WO2018043483A1 - 圧力測定装置、ガイドワイヤ用コネクタ、ガイドワイヤ及びガイドワイヤの製造方法 - Google Patents

圧力測定装置、ガイドワイヤ用コネクタ、ガイドワイヤ及びガイドワイヤの製造方法 Download PDF

Info

Publication number
WO2018043483A1
WO2018043483A1 PCT/JP2017/030930 JP2017030930W WO2018043483A1 WO 2018043483 A1 WO2018043483 A1 WO 2018043483A1 JP 2017030930 W JP2017030930 W JP 2017030930W WO 2018043483 A1 WO2018043483 A1 WO 2018043483A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide wire
guide
conductive
wire
connector
Prior art date
Application number
PCT/JP2017/030930
Other languages
English (en)
French (fr)
Inventor
宮川 克也
夏美 島崎
友恵 森田
Original Assignee
ニプロ株式会社
宮川 克也
夏美 島崎
友恵 森田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016170384A external-priority patent/JP6699463B2/ja
Priority claimed from JP2017018408A external-priority patent/JP6874400B2/ja
Priority claimed from JP2017115312A external-priority patent/JP6866779B2/ja
Priority to EP17846488.9A priority Critical patent/EP3508115A4/en
Priority to CN201780052905.5A priority patent/CN109688911B/zh
Priority to EP21177079.7A priority patent/EP3903674A1/en
Application filed by ニプロ株式会社, 宮川 克也, 夏美 島崎, 友恵 森田 filed Critical ニプロ株式会社
Priority to CN202210147959.2A priority patent/CN114504307A/zh
Priority to EP21177120.9A priority patent/EP3903675A1/en
Priority to US16/318,820 priority patent/US11707200B2/en
Priority to CN202210147963.9A priority patent/CN114533007A/zh
Publication of WO2018043483A1 publication Critical patent/WO2018043483A1/ja
Priority to US18/140,180 priority patent/US20230293031A1/en
Priority to US18/140,785 priority patent/US20230263413A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/0215Measuring pressure in heart or blood vessels by means inserted into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6851Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/10Sockets for co-operation with pins or blades
    • H01R13/11Resilient sockets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/502Bases; Cases composed of different pieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/58Contacts spaced along longitudinal axis of engagement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R39/00Rotary current collectors, distributors or interrupters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/20Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for assembling or disassembling contact members with insulating base, case or sleeve
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/22Arrangements of medical sensors with cables or leads; Connectors or couplings specifically adapted for medical sensors
    • A61B2562/225Connectors or couplings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2201/00Connectors or connections adapted for particular applications
    • H01R2201/12Connectors or connections adapted for particular applications for medicine and surgery

Definitions

  • the present invention relates to a pressure measuring device that is inserted into a lumen of a living body and measures the pressure of a fluid in the lumen.
  • the present invention also relates to a connector for a sensor-equipped guide wire that is inserted into a blood vessel.
  • the present invention also relates to a guide wire inserted into a blood vessel and a method for manufacturing the guide wire.
  • Patent Document 1 discloses a sensor-equipped guide wire in which a sensor chip for pressure detection is arranged inside a housing provided at the distal end portion of the guide wire.
  • the sensor chip described above includes a diaphragm formed of a wafer and a piezoresistive element provided on the diaphragm. Blood pressure is applied to the diaphragm of the guide wire inserted into the blood vessel. When the diaphragm bends due to blood pressure, the electrical resistance value of the piezoresistive element changes. When a current flows through the piezoresistive element, the amount of current flowing through the piezoresistive element changes according to blood pressure. The blood pressure is calculated based on the change in the amount of current.
  • a guide wire having a sensor is inserted into the blood vessel.
  • the guide wire is inserted into the vein from the lower part of the clavicle or the thigh and is delivered so as to reach the coronary artery.
  • the guide wire is connected to the arithmetic unit via the connector so as to be electrically communicable.
  • a contact is provided at the end of the guide wire, and a terminal is provided on the connector.
  • the contact shape is generally cylindrical.
  • the terminals are a pair of leaf springs arranged to face each other. In the state where the guide wire is inserted into the connector, the cylindrical contact is sandwiched between the pair of leaf springs. In this way, the contact point of the guide wire is electrically connected to the terminal of the connector.
  • a guide wire having a sensor is inserted into the blood vessel.
  • the guide wire is inserted into the vein from the lower part of the clavicle or the thigh, and the tip thereof is sent to the coronary artery.
  • the blood pressure in a coronary artery is measured by the sensor provided in the front-end
  • the guide wire is connected to the arithmetic device via a female connector and a cable so as to communicate electrical signals.
  • power is supplied from the arithmetic device to the sensor.
  • a male connector that can be inserted into the female connector is provided.
  • the male connector is provided with a plurality of electrodes.
  • Each electrode and the sensor are connected by a conductive wire that passes through the internal space of the guide wire (see Patent Document 3). In each conductive line, an electrical signal output from the sensor is transmitted or electric power is supplied to the sensor.
  • the sensor gain (voltage or current input / output ratio) is desirably large.
  • the guide wire is rotated when the guide wire is advanced and retracted in the blood vessel.
  • the tip of the guide wire configured to be easily bent is rotated.
  • the orientation of the tip of the curved guidewire is changed around the guidewire axis. Therefore, for example, it becomes easy to advance the tip of the guide wire into the target blood vessel at the branch point of the blood vessel.
  • the terminals are a pair of leaf springs arranged to face each other as described above.
  • the guide wire held by the pair of leaf springs can rotate and move in the radial direction with respect to the central axis of the guide wire.
  • the pair of leaf springs moves following the movement of the guide wire.
  • the pair of leaf springs does not follow the movement of the guide wire in the direction orthogonal to the direction in which the pair of leaf springs face each other. For this reason, if the guide wire moves in a direction perpendicular to the direction in which the pair of leaf springs face each other, the electrical connection between the contact and the terminal may be momentarily disconnected, or the contact location between the contact and the terminal may be displaced. I'll be relaxed. As a result, the electric signal transmitted from the sensor to the arithmetic device may jump or drift.
  • the outer diameter of the guide wire is sufficiently smaller than 1 mm, the inner diameter of the inner space of the guide wire through which the conductive wire is inserted is also small.
  • the conductive wire is not exposed to the outside from the guide wire. Therefore, although the conductive wire and the electrode are connected in the internal space of the male connector of the guide wire, this connection work tends to be complicated.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a pressure measuring device capable of realizing an increase in sensor gain.
  • Another object of the present invention is to provide a guide wire connector in which the electrical connection between the contact and the terminal is not easily cut.
  • Another object of the present invention is to provide a guide wire in which electrical connection between the conductive wire inserted through the inner space of the guide wire and the electrode of the connector is easy, and a method for manufacturing the guide wire.
  • a guide wire connector includes a gripping part that grips a guide wire, a support part that rotatably supports the grip part around an axis of the guide wire gripped by the grip part, A terminal electrically connected to a contact point of the guide wire gripped by the grip portion; and a guide portion rotatable about the axis of the guide wire with respect to the support portion.
  • the grip portion includes a main body having a guide wire insertion hole, and a grip piece extending from the main body along the axis of the insertion hole and elastically deforming radially inward with respect to the axis. Yes.
  • the guide portion has a guide surface for guiding the grip piece inward in the radial direction.
  • the gripping piece is elastically deformed inward in the radial direction by contacting the guide surface when the gripping part is slid along the axis of the insertion hole with respect to the guide part.
  • the gripping piece is elastically deformed radially inward by contacting the guide surface when the gripping part is slid along the axis of the insertion hole with respect to the support part.
  • the guide wire is gripped by the gripping piece.
  • the gripping piece comes off the guide surface, and the gripping of the guide wire is released. Therefore, by sliding the grip portion, the guide wire is gripped or released.
  • the support portion locks the slide at the position where the grip piece abuts on the guide surface, and the grip piece can rotate around the axis of the guide wire.
  • the grip portion is formed integrally with the main body and includes a hook portion that is elastically deformable inward in the radial direction, and a proximal end portion of the hook portion is provided at a proximal end portion of the hook portion. A recess is formed, and the recess is engageable with the lock portion.
  • each of the concave portions engages with the lock portion of the support component, whereby the gripping component is restricted from moving relative to the connector main body along the axis.
  • the gripping portion includes a fitting portion that contacts and fits the guide portion at a position where the gripping piece contacts the guide surface, and the guide portion includes the fitting portion.
  • the to-be-fitted part fitted by the part is provided.
  • the terminal has at least three terminal portions arranged around an axis of the guide wire held by the holding portion, and each of the three terminal portions includes the holding portion.
  • the guide wires gripped by each other are in contact with the contact points while being elastically displaced outward in the radial direction.
  • an angle ⁇ around the axis of the guide wire between two adjacent terminal portions satisfies a relationship of 90 ° ⁇ ⁇ 180 °.
  • the angle ⁇ around the guide wire axis between two adjacent terminal portions has at least three terminal portions arranged around the guide wire axis. Even if the contact moves in the radial direction so as to be displaced, each terminal portion follows the movement of the contact due to elastic deformation of the terminal portion. Therefore, it is difficult to cause a problem that the electrical connection between the contact and the terminal is momentarily disconnected.
  • the angle ⁇ satisfies a relationship of 90 ° ⁇ ⁇ 180 °.
  • the three terminal portions are arranged at equal intervals. Therefore, even if the guide wire moves in any radial direction, each terminal portion follows the contact. Therefore, the problem that the electrical connection between the contact and the terminal is momentarily disconnected is less likely to occur.
  • each of the terminal portions has a contact surface facing the contact point of the guide wire, and the contact surface is a cross section along the axis of the guide wire gripped by the grip portion. Is a curved shape that is convex inward in the radial direction of the guide wire.
  • each terminal portion makes point contact with the contact point along the axis of the guide wire. Therefore, when the guide wire moves along the axis, each terminal portion easily retracts in a direction away from the axis. Therefore, the guide wire can be easily inserted into and removed from the connector.
  • each of the terminal portions is a leaf spring, and each end of the terminal in the direction along the axis of the guide wire in each leaf spring is integrally formed in a cylindrical shape along the circumferential direction. It is a continuous shape.
  • the terminal includes a main body in which one end of each leaf spring in the direction along the axis of the guide wire is integrally continuous in a cylindrical shape along the circumferential direction, and the other end of each leaf spring. And a converging tube that is elastically deformable so as to expand in diameter.
  • the converging tube is externally fitted to the other end of each leaf spring and can be elastically deformed so as to expand its diameter.
  • the leaf spring as the terminal portion receives not only the urging force of the leaf spring itself but also the urging force of the cylindrical spring. Therefore, adjustment of the urging force of the terminal portion is easy.
  • a guide wire according to the present invention includes a tubular main body, a conductive wire that is inserted through the internal space of the main body and extends from the proximal end of the main body, and is tubular.
  • a connector having an electrode ring exposed on the outer peripheral surface, and an electrode pin connected to the electrode ring and extending from the distal end through the tubular inner space and connected to the conductive wire at the distal end And.
  • the guide wire includes a plurality of the conductive wires, a plurality of the electrode rings positioned apart in the axial direction, and a plurality of the electrode pins respectively connected to the electrode rings.
  • the conductive wires and the electrode pins are connected one-on-one.
  • the electrode pins are arranged in different positions in the circumferential direction in the internal space of the connector.
  • the strength of the connector is maintained by bundling each electrode pin in the internal space of the electrode ring.
  • the distal end portions of the electrode pins are arranged in different positions in the axial direction in the internal space of the connection pipe.
  • each electrode pin and each electrode ring can be grasped by the position of the distal end portion.
  • the outer periphery of the electrode pin is coated with insulation, and has a conductive portion without the insulation coat at a position corresponding to the distal end and the electrode ring to be connected.
  • Each conductive part is connected to the conductive wire and the electrode ring, and the conductive parts of the electrode pins do not overlap in the axial direction.
  • the guide wire further includes a connection tube that covers the conductive wire and the electrode pin and connects the proximal end portion of the main body and the distal end portion of the connector.
  • the connecting pipe that covers the connecting portion between the conductive wire and the electrode pin is configured as a separate part from the main body and the connector, the connecting portion between the conductive wire and the electrode pin is not connected to the main body and the connector. There is no covering member and workability is good.
  • the main body includes a tapered portion whose outer diameter decreases toward the proximal end, and a small diameter portion extending from the tapered portion to the proximal end, and the connecting pipe Is movable in the axial direction with respect to the small diameter portion in a state of being externally fitted to the small diameter portion.
  • tube can be made small by fitting a connection pipe
  • the connecting pipe is made of a conductive material and is electrically connected to the main body.
  • the guide wire further includes an electronic component that is connected to the conductive wire at a distal end portion of the main body and outputs an electrical signal corresponding to a physical quantity of the fluid.
  • a guide wire manufacturing method includes a conductive wire that is inserted into an internal space of a tubular main body and extends from a proximal end of the main body, and an electrode ring that the tubular connector includes.
  • a second step of connecting a connecting tube to the end and the distal end of the connector includes a conductive wire that is inserted into an internal space of a tubular main body and extends from a proximal end of the main body, and an electrode ring that the tubular connector includes.
  • the conductive wire and the electrode pin are electrically connected in an external fitting state in which the connecting pipe is externally fitted to the main body or the connector, and in the second step, The connecting tube in the outer fitting state is moved in a direction protruding in the axial direction from the proximal end portion of the main body or in a direction protruding in the axial direction from the distal end portion of the connector.
  • the connecting portion between the conductive wire and the electrode pin is exposed to the outside or covered.
  • a pressure measurement device is a pressure measurement device including a flexible guide wire that can be inserted into a lumen of a living body and a sensor provided in the guide wire.
  • the guide wire has a cylindrical housing that houses the sensor, and the sensor includes a sensor main body having a distal end face facing the distal side in the axial direction of the guide wire, and the distal end.
  • a diaphragm disposed on the distal end surface, a bridge circuit disposed on the distal end surface and surrounding the diaphragm, and four conductive lines connected to the bridge circuit.
  • the bridge circuit is fixed to the outer periphery of the diaphragm, and is connected to the four resistors whose electric resistance values change with elastic deformation of the diaphragm, the four resistors, and the four conductive lines. And two terminals.
  • the four resistors are fixed to the outer peripheral portion of the diaphragm, when the diaphragm is elastically deformed by the pressure of the fluid in the lumen, the electric resistance values of the four resistors respectively change. Therefore, the gain of the sensor increases.
  • a space is formed on the distal side of the distal end surface of the sensor.
  • vibration due to contact between the distal end portion of the guide wire and the wall surface in the lumen is difficult to be transmitted to the sensor, so that the detection accuracy of the sensor is increased. Furthermore, by having a tip guide part, a spiral body, etc. on the distal side of the space, the contact with the wall surface in the lumen is more buffered, and vibrations are less likely to be transmitted to the sensor. Become.
  • the shape of the diaphragm is a disk shape.
  • the diaphragm since the diaphragm has a disk shape, when the diaphragm is elastically deformed, the deformation amount of the outer peripheral portion of the diaphragm is uniform regardless of the position in the circumferential direction.
  • the amount of change in the electrical resistance value of the resistor is proportional to the amount of deformation of the diaphragm at the position where the resistor is fixed. For this reason, even if a slight deviation occurs in the position of the resistor with respect to the diaphragm due to, for example, manufacturing variations, the resistance change characteristic of the resistor, that is, the amount of change in the electrical resistance value with respect to the pressure change does not vary greatly. Since the resistance change characteristics are kept uniform in the four resistors, fluctuations in sensor gain due to manufacturing variations are small.
  • Each of the terminals is arranged between two adjacent resistors among the four resistors.
  • each terminal is disposed between two adjacent resistors, the path of the bridge circuit is compared with a case where each terminal is disposed at a position away from between the two resistors.
  • the length is shortened. Thereby, the downsizing of the sensor is realized.
  • the sensor body has a proximal end surface facing the proximal side in the axial direction, an opening in the distal end surface and the proximal end surface, and four penetrations formed along the axial direction.
  • a hole and four conductive layers stacked around the openings of the four through holes in the distal end surface, and the terminals are the conductive layers.
  • each conductive wire is connected to a portion of each conductive layer laminated on the distal end face of the sensor body. Therefore, no conductive wire is arranged on the outer peripheral surface of the sensor body.
  • the senor covers the four conductive layers and a part of the four conductive wires, and covers at least the connection portions between the conductive layers and the conductive wires.
  • a member is provided.
  • connection portion since the fluid in the lumen does not contact the connection portion, deterioration of the connection portion is suppressed, and the connection portion is waterproof and insulated.
  • the guide wire includes a core wire and a taper pin fixed to a distal end portion of the core wire, and the taper pin is connected to the covering member.
  • the pressure measuring device can increase the gain of the sensor.
  • FIG. 1 is a schematic diagram of a pressure measuring device according to a first embodiment of the present invention.
  • 2 is an enlarged cross-sectional view taken along the line II-II in FIG.
  • FIG. 3 is an enlarged cross-sectional view taken along the line III-III in FIG.
  • FIG. 4 is a perspective view of the pressure sensor.
  • FIG. 5 is a cross-sectional view taken along the line VV in FIG.
  • FIG. 6 is a view seen from the arrow VI of FIG.
  • FIG. 7 is a circuit diagram of the bridge circuit according to the first embodiment of the present invention.
  • FIG. 8 is a schematic view of a guide wire system according to the second embodiment of the present invention.
  • FIG. 9 is a view showing a guide wire according to the second embodiment of the present invention.
  • FIG. 10 is a perspective view of the pressure sensor.
  • FIG. 11 is a perspective view of a connector according to the second embodiment of the present invention.
  • FIG. 12 is an exploded perspective view of the connector according to the second embodiment of the present invention.
  • 13 is a cross-sectional view of the connector according to the second embodiment of the present invention in an unlocked state, and in particular, FIG. 13 (A) is a cross-sectional view taken along the line VIA-VIA in FIG. B) is a sectional view taken along the line VIB-VIB.
  • 14 is a cross-sectional view of the connector according to the second embodiment of the present invention in the locked state, and in particular, FIG. 14 (A) is a cross-sectional view taken along the line VIA-VIA of FIG. 11, and FIG.
  • FIG. 15 is a cross-sectional perspective view of the terminal case according to the second embodiment of the present invention taken along the line VIA-VIA of FIG.
  • FIG. 16 is a perspective view of the terminal of the connector according to the second embodiment of the present invention.
  • FIG. 17 is a view of a connector terminal according to the second embodiment of the present invention, in particular, FIG. 17 (A) is a front view, FIG. 17 (B) is a top view, and FIG. FIG. 17D is a side view, and FIG. 17D is a development view. 18 is a cross-sectional view taken along the line XI-XI in FIG. 16. In particular, FIG.
  • FIG. 18 (A) is a cross-sectional view of the terminals of the connector according to the second embodiment of the present invention
  • FIG. FIG. 18C is a cross-sectional view of the connector terminal and the guide wire contact according to the second embodiment of the present invention
  • FIG. 19 is a perspective view of a terminal of a connector according to the third embodiment of the present invention.
  • FIG. 20 is a front view of the terminals of the connector according to the third embodiment of the present invention.
  • FIG. 21 is contact stability data of amplifier input (V) -time (S) according to the second embodiment of the present invention.
  • FIG. 22 shows contact stability data of amplifier input (V) -time (S) for Volcano Combowire as a comparative product.
  • FIG. 23 is contact stability data of amplifier input (V) ⁇ time (S) for St Jude Medical Saltas as a comparative product.
  • FIG. 24 is a schematic diagram of the guide wire system 310.
  • FIG. 25 is a view showing the guide wire 330.
  • FIG. 26 is a perspective view of the pressure sensor 311.
  • FIG. 27 is an exploded view of the male connector 339.
  • FIG. 28 is a diagram showing each electrode pin 345.
  • 29 is a cross-sectional view taken along the line VI-VI in FIG.
  • FIG. 30 is a view showing the guide wire 330 when the connection pipe 336 is in an externally fitted state.
  • the pressure measuring device 10 includes a guide wire 30 and a pressure sensor 11 provided on the guide wire 30.
