WO2018043508A1 - 汚染土壌浄化システム - Google Patents

汚染土壌浄化システム Download PDF

Info

Publication number
WO2018043508A1
WO2018043508A1 PCT/JP2017/031017 JP2017031017W WO2018043508A1 WO 2018043508 A1 WO2018043508 A1 WO 2018043508A1 JP 2017031017 W JP2017031017 W JP 2017031017W WO 2018043508 A1 WO2018043508 A1 WO 2018043508A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
injection
well
groundwater
activator
Prior art date
Application number
PCT/JP2017/031017
Other languages
English (en)
French (fr)
Inventor
朋宏 中島
孝昭 清水
悠 清塘
大和 清水
信康 奥田
靖英 古川
祐二 山▲崎▼
一洋 向井
薫 稲葉
Original Assignee
株式会社竹中工務店
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社竹中工務店 filed Critical 株式会社竹中工務店
Priority to SG11201901755TA priority Critical patent/SG11201901755TA/en
Priority to JP2018537308A priority patent/JP6988052B2/ja
Priority to EP17846513.4A priority patent/EP3508284A4/en
Priority to US16/329,741 priority patent/US11000885B2/en
Priority to CN201780052939.4A priority patent/CN109689236B/zh
Publication of WO2018043508A1 publication Critical patent/WO2018043508A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/02Extraction using liquids, e.g. washing, leaching, flotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C2101/00In situ
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models

