiency of energy is higher when phosphorescence, which is light emission from an excited triplet state, is used.
  • the excited triplet state has a long lifetime, energy saturation occurs due to saturation of the excited state and interaction with excitons in the excited triplet state, and in general, the quantum yield of phosphorescence is often not high.
  • delayed fluorescent materials after energy transition to an excited triplet state due to intersystem crossing, etc., are then crossed back to an excited singlet state due to triplet-triplet annihilation or absorption of thermal energy, and emit fluorescence.
  • a thermally activated delayed fluorescent material by absorption of thermal energy is particularly useful.
  • excitons in the excited singlet state emit fluorescence as usual.
  • excitons in the excited triplet state absorb heat generated by the device and cross between the excited singlets to emit fluorescence.
  • the light is emitted from the excited singlet, the light is emitted at the same wavelength as the fluorescence, but the light lifetime (luminescence lifetime) generated by the reverse intersystem crossing from the excited triplet state to the excited singlet state is normal. Since the fluorescence becomes longer than the fluorescence and phosphorescence, it is observed as fluorescence delayed from these. This can be defined as delayed fluorescence. If such a heat-activated exciton transfer mechanism is used, the ratio of the compound in an excited singlet state, which normally generated only 25%, is increased to 25% or more by absorbing thermal energy after carrier injection. It can be raised.
  • the heat of the device will sufficiently cause intersystem crossing from the excited triplet state to the excited singlet state and emit delayed fluorescence. Efficiency can be improved dramatically.
  • organic light emitting devices such as an organic photoluminescence device (organic PL device) and an organic electroluminescence device (organic EL device) can be provided.
  • the organic photoluminescence element has a structure in which at least a light emitting layer is formed on a substrate.
  • the organic electroluminescence element has a structure in which an organic layer is formed at least between an anode, a cathode, and an anode and a cathode.
  • the organic layer includes at least a light emitting layer, and may consist of only the light emitting layer, or may have one or more organic layers in addition to the light emitting layer.
  • Examples of such other organic layers include a hole transport layer, a hole injection layer, an electron blocking layer, a hole blocking layer, an electron injection layer, an electron transport layer, and an exciton blocking layer.
  • the hole transport layer may be a hole injection / transport layer having a hole injection function
  • the electron transport layer may be an electron injection / transport layer having an electron injection function.
  • the organic electroluminescence element may be a bottom emission type in which light generated in the light emitting layer is extracted from the substrate side, or may be a top emission type in which light generated in the light emitting layer is extracted from the opposite side of the substrate.
  • the electrode formed on the substrate side may be an anode or a cathode.
  • the electrode on the side from which light is extracted is required to be transparent, but the electrode on the opposite side is not necessarily transparent.
  • a specific example of the structure of an organic electroluminescence element is shown in FIG.
  • 1 is a substrate
  • 2 is an anode
  • 3 is a hole injection layer
  • 4 is a hole transport layer
  • 5 is a light emitting layer
  • 6 is an electron transport layer
  • 7 is a cathode.
  • each member and each layer of an organic electroluminescent element are demonstrated.
  • substrate and a light emitting layer corresponds also to the board
  • the organic electroluminescence device of the present invention is preferably supported on a substrate.
  • the substrate is not particularly limited and may be any substrate conventionally used for organic electroluminescence elements.
  • a substrate made of glass, transparent plastic, quartz, silicon, or the like can be used.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) that can form a transparent conductive film may be used.
  • a thin film may be formed by vapor deposition or sputtering of these electrode materials, and a pattern of a desired shape may be formed by photolithography, or when pattern accuracy is not so high (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • wet film-forming methods such as a printing system and a coating system, can also be used.
  • the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture
  • Suitable are a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum and the like.
  • the compound represented by the general formula (1) often has a very deep LUMO level, a metal having a large work function and stable in the atmosphere can also be used. Specifically, gold, silver, or the like can be used.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the emission luminance is advantageously improved.
  • a transparent or semi-transparent cathode can be produced. By applying this, an element in which both the anode and the cathode are transparent is used. Can be produced.
  • the light emitting layer is a layer that emits light after excitons are generated by recombination of holes and electrons injected from each of the anode and the cathode, and the light emitting material may be used alone for the light emitting layer. , Preferably including a luminescent material and a host material. As a luminescent material, 1 type, or 2 or more types chosen from the compound group of this invention can be used. In order for the organic electroluminescent device and the organic photoluminescent device of the present invention to exhibit high luminous efficiency, it is important to confine singlet excitons and triplet excitons generated in the light emitting material in the light emitting material.
  • a host material in addition to the light emitting material in the light emitting layer.
  • the host material an organic compound having at least one of excited singlet energy and excited triplet energy higher than that of the light emitting material of the present invention can be used.
  • singlet excitons and triplet excitons generated in the light emitting material of the present invention can be confined in the molecules of the light emitting material of the present invention, and the light emission efficiency can be sufficiently extracted.
  • high luminous efficiency can be obtained, so that host materials that can achieve high luminous efficiency are particularly limited. And can be used in the present invention.
  • the organic light emitting device or organic electroluminescent device of the present invention light emission is generated from the light emitting material of the present invention contained in the light emitting layer. This emission includes both fluorescence and delayed fluorescence. However, light emission from the host material may be partly or partly emitted.
  • the amount of the compound of the present invention, which is a light emitting material is preferably 0.1% by weight or more, more preferably 1% by weight or more, and 50% or more. It is preferably no greater than wt%, more preferably no greater than 20 wt%, and even more preferably no greater than 10 wt%.
  • the host material in the light-emitting layer is preferably an organic compound that has a hole transporting ability and an electron transporting ability, prevents the emission of longer wavelengths, and has a high glass transition temperature.
  • the injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the luminance of light emission.
  • the injection layer can be provided as necessary.
  • the blocking layer is a layer that can prevent diffusion of charges (electrons or holes) and / or excitons existing in the light emitting layer to the outside of the light emitting layer.
  • the electron blocking layer can be disposed between the light emitting layer and the hole transport layer and blocks electrons from passing through the light emitting layer toward the hole transport layer.
  • a hole blocking layer can be disposed between the light emitting layer and the electron transporting layer to prevent holes from passing through the light emitting layer toward the electron transporting layer.
  • the blocking layer can also be used to block excitons from diffusing outside the light emitting layer. That is, each of the electron blocking layer and the hole blocking layer can also function as an exciton blocking layer.
  • the term “electron blocking layer” or “exciton blocking layer” as used herein is used in the sense of including a layer having the functions of an electron blocking layer and an exciton blocking layer in one layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense.
  • the hole blocking layer has a role of blocking holes from reaching the electron transport layer while transporting electrons, thereby improving the recombination probability of electrons and holes in the light emitting layer.
  • the material for the hole blocking layer the material for the electron transport layer described later can be used as necessary.
  • the electron blocking layer has a function of transporting holes in a broad sense.
  • the electron blocking layer has a role to block electrons from reaching the hole transport layer while transporting holes, thereby improving the probability of recombination of electrons and holes in the light emitting layer. .
  • the exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine in the light emitting layer, and the light emission efficiency of the device can be improved.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted simultaneously.
  • the layer when the exciton blocking layer is provided on the anode side, the layer can be inserted adjacent to the light emitting layer between the hole transport layer and the light emitting layer, and when inserted on the cathode side, the light emitting layer and the cathode Between the luminescent layer and the light-emitting layer.
  • a hole injection layer, an electron blocking layer, or the like can be provided between the anode and the exciton blocking layer adjacent to the anode side of the light emitting layer, and the excitation adjacent to the cathode and the cathode side of the light emitting layer can be provided.
  • an electron injection layer, an electron transport layer, a hole blocking layer, and the like can be provided.
  • the blocking layer is disposed, at least one of the excited singlet energy and the excited triplet energy of the material used as the blocking layer is preferably higher than the excited singlet energy and the excited triplet energy of the light emitting material.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • hole transport materials that can be used include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, Examples include amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • An aromatic tertiary amine compound and an styrylamine compound are preferably used, and an aromatic tertiary amine compound is more preferably used.
  • An inorganic semiconductor such as molybdenum oxide can also be used as the hole transport material.
  • the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
  • the electron transport material (which may also serve as a hole blocking material) may have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • Examples of the electron transport layer that can be used include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide oxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • thiadiazole derivatives in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and quinoxaline derivatives having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • An inorganic semiconductor such as zinc oxide can also be used as an electron transport material.
  • the compound of the present invention may be used not only for the light emitting layer but also for layers other than the light emitting layer.
  • the compound of this invention used for a light emitting layer and the compound of this invention used for layers other than a light emitting layer may be the same, or may differ.
  • the compound of the present invention may be used for the injection layer, blocking layer, hole blocking layer, electron blocking layer, exciton blocking layer, hole transport layer, electron transport layer and the like.
  • the method for forming these layers is not particularly limited, and the layer may be formed by either a dry process or a wet process.
  • the preferable material which can be used for an organic electroluminescent element is illustrated concretely.
  • the material that can be used in the present invention is not limited to the following exemplary compounds.
  • R, R ′, and R 1 to R 10 each independently represent a hydrogen atom or a substituent.
  • X represents a carbon atom or a hetero atom forming a ring skeleton
  • n represents an integer of 3 to 5
  • Y represents a substituent
  • m represents an integer of 0 or more.
  • the HOMO / LUMO level of the host material can be adjusted by appropriately introducing a substituent into the basic skeleton of the following exemplary compounds.
  • a compound having a deep HOMO / LUMO level by introducing a cyano group or a perfluoroalkyl group into the basic skeleton of the following exemplary compounds can be used as a host material or a peripheral compound.
  • the host material may be bipolar (both holes and electrons flow well) or unipolar, and must have an excited triplet energy level E T1 higher than that of the light-emitting material. Is preferred.
  • a more preferable host material is bipolar and has a higher excited triplet energy level E T1 than that of a light-emitting material.
  • the organic electroluminescent device produced by the above-described method emits light by applying an electric field between the anode and the cathode of the obtained device. At this time, if the light is emitted by excited singlet energy, light having a wavelength corresponding to the energy level is confirmed as fluorescence emission and delayed fluorescence emission. In addition, in the case of light emission by excited triplet energy, a wavelength corresponding to the energy level is confirmed as phosphorescence. Since normal fluorescence has a shorter fluorescence lifetime than delayed fluorescence, the emission lifetime can be distinguished from fluorescence and delayed fluorescence.
  • phosphorescence is hardly observable at room temperature in ordinary organic compounds such as the compounds of the present invention because the excited triplet energy is unstable and converted to heat, etc., and has a short lifetime and immediately deactivates.
  • the excited triplet energy of a normal organic compound it can be measured by observing light emission under extremely low temperature conditions.
  • the organic electroluminescence element of the present invention can be applied to any of a single element, an element having a structure arranged in an array, and a structure in which an anode and a cathode are arranged in an XY matrix. According to the present invention, an organic light-emitting device having greatly improved luminous efficiency can be obtained by incorporating the compound of the present invention in the light-emitting layer.
  • the organic light emitting device such as the organic electroluminescence device of the present invention can be further applied to various uses. For example, it is possible to produce an organic electroluminescence display device using the organic electroluminescence element of the present invention.
  • organic electroluminescence device of the present invention can be applied to organic electroluminescence illumination and backlights that are in great demand.
  • the features of the present invention will be described more specifically with reference to synthesis examples and examples. The following materials, processing details, processing procedures, and the like can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
  • the HOMO level and LUMO level were measured using an atmospheric photoelectron spectrometer (manufactured by Riken Keiki Co., Ltd .: AC3) and a UV / Vis / NIR spectrophotometer (manufactured by PerkinElmer: LAMBDA950).
  • E S1 The difference ( ⁇ E ST ) between the excited singlet energy level (E S1 ) and the excited triplet energy level (E T1 ) of each material is equal to the excited singlet energy level (E S1 ) and the excited triplet energy level (E S1 ).
  • Excited singlet energy level E S1 A sample having a thickness of 100 nm was formed on a Si substrate by co-evaporating the measurement target compound and DPEPO so that the measurement target compound had a concentration of 6% by weight. The fluorescence spectrum of this sample was measured at room temperature (300K).
  • a fluorescence spectrum having a luminescence intensity on the vertical axis and a wavelength on the horizontal axis was obtained.
  • the vertical axis represents light emission and the horizontal axis represents wavelength.
  • a tangent line was drawn with respect to the short-wave rise of the emission spectrum, and the wavelength value ⁇ edge [nm] at the intersection of the tangent line and the horizontal axis was obtained.
  • a value obtained by converting this wavelength value into an energy value by the following conversion formula was defined as E S1 .
  • E S1 [eV] 1239.85 / ⁇ edge
  • a nitrogen laser Lasertechnik Berlin, MNL200
  • a streak camera Hamamatsu Photonics, C4334
  • E T1 Excited triplet energy level
  • the same sample as the excited singlet energy level E S1 was cooled to 5 [K]
  • the sample for phosphorescence measurement was irradiated with the excitation light (337 nm), and the phosphorescence intensity was measured using a streak camera.
  • tangents at each point on the curve are considered toward the long wavelength side.
  • the slope of this tangent line increases as the curve rises (that is, as the vertical axis increases).
  • the tangent drawn at the point where the value of the slope takes the maximum value was taken as the tangent to the rising edge of the phosphorescence spectrum on the short wavelength side.
  • the maximum point having a peak intensity of 10% or less of the maximum peak intensity of the spectrum is not included in the above-mentioned maximum value on the shortest wavelength side, and has the maximum slope value closest to the maximum value on the shortest wavelength side.
  • the tangent drawn at the point where the value was taken was taken as the tangent to the rising edge of the phosphorescence spectrum on the short wavelength side.
  • Table 1 shows the HOMO and LUMO levels and the lowest excited triplet energy levels E T1 and ⁇ E ST of Compound 1 and Compound 2 synthesized in each synthesis example.
  • the compounds (Comparative Compounds 1 to 6) used for comparison in this example are shown below, and the HOMO levels and LUMO levels of Comparative Compounds 1, 2, and 4 and the lowest excited triplet energy level E T1 , ⁇ E Table 1 shows the ST .
  • Example 1 A toluene solution of compound 1 (concentration 10 ⁇ 5 mol / L) was prepared. In addition, a thin film (single film) of Compound 1 was deposited on a quartz substrate at a vacuum degree of the order of 10 ⁇ 5 Pa to a thickness of 100 nm to obtain an organic photoluminescence device. Separately, a compound 1 and DPEPO are deposited on a quartz substrate at a degree of vacuum of the order of 10 ⁇ 5 Pa from different deposition sources, and a thin film (dope film) having a concentration of compound 1 of 10% by weight is formed to a thickness of 100 nm.
  • the organic photoluminescence element was formed with a thickness.
  • a thin film of Compound 1 was deposited on a quartz substrate with a thickness of 100 nm on a quartz substrate at a vacuum degree of the order of 10 -5 Pa, and the thin film was sealed with glass and UV curable resin in a glove box. Thus, a sealing element was produced.
  • Example 2 Except for using Compound 2 instead of Compound 1, a toluene solution, a single film and a doped film of Compound 2 were prepared in the same manner as in Example 1 to obtain organic photoluminescence.
  • Example 3 Except for using Compound 3 in place of Compound 1, a toluene solution, a single film and a doped film of Compound 3 were prepared in the same manner as in Example 1 to obtain organic photoluminescence.
  • Example 4 Except for using Compound 4 instead of Compound 1, a toluene solution, a single film and a doped film of Compound 4 were prepared in the same manner as in Example 1 to obtain organic photoluminescence.
  • Comparative Examples 1 to 4, 7 to 9 Except for using Comparative Compounds 1 to 4 and 7 to 9 instead of Compound 1, a toluene solution, a single film and a dope film of Comparative Compounds 1 to 4 and 7 to 9 were prepared in the same manner as in Example 1, respectively. Organic photoluminescence was used.
  • Comparative Examples 5 and 6 Comparative Examples 5 and 6 were used instead of Compound 1 and acetone was used instead of toluene, respectively, and an acetone solution, a single film and a dope film of Comparative Compounds 5 and 6 were respectively prepared in the same manner as Example 1. Organic photoluminescence was used.
  • Comparative Examples 10 and 11 Sealing elements of Comparative Compounds 10 and 11 were produced in the same manner as in Example 1 except that Comparative Compounds 10 and 11 were used instead of Compound 1.
  • the photoluminescence quantum yield is measured under two conditions: when toluene bubbling and acetone solution are not subjected to nitrogen bubbling, and when measuring after nitrogen bubbling. I went in the atmosphere.
  • the results of measuring the immediate fluorescence lifetime T1 and the delayed fluorescence lifetime T2 by the excitation light of 340 nm for the toluene solution, the single film and the doped film of Compound 1 and Comparative Compound 2, and the lowest values for the doped films of Compound 1 and Comparative Compound 2 Table 3 shows the measurement results of the excited singlet energy levels E S1 and ⁇ E ST .
  • the results of measuring the transient decay curve of 460 nm emission by 337 nm excitation light at temperatures of 5K, 100K, 200K, and 300K are shown in FIG. 5, and Compound 1 and Comparative Compound 2 were doped.
  • the results of measuring the temperature dependence of the photoluminescence quantum yield (PLQY) of immediate fluorescence and delayed fluorescence for the DPEPO film are shown in FIG. 6, and the immediate fluorescence and delayed fluorescence of the DPEPO films doped with Compound 2 and Comparative Compound 4 are shown.
  • the result of having measured the temperature dependence of the photoluminescence quantum yield (PLQY) of is shown in FIG.
  • FIG. 8 shows the results of measuring the time-dependent change of the emission intensity by continuously irradiating 365 nm excitation light in the atmosphere for each of the sealing elements of Compound 1 and Comparative Compounds 10 and 11.
  • the toluene solutions and the acetone solutions of Examples 1 and 2 and Comparative Examples 1 to 6 have higher photoluminescence quantum yields when nitrogen bubbling is performed than when nitrogen bubbling is not performed. The rate is obtained. This is presumably because the nitrogen bubbling suppressed quenching of triplet excitons by oxygen and promoted reverse intersystem crossing from the excited triplet state to the excited singlet state. From this, it was shown that the compounds 1 and 2 and the comparative compounds 1 to 6 can emit delayed fluorescence via reverse intersystem crossing.
  • the organic photoluminescent devices of Compounds 1 and 2 in which the 2-position and the 7-position of the carbazol-9-yl group are substituted with a perfluoroalkyl group have no carbazol-9-yl group.
  • the organic photoluminescence element of Compound 1 had a longer delayed fluorescence lifetime T2 than the organic photoluminescence element of Comparative Compound 2. Furthermore, in FIGS. 6 and 7, the temperature dependence of the photoluminescence quantum yield of delayed fluorescence is not different in the low temperature region, but the temperature dependence of the photoluminescence quantum yield is high in the high temperature region exceeding 200K.
  • each organic photoluminescent element of the compound 1 and the compound 2 is clearly higher than each organic photoluminescent element of the comparative compound 2 and the comparative compound 4. This indicates that each compound is a thermally activated delayed fluorescent material, and the reverse intersystem crossing activated by the heat is more likely to occur in compounds 1 and 2 than in comparative compounds 2 and 4. Is shown. Also, ease of tendencies occur in the Gyakuko between crossing towards Compound 1, also supported since Delta] E ST is smaller than the comparative compound 2 (see Table 1).
  • Comparative Compound 5 in which the 2nd and 7th positions of the carbazol-9-yl group are substituted with a cyano group, and the 3rd and 6th positions of the carbazol-9-yl group are substituted with a cyano group
  • Comparative Compound 2 Comparative Compound 2
  • the emission wavelength of the cyano group is shortened as in the case of the perfluoroalkyl group.
  • the photoluminescence quantum yield was very low, and the half width of the emission spectrum was hardly affected.
  • Both the perfluoroalkyl group and the cyano group are electron-withdrawing substituents having a positive Hammett ⁇ .
  • the tendency to improve the light emission characteristics is not limited to the case where the acceptor unit is cyanobenzene, but perfluoroalkyl group substitution. It was also observed in the case of a structure composed of a heterocyclic ring such as an aromatic ring or triazine.
  • Example 5 Each thin film was deposited and laminated on a glass substrate on which an anode made of indium tin oxide (ITO) having a thickness of 100 nm was formed at a degree of vacuum of the order of 10 ⁇ 5 Pa. First, NPD was formed on ITO with a thickness of 30 nm, and mCP was formed thereon with a thickness of 10 nm. Next, Compound 1 and PPT were co-evaporated from different vapor deposition sources to form a 20 nm thick layer as a light emitting layer. At this time, the concentration of Compound 1 was 5% by weight.
  • ITO indium tin oxide
  • FIG. 9 shows the current density-voltage-luminance characteristics of the produced organic electroluminescence device.
  • this organic electroluminescence element had a maximum emission wavelength at 460 nm, and the chromaticity coordinates (x, y) were (0.15, 0.15).
  • this organic electroluminescence device achieved an external quantum efficiency exceeding 14%, and was confirmed to be an excellent device.
  • FIG. 9 shows the current density-voltage-luminance characteristics of the produced organic electroluminescence device.
  • the emission maximum wavelength of this organic electroluminescence element is 470 nm as shown in FIG. 10, and the chromaticity coordinates (x, y) are (0.15, 0.23), which is compared with the organic electroluminescence element of Example 3.
  • the emission wavelength was a long wavelength.
  • the maximum external quantum efficiency was less than 10%, which was significantly inferior to the organic electroluminescence device of Example 3.
  • the compound of the present invention has a deep HOMO level and a LUMO level, and has excellent light emission characteristics and high light resistance. For this reason, the compound of this invention is useful as a luminescent material for organic light emitting elements. Moreover, since the organic light emitting device of the present invention contains such a light emitting material, it can realize excellent light emitting characteristics. For this reason, this invention has high industrial applicability.