  • the calculation control unit 40 is electrically connected to one end of the guide wire 30.
  • the fixed end (the end connected to the calculation control unit 40) is the proximal end (the right side in FIG. 1) and the free end (the tip when inserted into the blood vessel) among the both ends of the guide wire 30. Is the distal end (left side in FIG. 1).
  • the side with the proximal end is defined as the proximal side
  • the side with the distal end is defined as the distal side.
  • the guide wire 30 is an elongated cable body, and can be inserted into a blood vessel (an example of a living body lumen) such as a coronary artery.
  • the pressure sensor 11 is provided at the distal end of the guide wire 30.
  • the calculation control unit 40 calculates blood pressure (an example of the pressure of fluid in the lumen) based on electrical information (voltage value) output from the pressure sensor 11. That is, the pressure measuring device 10 is used for blood pressure measurement.
  • FIG. 1 to 3 show an axial center line 30L of the guide wire 30.
  • FIG. 1 to 3 show an axial center line 30L of the guide wire 30.
  • FIG. 1 to 3 show an axial center line 30L of the guide wire 30.
  • FIG. 1 to 3 directions relating to components constituting the guide wire 30, that is, an axial direction 30A, a radial direction 30R, and a circumferential direction 30C are defined as follows.
  • the axial direction 30A, the radial direction 30R, and the circumferential direction 30C are defined based on the axial center line 30L that is straight, that is, the guide wire 30 is not bent or curved, that is, the axial center line 30L that is a straight line. ing.
  • the axial direction 30A is a direction parallel to the axial center line 30L and includes both a distal direction and a proximal direction.
  • the radial direction 30R is all directions orthogonal to the axial center line 30L.
  • the guide wire 30 includes a core wire 31, a tip guide portion 32, a first spiral body 33, a housing 34, a second spiral body 35, and a guide tube 38.
  • the guide wire 30 includes a taper pin 39.
  • the guide wire 30 includes a connecting wall 36 and a tip wire 37.
  • the core wire 31 is a member constituting the skeleton of the guide wire 30.
  • the core wire 31 provides a certain mechanical strength against the bending of the guide wire 30 so that the guide wire 30 can be inserted into the blood vessel without bending.
  • the core wire 31 is a cylindrical wire and extends from the proximal end to the distal side.
  • the material of the core wire 31 is, for example, a medical stainless steel rope.
  • the axis line of the core wire 31 is parallel to the axis line 30L.
  • the core wire 31 is more flexible at the distal side than at the proximal side.
  • the core wire 31 includes a small-diameter portion 31a located on the distal side, a large-diameter portion 31b located on the proximal side, and a tapered portion 31c that connects the small-diameter portion 31a and the large-diameter portion 31b.
  • the small diameter part 31a and the large diameter part 31b each have a constant outer diameter, and the outer diameter of the large diameter part 31b is larger than the outer diameter of the small diameter part 31a.
  • the outer diameter of the tapered portion 31c is equal to the outer diameter of the large diameter portion 31b at the proximal end, gradually decreases from the proximal end toward the distal end, and equal to the outer diameter of the small diameter portion 31a at the distal end. As the outer diameter of the core wire 31 gradually decreases toward the distal side, the rigidity of the core wire 31 decreases in the order of the large diameter portion 31b, the tapered portion 31c, and the small diameter portion 31a.
  • the taper pin 39 is disposed on the distal side from the distal end portion of the core wire 31.
  • the taper pin 39 is a member constituting the skeleton of the guide wire 30 similarly to the core wire 31, and gives a certain mechanical strength against the bending of the guide wire 30.
  • the taper pin 39 includes a shaft portion 39a located on the proximal side and a taper portion 39b extending from the shaft portion 39a to the distal side.
  • the outer diameter of the shaft portion 39a is constant.
  • the shaft portion 39 a is inserted into the small diameter portion 31 a of the core wire 31.
  • the shaft portion 39a is fixed to the small diameter portion 31a by, for example, laser welding or an adhesive.
  • the outer diameter of the taper portion 39b is tapered toward the distal side. Therefore, the rigidity of the taper portion 39b gradually decreases toward the distal side. Since the distal end portion of the guide wire 30 on which the taper pin 39 is disposed is easily bent, the guide wire 30 is easily guided along the blood vessel.
  • a groove 39c is formed in the outer peripheral surface of the taper pin 39 so as to be parallel to the axial direction 30A from the proximal end of the taper pin 39 to the proximal side portion of the taper portion 39b.
  • Four conductive wires 15 (described later) of the pressure sensor 11 pass through the core wire 31 via the groove 39c and are connected to the arithmetic control unit 40.
  • the guide tube 38 is located outside the radial direction 30R of the small diameter portion 31a of the core wire 31, and covers the proximal side portion of the small diameter portion 31a.
  • the shape of the guide tube 38 is a cylindrical shape.
  • the axial center line of the guide tube 38 is parallel to the axial center line 30L.
  • the guide tube 38 is fixed to the outer peripheral surface of the small diameter portion 31 a of the core wire 31.
  • the guide tube 38 has flexibility.
  • the guide tube 38 is, for example, a medical synthetic resin, and is thermally welded to the outer peripheral surface of the core wire 31, for example.
  • the tip guide portion 32 is disposed at the distal end of the guide wire 30.
  • the distal end guide portion 32 is a portion that guides the traveling direction of the guide wire 30 along the blood vessel by contacting the blood vessel wall when the guide wire 30 is inserted into the blood vessel.
  • the tip guide portion 32 includes a hemispherical portion 32a located on the distal side and a cylindrical portion 32b extending proximally from the hemispherical portion 32a.
  • the hemispherical portion 32a has a hemispherical shape protruding distally so as not to damage the blood vessel wall.
  • the outer diameter of the hemispherical portion 32 a is substantially equal to the outer diameter of the second spiral body 35.
  • the cylindrical portion 32b protrudes proximally from the hemispherical portion 32a and has a cylindrical shape with an outer diameter smaller than the outer diameter of the hemispherical portion 32a.
  • a first spiral body 33 and a second spiral body 35 are provided on the distal side of the guide wire 30.
  • the first spiral body 33 and the second spiral body 35 are weaker in bending rigidity than the taper pin 39, that is, easily bent.
  • the first spiral body 33 is configured by a wire wound in a spiral shape.
  • the material of the first spiral 33 is, for example, a medical stainless steel rope.
  • the axial center line of the first spiral body 33 is parallel to the axial center line 30L.
  • the taper portion 39 b of the taper pin 39 is inserted into the first spiral body 33.
  • the first helix 33 has a proximal end 33a (FIG. 2) and a distal end 33b (FIG. 3). As shown in FIG.
  • the proximal end portion 33 a is fixed to the outer peripheral surface of the tapered portion 39 b of the tapered pin 39 by, for example, laser welding or an adhesive. Thereby, the bending rigidity of the first spiral body 33 is reinforced by the taper pin 39.
  • the housing 34 is a housing that houses the pressure sensor 11 in the internal space 34S.
  • the housing 34 has a cylindrical shape and has the internal space 34S.
  • the material of the housing 34 is, for example, a medical stainless steel rope.
  • the axis line of the housing 34 is parallel to the axis line 30L.
  • a distal end portion 33b of the first spiral body 33 is fixed to the proximal end portion of the housing 34 by, for example, laser welding or an adhesive.
  • the housing 34 has a plurality of through holes 34a.
  • the housing 34 has two through holes 34a.
  • the through hole 34a passes through the cylindrical wall of the housing 34 along the radial direction 30R.
  • the internal space 34S of the housing 34 communicates with the outside through the through hole 34a.
  • the two through holes 34a are arranged along the circumferential direction 30C of the guide wire 30 with an interval of 180 degrees around the axial center line 30L.
  • the second spiral body 35 is composed of a wire wound in a spiral shape.
  • the material of the second spiral body 35 is, for example, a medical stainless steel rope.
  • the axial center line of the second helical body 35 is parallel to the axial center line 30L.
  • the second spiral 35 has a proximal end 35a and a distal end 35b.
  • the proximal end portion 35 a of the second spiral body 35 is fixed to the distal end portion of the housing 34.
  • the second spiral body 35 and the housing 34 are fixed by, for example, laser welding or an adhesive.
  • the cylindrical portion 32 b of the tip guide portion 32 is inserted into the distal end portion 35 b of the second spiral body 35.
  • the distal end portion 35b is fixed to the outer peripheral surface of the cylindrical portion 32b.
  • the second spiral body 35 and the tip guide portion 32 are fixed by, for example, laser welding or an adhesive.
  • the connecting wall 36 is a member for connecting the tip wire 37 to the housing 34.
  • the connecting wall 36 is fixed to the distal end of the housing 34.
  • the connecting wall 36 is made of, for example, a metal solder material.
  • the tip wire 37 reinforces the bending rigidity of the second spiral body 35.
  • the tip wire 37 is, for example, a medical stainless steel wire.
  • the axial center line of the tip wire 37 is parallel to the axial center line 30L.
  • the proximal end of the tip wire 37 is fixed to the connecting wall 36.
  • the distal end portion of the tip wire 37 is fixed to the cylindrical portion 32b of the tip guide portion 32 by, for example, laser welding or an adhesive.
  • the taper pin 39 and the tip guide portion 32 are connected via the first spiral body 33, the housing 34, and the second spiral body 35.
  • the housing 34 and the tip guide portion 32 are connected via a tip wire 37.
  • the taper pin 39 is fixed to the core wire 31. In this way, the guide wire 30 itself (excluding the core wire 31) is supported by the core wire 31 and is given mechanical strength.
  • the guide wire 30 when an operation for feeding the guide wire 30 to the blood vessel is performed at the proximal end, the guide wire 30 follows the operation and proceeds in the blood vessel without bending. Further, when the distal end guide portion 32 comes into contact with the blood vessel wall, the guide wire 30 is bent along the blood vessel wall.
  • the pressure sensor 11 is disposed in the internal space 34 ⁇ / b> S of the housing 34.
  • a proximal portion of the internal space 34 ⁇ / b> S is almost filled with the pressure sensor 11.
  • the distal portion of the inner space 34S that is, the inner space 34S located on the distal side of the pressure sensor 11 remains in the space.
  • a through hole 34a of the housing 34 is opened at a distal portion of the internal space 34S.
  • the pressure sensor 11 includes a sensor main body 12, a diaphragm 13, a bridge circuit 14, four conductive wires 15, and a covering member 16.
  • the shape of the sensor body 12 is a cylindrical shape.
  • a diaphragm 13, a bridge circuit 14, and four conductive wires 15 are attached to the sensor body 12.
  • the axial center line of the sensor body 12 is parallel to the axial center line 30L.
  • the sensor body 12 has a distal end surface 12a facing the distal side, a proximal end surface 12b facing the proximal side, and an outer peripheral surface 12c facing the radial direction 30R.
  • the sensor body 12 has a recess 21.
  • the concave portion 21 is provided in the sensor body 12 so that the diaphragm 13 is easily deformed by the pressure of the fluid in the lumen.
  • the recess 21 is open to the distal end surface 12a. When viewed from the distal side of the sensor body 12, the shape of the recess 21 is circular. The depth of the recess 21 in the axial direction 30A is constant. The axis line of the recess 21 coincides with the axis line of the sensor body 12.
  • the sensor body 12 has four through holes 22.
  • the four through holes 22 are formed in the sensor body 12 in order to provide the sensor body 12 with four terminals 18 described later.
  • the four through holes 22 are arranged around the axial center line of the sensor body 12 at intervals of 90 degrees along the circumferential direction 30C.
  • Each through-hole 22 extends along the axial direction 30 ⁇ / b> A and opens on both the distal end surface 12 a and the proximal end surface 12 b of the sensor body 12. As viewed from the axial direction 30A, the shape of the through hole 22 is circular.
  • the diaphragm 13 is disposed on and fixed to the distal end surface 12a of the sensor body 12.
  • the shape of the diaphragm 13 is a disk shape. More specifically, the shape of the diaphragm 13 is a circular shape when viewed from the axial direction 30A and a rectangular shape when viewed from the radial direction 30R.
  • the axis of the diaphragm 13 and the axis of the sensor main body 12 coincide.
  • the distal end face 12a, the diaphragm 13, and the recess 21 are arranged coaxially.
  • the outer diameter of the diaphragm 13 is larger than the diameter of the inner peripheral surface of the recess 21.
  • the diaphragm 13 covers the entire opening of the recess 21.
  • the bridge circuit 14 includes four resistors 17 (17A and 17B), four terminals 18 (18A, 18B, 18C, and 18D), and four connectors. 19.
  • the bridge circuit 14 surrounds the diaphragm 13.
  • the bridge circuit 14 is a full bridge circuit in which all four resistors 17 function as strain gauges for measurement. Therefore, the four resistors 17 are composed of two types of resistors having different resistance change characteristics.
  • the two types of resistors are a first resistor 17A and a second resistor 17B. In the present specification, when it is not necessary to distinguish the first resistor 17A and the second resistor 17B, these are referred to as the resistor 17.
  • the four resistors 17 are fixed to the distal surface of the diaphragm 13. As viewed from the axial direction 30 ⁇ / b> A, the four resistors 17 are fixed to the outer peripheral portion of the diaphragm 13. The four resistors 17 are arranged at intervals of 90 degrees around the axis of the sensor body 12 along the circumferential direction 30C. Here, the first resistor 17A and the second resistor 17B are alternately arranged along the circumferential direction 30C.
  • Both the first resistor 17A and the second resistor 17B are semiconductors using a piezoresistance effect. Since the resistor 17 is fixed to the diaphragm 13, the resistor 17 is elastically deformed along with the elastic deformation of the diaphragm 13. When the resistor 17 is elastically deformed, the electric resistance value of the resistor 17 changes.
  • the shapes of the first resistor 17A and the second resistor 17B are different from each other.
  • the postures of the first resistor 17A and the second resistor 17B with respect to the diaphragm 13 are also different from each other. Due to such a difference in shape and posture, the above-described difference in resistance change characteristic is brought about between the first resistor 17A and the second resistor 17B.
  • the shape of the first resistor 17A is a square shape.
  • the first resistor 17 ⁇ / b> A includes a circumferential component 51 and two radial components 52.
  • the circumferential component 51 extends substantially along the circumferential direction of the diaphragm 13.
  • the radial component 52 extends substantially along the radial direction of the diaphragm 13.
  • the first resistor 17A is configured such that its electrical resistance value increases with the deformation of the diaphragm 13 during pressurization.
  • the shape of the second resistor 17B is a rectangular shape.
  • the second resistor 17 ⁇ / b> B is configured by a circumferential component that extends substantially along the circumferential direction of the diaphragm 13.
  • the second resistor 17B is configured such that its electric resistance value decreases with the deformation of the diaphragm 13 during pressurization.
  • the four terminals 18 are two input terminals 18A and 18C and two output terminals 18B and 18D in the bridge circuit 14.
  • terminals 18 when it is not necessary to distinguish between the input terminals 18A and 18C and the two output terminals 18B and 18D, they are referred to as terminals 18.
  • the four terminals 18 are four conductive layers provided corresponding to the four through holes 22 of the sensor body 12, respectively.
  • the conductive layer is composed of a distal conductive layer 24 stacked around the opening of each through hole 22 in the distal end surface 12a.
  • the four terminals 18 are arranged outside the diaphragm 13 in the radial direction 30R.
  • the four terminals 18 are arranged at intervals of 90 degrees around the axial center line of the sensor body 12 along the circumferential direction 30C.
  • the four terminals 18 and the four resistors 17 are alternately arranged in the circumferential direction 30C.
  • Each terminal 18 is disposed between two adjacent resistors 17 among the four resistors 17.
  • connection bodies 19 are provided corresponding to the four terminals 18, respectively.
  • Each connection body 19 is a conductive layer laminated around the opening of each through hole 22 in the distal end surface 12a.
  • Each connection body 19 electrically connects two adjacent resistor bodies 17 and a terminal 18 located between the two adjacent resistor bodies 17. In this way, the four resistors 17 and the four terminals 18 are alternately electrically connected.
  • the two input terminals 18 ⁇ / b> A and 18 ⁇ / b> C are arranged with an interval of 180 degrees, and the two output terminals 18 ⁇ / b> B and 18 ⁇ / b> D are spaced with an interval of 180 degrees.
  • the bridge circuit 14 has two paths, one path 27 and the other path 28 from one input terminal 18A to the other input terminal 18C.
  • the path 27 is a path that passes through the first resistor 17A, the one output terminal 18B, and the second resistor 17B.
  • the other path 28 is a path that passes through the second resistor 17B, the other output terminal 18D, and the first resistor 17A.
  • one input terminal 18A is a high voltage side
  • the other input terminal 18C is a low voltage side.
  • the first resistor 17A and the second resistor 17B are deformed.
  • the electrical resistance value of the first resistor 17A increases and the electrical resistance value of the second resistor 17B decreases. That is, the voltage drop amount in the first resistor 17A is larger than the voltage drop amount in the second resistor 17B. Therefore, a potential difference is generated between the two output terminals 18B and 18D.
  • the four conductive lines 15 are electrically connected to the four terminals 18, respectively.
  • the terminal 18 has the distal conductive layer 24 laminated on the distal end surface 12a.
  • Each conductive wire 15 is connected to the distal conductive layer 24.
  • the conductive wire 15 has a conductive wire main body 15a made of a conductor and an insulating cover 15b made of an insulator.
  • the insulating cover 15b covers the conductive wire body 15a except for both ends of the conductive wire body 15a.
  • the conductive wire body 15a is electrically and mechanically connected to the distal conductive layer 24 by soldering. By this solder, a connection portion 26 is formed between the conductive wire main body 15a and the distal conductive layer 24.
  • the covering member 16 is provided on the proximal side of the sensor main body 12.
  • the covering member 16 is made of an adhesive in the first embodiment.
  • the covering member 16 is fixed to the proximal end surface 12b of the sensor body 12, and protrudes proximally from the proximal end surface 12b.
  • a part of the covering member 16 enters the four through holes 22 of the sensor body 12 and closes the openings of the four through holes 22 in the proximal end surface 12b.
  • the distal end portions of the four conductive wires 15 and the four connection portions 26 are covered with the covering member 16 and fixed to the covering member 16.
  • the entire conductive wire main body 15 a exposed from the insulating cover 15 b is covered with the covering member 16.
  • the four conductive wire main bodies 15 a and the four connection portions 26 are covered with the covering member 16 and fixed to the covering member 16.
  • the covering member 16 is omitted from FIG.
  • the configuration of the covering member 16 is not limited to an adhesive, and may be solder or solder paste.
  • the taper pin 39 is connected to the covering member 16 and is fixed to the taper pin 39. Thereby, the sensor main body 12 is fixed to the taper pin 39.
  • the arithmetic control unit 40 is output from the four conductive wires 15 electrically connected to the pressure sensor 11, a power supply unit 41 that supplies current to the pressure sensor 11, and the pressure sensor 11. And a connector 43 connected to the four conductive wires 15.
  • the power supply unit 41 is configured to apply a voltage to the bridge circuit 14 of the pressure sensor 11 through the two conductive wires 15 connected to the two input terminals 18A and 18C.
  • the calculation unit 42 acquires the voltage value output from the bridge circuit 14 of the pressure sensor 11 through the two conductive wires 15 connected to the two output terminals 18B and 18D.
  • the calculator 42 calculates the blood pressure acting on the pressure sensor 11 based on the obtained change in the output voltage value.
  • the computing unit 42 includes a memory 42a. More specifically, the calculation unit 42 calculates the blood pressure as follows.
  • the memory 42a stores the correspondence relationship between the output voltage value and the blood pressure as, for example, one-to-one correspondence data. Therefore, when the output voltage value is obtained, the calculation unit 42 can specify the blood pressure corresponding to the output voltage value based on the correspondence stored in the memory 42a. In this way, the calculation unit 42 can calculate the blood pressure acting on the pressure sensor 11 based on the voltage value output from the pressure sensor 11.
  • the pressure measuring device 10 is used for measuring blood pressure in a coronary artery, for example.