Definitions

  • This disclosure relates to a contaminated soil purification system.
  • Japanese Patent Application Laid-Open No. 2005-52733 discloses a purification device that injects a liquid to which an oil decomposition accelerator is added into oil-contaminated soil.
  • the injected liquid penetrates into the contaminated soil and is pumped from the drainage well. Then, the turbidity of the collected liquid pumped up is confirmed by a turbidimeter or an operator's visual observation, and the addition amount of the oil decomposition accelerator injected into the contaminated soil is adjusted.
  • This disclosure is intended to provide a contaminated soil purification system that can save labor for purifying contaminated soil in consideration of the above facts.
  • the contaminated soil purification system is a contaminated soil purification system for decomposing a contaminant in the contaminated soil, and activates a purification agent that decomposes the contaminant or the biological decomposition of the purification agent.
  • a step of injecting an injection solution containing an activator to be injected into the contaminated soil from a water injection well, and a concentration of the purifier or the activator in ground water in an observation well or a pumping well provided at a location remote from the water injection well And a step of automatically controlling the amount of the purifying agent or the activator added to the infusion solution or the amount of pumped water from the pumping well based on the measured concentration.
  • the concentration of the purification agent or activator in the ground water in the observation well or the pumping well is measured in situ, and the addition of the purification agent or activator is performed based on the measured concentration.
  • the initial concentration of the purification agent or the activator in the observation well or the groundwater in the pumping well before starting the injection of the injection solution or the initial amount of the groundwater A temperature, an injection concentration of the purifying agent or the activator in the injection solution injected into the contaminated soil from the water injection well, or an injection temperature of the injection solution, and an elapsed time since the injection of the injection solution was started.
  • the management function for calculating the predicted concentration of the purifier or the activator of the groundwater or the predicted temperature of the groundwater for each elapsed time, in the observation well or the Predict the time when the concentration of the purifier or activator in the groundwater in the pumping well reaches the target concentration, or the ground in the observation well or in the pumping well Temperature of the ground water in the water to estimate the time to reach the target temperature.
  • the predicted concentration of the purification agent or activator of groundwater or the predicted temperature of groundwater for each elapsed time in the observation well or the pumping well is calculated using a management function.
  • This control function includes the initial concentration of the purifier or activator or the initial temperature of the groundwater in the observation well or the pumping well before the start of infusion, and the concentration of the purifier or activator in the infusion. Or the prediction of the purification agent or the activator of the groundwater for each elapsed time based on the injection temperature of the injection solution, the elapsed time since the start of injection of the injection solution, and the soil physical properties specific to the contaminated soil The concentration or the predicted temperature of the groundwater can be calculated.
  • the predicted concentration or the predicted temperature calculated by the management function is the amount of the purification agent or the activator in the groundwater in the observation well or the pumping well.
  • the control function is corrected by changing the injection concentration or the injection temperature.
  • the injection concentration or injection temperature of the injection liquid is set so that the difference between the predicted concentration or the prediction temperature calculated by the management function and the actual measurement concentration or the actual measurement temperature is reduced.
  • the management function is corrected based on the injection concentration or the injection temperature after the change. Further, the initial concentration or initial temperature of the management function is replaced with the concentration or temperature in the groundwater after a predetermined time has elapsed. Thereby, the difference between the predicted concentration and the actually measured concentration or the difference between the predicted temperature and the actually measured temperature is reduced, and the prediction accuracy by the management function can be increased.
  • the prediction accuracy of the management function is increased, so that it is possible to inject an infusion solution to which an appropriate amount of a purifier or activator is added or an infusion solution at an appropriate temperature into the contaminated soil. Thereby, excess and deficiency of the purification agent or activator in contaminated soil can be suppressed.
  • the contaminated soil purification system 20 in the first embodiment is a contaminated soil purification system for decomposing contaminants contained in the underground soil 10 shown in FIGS. 1A and 1B.
  • the contaminated soil purification system 20 is constructed at the upper part of the ground surface GL with the pumping well 22, the water injection well 24, the observation well 26 and the impermeable wall 28 built in the underground soil 10, and the underground soil 10, the water pumping well 22 and the water injection And a purification device 30 that circulates groundwater between the wells 24.
  • the underground soil 10 is a soil below the ground surface GL, and includes an aquifer 12 through which groundwater flows and an impermeable layer 14 through which groundwater does not flow.
  • a portion of the underground soil 10 in which the pollutant is included in a reference value (for example, a value determined for each type of pollutant) or more is referred to as contaminated soil E.
  • Contaminants is a concept that includes tetrachloroethylene, trichloroethylene, cis-1,2-dichloroethylene, vinyl chloride monomer, organic compounds such as benzene, inorganic compounds such as cyan, and mineral oils such as gasoline and light oil. Unless otherwise specified, description will be made assuming organic substances such as tetrachloroethylene, trichloroethylene, cis-1,2-dichloroethylene, and vinyl chloride monomer.
  • the groundwater level H is illustrated by a one-dot chain line, and the direction of the groundwater flow in the underground soil is illustrated by a dashed arrow.
  • the flow of the groundwater is a flow generated by injecting an injection solution containing a purifying agent or activator described later from the water injection well 24 into the underground soil 10 and further pumping the groundwater from the pumping well 22.
  • the pumping well 22 is pumping means for pumping up groundwater from the underground soil 10, and can suck up the groundwater in the aquifer 12 by a pump (not shown) and send it to the purification device 30.
  • the pumping well 22 is disposed between the contaminated soil E and the impermeable wall 28 and is buried in the underground soil 10 so that the lower end reaches the impermeable layer 14.
  • FIG. 1A for convenience of illustration, only two pumping wells 22a and 22b are shown.
  • the embodiment of the present disclosure is not limited to this, and an arbitrary number is appropriately arranged according to the size of the site. It doesn't matter.
  • the pumping well 22 may be disposed in the contaminated soil E. Moreover, since the concrete method of the pumping by the pumping well 22, the shape, size, etc. of the pumping well 22 are well-known, detailed description is abbreviate
  • the water injection well 24 is an injection means for injecting the injection solution generated by the purification device 30 into the underground soil 10 and can send the injection solution into the underground soil 10 by a pump or the like (not shown). Further, the water injection well 24 is a well disposed between the contaminated soil E and the impermeable wall 28 (that is, the opposite side of the pumped well 22 as viewed from the contaminated soil E) so that the lower end reaches the impermeable layer 14. Embedded in the underground soil 10.
  • FIG. 1A only two water injection wells 24a and 24b are shown for convenience of illustration, but the embodiment of the present disclosure is not limited to this, and an arbitrary number is appropriately arranged according to the size of the site or the like. I do not care.
  • the water injection well 24 may be arranged in the contaminated soil E.
  • pouring of the injection liquid by the water injection well 24 the shape of the water injection well 24, a size, etc. are well-known, detailed description is abbreviate
  • the observation well 26 is an observation means for observing the underground state.
  • the “underground state” indicates the state of groundwater in the ground soil 10 at the position where the observation well 26 is buried.
  • the groundwater level, the groundwater temperature, the concentration of the purifier and the activator in the groundwater Includes pollutant concentration in groundwater.
  • Various sensors are installed inside the observation well 26. These sensors measure the above-described groundwater level, groundwater temperature, concentrations of the purifier and activator in the groundwater, contaminant concentrations in the groundwater, and transmit these measured values to the control unit 38 in the purifier 30 as electrical signals. To do.
  • each of the pumping well 22 and the water injection well 24 also functions as an observation means.
  • FIG. 1A and FIG. 1B illustration of signal lines connected to various sensors and the control unit 38 is omitted to avoid complication of the drawing.
  • observation wells 26 are buried in a plurality of locations in the underground soil surrounded by the impermeable walls 28.
  • FIG. 1A only three observation wells 26a, 26b, and 26c are illustrated for convenience of illustration.
  • the embodiment of the present disclosure is not limited to this, and an arbitrary number of observation wells 26 may be provided for the size of the site. It can arrange
  • the impermeable wall 28 is a concrete impermeable means disposed in the underground soil 10 so as to surround the contaminated soil E, and blocks the flow of underground water inside and outside the impermeable wall 28. In other words, the flow of groundwater in the ground soil 10 “outside” of the impermeable wall 28 and the flow of groundwater in the ground soil 10 “inside” of the impermeable wall 28 are prevented from affecting each other.
  • the lower end of the impermeable wall 28 is embedded in the impermeable layer 14.
  • the contaminated soil E is surrounded by the impermeable wall 28 and the impermeable layer 14, and the contaminants are prevented from flowing out to the underground soil 10 outside the impermeable wall 28.
  • the purification device 30 is a device for purifying the groundwater pumped from the pumping well, adding a purifying agent and an activator, which will be described later, and returning it to the underground soil 10, and includes a water treatment device 32, a heating device 34, and an addition tank. 36 and a control unit 38.
  • the water treatment device 32 sends air into the groundwater pumped from the pumping well to volatilize and purify volatile pollutants.
  • the warming device 34 warms the groundwater purified by the water treatment device 32 with a heater (not shown) whose temperature is controlled by a control unit 38 to be described later. By heating the groundwater by the heating device 34, it is possible to promote the growth of decomposing microorganisms that biodegrade the pollutants in the underground soil 10 or to increase the activity of the decomposing microorganisms.
  • the addition tank 36 adds a purifier or an activator to the groundwater to generate an injection solution. Specifically, a purifier or an activator is added to the groundwater inside the addition tank 36 from a charging device (not shown) controlled by the control unit 38 described later.
  • the “cleaning agent” is a substance that decomposes pollutants in the underground soil 10 and is a decomposing microorganism (for example, dehalococcides) that biodegrades the pollutants.
  • the “active agent” is a substance that activates biodegradation of the cleaning agent, and yeast extract is used as an example.
  • This purifier or activator is added to the ground water in the addition tank 36 by a charging device (not shown) controlled by the control unit 38 to be described later, and is stirred by a stirring device installed in the addition tank 36. Then, an injection solution to be injected from the water injection well 24 into the underground soil 10 is generated.
  • the control unit 38 controls the groundwater level, the groundwater temperature, the concentration of the purifier or activator in the groundwater, the concentration of contaminants in the groundwater, etc. measured by the sensors installed in the observation well 26, the water injection well 24, and the pumping well 22, respectively. Is received as an electrical signal. And according to the received information, the water treatment apparatus 32, the heating apparatus 34, the addition tank 36, and the pumping pump P are drive-controlled.
  • step 90 the injected solution is “injected” from the water injection well 24 to the underground soil 10.
  • the control unit 38 shown in FIGS. 1A and 1B controls the addition tank 36, and the injection liquid to which the purifier or the activator is added is injected from the addition tank 36 into the water injection well 24.
  • the amount of the purifier or activator added to the infusion solution is set so that the concentration of the purifier or activator in the infusion solution after the addition becomes the target concentration of the purifier or activator in the underground soil 10.
  • the injected liquid injected into the water injection well 24 is generated by the pumping pump P pumping up the groundwater from the water pumping well 22 to generate a groundwater gradient. To spread.
  • step S100 “concentration measurement” is performed. Specifically, a sensor installed inside the observation well 26 measures the concentration of the purifier or activator in the groundwater.
  • step S110 “concentration determination” is performed.
  • the control unit 38 determines whether or not the measured concentration of the purifier or activator in the ground water of the observation well 26 measured in step 100 has reached the target concentration.
  • step S100 the process returns to step S100 to measure the density again, and the process proceeds to step S110 to determine whether or not the target density is maintained. In this way, the density measurement and the density determination are repeated so that the actually measured density maintains the target density. If the actually measured density does not reach the target density, the process proceeds to step S118.
  • step S118 “pumped water amount adjustment” is performed.
  • the control unit 38 controls the pumping pump P to increase the pumping power of groundwater in the pumping well 22.
  • the penetration of the purifier or activator into the contaminated soil E is adjusted to bring the measured concentration closer to the target concentration.
  • Whether or not the actually measured concentration has reached the target concentration is determined by returning to step S100, measuring the concentration again, proceeding to step S110, and determining again by the control unit 38.
  • the concentration of the purifier or activator in the groundwater of the contaminated soil E is maintained at the target concentration, and the contaminants in the contaminated soil E are gradually removed.
  • the terms “pumped water amount” and “injected amount” are “volume” of the ground water and the injected liquid per unit time moving between the purification device 30 and the underground soil 10 unless otherwise specified. (Or flow rate) ".
  • the “addition amount” is indicated by the “weight” of the purifier or activator added per unit volume of the injection solution. Further, “concentration” is indicated by “weight concentration”. In addition, you may show the addition amount and density
  • the concentration is measured in step S100, and the concentration is determined in step S110.
  • the amount of pumped water is adjusted. Thereby, the density
  • the concentration of the purifier or the activator in the ground water of the “observation well 26” is measured in step S100, but the embodiment of the present disclosure is not limited thereto.
  • the concentration of the purifier or activator in the groundwater of the “pumping well 22” may be measured. The same applies to each embodiment described below.
  • step S110 it is determined whether or not the measured concentration of the purifier or activator in the groundwater in the pumping well 22 has reached the target concentration, and the pumping amount is adjusted in step S118 based on the determination result.
  • pumped water amount adjustment is performed in step S118, but the embodiment of the present disclosure is not limited to this.
  • concentration adjustment for adjusting the concentration of the purifier or activator in the infusion may be performed.
  • the amount of the purifier or activator added to the ground water in the addition tank 36 is controlled to adjust the concentration of the purifier or activator in the injection solution. As a result, the measured concentration in the groundwater in the observation well 26 approaches the target concentration.
  • the contaminated soil purification system according to the second embodiment uses a management function described below in addition to the configuration and the purification method of the contaminated soil purification system 20 according to the first embodiment, so that the purification agent in the groundwater of the underground soil 10 is used. Alternatively, the time for the concentration of the active agent to reach the target concentration is predicted.
  • the management function f (t) indicating the relationship between the elapsed time t from the start of the injection of the injected solution into the underground soil 10 and the predicted concentration C in the groundwater of the observation well 26 is indicated by a solid line. Yes.
  • the predicted concentration at time t1 is the predicted concentration C1.
  • This management function f (t) is expressed as follows using mathematical expressions.
  • the constants B and G in (Equation 1) are constants determined by the soil physical properties X and Y of the underground soil, and are determined by a soil survey performed prior to the purification of the contaminated soil E. Examples of the contents of the soil survey used to determine the constants B and G include the hydraulic conductivity of the underground soil and the soil particle size.
  • management function can be similarly set for the “temperature” of the groundwater in the observation well 26 with respect to the elapsed time from the start of the injection of the injection solution into the underground soil 10.
  • the concentrations A and D in (Equation 1) are replaced with the temperature of the injection solution and the temperature of the groundwater before the injection solution is injected, respectively.
  • concentrations A and D in (Equation 1) are replaced with the temperature of the injection solution and the temperature of the groundwater before the injection solution is injected, respectively.
  • specific heat and thermal conductivity of the underground soil can be cited.
  • the vertical axis in FIG. 3 is replaced with temperature.
  • the temperature A of the injection liquid injected into the water injection well 24 in step S90 of FIG. 2 the temperature D of the ground water in the observation well 26 before the injection of the injection liquid, Based on the constants B and G determined by the soil physical properties of the underground soil and the elapsed time t after the injection of the injection solution into the underground soil 10 is started, the predicted temperature of the groundwater in the observation well 26 is calculated.
  • management functions for managing “concentration” or “temperature” may be collectively referred to simply as management functions, and the management function may be either “concentration”, “temperature”, or both. Can be set about. The same applies to the following embodiments.
  • the management function predicts the time when the groundwater concentration in the observation well 26 reaches the target concentration.
  • the embodiment of the present disclosure is not limited to this, and the groundwater concentration in the pumping well 22 is the target concentration. You can also predict the time to reach Alternatively, the time for the groundwater concentration to reach the target concentration for both the observation well 26 and the pumping well 22 can be predicted. The same applies to the following embodiments.
  • the management function indicates the predicted concentration of the purifier or activator of groundwater at a specific location in the underground soil 10 (for example, the location where the observation well 26 is located or the location where the pumping well 22 is present). It does not indicate the state of the entire 10.
  • the groundwater can be obtained by using different management functions according to the situation for each place where the pollution situation and the groundwater situation are different.
  • the concentration of the purifier or activator can be predicted.
  • FIG. 9 shows a state in which two contaminated soils Ea and Eb are formed in the underground soil 10. Since these polluted soils Ea and Eb have different concentrations of pollutants, the optimum temperature of the infusion solution for purifying the pollutants and the optimum concentration of the purifier or activator added to the infusion solution are also different.
  • management functions fa (t) and fb (t) optimized for each of the contaminated soils Ea and Eb can be set as shown in FIG.
  • the contaminated soil purification system according to the third embodiment predicts the time when the concentration of the purification agent or activator in the groundwater reaches the target concentration using the management function, The management function is corrected by comparing the predicted density calculated by the management function with the actually measured density.
  • a method for purifying contaminated soil E by the contaminated soil purification system according to the third embodiment will be described using the flowchart shown in FIG. 4 and the graph shown in FIG.
  • description is abbreviate