Abstract

2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基と、ハメットのσpが正の構造単位(ただし芳香族炭化水素基は除く)とが、直接結合しているかπ共役連結基を介して結合した構造を含んでいて、前記カルバゾール-9-イル基の少なくとも一部と前記ハメットのσpが正の構造単位の少なくとも一部と前記π共役連結基が存在する場合はそのπ共役連結基とがπ電子共役系を形成している化合物を用いれば、発光効率が高い有機発光素子を提供することができる。

Description

有機発光素子ならびにそれに用いる発光材料および化合物
 本発明は、発光効率が高い有機発光素子に関する。また、その有機発光素子に用いる発光材料と化合物にも関する。
 有機エレクトロルミネッセンス素子(有機EL素子)などの有機発光素子の発光効率を高める研究が盛んに行われている。特に、有機エレクトロルミネッセンス素子を構成する電子輸送材料、正孔輸送材料、発光材料などを新たに開発して組み合わせることにより、発光効率を高める工夫が種々なされてきている。その中には、パーフルオロアルキル基で置換されたカルバゾリル基を有する化合物を利用した有機エレクトロルミネッセンス素子に関する研究も見受けられる。
 例えば、非特許文献1には、3,5,3’,5’-テトラメチル-4,4’-ビス[(2,7-ジトリフルオロメチル)カルバゾール-9-イル]ビフェニルが、有機エレクトロルミネッセンス素子のマトリックス材料として使用しうることが記載されている。
 特許文献1には、下記一般式(3)で表されるシアノベンゼン誘導体を有機発光素子の発光材料として用いることが記載されている。ここでは、一般式(3)において、R81~R85の1つはシアノ基であり、R81~R85の2つは特定の置換基で置換されていてもよい9-カルバゾリル基であり、その他の2つは水素原子を表すことが規定されている。また、同文献には、9-カルバゾリル基に置換しうる置換基群の中にハロゲン原子とアルキル基、置換基群に列挙された基の組み合わせからなる置換基が挙げられている。
Figure JPOXMLDOC01-appb-C000003
 特許文献2には、蛍光発光性ドーパントとして下記の化合物F-9が掲載されている。また、同文献には、下記一般式(I)で表されるホスト化合物を有機エレクトロルミネッセンス素子の発光層に用いることが記載されている。ここでは、X101は、NR101、酸素原子、硫黄原子、CR102103又はSiR102103を表し、y1~y8はCR104又は窒素原子を表し、R101~R104は水素原子又は置換基を表し、Ar101及びAr102は芳香環を表すことが規定されている。また、同文献には、R101~R104が表す置換基群の中に、芳香族炭化水素環基、フルオロメチル基、シアノ基が挙げられており、置換基はさらに置換基群の中の置換基で置換されていてもよいことが記載されている。
Figure JPOXMLDOC01-appb-C000004
 非特許文献2には、トリフルオロメチルベンゼンとカルバゾリル基を組み合わせた材料である、4CzCF3Phおよび5CzCF3Phが記載されている。
Figure JPOXMLDOC01-appb-C000005
 特許文献3には、(1)式であらわされるドナーアクセプター型の材料を有機発光素子の発光材料として用いることが記載されている。具体例として一般式(206)が記載されている。Z1、Z2は水素原子、シアノ基、置換されてもよいアリール基、又は置換されてもよいヘテロアリール基を表す。
Figure JPOXMLDOC01-appb-C000006
Chem. Mater. 2015, 27, 1772-1779 Chem. Commun. 2015, 51, 13024-13027
特許第5366106号公報 国際公開第2015/022987号パンフレット 国際公開第2016/181846号パンフレット
 上記のように、各文献には、パーフルオロアルキル基で置換されたカルバゾリル基を有する化合物、または、そのような構造を有する化合物を包含する一般式が記載されている。しかし、本発明者らが、各文献に記載された化合物の発光特性を評価したところ、いずれも十分満足のいくものとは言えないことが判明した。
 まず、非特許文献1に記載の3,5,3’,5’-テトラメチル-4,4’-ビス[(2,7-ジトリフルオロメチル)カルバゾール-9-イル]ビフェニルは、有機エレクトロルミネッセンス素子のマトリックス材料としての使用が想定されており、同文献には、その発光特性について一切記載されていない。また、この化合物は分子内にアクセプター性基を有していないため、HOMO(Highest Occupied Molecular Orbital)とLUMO(Lowest Unoccupied Molecular Orbital)を効果的に分離することができず、HOMOとLUMOの分離によってもたらされる高い発光効率を期待できないと考えられた。
 特許文献2の化合物F-9については、その化合物を発光層に含む有機エレクトロルミネッセンス素子を実際に作製して発光特性を評価したところ、十分な発光効率が得られないことが判明した。また、特許文献2の一般式(I)で表される化合物はホスト化合物として使用されるものであり、同文献には、その発光特性については何ら検討がなされていない。しかも、一般式(I)は、極めて広範な化合物を包含しており、その範囲にパーフルオロアルキル基で置換されたカルバゾリル基を有する化合物も含まれるものの、同文献に記載された一般式(I)で表される化合物の具体例の中に、パーフルオロメチル基で置換されたカルバゾリル基を有する化合物は存在していない。
 一方、特許文献1には、一般式(3)で表される化合物(カルバゾール-9-イル基を有するシアノベンゼン誘導体)を発光材料として使用することが記載されている。しかし、同文献にはカルバゾール-9-イル基の置換基としてパーフルオロアルキル基が好ましいことは記載されておらず、そのような構造を有する化合物の具体例も記載されていない。
 非特許文献2に記載の4CzCF3Phおよび5CzCF3Phは、電子アクセプターとしてパーフルオロメチルベンゼンを用い、電子ドナーとしてカルバゾリル基を用いた発光材料である。これらの化合物はアクセプターにパーフルオロメチル基を用いているが、カルバゾリル基へパーフルオロメチル基が置換することについては一切検討していない。
 特許文献3には、一般式(206)であらわされる化合物を発光材料として用いることが記載されている。ここには、カルバゾリル基を含むドナー性基の修飾基として好ましいのは、電子供与性の修飾基であると記載されており、電子吸引性の修飾基であるパーフルオロアルキル基については記載されていない。
 このような状況の中、特許文献1に記載の化合物について、本発明者らがさらに検討を進めたところ、シアノ基やパーフルオロメチル基、トリアジニル基のようなアクセプター基とカルバゾール-9-イル基で芳香環が置換された構造を有する化合物は、HOMO準位とLUMO準位をさらに下げることができれば一段と有用であることが判明した。HOMO準位とLUMO準位が下がれば酸化され難くなることから、特に発光材料のLUMO準位が下がると、その発光過程で生成するラジカル種や励起子の水や酸素との反応による劣化が抑制されることが期待される。また、LUMO準位とともにHOMO準位が下がることにより、HOMO-LUMOギャップが狭くなることによる発光の長波長化が抑えられ、発光波長の短波長化を考慮しつつ耐酸化性を付与する場合に有利になる。このため、HOMO準位とLUMO準位をともに下げることにより、より有用な発光材料が実現することが期待される。しかしながら、非特許文献1、2、特許文献1、2、3には、さらにHOMO準位とLUMO準位を下げる方策に関する記載はない。
 本発明者らはこれらの先行技術の課題を考慮して、カルバゾール-9-イル基とアクセプター基で芳香環が置換された構造を有する化合物について、HOMO準位とLUMO準位を深くして、高い発光効率を得ることを目的として検討を進めた。また、発光材料として有用な化合物の一般式を導きだし、さらに、発光効率が高い有機発光素子の構成を一般化することも目的として鋭意検討を進めた。
 上記の目的を達成するために鋭意検討を進めた結果、本発明者らは、カルバゾール-9-イル基とハメットのσpが正の構造単位とがπ電子共役系を形成している化合物において、そのカルバゾール-9-イル基の2位と7位の両方をパーフルオロアルキル基で置換すると、カルバゾール-9-イル基がパーフルオロアルキル基で置換されていない化合物に比べて、HOMO準位とLUMO準位がともに下がると同時に、発光効率が顕著に高くなり、発光波長が短波長化され、半値幅の狭い発光スペクトルが得られることを見出した。そして、こうした特定の位置がパーフルオロアルキル基で置換されたカルバゾール-9-イル基とハメットのσpが正の構造単位とがπ電子共役系を形成している化合物は有機エレクトロルミネッセンス素子の発光材料として極めて有用であることを明らかにした。さらに、この化合物の中に、遅延蛍光材料として有用な化合物があることを見出し、発光効率が高い有機発光素子を安価に提供しうることを明らかにした。本発明者らは、これらの知見に基づいて、上記の課題を解決する手段として、以下の本発明を提供するに至った。
[1] 2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基と、ハメットのσpが正の構造単位(ただし芳香族炭化水素基は除く)とが、直接結合しているかπ共役連結基を介して結合した構造を含んでいて、前記カルバゾール-9-イル基の少なくとも一部と前記ハメットのσpが正の構造単位と前記π共役連結基が存在する場合はそのπ共役連結基とがπ電子共役系を形成している化合物。
[2] 下記一般式(1)で表される構造を有することを特徴とする[1]に記載の化合物。
一般式(1)
 (D)m-A
[一般式(1)において、Dはハメットのσpが負の基を表し、Aはハメットのσpが正の構造単位からなる基を表す。mは1以上の整数を表す。mが2以上であるとき複数のDは同一であっても異なっていてもよい。Dの少なくとも1つは、2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基を含む基である。前記カルバゾール-9-イル基の少なくとも一部と、前記Aを構成する芳香族炭化水素基以外の構造の少なくとも一部と、前記カルバゾール-9-イル基と前記構造を連結する連結基が存在する場合はその連結基とが、π電子共役系を形成している。]
[3] 前記一般式(1)のDの少なくとも1つが、2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基であることを特徴とする[2]に記載の化合物。
[4] 前記一般式(1)のDの全てが、2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基であることを特徴とする[2]に記載の化合物。
[5] 前記一般式(1)のAが芳香環を含むことを特徴とする[2]~[4]のいずれか1項に記載の化合物。
[6] 前記一般式(1)のAが芳香族炭化水素環を含むことを特徴とする[5]に記載の化合物。
[7] 前記一般式(1)のAが芳香族ヘテロ環を含むことを特徴とする[5]または[6]に記載の化合物。
[8] 前記一般式(1)のAがフッ素原子、アシル基、アシルオキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、シアノ基、ホスフィンオキシド基、スルホニル基、パーフルオロアルキル基、ホスフィンオキシド基、アミド基、アルコキシ基、ピリジル基、ピリミジル基またはトリアジル基を含むことを特徴とする[2]~[7]のいずれか1項に記載の化合物。
[9] 前記一般式(1)のAが臭素原子、ヨウ素原子またはニトロ基を含まないことを特徴とする[2]~[8]のいずれか1項に記載の化合物。
[10] 前記カルバゾール-9-イル基と、前記Aを構成する芳香族炭化水素基以外の構造とが、芳香環を介して連結していることを特徴とする[2]~[9]のいずれか1項に記載の化合物。
[11] 前記一般式(1)で表される化合物は、下記一般式(2)で表される化合物である[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000007
[一般式(2)において、Zはシアノ基、パーフルオロアルキル基、置換もしくは無置換のトリアジニル基または置換もしくは無置換のピリミジニル基を表し、R1~R5の少なくとも1つは2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基を表し、残りのR1~R5は各々独立に水素原子または置換基を表す。]
[12] 前記一般式(2)のR2がシアノ基もしくはパーフルオロメチル基であることを特徴とする[11]に記載の化合物。
[13] 前記一般式(2)のR1、R3~R5が、前記2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基であることを特徴とする[12]に記載の化合物。
[14] 前記一般式(2)のR3がシアノ基もしくはパーフルオロメチル基であることを特徴とする[11]に記載の化合物。
[15] 前記一般式(2)のR1とR2とR4とR5が、前記2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基であることを特徴とする[14]に記載の化合物。
[16] 前記2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基が、下記一般式(11)で表される構造を有することを特徴とする[1]~[15]のいずれか1項に記載の化合物。
Figure JPOXMLDOC01-appb-C000008
[一般式(11)において、R21、R23~R26、R28は、各々独立に水素原子または置換基を表し、R22とR27はパーフルオロアルキル基を表す。]
[17] 前記一般式(11)のR21、R23~R26、R28の少なくとも1つが置換もしくは無置換のカルバゾリル基であることを特徴とする[16]に記載の化合物。
[18] 前記一般式(11)のR23が置換もしくは無置換のカルバゾリル基であることを特徴とする[17]に記載の化合物。
[19] 前記一般式(11)のR23およびR26が置換もしくは無置換のカルバゾリル基であることを特徴とする[17]に記載の化合物。
[20] 前記カルバゾリル基がシアノ基で置換されていることを特徴とする[17]~[19]のいずれか1項に記載の化合物。
[21] 一般式(1)で表される化合物の分子内に存在するカルバゾール環の数が4つ以下であることを特徴とする[2]~[20]のいずれか1項に記載の化合物。
[22] [1]~[21]のいずれか1項に記載の化合物を含有する発光材料。
[23] [1]~[21]のいずれか1項に記載の化合物を含むことを特徴とする有機発光素子。
[24] [1]~[21]のいずれか1項に記載の化合物を含む発光層を基板上に有することを特徴とする[23]に記載の有機発光素子。
[25] 遅延蛍光を放射することを特徴とする[23]または[24]に記載の有機発光素子。
[26] 有機エレクトロルミネッセンス素子であることを特徴とする[23]~[25]のいずれか1項に記載の有機発光素子。
[27] 前記一般式(1)で表される構造を有する遅延蛍光体。
 本発明の化合物は、HOMO準位とLUMO準位がともに深く、高い発光効率を有する。このため、本発明の化合物は、発光材料として有用であり、有機発光素子の発光材料として用いることにより、優れた発光特性を有する有機発光素子を実現することができる。また、本発明の化合物は、遅延蛍光を放射することができるため、遅延蛍光体として用いることができる。本発明の化合物からなる遅延蛍光体を有機発光素子に用いることにより、発光効率が極めて高い有機発光素子を実現することができる。
有機エレクトロルミネッセンス素子の層構成例を示す概略断面図である。 化合物1の1H NMRスペクトルである。 化合物2の1H NMRスペクトルである。 化合物4の1H NMRスペクトルである。 化合物1のドープ膜の発光強度の過渡減衰曲線である。 化合物1および比較化合物2のフォトルミネッセンス量子収率の温度依存性を示すグラフである。 化合物2および比較化合物4のフォトルミネッセンス量子収率の温度依存性を示すグラフである。 化合物1、比較化合物5および比較化合物6の各封止素子について、365nm励起光を連続照射したときの発光強度の経時変化を示すグラフである。 化合物1を用いた有機エレクトロルミネッセンス素子の電流密度-電圧-輝度特性を示すグラフである。 化合物1および比較化合物2用いた有機エレクトロルミネッセンス素子の発光スペクトルである。
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
[本発明の化合物]
 本発明の化合物は、2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基と、ハメットのσpが正の構造単位(ただし芳香族炭化水素基は除く)とが、直接結合しているかπ共役連結基を介して結合した構造を含んでいて、前記カルバゾール-9-イル基の少なくとも一部と前記ハメットのσpが正の構造単位と前記π共役連結基が存在する場合はそのπ共役連結基とがπ電子共役系を形成している化合物である。本発明の発光材料はこのような本発明の化合物を含有することを特徴とするものであり、また、本発明の有機発光素子もこのような本発明の化合物を含むことを特徴とする。
 本発明の化合物は、2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基を有するものであるが、ここでいうパーフルオロアルキル基は、アルキル基の炭素原子に結合している全ての水素原子がフッ素原子に置換された基であり、直鎖状、分枝状、環状のいずれであってもよい。パーフルオロアルキル基の炭素数は特に制限されないが、1~6であることが好ましく、1~3であることがより好ましい。具体例としてトリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ヘプタフルオロイソプロピル基、ノナフルオロブチル基、ノナフルオロ-t-ブチル基、ウンデカフルオロペンチル基、トリデカフルオロヘキシル基、ウンデカフルオロシクロヘキシル基を挙げることができる。