  • the guide wire 30 is inserted into the coronary artery with the distal end provided with the tip guide portion 32 as the head in the direction of insertion into the blood vessel.
  • the position of the guide wire 30 in the coronary artery is grasped based on the position of the distal end guide portion 32 displayed on the X-ray fluoroscopic image of the blood vessel.
  • the calculation unit 42 of the calculation control unit 40 acquires electrical information output from the pressure sensor 11. As described above, the calculation unit 42 calculates the blood pressure acting on the pressure sensor 11 based on this electrical information.
  • the shape of the diaphragm 13 is a disk shape, when the diaphragm 13 is elastically deformed, the deformation amount of the outer peripheral portion of the diaphragm 13 is uniform regardless of the position in the circumferential direction.
  • the amount of change in the electrical resistance value of the resistor 17 is proportional to the amount of deformation of the diaphragm 13 at the position where the resistor 17 is fixed. For this reason, even if some displacement occurs in the position of the resistor 17 with respect to the diaphragm 13 due to, for example, manufacturing variations, the resistance change characteristic of the resistor 17, that is, the amount of change in the electrical resistance value with respect to the pressure change does not vary greatly. . Since the resistance change characteristics are kept uniform in the four resistors 17, the variation in the gain of the sensor 11 due to manufacturing variations is small.
  • each terminal 18 is disposed between two adjacent resistors 17, the path length of the bridge circuit 14 is larger than when each terminal 18 is disposed at a position away from between the two resistors 17. Is shortened. Thereby, size reduction of the sensor 11 is implement
  • Each conductive wire 15 is connected to a portion (distal conductive layer 24) laminated on the distal end surface 12a of the sensor body 12. Therefore, the conductive wire 15 is not disposed on the outer peripheral surface 12 c of the sensor body 12.
  • the connecting portion 26 Since the fluid in the lumen does not contact the connecting portion 26, the deterioration of the connecting portion 26 is suppressed, and the connecting portion 26 is waterproof and insulated.
  • the sensor body 12 has a cylindrical shape, and the distal end surface 12a is perpendicular to the axial direction 30A of the guide wire 30.
  • the sensor body 12 may have a distal end face 12a facing the distal side, and the shape of the sensor body 12 and the angle of the distal end face 12a with respect to the axial direction 30A are not limited.
  • the sensor body 12 may have a prismatic shape, for example, and the distal end surface 12a may be inclined with respect to the axial direction 30A.
  • the shape of the diaphragm 13 is a disk shape.
  • the shape of the diaphragm 13 is not limited as long as the diaphragm 13 can be elastically deformed in accordance with a pressure change applied to the diaphragm 13.
  • the diaphragm 13 is a plate-like member, and the shape of the plate-like member viewed from the axial direction 30A may be any shape.
  • the arbitrary shape is, for example, a polygonal shape, and includes a quadrangular shape, a hexagonal shape, an octagonal shape, and the like.
  • the covering member 16 is made of an adhesive, but is not limited thereto.
  • the covering member 16 may be, for example, a rigid part that is fixed to the proximal end surface 12 b of the sensor body 12.
  • the covering member 16 not only covers the connection portion 26 but also fixes the pressure sensor 11 to the taper pin 39.
  • the covering member 16 may only cover the connecting portion 26. In this case, the pressure sensor 11 is fixed to the taper pin 39 by another member.
  • the four resistors 17 are arranged around the axis of the sensor main body 12 at intervals of 90 degrees. As long as the four resistors 17 are arranged on the outer peripheral portion of the diaphragm 13 along the circumferential direction 30C, the arrangement of the four resistors 17 is not limited.
  • the four resistors 17 have non-uniform intervals around the axis of the sensor body 12, for example, intervals of 120 degrees, 60 degrees, 120 degrees, and 60 degrees, or 60 degrees, 90 degrees, 30 degrees, 180 degrees. They may be arranged at intervals of degrees.
  • the four through holes 22 for providing the four terminals 18 are arranged around the axis of the sensor main body 12 at intervals of 90 degrees.
  • the arrangement of the four through holes 22 is not limited as long as each through hole 22 is arranged between two resistors 17 adjacent in the circumferential direction 30C. Similar to the four resistors 17, the four through holes 22 have non-uniform intervals around the axis of the sensor body 12, for example, intervals of 120 degrees, 60 degrees, 120 degrees, and 60 degrees, or 60 They may be arranged at intervals of degrees, 90 degrees, 30 degrees, and 180 degrees.
  • the shape of the through hole 22 viewed from the axial direction 30A is a circle.
  • the shape of the through hole 22 viewed from the axial direction 30A may be, for example, a polygon and is not limited.
  • a waterproof insulating coating is provided on all or part of the outer surface of the sensor body 12 so as not to interfere with the movement of the diaphragm 13 of the sensor body 12.
  • Parylene (registered trademark) coating is particularly desirable, but the coating method is not particularly limited.
  • the guide wire system 110 includes a guide wire 130, an arithmetic device 120, and a connector 140 that connects the guide wire 130 and the arithmetic device 120.
  • the guide wire 130 is an elongated cord body and can be inserted into a blood vessel such as a coronary artery.
  • the guide wire 130 includes a pressure sensor 111 (FIG. 10) that outputs electrical information according to the pressure in the blood vessel.
  • the computing device 120 includes a power supply unit 121 that supplies a current to the pressure sensor 111 of the guide wire 130, a computing unit 122 that computes electrical information output from the pressure sensor 111, and a memory that stores information necessary for the computing process. 123.
  • the electrical information output from the pressure sensor 111 is transmitted from the guide wire 130 to the calculation unit 122 via the connector 140.
  • the calculator 122 calculates blood pressure based on the electrical information output from the pressure sensor 111. That is, the guide wire system 110 is used for blood pressure measurement.
  • the fixed end (the end connected to the arithmetic unit 120) is the proximal end (the lower left end in FIG. 8) of both ends of the guide wire 130, and the free end (when inserted into the blood vessel).
  • the tip is the distal end (the upper left end in FIG. 8).
  • the side with the proximal end is defined as the proximal side
  • the side with the distal end is defined as the distal side.
  • FIG. 9 shows a guide wire 130.
  • the guide wire 130 includes a tip guide portion 132, a first spiral body 133, a housing 134, a second spiral body 135, an electrode pipe 136, four contact points 137, a taper pin 138, and a tip guide pin 139.
  • the core wire 131 extends from the proximal end to the distal side.
  • the tip guide portion 132 is disposed at the distal end.
  • a first spiral 133, a housing 134, a second spiral 135, and an electrode pipe 136 are sequentially arranged from the distal end guide portion 132 toward the proximal end.
  • the four contact points 137 are arranged on the outer peripheral side of the electrode pipe 136 and are arranged along the axis 130 ⁇ / b> A of the guide wire 130.
  • the axis 130A indicates the axis of the guide wire 130 when the guide wire 130 is in a straight state without being bent or curved.
  • the core wire 131 is a member constituting the skeleton of the guide wire 130.
  • the distal end guide portion 132 is a hemispherical member that protrudes toward the distal side and is disposed at the distal end, and guides the traveling direction of the guide wire 130 along the blood vessel by contacting the blood vessel wall.
  • the first spiral body 133 and the second spiral body 135 are wire rods wound in a spiral shape, and are configured to bend more easily than the core wire 131 so that the distal end portion of the guide wire 130 is easily along the blood vessel.
  • the housing 134 is a housing that houses the pressure sensor 111 in its internal space.
  • the housing 134 has two through holes 134a. Blood can contact the pressure sensor 111 (FIG.
  • the electrode pipe 136 is a cylindrical member that houses four conductive wires 115 (FIG. 10) extending from the pressure sensor 111, and is fixed to the proximal end portion of the core wire 131.
  • the four contacts 137 are connected to the four conductive lines 115 (FIG. 10), respectively, and are fixed to the outer peripheral surface of the electrode pipe 136.
  • the shape of the contact 137 is an annular shape (FIG. 18).
  • the taper pin 138 is a member that reinforces the bending rigidity of the second helical body 135, is fixed to the distal end portion of the core wire 131, and extends from the core wire 131 to the housing 134.
  • the tip guide pin 139 is a member that reinforces the bending rigidity of the first spiral body 133, and is fixed to the housing 134 and the tip guide portion 132.
  • the pressure sensor 111 includes a sensor main body 112, a diaphragm 113, a bridge circuit 114, four conductive wires 115, and a connection portion 116.
  • the sensor body 112 is fixed to a taper pin 138 fixed to the core wire 131 by a connecting portion 116 made of, for example, an adhesive.
  • a diaphragm 113, a bridge circuit 114, and four conductive wires 115 are attached to the sensor body 112.
  • the bridge circuit 114 is a full bridge circuit in which all of the four resistors 117 function as strain gauges for measurement.
  • the bridge circuit 114 includes four resistors 117, four terminals 118A and 118B, and four connectors 119.
  • the four resistors 117 are fixed to the diaphragm 113.
  • the four terminals 118A and 118B include two input terminals 118A and two output terminals 118B.
  • Each connecting body 119 electrically connects each resistor 117 to each terminal 118A, 118B.
  • Each conductive line 115 is electrically connected to each terminal 118A, 118B.
  • the diaphragm 113 When the guide wire 130 is inserted into the blood vessel and blood pressure is applied to the pressure sensor 111, the diaphragm 113 is elastically deformed according to the blood pressure. As the diaphragm 113 is elastically deformed, the four resistors 117 are elastically deformed, and the electric resistance values of the four resistors 117 are changed. In this state, when a voltage is applied between the two input terminals 118A, a potential difference is generated between the two output terminals 118B. Based on this potential difference, the magnitude of blood pressure can be specified in the arithmetic unit 120 (FIG. 8).
  • the connector 140 includes a gripping part (an example of a gripping part) 141 that grips the guide wire 130 and a connector main body 142 to which the gripping part 141 is attached.
  • the connector main body 142 includes a cable 143 that is electrically connected to the four conductive wires 115.
  • the cable 143 is electrically connected to the arithmetic device 120 (FIG. 8).
  • FIGS. 13A and 14A are cross-sectional views taken along a plane including the axis 130 ⁇ / b> A and along the first direction 124.
  • FIGS. 13B and 14B are cross-sectional views taken along a plane including the axis 130 ⁇ / b> A and along the second direction 125.
  • FIG. 12 is an exploded perspective view of the connector 140.
  • the connector main body 142 includes a cylindrical cover 145, a terminal case 146, a guide part (an example of a guide part) 147, and a support part (an example of a support part) 148.
  • FIGS. 12 to 14 show the gripping component 141.
  • the gripping component 141 includes a main body 150, two gripping pieces 151, and two hook portions 152.
  • the gripping component 141 is formed of a resin material. Therefore, the main body 150, the two gripping pieces 151, and the two hook portions 152 are integrally formed.
  • the shape of the main body 150 is roughly a cylindrical shape in which an insertion hole 150a that is an internal space extends along the axis 130A.
  • the guide wire 130 can be inserted into the insertion hole 150a.
  • the main body 150 includes a fitting portion 153 at the proximal end portion.
  • the shape of the fitting portion 153 is a disk shape having the axis 130A as an axis, and protrudes outward in the radial direction.
  • the two gripping pieces 151 extend from the proximal end of the main body 150 (the left side in FIG. 12 and the right side in FIG. 13) along the axis 130A.
  • the two gripping pieces 151 are opposed in the second direction 125.
  • Each shape of the two gripping pieces 151 is a semi-cylindrical shape extending along the axis 130A. When the two gripping pieces 151 come close to each other and come into contact with each other, a generally cylindrical shape is obtained.
  • the two gripping pieces 151 are separated in the second direction 125 in a state where no external force is applied.
  • Each gripping piece 151 can be elastically deformed in a direction in which the proximal end sides approach each other with the connection position of each gripping piece 151 and the main body 150, that is, the distal end of each gripping piece 151 as a fulcrum.
  • the guide wire 130 is inserted into the gripping component 141 through a space that becomes an internal space when the two gripping pieces 151 have a cylindrical shape.
  • the proximal end portion of each gripping piece 151 abuts on the guide component 147, the two gripping pieces 151 are elastically deformed so as to approach each other. As a result, the guide wire 130 is gripped by the two gripping pieces 151.
  • the two hook portions 152 extend along the axis 130A from the distal end of the main body 150 (left side in FIG. 12, right side in FIG. 13) toward the proximal side (left side in FIG. 12, right side in FIG. 13). .
  • the main body 150 is located between the two hook portions 152.
  • Each hook portion 152 can be elastically deformed inward in the radial direction with respect to the axis 130 ⁇ / b> A with the connecting position of each hook portion 152 and the main body 150, that is, the distal end of each hook portion 152 as a fulcrum.
  • a concave portion 152 a is formed at the proximal end portion of each hook portion 152.
  • Each recess 152a is recessed inward in the radial direction with respect to the axis 130A in each hook portion 152.
  • Each recess 152 a can be engaged with the lock portion 169 of the support component 148.
  • Each concave portion 152a engages with the lock portion 169 of the support component 148, whereby the gripping component 141 is restricted from moving relative to the connector main body 142 along the axis 130A.
  • a cylindrical cover 145 is shown in FIGS.
  • the cylindrical cover 145 is arranged in order from the proximal side (lower left side in FIG. 12) to the distal side (upper right side in FIG. 12), a terminal case 146 that houses the terminal 144, a guide component 147, and a support The component 148 is stored.
  • the terminal case 146, the guide component 147, and the support component 148 housed in the cylindrical cover 145 are assembled together and integrated.
  • the shape of the cylindrical cover 145 is roughly a cylindrical shape extending along the axis 130A.
  • the proximal end side of the cylindrical cover 145 has a rectangular cylindrical shape.
  • the proximal end of the cylindrical cover 145 is sealed, and a cable hole 145a penetrating along the axis 130A is formed.
  • the cable 143 extends from the inside of the cylindrical cover 145 to the outside through the cable hole 145a.
  • the distal end side of the cylindrical cover 145 has a cylindrical shape.
  • two engagement holes 145b penetrating in the radial direction with respect to the axis 130A are formed.
  • the two engagement holes 145 b are opposed to the first direction 124.
  • the protrusions 168 of the support component 148 are engaged with the respective engagement holes 145b.
  • the distal end of the cylindrical cover 145 is open.
  • the terminal case 146 includes four terminals 144 (FIGS. 13 to 18) that are electrically connected to the four contacts 137 of the guide wire 130, respectively.
  • the terminal case 146 includes an inner case 154 that houses the four terminals 144, a connecting plate 155 to which the cable 143 is fixed, and an outer case 156 that houses the inner case 154 and the connecting plate 155.
  • a wire guide component 157 is shown in FIG. 15.
  • the cable 143 includes four conductive lines 126 and a protective film 127 that covers the four conductive lines 126.
  • the four conductive lines 126 are electrically connected to the four terminals 144 in the terminal case 146, respectively.
  • the inner case 154 is an elongated rectangular parallelepiped composed of the first case piece 158 and the second case piece 159.
  • the first case piece 158 and the second case piece 159 face each other in the first direction 124 and extend elongated along the axis 130A.
  • a space 160 extending along the axis 130 ⁇ / b> A is formed between the first case piece 158 and the second case piece 159.
  • four terminals 144 are arranged along the axis 130A.
  • the distal end of the inner case 154 is open, and the space 160 is continuous with the outside through this opening.
  • the connecting plate 155 is a flat plate facing the first case piece 158 and the second case piece 159 in the first direction 124.
  • a second case piece 159 is adjacent to the connecting plate 155.
  • Four terminal holes 154 a are formed in the second case piece 159 along the first direction 124.
  • Four terminal holes 151 a are formed in the connecting plate 155 along the first direction 124.
  • Each terminal hole 151 a of the connecting plate 155 is continuous with each terminal hole 154 a of the second case piece 159.
  • the connection portion 170 of the terminal 144 is inserted through the pair of terminal hole 154a and terminal hole 151a.
  • connection portion 170 of the four terminals 144 protrude, and the four conductive wires 126 of the cable 143 are arranged.
  • Each connection portion 170 is electrically connected to each conductive wire 126 by soldering. It is connected. For convenience of illustration, some of the conductive wires 126 are drawn in a broken state.
  • the outer case 156 has a generally rectangular tube shape.
  • a cylindrical first concave portion 156a and a second concave portion 156b that open to the distal side are formed at the distal end portion of the outer case 156.
  • the internal space of the first recess 156 a is continuous with the internal space of the internal case 154 housed in the external case 156.
  • the first recess 156a and the second recess 156b each have an internal space along the axis 130A.
  • a wire guide component 157 is fitted in the first recess 156a.
  • the first cylindrical portion 164 of the guide component 147 is fitted into the second recess 156b.
  • the wire guide component 157 is a component that positions the guide wire 130 inserted into the connector 140 along the axis 130A.
  • the wire guide component 157 has a cylindrical shape and has a through-hole penetrating along the axis 130A.
  • the inner surface of the through-hole has two tapered surfaces 157a that are arranged on the distal side and the proximal side, respectively, and have a diameter reduced toward the center, and a circumferential surface 157b that connects the two tapered surfaces 157a. .
  • the inner diameter of the circumferential surface 157 b is slightly larger than the outer diameter of the guide wire 130.
  • the minimum diameter of the tapered surface 157a is equal to the inner diameter of the circumferential surface 157b, and the maximum diameter of the tapered surface 157a is larger than the inner diameter of the circumferential surface 157b.
  • Each tapered surface 157a tapers toward the circumferential surface 157b. Therefore, the guide wire 130 inserted into the wire guide component 157 is guided by the circumferential surface 157b so as to be coaxial with the axis 130A.
  • the guide component 147 is a component that guides the distal portions of the two gripping pieces 151 of the gripping component 141 to be elastically deformed when the gripping component 141 is slid along the axis 130A.
  • the guide component 147 includes a first cylindrical portion 164 and a guide arranged in order from the proximal side (lower left side in FIG. 12) to the distal side (upper right side in FIG. 12).
  • Part 165 and a second cylinder part 166 (an example of a fitted part).
  • the 1st cylinder part 164, the guide part 165, and the 2nd cylinder part 166 are shape
  • the shape of the first cylindrical portion 164 is a bottomed cylindrical shape, but has a through hole 164a along the axis 130A.
  • the guide wire 130 is inserted through the through hole 164a.
  • the first tube portion 164 is fitted into the second recess 156b of the terminal case 146 from the outside so as to be rotatable around the axis 130A.
  • the guide part 165 is rotatable with respect to the terminal case 146.
  • the shape of the guide portion 165 is a cylindrical shape whose inner surface is tapered.
  • the inner surface of the guide portion 165 is a guide surface 165 a formed along the axis 130 ⁇ / b> A.
  • the guide surface 165a is a tapered surface that tapers toward the proximal side (the right side in FIGS. 13 and 14).
  • the shape of the second cylindrical portion 166 is roughly cylindrical.
  • the inner diameter and the outer diameter of the second cylindrical portion 166 change stepwise in three stages so as to expand toward the distal side along the axis 130A.
  • a support component 148 is fitted on the distal side of the second cylindrical portion 166.
  • the fitting portion 153 of the main body 150 is fitted into the internal space of the second cylindrical portion 166.
  • the support component 148 is a component that supports the gripping component 141 so as to be rotatable around the axis 130A.
  • the support component 148 includes a main body 167, two convex portions 168, and a lock portion 169.
  • the shape of the main body 167 is a cylindrical shape having an internal space extending along the axis 130A.
  • Each protrusion 168 protrudes radially outward from the outer peripheral surface of the main body 167 with respect to the axis 130 ⁇ / b> A.
  • the two convex portions 168 are arranged to face the first direction 124 corresponding to the two engagement holes 145 b of the cylindrical cover 145.
  • the lock portion 169 protrudes radially inward from the inner peripheral surface of the main body 167 with respect to the axis 130A.
  • the lock part 169 is a ridge extending continuously around the axis 130A.
  • FIG. 13 shows the connector 140 in the unlocked state
  • FIG. 14 shows the connector 140 in the locked state.
  • the connector main body 142 can be disassembled as shown in FIG. 12, but the terminal case 146, the guide component 147, and the support component 148 are accommodated in the cylindrical cover 145 and assembled together so as to be integrated. .