  • step S90-2 shown in FIG. 4 an injection solution to which a purification agent or an activator is added is injected from the addition tank 36 into the water injection well 24.
  • the concentration of the purifying agent or activator in the injection solution the concentration of the purifying agent or activator in the ground water of the observation well 26 before injecting the injection solution, and the soil of the underground soil
  • the predicted concentration in the ground water of the observation well 26 is calculated.
  • the predicted concentration at the elapsed time t1 is C1.
  • step 90-2 the concentration of the injection liquid generated in the addition tank 36 is adjusted to the upper limit concentration C3 of the target concentration region CE described later.
  • step S100-2 “Concentration measurement” in the next step S100-2 is the same as that in step S100 in the first embodiment, and a description thereof will be omitted.
  • concentration determination is performed in step S110-2.
  • the control unit 38 measures the actual concentration of the purifier or activator in the groundwater of the observation well 26 measured in Step 100-2 and the purifier or activity in the groundwater of the observation well 26 predicted by the management function.
  • the predicted concentration of the agent is compared, and it is determined whether or not the difference obtained by subtracting the actually measured concentration from the predicted concentration is equal to or less than a preset allowable value.
  • step S114 When the difference obtained by subtracting the actually measured concentration from the predicted concentration is equal to or smaller than the allowable value, the process proceeds to step S114. If larger than the allowable value, the process proceeds to step S118-2.
  • step S118-2 “pumping water amount adjustment” is performed.
  • the control unit 38 controls the pumping pump P to adjust the pumping amount in the pumping well 22.
  • the water gradient of the groundwater is changed to adjust the permeability of the purifier or activator to the contaminated soil E.
  • step S100-2 Whether the difference obtained by subtracting the actual concentration from the predicted concentration is within the allowable value is returned to step S100-2, the sensor measures the concentration of the purifier or activator in the groundwater, and proceeds to step S110-2 for control. This is determined by the unit 38 comparing the predicted density with the actually measured density. If the difference between the predicted density and the actually measured density is less than the allowable value, the process proceeds to step S114.
  • step S114 “convergence value determination” is performed.
  • the control unit 38 determines whether or not the actually measured concentration measured in step 100-2 stops increasing before reaching the predetermined target concentration range.
  • the “target concentration range” is a concentration range of the purifier or activator that can most efficiently purify the contaminated soil E, and is set in advance by a soil survey that is performed prior to the purification of the contaminated soil E.
  • the measured density has stopped increasing means that, as shown at time t4 in FIG. 5, the increase in measured density per unit time (that is, the slope of the measured density curve F (t) described later) is the target density range.
  • the concentration of the purifier or activator in the groundwater is expected to reach the target concentration range CE. It refers to a condition that does not exist or takes more time than expected to reach.
  • step S100-2 If the measured density continues to rise without stopping before reaching the target density range, the process returns to step S100-2 and repeats steps S110-2 and S114. If the measured density does not reach the target density range and has stopped increasing, the process proceeds to step S124.
  • step S124 “density adjustment” is performed.
  • the amount of the purifier or activator added to the groundwater in the addition tank 36 is controlled to increase the concentration of the purifier or activator in the injection solution.
  • the measured concentration in the groundwater in the observation well 26 is brought close to the target concentration region CE, and the increase in the measured concentration is eliminated.
  • step S125 the management function is corrected (the method for correcting the management function will be described later), the process returns to step S100-2, and the process proceeds to step S114. To see if Thereby, it is determined whether or not the increase in the actually measured density has been eliminated.
  • FIG. 5 shows the measured concentration of the purifier or activator in the ground water in the observation well 26 measured by a sensor installed inside the observation well 26 after the injection of the injection solution from the water injection well 24 is started.
  • a curve plotted for each elapsed time and approximately generated along the plotted points is indicated by a broken line as an actually measured concentration curve F (t).
  • step S114 when the measured density does not reach the target density range and stops rising, the management function f (t) and the measured density curve F (t) are different. Therefore, the reliability of the predicted concentration after time t4 in the management function f (t) is low. In such a case, the management function is corrected so that the predicted density approximates the actually measured density.
  • the management function g (t) shown in FIG. 5 is obtained by correcting the management function f (t).
  • the management function f (t) is corrected by replacing the density A in (Expression 1) with the adjusted density adjusted in step S124, and correcting the density A in (Expression 1) (time) Replace with the concentration C4 of the purifier or activator in the groundwater at t4).
  • concentration of the purifier or activator in groundwater is estimated based on the management function g (t).
  • the management function can be similarly set for the “temperature” of the groundwater with respect to the elapsed time from the start of the injection of the injection solution into the underground soil 10.
  • step S100-2 “temperature measurement” is performed instead of “concentration measurement”. Specifically, a sensor installed inside the observation well 26 measures the temperature of groundwater.
  • step S110-2 “temperature determination” is performed instead of “concentration determination”. Specifically, the control unit 38 compares the measured temperature of the groundwater in the observation well 26 measured in Step 100-2 with the predicted temperature of the groundwater in the observation well 26 predicted by the management function. It is determined whether it is within a predetermined range. More specifically, it is determined whether or not a difference obtained by subtracting the actually measured temperature from the predicted temperature is within a preset allowable value.
  • step S118-2 “pumping amount adjustment” adjusts the penetration power of the injected liquid, which is higher than the groundwater, into the contaminated soil E.
  • the control unit 38 determines whether or not the actually measured temperature measured in step 100-2 has stopped increasing before reaching the predetermined target temperature range.
  • the target temperature range is the temperature range of groundwater that can most efficiently purify the contaminated soil E (that is, the temperature range in which the decomposed microorganisms do not die and have the highest activity), and is implemented prior to the purification of the contaminated soil E. Preset by soil survey.
  • step S124 “temperature adjustment” is performed instead of “density adjustment”.
  • the control unit 38 controls the output of the heating device 34 to increase the temperature of the injected liquid. Thereby, the measured temperature in the groundwater in the observation well 26 is made to approach the target temperature range CE.
  • management function for predicting the “concentration” of the purifier or activator in the groundwater and the management function for predicting the “temperature” of the groundwater may be used either or both.
  • step S100-2 “concentration measurement” and “temperature measurement” are performed in step S100-2, and “concentration determination” and “temperature determination” are performed in step S110-2, and at least one of the actually measured concentration and the actually measured temperature is set in advance. If it is determined that the value is out of the range, “pumped water amount adjustment” is performed in step S118-2. Also, in the “convergence value determination” in step S114, it is determined whether the measured concentration and the measured temperature have stopped increasing. If it is determined that at least one of the measured concentration, the measured temperature, or the measured temperature has stopped increasing, the “concentration” is determined in step S124. At least one of “adjustment” and “temperature adjustment” (that is, adjustment of the one determined to be stopped at step S114) is performed.
  • step S125 at least one of “the management function for predicting the concentration of the purifier or activator in the groundwater” and “the management function for predicting the temperature of the groundwater” (that is, management related to the concentration and temperature adjusted in step S124). Function).
  • the management function is corrected in accordance with the deviation between the predicted value and the actual measurement value of the management function.
  • step S114 if the measured density continues to rise without stopping before reaching the target density range, the process does not return to step S100-2, Proceed to S120.
  • step S120 the operation of the contaminated soil purification system is automatically stopped and restarted, and the concentration of the purifier or activator in the groundwater is maintained in the target concentration range.
  • step S120 “upper limit determination” is performed.
  • the upper limit determination it is determined whether or not the actually measured density has reached a preset upper limit.
  • the upper limit value set in advance is, for example, the upper limit density C3 of the target density area CE as shown in FIG.
  • step S100-2 If the actually measured concentration does not reach the upper limit concentration C3, the process returns to step S100-2. As shown by the actually measured density curve F (t) at time t3 in FIG. 7, when the actually measured density reaches the upper limit density C3, the process proceeds to step S128.
  • step S1208 the pump of the addition tank 36 and the pumping pump P are controlled to stop the injection of the injected liquid from the water injection well 24 into the underground soil 10 and the pumping of the groundwater from the pumping well 22.
  • step S130 “concentration measurement” is performed in step S130. Specifically, a sensor installed in the observation well 26 measures the concentration of the purifier or the activator in the ground water of the observation well 26.
  • step S132 “lower limit determination” is performed in step S132.
  • the control unit 38 determines whether or not the concentration of the purifier or activator in the groundwater, which decreases due to the stop of the injection of the injection solution in step S128, has reached a preset lower limit value. To do.
  • This lower limit value is the lower limit density C2 of the target density area CE in FIG.
  • step S130 If the concentration of the purifier or activator in the groundwater has not reached the lower limit concentration C2 (that is, has not dropped to C2), the process returns to step S130. That is, measurement and determination are repeated until the concentration of the purifier or activator of groundwater reaches the lower limit concentration C2. As shown at time t2 in FIG. 7, when the concentration of the purifier or activator of groundwater reaches the lower limit concentration C2, the process proceeds to step S136.
  • step S136 the control unit 38 controls the addition tank 36 and the pumping pump P to restart the injection of the injected liquid from the water injection well 24 into the underground soil 10 and the pumping of the groundwater from the pumping well 22.
  • the concentration prediction by the management function is not performed during the period from when the injection of the injection solution is stopped in step S128 until it is restarted in step S136. Specifically, as shown in FIG. 7, the measured concentration reaches the lower limit concentration C2 from the time t3 when the measured concentration reaches the upper limit concentration C3 of the target concentration range CE (that is, after the injection of the injection solution is stopped). During the period up to time t2 (that is, until injection of the injection solution is restarted), the concentration prediction by the management function is not performed.
  • the management function is corrected in step S137, and the concentration is predicted using the new management function h (t).
  • the management function h (t) sets the value of the concentration A in (Expression 1) to an arbitrary value larger than the lower limit concentration C2, and starts the injection of the injection solution in Step S136 with the value of the concentration D in (Expression 1).
  • the density at the time point (ie, the lower limit density) C2 is set.
  • the “upper limit determination” in step S120, the “concentration measurement” in step S130, the “lower limit determination” in step S132, and the “management function correction” in step S137 can also be performed for the temperature instead of the concentration. . Or it can carry out about both concentration and temperature.
  • the injection is performed in step S128. Stop fluid injection. If it is determined in step S132 that “at least one of the actually measured concentration and temperature has reached the lower limit concentration and temperature, injection of the injection solution is restarted in step S136.
  • control unit 38 injects the injection solution into the underground soil 10 based on the concentration of the purification agent or the activator in the groundwater measured by the sensor installed inside the observation well 26. Stop and resume.
  • the concentration of the purifier or activator in the underground soil 10 can be maintained in the target concentration region CE. For this reason, it can suppress that the density
  • steps S102 and S108 may be interposed between steps S100 and S110 as shown in FIG.
  • step S102 for example, “water level determination” is performed.
  • this water level determination it is determined whether or not the “water level” of the water injection well 24 into which the injection liquid has been injected is equal to or lower than the upper limit value.
  • the upper limit value of the water level is a water level where groundwater may overflow from the water injection well 24 when the injection liquid is continuously injected into the water injection well 24.
  • water level adjustment is performed in step S108.
  • the groundwater is sucked up from the water injection well 24, the water injection well 24 is washed to remove clogging, and the injected liquid easily flows from the water injection well 24 to the contaminated soil E.
  • FIG. 8 shows “water level determination” and “water level adjustment” as steps S102 and S108, the embodiment of the present disclosure is not limited to this.
  • injection concentration determination it is determined whether or not the concentration of the purifier or the activator in the injection liquid generated in the addition tank 36 is equal to or lower than the upper limit value.
  • the upper limit value of the concentration is the saturated concentration of decomposing microorganisms in the aqueous solution.
  • step S108 If the concentration of the purifier or activator in the infusion is greater than the upper limit, “addition amount adjustment” is performed in step S108. In this addition amount adjustment, the addition amount of the purifier or the activator to the injection liquid in the addition tank 36 is reduced. Thereby, waste of a purifier or an activator is suppressed.
  • injection temperature determination it is determined whether or not the temperature of the injection liquid in the addition tank 36 is lower than the upper limit value and higher than the lower limit value.
  • step S108 If the temperature of the injected liquid is higher than the upper limit value, “heating adjustment” is performed in step S108. In this warming adjustment, the warming amount in the warming device 34 is reduced, and the killing of decomposing microorganisms is suppressed. When the temperature of the injection solution is smaller than the lower limit value, the heating amount in the heating device 34 is increased in step S108, and the temperature necessary for the degrading microorganisms to exhibit the purification function is maintained.
  • step S102 for example, “pumping amount determination” may be performed.
  • this pumping amount determination it is determined from the measured value of the water level of the pumping well 22 whether the pumping amount is not more than the upper limit value and not less than the lower limit value.
  • step S108 When the pumping amount is larger than the upper limit value, “pump adjustment” is performed in step S108. In this pump adjustment, the output of the pumping pump P that pumps groundwater from the pumping well 22 is lowered to prevent the pumping pump P from malfunctioning. When the pumping amount is smaller than the lower limit value, the output of the pumping pump P is increased in step S108 so as not to fall below the injection amount of the injection liquid in the water injection well 24.
  • step S102 for example, “flow determination” may be performed. In this flow determination, it is determined from the respective water levels in the pumping well 22, the water injection well 24, and the observation well 26 whether or not the flow of groundwater in the underground soil 10 is assumed.
  • the water level difference is large, the water gradient in the ground soil 10 is large, and the flow of groundwater is more than the assumed flow.
  • the water level difference is small, the water gradient in the ground soil 10 is small and the flow of groundwater is less than the assumed flow.
  • step S108 If the flow of groundwater is not the expected flow, “flow rate adjustment” is performed in step S108.
  • this flow rate adjustment at least one of the pumping amount in the pumping well 22 and the injection amount in the pouring well 24 is adjusted so that the flow of groundwater is assumed. For example, when the water level of the pumping well 22 is higher than expected (that is, the water level difference is small) with respect to the water level of the water injection well 24, the output of the pumping pump P is increased to increase the amount of pumped water from the pumping well 22.
  • the lower end of the impermeable wall 28 is embedded in the impermeable layer 14 and blocks the flow of groundwater inside and outside the impermeable wall 28. For this reason, for example, by increasing the amount of pumped water, the flow of groundwater can be adjusted, but since the groundwater is not supplied from the outside of the impermeable wall 28, the groundwater level is lowered. In such a case, the groundwater level can be maintained at an appropriate height by increasing the amount of water injected in addition to the amount of pumped water.
  • step S102 The “water level determination”, “injection concentration determination”, “injection temperature determination”, “pumped water amount determination”, and “flow determination” that are the embodiments of step S102 described above can be used in combination.
  • step 100 “the water level of the water injection well 24”, “the concentration of the purifier or activator in the injection liquid in the addition tank 36”, “the concentration of the injection liquid in the addition tank 36”, respectively.
  • “Temperature”, “water level of pumping well 22”, “water level of pumping well 22, water injection well 24, observation well 26” are measured.
  • step S102 can be performed at an arbitrary timing also in the contaminated soil purification method in the second to fourth embodiments.
  • the material of the water-impervious wall 28 shown in FIGS. 1A and 1B is concrete, but the embodiment of the present disclosure is not limited to this.
  • frozen soil, clay, steel sheet pile, cement improvement body, etc. can be used.
  • the water shielding wall 28 is not necessarily provided.
  • the impermeable wall 28 it is desirable to arrange the water injection well 24 on the upstream side of the groundwater flow and to install the pumping well 22 on the downstream side. Thereby, the injection liquid inject
  • the water quality is improved by sending air to the groundwater.
  • the embodiment of the present disclosure is not limited thereto.
  • a method for improving the water quality a method for improving the water quality by adding a purifier to the groundwater and reacting it, a method for separating the groundwater from the pollutant by adsorbing the contaminant contained in the groundwater, or the like may be used.
  • nutrient salts and oxygen may be mixed, or decomposing microorganisms may be mixed. Further, a flocculant may be mixed in order to smoothly inject the injected liquid through the water injection well 24.
  • the groundwater purified by the water treatment device 32 is heated by the heater, but the embodiment of the present disclosure is not limited to this.
  • the groundwater may be heated by exchanging heat between the heat medium of the air conditioner (not shown) and the groundwater purified by the water treatment device 32.
  • a decomposing microorganism is used as a cleaning agent, but embodiments of the present disclosure are not limited to this.
  • hydrogen peroxide an iron-based slurry, a sulfate, a Fenton reagent, a permanganic acid, a percarbonate, or the like may be used as a chemical decomposition agent for chemically decomposing pollutants.
  • yeast extract is used as the active agent, but the embodiments of the present disclosure are not limited to this.
  • a hydrogen sustained-release agent for example, polylactic acid ester
  • a high fatty acid ester for example, polylactic acid ester
  • lactose for example, lactose, or the like
  • the purifying agent and the activator may be added to the injection solution alone or in combination.
  • a plurality of types of purifying agents can be added to the infusion solution, and a plurality of types of activators can be added to the infusion solution.
  • an arbitrary tracer substance may be added in order to easily measure the concentration of the purifying agent or additive in the ground water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • Mycology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Processing Of Solid Wastes (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Computational Linguistics (AREA)
  • Artificial Intelligence (AREA)