 2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基は、下記一般式(11)で表される構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000009
 一般式(11)において、R21、R23~R26、R28は、各々独立に水素原子または置換基を表し、R22およびR27はパーフルオロアルキル基を表す。
 R21、R23~R26、R28の中に置換基を有するとき、いずれが置換基であってもよく、置換基の数も特に制限されない。例えば、R21、R23~R26、R28の中の置換基の数は0~4個が好ましく、0~2個がより好ましく、例えば0個とすることも好ましい。R21、R23~R26、R28の中の置換基の数が0個である場合、一般式(11)で表される基のハメットのσpは-0.4程度である。R21、R23~R26、R28の中の2つ以上が置換基であるとき、その2つ以上の置換基は互いに同一であっても異なっていてもよいが、同一であることが好ましい。また、R21、R23~R26、R28の中に置換基を有する場合、R23~R26の少なくとも1つが置換基であることが好ましい。例えば、R23とR26が置換基である場合、R24とR25が置換基である場合を好ましく例示することができ、特に、R23とR26が置換基であることが好ましい。R23とR26が置換基であることにより、化合物の酸化耐性が改善される傾向がある。カルバゾール-9-イル基の3位と6位を置換基で保護して酸化を受けにくくすることにより、化合物の2量化が抑制され、安定性が向上すると推測される。R23とR26が表す置換基は、炭素数1~10のアルキル基、アリール基、もしくは、ヘテロアリール基であることが好ましく、炭素数1~5のアルキル基、もしくは、アリール基であることがより好ましく、メチル基、tert-ブチル基、フェニル基であることがさらに好ましい。
 R21、R23~R26、R28が置換基としてパーフルオロアルキル基を表す場合も本発明からは除外されない。ただし、R23およびR26がパーフルオロアルキル基である化合物を用いた有機発光素子よりも、R23およびR26がパーフルオロアルキル基でない化合物を用いた有機発光素子の方が性能は優れている。
 一般式(11)のR21、R23~R26、R28がとりうる置換基として、例えばヒドロキシ基、ハロゲン原子、シアノ基、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルキルチオ基、炭素数1~20のアルキル置換アミノ基、炭素数2~20のアシル基、炭素数6~40のアリール基、炭素数3~40のヘテロアリール基、炭素数12~40のジアリールアミノ基、炭素数12~40の置換もしくは無置換のカルバゾリル基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数2~10のアルコキシカルボニル基、炭素数1~10のアルキルスルホニル基、炭素数1~10のハロアルキル基、アミド基、炭素数2~10のアルキルアミド基、炭素数3~20のトリアルキルシリル基、炭素数4~20のトリアルキルシリルアルキル基、炭素数5~20のトリアルキルシリルアルケニル基、炭素数5~20のトリアルキルシリルアルキニル基およびニトロ基等が挙げられる。これらの具体例のうち、さらに置換基により置換可能なものは置換されていてもよい。より好ましい置換基は、ハロゲン原子、シアノ基、炭素数1~20の置換もしくは無置換のアルキル基、炭素数1~20のアルコキシ基、炭素数6~40の置換もしくは無置換のアリール基、炭素数3~40の置換もしくは無置換のヘテロアリール基、炭素数12~40の置換もしくは無置換のジアリールアミノ基、炭素数12~40の置換もしくは無置換のカルバゾリル基である。さらに好ましい置換基は、フッ素原子、塩素原子、シアノ基、炭素数1~10の置換もしくは無置換のアルキル基、炭素数1~10の置換もしくは無置換のアルコキシ基、炭素数1~10の置換もしくは無置換のジアルキルアミノ基、炭素数6~15の置換もしくは無置換のアリール基、炭素数3~12の置換もしくは無置換のヘテロアリール基である。
 中でも、一般式(11)のR23およびR26は置換基であることが好ましく、炭素数1~20のアルキル基、炭素数6~40のアリール基であることがより好ましく、炭素数1~10のアルキル基、炭素数6~15のアリール基であることがさらに好ましい。
 本明細書でいうアルキル基は、直鎖状、分枝状、環状のいずれであってもよく、より好ましくは炭素数1~6であり、具体例としてメチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ペンチル基、ヘキシル基、イソプロピル基、シクロヘキシル基を挙げることができる。アルコキシ基は、直鎖状、分枝状、環状のいずれであってもよく、より好ましくは炭素数1~6であり、具体例としてメトキシ基、エトキシ基、プロポキシ基、ブトキシ基、t-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、イソプロポキシ基を挙げることができる。ジアルキルアミノ基の2つのアルキル基は、互いに同一であっても異なっていてもよいが、同一であることが好ましい。ジアルキルアミノ基の2つのアルキル基は、各々独立に直鎖状、分枝状、環状のいずれであってもよく、より好ましくは炭素数1~6であり、具体例としてメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、イソプロピル基を挙げることができる。アリール基は、単環でも融合環でもよく、具体例としてフェニル基、ナフチル基を挙げることができる。ヘテロアリール基も、単環でも融合環でもよく、具体例としてピリジル基、ピリダジル基、ピリミジル基、トリアジル基、トリアゾリル基、ベンゾトリアゾリル基、カルバゾリル基を挙げることができる。これらのヘテロアリール基は、ヘテロ原子を介して結合する基であっても、ヘテロアリール環を構成する炭素原子を介して結合する基であってもよい。この段落に記載される基に存在する水素原子の一部またはすべては置換基で置換されていてもよい。例えば、アルキル基、アリール基、ヘテロアリール基の水素原子の一部またはすべてはフッ素原子で置換されていてもよい。
 また、R21、R23~R26、R28の少なくとも1つは、例えばカルバゾリル基とすることができ、カルバゾリル基としてはカルバゾール-2-イル基、カルバゾール-3-イル基、カルバゾール-9-イル基を例示することができる。R21、R23~R26、R28の少なくとも1つがカルバゾリル基であることにより、HOMOが広く非局在化することで材料の発光特性および安定性を高めることができる。R21、R23~R26、R28の少なくとも1つがカルバゾリル基であるとき、そのカルバゾリル基は、無置換であっても置換基で置換されていてもよい。好ましくは、ハメットのσpが正の基で置換されているカルバゾリル基を用いることがよい。これにより、パーフルオロアルキル基で置換されたカルバゾリル基と、R21、R23~R26、R28に置換したカルバゾリル基の間での電荷移動が抑制され、より高効率の発光を得ることができる。例えばパーフルオロアルキル基やシアノ基で置換されているカルバゾリル基を例示することができる。R21、R23~R26、R28が表すカルバゾリル基がパーフルオロアルキル基もしくはシアノ基で置換されている場合、そのパーフルオロアルキル基もしくはシアノ基の置換位置は特に制限されないが、例えばカルバゾール-2-イル基では6位および8位の少なくとも一方とし、カルバゾール-3-イル基では7位とし、カルバゾール-9-イル基では2位および7位の少なくとも一方とする態様を例示することができる。R21、R23~R26、R28が表すカルバゾリル基の3位、6位、9位が置換可能である場合は、置換基として例えば炭素数1~20のアルキル基、炭素数6~40のアリール基を例示することができ、より限定的には炭素数1~10のアルキル基、炭素数6~15のアリール基を例示することができる。3位、6位、9位が置換されていれば、酸化を受けにくくなり、2量化を抑制することができるため、安定性の面で都合がよい。また、R21、R23~R26、R28のうちカルバゾリル基であるものは、例えばR23~R26の少なくとも1つとすることができ、R23とR26とすることもできる。ただし、実用性の観点から、一般式(1)で表される化合物の分子内に存在するカルバゾール環の数は4つ以下であることが好ましい。
 本発明の化合物は、ハメットのσpが正の構造単位を有する。ここでいう「ハメットのσpが正の構造単位」は、電子求引性の構造単位を意味するものであり、例えば電子求引性の構造単位が電子供与性の構造単位で置換されている原子団ように、電子求引性構造単位と電子供与性構造単位がともに含まれていて、なおかつ全体として電子求引性を示すような原子団は含まれない。そのような原子団が本発明の化合物の構造の一部に含まれている場合は、その原子団に含まれる電子供与性構造単位を水素原子で置換した仮想原子団を想定し、そのような仮想原子団のハメットのσpが正であることをもって、その仮想原子団に含まれる電子求引性構造単位がハメットのσpが正の構造単位であると判断する。ハメットのσpが正の構造単位(すなわち電子求引性構造単位)の好ましい具体例としては、芳香族ヘテロ環基(例えばピリジン環基、ピリミジン環基、トリアジン環基)、シアノ基、-CO-、-SO2-等を例示することができる。なお、ベンゼン環からなる基のように芳香族炭化水素環基もハメットのσpが正の構造単位に含まれることになるが、本発明の化合物は、このような芳香族炭化水素環基以外に少なくとも1つのハメットのσpが正の構造単位を有するものである。
 ハメットのσpは、L.P.ハメットにより提唱されたものであり、パラ置換安息香酸の酸解離平衡に及ぼす置換基の影響を定量化したものである。具体的には、パラ置換安息香酸における置換基と酸解離平衡定数の間に成立する下記式:
   σp=log Kx-log KH
における置換基に特有な定数(σp)である。上式において、KHは置換基を持たない安息香酸の酸解離平衡定数、KXはパラ位が置換基で置換された安息香酸の酸解離平衡定数を表す。ハメットのσpに関する説明と各置換基の数値については、Hansch,C.et.al.,Chem.Rev.,91,165-195(1991)を参照することができる。
 ハメットのσpが正の値であるということは、その置換基がアクセプター性基(電子求引性基)であることを意味し、ハメットのσpが負の値であるということは、その置換基がドナー性基(電子供与性基)であることを意味する。
 本発明の化合物に含まれるハメットのσpが正の構造単位は、ハメットのσpが0.05以上であることが好ましく、0.1以上であることがより好ましく、0.3以上であることがさらに好ましい。ハメットのσpが正の置換基の好ましい例として、例えばフッ素原子、アシル基、アシルオキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、シアノ基、ホスフィンオキシド基、スルホニル基、パーフルオロアルキル基、ホスフィンオキシド基、アミド基、アルコキシ基、ピリジル基、ピリミジル基、トリアジル基等を挙げることができ、これらは電子供与性基で置換されていなければ上記の「ハメットのσpが正の構造単位」とみなすことができる。なお、発光性、耐久性、電気化学的安定性の点から、ハメットのσpが正の構造単位として臭素原子、ヨウ素原子、ニトロ基以外の構造単位を選択することが好ましいが、臭素原子、ヨウ素原子、ニトロ基を有していても発光性、耐久性、電気化学的安定性に実用性を損なうほどの悪影響が及ばない場合はこれらの構造単位を選択してもよい。
 本発明の化合物では、2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基と、ハメットのσpが正の構造単位(ただし芳香族炭化水素基は除く)とが、直接結合しているかπ共役連結基を介して結合した構造を含んでいる。そして、カルバゾール-9-イル基の少なくとも一部と、ハメットのσpが正の構造単位と、π共役連結基が存在する場合はそのπ共役連結基とが、π電子共役系を形成している。π共役連結基としては、π電子共役系を形成しうるものであればその種類は特に制限されず、σ軌道の電子が空間的に近い位置にあるπ*軌道あるいは空のp軌道と相互作用することによる、超共役を用いてもよい。具体的には、芳香族炭化水素連結基、もしくは、超共役性のメチレン(CH2)基やCF2基、C(CF32基等をπ共役連結基として用いることが好ましい。芳香族炭化水素連結基を構成する芳香族炭化水素環は、その炭素数が6~40であることが好ましく、ベンゼン環または複数のベンゼン環が縮合した構造を有する縮合環であることがより好ましい。芳香族炭化水素環としては、例えばベンゼン環、ナフタレン環、フルオレン環、フェナントレン環、アントラセン環、トリフェニレン環、ピレン環、クリセン環、テトラセン環、ベンゾピレン環、ペリレン環、コロネン環、コラヌレン環、フェナレン環、トリアングレン環等を挙げることができ、ベンゼン環、ナフタレン環であることが好ましく、ベンゼン環であることがより好ましい。芳香族炭化水素連結基の具体例としては、フェニレン基、1,2-ナフチレン基、1,3-ナフチレン基、1,4-ナフチレン基、1,5-ナフチレン基、1,8-ナフチレン基、2,3-ナフチレン基、2,6-ナフチレン基、2,7-ナフチレン基などを挙げることができる。
[一般式(1)で表される化合物]
 本発明の化合物は下記一般式(1)で表される構造を有するものであることが好ましい。また、本発明の発光材料は、下記一般式(1)で表される化合物を含有するものであることが好ましい。さらに、本発明の有機発光素子は、下記一般式(1)で表される化合物を含むことが好ましい。以下において、一般式(1)で表される化合物について説明する。
一般式(1)
 (D)m-A
 一般式(1)において、Dはハメットのσpが負の基を表す。Dの少なくとも1つは、2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基を含む基である。mは1以上の整数を表すが、mは2以上であることが好ましく、例えば3以上や4以上で選択することもできる。mが2以上であるとき、複数のDのうちの、2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基であるものは、1つであってもよいし、2つ以上であってもよい。また、複数のDのうちの全てが、2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基であってもよいし、Dのうちの一部が、2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基であってもよいが、Dのうちの全てが、2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基であることが好ましい。2つ以上のDが2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基を表すとき、それらは同一であっても異なっていてもよいが、同一であることが好ましい。
 mが2以上であって、複数のDのうちの一部が、2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基であるとき、残りのDがとりうるハメットのσpが負の基として、例えば置換アミノ基、アルコキシ基、アルキル基等を挙げることができる。ここで、置換アミノ基が有する置換基としては、炭素数6~40のアリール基、炭素数1~20のアルキル基、炭素数2~10のアルケニル基等を挙げることができ、その置換基同士が互いに結合してヘテロアリール基を形成していてもよい。置換アミノ基およびヘテロアリール基の好ましい例として、下記一般式(12)~(15)で表される基を挙げることができる。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 一般式(12)において、R31~R38は、各々独立に水素原子または置換基を表す。ただし、R32とR37はパーフルオロアルキル基以外の置換基である。一般式(13)~(15)において、R41~R46、R51~R62およびR71~R80は、各々独立に水素原子または置換基を表す。一般式(12)~(15)で表される基が置換基を有するときの置換位置や置換数は特に制限されない。各基の置換数は、0~6個が好ましく、0~4個がより好ましく、例えば0~2個とすることも好ましい。複数の置換基を有するとき、それらは互いに同一であっても異なっていてもよいが、同一であることがより好ましい。
 一般式(12)で表される基が置換基を有する場合は、R32~R37のいずれかが置換基であることが好ましい。例えば、R32とR37が置換基である場合、R33とR36が置換基である場合、R34とR35が置換基である場合を好ましく例示することができる。
 一般式(13)で表される基が置換基を有する場合は、R42~R46のいずれかが置換基であることが好ましい。例えば、R42が置換基である場合と、R43が置換基である場合を好ましく例示することができる。
 一般式(14)で表される基が置換基を有する場合は、R52~R60のいずれかが置換基であることが好ましい。例えば、R52~R54のいずれかがが置換基である場合、R55~R60のいずれかが置換基である場合を好ましく例示することができる。
 一般式(15)で表される基が置換基を有する場合は、R72~R74およびR77~R79のいずれかが置換基であることが好ましい。例えば、R72とR79が置換基である場合、R73とR78が置換基である場合、R74とR77が置換基である場合、R72、R74、R77およびR79が置換基である場合を好ましく例示することができる。特に、R74とR77が置換基である場合、R72、R74、R77およびR79が置換基である場合をより好ましく例示することができる。このときの置換基は、各々独立に炭素数1~20の置換もしくは無置換のアルキル基、または炭素数6~40の置換もしくは無置換のアリール基であることが特に好ましく、炭素数1~6の無置換のアルキル基、炭素数6~10の無置換のアリール基、または炭素数6~10のアリール基で置換された炭素数6~10のアリール基であることがさらにより好ましい。R75とR76は互いに結合して連結基を形成してもよい。連結基を構成する連結鎖の原子数は1または2であることが好ましい。連結鎖の具体例として、-O-、-S-、-C(=O)-、-N(R81)-、-C(R82)(R83)-、-C(=O)-N(R84)-を挙げることができる。ここでR81~R84は、各々独立に水素原子または置換基を表し、置換基としては炭素数1~10のアルキル基、炭素数6~14のアリール基などを例示することができる。R75とR76は互いに結合して環状構造(スピロ構造)を形成してもよい。