  • the gripping component 141 can be attached to and detached from the connector main body 142.
  • the gripping component 141 When the removed gripping component 141 is attached to the connector main body 142, the gripping component 141 is positioned from the distal side (left side in FIG. 13) to the proximal side (right side in FIG. ).
  • the outer diameter of the fitting portion 153 is slightly larger than the outer diameter of the lock portion 169, the fitting portion 153 is formed of a resin material and can be elastically deformed. Therefore, when an external force is applied to push the gripping component 141 into the connector main body 142, the fitting portion 153 can move over the lock portion 169 and move to the proximal side.
  • the fitting portion 153 When the fitting portion 153 is positioned on the proximal side of the lock portion 169, the fitting portion 153 contacts the lock portion 169, thereby preventing the gripping component 141 from falling off the connector main body 142. Further, when an external force is applied so as to pull out the gripping component 141 from the connector main body 142, the fitting portion 153 moves over the lock portion 169 and moves to the distal side, and the gripping component 141 is detached from the connector main body 142.
  • the connector 140 can be switched between an unlocked state and a locked state.
  • the connector 140 is in an unlocked state (FIG. 13).
  • the connector 140 is in a locked state (FIG. 14).
  • the unlocked state the guide wire 130 is not locked with respect to the connector 140.
  • the gripping piece 151 is located in the guide portion 165 but is not in contact with the guide surface 165a. Since the two gripping pieces 151 are kept apart from each other, the two gripping pieces 151 do not grip the guidewire 130 even if the guidewire 130 is inserted into the connector 140.
  • the two hook portions 152 When an external force is applied so as to sandwich the two hook portions 152, the two hook portions 152 are elastically deformed and moved inward in the radial direction. As a result, the proximal end of the hook portion 152 is radially inward from the lock portion 169, and the proximal end of the hook portion 152 can be moved from the lock portion 169 to the proximal end side of the connector main body 142.
  • the gripping component 141 further moves to the proximal side, the fitting portion 153 fits and contacts the second tube portion 166, and the gripping component 141 is prevented from further moving to the proximal side of the connector main body 142. .
  • the concave portion 152 a of the hook portion 152 faces the lock portion 169.
  • the hook portion 152 that is elastically restored moves outward in the radial direction, and the concave portion 152a and the lock portion 169 are engaged.
  • the connector 140 is in the locked state shown in FIG.
  • the gripping component 141 cannot move relative to the connector main body 142 in the direction along the axis 130 ⁇ / b> A, but the gripping component 141 can rotate around the axis 130 ⁇ / b> A with respect to the connector main body 142.
  • the guide wire 130 is inserted into the connector 140 in an unlocked state.
  • the proximal end of the guide wire 130 is inserted from the insertion hole 150a of the gripping part 141 through the gap between the two gripping pieces 151 and the wire guide part 157 until it comes into contact with the inner wall of the proximal end of the inner case 154. .
  • the four contact points 137 of the guide wire 130 contact the four terminals 144 in the space 160, respectively.
  • the connector 140 changes from the unlocked state to the locked state.
  • the proximal end of the gripping piece 151 moves proximally while abutting against the guide surface 165a, so that the proximal end of the two gripping pieces 151 is elastically deformed so as to move inward in the radial direction. Is done.
  • the guide wire 130 inserted into the connector 140 is gripped so as to be sandwiched between the two gripping pieces 151. Accordingly, the guide wire 130 is gripped so as not to come out of the connector 140 due to an external force applied to the guide wire 130 in a normal operation.
  • the guide wire 130 rotates integrally with the gripping component 141, when the gripping component 141 rotates relative to the connector main body 142 around the axis 130 ⁇ / b> A, the guidewire 130 also moves with respect to the connector main body 142 together with the gripping component 141. And rotate relatively around the axis 130A.
  • the guide component 147 since the grip piece 151 is in contact with the guide surface 165a, the guide component 147 also rotates together with the grip component 141.
  • the gripping component 141 can move along the axis 130 ⁇ / b> A by moving the two hook portions 152 radially inward by an external force so that the concave portion 152 a of the hook portion 152 moves away from the lock portion 169. It becomes.
  • the connector 140 changes from the locked state to the unlocked state.
  • the terminal 144 will be described with reference to FIGS. 16 to 18. As illustrated in FIGS. 16 and 17, the terminal 144 includes a connection portion 170, a first connection portion 171, three terminal portions 172, and a second connection portion 173.
  • the material of the terminal 144 is a metal that has conductivity and can be bent, and is preferably spring steel.
  • the connecting portion 170, the first connecting portion 171, the three terminal portions 172, and the second connecting portion 173 are integrally formed by punching a metal plate and bending it.
  • connection portion 170 is a portion that is electrically connected to the conductive wire 126 of the cable 143.
  • the connecting portion 170 has an elongated flat plate shape that is bent in an L shape.
  • Each of the first connecting portion 171 and the second connecting portion 173 connects both ends of the axis 130 ⁇ / b> A of the three terminal portions 172.
  • Each of the first connecting portion 171 and the second connecting portion 173 has a substantially cylindrical shape.
  • the three terminal portions 172 are arranged around the axis 130A.
  • Each terminal portion 172 has the same shape, and each has a slender plate shape along the axis 130A, and is curved so that the center in the direction along the axis 130A swells radially inward.
  • the angle ⁇ that forms the pitch (interval) around the axis 130A in the adjacent terminal portions 172 is 120 ° (FIG. 18A).
  • the phase of the center or one edge of the surface facing the axis 130 ⁇ / b> A in each terminal portion 172 is different by 120 °.
  • the inner surface of the terminal portion 172 is a contact surface 172 a that faces the contact point 137 of the guide wire 130.
  • the cross section of the contact surface 172a cut by a plane including the axis 130A is curved so as to protrude radially inward with respect to the axis 130A.
  • the contact surface 172a in the cut surface orthogonal to the axis 130A is a straight line.
  • the terminal portion 172 has elasticity as a leaf spring due to its curved shape. In a state where the contact points 137 of the guide wire 130 are in contact with the terminal portions 172, the terminal portions 172 are elastically deformed radially outward.
  • FIG. 18A shows the position of the terminal portion 172 in the natural state, that is, in a state where the contact point 137 of the guide wire 130 is not in contact with the terminal 144.
  • FIG. 18B shows the position of the terminal portion 172 in a state where the contact 137 of the guide wire 130 is in contact with the terminal 144. Since the radius of the outer peripheral surface of the contact 137 is larger than the shortest distance from the axis 130 ⁇ / b> A to the contact surface 172 a of the terminal portion 172, each terminal portion 172 is elastically deformed radially outward by contacting the contact 137. Thereby, each contact surface 172a moves to a radial direction outer side from a natural state.
  • the axis of the guide wire 130 in FIG. 18B matches the axis 130A of the connector 140.
  • each terminal portion 172 is located away from the axis 130A by a distance equal to the radius of the outer peripheral surface of the contact 137. Since each terminal portion 172 is elastically deformed, each terminal portion 172 is biased toward the contact point 137 by its restoring force. Thereby, each terminal part 172 press-contacts to the contact 137, and the electrical connection of the terminal 144 and the contact 137 is maintained.
  • FIG. 18C also shows the position of the terminal portion 172 in a state where the contact point 137 of the guide wire 130 is in contact with the terminal 144.
  • the axis 130 ⁇ / b> B of the guide wire 130 is located away from the axis 130 ⁇ / b> A of the connector 140.
  • Such a state occurs when the user performs an operation such as rotating the guide wire 130.
  • the operation of the guide wire 130 is performed, for example, when the guide wire 130 is advanced and retracted in the blood vessel.
  • the gripping component 141 that grips the guide wire 130 also rotates together.
  • the gripping component 141 is rotatably supported by the support component 148. Therefore, the guide wire 130 rotates relative to the connector main body 142 placed on, for example, a desk.
  • the rotation of the connector main body 142 is suppressed, for example, when the rectangular outer portion of the cylindrical cover 145 contacts the desk mounting surface.
  • the contact 137 of the guide wire 130 rotates relative to the terminal 144 of the connector 140. Since the gripping component 141 that grips the guide wire 130 rotates relative to the connector main body 142, there are tolerances and backlash between them. The gripping component 141 rattles against the connector main body 142 due to the rotational torque of the guide wire. As a result, the contact 137 moves in the radial direction, and the axis 130B of the guide wire 130 is disengaged from the axis 130A of the connector 140.
  • the guidewire system 110 is used, for example, to measure blood pressure in the coronary arteries.
  • the guide wire 130 is inserted into the coronary artery with the distal end provided with the tip guide portion 132 as the head in the direction of insertion into the blood vessel.
  • the computing unit 122 of the computing device 120 acquires electrical information output from the pressure sensor 111. As described above, the calculation unit 122 calculates the blood pressure acting on the pressure sensor 111 based on this electrical information.
  • the gripping piece 151 has a diameter that comes into contact with the guide surface 165a by sliding the gripping component 141 along the axis 130A of the insertion hole 150a with respect to the support component 148. Elastically deforms inward. As a result, the guide wire 130 is gripped by the gripping piece 151. When slid in the opposite direction, the gripping piece 151 is detached from the guide surface 165a, and the gripping of the guide wire 130 is released. Therefore, by sliding the gripping component 141, the guide wire 130 is gripped or released.
  • the fitting portion 153 When the gripping piece 151 is in contact with the guide surface 165a, even if the hook portion 152 is elastically deformed and the lock portion 169 is not engaged with the concave portion 152a, the fitting portion 153 has the second cylindrical portion 166. And the gripping component 141 is prevented from moving to the proximal side of the support component 148.
  • the three terminal portions 172 are arranged at equal intervals. Therefore, even if the guide wire 130 moves in any radial direction, each terminal portion 172 follows the contact point 137. Therefore, the problem that the electrical connection between the contact 137 and the terminal 144 is momentarily disconnected is less likely to occur.
  • each terminal portion 172 makes point contact with the contact point 137 along the axis 130A of the guide wire 130, when the guide wire 130 moves along the axis 130A, each terminal portion 172 easily retracts in a direction away from the axis 130A. . Therefore, the guide wire 130 can be easily inserted into and removed from the connector 140.
  • the lock portion 169 locks the slide at the position where the gripping piece 151 contacts the guide surface 165a, and allows the guide component 147 to rotate around the axis 130A of the guide wire 130. Therefore, when the connector main body 142 is installed on the work desk with the guide wire 130 held by the holding component 141, the cylindrical cover 145 itself does not rotate, and the guide component 147 and the holding component 141 can rotate. Become. Therefore, since the connector main body 142 itself does not rotate due to vibration during the guide wire operation, it is difficult to cause a problem that electrical connection is instantaneously disconnected.
  • the experiment for evaluating the electrical contact stability as the female terminal was performed on the connector 140 according to the second embodiment and the comparative product.
  • As comparative products Volcano Combowire and St Jude Medical Sartas were used. These comparative products are configured such that members corresponding to the gripping component 141 and the connector main body 142 in the connector 140 are fixed by screws, and do not rotate relative to each other (see, for example, JP-T-2001-516938).
  • a gold-plated SUS pin having the same diameter as the 0.014 mm guide wire and having a diameter of ⁇ 0.36 mm was used as a male terminal in order to simulate the state in which the guide wire terminal electrode was connected.
  • a 100 ⁇ simulated resistor was connected to the base end of the male terminal by soldering. The distal end side of the male terminal was inserted into the female terminal, and the contact resistance between the male terminal proximal end and the female terminal was evaluated.
  • an amplifier circuit including a Wheatstone bridge was used.
  • the reference resistance was slightly increased or decreased from 100 ⁇ so that the baseline became 3V.
  • a change in output voltage of 1V corresponds to a change in contact resistance of 0.5 ⁇ .
  • the output voltage from the amplifier circuit was recorded with a data logger (YOKOGAWA, DL850).
  • YOKOGAWA YOKOGAWA, DL850
  • the terminal 244 according to the third embodiment is described with reference to FIGS. 19 and 20.
  • the connector 140 according to the third embodiment is different from the connector 140 according to the second embodiment in the configuration of the terminals 244.
  • the third embodiment is the same as the second embodiment.
  • symbol is attached
  • the terminal 244 includes a main body 180 and a converging tube 181.
  • the main body 180 includes a connection part 170, a first connection part 171, and three terminal parts 272.
  • the material of the main body 180 is a metal that has conductivity and can be bent, and is preferably spring steel.
  • the connecting portion 170, the first connecting portion 171 and the three terminal portions 272 are integrally formed by punching a metal plate and bending it.
  • the terminal part 272 is configured in the same manner as the terminal part 172 according to the second embodiment, except that one end of the axis 130A is open.
  • the inner surface of the terminal portion 272 is a contact surface 272a facing the contact point 137 of the guide wire 130, and the contact surface 272a is curved so as to protrude radially inward.
  • a converging tube 181 is fitted on one end of the terminal portion 272 in the direction along the axis 130A.
  • the shape of the converging tube 181 is a cylindrical shape.
  • the material of the converging tube 181 is a resin material. Therefore, the converging tube 181 can be elastically deformed so as to expand its diameter.
  • each terminal portion 272 functions as a leaf spring when the contact point of the guide wire 130 is disposed inside the three terminal portions 272.
  • the converging tube 181 is externally fitted to the other end of each terminal portion 172, and can be elastically deformed so as to expand its diameter.
  • the leaf spring that is the terminal portion 172 receives not only the urging force of the leaf spring itself but also the urging force of the first connecting portion 171 that is a cylindrical spring. Therefore, adjustment of the urging force of the terminal portion 172 is easy.
  • the terminals 144 and 244 include the three terminal portions 172 and 272, but are not limited to this configuration.
  • the terminals 144 and 244 may include four or more terminal portions 172 and 272.
  • the angle ⁇ between the two adjacent terminal portions 172 and 272 has a relationship of 90 ° ⁇ ⁇ 180 °. Satisfies.
  • the angle ⁇ may be another angle as long as the relationship of 90 ° ⁇ ⁇ 180 ° is satisfied.
  • the pitch (interval) around the axis 130A may not be uniform.
  • the shape of the contact surfaces 172a and 272a in the cross section along the axis 130A is a curved shape that protrudes radially inward, but is not limited to this configuration.
  • the shape of the contact surfaces 172a and 272a is not limited as long as the contact surface 137 can be contacted, that is, the distance between the contact surfaces 172a and 272a and the axis 130A is smaller than the radius of the contact 137 of the guide wire 130.
  • the shape of the contact surfaces 172a and 272a may be a curved surface or a flat surface extending in parallel with the axis 130A.
  • the shape of the contact surfaces 172a and 272a in the cross section perpendicular to the axis 130A is a linear shape, but is not limited to this configuration.
  • the shape of the contact surfaces 172a and 272a in this cross section may be a curve that is convex toward the axis 130A or a curve that is concave toward the axis 130A.
  • the radius of curvature of the contact surfaces 172 a and 272 a is larger than the radius of curvature of the outer surface of the contact 137 so as not to cause resistance when the guide wire 130 is inserted and removed.
  • the connector 140 includes four terminals 144 and 244, but is not limited to this configuration.
  • the number of terminals 144 and 244 may be the same as the number of contacts 137 of the corresponding guide wire 130, and may be two, three, or five or more, for example.
  • each hook portion 152 As a fulcrum, the proximal end side is elastically deformed inward in the radial direction with respect to the axis 130 ⁇ / b> A, and the gripping component 141 is slid onto the guide component 147.
  • the gripping component 141 and the guide component 147 may be screwed together, and the form is not particularly limited.
  • the grip piece 151 of the grip component 141 may be single or plural, and the main body 150 and the grip piece 151 may be separate members of the grip component 141.
  • the lock portion 169 is provided on the inner surface of the support component 148.
  • the support component 148 is formed integrally with the cylindrical cover 145, and the integrally formed cylindrical cover 145 itself.
  • a lock portion 169 may be provided on the inner surface.
  • rock part 169 should just match
  • the connector 140 of the pressure sensor 111 is used.
  • the connector is not limited to the pressure sensor, and any connector that can measure the physical quantity of blood in the blood vessel may be used.
  • the measurement element may be, for example, a flow rate sensor that measures the flow rate of blood in the blood vessel, a flow rate sensor that measures the flow rate of blood flow in the blood vessel, a temperature sensor that measures the temperature of blood, and the like.
  • the guide wire system 310 includes a guide wire 330, an arithmetic device 320, and a female connector 340 that connects the guide wire 330 and the arithmetic device 320.
  • the guide wire 330 is an elongated cord and can be inserted into a blood vessel such as a coronary artery.
  • the guide wire 330 includes a pressure sensor 311 (see FIG. 26, an example of a sensor) that outputs electrical information according to the pressure in the blood vessel at the distal end.
  • the computing device 320 includes a power supply unit 321 that supplies current to the pressure sensor 311 of the guide wire 330, a computing unit 322 that computes electrical information output from the pressure sensor 311, and a memory that stores information necessary for computation processing. 323. Electrical information output from the pressure sensor 311 is transmitted from the guide wire 330 to the arithmetic unit 322 via the female connector 340 and the cable 324. The calculator 322 calculates blood pressure based on the electrical information output from the pressure sensor 311. That is, the guide wire system 310 is used for blood pressure measurement.
  • the fixed end (the end connected to the female connector 340) is the proximal end (the lower left end in FIG. 24) among the both ends of the guide wire 330, and the free end (when inserted into the blood vessel). Is the distal end (the upper left end in FIG. 24).
  • the side with the proximal end is defined as the proximal end side
  • the side with the distal end is defined as the distal end side.
  • FIG. 25 a guide wire 330 is shown.
  • the left side is the distal end side of the guide wire 330
  • the right side is the proximal end side of the guide wire 330.
  • the guide wire 330 is roughly divided into a tip portion 330A (an example of a distal end portion), a core wire 331 (an example of a main body), and a male connector 339 (an example of a connector).
  • the distal end portion 330 ⁇ / b> A includes a distal end guide portion 332, a first spiral body 333, a housing 334, and a second spiral body 335.
  • the core wire 331 and the male connector 339 are connected via a connection pipe 336.
  • the distal end portion 330 ⁇ / b> A, the core wire 331, the connection pipe 336, and the male connector 339 are arranged linearly along the axis 350.
  • the axis 350 indicates the axis of the guide wire 330 when the guide wire 330 is in a straight state without being bent or curved.
  • the core wire 331 is a cylindrical member that constitutes the skeleton of the guide wire 330, and is, for example, a stainless steel tube.
  • the distal end guide portion 332 is a hemispherical member that protrudes toward the distal end and is disposed at the distal end, and guides the traveling direction of the guide wire 330 along the blood vessel by contacting the blood vessel wall.
  • the first spiral body 333 and the second spiral body 335 are wire rods wound in a spiral shape, and are configured to bend more easily than the core wire 331 so that the distal end portion of the guide wire 330 is easily along the blood vessel.
  • the housing 334 is a housing that houses a pressure sensor 311 (an example of an electronic component) in its internal space.
  • the housing 334 has two through holes 334a. Note that the two through holes 334a are arranged 180 ° symmetrically with respect to the axis 350, and only one through hole 334a appears in FIG. Blood enters the inside of the housing 334 through the through-hole 334a and contacts the diaphragm 313 (FIG. 26) of the pressure sensor 311.
  • the taper pin 338 extends in the internal space of the second spiral body 335 from the distal end of the core wire 331 toward the housing 334.
  • the taper pin 338 is a member that reinforces the bending rigidity of the second spiral body 335.
  • the taper pin 338 has a cylindrical shape, and the outer diameter gradually decreases from the distal end of the core wire 331 toward the housing 334.
  • a tip guide pin extends in the internal space of the first spiral body 333 from the distal end of the housing 334 toward the tip guide portion 332.
  • the distal end guide pin has a cylindrical shape and is a member that reinforces the bending rigidity of the first spiral body 333.
  • the tip guide pin is fixed to the housing 334 and the tip guide portion 332.
  • the pressure sensor 311 includes a sensor main body 312, a diaphragm 313, a bridge circuit 314, four conductive wires 315, and a connection portion 316.