Abstract

汚染土壌浄化システムは、汚染土壌E内の汚染物質を分解するための汚染土壌浄化システムであって、汚染物質を分解する浄化剤又は前記浄化剤の生物的分解を活性化させる活性剤を含む注入液を注水井戸から汚染土壌へ注入する工程と、注水井戸から離れた場所に設けられた観測井戸内又は揚水井戸内の地下水における浄化剤又は活性剤の濃度を測定する工程と、測定された濃度に基づき、注入液への浄化剤又は活性剤の添加量又は揚水井戸からの揚水量を自動制御する工程と、を備えている。

Description

汚染土壌浄化システム
 本開示は、汚染土壌浄化システムに関する。
 特開2005-52733号公報には、油分解促進剤が添加された液体を油汚染土壌へ注入する浄化装置が開示されている。注入された液体は汚染土壌に浸透し、集水井戸から汲み上げられる。そして、汲み上げられた回収液の濁度を、濁度計や作業者の目視によって確認し、汚染土壌へ注入する油分解促進剤の添加量を調整している。
 上記特開2005-52733号公報に示された浄化装置では、回収液の確認及び汚染土壌へ注入する油分解促進剤の添加量の調整を、その都度手作業で行う必要があり、手間がかかる。
 本開示は上記事実を考慮して、汚染土壌を浄化するための作業を省人化できる汚染土壌浄化システムを提供することを目的とする。
 本開示の第1態様の汚染土壌浄化システムは、汚染土壌内の汚染物質を分解するための汚染土壌浄化システムであって、汚染物質を分解する浄化剤又は前記浄化剤の生物的分解を活性化させる活性剤を含む注入液を注水井戸から前記汚染土壌へ注入する工程と、前記注水井戸から離れた場所に設けられた観測井戸内又は揚水井戸内の地下水における前記浄化剤又は前記活性剤の濃度を測定する工程と、測定された前記濃度に基づき、前記注入液への前記浄化剤又は前記活性剤の添加量又は前記揚水井戸からの揚水量を自動制御する工程と、を備えている。
 本開示の第1態様の汚染土壌浄化システムは、観測井戸内又は揚水井戸内の地下水における浄化剤又は活性剤の濃度を原位置で測定し、測定した濃度に基づき、浄化剤又は活性剤の添加量又は揚水井戸からの揚水量を自動制御する。例えば、測定した濃度(すなわち汚染土壌内における活性剤の濃度)が目標濃度よりも低い場合は、自動的に注入液への活性剤添加量を増やす。又は自動的に揚水量を多くして地下水の吸引力を上げ、活性剤の汚染土壌中への浸透を促進させる。これにより、タイムリーに活性剤の濃度を調整し、汚染土壌を効率的に浄化することができる。
 本開示の第2態様の汚染土壌浄化システムは、前記注入液の注入を開始する前の前記観測井戸内又は前記揚水井戸内の地下水における前記浄化剤若しくは前記活性剤の初期濃度又は前記地下水の初期温度と、前記注水井戸から前記汚染土壌へ注入する前記注入液における前記浄化剤若しくは前記活性剤の注入濃度又は前記注入液の注入温度と、前記注入液の注入を開始してからの経過時間と、前記汚染土壌固有の土壌物性と、に基づいて、経過時間毎の前記地下水の前記浄化剤若しくは前記活性剤の予測濃度又は前記地下水の予測温度を算出する管理関数によって、前記観測井戸内又は前記揚水井戸内の地下水における前記浄化剤又は前記活性剤の濃度が目標濃度に到達する時間を予測する、又は、前記観測井戸内又は前記揚水井戸内の地下水における前記地下水の温度が目標温度に到達する時間を予測する。
 本開示の第2態様の汚染土壌浄化システムでは、観測井戸又は揚水井戸における経過時間毎の地下水の浄化剤若しくは活性剤の予測濃度又は地下水の予測温度を、管理関数を用いて算出する。
 この管理関数は、注入液の注入を開始する前の観測井戸内又は揚水井戸内の地下水における浄化剤若しくは活性剤の初期濃度又は地下水の初期温度と、注入液における浄化剤若しくは活性剤の注入濃度又は注入液の注入温度と、注入液の注入を開始してからの経過時間と、汚染土壌固有の土壌物性と、に基づいて、経過時間毎の前記地下水の前記浄化剤若しくは前記活性剤の予測濃度又は前記地下水の予測温度を算出できるものである。
 すなわち、汚染土壌内における地下水の浄化剤又は活性剤の濃度又は地下水の温度が、目標値に到達するのに必要な時間を算出することで、汚染土壌の浄化を計画的に実施することができる。
 本開示の第3態様の汚染土壌浄化システムは、前記管理関数によって算出される前記予測濃度又は前記予測温度が、前記観測井戸内又は前記揚水井戸内の前記地下水における前記浄化剤若しくは前記活性剤の実測濃度又は前記地下水の実測温度と近似するように、前記初期濃度又は前記初期温度を所定時間経過後の前記観測井戸内又は揚水井戸内の地下水における前記浄化剤若しくは前記活性剤の濃度又は前記地下水の温度に置き換えると共に、前記注入濃度又は前記注入温度を変更して前記管理関数を補正する。
 本開示の第3態様に記載の汚染土壌浄化システムでは、管理関数によって算出される予測濃度又は予測温度と、実測濃度又は実測温度との差が縮まるように、注入液の注入濃度又は注入温度を変更すると共に、変更後の注入濃度又は注入温度に基づいて管理関数を補正する。また、管理関数の初期濃度又は初期温度を、所定時間経過後の地下水における濃度又は温度に置き換える。これにより、予測濃度と実測濃度との差又は予測温度と実測温度との差が縮まり、管理関数による予測精度を高くすることができる。
 管理関数の予測精度が高くなることで、汚染土壌に適切な量の浄化剤又は活性剤が添加された注入液又は適切な温度の注入液を注入することができる。これにより、汚染土壌中の浄化剤又は活性剤の過不足を抑制できる。
 本開示に係る汚染土壌浄化システムによると、汚染土壌を浄化するための作業を省人化できる。
本開示の第1実施形態に係る汚染土壌浄化システムの概略構成を示す平面図である。 本開示の第1実施形態に係る汚染土壌浄化システムの概略構成を示す立断面図である。 本開示の第1実施形態に係る汚染土壌浄化システムにおける土壌浄化方法を示すフローチャートである。 本開示の第2実施形態に係る汚染土壌浄化システムにおける管理関数を示すグラフである。 本開示の第3実施形態に係る汚染土壌浄化システムにおける土壌浄化方法を示すフローチャートである。 本開示の第3実施形態に係る汚染土壌浄化システムにおいて補正前後の管理関数と実測濃度曲線を示すグラフである。 本開示の第4実施形態に係る汚染土壌浄化システムにおける土壌浄化方法を示すフローチャートである。 本開示の第4実施形態に係る汚染土壌浄化システムにおいて地下土壌への注入液の注入を停止及び再開する土壌浄化方法を示すグラフである。 本開示の第1実施形態に係る汚染土壌浄化システムにおける土壌浄化方法の変形例を示すフローチャートである。 本開示の第2実施形態に係る汚染土壌浄化システムにおいて、汚染物質の濃度が異なる2つの汚染土壌を浄化する変形例を示す平面図である。 本開示の第2実施形態に係る汚染土壌浄化システムにおいて、汚染物質の濃度が異なる2つの汚染土壌を浄化する場合に用いる2つの管理関数を示すグラフである。
 本開示の実施形態について、図面を参照しながら説明する。なお、複数の図面において同じ符号で表された共通の構成要素については、説明を省略する場合がある。
[第1実施形態]
(全体構成)
 第1実施形態における汚染土壌浄化システム20は、図1A、図1Bに示す地下土壌10に含まれる汚染物質を分解するための汚染土壌浄化システムである。汚染土壌浄化システム20は、地下土壌10に構築された揚水井戸22、注水井戸24、観測井戸26及び遮水壁28と、地表面GLの上部に構築され、地下土壌10、揚水井戸22及び注水井戸24の間で地下水を還流させる浄化装置30と、を備えている。
(汚染土壌)
 地下土壌10は、地表面GLよりも下方の土壌であって、地下水が流れる帯水層12及び地下水が流れない不透水層14を備えている。この地下土壌10のうち、汚染物質が基準値(例えば汚染物質の種類毎に定められた値)以上含まれている部分を、汚染土壌Eとする。「汚染物質」とは、テトラクロロエチレン、トリクロロエチレン、シス-1,2-ジクロロエチレン、塩化ビニルモノマー、ベンゼン等の有機物、シアン等の無機化合物、及びガソリンや軽油等の鉱油類を含む概念であり、以下では特に区別する場合を除いて、テトラクロロエチレン、トリクロロエチレン、シス-1,2-ジクロロエチレン、塩化ビニルモノマー等の有機物を想定して説明する。
 なお、図1Bにおいては、地下水位Hを一点鎖線で図示しており、地下土壌内での地下水の流れの向きを破線の矢印で図示している。なお、この地下水の流れは注水井戸24から地下土壌10へ、後述する浄化剤又は活性剤を含む注入液を注入し、更に揚水井戸22から地下水を揚水することで発生する流れである。
(揚水井戸)
 揚水井戸22は、地下土壌10から地下水を揚水する揚水手段であり、図示しないポンプ等により帯水層12の地下水を吸い上げて、浄化装置30に送ることができる。また、揚水井戸22は汚染土壌Eと遮水壁28との間に配置され、下端が不透水層14に到達するように地下土壌10に埋設されている。
 図1Aにおいては図示の便宜上、2本の揚水井戸22a、22bのみを記載しているが、本開示の実施形態はこれに限らず、任意の本数を敷地の広さ等に応じて適宜配置して構わない。
 なお、揚水井戸22は汚染土壌Eに配置されていてもよい。また、揚水井戸22による揚水の具体的な方法や、揚水井戸22の形状、サイズ等については公知であるため、詳細な説明を省略する。
(注水井戸)
 注水井戸24は、浄化装置30で生成された注入液を地下土壌10に注入する注入手段であり、図示しないポンプ等により注入液を地下土壌10内に送ることができる。また、注水井戸24は、汚染土壌Eと遮水壁28との間(すなわち汚染土壌Eからみて揚水井戸22の反対側)に配置された井戸であり、下端が不透水層14に到達するように地下土壌10に埋設されている。
 図1Aにおいては図示の便宜上、2つの注水井戸24a、24bのみを記載しているが、本開示の実施形態はこれに限らず、任意の数を敷地の広さ等に応じて適宜配置して構わない。
 なお、注水井戸24は汚染土壌Eに配置されていてもよい。また、注水井戸24による注入液の注入の具体的な方法や、注水井戸24の形状、サイズ等については公知であるため、詳細な説明を省略する。
(観測井戸)
 観測井戸26は、地下の状態を観測する観測手段である。ここで、「地下の状態」とは、観測井戸26が埋設された位置における地下土壌10中の地下水の状態を示しており、例えば地下水位、地下水温度、地下水における浄化剤及び活性剤の濃度、地下水における汚染物質濃度などを含む。
 観測井戸26の内部には図示しない各種センサーが設置されている。これらのセンサーは、上述した地下水位、地下水温度、地下水における浄化剤及び活性剤の濃度、地下水における汚染物質濃度などを測定し、これらの測定値を浄化装置30における制御部38に電気信号で伝達する。
 なお、これらのセンサーは揚水井戸22及び注水井戸24の内部にも設置されている。すなわち、揚水井戸22及び注水井戸24はそれぞれ、観測手段としても機能する。また、図1A、図1Bにおいては、図が煩雑になる事を避けるため、各種センサーと制御部38とに接続された信号線の図示は省略している。
 なお、観測井戸26は、遮水壁28で囲われた地下土壌内の複数箇所に埋設されている。図1Aにおいては図示の便宜上、3つの観測井戸26a、26b、26cのみを記載しているが、本開示の実施形態はこれに限らず、任意の数の観測井戸26を敷地の広さ等に応じて適宜配置することができる。
(遮水壁)
 遮水壁28は、汚染土壌Eの周囲を囲むように地下土壌10に配置されたコンクリート製の遮水手段であり、遮水壁28内外の地下水の流れを遮断している。すなわち、遮水壁28の「外側」の地下土壌10における地下水の流れと、遮水壁28の「内側」の地下土壌10における地下水の流れとを、相互に影響を及ぼさないようにしている。
 図1Bに示すように、遮水壁28の下端は不透水層14に根入れされている。これにより、汚染土壌Eは遮水壁28と不透水層14とで囲まれ、汚染物質が遮水壁28の外側の地下土壌10へ流出することが抑制されている。
(浄化装置)
 浄化装置30は、揚水井戸から揚水された地下水を浄化し、後述する浄化剤や活性剤を添加して地下土壌10へ戻すための装置であり、水処理装置32、加温装置34、添加槽36及び制御部38を含んで構成される。
(水処理装置)
 水処理装置32は、揚水井戸から揚水された地下水に空気を送り込み、揮発性汚染物質を揮発させて浄化する。
(加温装置)
 加温装置34は、後述する制御部38により温調される図示しないヒーターにより、水処理装置32で浄化された地下水を加温する。加温装置34によって地下水を加温することにより、地下土壌10内で汚染物質を生物分解する分解微生物の増殖を促進したり、分解微生物の活性を上げたりすることができる。
(添加槽)
 添加槽36は、地下水に対して浄化剤又は活性剤を添加して注入液を生成する。具体的には、後述する制御部38により制御された投入装置(図示省略)から、添加槽36内部の地下水に、浄化剤又は活性剤が添加される。
 ここで、「浄化剤」とは地下土壌10内で汚染物質を分解する物質のことであり、汚染物質を生物分解する分解微生物(例えばデハロコッコイデス)である。また、「活性剤」とは浄化剤の生物分解を活性化させる物質のことであり、一例として酵母エキスを使用している。
 この浄化剤又は活性剤は、後述する制御部38により制御された投入装置(図示省略)により、添加槽36内部の地下水に添加され、添加槽36内部に設置された撹拌装置で撹拌することで、注水井戸24から地下土壌10へ注入する注入液が生成される。
(制御部)
 制御部38は、観測井戸26、注水井戸24及び揚水井戸22それぞれの内部に設置されたセンサーによって測定された地下水位、地下水温度、地下水における浄化剤又は活性剤の濃度、地下水における汚染物質濃度などの情報を、電気信号として受信する。そして受信した情報に応じて、水処理装置32、加温装置34、添加槽36、揚水ポンプPを駆動制御する。
(浄化方法)
 第1実施形態に係る汚染土壌浄化システム20による汚染土壌Eの浄化方法について、図2に示したフローチャートを用いて説明する。
 まず、ステップ90で、注水井戸24から地下土壌10へ注入液を「注入」する。具体的には、図1A、図1Bに示した制御部38が添加槽36を制御して、添加槽36から注水井戸24へ、浄化剤又は活性剤が添加された注入液が注入される。注入液に対する浄化剤又は活性剤の添加量は、添加後の注入液における浄化剤又は活性剤の濃度が、地下土壌10において目標とする浄化剤又は活性剤の濃度になるように設定される。
 注水井戸24へ注入された注入液は、揚水ポンプPが揚水井戸22から地下水を揚水して地下水の水勾配を生成することで、目標とする速度で注水井戸24から地下土壌10及び汚染土壌Eへ拡散する。