 一般式(12)のR31~R38、一般式(13)のR41~R46、一般式(14)のR51~R62および、一般式(15)のR71~R80がとりうる置換基の好ましい範囲と具体例については、上記の一般式(11)におけるR21、R23~R26、R28がとりうる置換基の好ましい範囲と具体例を参照することができる。
 一般式(1)において、Aはハメットのσpが正の構造単位からなる基を表す。ここでいう「ハメットのσpが正の構造単位」は、上記の[本発明の化合物]の欄に記載した意味内容を有する。Aは、単一のハメットのσpが正の構造単位(電子求引性構造単位)のみからなるものであってもよいし、2種以上のハメットのσpが正の構造単位が結合したものであってもよい。2種以上のハメットのσpが正の構造単位が結合している場合は、結合している全てのハメットのσpが正の構造単位を含めた原子団をAとみなす。
 Aはハメットのσpが正の構造単位として芳香環を含むものであることが好ましい。芳香環は、芳香族炭化水素環であってもよいし、芳香族ヘテロ環であってもよいが、芳香族炭化水素環であることが好ましい。芳香族炭化水素環については、上記の[本発明の化合物]の欄の説明を参照することができる。芳香族ヘテロ環のヘテロ原子は、N、O、Sの少なくともいずれかであることが好ましい。また、芳香族ヘテロ環は、その炭素数が3~40であることが好ましく、5員環、6員環、5員環と6員環が縮合した構造を有する縮合環であることがより好ましい。芳香族ヘテロ環としては、例えばフラン環、チオフェン環、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、ピラゾール環、フラザン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、チアジアゾール環、イミド環等を挙げることができ、フラン環、チオフェン環、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、ピラゾール環、フラザン環、トリアジン環、チアジアゾール環、イミド環であることが好ましい。一般式(1)のAに含まれる芳香環に結合している置換基は、ハメットのσpが負の置換基はDに相当し、ハメットのσpが正の置換基はAの一部とみなされる。
 一般式(1)においては、カルバゾール-9-イル基の少なくとも一部と、Aを構成する芳香族炭化水素基以外の構造の少なくとも一部と、カルバゾール-9-イル基と前記構造を連結する連結基が存在する場合はその連結基とが、π電子共役系を形成している。
 一般式(1)で表される化合物は、下記一般式(2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000012
 一般式(2)において、Zはシアノ基、パーフルオロアルキル基、置換もしくは無置換のトリアジニル基または置換もしくは無置換のピリミジニル基を表し、R1~R5の少なくとも1つは2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基を表し、残りのR1~R5は各々独立に水素原子または置換基を表す。R1~R5にも、各々独立にシアノ基、パーフルオロアルキル基、置換もしくは無置換のトリアジニル基、または置換もしくは無置換のピリミジニル基を用いてよい。Zと、R1~R5のうちのいずれか1つがシアノ基もしくはパーフルオロアルキル基である場合は、その基であるものの組み合わせとして、ZとR2の組み合わせや、ZとR3の組み合わせを例示することができる。Zと、R1~R5のうちのいずれか2つがシアノ基もしくはパーフルオロアルキル基である場合は、その基であるものの組み合わせとして、ZとR1とR2の組み合わせや、ZとR1とR3の組み合わせを例示することができる。Zと、R1~R5のうちのいずれか3つがシアノ基もしくはパーフルオロアルキル基である場合は、その基であるものの組み合わせとして、ZとR1とR3とR4の組み合わせを例示することができる。これらの中で、好ましいのは、ZとR2、または、ZとR3がシアノ基もしくはパーフルオロアルキル基である場合である。また、ZとR1~R5の少なくとも1つが、シアノ基やパーフルオロアルキル基、置換もしくは無置換のトリアジニル基、置換もしくは無置換のピリミジニル基から選ばれる基であるとき、それらの基は同一であっても異なっていてもよい。
 一般式(2)において、R1~R5の少なくとも1つは、2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基を表す。2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基の説明と好ましい範囲については、上記の[本発明の化合物]の欄における2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基の説明と好ましい範囲を参照することができる。R1~R5の2つ以上が、2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基を表すとき、それらは同一であっても異なっていてもよい。
 R1~R5のいずれか1つが、2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基である場合は、R1~R3のいずれであってもよい。いずれか2つが、2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基である場合は、R1とR2の組み合わせ、R2とR3の組み合わせ、R3とR4の組み合わせ、R1とR3の組み合わせ、R2とR4の組み合わせ等を例示することができ、R2とR3の組み合わせ、または、R3とR4の組み合わせであることが好ましい。いずれか3つが、2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基である場合は、R1とR3とR4の組み合わせを例示することができる。いずれか4つが、2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基である場合は、R1とR3とR4とR5の組み合わせ、R1とR2とR4とR5の組み合わせを例示することができる。
 上記のように、一般式(2)において、Zはシアノ基、パーフルオロアルキル基、置換もしくは無置換のトリアジニル基、または、置換もしくは無置換のピリミジニル基を表し、R1~R5の少なくとも1つは上記2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基を表すが、残りのR1~R5は各々独立に水素原子または置換基を表す。
 R1~R5がとりうる好ましい置換基、トリアジニル基およびピリミジニル基に置換しうる好ましい置換基として、例えばヒドロキシ基、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルキルチオ基、炭素数1~20のアルキル置換アミノ基、炭素数2~20のアシル基、炭素数6~40のアリール基、炭素数3~40のヘテロアリール基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数2~10のアルコキシカルボニル基、炭素数1~10のアルキルスルホニル基、アミド基、炭素数2~10のアルキルアミド基、炭素数3~20のトリアルキルシリル基、炭素数4~20のトリアルキルシリルアルキル基、炭素数5~20のトリアルキルシリルアルケニル基、炭素数5~20のトリアルキルシリルアルキニル基およびニトロ基等が挙げられる。これらの具体例のうち、さらに置換基により置換可能なものは置換されていてもよい。より好ましい置換基は、ヒドロキシ基、ハロゲン原子、炭素数1~20の置換もしくは無置換のアルキル基、炭素数1~20の置換もしくは無置換のアルコキシ基、炭素数1~20の置換もしくは無置換のジアルキルアミノ基、炭素数6~40の置換もしくは無置換のアリール基、炭素数3~40の置換もしくは無置換のヘテロアリール基である。さらに好ましい置換基は、ヒドロキシ基、フッ素原子、塩素原子、炭素数1~10の置換もしくは無置換のアルキル基、炭素数1~10の置換もしくは無置換のアルコキシ基、炭素数1~10の置換もしくは無置換のジアルキルアミノ基、炭素数6~15の置換もしくは無置換のアリール基、炭素数3~12の置換もしくは無置換のヘテロアリール基である。さらになお好ましくは、ヒドロキシ基、フッ素原子、塩素原子である。
 また、R1~R5がとりうる好ましい置換基の例として、上記の一般式(12)~(15)で表される基も挙げることができる。一般式(12)~(15)で表される基の説明と好ましい範囲については、一般式(1)における一般式(12)~(15)で表される基の説明と好ましい範囲と具体例を参照することができる。
 一般式(2)において、R1~R5のうち水素原子であるものは3つ以下であることが好ましく、2つ以下であることがより好ましく、0であることも好ましい。
 好ましい組み合わせとして、例えば、一般式(2)のZとR2がシアノ基もしくはパーフルオロメチル基であり、R1およびR4の少なくとも1つが、2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基である場合を挙げることができる。別の好ましい組み合わせとして、ZとR3がシアノ基もしくはパーフルオロメチル基であり、R1、R2、R4、R5の少なくとも1つが、2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基である場合を挙げることもできる。より好ましい組合せとして、例えば、一般式(2)のZがシアノ基もしくはパーフルオロメチル基であり、R1~R5のすべてが、2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基である場合を挙げることができる。別のより好ましい組み合わせとして、Zがシアノ基もしくはパーフルオロメチル基であり、R1、R2、R4、R5が、2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基である場合を挙げることもできる。さらに別のより好ましい組み合わせとして、ZとR2がシアノ基もしくはパーフルオロメチル基であり、R1、R3、R4、R5が、2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基である場合を挙げることもできる。さらに別のより好ましい組み合わせとして、ZとR3がシアノ基もしくはパーフルオロメチル基であり、R1、R2、R4、R5が、2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基である場合を挙げることもできる。
 一般式(2)で表される化合物は、2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基のベンゼン環への置換位置および置換数や、該カルバゾリル基におけるベンゼン環への結合部位、そのカルバゾリル基に導入するカルバゾリル基の置換位置および置換数や、該カルバゾリル基におけるカルバゾリル基への結合部位等の選択により、分子構造の対称性やリニア性を制御することができる。例えば、分子の対称性が高ければ、電子の遷移確率が高くなるという利点がある。一方、分子がリニアである方が、分極が大きくなって量子収率が大きくなるため好ましい。また、シアノ基やパーフルオロアルキル基、複素環の導入は、分子の分極を大きくする方向に作用する。
 以下において、本発明の化合物の具体例を例示するが、本発明において用いることができる化合物はこれらの具体例によって限定的に解釈されるべきものではない。なお、図中のYはシアノ基、もしくは、パールフルオロメチル基から選ばれる置換基を表す。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 本発明の化合物の分子量は、例えば本発明の化合物を含む有機層を蒸着法により製膜して利用することを意図する場合には、2000以下であることが好ましく、1650以下であることがより好ましい。分子量の下限値は、通常247以上であり、好ましくは290以上である。
 本発明の化合物は、分子量にかかわらず塗布法で成膜してもよい。塗布法を用いれば、分子量が比較的大きな化合物であっても成膜することが可能である。
 ここで、本発明の化合物は、カルバゾール-9-イル基がパーフルオロアルキル基で置換された構造を有することにより、そのカルバゾール-9-イル基がシアノ基のような他の置換基で置換されている場合に比べて、気相成長させやすく、また、溶剤に溶けやすいという特性を有する。このため、蒸着等のドライプロセスおよび塗布法等のウェットプロセスのいずれによっても良好な膜質で製膜することができる。
 本発明を応用して、分子内に本発明の化合物の特徴的な構造を複数個含む化合物を、有機発光素子の発光層に用いることも考えられる。
 例えば、本発明の化合物の特徴的な構造を有する重合性モノマーを重合させた重合体を、有機発光素子の発光層に用いることが考えられる。具体的には、一般式(1)のD、Aのいずれかに重合性官能基を有するモノマーを用意して、これを単独で重合させるか、他のモノマーとともに共重合させることにより、繰り返し単位を有する重合体を得て、その重合体を有機発光素子の発光層に用いることが考えられる。あるいは、一般式(1)で表される構造を有する化合物どうしをカップリングさせることにより、二量体や三量体を得て、それらを有機発光素子の発光層に用いることも考えられる。
 一般式(1)で表される構造を含む重合体を構成する繰り返し単位の構造例として、一般式(1)のD、Aのいずれかに下記一般式(17)または(18)で表される構造を有するものを挙げることができる。
Figure JPOXMLDOC01-appb-C000021
 一般式(17)および(18)において、L1およびL2は連結基を表す。連結基の炭素数は、好ましくは0~20であり、より好ましくは1~15であり、さらに好ましくは2~10である。連結基は-X11-L11-で表される構造を有するものであることが好ましい。ここで、X11は酸素原子または硫黄原子を表し、酸素原子であることが好ましい。L11は連結基を表し、置換もしくは無置換のアルキレン基、または置換もしくは無置換のアリーレン基であることが好ましく、炭素数1~10の置換もしくは無置換のアルキレン基、または置換もしくは無置換のフェニレン基であることがより好ましい。
 一般式(17)および(18)において、R101、R102、R103およびR104は、各々独立に置換基を表す。好ましくは、炭素数1~6の置換もしくは無置換のアルキル基、炭素数1~6の置換もしくは無置換のアルコキシ基、ハロゲン原子であり、より好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基、フッ素原子、塩素原子であり、さらに好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基である。
 繰り返し単位の具体的な構造例として、一般式(1)のD、Aのいずれかに下記式(21)~(24)で表される構造を導入したものを挙げることができる。一般式(1)のD、Aのいずれかに導入する下記式(21)~(24)で表される構造の数は2つ以上であってもよいが、1つであることが好ましい。下記式(21)~(24)におけるnは、繰り返し単位の数を表し、その範囲は特に制限されない。
Figure JPOXMLDOC01-appb-C000022
 これらの式(21)~(24)を含む繰り返し単位を有する重合体は、一般式(1)のD、Aの少なくとも1つにヒドロキシ基を導入しておき、それをリンカーとして下記化合物を反応させて重合性基を導入し、その重合性基を重合させることにより合成することができる。
Figure JPOXMLDOC01-appb-C000023
 分子内に一般式(1)で表される構造を含む重合体は、一般式(1)で表される構造を有する繰り返し単位のみからなる重合体であってもよいし、それ以外の構造を有する繰り返し単位を含む重合体であってもよい。また、重合体の中に含まれる一般式(1)で表される構造を有する繰り返し単位は、単一種であってもよいし、2種以上であってもよい。一般式(1)で表される構造を有さない繰り返し単位としては、通常の共重合に用いられるモノマーから誘導されるものを挙げることができる。例えば、エチレン、スチレンなどのエチレン性不飽和結合を有するモノマーから誘導される繰り返し単位を挙げることができる。
[本発明の化合物の合成方法]
 上記の本発明の化合物は新規化合物である。
 本発明の化合物の合成法は特に制限されない。本発明の化合物の合成は、既知の合成法や条件を適宜組み合わせることにより行うことができる。例えば、2,7-ジトリフルオロメチルカルバゾールとフッ化物を反応させることにより合成することができ、その具体的な反応条件等については後述の合成例を参考にすることができる。
[有機発光素子]
 本発明の化合物は、カルバゾール-9-イル基の少なくとも一部と、ハメットのσpが正の基の少なくとも一部と、π共役連結基が存在する場合はそのπ共役連結基とがπ電子共役系を形成した構造を有する。本発明の化合物は、こうした構造を有することにより、HOMO準位とLUMO準位がともに深く、その発光過程で生成するラジカル種や励起子の水分や酸素との反応による劣化が抑制されると考えられる。特に、カルバゾール-9-イル基におけるパーフルオロアルキル基の置換位置が2位と7位であることにより、パーフルオロアルキル基を有しない場合やパーフルオロアルキル基の置換位置が3位と6位である場合に比べて、顕著に高い発光効率を得ることができ、より短波長、かつ、発光スペクトルの半値幅が狭く色純度の高い光を放射することができる。一般式(1)で表される化合物において、このような優れた発光特性が実現するのは、励起一重項エネルギー準位ES1と励起三重項エネルギー準位ET1の差ΔESTが小さいことと、励起状態になった後の振動緩和(無放射失活)が小さいことによるものと推測している。