  • the sensor main body 312 is fixed to a taper pin 338 fixed to the core wire 331 by a connection portion 316 made of, for example, an adhesive.
  • a diaphragm 313, a bridge circuit 314, and four conductive wires 315 are attached to the sensor body 312.
  • the bridge circuit 314 is a full bridge circuit in which all four resistors 317 function as strain gauges for measurement.
  • the bridge circuit 314 includes four resistors 317, four terminals 318A and 318B, and four connectors 319.
  • the four resistors 317 are fixed to the diaphragm 313.
  • the four terminals 318A and 318B are composed of two input terminals 318A and two output terminals 318B.
  • Each connecting body 319 electrically connects each resistor 317 to each terminal 318A, 318B.
  • Each conductive wire 315 is electrically connected to each terminal 318A, 318B, and extends through the internal space of the core wire 331 toward the proximal end.
  • the diaphragm 313 When the guide wire 330 is inserted into the blood vessel and blood pressure is applied to the pressure sensor 311, the diaphragm 313 is elastically deformed according to the blood pressure. As the diaphragm 313 is elastically deformed, the four resistors 317 are elastically deformed, and the electric resistance values of the four resistors 317 are changed. In this state, when a voltage is applied between the two input terminals 318A, a potential difference is generated between the two output terminals 318B. Based on this potential difference, the blood pressure is calculated in the calculation device 320 (FIG. 24).
  • a proximal end portion of the core wire 331 has a tapered portion 341 whose outer diameter decreases toward the proximal end, and a small diameter portion 342 extending from the tapered portion 341 to the proximal end. , Is formed.
  • the outer diameter of the small diameter portion 342 is smaller than the outer diameter of the core wire 331 at the distal end from the taper portion 341 and is a constant outer diameter along the axis 350.
  • the length along the axis 350 of the small diameter part 342 is longer than the length along the axis 350 of the connecting pipe 336.
  • the proximal end of the core wire 331 is open, and four conductive wires 315 inserted through the internal space of the core wire 331 extend from the opening of the proximal end to the outside.
  • the connecting tube 336 connects the proximal end portion of the core wire 331 and the distal end portion of the male connector 339.
  • the connecting tube 336 is a tube made of a conductive material such as stainless steel, and has a proximal end and a distal end opened.
  • the outer diameter of the connecting tube 336 is substantially equal to the outer diameter on the distal end side from the tapered portion 341 of the core wire 331.
  • the inner diameter of the connection pipe 336 is substantially equal to the outer diameter of the small diameter portion 342 of the core wire 331.
  • the connection pipe 336 and the core wire 331 are electrically connected by the inner surface of the connection pipe 336 coming into contact with the outer surface of the small diameter portion 342.
  • the connecting pipe 336 is movable along the axis 350 with respect to the small diameter part 342 in a state where it is not fixed to the small diameter part 342 with an adhesive or the like.
  • the connection pipe 336 covers the four conductive wires 315 extending from the proximal end of the core wire 331 in a state of being fixed to the small diameter portion 342.
  • the male connector 339 includes an internal space of a circular tube-shaped composite body 344 in which four electrode rings 337A, 337B, 337C, and 337D and five insulating rings 343 are alternately connected. In addition, four electrode pins 345 are inserted.
  • Each of the electrode rings 337A, 337B, 337C, and 337D has a cylindrical shape and has conductivity that allows the inner surface and the outer surface to be conducted.
  • Each of the electrode rings 337A, 337B, 337C, and 337D may be formed of, for example, a conductive member, or may be formed by plating a conductive member on the surface of a cylindrical member.
  • the insulating ring 343 has a cylindrical shape and is made of an insulating material such as polyimide.
  • the inner and outer diameters of the electrode rings 337A, 337B, 337C and 337D are equal to the inner and outer diameters of the insulating ring 343, respectively.
  • the electrode rings 337A, 337B, 337C, and 337D are respectively disposed between the five insulating rings 343, and are fixed integrally to form a circular tube-shaped composite body 344.
  • Each electrode ring 337A, 337B, 337C, 337D and each insulating ring 343 may have the same length along the axis 350, for example, or may be different from each other.
  • the outer diameter of the composite 344 is substantially equal to the outer diameter of the connection pipe 336.
  • the four electrode pins 345A, 345B, 345C, and 345D are cylindrical members having different lengths along the axis 350.
  • the four electrode pins 345A, 345B, 345C, and 345D are made of a conductive material or have a surface plated with a conductive member, and have an outermost surface coated with an insulating coating.
  • the outer diameters of the four electrode pins 345A, 345B, 345C, 345D are equal.
  • the four electrode pins 345A, 345B, 345C, and 345D may be simply referred to as “electrode pins 345” when they are not particularly distinguished.
  • the distal end portions of the four electrode pins 345A, 345B, 345C, and 345D are conductive portions 346 having no insulating coat. Each conductive portion 346 is connected to each conductive wire 315 in a one-to-one relationship. As shown in the figure, in the state where the four electrode pins 345A, 345B, 345C, and 345D are aligned in the direction along the axis 350 of each proximal end, The conducting portion 346 (the conducting portion 346 located on the left side in FIG. 28) does not overlap in the direction along the axis 350.
  • Each of the four electrode pins 345A, 345B, 345C, and 345D has two conductive portions 346.
  • the electrode pin 345A having the shortest length among the four along the axis 350 has a conducting portion 346 without an insulating coat at a position slightly away from the proximal end portion (the right end portion in FIG. 28).
  • the conducting portion 346 on the proximal end side of the electrode pin 345A corresponds to the position in the direction along the axis 350 of the electrode ring 337A located on the most proximal end side in the composite 344.
  • the next short electrode pin 345B has a conducting portion 346 at a position away from the proximal end.
  • the conducting portion 346 on the proximal end side of the electrode pin 345B corresponds to a position in the direction along the axis 350 of the second electrode ring 337B from the proximal end in the composite 344.
  • the conducting portion 346 on the proximal end side of the electrode pin 345A and the conducting portion 346 on the proximal end side of the electrode pin 345B are in a direction along the axis 350 (the left-right direction in FIG. 28). The positions of do not overlap.
  • the conducting portion 346 on the proximal end side of the third shortest electrode pin 345C corresponds to the position along the axis 350 of the third electrode ring 337C from the proximal end in the composite 344.
  • the conducting portion 346 on the proximal end side of the longest electrode pin 345D corresponds to the position in the direction along the axis 350 of the fourth electrode ring 337D from the proximal end in the composite 344.
  • any conductive portion 346 of the four electrode pins 345A, 345B, 345C, 345D does not overlap with the other conductive portion 346 in the direction along the axis 350.
  • the four electrode pins 345A, 345B, 345C, and 345D are inserted into the inner space of the complex 344 with their proximal ends aligned.
  • the distal ends of the four electrode pins 345A, 345B, 345C, and 345D extend outward from the distal end of the composite 344, and the respective conductive portions 346 on the distal end side are exposed to the outside.
  • the four electrode pins 345 ⁇ / b> A, 345 ⁇ / b> B, 345 ⁇ / b> C, and 345 ⁇ / b> D have different positions in the direction along the axis 350 of each distal end in a state where they are inserted into the internal space of the complex 344.
  • the four electrode pins 345A, 345B, 345C, 345D are arranged in different positions in the circumferential direction in the internal space of the composite 344. That is, the four electrode pins 345A, 345B, 345C, and 345D are in a bundled state.
  • the four electrode pins 345A, 345B, 345C, 345D are in contact with the inner surface of the composite 344, and are in contact with the other two electrode pins 345, respectively. Accordingly, the four electrode pins 345A, 345B, 345C, and 345D are stably arranged in the internal space of the composite 344.
  • a cylindrical core material that contacts the four electrode pins 345A, 345B, 345C, and 345D is disposed at the center (position of the axis 350) of the composite 344. Also good.
  • the conducting portion 346 on the proximal end side of the third shortest electrode pin 345C is provided in the third electrode ring. It is in contact with the inner surface of 337C and is electrically connected by being fixed by soldering or the like. Since the outer peripheral surfaces of the other electrode pins 345A, 345B, 345D are insulated, they are insulated from the third electrode ring 337C although they are in contact therewith.
  • the conductive portions 46 on the proximal end sides of the four electrode pins 345A, 345B, 345C, 345D are electrically connected to the electrode rings 337A, 337B, 337C, 337D in a one-to-one relationship. Yes.
  • Electrode pins 345A, 345B, 345C, and 345D are inserted into the internal space of the composite 344, and the conductive portions 346 are connected to the electrode rings 337A, 337B, 337C, and 337D, respectively. It is assembled to the state.
  • the connecting tube 336 is externally fitted to the small diameter portion 342 of the core wire 331, and the external fitting state is set so as to move to the most distal end side.
  • the connecting pipe 336 does not protrude in the direction along the axis 350 from the proximal end of the small diameter portion 342, or even if it protrudes slightly.
  • the four conductive wires 315 extend outward from the proximal end of the connection pipe 336.
  • each conductive wire 315 and each electrode pin 345 are electrically connected by soldering or the like.
  • the type of each conductive line 315 can be identified by, for example, color-coding the respective insulating coats. Further, it is possible to determine which electrode ring 337A, 337B, 337C, and 337D is connected to each electrode pin 345 depending on the position of the distal end protruding from the composite 344.
  • connection pipe 336 After electrically connecting each conductive wire 315 and each electrode pin 345, the externally connected connection tube 336 is moved so as to protrude from the small diameter portion 342 of the core wire 331 in the direction along the axis 350. As a result, as shown in FIG. 25, the connecting pipe 336 covers the connection portion between each conductive wire 315 and the conductive portion 346 of each electrode pin 345, and the proximal end of the connecting pipe 336 is connected to the male connector 339. Contact. Then, the connection pipe 336 is connected to the small diameter portion 342 of the core wire 331 and the male connector 339 by being fixed with an adhesive or the like.