 次に、ステップS100で、「濃度測定」を行う。具体的には、観測井戸26の内部に設置されたセンサーが、地下水における浄化剤又は活性剤の濃度を測定する。
 次に、ステップS110で、「濃度判定」を行う。この濃度判定では、ステップ100で計測された観測井戸26の地下水における浄化剤又は活性剤の実測濃度が目標濃度に達しているかどうかを、制御部38が判定する。
 実測濃度が目標濃度に達している場合、ステップS100に戻り再度濃度を測定し、ステップS110へ進んで目標濃度が維持されているかどうかを制御部38が判定する。このように、実測濃度が目標濃度を維持するように、濃度測定と濃度判定とを繰り返す。実測濃度が目標濃度に達していない場合、ステップS118に進む。
 ステップS118では、「揚水量調整」を行う。この揚水量調整では、制御部38が揚水ポンプPを制御して、揚水井戸22における地下水の揚水力を上げる。これにより浄化剤又は活性剤の汚染土壌Eへの浸透力を調整して、実測濃度を目標濃度に近づける。
 実測濃度が目標濃度に達したかどうかは、ステップS100へ戻り再度濃度を測定し、ステップS110に進んで再度制御部38によって判定される。
 以上のステップを繰り返すことで、汚染土壌Eの地下水における浄化剤又は活性剤の濃度が目標濃度に維持され、汚染土壌Eの汚染物質が次第に除去される。
 なお、本明細書において「揚水量」、「注入量」の用語は、それぞれ特に断りがない限り、浄化装置30と地下土壌10との間を移動する単位時間当たりの地下水、注入液の「体積(又は流量)」を示しているものとする。また、「添加量」は、注入液の単位容積当たりに添加される浄化剤又は活性剤の「重量」で示されるものとする。さらに、「濃度」は「重量濃度」で示されるものとする。なお、添加量及び濃度は、それぞれ体積及び体積濃度で示してもよい。
(作用・効果)
 第1実施形態に係る汚染土壌浄化システム20では、ステップS100で濃度測定を行い、ステップS110で濃度判定を行う。さらに、ステップS118で揚水量調整を行う。これにより、人の手を介さずにタイムリーに地下土壌10の地下水における浄化剤又は活性剤の濃度を調整し、汚染土壌を効率的に浄化することができる。
 なお、本実施形態においては、ステップS100で「観測井戸26」の地下水における浄化剤又は活性剤の濃度を測定したが、本開示の実施形態はこれに限らない。例えばステップS100では、「揚水井戸22」の地下水における浄化剤又は活性剤の濃度を測定してもよい。以下に説明する各実施形態についても同様である。
 この場合、ステップS110では、揚水井戸22の地下水における浄化剤又は活性剤の実測濃度が、目標濃度に達したかどうかを判定し、その判定結果に基づきステップS118で揚水量調整を行う。
 また、本実施形態においては、ステップS118で「揚水量調整」を行うものとしたが、本開示の実施形態はこれに限らない。例えば揚水量調整に代えて、注入液における浄化剤又は活性剤の濃度を調整する「濃度調整」を行ってもよい。この濃度調整においては、添加槽36における地下水への浄化剤又は活性剤の添加量を制御して、注入液における浄化剤又は活性剤の濃度を調整する。これにより、観測井戸26内の地下水における実測濃度が目標濃度に近づくようにする。
[第2実施形態]
 第2実施形態に係る汚染土壌浄化システムは、第1実施形態に係る汚染土壌浄化システム20の構成及び浄化方法に加えて、以下に説明する管理関数を用いて、地下土壌10の地下水における浄化剤又は活性剤の濃度が目標濃度に到達する時間を予測する。
(管理関数)
 図3には、地下土壌10に注入液の注入を開始してからの経過時間tと、観測井戸26の地下水における予測濃度Cとの関係を示す管理関数f(t)が実線で示されている。例えば時間t1における予測濃度は予測濃度C1とされている。
 この管理関数f(t)は、数式を用いて次のように表される。
f(t)=(A-D)÷[1+(B/t)^G]+D・・・・・・・・・・・・・(1式)
 A:注入液における浄化剤又は活性剤の濃度
 B:地下土壌の土壌物性Xによって決まる定数
 G:地下土壌の土壌物性Yによって決まる定数
 D:注入液を注入する前の地下水における浄化剤又は活性剤の濃度
 t:注入液の注入を開始してからの経過時間
 この(1式)における定数B、Gは、地下土壌の土壌物性X、Yによって決まる定数であり、汚染土壌Eの浄化に先立って実施する土壌調査によって決定される。定数B、Gを決定するために用いる土壌調査の内容としては、例えば地下土壌の透水係数、土壌粒度等が挙げられる。
(作用・効果)
 第2実施形態に係る汚染土壌浄化システムでは、(1式)で示される管理関数f(t)を用いることで、図2のステップS90において注水井戸24へ注入される注入液における浄化剤又は活性剤の濃度Aと、注入液を注入する前の観測井戸26の地下水における浄化剤又は活性剤の濃度Dと、地下土壌の土壌物性によって決まる定数B、Gと、地下土壌10に注入液の注入を開始してからの経過時間tと、に基づいて、観測井戸26の地下水における予測濃度が算出される。
 これにより、観測井戸26の地下水における浄化剤又は活性剤の濃度が図3に示す目標濃度CEに到達する時間tEを予測することができる。
 また、時間tEが経過するまでに、地下水における浄化剤又は活性剤の濃度を目標濃度CEに到達させるためには、注入液における浄化剤又は活性剤の濃度Aをどの程度に設定するべきか(すなわち注入液に浄化剤又は活性剤をどの程度添加すればよいか)を算出することができる。
 このため、汚染土壌Eを浄化するために必要な資源量、エネルギー、時間などを予め見積もり易く、事業計画を立てやすい。
 なお、管理関数は、地下土壌10に注入液の注入を開始してからの経過時間に対する観測井戸26の地下水の「温度」についても同様に設定することが可能である。
 この場合、(1式)における濃度A、Dはそれぞれ、注入液の温度、注入液を注入する前の地下水の温度に置き換えられる。また、定数B、Gを決定するために用いる調査結果としては、地下土壌の比熱や熱伝導性が挙げられる。さらに、図3の縦軸は温度に置き換えられる。
 「温度」を管理する管理関数を用いることで、図2のステップS90において注水井戸24へ注入される注入液の温度Aと、注入液を注入する前の観測井戸26の地下水の温度Dと、地下土壌の土壌物性によって決まる定数B、Gと、地下土壌10に注入液の注入を開始してからの経過時間tと、に基づいて、観測井戸26の地下水の予測温度が算出される。
 これにより、観測井戸26の地下水温度が目標温度に達する時間を予測することができる。また、所定の時間が経過するまでに、地下水の温度を目標温度に到達させるためには、注入液をどの程度加温すればよいかを算出することができる。地下水の目標温度を定め、注入液の加温量を調整することで、地下水の温度を、分解微生物の活性が高い温度に保つことができる。
 なお、本明細書では、これらの「濃度」又は「温度」を管理する管理関数を総称して単に管理関数と称することがあり、管理関数は、「濃度」、「温度」の何れか又は双方について設定することができる。以下の各実施形態においても同様である。
 また、本実施形態において管理関数は、観測井戸26の地下水濃度が目標濃度に達する時間を予測するものとしたが、本開示の実施形態はこれに限らず、揚水井戸22の地下水濃度が目標濃度に達する時間を予測することもできる。あるいは、観測井戸26と揚水井戸22の双方について地下水濃度が目標濃度に達する時間を予測することもできる。以下の各実施形態においても同様である。
 このように、管理関数は地下土壌10における特定箇所(例えば観測井戸26のある場所、揚水井戸22のある場所)における地下水の浄化剤又は活性剤の予測濃度を示しているものであり、地下土壌10全体の状態を示すものではない。
 このため、地下土壌10の汚染状況が均一でない場合や地下水の流れが均一でない場合等は、汚染状況や地下水の状況が異なる場所ごとに、それぞれの状況に応じた異なる管理関数を用いて、地下水の浄化剤又は活性剤の濃度を予測することができる。
 例えば図9には、地下土壌10に2つの汚染土壌Ea、Ebが形成されている状態が示されている。これらの汚染土壌Ea、Ebは汚染物質の濃度が異なるため、汚染物質を浄化するための最適な注入液の温度や、注入液に添加する最適な浄化剤又は活性剤の濃度も異なる。
 このような場合に、例えば図9に示す揚水井戸22a、注水井戸24a及び観測井戸26aを備え汚染土壌Eaを浄化する注揚水系統と、揚水井戸22b、注水井戸24b及び観測井戸26bを備え汚染土壌Ebを浄化する注揚水系統と、のそれぞれにおいて、図10に示すように、汚染土壌Ea、Ebごとにそれぞれ最適化された管理関数fa(t)、fb(t)を設定できる。
 なお、各注揚水系統に含まれる揚水井戸、注水井戸、観測井戸の数は、図9においては便宜的に1本ずつ示しているが、これらは複数設けてもよい。このように、地下土壌10において複数の管理関数を設定する実施形態については、以下に示す各実施形態においても適用できる。
[第3実施形態]
 第3実施形態に係る汚染土壌浄化システムは、第2実施形態に係る汚染土壌浄化システムと同様、管理関数を用いて地下水における浄化剤又は活性剤の濃度が目標濃度に達する時間を予測し、さらに、管理関数により算出された予測濃度と実測濃度とを比較して、管理関数を補正する。
 第3実施形態に係る汚染土壌浄化システムによる汚染土壌Eの浄化方法について、図4に示したフローチャート及び図5に示したグラフを用いて説明する。なお、第1実施形態、第2実施形態と同様の内容については適宜説明を省略する。
 第3実施形態の浄化方法では、まず、図4に示したステップS90-2において、添加槽36から注水井戸24へ、浄化剤又は活性剤が添加された注入液が注入される。
 ここで上述した管理関数を用いることで、この注入液における浄化剤又は活性剤の濃度と、注入液を注入する前の観測井戸26の地下水における浄化剤又は活性剤の濃度と、地下土壌の土壌物性と、地下土壌10に注入液の注入を開始してからの経過時間tと、に基づいて、観測井戸26の地下水における予測濃度が算出される。図5においては、例えば経過時間t1における予測濃度はC1とされている。
 なお、ステップ90-2において添加槽36で生成される注入液の濃度は、後述する目標濃度域CEの上限濃度C3に調整される。
 次のステップS100-2の「濃度測定」については第1実施形態におけるステップS100と同様であり説明は省略する。
 次に、ステップS110-2で「濃度判定」を行う。この濃度判定では、制御部38が、ステップ100-2で計測された観測井戸26の地下水における浄化剤又は活性剤の実測濃度と、管理関数により予測された観測井戸26の地下水における浄化剤又は活性剤の予測濃度とを比較し、予測濃度から実測濃度を引いた差が、予め設定された許容値以下かどうかを判定する。
 予測濃度から実測濃度を引いた差が許容値以下の場合、ステップS114に進む。許容値よりも大きい場合、ステップS118-2に進む。
 ステップS118-2では「揚水量調整」を行う。この揚水量調整では、制御部38が揚水ポンプPを制御して、揚水井戸22における揚水量を調整する。これにより地下水の水勾配を変えて、浄化剤又は活性剤の汚染土壌Eへの浸透力を調整する。
 予測濃度から実測濃度を引いた差が許容値以内になったかどうかは、ステップS100-2へ戻り、地下水における浄化剤又は活性剤の濃度をセンサーが測定し、ステップS110-2に進んで、制御部38が予測濃度と実測濃度とを比較することで判断される。予測濃度と実測濃度との差が許容値以下の場合、ステップS114に進む。
 ステップS114では、「収束値判定」を行う。この収束値判定では、ステップ100-2で計測された実測濃度が、所定の目標濃度域に到達する前に上げ止まっているかどうかを、制御部38が判定する。「目標濃度域」とは、汚染土壌Eを最も効率よく浄化することができる浄化剤又は活性剤の濃度域であり、汚染土壌Eの浄化に先立って実施する土壌調査により予め設定される。
 「実測濃度が上げ止まっている」とは、図5の時間t4に示すように、単位時間あたりの実測濃度の上昇幅(すなわち後述する実測濃度曲線F(t)の傾き)が、目標濃度域CEの下限濃度C2に到達する前にゼロに近づき(すなわち予め設定された所定値未満で上げ止まっており)、地下水における浄化剤又は活性剤の濃度が目標濃度域CEに到達する見込みが得られない、あるいは到達するのに想定以上の時間を要する状態のことを指す。
 実測濃度が目標濃度域に到達する前に上げ止まることなく上昇を続けている場合、ステップS100-2に戻り、ステップS110-2、S114を繰り返す。実測濃度が、目標濃度域に到達せず上げ止まっている場合、ステップS124に進む。
 ステップS124では、「濃度調整」を行う。この濃度調整においては、添加槽36における地下水への浄化剤又は活性剤の添加量を制御して、注入液における浄化剤又は活性剤の濃度を高くする。これにより、観測井戸26内の地下水における実測濃度が目標濃度域CEに近づけて、実測濃度の上げ止まりを解消する。
 次に、ステップS125で管理関数を補正(管理関数の補正方法については後述する)し、ステップS100-2に戻りステップS114に進んで、単位時間あたりの実測濃度の上昇幅が所定値以上になったかどうかを確認する。これにより、実測濃度の上げ止まりが解消されたかどうかが判断される。
(管理関数の補正)
 図5には、観測井戸26の内部に設置されたセンサーで測定された観測井戸26内の地下水における浄化剤又は活性剤の実測濃度を、注水井戸24から注入液の注入を開始してからの経過時間毎にプロットし、そのプロットした点に沿って近似的に生成された曲線が、実測濃度曲線F(t)として破線で示されている。
 上述したステップS114(図5の時間t4)に示されるように、実測濃度が目標濃度域に到達せず上げ止まっている場合、管理関数f(t)と実測濃度曲線F(t)とが乖離しており、管理関数f(t)における時間t4以降の予測濃度の信頼性が低い。このような場合、予測濃度が実測濃度と近似するように、管理関数を補正する。
 図5に示された管理関数g(t)は、管理関数f(t)を補正したものである。管理関数f(t)の補正方法は、(1式)における濃度Aを、ステップS124で調整された調整後の濃度に置き換え、(1式)における濃度Dを、濃度Aを補正した時点(時間t4)での地下水における浄化剤又は活性剤の濃度C4に置き換える。そして、図3に矢印Nで示したように、時間t4以降は、管理関数g(t)に基づいて地下水における浄化剤又は活性剤の濃度を予測する。
 なお、上述したとおり、管理関数は、地下土壌10に注入液の注入を開始してからの経過時間に対する地下水の「温度」についても同様に設定することが可能である。
 この場合、ステップS100-2では、「濃度測定」に代えて「温度測定」を行う。具体的には、観測井戸26の内部に設置されたセンサーが、地下水の温度を測定する。