 すなわち、後掲の実施例で示しているように、カルバゾール-9-イル基の2位と7位がパーフルオロアルキル基で置換されている化合物1は、カルバゾール-9-イル基の3位と6位がパーフルオロアルキル基で置換されている比較化合物2よりもΔESTが小さく、遅延蛍光寿命T2が長寿命である(表1、3参照)。こうした特性を有する化合物は、励起三重項状態から励起一重項状態への逆項間交差が高い確率が発生し、その分、励起三重項状態からの無放射失活によるエネルギー損失が抑えられると推測することができる。これにより、その励起三重項エネルギーが励起一重項エネルギーに効率よく変換されて蛍光発光(遅延蛍光発光)に有効利用され、高い発光効率が得られるものと考えられる。また、カルバゾール-9-イル基の2位と7位がパーフルオロアルキル基で置換されている化合物は、カルバゾール-9-イル基の3位と6位がパーフルオロアルキル基で置換されている化合物に比べて、励起状態になった後の振動緩和が小さく、基底準位に対して、より高い励起一重項エネルギー準位から放射失活すると推測される。このため、発光スペクトルのブロードニングが抑制され、高エネルギーの光(波長が短い光)を放射しうると考えられる。
 このように、本発明の化合物は、良好な発光特性を有しており、高い耐光性も有している。このため、本発明の化合物は、有機発光素子の発光材料もしくはホスト材料として有用であり、有機発光素子の発光層の材料として効果的に用いることができる。
 さらに、本発明の化合物の中には、通常の蛍光とともに、上記のような逆項間交差を経由して蛍光(遅延蛍光)を放射する遅延蛍光材料(遅延蛍光体)が含まれている。すなわち本発明は、本発明の特徴的な構造を有する遅延蛍光体の発明と、本発明の化合物を遅延蛍光体として使用する発明と、本発明の化合物を用いて遅延蛍光を発光させる方法の発明も提供する。そのような化合物を発光材料として用いた有機発光素子は、遅延蛍光を放射し、発光効率が高いという特徴を有する。その原理を、有機エレクトロルミネッセンス素子を例にとって説明すると以下のようになる。
 有機エレクトロルミネッセンス素子においては、正負の両電極より発光材料にキャリアを注入し、励起状態の発光材料を生成し、発光させる。通常、キャリア注入型の有機エレクトロルミネッセンス素子の場合、生成した励起子のうち、励起一重項状態に励起されるのは25%であり、残り75%は励起三重項状態に励起される。従って、励起三重項状態からの発光であるリン光を利用するほうが、エネルギーの利用効率が高い。しかしながら、励起三重項状態は寿命が長いため、励起状態の飽和や励起三重項状態の励起子との相互作用によるエネルギーの失活が起こり、一般にリン光の量子収率が高くないことが多い。一方、遅延蛍光材料は、項間交差等により励起三重項状態へとエネルギーが遷移した後、三重項-三重項消滅あるいは熱エネルギーの吸収により、励起一重項状態に逆項間交差され蛍光を放射する。有機エレクトロルミネッセンス素子においては、なかでも熱エネルギーの吸収による熱活性化型の遅延蛍光材料が特に有用であると考えられる。有機エレクトロルミネッセンス素子に遅延蛍光材料を利用した場合、励起一重項状態の励起子は通常通り蛍光を放射する。一方、励起三重項状態の励起子は、デバイスが発する熱を吸収して励起一重項へ項間交差され蛍光を放射する。このとき、励起一重項からの発光であるため蛍光と同波長での発光でありながら、励起三重項状態から励起一重項状態への逆項間交差により、生じる光の寿命(発光寿命)は通常の蛍光やりん光よりも長くなるため、これらよりも遅延した蛍光として観察される。これを遅延蛍光として定義できる。このような熱活性化型の励起子移動機構を用いれば、キャリア注入後に熱エネルギーの吸収を経ることにより、通常は25%しか生成しなかった励起一重項状態の化合物の比率を25%以上に引き上げることが可能となる。100℃未満の低い温度でも強い蛍光および遅延蛍光を発する化合物を用いれば、デバイスの熱で充分に励起三重項状態から励起一重項状態への項間交差が生じて遅延蛍光を放射するため、発光効率を飛躍的に向上させることができる。
 本発明の化合物を発光層の発光材料として用いることにより、有機フォトルミネッセンス素子(有機PL素子)や有機エレクトロルミネッセンス素子(有機EL素子)などの優れた有機発光素子を提供することができる。有機フォトルミネッセンス素子は、基板上に少なくとも発光層を形成した構造を有する。また、有機エレクトロルミネッセンス素子は、少なくとも陽極、陰極、および陽極と陰極の間に有機層を形成した構造を有する。有機層は、少なくとも発光層を含むものであり、発光層のみからなるものであってもよいし、発光層の他に1層以上の有機層を有するものであってもよい。そのような他の有機層として、正孔輸送層、正孔注入層、電子阻止層、正孔阻止層、電子注入層、電子輸送層、励起子阻止層などを挙げることができる。正孔輸送層は正孔注入機能を有した正孔注入輸送層でもよく、電子輸送層は電子注入機能を有した電子注入輸送層でもよい。有機エレクトロルミネッセンス素子は、発光層で発生した光を基板側から取り出すボトムエミッション型であってもよいし、発光層で発生した光を基板の反対側から取り出すトップエミッション型であってもよい。また、いずれの型であっても、基板側に形成する電極は陽極であってもよいし、陰極であってもよい。光を取り出す側の電極は透明であることが要求されるが、その反対側の電極は必ずしも透明である必要はない。具体的な有機エレクトロルミネッセンス素子の構造例を図1に示す。図1において、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を表わす。
 以下において、有機エレクトロルミネッセンス素子の各部材および各層について説明する。なお、基板と発光層の説明は有機フォトルミネッセンス素子の基板と発光層にも該当する。
(基板)
 本発明の有機エレクトロルミネッセンス素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機エレクトロルミネッセンス素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英、シリコンなどからなるものを用いることができる。
(陽極)
 有機エレクトロルミネッセンス素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが好ましく用いられる。このような電極材料の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In23-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極材料を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極材料の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な材料を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
(陰極)
 一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが用いられる。このような電極材料の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性および酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。ただし、一般式(1)で表される化合物は非常にLUMO準位が深いことが多いため、仕事関数が大きく、大気安定な金属を用いることもできる。具体的には金や銀等を用いることができる。陰極はこれらの電極材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機エレクトロルミネッセンス素子の陽極または陰極のいずれか一方が、透明または半透明であれば発光輝度が向上し好都合である。
 また、陽極の説明で挙げた導電性透明材料を陰極に用いることで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
(発光層)
 発光層は、陽極および陰極のそれぞれから注入された正孔および電子が再結合することにより励起子が生成した後、発光する層であり、発光材料を単独で発光層に使用しても良いが、好ましくは発光材料とホスト材料を含む。発光材料としては、本発明の化合物群から選ばれる1種または2種以上を用いることができる。本発明の有機エレクトロルミネッセンス素子および有機フォトルミネッセンス素子が高い発光効率を発現するためには、発光材料に生成した一重項励起子および三重項励起子を、発光材料中に閉じ込めることが重要である。従って、発光層中に発光材料に加えてホスト材料を用いることが好ましい。ホスト材料としては、励起一重項エネルギー、励起三重項エネルギーの少なくとも何れか一方が本発明の発光材料よりも高い値を有する有機化合物を用いることができる。その結果、本発明の発光材料に生成した一重項励起子および三重項励起子を、本発明の発光材料の分子中に閉じ込めることが可能となり、その発光効率を十分に引き出すことが可能となる。もっとも、一重項励起子および三重項励起子を十分に閉じ込めることができなくても、高い発光効率を得ることが可能な場合もあるため、高い発光効率を実現しうるホスト材料であれば特に制約なく本発明に用いることができる。本発明の有機発光素子または有機エレクトロルミネッセンス素子において、発光は発光層に含まれる本発明の発光材料から生じる。この発光は蛍光発光および遅延蛍光発光の両方を含む。但し、発光の一部或いは部分的にホスト材料からの発光があってもかまわない。
 ホスト材料を用いる場合、発光材料である本発明の化合物が発光層中に含有される量は0.1重量%以上であることが好ましく、1重量%以上であることがより好ましく、また、50重量%以下であることが好ましく、20重量%以下であることがより好ましく、10重量%以下であることがさらに好ましい。
 発光層におけるホスト材料としては、正孔輸送能、電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する有機化合物であることが好ましい。
(注入層)
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層または正孔輸送層の間、および陰極と発光層または電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
(阻止層)
 阻止層は、発光層中に存在する電荷(電子もしくは正孔)および/または励起子の発光層外への拡散を阻止することができる層である。電子阻止層は、発光層および正孔輸送層の間に配置されることができ、電子が正孔輸送層の方に向かって発光層を通過することを阻止する。同様に、正孔阻止層は発光層および電子輸送層の間に配置されることができ、正孔が電子輸送層の方に向かって発光層を通過することを阻止する。阻止層はまた、励起子が発光層の外側に拡散することを阻止するために用いることができる。すなわち電子阻止層、正孔阻止層はそれぞれ励起子阻止層としての機能も兼ね備えることができる。本明細書でいう電子阻止層または励起子阻止層は、一つの層で電子阻止層および励起子阻止層の機能を有する層を含む意味で使用される。
(正孔阻止層)
 正孔阻止層とは広い意味では電子輸送層の機能を有する。正孔阻止層は電子を輸送しつつ、正孔が電子輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔の再結合確率を向上させることができる。正孔阻止層の材料としては、後述する電子輸送層の材料を必要に応じて用いることができる。
(電子阻止層)
 電子阻止層とは、広い意味では正孔を輸送する機能を有する。電子阻止層は正孔を輸送しつつ、電子が正孔輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔が再結合する確率を向上させることができる。
(励起子阻止層)
 励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。すなわち、励起子阻止層を陽極側に有する場合、正孔輸送層と発光層の間に、発光層に隣接して該層を挿入することができ、陰極側に挿入する場合、発光層と陰極との間に、発光層に隣接して該層を挿入することができる。また、陽極と、発光層の陽極側に隣接する励起子阻止層との間には、正孔注入層や電子阻止層などを有することができ、陰極と、発光層の陰極側に隣接する励起子阻止層との間には、電子注入層、電子輸送層、正孔阻止層などを有することができる。阻止層を配置する場合、阻止層として用いる材料の励起一重項エネルギーおよび励起三重項エネルギーの少なくともいずれか一方は、発光材料の励起一重項エネルギーおよび励起三重項エネルギーよりも高いことが好ましい。
(正孔輸送層)
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層または複数層設けることができる。
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。使用できる公知の正孔輸送材料としては例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物およびスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。また、酸化モリブデン等の無機半導体を正孔輸送材料として用いることもできる。
(電子輸送層)
 電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層または複数層設けることができる。
 電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。使用できる電子輸送層としては例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子求引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、酸化亜鉛等の無機半導体を電子輸送材料として用いることもできる。
 有機エレクトロルミネッセンス素子を作製する際には、本発明の化合物を発光層に用いるだけでなく、発光層以外の層にも用いてもよい。その際、発光層に用いる本発明の化合物と、発光層以外の層に用いる本発明の化合物は、同一であっても異なっていてもよい。例えば、上記の注入層、阻止層、正孔阻止層、電子阻止層、励起子阻止層、正孔輸送層、電子輸送層などにも本発明の化合物を用いてもよい。これらの層の製膜方法は特に限定されず、ドライプロセス、ウェットプロセスのどちらで作製してもよい。
 以下に、有機エレクトロルミネッセンス素子に用いることができる好ましい材料を具体的に例示する。ただし、本発明において用いることができる材料は、以下の例示化合物によって限定的に解釈されることはない。また、特定の機能を有する材料として例示した化合物であっても、その他の機能を有する材料として転用することも可能である。なお、以下の例示化合物の構造式におけるR、R’、R1~R10は、各々独立に水素原子または置換基を表す。Xは環骨格を形成する炭素原子または複素原子を表し、nは3~5の整数を表し、Yは置換基を表し、mは0以上の整数を表す。
 まず、発光層のホスト材料としても用いることができる好ましい化合物を挙げる。使用する発光材料のHOMO/LUMO準位に適合させるために、下記の例示化合物の基本骨格に適宜置換基を導入することによりホスト材料のHOMO/LUMO準位を調整することができる。例えば、下記の例示化合物の基本骨格にシアノ基やパーフルオロアルキル基を導入することによりHOMO/LUMO準位を深くした化合物とし、これをホスト材料や周辺化合物に用いることができる。ホスト材料としては、バイポーラー性 (正孔と電子を両方よく流す) であっても、ユニポーラー性であっても良く、発光材料よりも励起三重項エネルギー準位ET1が高いものであることが好ましい。より好ましいホスト材料はバイポーラー性を有し、発光材料よりも励起三重項エネルギー準位ET1が高いものである。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
 次に、正孔注入材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000029
 次に、正孔輸送材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
 次に、電子阻止材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000036
 次に、正孔阻止材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000037
 次に、電子輸送材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
 次に、電子注入材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000041
 さらに添加可能な材料として好ましい化合物例を挙げる。例えば、安定化材料として添加すること等が考えられる。
Figure JPOXMLDOC01-appb-C000042
 上述の方法により作製された有機エレクトロルミネッセンス素子は、得られた素子の陽極と陰極の間に電界を印加することにより発光する。このとき、励起一重項エネルギーによる発光であれば、そのエネルギーレベルに応じた波長の光が、蛍光発光および遅延蛍光発光として確認される。また、励起三重項エネルギーによる発光であれば、そのエネルギーレベルに応じた波長が、りん光として確認される。通常の蛍光は、遅延蛍光発光よりも蛍光寿命が短いため、発光寿命は蛍光と遅延蛍光で区別できる。
 一方、りん光については、本発明の化合物のような通常の有機化合物では、励起三重項エネルギーは不安定で熱等に変換され、寿命が短く直ちに失活するため、室温では殆ど観測できない。通常の有機化合物の励起三重項エネルギーを測定するためには、極低温の条件での発光を観測することにより測定可能である。
 本発明の有機エレクトロルミネッセンス素子は、単一の素子、アレイ状に配置された構造からなる素子、陽極と陰極がX-Yマトリックス状に配置された構造のいずれにおいても適用することができる。本発明によれば、発光層に本発明の化合物を含有させることにより、発光効率が大きく改善された有機発光素子が得られる。本発明の有機エレクトロルミネッセンス素子などの有機発光素子は、さらに様々な用途へ応用することが可能である。例えば、本発明の有機エレクトロルミネッセンス素子を用いて、有機エレクトロルミネッセンス表示装置を製造することが可能であり、詳細については、時任静士、安達千波矢、村田英幸共著「有機ELディスプレイ」(オーム社)を参照することができる。また、特に本発明の有機エレクトロルミネッセンス素子は、需要が大きい有機エレクトロルミネッセンス照明やバックライトに応用することもできる。