  • the electrode pins 345 are arranged in different positions in the circumferential direction in the internal space of the composite 344, the electrode pins 345 are bundled in the internal space of the composite 344. The strength of the male connector 339 is maintained.
  • each electrode pin 345 and each electrode ring 337A, 337B. , 337C, 337D can be easily grasped by the position of the conductive portion 346.
  • Each electrode pin 345 has an outermost surface coated with insulation, and has a conducting portion 346 at a position corresponding to each of the distal end portion and each electrode ring 337A, 337B, 337C, 337D to be connected,
  • the conductive portions 346 do not overlap in the direction along the axis 350, so that a short circuit between the conductive portions 346 of the electrode pins 345 can be suppressed.
  • connection pipe 336 that covers the connection portion between each conductive wire 315 and each electrode pin 345 is configured as a separate part from the core wire 331 and the male connector 339, the connection pipe 336 is formed from the core wire 331 and the male connector 339. There is no member covering the conductive portions 346 of the respective conductive wires 315 and the respective electrode pins 345 in a state where they are not connected to each other, and the work of electrically connecting the respective conductive wires 315 and the conductive portions 346 of the respective electrode pins 345 is easy. It is.
  • the small diameter portion 342 is provided at the distal end portion of the core wire 331, and the connection tube 336 can move in the direction along the axis 350 with respect to the small diameter portion 342. Therefore, the conductive wire 315 is moved by the movement of the connection tube 336. And the conductive portion 346 of the electrode pin 345 are easily exposed to the outside or covered.
  • the outer diameter of the connection pipe 336 and the outer diameter on the distal end side of the taper portion 341 of the core wire 331 can be made equal.
  • the connecting pipe 336 is made of a conductive material and is electrically connected to the core wire 331, it is easy to ground the core wire 331 through the connecting pipe 336.
  • the connecting pipe 336 is moved from the external fitting state with respect to the small-diameter portion 342 of the core wire 331, the conductive wires 315 and the conductive portions 346 of the electrode pins 345 are easily exposed to the outside or covered. I will be broken.
  • the connecting pipe 336 is externally fitted to the small diameter part 342 of the core wire 331 in the externally fitted state.
  • a state in which the connecting pipe 336 is externally fitted may be an externally fitted state.
  • the inner diameter of the connection pipe 336 is substantially equal to the outer diameter of the male connector 339.
  • connection pipe 336 is not externally fitted, and is not externally fitted to either the guide wire 330 or the male connector 339. Then, each conductive wire 315 is connected to the conductive portion 346 of each electrode pin 345, and then, for example, the connection tube 336 is fitted to the proximal end portion of the male connector 339 and moved to the distal end portion. Then, the connection pipe 336 may be externally fitted and connected to the small diameter part 342 of the core wire 331 and the male connector 339.
  • connection pipe 336 is not an essential configuration, and may be configured as the guide wire 330 that does not have the connection pipe 336.
  • the proximal end of the core wire 331 and the male connector 339 may be directly connected.
  • each conductive wire 315 extending from the proximal end of the core wire 331 is connected to the conducting portion 346 of each corresponding electrode pin 345, and each conductive wire 315 is accommodated in the internal space of the core wire 331 in a bent state.
  • the number of the conductive lines 315, electrode rings 337A, 337B, 337C, 337D, and electrode pins 345 in the fourth embodiment described above is merely an example, and the conductive lines 315, electrode rings 337A, 337B, 337C, 337D, The number of the electrode pins 345 may be one or any number.
  • the pressure sensor 311 provided on the guide wire 330 is only an example of an electronic component, and other sensors or electronic circuits for measuring blood or blood vessel physical quantities (temperature, flow rate, etc.) other than pressure may be provided. Good. Further, the configuration on the distal end side of the guide wire 330 shown in the above-described fourth embodiment is merely an example, and it goes without saying that the configurations of the spiral body, the taper pin, the housing, and the like may be changed as appropriate.
  • Electrode ring 339 ... Male connector 341 ... Tapered part 342 ... Small diameter part 345 ... Electrode pin 346 ... Conducting part

Abstract

コネクタ(140)は、把持部品(141)と、支持部品(148)と、把持部品(141) に把持されたガイドワイヤ(130)の接点と電気的に接続する端子(144)と、支持部品(148)に対してガイドワイヤ(130)の軸線(130A)周りに回転可能なガイド部品(147)とを備え、把持部品(141)は、ガイドワイヤ(130)の挿通孔(150a)を有する本体(150)と、本体(150)から挿通孔(150a)の軸線に沿って延びており、当該軸線に対する径方向の内向きへ弾性変形可能な把持片(151)と、を備え、ガイド部品(147)は、把持片(151)を上記径方向内向きへ案内するガイド面(165a)を有し、把持片(151)は、把持部品(141)が上記ガイド部品(147)に対して上記挿通孔(150a)の軸線に沿ってスライドされることによって、ガイド面(165a)に当接して径方向内向きへ弾性変形する。

Description

圧力測定装置、ガイドワイヤ用コネクタ、ガイドワイヤ及びガイドワイヤの製造方法
 本発明は、生体の管腔内に挿入されて、管腔内の流体の圧力を測定する圧力測定装置に関する。また、本発明は、血管内に挿入されるセンサ付きガイドワイヤ用のコネクタに関する。また、本発明は、血管内に挿入されるガイドワイヤ、及びガイドワイヤの製造方法に関する。
 生体の管腔内の流体の圧力、例えば、冠状動脈における血圧を測定する方法として、圧力センサを有するガイドワイヤを血管内に挿入する方法が知られている。特許文献1には、ガイドワイヤの先端部に設けられたハウジングの内部に、圧力検出用のセンサチップが配置されたセンサ付きガイドワイヤが開示されている。
 上述のセンサチップは、ウェーハで構成されたダイヤフラムと、このダイヤフラムに設けられたピエゾ抵抗要素と、を備えている。血管内に挿入されたガイドワイヤのダイヤフラムには、血圧が加わる。血圧によってダイヤフラムが撓むと、ピエゾ抵抗要素の電気抵抗値が変化する。ピエゾ抵抗要素に電流が流されることにより、血圧に応じて、ピエゾ抵抗要素を流れる電流量が変化する。電流量の変化に基づいて、血圧が演算される。
 血管内における各種の物理量、例えば、血圧、血液温度を検出するために、センサを有するガイドワイヤを血管内に挿入することが行われている。ガイドワイヤは、例えば、鎖骨の下部または大腿部から静脈内へと挿入され、冠状動脈に到達するように送り出される。
 センサによって得られたデータに基づいて、血圧、血液温度等の物理量を演算装置において演算するために、ガイドワイヤはコネクタを介して演算装置と電気的に通信可能に接続されている。ガイドワイヤの末端には接点が設けられ、コネクタには端子が設けられている。接点の形状は、一般に円筒形状である。特許文献2に記載のコネクタでは、端子は、対向して配置された一対の板バネである。ガイドワイヤがコネクタに挿入された状態では、円筒形状の接点が、一対の板バネによって挟み込まれる。このようにして、ガイドワイヤの接点が、コネクタの端子に電気的に接続される。
 血管内における各種の物理量、例えば、血圧、血液温度を検出するために、センサを有するガイドワイヤが血管内に挿入されることが行われている。ガイドワイヤは、例えば、鎖骨の下部または大腿部から静脈内へ挿入され、その先端が冠状動脈まで送られる。そして、ガイドワイヤの先端に設けられたセンサによって、冠状動脈における血圧が測定される。
 センサから出力された電気信号に基づいて、血圧、血液温度等の物理量が演算装置において演算される。そのために、ガイドワイヤは、メス型コネクタ、ケーブルを介して演算装置と電気信号を通信可能に接続される。また、演算装置からセンサへ電力が供給される。ガイドワイヤの近位端には、メス型コネクタに挿入可能なオス型コネクタが設けられている。オス型コネクタには、例えば複数の電極が設けられている。各電極とセンサとは、ガイドワイヤの内部空間を挿通する導電線により接続されている(特許文献3参照)。各導電線において、センサから出力される電気信号が送信されたり、センサへ電力が供給されたりする。
特表2010-540114号公報 特表2001-516938号公報 特開2003-225312号公報
 血圧の測定精度を向上させるためには、センサのゲイン(電圧又は電流の入出力比)は大きいことが望ましい。他方、ゲインの増大のために、センサが大型化することは望ましくない。
 血管内でガイドワイヤを進退させる際に、ガイドワイヤを回転させることが行われている。ガイドワイヤを回転させることにより、湾曲しやすく構成されたガイドワイヤの先端が回転する。湾曲したガイドワイヤの先端の向きが、ガイドワイヤの軸周りで変更される。したがって、例えば、血管の分岐箇所において、ガイドワイヤの先端を、目的の血管内に進行させることが容易になる。
 特許文献2に記載のコネクタでは、端子は、上述したように、対向して配置された一対の板バネである。ガイドワイヤの回転に伴って、一対の板バネに保持されたガイドワイヤが回転しつつ、ガイドワイヤの中心軸に対して径方向に移動し得る。
 一対の板バネが互いに対向する方向においては、ガイドワイヤが移動しても、一対の板バネは、ガイドワイヤの移動に追従して移動する。しかしながら、一対の板バネが対向する方向と直交する方向においては、一対の板バネは、ガイドワイヤの移動に追従しない。そのため、ガイドワイヤが一対の板バネが対向する方向と直交する方向にも移動すると、接点と端子との電気的な接続が瞬間的に切断されたり、接点と端子との接触箇所がずれてしまったりする。その結果、センサから演算装置に送信される電気信号に飛びやドリフトが生じ得る。
 一般に、ガイドワイヤの外径は1mmより十分に小さいので、導電線が挿通されるガイドワイヤの内部空間の内径も同様に小さい。他方、導電線の破損を防止する観点から、導電線は、ガイドワイヤから外部に露出されていないことが望ましい。そのため、ガイドワイヤのオス型コネクタの内部空間において導電線と電極とが接続されるが、この接続作業は繁雑になりやすい。
 本発明は、前述された事情に鑑みてなされたものであり、その目的は、センサのゲインの増大を実現できる圧力測定装置を提供することである。
 また、本発明の他の目的は、接点と端子との電気的な接続が切断されにくいガイドワイヤ用コネクタを提供することである。
 また、本発明の他の目的は、ガイドワイヤの内部空間を挿通された導電線とコネクタの電極との電気的な接続が容易なガイドワイヤ、及びガイドワイヤの製造方法を提供することにある。
 (1) 本発明に係るガイドワイヤ用コネクタは、ガイドワイヤを把持する把持部と、上記把持部を、上記把持部に把持されたガイドワイヤの軸線周りに回転可能に支持する支持部と、上記把持部に把持されたガイドワイヤの接点と電気的に接続する端子と、上記支持部に対してガイドワイヤの軸線周りに回転可能なガイド部と、を備えている。上記把持部は、ガイドワイヤの挿通孔を有する本体と、上記本体から上記挿通孔の軸線に沿って延びており、当該軸線に対する径方向の内向きへ弾性変形可能な把持片と、を備えている。上記ガイド部は、上記把持片を上記径方向内向きへ案内するガイド面を有している。上記把持片は、上記把持部が上記ガイド部に対して上記挿通孔の軸線に沿ってスライドされることによって、上記ガイド面に当接して上記径方向内向きへ弾性変形する。
 上記構成によれば、把持片は、把持部が支持部に対して挿通孔の軸線に沿ってスライドされることによって、ガイド面に当接して径方向内向きへ弾性変形する。その結果、把持片によりガイドワイヤが把持される。逆方向にスライドされると、把持片がガイド面から外れて、ガイドワイヤの把持が解除される。したがって、把持部をスライドさせることにより、ガイドワイヤが把持され又は当該把持が解除される。
 (2) 好ましくは、上記支持部は、上記把持部を、上記把持片が上記ガイド面に当接した位置において上記スライドをロックし、かつ上記把持片を上記ガイドワイヤの軸線周りに回転可能とするロック部を備えており、上記把持部は、上記本体と一体的に成形され、上記径方向の内向きに弾性変形可能なフック部を備えており、上記フック部の近位端部には、凹部が形成され、上記凹部は、上記ロック部と係合可能である。
 上記構成によれば、各凹部が、支持部品のロック部と係合することによって、把持部品が、コネクタ本体に対して軸線に沿って相対的に移動することが規制される。
 (3) 好ましくは、上記把持部は、上記把持片が上記ガイド面に当接した位置において上記ガイド部に当接して嵌合する嵌合部を備えており、上記ガイド部は、上記嵌合部に嵌合される被嵌合部を備えている。
 上記構成によれば、把持片がガイド面に当接している場合、ロック部が凹部と係合していない状態でも、嵌合部が被嵌合部に嵌合して当接し、把持部品が支持部品の近位側へ移動することが制止される。
 (4) 好ましくは、上記端子は、上記把持部に把持された上記ガイドワイヤの軸線周りに配置された少なくとも3つの端子部を有しており、上記3つの端子部のそれぞれは、上記把持部に把持された上記ガイドワイヤの径方向外向きへ弾性的に変位しつつ上記接点とそれぞれ当接している。
 (5) 好ましくは、隣り合う2つの端子部間における上記ガイドワイヤの軸線周りの角度θは、90°<θ<180°の関係を満たしている。
 上記構成によれば、隣り合う2つの端子部間のガイドワイヤの軸線周りの角度θが、ガイドワイヤの軸線周りに配置された少なくとも3つの端子部を有しているので、ガイドワイヤの軸線がずれるように接点が径方向に移動しても、端子部の弾性変形により、各端子部が接点の移動に追従する。したがって、接点と端子との電気的な接続が瞬間的に切断される不具合が発生しにくい。好ましくは、上記角度θは、90°<θ<180°の関係を満たしている。
 (6) さらに好ましくは、上記角度θは、θ=120°の関係を満たしている。
 上記構成によれば、角度θがθ=120°の関係を満たしているので、3つの端子部が均等な間隔に配置されている。そのため、ガイドワイヤが径方向のいずれに移動しても、各端子部が接点に追従する。したがって、接点と端子との電気的な接続が瞬間的に切断される不具合がより発生しにくい。
 (7) 好ましくは、上記各端子部は、上記ガイドワイヤの上記接点と対向する接触面を有しており、上記接触面は、上記把持部に把持された上記ガイドワイヤの軸線に沿った断面が、当該ガイドワイヤの径方向内向きへ凸となる湾曲形状である。
 上記構成によれば、ガイドワイヤの軸線に沿って、各端子部が接点に点接触するので、ガイドワイヤが軸線に沿って移動すると、各端子部が容易に軸線から離れる方向へ退避する。したがって、ガイドワイヤが、容易にコネクタに対して挿抜できる。
 (8) 好ましくは、上記各端子部は板バネであって、上記端子は、上記各板バネにおける上記ガイドワイヤの軸線に沿った方向の両端それぞれが周方向に沿って円筒形状に一体的に連続する形状である。
 (9) 好ましくは、上記端子は、上記各板バネにおける上記ガイドワイヤの軸線に沿った方向の一端が周方向に沿って円筒形状に一体的に連続する本体と、上記各板バネの他端に外嵌されており、拡径するように弾性変形可能な収束管と、を備える。
 上記構成によれば、収束管は、各板バネの他端に外嵌されており、拡径するように弾性変形可能である。端子部である板バネは、板バネ自身の付勢力だけでなく、筒状バネによる付勢力を受ける。したがって、端子部の付勢力の調整が容易である。
 (10) 本発明に係るガイドワイヤは、管状の本体と、上記本体の内部空間に挿通されて、上記本体の近位端部から延出された導電線と、管状であって、当該管状の外周面に露出された電極リング、及び当該電極リングと接続されており当該管状の内部空間を通じて遠位端部から延出されて上記導電線と遠位端部において接続された電極ピンを有するコネクタと、を具備する。
 上記構成によれば、電極リング及び電極ピンを予め組立品としても、電極ピンの遠位端部と導電線との接続が容易である。
 (11) 好ましくは、上記ガイドワイヤは、複数の上記導電線と、軸線方向へ離れて位置する複数の上記電極リングと、上記各電極リングとそれぞれ接続された複数の上記電極ピンと、を有しており、上記各導電線と上記各電極ピンとが一対一にそれぞれ接続されたものである。
 (12) 好ましくは、上記各電極ピンは、上記コネクタの内部空間において、周方向の位置が異なって配置されている。
 電極リングの内部空間において各電極ピンが束ねられた状態となることによって、コネクタの強度が保持される。
 (13) 好ましくは、上記各電極ピンの遠位端部は、上記接続管の内部空間において、軸線方向の位置が異なって配置されている。
 上記構成によれば、各電極ピンと各電極リングとの接続関係が、遠位端部の位置によって把握することができる。
 (14) 好ましくは、上記電極ピンは、外周が絶縁コートされており、上記遠位端部及び接続される上記電極リングに対応する位置に当該絶縁コートが無い導通部を有しており、上記各導通部において、上記導電線及び上記電極リングとそれぞれ接続されており、上記各電極ピンの各導通部は、軸線方向において重複しない。
 上記構成によれば、各電極ピンの各導通部同士の短絡を抑制することができる。
 (15) 好ましくは、上記ガイドワイヤは、上記導電線及び上記電極ピンを覆い、上記本体の近位端部及び上記コネクタの遠位端部を接続する接続管を、更に具備する。
 導電線と電極ピンとの接続部分を覆う接続管が、本体及びコネクタと別部品として構成されているので、接続管が本体及びコネクタに接続されていない状態において、導電線と電極ピンとの接続部分を覆う部材が無く、作業性がよい。
 (16) 好ましくは、上記本体は、近位端に向かって外径が縮小するテーパ部と、当該テーパ部から近位端へ延出された小径部と、を有しており、上記接続管は、上記小径部に外嵌された状態で当該小径部に対して軸線方向へ移動可能である。
 接続管が小径部に対して軸線方向へ移動されることによって、導電線と電極ピンとの接続部分が外部に露出されたり、覆われたりする。また、小径部に接続管が外嵌されることによって、接続管の外径を小さくすることができる。
 (17) 好ましくは、上記接続管は、導電性材料からなるものであって、上記本体と電気的に接続されている。
 上記構成によれば、接続管を通じて、本体をアースすることが容易である。
 (18) 好ましくは、上記ガイドワイヤは、上記本体の遠位端部に位置して上記導電線と接続されており、流体の物理量に応じた電気信号を出力する電子部品を、更に具備する。
 (19) 本発明に係るガイドワイヤの製造方法は、管状の本体の内部空間に挿通されて、上記本体の近位端部から延出された導電線と、管状のコネクタが具備する電極リングと接続されており、当該コネクタの内部空間を通じて遠位端部から延出された電極ピンと、を電気的に接続する第1工程と、上記導電線及び上記電極ピンを覆って、上記本体の近位端部及び上記コネクタの遠位端部に接続管を接続する第2工程と、を含む。
 上記によれば、接続管が本体及びコネクタに接続されていない状態において、導電線と電極ピンとの接続部分を覆う部材が無く、作業性がよい。