 また、ステップS110-2では、「濃度判定」に代えて「温度判定」を行う。具体的には、制御部38が、ステップ100-2で計測された観測井戸26の地下水の実測温度と、管理関数により予測された観測井戸26の地下水の予測温度とを比較し、実測温度が所定の範囲内かどうかを判定する。より具体的には、予測温度から実測温度を引いた差が、予め設定された許容値以内かどうかを判定する。
 また、ステップS118-2の「揚水量調整」では、地下水よりも高温である注入液の汚染土壌Eへの浸透力を調整する。
 また、ステップS114の「収束値判定」では、ステップ100-2で計測された実測温度が、所定の目標温度域に到達する前に上げ止まっていないかどうかを、制御部38が判定する。目標温度域は、汚染土壌Eを最も効率よく浄化することができる地下水の温度域(すなわち分解微生物が死滅せず、活性が最も高くなる温度域)であり、汚染土壌Eの浄化に先立って実施する土壌調査により予め設定される。
 また、ステップS124では、「濃度調整」に代えて「温度調整」を行う。この温度調整においては、制御部38が、加温装置34の出力を制御して、注入液の温度を高くする。これにより、観測井戸26内の地下水における実測温度が目標温度域CEに近づくようにする。
 なお、地下水における浄化剤又は活性剤の「濃度」を予測する管理関数と、地下水の「温度」を予測する管理関数は、何れか一方だけではなく、双方を用いてもよい。
 この場合、ステップS100-2では「濃度測定」及び「温度測定」を行い、ステップS110-2では「濃度判定」及び「温度判定」を行い実測濃度及び実測温度の少なくとも一方が予め設定された許容値外と判定された場合は、ステップS118-2で「揚水量調整」を行う。また、ステップS114の「収束値判定」では実測濃度及び実測温度の上げ止まりを判定し実測濃度及び実測温度及び実測温度の少なくとも一方が上げ止まっていると判定された場合は、ステップS124で「濃度調整」及び「温度調整」の少なくとも一方(すなわちステップS114で上げ止まっていると判断されたものの調整)を行う。さらにステップS125では、「地下水における浄化剤又は活性剤の濃度を予測する管理関数」と「地下水の温度を予測する管理関数」のうち少なくとも一方(すなわちステップS124で濃度及び温度を調整したものに関する管理関数)を補正する。
(作用・効果)
 第3実施形態に係る汚染土壌浄化システムでは、管理関数の予測値と実測値とのずれに応じて、管理関数を補正する。
 これにより、管理関数の予測精度を高めることができる。このため、地下土壌に過剰な濃度の浄化剤又は活性剤を含んだ注入液を注入したり、注入液を加温しすぎることを抑制できる。したがって、資源やエネルギーの無駄を削減できる。また、注入液に含まれる浄化剤又は活性剤の量が不足したり、注入液の温度が不足する事を抑制できる。したがって、土壌浄化能力を維持することができる。
[第4実施形態]
 第4実施形態においては、図6に示すように、ステップS114において、実測濃度が目標濃度域に到達する前に上げ止まることなく上昇を続けている場合、ステップS100-2に戻らずに、ステップS120に進む。
 ステップS120以降のステップでは、汚染土壌浄化システムの稼働を自動停止、自動再開して、地下水における浄化剤又は活性剤の濃度を目標濃度域に保持する。
 具体的に説明すると、まずステップS120では、「上限値判定」を行う。この上限値判定では、実測濃度が、予め設定された上限値に達したかどうかを判定する。予め設定する上限値は、例えば図7に示すように、目標濃度域CEの上限濃度C3等とする。
 実測濃度が上限濃度C3に達していない場合、ステップS100-2に戻る。図7の時間t3における実測濃度曲線F(t)が示すように、実測濃度が上限濃度C3に達した場合、ステップS128に進む。
 ステップS128では、添加槽36のポンプ及び揚水ポンプPを制御して、注水井戸24から地下土壌10への注入液の注入及び揚水井戸22からの地下水の揚水を停止する。
 次に、ステップS130で「濃度測定」を行う。具体的には、観測井戸26の内部に設置されたセンサーが、観測井戸26の地下水における浄化剤又は活性剤の濃度を測定する。
 次に、ステップS132で「下限値判定」を行う。この下限値判定では、ステップS128において注入液の注入を停止したことにより減少する地下水中の浄化剤又は活性剤の濃度が、予め設定された下限値に達したかどうかを、制御部38が判定する。この下限値は、図7における目標濃度域CEの下限濃度C2とされている。
 地下水における浄化剤又は活性剤の濃度が、下限濃度C2に達していない(すなわちC2まで下がっていない)場合、ステップS130に戻る。すなわち、地下水の浄化剤又は活性剤の濃度が、下限濃度C2に達するまで計測と判定を繰り返す。図7の時間t2に示すように、地下水の浄化剤又は活性剤の濃度が、下限濃度C2に達した場合、ステップS136に進む。
 ステップS136では、制御部38が添加槽36及び揚水ポンプPを制御して、注水井戸24から地下土壌10への注入液の注入及び揚水井戸22からの地下水の揚水を再開する。
 なお、ステップS128において注入液の注入を停止してからステップS136で再開するまでの間、管理関数による濃度予測は行わない。具体的には、図7に示すように、実測濃度が目標濃度域CEの上限濃度C3に達した時間t3から(すなわち注入液の注入を停止してから)、実測濃度が下限濃度C2に達する時間t2まで(すなわち注入液の注入を再開するまで)の期間は、管理関数による濃度予測は行わない。
 そして、ステップS136において注入液の注入を開始してからは、ステップS137で管理関数を補正し、新たな管理関数h(t)を用いて濃度を予測する。管理関数h(t)は、(1式)における濃度Aの値を、下限濃度C2よりも大きな任意の値とし、(1式)における濃度Dの値を、ステップS136において注入液の注入を開始する時点での濃度(すなわち下限濃度)C2に設定する。
 なお、ステップS120の「上限値判定」、ステップS130の「濃度測定」、ステップS132の「下限値判定」、ステップS137の「管理関数補正」は、それぞれ濃度に代えて温度についても行うことができる。あるいは、濃度、温度の双方について行うことができる。これらのステップを濃度、温度の双方について行う場合は、ステップS120の「上限値判定」で実測濃度、温度の「双方」が上限濃度、温度に達したと判断された場合に、ステップS128で注入液の注入を停止する。また、ステップS132で実測濃度、温度の「少なくとも一方」が下限濃度、温度に達したと判断された場合に、ステップS136で注入液の注入を再開する。
(作用・効果)
 第4実施形態に係る汚染土壌浄化システムでは、観測井戸26の内部に設置されたセンサーが測定した地下水における浄化剤又は活性剤の濃度に基づき、制御部38が地下土壌10への注入液の注入を停止及び再開する。
 これにより、地下土壌10における浄化剤又は活性剤の濃度を目標濃度域CEに維持することができる。このため、地下土壌10における浄化剤又は活性剤の濃度が不足したり、過剰になることを抑制できる。
[変形例]
 第1実施形態~第4実施形態に係る汚染土壌浄化システムの各種変形例について説明する。
 第1実施形態においては、図8に示すようにステップS100とS110の間にステップS102及びS108を介在させてもよい。
 このステップS102では例えば「水位判定」を行う。この水位判定では、注入液が注入された注水井戸24の「水位」が上限値以下かどうかを判定する。なお、水位の上限値は、注水井戸24へ注入液を注入し続けた場合に、注水井戸24から地下水がオーバーフローする虞のある水位である。
 注水井戸24の水位が上限値よりも大きい場合、ステップS108において「水位調整」を行う。この水位調整では、注水井戸24から地下水を吸い上げて注水井戸24を洗浄して詰まりを除去し、注水井戸24から汚染土壌Eへ注入液を流れ易くする。
 なお、図8にはステップS102、S108として「水位判定」、「水位調整」を示しているが、本開示の実施形態はこれに限らない。例えばステップS102では「注入濃度判定」を行ってもよい。この注入濃度判定では、添加槽36で生成された注入液における浄化剤又は活性剤の濃度が上限値以下かどうかを判定する。なお、濃度の上限値は水溶液における分解微生物の飽和濃度のことである。
 注入液における浄化剤又は活性剤の濃度が上限値よりも大きい場合は、ステップS108において「添加量調整」を行う。この添加量調整では、添加槽36での注入液への浄化剤又は活性剤の添加量を減らす。これにより、浄化剤又は活性剤の無駄を抑制する。
 また、ステップS102では例えば「注入温度判定」を行ってもよい。この注入温度判定では、添加槽36の注入液の温度が上限値以下かつ下限値以上かどうかを判定する。
 注入液の温度が上限値よりも大きい場合は、ステップS108において「加温調整」を行う。この加温調整では、加温装置34での加温量を減らし、分解微生物の死滅を抑制する。注入液の温度が下限値よりも小さい場合は、ステップS108において加温装置34での加温量を増やし、分解微生物が浄化機能を発揮するために必要な温度を維持する。
 また、ステップS102では例えば「揚水量判定」を行ってもよい。この揚水量判定では、揚水井戸22の水位の測定値から、揚水量が上限値以下かつ下限値以上かどうかを判定する。
 揚水量が上限値よりも大きい場合は、ステップS108において「ポンプ調整」を行う。このポンプ調整では、揚水井戸22から地下水を揚水する揚水ポンプPの出力を下げ、揚水ポンプPの故障を防ぐ。揚水量が下限値よりも小さい場合は、ステップS108において揚水ポンプPの出力を上げ、注水井戸24における注入液の注入量を下回らないようにする。
 また、ステップS102では例えば「流動判定」を行ってもよい。この流動判定では、揚水井戸22、注水井戸24、観測井戸26におけるそれぞれの水位から、地下土壌10における地下水の流れが想定した流れになっているかどうかを判定する。
 なお、「地下水の流れが想定した流れになっているかどうか」は、注水井戸24、揚水井戸22及び観測井戸26相互の水位差が想定範囲内かどうかで判断される。水位差が大きい場合、地下土壌10における水勾配が大きく、想定した流れよりも地下水の流れが過剰である。また水位差が小さい場合、地下土壌10における水勾配が小さく、想定した流れよりも地下水の流れが少ない。
 地下水の流れが想定した流れになっていない場合、ステップS108で「流量調整」を行う。この流量調整では、地下水の流れが想定した流れになるように、揚水井戸22における揚水量、注水井戸24における注入量の少なくとも一方を調整する。例えば注水井戸24の水位に対して揚水井戸22の水位が想定よりも高い(すなわち水位差が小さい)場合、揚水ポンプPの出力を大きくして、揚水井戸22からの揚水量を多くする。
 なお、本実施形態においては、遮水壁28の下端は不透水層14に根入れされており、遮水壁28内外の地下水の流れを遮断している。このため、例えば揚水量を大きくすることで地下水の流れを調整できる一方で、遮水壁28の外側から地下水が供給されないため、地下水位は低下する。このような場合は、揚水量に加え注水量も大きくすることで、地下水位を適切な高さに維持することができる。
 以上説明したステップS102の実施例である「水位判定」、「注入濃度判定」、「注入温度判定」、「揚水量判定」、「流動判定」は組み合わせて用いることができる。なお、これらのステップ102を適用する場合は、ステップ100において、それぞれ「注水井戸24の水位」、「添加槽36の注入液における浄化剤又は活性剤の濃度」、「添加槽36の注入液の温度」、「揚水井戸22の水位」、「揚水井戸22、注水井戸24、観測井戸26の水位」を測定する。
 また、ステップS102は、第2~第4実施形態における汚染土壌浄化方法においても任意のタイミングで行うことができる。
 また、第1~第4実施形態においては、図1A、図1Bに示す遮水壁28の材質をコンクリートとしているが、本開示の実施形態はこれに限らない。例えば凍土、粘土、鋼製矢板、セメント改良体等を用いることができる。また、遮水壁28は必ずしも設ける必要はない。遮水壁28を設けない場合は、地下水の流れの上流側に注水井戸24を配置し、下流側に揚水井戸22を設置することが望ましい。これにより、注水井戸24から地下土壌10に注入した注入液を円滑に地下土壌10へ浸透させることができる。
 また、第1~第4実施形態においては、図1A、図1Bに示す水処理装置32において、地下水に空気を送り込むことで水質改善するものとしたが、本開示の実施形態はこれに限らない。例えば水質改善の方法として、地下水に浄化剤を添加し反応させて水質改善する方法、地下水に含まれる汚染物質を吸着することで地下水と汚染物質との分離を図る方法などを用いてもよい。
 浄化剤として汚染物質を生物分解する分解微生物を用いて地下水を浄化する場合には、栄養塩や酸素を混入したり、新たに分解微生物を混入したりしても良い。さらに、注水井戸24による注入液の注入を円滑に実施するため、凝集剤を混入したりしても良い。
 また、第1~第4実施形態においては、ヒーターにより水処理装置32で浄化された地下水を加温するものとしたが、本開示の実施形態はこれに限らない。例えば空調機器(図示省略)の熱媒体と、水処理装置32で浄化された地下水とを熱交換させることにより地下水を加温しても良い。
 また、第1~第4実施形態においては浄化剤として分解微生物を用いているが、本開示の実施形態はこれに限らない。例えば汚染物質を化学分解する過酸化水素、鉄系スラリー、加硫酸塩、フェントン試薬、過マンガン酸、過炭酸塩などの化学分解剤などとしてもよい。
 また、第1~第4実施形態においては活性剤として酵母エキスを用いているが、本開示の実施形態はこれに限らない。例えば、水素徐放剤(例えばポリ乳酸エステル)、高脂肪酸エステル、ラクトース等としてもよい。
 なお、浄化剤と活性剤とは、それぞれ単独で注入液に添加してもよいし、組み合わせて添加してもよい。また、複数種類の浄化剤を注入液に添加することもできるし、複数種類の活性剤を注入液に添加することもできる。さらに、浄化剤、活性剤に加えて、地下水中での浄化剤や添加剤の濃度を測定しやすくするために、任意のトレーサー物質を添加してもよい。このように、本開示に係る汚染土壌浄化システムにおいては、各種の実施形態を組み合わせることができる。
 2016年8月31日に出願された日本国特許出願2016-170144号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載されたすべての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (3)