 以下に合成例および実施例を挙げて本発明の特徴をさらに具体的に説明する。以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。なお、HOMO準位およびLUMO準位の測定は、大気中光電子分光装置 (理研計器製:AC3)およびUV/Vis/NIR分光光度計 (PerkinElmer製:LAMBDA950)を用いて行い、発光強度の経時変化の測定は、蛍光分光光度計(ホリバ製:FluoroMax-4)を用いて行い、発光特性の評価は、絶対外部量子効率測定システム(浜松ホトニクス社製:C9920-12)、分光計(浜松ホトニクス社製:PMA-12)、小型蛍光寿命測定装置 (浜松ホトニクス社製 Quantaurus-Tau C11367-21)、絶対PL量子収率測定装置 (浜松ホトニクス社製 Quantaurus-QY C11347-01)、励起光源に窒素レーザー(Lasertechnik Berlin社製、M NL200)およびストリークカメラ(浜松ホトニクス(株)製C4334型)を用いて行った。
 また、本実施例では、Quantaurus-Tau測定時のデータフィッティングによって得られた短寿命分(τ1)を即時蛍光、長寿命分(τ2)を遅延蛍光とした。
 各材料の励起一重項エネルギー準位(ES1)と励起三重項エネルギー準位(ET1)の差(ΔEST)は、励起一重項エネルギー準位(ES1)と励起三重項エネルギー準位(ET1)を以下の方法で算出し、ΔEST=ES1-ET1により求めた。
(1)励起一重項エネルギー準位ES1
 測定対象化合物とDPEPOとを、測定対象化合物が濃度6重量%となるように共蒸着することでSi基板上に厚さ100nmの試料を作製した。常温(300K)でこの試料の蛍光スペクトルを測定した。励起光入射直後から入射後100ナノ秒までの発光を積算することで、縦軸を発光強度、横軸を波長の蛍光スペクトルを得た。蛍光スペクトルは、縦軸を発光、横軸を波長とした。この発光スペクトルの短波側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値 λedge[nm]を求めた。この波長値を次に示す換算式でエネルギー値に換算した値をES1とした。
  換算式:ES1[eV]=1239.85/λedge
 発光スペクトルの測定には、励起光源に窒素レーザー(Lasertechnik Berlin社製、MNL200)を検出器には、ストリークカメラ(浜松ホトニクス社製、C4334)を用いた。
(2)励起三重項エネルギー準位ET1
 励起一重項エネルギー準位ES1と同じ試料を5[K]に冷却し、励起光(337nm)を燐光測定用試料に照射し、ストリークカメラを用いて、燐光強度を測定した。励起光入射後1ミリ秒から入射後10ミリ秒の発光を積算することで、縦軸を発光強度、横軸を波長の燐光スペクトルを得た。この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を求めた。この波長値を次に示す換算式でエネルギー値に換算した値をET1とした。
  換算式:ET1[eV]=1239.85/λedge
 燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引いた。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考える。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線を、当該燐光スペクトルの短波長側の立ち上がりに対する接線とした。
 なお、スペクトルの最大ピーク強度の10%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とした。
(合成例1)
 200mLナスフラスコに水素化ナトリウム(60wt%、288mg)を入れ、ヘキサンで洗浄した。テトラヒドロフラン(60mL)、2,7-ジトリフルオロメチルカルバゾール(1.82g)を加え室温で1時間撹拌した後、テトラフルオロイソフタロニトリル(240mg)を加え、さらに室温で22時間撹拌した。水(50mL)を加え、析出物をろ取した。ろ取物をシリカゲルカラムクロマトグラフィーに供することで精製し、化合物1(1.5g、収率94%)を得た。
 化合物1のDMSO-d6溶液の1H NMRスペクトルを図2に示す。
(合成例2)
 200mLナスフラスコに水素化ナトリウム(60wt%、288mg)を入れ、ヘキサンで洗浄した。テトラヒドロフラン(60mL)、2,7-ジトリフルオロメチルカルバゾール(1.82g)を加え室温で1時間撹拌した後、テトラフルオロテレフタロニトリル(240mg)を加え、さらに室温で22時間撹拌した。水(50mL)を加え、析出物をろ取した。ろ取物をシリカゲルカラムクロマトグラフィーに供することで精製し、化合物2(1.45g、収率91%)を得た。
 化合物1のDMSO-d6溶液の1H NMRスペクトルを図3に示す。
(合成例3)
 200mLナスフラスコに炭酸セシウム(2.45g)、2,7-ジトリフルオロメチルカルバゾール(1.52g)、パーフルオロパラキシレン(286mg)を入れ、ジメチルスルホキシド(40mL)を加え室温で12時間撹拌した。水(20mL)を加え、析出物をろ取した。ろ取物をシリカゲルカラムクロマトグラフィーに供することで精製し、化合物3(1.2g、収率84%)を得た。
 化合物3は一般的な重溶媒に不溶であったため、高分解質量分析、元素分析により同定した。
(合成例4)
 200mLナスフラスコに水素化ナトリウム(60wt%、240mg)を入れ、ヘキサンで洗浄した。N-メチルー2-ピロリドン(60mL)、2,7-ジトリフルオロメチルカルバゾール(1.52g)を加え室温で1時間撹拌した後、2,4-ジフェニルー6-(3,4,5-トリフルオロフェニル)-1,3,5-トリアジン(510mg)を加え、100℃で16時間撹拌した。水(50mL)を加え、析出物をろ取した。ろ取物をシリカゲルカラムクロマトグラフィーに供することで精製し、化合物4(1.12g、収率69%)を得た。
 化合物4のDMSO-d6溶液の1H NMRスペクトルを図4に示す。
なお、2,4-ジフェニルー6-(3,4,5-トリフルオロフェニル)-1,3,5-トリアジンはAdv. Mater. 2015, 27, 5861-5867を参考に合成した。
 各合成例で合成した化合物1および化合物2のHOMO準位およびLUMO準位、最低励起三重項エネルギー準位ET1、ΔESTを表1に示す。また、本実施例で比較に用いた化合物(比較化合物1~6)を下記に示し、比較化合物1、2、4のHOMO準位およびLUMO準位、最低励起三重項エネルギー準位ET1、ΔESTを表1に示す。
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-T000046
 表1に示すように、カルバゾール-9-イル基がパーフルオロアルキル基で置換されている化合物1および2と比較化合物2および4は、カルバゾール-9-イル基がパーフルオロアルキル基で置換されていない比較化合物1に比べてHOMO準位とLUMO準位がともに低いものになっている。このことから、カルバゾール-9-イル基とアクセプター性基で置換された芳香環のカルバゾール-9-イル基にパーフルオロアルキル基を導入すると、HOMOとLUMOの準位が下がることがわかった。しかし、カルバゾール-9-イル基にパーフルオロアルキル基が導入されていても、その置換位置が3位と6位である比較化合物2は、その置換位置が2位と7位である化合物1に比べてΔESTが大きな値になっている。このことから、カルバゾール-9-イル基の3位と6位にパーフルオロアルキル基が導入された化合物は、2位と7位にパーフルオロアルキル基が導入された化合物1よりも励起三重項状態から励起一重項状態への逆項間交差が生じにくいことが示唆された。
[有機フォトルミネッセンス素子の作製と発光特性の評価]
(実施例1)
 化合物1のトルエン溶液(濃度10-5mol/L)を調製した。
 また、10-5Paオーダーの真空度にて石英基板上に化合物1の薄膜(単独膜)を100nmの厚さで蒸着して有機フォトルミネッセンス素子とした。
 これとは別に、10-5Paオーダーの真空度にて石英基板上に化合物1とDPEPOとを異なる蒸着源から蒸着し、化合物1の濃度が10重量%である薄膜(ドープ膜)を100nmの厚さで形成して有機フォトルミネッセンス素子とした。
 さらに、これとは別に、10-5Paオーダーの真空度にて石英基板上に化合物1の薄膜を100nmの厚さで蒸着し、グローブボックス中にてその薄膜をガラスおよびUV硬化樹脂で封止して封止素子を作製した。
Figure JPOXMLDOC01-appb-C000047
(実施例2)
 化合物1の代わりに化合物2を用いること以外は、実施例1と同様にして化合物2のトルエン溶液、単独膜およびドープ膜をそれぞれ作製し、有機フォトルミネッセンスとした。
(実施例3)
 化合物1の代わりに化合物3を用いること以外は、実施例1と同様にして化合物3のトルエン溶液、単独膜およびドープ膜をそれぞれ作製し、有機フォトルミネッセンスとした。
(実施例4)
 化合物1の代わりに化合物4を用いること以外は、実施例1と同様にして化合物4のトルエン溶液、単独膜およびドープ膜をそれぞれ作製し、有機フォトルミネッセンスとした。
(比較例1~4、7~9)
 化合物1の代わりに比較化合物1~4、7~9を用いること以外は、実施例1と同様にして比較化合物1~4、7~9のトルエン溶液、単独膜およびドープ膜をそれぞれ作製し、有機フォトルミネッセンスとした。
(比較例5、6)
 化合物1の代わりに比較化合物5、6を用い、トルエンの代わりにアセトンを用いること以外は、実施例1と同様にして比較化合物5、6のアセトン溶液、単独膜およびドープ膜をそれぞれ作製し、有機フォトルミネッセンスとした。
(比較例10、11)
 化合物1の代わりに比較化合物10、11を用いること以外は、実施例1と同様にして比較化合物10、11の封止素子を作製した。
 各実施例および各比較例で作製したトルエン溶液、アセトン溶液、単独膜およびドープ膜について、励起光(トルエン溶液は340nm、アセトン溶液は360nm、単独膜は340~360nm、ドープ膜は280nm)による発光極大波長およびフォトルミネッセンス量子収率(PL量子収率)を測定した結果を表2に示す。また、表2には、各実施例および各比較例で作製したトルエン溶液、アセトン溶液およびドープ膜で観測された発光ピークの半値幅も示す。ここで、フォトルミネッセンス量子収率の測定は、トルエン溶液およびアセトン溶液については窒素バブリングを行わない場合と窒素バブリングを行った後に測定する場合の2つの条件で行い、単独膜とドープ膜についてはアルゴン雰囲気で行った。また、化合物1および比較化合物2のトルエン溶液、単独膜およびドープ膜について、340nm励起光による即時蛍光寿命T1および遅延蛍光寿命T2を測定した結果と、化合物1および比較化合物2のドープ膜について、最低励起一重項エネルギー準位ES1およびΔESTを測定した結果を表3に示す。
 また、化合物1のドープ膜について、5K、100K、200K、300Kの温度下で、337nm励起光による460nm発光の過渡減衰曲線を測定した結果を図5に示し、化合物1および比較化合物2をドープしたDPEPO膜について、即時蛍光および遅延蛍光のフォトルミネッセンス量子収率(PLQY)の温度依存性を測定した結果を図6に示し、化合物2および比較化合物4をドープしたDPEPO膜について、即時蛍光および遅延蛍光のフォトルミネッセンス量子収率(PLQY)の温度依存性を測定した結果を図7に示す。図6、7中、「total」は即時蛍光と遅延蛍光のフォトルミネッセンス量子収率の合計を示す。
 化合物1、比較化合物10、11の各封止素子について、大気下で365nm励起光を連続照射し、発光強度の経時変化を測定した結果を図8に示す。
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
 表2に示すように、実施例1、2および比較例1~6のトルエン溶液およびアセトン溶液は、いずれも窒素バブリングを行った場合の方が、窒素バブリング行わない場合よりも高いフォトルミネッセンス量子収率が得られている。これは、窒素バブリングにより、三重項励起子の酸素によるクエンチングが抑えられて、励起三重項状態から励起一重項状態への逆項間交差が促進されたためと考えられる。このことから、化合物1、2および比較化合物1~6は、いずれも逆項間交差を経由して遅延蛍光を放射し得るものであることが示された。
 また、さらに表2を見ると、カルバゾール-9-イル基の2位と7位がパーフルオロアルキル基で置換されている化合物1、2の有機フォトルミネッセンス素子は、カルバゾール-9-イル基が無置換である比較化合物1、3、カルバゾール-9-イル基の3位と6位がパーフルオロアルキル基で置換されている比較化合物2、4の有機フォトルミネッセンス素子に比べて、トルエン溶液、単独膜およびドープ膜のいずれの形態においても、フォトルミネッセンス量子収率が高く、発光波長が短く、色純度が高い (発光スペクトルの半値幅が狭い) 傾向が認められた。ここで、カルバゾール-9-イル基の2位と7位がパーフルオロアルキル基で置換されている化合物1、2で発光波長が短波長であり、スペクトルの半値幅も狭いのは、化合物1、2は励起状態になった後の振動緩和が小さいために、基底準位に対して、より高い励起一重項エネルギー準位から失活して高エネルギーの光(波長が短い光)を放射するからであると推測される。また、表3に示すように、化合物1の有機フォトルミネッセンス素子の方が、比較化合物2の有機フォトルミネッセンス素子よりも遅延蛍光寿命T2が長寿命であった。
 さらに、図6、7において遅延蛍光のフォトルミネッセンス量子収率の温度依存性を見ると、低温領域では差がないが、200K超の高温領域において、いずれもフォトルミネッセンス量子収率の温度依存性が認められたが、明らかに化合物1および化合物2の各有機フォトルミネッセンス素子の方が、比較化合物2および比較化合物4の各有機フォトルミネッセンス素子よりも高いフォトルミネッセンス量子収率が得られている。このことは、各化合物が熱活性型の遅延蛍光材料であることを示すとともに、その熱により活性化される逆項間交差が、比較化合物2、4よりも、化合物1、2において起こり易いことを示すものである。また、この逆項間交差の起こり易さの傾向は、化合物1の方が、比較化合物2よりもΔESTが小さいことからも裏付けられる(表1参照)。
 また、表2において、カルバゾール-9-イル基の2位と7位がシアノ基で置換されている比較化合物5、カルバゾール-9-イル基の3位と6位がシアノ基で置換されている比較化合物6の特性を実施例1(化合物1)、比較例2(比較化合物2)の特性と比較してみると、シアノ基の場合もパーフルオロアルキル基の場合と同様に発光波長が短くなっているものの、フォトルミネッセンス量子収率は非常に低く、発光スペクトルの半値幅にもほとんど影響がなかった。パーフルオロアルキル基とシアノ基は共にハメットのσが正の電子吸引性置換基であるが、パーフルオロアルキル基の場合、光学特性が向上し、シアノ基の場合、光学特性が低下することが分かる。
 以上の結果から、芳香環がカルバゾール-9-イル基とアクセプター性基で置換された構造を有する化合物のカルバゾール-9-イル基の2位と7位にパーフルオロアルキル基を導入すると、高い発光効率が得られ、発光波長が短波長化することがわかった。また、図8から、化合物1は耐光性が優れることも確認することができた。
 さらに、表2の実施例3、4および比較例7、8、9の性能比較から、これらの発光特性の向上傾向は、アクセプターユニットがシアノベンゼンである場合に限らず、パーフルオロアルキル基置換芳香環やトリアジン等の複素環からなる構造体である場合にも認められた。
[有機エレクトロルミネッセンス素子の作製と発光特性の評価]
(実施例5)
 膜厚100nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に、10-5Paオーダーの真空度にて各薄膜を蒸着して積層した。まず、ITO上にNPDを30nmの厚さに形成し、この上に、mCPを10nmの厚さに形成した。次に、化合物1とPPTを異なる蒸着源から共蒸着し、20nmの厚さの層を形成して発光層とした。この時、化合物1の濃度は5重量%とした。次に、PPTを40nmの厚さに形成し、この上にフッ化リチウム(LiF)を0.8nm真空蒸着し、次いでアルミニウム(Al)を100nmの厚さに蒸着することにより陰極を形成した。以上の工程により、化合物1を用いて有機エレクトロルミネッセンス素子を作製した。
 作成した有機エレクトロルミネッセンス素子の電流密度-電圧-輝度特性を図9に示した。この有機エレクトロルミネッセンス素子は、図10に示すように460nmに発光極大波長を有しており、色度座標(x,y)は(0.15,0.15)であった。また、この有機エレクトロルミネッセンス素子は、14%を超える外部量子効率を達成しており、優れた素子であることが確認された。
(比較例12)
 化合物1の代わりに比較化合物2を用いること以外は、実施例5と同様にして有機エレクトロルミネッセンス素子を作成した。
 作成した有機エレクトロルミネッセンス素子の電流密度-電圧-輝度特性を図9に示した。この有機エレクトロルミネッセンス素子の発光極大波長は図10に示すように470nmで、色度座標(x,y)は(0.15,0.23)であり、実施例3の有機エレクトロルミネッセンス素子に比べて、発光波長が長波長であった。また、その最大外部量子効率は10%未満であり、実施例3の有機エレクトロルミネッセンス素子に比べて大きく劣るものであった。
Figure JPOXMLDOC01-appb-C000050
 本発明の化合物は、HOMO準位とLUMO準位がともに深く、優れた発光特性と高い耐光性を有する。このため、本発明の化合物は、有機発光素子用の発光材料として有用である。また、本発明の有機発光素子は、こうした発光材料を含むため、優れた発光特性を実現しうるものである。このため、本発明は産業上の利用可能性が高い。
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 電子輸送層
 7 陰極