 (20) 好ましくは、上記第1工程において、上記接続管を上記本体又は上記コネクタに外嵌させた外嵌状態として、上記導電線と上記電極ピンとを電気的に接続し、上記第2工程において、上記外嵌状態の上記接続管を、上記本体の近位端部から軸線方向へ突出する方向、又は上記コネクタの遠位端部から軸線方向へ突出する方向へ移動させる。
 接続管が本体又はコネクタに対して外嵌状態から移動されることによって、導電線と電極ピンとの接続部分が外部に露出されたり、覆われたりする。
 (21) 本発明に係る圧力測定装置は、可撓性を有し、生体の管腔内に挿入可能なガイドワイヤと、上記ガイドワイヤ内に設けられたセンサと、を備える圧力測定装置であって、上記ガイドワイヤは、上記センサを収容する筒形状のハウジングを有しており、上記センサは、上記ガイドワイヤの軸方向の遠位側に面する遠位端面を有するセンサ本体と、上記遠位端面上に配置されたダイヤフラムと、上記遠位端面上に配置され、上記ダイヤフラムを囲むブリッジ回路と、上記ブリッジ回路と接続された4つの導電線と、を具備する。上記ブリッジ回路は、上記ダイヤフラムの外周部に固定され、上記ダイヤフラムの弾性変形に伴って電気抵抗値が変化する4つの抵抗体と、上記4つの抵抗体及び上記4つの導電線と接続された4つの端子と、を備える。
 上記構成によれば、4つの抵抗体がダイヤフラムの外周部に固定されているので、管腔内の流体の圧力によってダイヤフラムが弾性変形すると、4つの抵抗体の電気抵抗値がそれぞれ変化する。したがって、センサのゲインが増大する。
 (22) 好ましくは、上記センサの上記遠位端面より遠位側に空間が形成されている。
 上記構成によれば、ガイドワイヤの遠位端部と管腔内の壁面との接触による振動が、センサに伝達されにくいので、センサの検出精度が高くなる。さらに上記空間より遠位側に先端ガイド部や螺旋体等を有することによって、管腔内の壁面との接触がより緩衝され、振動がセンサに伝達されにくくなるので、加えてセンサの検出精度が高くなる。
 (23) 好ましくは、上記ダイヤフラムの形状は、円板形状である。
 上記構成によれば、ダイヤフラムの形状が円板形状であるので、ダイヤフラムが弾性変形したときに、ダイヤフラムの外周部の変形量が周方向の位置によらず均一である。抵抗体の電気抵抗値の変化量は、その抵抗体が固定された位置におけるダイヤフラムの変形量に比例する。そのため、例えば製造上のばらつきなどにより、ダイヤフラムに対する抵抗体の位置に多少のズレが発生しても、抵抗体の抵抗変化特性、すなわち圧力変化に対する電気抵抗値の変化量が大きく変動しない。4つの抵抗体において、抵抗変化特性が均一に保たれるので、製造上のばらつきによるセンサのゲインの変動が小さい。
 (24) 上記各端子は、上記4つの抵抗体のうち隣り合う2つの抵抗体の間に配置されている。
 上記構成によれば、各端子が隣り合う2つの抵抗体の間に配置されているので、各端子が2つの抵抗体の間から外れた位置に配置される場合と比べて、ブリッジ回路の経路長さが短縮される。これにより、センサの小型化が実現される。
 (25) 上記センサ本体は、上記軸方向の近位側に面する近位端面と、上記遠位端面及び上記近位端面に開口しており、上記軸方向に沿って形成された4つの貫通孔と、上記遠位端面のうち上記4つの貫通孔の開口の周囲にそれぞれ積層された4つの導電層と、を有しており、上記各端子は、上記各導電層である。
 上記構成によれば、各導電線は、各導電層のうちのセンサ本体の遠位端面に積層された部分に接続されている。したがって、センサ本体の外周面に導電線が配置されることがない。
 (26) 好ましくは、上記センサは、上記4つの導電層及び上記4つの導電線の一部を被覆し、かつ上記各導電層と上記各導電線との間の各接続部を少なくとも被覆する被覆部材を備える。
 上記構成によれば、接続部に管腔内の流体が接触しないので、接続部の劣化が抑制され、また接続部が防水絶縁される。
 (27) 好ましくは、上記ガイドワイヤは、コアワイヤと、上記コアワイヤの遠位端部に固定されたテーパピンとを備え、上記テーパピンは上記被覆部材に連結されている。
 本発明に係る圧力測定装置によれば、センサのゲインの増大が実現できる。
 また、本発明によれば、接点と端子との電気的な接続が瞬間的に切断される不具合が発生しにくい。
 また、本発明によれば、ガイドワイヤの内部空間を挿通された導電線と、コネクタの電極と、の電気的な接続が容易である。
図1は、本発明の第1実施形態に係る圧力測定装置の模式図である。 図2は、図1のII-II切断線における拡大断面図である。 図3は、図1のIII-III切断線における拡大断面図である。 図4は、圧力センサの斜視図である。 図5は、図4のV-V切断線における各断面図である。 図6は、図4の矢視VIから視た図である。 図7は、本発明の第1実施形態に係るブリッジ回路の回路図である。 図8は、本発明の第2実施形態に係るガイドワイヤシステムの模式図である。 図9は、本発明の第2実施形態に係るガイドワイヤを示す図である。 図10は、圧力センサの斜視図である。 図11は、本発明の第2実施形態に係るコネクタの斜視図である。 図12は、本発明の第2実施形態に係るコネクタの分解斜視図である。 図13は、本発明の第2実施形態に係るコネクタの非ロック状態における断面図であり、特に、図13(A)は、図4のVIA-VIA切断線における断面図であり、図13(B)は、VIB-VIB切断線における断面図である。 図14は、本発明の第2実施形態に係るコネクタのロック状態における断面図であり、特に、図14(A)は、図11のVIA-VIA切断線における断面図であり、図14(B)は、VIB-VIB切断線における断面図である。 図15は、図11のVIA-VIA切断線における本発明の第2実施形態に係る端子ケースの断面斜視図である。 図16は、本発明の第2実施形態に係るコネクタの端子の斜視図である。 図17は、本発明の第2実施形態に係るコネクタの端子の図であり、特に図17(A)は正面図であり、図17(B)は上面図であり、図17(C)は側面図であり、図17(D)は展開図である。 図18は、図16のXI-XI切断線における断面図であり、特に、図18(A)は、本発明の第2実施形態に係るコネクタの端子の断面図であり、図18(B)及び図18(C)は、本発明の第2実施形態に係るコネクタの端子及びガイドワイヤの接点の断面図である。 図19は、本発明の第3実施形態に係るコネクタの端子の斜視図である。 図20は、本発明の第3実施形態に係るコネクタの端子の正面図である。 図21は、本発明の第2実施形態に係るアンプ入力(V)-時間(S)の接点安定性データである。 図22は、比較品としてのVolcano社Combowireについてのアンプ入力(V)-時間(S)の接点安定性データである。 図23は、比較品としてのSt Jude Medical社サルタスについてのアンプ入力(V)-時間(S)の接点安定性データである。 図24は、ガイドワイヤシステム310の模式図である。 図25は、ガイドワイヤ330を示す図である。 図26は、圧力センサ311の斜視図である。 図27は、オス型コネクタ339の分解図である。 図28は、各電極ピン345を示す図である。 図29は、図27におけるVI-VI切断線における断面図である。 図30は、接続管336が外嵌状態であるときのガイドワイヤ330を示す図である。
 以下、本発明の好ましい実施形態が説明される。なお、本実施形態は、本発明の一実施態様にすぎず、本発明の要旨を変更しない範囲で実施態様が変更できることは言うまでもない。
[第1実施形態の構成]
<圧力測定装置10>
 図1に示されるように、第1実施形態に係る圧力測定装置10は、ガイドワイヤ30と、ガイドワイヤ30に設けられた圧力センサ11とを備える。ガイドワイヤ30の一端に、演算制御部40が電気的に接続されている。図1において、ガイドワイヤ30の両端のうち、固定端(演算制御部40に接続された端)が近位端(図1における右側)であり、自由端(血管へ挿入されるときの先端)が遠位端(図1における左側)である。以下、ガイドワイヤ30において、近位端のある側を近位側とし、遠位端のある側を遠位側とする。
 ガイドワイヤ30は、細長な索体であり、冠状動脈等の血管(生体の管腔の一例)内に挿入可能である。圧力センサ11は、ガイドワイヤ30の遠位側の端部に設けられている。演算制御部40は、圧力センサ11から出力される電気情報(電圧値)に基づいて、血圧(管腔内の流体の圧力の一例)を演算する。つまり、圧力測定装置10は、血圧の測定に使用される。
 図1から図3には、ガイドワイヤ30の軸心線30Lが示されている。本明細書では、ガイドワイヤ30を構成する部品に関する方向、すなわち軸方向30A、径方向30R、及び周方向30Cが、以下のように定義されている。軸方向30A、径方向30R、及び周方向30Cは、ガイドワイヤ30が撓んだり湾曲したりせず、真っ直ぐな状態の軸心線30L、つまり直線である軸心線30Lに基づいて、定義されている。軸方向30Aは、軸心線30Lと平行な方向であって、遠位向き及び近位向きの双方を含む方向である。径方向30Rは、軸心線30Lに直交する全ての方向である。周方向30Cは、軸心線30L周りの方向である。
<ガイドワイヤ30>
 図1に示されるように、ガイドワイヤ30は、コアワイヤ31と、先端ガイド部32と、第1螺旋体33と、ハウジング34と、第2螺旋体35と、ガイドチューブ38と、を備える。図2に示されるように、ガイドワイヤ30は、テーパピン39を備える。図3に示されるように、ガイドワイヤ30は、連結壁36と、先端ワイヤ37と、を備える。
 図1に示されるように、コアワイヤ31は、ガイドワイヤ30の骨格を構成する部材である。コアワイヤ31は、ガイドワイヤ30が屈曲することなく血管内に挿入できるように、ガイドワイヤ30が湾曲することに対して一定の機械的強度を付与する。コアワイヤ31は、円筒状の線材であり、近位端から遠位側へ延びている。コアワイヤ31の材質は、例えば、医療用ステンレス綱である。コアワイヤ31の軸心線は、軸心線30Lと平行である。
 コアワイヤ31は、遠位側が近位側よりも撓みやすい。コアワイヤ31は、遠位側に位置する小径部31aと、近位側に位置する大径部31bと、小径部31a及び大径部31bを連結するテーパ部31cと、を有する。小径部31a及び大径部31bはそれぞれ一定の外径を有し、大径部31bの外径は、小径部31aの外径よりも大きい。テーパ部31cの外径は、近位端において大径部31bの外径に等しく、近位端から遠位端に向けて徐々に小さくなり、遠位端において小径部31aの外径に等しい。遠位側へ向かってコアワイヤ31の外径が次第に小さくなることにより、コアワイヤ31の剛性は、大径部31b、テーパ部31c、小径部31aの順に小さくなっている。
 図2に示されるように、テーパピン39は、コアワイヤ31の遠位端部から遠位側に配置されている。テーパピン39も、コアワイヤ31と同様にガイドワイヤ30の骨格を構成する部材であり、ガイドワイヤ30が湾曲することに対して一定の機械的強度を付与する。
 テーパピン39は、近位側に位置する軸部39aと、軸部39aから遠位側に伸びるテーパ部39bとを備える。軸部39aの外径は一定である。軸部39aは、コアワイヤ31の小径部31aに挿入されている。軸部39aは、例えばレーザー溶接又は接着剤により、小径部31aに固定されている。テーパ部39bの外径は、遠位側に向けて先細りに形成されている。そのため、テーパ部39bの剛性は、遠位側に向けて徐々に小さくなっている。このテーパピン39が配置されたガイドワイヤ30の遠位端部が容易に曲がるので、ガイドワイヤ30は、血管に沿って案内されやすい。また、テーパピン39の近位端からテーパ部39bの近位側部分まで軸方向30Aと平行に、テーパピン39の外周面に開口する溝39cが形成されている。圧力センサ11の4つの導電線15(後述)は、この溝39cを経由してコアワイヤ31内を通過し、演算制御部40に接続されている。
 図1、図2に示されるように、ガイドチューブ38は、コアワイヤ31の小径部31aの径方向30Rの外側に位置し、小径部31aの近位側部分を覆っている。ガイドチューブ38の形状は、円筒形状である。ガイドチューブ38の軸心線は、軸心線30Lと平行である。ガイドチューブ38は、コアワイヤ31の小径部31aの外周面に固定されている。ガイドチューブ38は、可撓性を有する。ガイドチューブ38は、例えば、医療用合成樹脂であり、例えば、コアワイヤ31の外周面に熱溶着されている。
 図1、図3に示されるように、先端ガイド部32は、ガイドワイヤ30の遠位端に配置されている。先端ガイド部32は、ガイドワイヤ30が血管内へ挿入されるときに、血管壁に当接することにより、ガイドワイヤ30の進行方向を血管に沿うように案内する部位である。先端ガイド部32は、遠位側に位置する半球部32aと、半球部32aから近位側に延びる円柱部32bとを備える。半球部32aは、血管壁を損傷しないように、遠位側に突出した半球形状である。半球部32aの外径は第2螺旋体35の外径とほぼ同等である。円柱部32bは、半球部32aから近位側へ突出しており、半球部32aの外径よりも小さな外径の円柱形状である。円柱部32bが第2螺旋体35内に挿入されることにより先端ガイド部32が第2螺旋体35に対して位置決めされて、半球部32a及び第2螺旋体35の外面が段差なく滑らかに連続する。先端ガイド部32の材質は、例えば、医療用ステンレスである。
 図1、図3に示されるように、ガイドワイヤ30の遠位側には、第1螺旋体33及び第2螺旋体35が設けられている。第1螺旋体33及び第2螺旋体35は、テーパピン39より曲げ剛性が弱い、すなわち曲がりやすい。第1螺旋体33は、螺旋形状に巻回された線材によって構成されている。第1螺旋体33の材質は、例えば、医療用ステンレス綱である。第1螺旋体33の軸心線は、軸心線30Lと平行である。図2に示されるように、テーパピン39のテーパ部39bは、第1螺旋体33内に挿入されている。第1螺旋体33は、近位端部33a(図2)及び遠位端部33b(図3)を有する。図2に示されるように、近位端部33aは、テーパピン39のテーパ部39bの外周面に、例えば、レーザー溶接又は接着剤により固定されている。これにより、第1螺旋体33の曲げ剛性が、テーパピン39により補強される。
 図1、図3に示されるように、ハウジング34は、その内部空間34Sに圧力センサ11を収納する筐体である。ハウジング34は、円筒形状であり、上記内部空間34Sを有する。ハウジング34の材質は、例えば、医療用ステンレス綱である。ハウジング34の軸心線は、軸心線30Lと平行である。ハウジング34の近位端部には、第1螺旋体33の遠位端部33bが、例えば、レーザー溶接又は接着剤により固定されている。
 ハウジング34は、複数の貫通孔34aを有する。第1実施形態では、ハウジング34は、2つの貫通孔34aを有する。貫通孔34aは、径方向30Rに沿ってハウジング34の円筒形状の壁を貫通する。貫通孔34aを介して、ハウジング34の内部空間34Sと外部とが連通している。2つの貫通孔34aは、ガイドワイヤ30の周方向30Cに沿って、軸心線30L周りに180度ずつの間隔を空けて、配置されている。
 第2螺旋体35は、螺旋形状に巻回された線材によって構成されている。第2螺旋体35の材質は、例えば、医療用ステンレス綱である。第2螺旋体35の軸心線は、軸心線30Lと平行である。第2螺旋体35は、近位端部35a及び遠位端部35bを有する。第2螺旋体35の近位端部35aは、ハウジング34の遠位端部に固定されている。第2螺旋体35とハウジング34とは、例えば、レーザー溶接又は接着剤により固定されている。第2螺旋体35の遠位端部35bには、先端ガイド部32の円柱部32bが挿入されている。遠位端部35bは、円柱部32bの外周面に固定されている。第2螺旋体35と先端ガイド部32とは、例えば、レーザー溶接又は接着剤により固定されている。
 連結壁36は、先端ワイヤ37をハウジング34に連結するための部材である。連結壁36は、ハウジング34の遠位端部に固定されている。連結壁36は、例えば、金属ハンダ材料によって構成される。
 先端ワイヤ37は、第2螺旋体35の曲げ剛性を補強するものである。先端ワイヤ37は、例えば、医療用ステンレス綱の線材である。先端ワイヤ37の軸心線は、軸心線30Lと平行である。先端ワイヤ37の近位端部は連結壁36に固定されている。先端ワイヤ37の遠位端部は、先端ガイド部32の円柱部32bに、例えば、レーザー溶接又は接着剤により固定されている。
 上述した構成により、テーパピン39及び先端ガイド部32は、第1螺旋体33、ハウジング34及び第2螺旋体35を介して連結されている。また、ハウジング34及び先端ガイド部32は、先端ワイヤ37を介して連結されている。テーパピン39はコアワイヤ31に固定されている。このようにして、(コアワイヤ31を除く)ガイドワイヤ30自体が、コアワイヤ31によって支持され、機械的強度が付与されている。
 このような構成により、近位端においてガイドワイヤ30を血管へ送り出す操作が行われたときに、この操作に追従して、ガイドワイヤ30が屈曲することなく血管内を進行する。また、先端ガイド部32が血管壁に接触した場合に、ガイドワイヤ30は、その血管壁に沿って湾曲する。
<圧力センサ11>
 図3に示されるように、圧力センサ11は、ハウジング34の内部空間34S内に配置されている。内部空間34Sの近位側部分は、圧力センサ11によって殆ど埋められている。一方、内部空間34Sの遠位側部分、つまり圧力センサ11の遠位側に位置する内部空間34Sは、空間のまま存在している。この内部空間34Sの遠位側部分に、ハウジング34の貫通孔34aは開口している。
 図3から図6に示されるように、圧力センサ11は、センサ本体12と、ダイヤフラム13と、ブリッジ回路14と、4つの導電線15と、被覆部材16と、を備える。
 図4に示されるように、センサ本体12の形状は円柱形状である。センサ本体12には、ダイヤフラム13、ブリッジ回路14、及び4つの導電線15が取り付けられている。センサ本体12の軸心線は、軸心線30Lと平行である。センサ本体12は、遠位側に面する遠位端面12aと、近位側に面する近位端面12bと、径方向30Rに面する外周面12cと、を有する。
 図5に示されるように、センサ本体12は、凹部21を有する。凹部21は、ダイヤフラム13が管腔内の流体の圧力によって変形しやすくなるように、センサ本体12に設けられている。凹部21は、遠位端面12aに開口している。センサ本体12の遠位側から視て、凹部21の形状は、円形である。軸方向30Aにおける凹部21の深さは、一定である。凹部21の軸心線は、センサ本体12の軸心線に一致している。
 図4から図6に示されるように、センサ本体12は、4つの貫通孔22を有する。4つの貫通孔22は、センサ本体12に後述の4つの端子18を設けるために、センサ本体12に形成されている。4つの貫通孔22は、周方向30Cに沿って、センサ本体12の軸心線の周りに90度ずつの間隔を空けて、配置されている。各貫通孔22は、軸方向30Aに沿って伸びており、センサ本体12の遠位端面12a及び近位端面12bの双方に開口している。軸方向30Aから視て、貫通孔22の形状は、円形である。
 図4から図6に示されるように、ダイヤフラム13は、センサ本体12の遠位端面12a上に配置され且つ固定されている。ダイヤフラム13の形状は、円板形状である。より詳しくは、ダイヤフラム13の形状は、軸方向30Aから視て円形形状であり、径方向30Rから視て長方形形状である。ダイヤフラム13の軸心線とセンサ本体12の軸心線は一致している。遠位端面12a、ダイヤフラム13、凹部21は同軸に配置されている。ダイヤフラム13の外径は、凹部21の内周面の径よりも大きい。ダイヤフラム13は、凹部21の開口の全体を覆っている。
 図4、図6、図7に示されるように、ブリッジ回路14は、4つの抵抗体17(17A、17B)と、4つの端子18(18A、18B、18C、18D)と、4つの接続体19とを備える。ブリッジ回路14は、ダイヤフラム13を囲んでいる。
 ブリッジ回路14は、4つの抵抗体17の全てが測定用の歪みゲージとして機能するフルブリッジ回路である。そのため、4つの抵抗体17は、抵抗変化特性の異なる2種類の抵抗体からなっている。2種類の抵抗体は、第1抵抗体17A及び第2抵抗体17Bである。本明細書において、第1抵抗体17A及び第2抵抗体17Bを区別する必要がない場合には、これらが抵抗体17と称される。
 4つの抵抗体17は、ダイヤフラム13の遠位側の面に固定されている。軸方向30Aから視て、4つの抵抗体17は、ダイヤフラム13の外周部に固定されている。4つの抵抗体17は、周方向30Cに沿って、センサ本体12の軸心線の周りに90度ずつの間隔を空けて、配置されている。ここで、第1抵抗体17A及び第2抵抗体17Bが、周方向30Cに沿って、交互に配置されている。
 第1抵抗体17A及び第2抵抗体17Bは、共に、ピエゾ抵抗効果を利用した半導体である。抵抗体17は、ダイヤフラム13に固定されているので、ダイヤフラム13の弾性変形に伴って、弾性変形する。抵抗体17が弾性変形すると、抵抗体17の電気抵抗値が変化する。
 第1抵抗体17A及び第2抵抗体17Bの形状は、互いに異なっている。第1抵抗体17A及び第2抵抗体17Bのダイヤフラム13に対する姿勢も、互いに異なっている。このような形状及び姿勢の違いにより、第1抵抗体17A及び第2抵抗体17Bの間で、上述した抵抗変化特性の相違がもたらされている。
 軸方向30Aから視て、第1抵抗体17Aの形状は、Π字形状である。ダイヤフラム13に対する姿勢において、第1抵抗体17Aは、周方向成分51と、2つの径方向成分52と、を備える。周方向成分51は、概ねダイヤフラム13の周方向に沿って伸びている。径方向成分52は、概ねダイヤフラム13の径方向に沿って伸びている。第1抵抗体17Aは、加圧時のダイヤフラム13の変形に伴ってその電気抵抗値が増加するように構成されている。
 軸方向30Aから視て、第2抵抗体17Bの形状は、長方形形状である。ダイヤフラム13に対する姿勢において、第2抵抗体17Bは、概ねダイヤフラム13の周方向に沿って伸びる周方向成分によって構成されている。第2抵抗体17Bは、加圧時のダイヤフラム13の変形に伴ってその電気抵抗値が減少するように構成されている。
 図6、図7に示されるように、4つの端子18は、ブリッジ回路14における2つの入力端子18A、18C及び2つの出力端子18B、18Dである。本明細書において、入力端子18A、18C及び2つの出力端子18B、18Dを区別する必要がない場合には、これらが端子18と称される。図5に示されるように、4つの端子18は、それぞれ、センサ本体12の4つの貫通孔22に対応して設けられた4つの導電層である。導電層は、遠位端面12aにおける各貫通孔22の開口の周辺に積層された遠位導電層24からなる。
 図4、図6に示されるように、4つの端子18は、径方向30Rにおいて、ダイヤフラム13の外側に配置されている。4つの端子18は、周方向30Cに沿って、センサ本体12の軸心線の周りに90度ずつの間隔を空けて、配置されている。4つの端子18及び4つの抵抗体17は、周方向30Cにおいて、交互に配置されている。各端子18は、4つの抵抗体17のうち隣り合う2つの抵抗体17の間に配置されている。
 図4から図6に示されるように、4つの接続体19は、それぞれ、4つの端子18に対応して設けられている。各接続体19は、遠位端面12aにおける各貫通孔22の開口の周辺に積層された導電層である。各接続体19は、隣り合う2つの抵抗体17と、この隣り合う2つの抵抗体17の間に位置する端子18とを、電気的に接続する。このようにして、4つの抵抗体17と4つの端子18とが、交互に電気的に接続されている。
 図6に示されるように、ブリッジ回路14において、2つの入力端子18A、18Cは、互いに180度の間隔を空けて配置され、2つの出力端子18B、18Dは、互いに180度の間隔を空けて配置されている。図6、図7に示されるように、ブリッジ回路14は、一方の入力端子18Aから他方の入力端子18Cに向けて、2つの経路、一方経路27および他方経路28を有する。一方経路27は、第1抵抗体17A、一方の出力端子18B、第2抵抗体17Bを経由する経路である。他方経路28は、第2抵抗体17B、他方の出力端子18D、第1抵抗体17Aを経由する経路である。ここで、一方の入力端子18Aが高圧側、他方の入力端子18Cが低圧側である。
 2つの入力端子18A、18C間に電圧が印加された状態では、一方経路27では、第1抵抗体17A、第2抵抗体17Bの順に電圧降下が発生し、他方経路28では、第2抵抗体17B、第1抵抗体17Aの順に電圧降下が発生する。
 ダイヤフラム13が加圧されていない状態では、第1抵抗体17A及び第2抵抗体17Bは変形していない。このとき、第1抵抗体17A及び第2抵抗体17Bの電気抵抗値は同一である。したがって、2つの出力端子18B、18Dの間に電位差が発生しない。
 一方、ダイヤフラム13が加圧された状態では、第1抵抗体17A及び第2抵抗体17Bは変形している。上述したように、加圧時に、第1抵抗体17Aの電気抵抗値が増加し、第2抵抗体17Bの電気抵抗値が減少する。つまり、第1抵抗体17Aにおける電圧降下量が、第2抵抗体17Bにおける電圧降下量よりも大きくなる。したがって、2つの出力端子18B、18Dの間に電位差が発生する。
 ガイドワイヤ30が血管内に挿入されて、圧力センサ11に血圧が加わった状態では、その血圧に応じて、2つの出力端子18B、18Dの間に電位差が発生する。この電位差に基づいて、血圧の大きさが特定できる。
 図5に示されるように、4つの導電線15は、それぞれ、4つの端子18に電気的に接続されている。端子18は、上述したように、遠位端面12a上に積層された遠位導電層24を有する。この遠位導電層24に、各導電線15が接続されている。導電線15は、導体で構成された導電線本体15aと、絶縁体で構成された絶縁カバー15bとを有する。絶縁カバー15bは、導電線本体15aの両端部を除いて導電線本体15aを被覆する。導電線15の遠位端部において、導電線本体15aが遠位導電層24に、ハンダ付けにより電気的かつ機械的に接続されている。このハンダにより、導電線本体15aと遠位導電層24との間に、接続部26が形成されている。