  1.  汚染土壌内の汚染物質を分解するための汚染土壌浄化システムであって、
     汚染物質を分解する浄化剤又は前記浄化剤の生物的分解を活性化させる活性剤を含む注入液を注水井戸から前記汚染土壌へ注入する工程と、
     前記注水井戸から離れた場所に設けられた観測井戸内又は揚水井戸内の地下水における前記浄化剤又は前記活性剤の濃度を測定する工程と、
     測定された前記濃度に基づき、前記注入液への前記浄化剤又は前記活性剤の添加量又は前記揚水井戸からの揚水量を自動制御する工程と、を備えた汚染土壌浄化システム。
  2.  前記注入液の注入を開始する前の前記観測井戸内又は前記揚水井戸内の地下水における前記浄化剤若しくは前記活性剤の初期濃度又は前記地下水の初期温度と、前記注水井戸から前記汚染土壌へ注入する前記注入液における前記浄化剤若しくは前記活性剤の注入濃度又は前記注入液の注入温度と、前記注入液の注入を開始してからの経過時間と、前記汚染土壌固有の土壌物性と、に基づいて、経過時間毎の前記地下水の前記浄化剤若しくは前記活性剤の予測濃度又は前記地下水の予測温度を算出する管理関数によって、
     前記観測井戸内又は前記揚水井戸内の地下水における前記浄化剤又は前記活性剤の濃度が目標濃度に到達する時間を予測する、又は、前記観測井戸内又は前記揚水井戸内の地下水における前記地下水の温度が目標温度に到達する時間を予測する、請求項1に記載の汚染土壌浄化システム。
  3.  前記管理関数によって算出される前記予測濃度又は前記予測温度が、前記観測井戸内又は前記揚水井戸内の前記地下水における前記浄化剤若しくは前記活性剤の実測濃度又は前記地下水の実測温度と近似するように、
     前記初期濃度又は前記初期温度を所定時間経過後の前記観測井戸内又は揚水井戸内の地下水における前記浄化剤若しくは前記活性剤の濃度又は前記地下水の温度に置き換えると共に、前記注入濃度又は前記注入温度を変更して前記管理関数を補正する、請求項2に記載の汚染土壌浄化システム。
PCT/JP2017/031017 2016-08-31 2017-08-29 汚染土壌浄化システム WO2018043508A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11201901755TA SG11201901755TA (en) 2016-08-31 2017-08-29 Contaminated soil purification system
JP2018537308A JP6988052B2 (ja) 2016-08-31 2017-08-29 汚染土壌浄化方法
EP17846513.4A EP3508284A4 (en) 2016-08-31 2017-08-29 SYSTEM FOR CLEANING CONTAMINATED FLOOR
US16/329,741 US11000885B2 (en) 2016-08-31 2017-08-29 Contaminated soil purification method
CN201780052939.4A CN109689236B (zh) 2016-08-31 2017-08-29 污染土壤净化方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-170144 2016-08-31
JP2016170144 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018043508A1 true WO2018043508A1 (ja) 2018-03-08