Claims (27)

  1.  2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基と、ハメットのσpが正の構造単位(ただし芳香族炭化水素基は除く)とが、直接結合しているかπ共役連結基を介して結合した構造を含んでいて、前記カルバゾール-9-イル基の少なくとも一部と前記ハメットのσpが正の構造単位の少なくとも一部と前記π共役連結基が存在する場合はそのπ共役連結基とがπ電子共役系を形成している化合物。
  2.  下記一般式(1)で表される構造を有することを特徴とする請求項1に記載の化合物。
    一般式(1)
     (D)m-A
    [一般式(1)において、Dはハメットのσpが負の基を表し、Aはハメットのσpが正の構造単位からなる基を表す。mは1以上の整数を表す。mが2以上であるとき複数のDは同一であっても異なっていてもよい。Dの少なくとも1つは、2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基を含む基である。前記カルバゾール-9-イル基の少なくとも一部と、前記Aを構成する芳香族炭化水素基以外の構造の少なくとも一部と、前記カルバゾール-9-イル基と前記構造を連結する連結基が存在する場合はその連結基とが、π電子共役系を形成している。]
  3.  前記一般式(1)のDの少なくとも1つが、2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基であることを特徴とする請求項2に記載の化合物。
  4.  前記一般式(1)のDの全てが、2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基であることを特徴とする請求項2に記載の化合物。
  5.  前記一般式(1)のAが芳香環を含むことを特徴とする請求項2~4のいずれか1項に記載の化合物。
  6.  前記一般式(1)のAが芳香族炭化水素環を含むことを特徴とする請求項5に記載の化合物。
  7.  前記一般式(1)のAが芳香族ヘテロ環を含むことを特徴とする請求項5または6に記載の化合物。
  8.  前記一般式(1)のAがフッ素原子、アシル基、アシルオキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、シアノ基、ホスフィンオキシド基、スルホニル基、パーフルオロアルキル基、ホスフィンオキシド基、アミド基、アルコキシ基、ピリジル基、ピリミジル基またはトリアジル基を含むことを特徴とする請求項2~7のいずれか1項に記載の化合物。
  9.  前記一般式(1)のAが臭素原子、ヨウ素原子またはニトロ基を含まないことを特徴とする請求項2~8のいずれか1項に記載の化合物。
  10.  前記カルバゾール-9-イル基と、前記Aを構成する芳香族炭化水素基以外の構造とが、芳香環を介して連結していることを特徴とする請求項2~9のいずれか1項に記載の化合物。
  11.  前記一般式(1)で表される化合物は、下記一般式(2)で表される化合物である請求項2に記載の化合物。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(2)において、Zはシアノ基、パーフルオロアルキル基、置換もしくは無置換のトリアジニル基または置換もしくは無置換のピリミジニル基を表し、R1~R5の少なくとも1つは2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基を表し、残りのR1~R5は各々独立に水素原子または置換基を表す。]
  12.  前記一般式(2)のR2がシアノ基もしくはパーフルオロアルキル基であることを特徴とする請求項11に記載の化合物。
  13.  前記一般式(2)のR1、R3~R5が、前記2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基であることを特徴とする請求項12に記載の化合物。
  14.  前記一般式(2)のR3がシアノ基もしくはパーフルオロアルキル基であることを特徴とする請求項11に記載の化合物。
  15.  前記一般式(2)のR1とR2とR4とR5が、前記2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基であることを特徴とする請求項14に記載の化合物。
  16.  前記2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基が、下記一般式(11)で表される構造を有することを特徴とする請求項1~15のいずれか1項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000002
    [一般式(11)において、R21、R23~R26、R28は、各々独立に水素原子または置換基を表し、R22とR27はパーフルオロアルキル基を表す。]
  17.  前記一般式(11)のR21、R23~R26、R28の少なくとも1つが置換もしくは無置換のカルバゾリル基であることを特徴とする請求項16に記載の化合物。
  18.  前記一般式(11)のR23が置換もしくは無置換のカルバゾリル基であることを特徴とする請求項17に記載の化合物。
  19.  前記一般式(11)のR23およびR26が置換もしくは無置換のカルバゾリル基であることを特徴とする請求項17に記載の化合物。
  20.  前記カルバゾリル基がシアノ基で置換されていることを特徴とする請求項17~19のいずれか1項に記載の化合物。
  21.  一般式(1)で表される化合物の分子内に存在するカルバゾール環の数が4つ以下であることを特徴とする請求項2~20のいずれか1項に記載の化合物。
  22.  請求項1~21のいずれか1項に記載の化合物を含有する発光材料。
  23.  請求項1~21のいずれか1項に記載の化合物を含むことを特徴とする有機発光素子。
  24.  請求項1~21のいずれか1項に記載の化合物を含む発光層を基板上に有することを特徴とする有機発光素子。
  25.  遅延蛍光を放射することを特徴とする請求項23または24に記載の有機発光素子。
  26.  有機エレクトロルミネッセンス素子であることを特徴とする請求項23~25のいずれか1項に記載の有機発光素子。
  27.  下記一般式(1)で表される構造を有する遅延蛍光体。
    一般式(1)
     (D)m-Ar-(A)n
    [一般式(1)において、Arは芳香環を表し、Dはハメットのσpが負の置換基を表し、Aはハメットのσpが正の置換基を表す。mとnは各々独立に1以上の整数を表すが、m+nがArの芳香環に置換可能な置換基数の最大値を超えることはない。Dの少なくとも1つは、2位と7位がパーフルオロアルキル基で置換されたカルバゾール-9-イル基である。]
PCT/JP2017/032510 2016-09-09 2017-09-08 有機発光素子ならびにそれに用いる発光材料および化合物 WO2018047948A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/331,374 US11618730B2 (en) 2016-09-09 2017-09-08 Organic light-emitting element, and light-emitting material and compound for use therein
KR1020197009832A KR102391760B1 (ko) 2016-09-09 2017-09-08 유기 발광 소자와, 그에 이용하는 발광 재료 및 화합물
EP17848886.2A EP3511321B1 (en) 2016-09-09 2017-09-08 Organic light-emitting element, and light-emitting material and compound for use therein
CN201780055482.2A CN110225906A (zh) 2016-09-09 2017-09-08 有机发光元件、用于该有机发光元件的发光材料及化合物
JP2018538490A JP7028176B2 (ja) 2016-09-09 2017-09-08 有機発光素子ならびにそれに用いる発光材料および化合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-176280 2016-09-09
JP2016176280 2016-09-09