Family

ID=61300903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031017 WO2018043508A1 (ja) 2016-08-31 2017-08-29 汚染土壌浄化システム

Country Status (6)

Country Link
US (1) US11000885B2 (ja)
EP (1) EP3508284A4 (ja)
JP (1) JP6988052B2 (ja)
CN (1) CN109689236B (ja)
SG (1) SG11201901755TA (ja)
WO (1) WO2018043508A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020093225A (ja) * 2018-12-13 2020-06-18 株式会社竹中工務店 土壌浄化システム
JP2020099881A (ja) * 2018-12-25 2020-07-02 栗田工業株式会社 地下水の浄化方法
WO2020179258A1 (ja) * 2019-03-05 2020-09-10 栗田工業株式会社 土壌及び/又は地下水の浄化方法
JP2021090927A (ja) * 2019-12-11 2021-06-17 株式会社竹中工務店 土壌浄化方法
JP2021098163A (ja) * 2019-12-20 2021-07-01 株式会社竹中工務店 汚染土壌浄化システム及び汚染土壌浄化方法
JP2021122765A (ja) * 2020-02-03 2021-08-30 株式会社竹中工務店 土壌浄化の解析方法
JP2021122764A (ja) * 2020-02-03 2021-08-30 株式会社竹中工務店 多変数逆解析方法
JP2021122763A (ja) * 2020-02-03 2021-08-30 株式会社竹中工務店 加温浄化の解析方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111451266A (zh) * 2020-03-14 2020-07-28 华中师范大学 一种基于铁循环调控的场地水土协同修复方法和装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09276841A (ja) * 1996-04-12 1997-10-28 Canon Inc 汚染土壌の浄化方法および浄化装置
JP2003300056A (ja) * 2002-04-10 2003-10-21 Kurita Water Ind Ltd 有機ハロゲン化合物汚染土壌の浄化方法
JP2005052733A (ja) 2003-08-04 2005-03-03 Eiichi Tashiro 油汚染土壌の原位置浄化装置
JP2006007178A (ja) * 2004-06-29 2006-01-12 Mitsubishi Materials Natural Resources Development Corp 地下汚染領域の浄化装置及びその浄化方法
JP2006116509A (ja) * 2004-10-25 2006-05-11 Ohbayashi Corp 汚染領域の浄化経過を予め予測する方法、最適な揚水井と注水井との配置場所を決定する方法、汚染領域の浄化に要する期間を予測する方法
JP2007098330A (ja) * 2005-10-06 2007-04-19 Teijin Fibers Ltd 汚染土壌浄化の方法及びそのための汚染土壌浄化の管理システム
JP2011005371A (ja) * 2009-06-23 2011-01-13 Arthur:Kk 土壌及び地下水浄化システム
JP2011173037A (ja) * 2010-02-23 2011-09-08 Sumitomo Metal Mining Co Ltd 土壌または地下水の浄化方法、および微生物用栄養組成物の濃度確認方法
JP2016168554A (ja) * 2015-03-13 2016-09-23 三井住友建設株式会社 土壌浄化システム、及び土壌浄化方法
JP2016170144A (ja) 2015-03-16 2016-09-23 セイコーエプソン株式会社 回路装置、物理量検出装置、電子機器及び移動体

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5954452A (en) * 1997-07-11 1999-09-21 Ga Technologies, Inc. In situ remediation of underground organic pollution
JPH1157731A (ja) 1997-08-15 1999-03-02 Japan Organo Co Ltd 浄水処理方法および浄水処理設備
JP2002119951A (ja) 2000-10-13 2002-04-23 Sumitomo Metal Mining Co Ltd 土壌及び地下水浄化の管理システム並びに浄化の管理方法
JP3808712B2 (ja) 2001-02-26 2006-08-16 鹿島建設株式会社 トレーサ試験装置および単一孔トレーサ試験方法
US6733207B2 (en) * 2002-03-14 2004-05-11 Thomas R. Liebert, Jr. Environmental remediation system and method
US6796741B1 (en) * 2003-04-30 2004-09-28 Shell Oil Company In-situ bioremediation process and apparatus
WO2009042223A2 (en) * 2007-09-26 2009-04-02 Verutek Technologies, Inc. System for soil, groundwater, and surface water remediation, and related methods
JP5184225B2 (ja) 2008-06-20 2013-04-17 株式会社竹中工務店 汚染物質の除去方法
US20100011062A1 (en) * 2008-07-14 2010-01-14 St-Infonox, Inc. Automated bioremediation system
JP2010214282A (ja) * 2009-03-16 2010-09-30 Ritsumeikan 汚染土壌の微生物分布および栄養塩分布の推定方法
JP5479823B2 (ja) * 2009-08-31 2014-04-23 ローランド株式会社 効果装置
JP6178175B2 (ja) * 2013-08-30 2017-08-09 株式会社Nttドコモ 無線通信システムおよび情報処理方法
CN104671385B (zh) * 2015-01-14 2016-11-30 同济大学 一种硫酸盐污染场地地下水污染治理和土壤修复方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09276841A (ja) * 1996-04-12 1997-10-28 Canon Inc 汚染土壌の浄化方法および浄化装置
JP2003300056A (ja) * 2002-04-10 2003-10-21 Kurita Water Ind Ltd 有機ハロゲン化合物汚染土壌の浄化方法
JP2005052733A (ja) 2003-08-04 2005-03-03 Eiichi Tashiro 油汚染土壌の原位置浄化装置
JP2006007178A (ja) * 2004-06-29 2006-01-12 Mitsubishi Materials Natural Resources Development Corp 地下汚染領域の浄化装置及びその浄化方法
JP2006116509A (ja) * 2004-10-25 2006-05-11 Ohbayashi Corp 汚染領域の浄化経過を予め予測する方法、最適な揚水井と注水井との配置場所を決定する方法、汚染領域の浄化に要する期間を予測する方法
JP2007098330A (ja) * 2005-10-06 2007-04-19 Teijin Fibers Ltd 汚染土壌浄化の方法及びそのための汚染土壌浄化の管理システム
JP2011005371A (ja) * 2009-06-23 2011-01-13 Arthur:Kk 土壌及び地下水浄化システム
JP2011173037A (ja) * 2010-02-23 2011-09-08 Sumitomo Metal Mining Co Ltd 土壌または地下水の浄化方法、および微生物用栄養組成物の濃度確認方法
JP2016168554A (ja) * 2015-03-13 2016-09-23 三井住友建設株式会社 土壌浄化システム、及び土壌浄化方法
JP2016170144A (ja) 2015-03-16 2016-09-23 セイコーエプソン株式会社 回路装置、物理量検出装置、電子機器及び移動体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3508284A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020093225A (ja) * 2018-12-13 2020-06-18 株式会社竹中工務店 土壌浄化システム
JP7176168B2 (ja) 2018-12-13 2022-11-22 株式会社竹中工務店 土壌浄化システム
JP2020099881A (ja) * 2018-12-25 2020-07-02 栗田工業株式会社 地下水の浄化方法
JP2020142175A (ja) * 2019-03-05 2020-09-10 栗田工業株式会社 土壌及び/又は地下水の浄化方法
WO2020179258A1 (ja) * 2019-03-05 2020-09-10 栗田工業株式会社 土壌及び/又は地下水の浄化方法
JP2021090927A (ja) * 2019-12-11 2021-06-17 株式会社竹中工務店 土壌浄化方法
JP2021098163A (ja) * 2019-12-20 2021-07-01 株式会社竹中工務店 汚染土壌浄化システム及び汚染土壌浄化方法
JP7413633B2 (ja) 2019-12-20 2024-01-16 株式会社竹中工務店 汚染土壌浄化システム及び汚染土壌浄化方法
JP2021122765A (ja) * 2020-02-03 2021-08-30 株式会社竹中工務店 土壌浄化の解析方法
JP2021122764A (ja) * 2020-02-03 2021-08-30 株式会社竹中工務店 多変数逆解析方法
JP2021122763A (ja) * 2020-02-03 2021-08-30 株式会社竹中工務店 加温浄化の解析方法
JP7369052B2 (ja) 2020-02-03 2023-10-25 株式会社竹中工務店 多変数逆解析方法
JP7423333B2 (ja) 2020-02-03 2024-01-29 株式会社竹中工務店 加温浄化の解析方法
JP7423334B2 (ja) 2020-02-03 2024-01-29 株式会社竹中工務店 土壌浄化の解析方法

Also Published As

Publication number Publication date
US20190232347A1 (en) 2019-08-01
SG11201901755TA (en) 2019-04-29
JP6988052B2 (ja) 2022-01-05
CN109689236A (zh) 2019-04-26
CN109689236B (zh) 2021-08-27
EP3508284A4 (en) 2020-04-08
JPWO2018043508A1 (ja) 2019-07-04
EP3508284A1 (en) 2019-07-10
US11000885B2 (en) 2021-05-11

Similar Documents

Publication Publication Date Title
WO2018043508A1 (ja) 汚染土壌浄化システム
US11033941B2 (en) Soil-groundwater joint remediation device and method
US6576130B2 (en) Absorption field reclamation and maintenance system
CN102774965A (zh) 一种用于地下水污染治理的原位修复系统
CN106988295B (zh) 利用多种地基处理方法进行污泥脱水与固化的处理方法及其处理设备
JP4756651B2 (ja) 油汚染土壌の浄化システム及び浄化方法
CN111994973A (zh) 一种地下水卤代烃原位多级循环修复系统
JP5205010B2 (ja) 汚染地下水の原位置浄化方法
JP6823425B2 (ja) 汚染地盤浄化システム
JP4470408B2 (ja) 土壌浄化方法とそのシステム
JP4281551B2 (ja) 土壌及び地下水の汚染の浄化設備およびその浄化方法
JP2014205112A (ja) 多点注入による原位置浄化工法
JP3694294B2 (ja) 汚染土壌およびまたは地下水の原位置浄化工法
JP2004082056A (ja) トレンチ工法による土壌浄化方法
JP2005046658A (ja) 土壌浄化方法及び装置
KR100377911B1 (ko) 지하수 거동에 따른 유류오염원의 확산방지 및 처리를 위한 통합적인 유로 유도형 오염처리장치 및 그설치방법
JP5722006B2 (ja) 地下水の浄化方法
CN111977754A (zh) 一种复合高效强化修复土壤地下水及水体有机污染设备及应用
KR200198030Y1 (ko) 지하수 거동에 따른 유류오염원의 확산방지 및 처리를위한 통합적인 유로 유도형 오염처리장치
JP2005279392A (ja) 汚染土壌及び地下水の浄化方法
JP7095840B2 (ja) 蛍光染料濃度管理システム及び蛍光染料濃度管理方法
JP3155918B2 (ja) 微生物による環境修復方法及び土壌処理方法
JP2005279345A (ja) 土壌浄化方法
CN107265621A (zh) 含聚污水膜生物反应器深度处理装置
JP2002011455A (ja) 汚染土壌の浄化方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846513

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018537308

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017846513

Country of ref document: EP

Effective date: 20190401