Publications (1)

Publication Number Publication Date
WO2018047948A1 true WO2018047948A1 (ja) 2018-03-15

Family

ID=61562183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032510 WO2018047948A1 (ja) 2016-09-09 2017-09-08 有機発光素子ならびにそれに用いる発光材料および化合物

Country Status (7)

Country Link
US (1) US11618730B2 (ja)
EP (1) EP3511321B1 (ja)
JP (1) JP7028176B2 (ja)
KR (1) KR102391760B1 (ja)
CN (1) CN110225906A (ja)
TW (1) TWI738859B (ja)
WO (1) WO2018047948A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155642A1 (ja) * 2017-02-24 2018-08-30 国立大学法人九州大学 化合物、発光材料および発光素子
WO2019087936A1 (ja) * 2017-11-01 2019-05-09 東洋紡株式会社 π電子共役単位とカルバゾール基を有する化合物
WO2020050127A1 (ja) * 2018-09-05 2020-03-12 国立大学法人九州大学 ベンゾニトリル誘導体、発光材料およびそれを用いた発光素子
CN111868953A (zh) * 2018-03-19 2020-10-30 出光兴产株式会社 有机电致发光元件以及电子设备
WO2021220952A1 (ja) * 2020-04-28 2021-11-04 東洋紡株式会社 含窒素複素環化合物及びその利用
US11638390B2 (en) 2017-06-23 2023-04-25 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11927535B2 (en) 2018-04-13 2024-03-12 Applied Materials, Inc. Metrology for OLED manufacturing using photoluminescence spectroscopy
JP7486238B2 (ja) 2017-02-24 2024-05-17 株式会社Kyulux 化合物、発光材料および発光素子

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003335754A (ja) * 2002-05-15 2003-11-28 Fuji Photo Film Co Ltd ヘテロ環化合物及びそれを用いた発光素子
JP2004288380A (ja) * 2003-03-19 2004-10-14 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子
JP2008085079A (ja) * 2006-09-27 2008-04-10 Fujifilm Corp 有機電界発光素子
WO2013081088A1 (ja) * 2011-12-02 2013-06-06 国立大学法人九州大学 有機発光素子ならびにそれに用いる遅延蛍光材料および化合物
WO2013154064A1 (ja) * 2012-04-09 2013-10-17 国立大学法人九州大学 有機発光素子ならびにそれに用いる発光材料および化合物
WO2013175789A1 (ja) * 2012-05-24 2013-11-28 出光興産株式会社 有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
WO2015022987A1 (ja) * 2013-08-16 2015-02-19 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、電子デバイス、発光装置及び発光材料
WO2015137136A1 (ja) * 2014-03-12 2015-09-17 国立大学法人九州大学 発光材料及びそれを用いた有機el素子
WO2015180524A1 (zh) * 2014-05-30 2015-12-03 广州华睿光电材料有限公司 有机混合物、包含其的组合物、有机电子器件及应用
JP2016017078A (ja) * 2014-07-09 2016-02-01 三星電子株式会社Samsung Electronics Co.,Ltd. 縮合環化合物及びそれを含む有機発光素子
DE102016108335B3 (de) * 2016-05-04 2016-12-22 Cynora Gmbh Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
DE102016120373B3 (de) * 2016-10-25 2017-08-24 Cynora Gmbh Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5366106A (en) 1976-11-26 1978-06-13 Hitachi Ltd Incoming detection circuit
JP5366106B1 (ja) 2012-04-09 2013-12-11 国立大学法人九州大学 有機発光素子ならびにそれに用いる発光材料および化合物
JP6975639B2 (ja) 2015-05-08 2021-12-01 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH π共役系化合物、有機エレクトロルミネッセンス素子材料、発光材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP6647514B2 (ja) 2015-12-04 2020-02-14 東洋紡株式会社 有機発光素子ならびにそれに用いる発光材料および化合物
EP3452471B1 (de) 2016-05-04 2021-12-08 Cynora Gmbh Organische moleküle, insbesondere zur verwendung in optoelektronischen vorrichtungen
KR102228426B1 (ko) 2016-07-01 2021-03-15 시노라 게엠베하 광전자 장치에 사용하기 위한 디카르바졸비페닐 유도체
US11380849B2 (en) 2016-07-01 2022-07-05 Cynora Gmbh Organic molecules for use in optoelectronic devices
TWI712599B (zh) 2016-07-05 2020-12-11 日商東洋紡股份有限公司 有機電發光材料及使用其之有機電發光元件
EP3279193B1 (de) 2016-08-04 2019-05-08 Cynora Gmbh Phthalimid und carbazol oder dessen analoge enthaltende verbindungen zur verwendung in organischen optoelektronischen vorrichtungen
JP6789195B2 (ja) 2016-08-24 2020-11-25 サイノラ ゲゼルシャフト ミット ベシュレンクテル ハフツング 特に有機光電子デバイスに使用するための有機分子
TWI701237B (zh) 2016-08-25 2020-08-11 德商賽諾拉公司 有機分子,特別是用於有機光電器件的有機分子
EP3507285B1 (de) * 2016-09-01 2020-10-21 Cynora Gmbh Organische moleküle, insbesondere zur verwendung in organischen optoelektronischen vorrichtungen
CN109996795B (zh) 2016-10-25 2021-01-12 辛诺拉有限公司 特别用于有机光电器件的有机分子

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003335754A (ja) * 2002-05-15 2003-11-28 Fuji Photo Film Co Ltd ヘテロ環化合物及びそれを用いた発光素子
JP2004288380A (ja) * 2003-03-19 2004-10-14 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子
JP2008085079A (ja) * 2006-09-27 2008-04-10 Fujifilm Corp 有機電界発光素子
WO2013081088A1 (ja) * 2011-12-02 2013-06-06 国立大学法人九州大学 有機発光素子ならびにそれに用いる遅延蛍光材料および化合物
WO2013154064A1 (ja) * 2012-04-09 2013-10-17 国立大学法人九州大学 有機発光素子ならびにそれに用いる発光材料および化合物
WO2013175789A1 (ja) * 2012-05-24 2013-11-28 出光興産株式会社 有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
WO2015022987A1 (ja) * 2013-08-16 2015-02-19 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、電子デバイス、発光装置及び発光材料
WO2015137136A1 (ja) * 2014-03-12 2015-09-17 国立大学法人九州大学 発光材料及びそれを用いた有機el素子
WO2015180524A1 (zh) * 2014-05-30 2015-12-03 广州华睿光电材料有限公司 有机混合物、包含其的组合物、有机电子器件及应用
JP2016017078A (ja) * 2014-07-09 2016-02-01 三星電子株式会社Samsung Electronics Co.,Ltd. 縮合環化合物及びそれを含む有機発光素子
DE102016108335B3 (de) * 2016-05-04 2016-12-22 Cynora Gmbh Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
DE102016120373B3 (de) * 2016-10-25 2017-08-24 Cynora Gmbh Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GANTENBEIN, M. ET AL.: "New 4,4'-Bis(9- carbazolyl)-Biphenyl Derivatives with Locked Carbazole-Biphenyl Junctions: High-Triplet State Energy Materials", CHEMISTRY OF MATERIALS, vol. 27, no. 5, 2015, pages 1772 - 1779, XP055191916 *
MEI, L. ET AL.: "The inductive-effect of electron withdrawing trifluoromethyl for thermally activated delayed fluorescence: tunable emission from tetra- to penta-carbazole in solution processed blue OLEDs", CHEMICAL COMMUNICATIONS, vol. 51, no. 65, 2015, pages 13024 - 13027, XP055497447 *
See also references of EP3511321A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155642A1 (ja) * 2017-02-24 2018-08-30 国立大学法人九州大学 化合物、発光材料および発光素子
JP7486238B2 (ja) 2017-02-24 2024-05-17 株式会社Kyulux 化合物、発光材料および発光素子
JPWO2018155642A1 (ja) * 2017-02-24 2019-12-19 国立大学法人九州大学 化合物、発光材料および発光素子
JP7222549B2 (ja) 2017-02-24 2023-02-15 株式会社Kyulux 化合物、発光材料および発光素子
US11638390B2 (en) 2017-06-23 2023-04-25 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
JP7165943B2 (ja) 2017-11-01 2022-11-07 東洋紡株式会社 π電子共役単位とカルバゾール基を有する化合物
JP2019085401A (ja) * 2017-11-01 2019-06-06 東洋紡株式会社 π電子共役単位とカルバゾール基を有する化合物
WO2019087936A1 (ja) * 2017-11-01 2019-05-09 東洋紡株式会社 π電子共役単位とカルバゾール基を有する化合物
CN111868953A (zh) * 2018-03-19 2020-10-30 出光兴产株式会社 有机电致发光元件以及电子设备
US11927535B2 (en) 2018-04-13 2024-03-12 Applied Materials, Inc. Metrology for OLED manufacturing using photoluminescence spectroscopy
CN112638874A (zh) * 2018-09-05 2021-04-09 国立大学法人九州大学 苯甲腈衍生物、发光材料和使用该发光材料的发光元件
JPWO2020050127A1 (ja) * 2018-09-05 2021-08-26 国立大学法人九州大学 ベンゾニトリル誘導体、発光材料およびそれを用いた発光素子
JP7184263B2 (ja) 2018-09-05 2022-12-06 国立大学法人九州大学 ベンゾニトリル誘導体、発光材料およびそれを用いた発光素子
WO2020050127A1 (ja) * 2018-09-05 2020-03-12 国立大学法人九州大学 ベンゾニトリル誘導体、発光材料およびそれを用いた発光素子
WO2021220952A1 (ja) * 2020-04-28 2021-11-04 東洋紡株式会社 含窒素複素環化合物及びその利用

Also Published As

Publication number Publication date
JP7028176B2 (ja) 2022-03-02
JPWO2018047948A1 (ja) 2019-07-18
KR20190065277A (ko) 2019-06-11
TW201815761A (zh) 2018-05-01
EP3511321A1 (en) 2019-07-17
KR102391760B1 (ko) 2022-05-02
US11618730B2 (en) 2023-04-04
TWI738859B (zh) 2021-09-11
CN110225906A (zh) 2019-09-10
EP3511321B1 (en) 2021-11-03
EP3511321A4 (en) 2020-05-20
US20190194131A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP6526625B2 (ja) 発光材料、有機発光素子および化合物
KR101999881B1 (ko) 화합물, 발광 재료 및 유기 발광 소자
JP6284370B2 (ja) 発光材料、有機発光素子および化合物
JP6225111B2 (ja) 発光材料、化合物、およびそれらを用いた有機発光素子
JP6293417B2 (ja) 化合物、発光材料および有機発光素子
JP6277182B2 (ja) 化合物、発光材料および有機発光素子
JP6383538B2 (ja) 発光材料、有機発光素子および化合物
JP6466913B2 (ja) 発光材料、有機発光素子および化合物
JP6367189B2 (ja) 発光材料、有機発光素子および化合物
JP7028176B2 (ja) 有機発光素子ならびにそれに用いる発光材料および化合物
WO2014126200A1 (ja) 化合物、発光材料および有機発光素子
KR20150009512A (ko) 화합물, 발광 재료 및 유기 발광 소자
JP6647514B2 (ja) 有機発光素子ならびにそれに用いる発光材料および化合物
JP7410571B2 (ja) 化合物、発光材料、遅延蛍光体、有機発光素子、酸素センサー、分子の設計方法およびプログラム
JP7184301B2 (ja) 電荷輸送材料
WO2018043241A1 (ja) 有機発光素子ならびにそれに用いる発光材料および化合物
JP6622484B2 (ja) 発光材料、有機発光素子および化合物
JP2018111751A (ja) 発光材料、化合物および有機発光素子
JP2016084283A (ja) 化合物、発光材料および有機発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848886

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018538490

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197009832

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017848886

Country of ref document: EP

Effective date: 20190409