 図3から図5に示されるように、被覆部材16は、センサ本体12の近位側に設けられている。被覆部材16は、第1実施形態では、接着剤によって構成されている。被覆部材16は、センサ本体12の近位端面12bに固定され、近位端面12bから近位側に突出している。被覆部材16の一部は、センサ本体12の4つの貫通孔22内に進入しており、近位端面12bにおける4つの貫通孔22の開口を塞いでいる。4つの導電線15の遠位側端部と、4つの接続部26とが、被覆部材16によって被覆され、且つ被覆部材16に固定されている。ここで、絶縁カバー15bから露出している導電線本体15aの全体が、被覆部材16によって被覆されている。
 図4、図6に示されるように、4つの導電線本体15aと、4つの接続部26は、被覆部材16によって被覆され、且つ被覆部材16に固定されているが、説明のために図4、図6から被覆部材16は省略されている。被覆部材16の構成は、接着剤に限らず、ハンダまたはソルダーペースト等であってもよい。
 図4に示されるように、テーパピン39は、被覆部材16に連結され、且つテーパピン39に固定されている。これにより、センサ本体12がテーパピン39に対して固定されている。
<演算制御部40>
 図1に示されるように、演算制御部40は、圧力センサ11に電気的に接続された4つの導電線15と、圧力センサ11に電流を供給する電源部41と、圧力センサ11から出力される電気情報を演算処理する演算部42と、4つの導電線15に接続されたコネクタ43と、を有する。
 図1に示されるように、電源部41は、2つの入力端子18A、18Cに繋がる2つの導電線15を通じて、圧力センサ11のブリッジ回路14に電圧を印加するように構成されている。
 演算部42は、2つの出力端子18B、18Dに繋がる2つの導電線15を通じて、圧力センサ11のブリッジ回路14から出力される電圧値を取得する。演算部42は、取得された出力電圧値の変化に基づいて、圧力センサ11に作用する血圧を演算する。演算部42は、メモリ42aを備えている。演算部42は、より詳しくは、以下のようにして血圧を演算する。
 メモリ42aは、上述の出力電圧値と血圧との対応関係を、例えば一対一対応のデータとして、記憶している。そのため、出力電圧値が得られると、演算部42は、メモリ42aに記憶された対応関係に基づいて、その出力電圧値に対応する血圧を特定できる。このようにして、演算部42は、圧力センサ11から出力される電圧値に基づいて、圧力センサ11に作用する血圧を演算できる。
<圧力測定装置10の使用例>
 圧力測定装置10は、例えば、冠動脈内において血圧を測定するために使用される。ガイドワイヤ30は、先端ガイド部32が設けられた遠位端を、血管への挿入向きの先頭として冠動脈内に挿入される。冠動脈におけるガイドワイヤ30の位置は、血管のX線透視画像に映し出される先端ガイド部32の位置に基づいて把握される。
 圧力センサ11が、冠動脈内における血圧の測定位置に到達すると、ガイドワイヤ30の挿入が中断される。このような状態で、ユーザの操作によって、電源部41から、圧力センサ11に一定の電圧が供給される。
 血管内では、ハウジング34の内部空間34S内に血液が流入し、圧力センサ11のダイヤフラム13の表面に血圧が作用する。これにより、ダイヤフラム13が弾性変形し、それに伴って4つの抵抗体17の電気抵抗値が変化する。
 血流には、心臓の動きによって血圧の上昇及び下降が繰り返される脈動が生じている。4つの抵抗体17は、血流の脈動に追従して弾性変形する。これにより、脈動する血流の血圧に対応して、4つの抵抗体17の電気抵抗値が変化する。
 演算制御部40の演算部42は、圧力センサ11から出力される電気情報を取得する。演算部42は、上述したように、この電気情報に基づいて、圧力センサ11に作用する血圧を演算する。
<第1実施形態の作用効果>
 第1実施形態に係る圧力測定装置10によれば、4つの抵抗体17がダイヤフラム13の外周部に固定されているので、管腔(血管)内の流体の圧力(血圧)によってダイヤフラムが弾性変形すると、4つの抵抗体17の電気抵抗値がそれぞれ変化する。したがって、センサ11のゲインが増大する。
 ダイヤフラム13の形状が円板形状であるので、ダイヤフラム13が弾性変形したときに、ダイヤフラム13の外周部の変形量が周方向の位置によらず均一である。抵抗体17の電気抵抗値の変化量は、その抵抗体17が固定された位置におけるダイヤフラム13の変形量に比例する。そのため、例えば製造上のばらつきなどにより、ダイヤフラム13に対する抵抗体17の位置に多少のズレが発生しても、抵抗体17の抵抗変化特性、すなわち圧力変化に対する電気抵抗値の変化量が大きく変動しない。4つの抵抗体17において、抵抗変化特性が均一に保たれるので、製造上のばらつきによるセンサ11のゲインの変動が小さい。
 各端子18が隣り合う2つの抵抗体17の間に配置されているので、各端子18が2つの抵抗体17の間から外れた位置に配置される場合と比べて、ブリッジ回路14の経路長さが短縮される。これにより、センサ11の小型化が実現される。
 各導電線15は、センサ本体12の遠位端面12aに積層された部分(遠位導電層24)に接続されている。したがって、センサ本体12の外周面12cに導電線15が配置されることがない。
 接続部26に管腔内の流体が接触しないので、接続部26の劣化が抑制され、また接続部26が防水絶縁される。
 ガイドワイヤ30の遠位端部(先端ガイド部32)と管腔内の壁面との接触による振動が、センサ11に伝達されにくいので、センサ11の検出精度が高くなる。
[第1実施形態の変形例]
 以上、本発明の実施の形態を詳細に説明してきたが、前述までの説明はあらゆる点において本発明の例示に過ぎない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。第1実施形態に係る圧力測定装置10の各構成要素に関して、実施の形態に応じて、適宜、構成要素の省略、置換、及び追加が行われてもよい。また、上記圧力測定装置10の各構成要素の形状及び大きさも、実施の形態に応じて、適宜、設定されてよい。例えば、以下の変更が可能である。
 第1実施形態では、センサ本体12の形状は円柱形状であり、遠位端面12aはガイドワイヤ30の軸方向30Aに対して垂直である。センサ本体12は、遠位側に面する遠位端面12aを有すればよく、センサ本体12の形状及び遠位端面12aの軸方向30Aに対する角度は、限定されない。センサ本体12の形状は、例えば、角柱形状であってもよく、遠位端面12aは軸方向30Aに対して傾斜していてもよい。
 第1実施形態では、ダイヤフラム13の形状は、円板形状である。ダイヤフラム13の形状は、ダイヤフラム13に加わる圧力変化に応じて、ダイヤフラム13が弾性変形しうる形状であれば、限定されない。ダイヤフラム13は板状部材であって、この板状部材を軸方向30Aから視た形状が任意の形状であってもよい。任意の形状は、例えば、多角形形状であって、四角形状、六角形状、八角形状などを含む。
 第1実施形態では、被覆部材16は、接着剤によって構成されているが、これに限定されない。被覆部材16は、例えば、剛体の部品であって、センサ本体12の近位端面12bに固定される部品であってもよい。
 第1実施形態では、被覆部材16は、接続部26を覆うだけでなく、圧力センサ11をテーパピン39に対して固定している。被覆部材16は、接続部26を覆うだけでもよい。この場合、別の部材により、圧力センサ11は、テーパピン39に対して固定される。
 第1実施形態では、4つの抵抗体17は、センサ本体12の軸心線の周りに90度ずつの間隔を空けて、配置されている。4つの抵抗体17がダイヤフラム13の外周部に周方向30Cに沿って配置される限り、4つの抵抗体17の配置は、限定されない。4つの抵抗体17は、センサ本体12の軸心線の周りに、不均一な間隔、例えば、120度、60度、120度及び60度の間隔、あるいは60度、90度、30度、180度の間隔で、配置されてもよい。
 第1実施形態では、4つの端子18を設けるための4つの貫通孔22は、センサ本体12の軸心線の周りに90度ずつの間隔を空けて、配置されている。各貫通孔22が周方向30Cに沿って隣り合う2つの抵抗体17の間に配置される限り、4つの貫通孔22の配置は、限定されない。4つの貫通孔22は、4つの抵抗体17と同様に、センサ本体12の軸心線の周りに、不均一な間隔、例えば、120度、60度、120度及び60度の間隔、あるいは60度、90度、30度、180度の間隔で、配置されてもよい。また、第1実施形態では、軸方向30Aから視られた貫通孔22の形状は、円形である。軸方向30Aから視られた貫通孔22の形状は、例えば多角形であってもよく、限定されない。
 第1実施形態では、センサ本体12のダイヤフラム13の可動を邪魔しない程度に防水絶縁コーティングをセンサ本体12外面の全部または一部にされていることが望ましい。特にパリレン(登録商標)コーティングが望ましいがそのコーティング方法は特に限定されない。
[第2実施形態]
<ガイドワイヤシステム110>
 図8に示されるように、第2実施形態に係るガイドワイヤシステム110は、ガイドワイヤ130と、演算装置120と、ガイドワイヤ130及び演算装置120を接続するコネクタ140と、を備える。ガイドワイヤ130は、細長な索体であり、冠状動脈等の血管内に挿入可能である。ガイドワイヤ130は、血管内の圧力に応じて電気情報を出力する圧力センサ111(図10)を備えている。
 演算装置120は、ガイドワイヤ130の圧力センサ111に電流を供給する電源部121と、圧力センサ111から出力される電気情報を演算処理する演算部122と、演算処理に必要な情報を記憶するメモリ123と、を備える。圧力センサ111から出力される電気情報は、ガイドワイヤ130からコネクタ140を経由して演算部122に伝達される。演算部122は、圧力センサ111から出力される電気情報に基づいて、血圧を演算する。つまり、ガイドワイヤシステム110は、血圧の測定に使用される。
 図8において、ガイドワイヤ130の両端のうち、固定端(演算装置120に接続された端)が近位端(図8における左下側の端)であり、自由端(血管へ挿入されるときの先端)が遠位端(図8における左上側の端)である。以下、ガイドワイヤ130において、近位端のある側を近位側とし、遠位端のある側を遠位側とする。
<ガイドワイヤ130>
 図9には、ガイドワイヤ130が示されている。図9において、左側が、ガイドワイヤ130の遠位側であり、右側が、ガイドワイヤ130の近位側である。ガイドワイヤ130は、先端ガイド部132と、第1螺旋体133と、ハウジング134と、第2螺旋体135と、電極パイプ136と、4つの接点137と、テーパピン138と、先端ガイドピン139と、を備える。コアワイヤ131は、近位端から遠位側へ延びている。先端ガイド部132は、遠位端に配置されている。遠位端の先端ガイド部132から近位端に向けて、第1螺旋体133、ハウジング134、第2螺旋体135、及び電極パイプ136が、順に配置されている。4つの接点137は、電極パイプ136の外周側に配置され、ガイドワイヤ130の軸線130Aに沿って並んでいる。なお、軸線130Aは、ガイドワイヤ130が撓んだり湾曲したりせず、真っ直ぐな状態にあるときのガイドワイヤ130の軸線を指している。
 コアワイヤ131は、ガイドワイヤ130の骨格を構成する部材である。先端ガイド部132は、遠位端に配置された遠位側に凸となる半球状部材であり、血管壁に当接することにより、ガイドワイヤ130の進行方向を血管に沿うように案内する。第1螺旋体133及び第2螺旋体135は、螺旋形状に巻回された線材であり、ガイドワイヤ130の遠位端部が血管に沿いやすいように、コアワイヤ131よりも曲がりやすく構成されている。ハウジング134は、その内部空間に圧力センサ111を収納する筐体である。ハウジング134は、2つの貫通孔134aを有する。貫通孔134aを介して、ハウジング134の内部に配置された圧力センサ111(図10)に、血液が接触できる。電極パイプ136は、圧力センサ111から延びる4つの導電線115(図10)を収納する円筒状部材であり、コアワイヤ131の近位端部に固定されている。4つの接点137は、4つの導電線115(図10)にそれぞれ接続され、電極パイプ136の外周面に固定されている。接点137の形状は、円環形状である(図18)。テーパピン138は、第2螺旋体135の曲げ剛性を補強する部材であり、コアワイヤ131の遠位端部に固定され、コアワイヤ131からハウジング134まで延びている。先端ガイドピン139は、第1螺旋体133の曲げ剛性を補強する部材であり、ハウジング134及び先端ガイド部132に固定されている。
 図10に示されるように、例えば、圧力センサ111は、センサ本体112と、ダイヤフラム113と、ブリッジ回路114と、4つの導電線115と、接続部116と、を備える。センサ本体112は、コアワイヤ131に固定されたテーパピン138に、例えば接着剤で構成された接続部116により固定されている。センサ本体112には、ダイヤフラム113、ブリッジ回路114、及び4つの導電線115が取り付けられている。ブリッジ回路114は、4つの抵抗体117の全てが測定用の歪みゲージとして機能するフルブリッジ回路である。ブリッジ回路114は、4つの抵抗体117と、4つの端子118A、118Bと、4つの接続体119とを備える。4つの抵抗体117は、ダイヤフラム113に固定されている。4つの端子118A、118Bは、2つの入力端子118Aと、2つの出力端子118Bとからなる。各接続体119は、各抵抗体117を各端子118A、118Bに電気的に接続する。各導電線115は、各端子118A、118Bに電気的に接続されている。
 ガイドワイヤ130が血管内に挿入されて、圧力センサ111に血圧が加わった状態では、血圧に応じてダイヤフラム113が弾性変形する。ダイヤフラム113の弾性変形に伴って、4つの抵抗体117が弾性変形し、4つの抵抗体117の電気抵抗値が変化する。この状態で、2つの入力端子118A間に電圧が印加されると、2つの出力端子118Bの間に電位差が発生する。この電位差に基づいて、演算装置120(図8)において血圧の大きさが特定できる。
<コネクタ140>
 図11に示されるように、コネクタ140は、ガイドワイヤ130を把持する把持部品(把持部の一例)141と、把持部品141が取り付けられるコネクタ本体142と、を備える。コネクタ本体142は、4つの導電線115に電気的に接続されるケーブル143を備える。ケーブル143は、演算装置120に電気的に接続されている(図8)。
 図11において、第1方向124及び第2方向125は、軸線130Aに対して直交する方向である。第1方向124及び第2方向125は、相互に直交している。以下、コネクタ140の姿勢が、第1方向124及び第2方向125を用いて説明される。図13(A)及び図14(A)は、軸線130Aを含み且つ第1方向124に沿っている平面によって切断された断面図である。図13(B)及び図14(B)は、軸線130Aを含み且つ第2方向125に沿っている平面によって切断された断面図である。
 図12は、コネクタ140の分解斜視図である。コネクタ本体142は、筒状カバー145と、端子ケース146と、ガイド部品(ガイド部の一例)147と、支持部品(支持部の一例)148と、を備える。
 図12から図14に、把持部品141が示されている。図12に示されるように、把持部品141は、本体150と、2つの把持片151と、2つのフック部152と、を備える。把持部品141は、樹脂材料によって成形されている。そのため、本体150と、2つの把持片151と、2つのフック部152とは、一体的に成形されている。
 本体150の形状は、概略的には軸線130Aに沿って内部空間である挿通孔150aが延びる筒形状である。挿通孔150aには、ガイドワイヤ130が挿通可能である。本体150は、近位端部に、嵌合部153を備えている。嵌合部153の形状は、軸線130Aを軸とする円板形状であり、径方向外側へ向かって突出している。嵌合部153は、把持部品141としてコネクタ本体142と組み合わされることによって、ガイド部品147と嵌合して、把持部品141がコネクタ本体142へ挿入する方向へ移動することを規制する。また、嵌合部153は、支持部品148のロック部169に当接することによって、一旦コネクタ本体142内に挿入された把持部品141が容易にコネクタ本体142から脱落することを防止する。
 2つの把持片151は、本体150の近位端(図12の左側、図13の右側)から軸線130Aに沿って延びている。2つの把持片151は、第2方向125において対向している。2つの把持片151のそれぞれの形状は、軸線130Aに沿って延びる半円筒形状である。2つの把持片151が互いに近づいて当接すると、概ね円筒形状となる。2つの把持片151は、外力が付与されていない状態では、第2方向125に離間している。各把持片151は、各把持片151と本体150との連結位置、つまり各把持片151の遠位端を支点として、近位端側が相互に近づく方向へ弾性変形可能である。ガイドワイヤ130は、2つの把持片151が円筒形状をなしたときに内部空間となる空間を通じて、把持部品141内に挿通される。各把持片151の近位端部がガイド部品147に当接することによって、2つの把持片151が互いに接近するように弾性変形する。これにより、ガイドワイヤ130が2つの把持片151によって把持される。
 2つのフック部152は、本体150の遠位端(図12の左側、図13の右側)から近位側(図12の左側、図13の右側)に向けて軸線130Aに沿って延びている。第2方向125において、2つのフック部152の間に本体150が位置している。各フック部152は、各フック部152と本体150との連結位置、つまり各フック部152の遠位端を支点として、近位端側が軸線130Aに対する径方向の内向きへ弾性変形可能である。各フック部152の近位端部には、凹部152aが形成されている。各凹部152aは、各フック部152において、軸線130Aに対する径方向内向きに凹んでいる。各凹部152aは、支持部品148のロック部169と係合可能である。各凹部152aが、支持部品148のロック部169と係合することによって、把持部品141が、コネクタ本体142に対して軸線130Aに沿って相対的に移動することが規制される。
 図12から図14に、筒状カバー145が示されている。筒状カバー145は、近位側(図12の左下側)から遠位側(図12の右上側)に向けて順に配置された、端子144を収納する端子ケース146、ガイド部品147、及び支持部品148を収納する。筒状カバー145に収納された端子ケース146、ガイド部品147、及び支持部品148は、相互に組み付けられて一体となる。
 筒状カバー145の形状は、概略的には軸線130Aに沿って延びる筒形状である。筒状カバー145の近位端側は、外形が長方形の筒形状である。筒状カバー145の近位端は封止されており、かつ軸線130Aに沿って貫通されたケーブル孔145aが形成されている。ケーブル孔145aを通じて、ケーブル143が筒状カバー145の内部から外部へ延出される。筒状カバー145の遠位端側は円筒形状である。筒状カバー145の周壁の遠位端付近には、軸線130Aに対する径方向に貫通された2つの係合孔145bが形成されている。2つの係合孔145bは、第1方向124に対向している。各係合孔145bには、支持部品148の凸部168が係合される。筒状カバー145の遠位端は開口している。
 図12から図15に示されるように、端子ケース146は、ガイドワイヤ130の4つの接点137とそれぞれ電気的に接続される4つの端子144(図13から図18)を備える。図15に示されるように、端子ケース146は、4つの端子144を収納する内部ケース154と、ケーブル143が固定された連結板155と、内部ケース154及び連結板155を収納する外部ケース156と、ワイヤガイド部品157と、を備える。
 図15に示されるように、ケーブル143は、4つの導電線126と、4つの導電線126を被覆する保護被膜127と、を有する。4つの導電線126は、それぞれ、端子ケース146内において、4つの端子144に電気的に接続されている。
 内部ケース154は、第1ケース片158及び第2ケース片159を合わせて構成される細長な直方体である。第1ケース片158及び第2ケース片159は、第1方向124に対向し、且つ軸線130Aに沿って細長に延びている。第1ケース片158と第2ケース片159との間に、軸線130Aに沿って延びる空間160が形成されている。空間160において、4つの端子144が軸線130Aに沿って並んで配置されている。内部ケース154の遠位端は開口しており、この開口を通じて空間160が外部と連続している。
 連結板155は、第1ケース片158及び第2ケース片159と第1方向124に対向する平板である。第2ケース片159が連結板155に隣接している。第2ケース片159には、第1方向124に沿って4つの端子孔154aが形成されている。連結板155には、第1方向124に沿って4つの端子孔151aが形成されている。連結板155の各端子孔151aは第2ケース片159の各端子孔154aに連続している。一組の端子孔154a及び端子孔151aには、端子144の接続部170が挿通されている。
 連結板155と外部ケース156との間には、第1方向124の両側に、軸線130Aに沿った空間161、162が形成されている。空間161には、内部ケース154及びケーブル143の保護被膜127の遠位端部が配置されている。空間162内には、4つの端子144の4つの接続部170が突出しており、ケーブル143の4つの導電線126が配置されて、各接続部170が各導電線126にはんだ付けによって電気的に接続されている。なお、図示の便宜上、一部の導電線126は破断された状態で描かれている。
 外部ケース156は、概ね四角形の筒形状である。外部ケース156の遠位端部には、遠位側に開口する円筒形状の第1凹部156a及び第2凹部156bが形成されている。第1凹部156aの内部空間は、外部ケース156に収納された内部ケース154の内部空間と連続している。第1凹部156a及び第2凹部156bは、軸線130Aに沿った内部空間をそれぞれ有している。第1凹部156aにはワイヤガイド部品157が嵌合されている。第2凹部156bには、ガイド部品147の第1筒部164が嵌合される。
 ワイヤガイド部品157は、コネクタ140内に挿入されたガイドワイヤ130を軸線130Aに沿って位置決めする部品である。ワイヤガイド部品157は、円筒形状であって軸線130Aに沿って貫通された貫通孔を有する。この貫通孔の内面は、遠位側および近位側にそれぞれ配置されて中央へ向かってそれぞれ縮径する2つのテーパ面157aと、2つのテーパ面157aを連結する円周面157bと、を有する。円周面157bの内径は、ガイドワイヤ130の外径より若干大きい。テーパ面157aの最小径は、円周面157bの内径に等しく、テーパ面157aの最大径は、円周面157bの内径よりも大きい。各テーパ面157aは、円周面157bに向けて先細りになっている。そのため、ワイヤガイド部品157内に挿入されたガイドワイヤ130は、円周面157bによって軸線130Aと同軸となるように案内される。
 図12から図14に、ガイド部品147が示されている。ガイド部品147は、把持部品141が軸線130Aに沿ってスライドされるときに、把持部品141の2つの把持片151の遠位部が弾性変形するように案内する部品である。
 図12に示されるように、ガイド部品147は、近位側(図12の左下側)から遠位側(図12の右上側)に向けて順に配置された、第1筒部164と、ガイド部165と、第2筒部166(被嵌合部の一例)と、を備える。第1筒部164、ガイド部165及び第2筒部166は、一体に成形されている。第1筒部164の形状は、有底円筒状であるが、軸線130Aに沿った貫通孔164aを有する。貫通孔164aには、ガイドワイヤ130が挿通される。第1筒部164は、端子ケース146の第2凹部156bに、軸線130A周りに回転可能に外側から嵌合される。ガイド部165は、端子ケース146に対して回転可能である。
 図12に示されるように、ガイド部165の形状は、内面がテーパ状の筒形状である。図13、図14に示されるように、ガイド部165の内面は、軸線130Aに沿って形成されたガイド面165aである。ガイド面165aは、近位側(図13、図14の右側)に向けて先細りとなるテーパ面である。
 図12から図14に示されるように、第2筒部166の形状は、概略的には円筒形状である。第2筒部166の内径及び外径は、軸線130Aに沿って、遠位側に向けて拡大するように、3段階で段階的に変化している。第2筒部166の遠位側には、支持部品148が嵌合される。第2筒部166の内部空間には、本体150の嵌合部153が嵌合される。
 図12から図14に、支持部品148が示されている。支持部品148は、把持部品141を、軸線130A周りに回転可能に支持する部品である。支持部品148は、本体167と、2つの凸部168と、ロック部169と、を備える。本体167の形状は、軸線130Aに沿って延びる内部空間を有する円筒形状である。各凸部168は、本体167の外周面から軸線130Aに対する径方向外側に突出している。2つの凸部168は、筒状カバー145の2つの係合孔145bに対応して、第1方向124に対向して配置されている。ロック部169は、本体167の内周面から軸線130Aに対する径方向内側に突出している。ロック部169は、軸線130A周りに連続して延びる凸条である。ロック部169に、把持部品141のフック部152の凹部152aが係合した状態において、把持部品141は、ロック部169によって軸線130Aに沿った移動が規制され、且つロック部169に案内されて軸線130A周りに回転可能である。
 図13、図14を参照して、非ロック状態及びロック状態におけるコネクタ140が説明される。図13は、非ロック状態におけるコネクタ140を示しており、図14は、ロック状態におけるコネクタ140を示している。
 コネクタ本体142は、図12に示されるように分解可能であるが、端子ケース146、ガイド部品147、及び支持部品148が筒状カバー145に収容されて、相互に組み付けられて一体となっている。把持部品141は、コネクタ本体142に対して取付け及び取り外しが可能である。
 取り外された把持部品141がコネクタ本体142に取り付けられるとき、把持部品141は、把持片151を挿入前側として、コネクタ本体142の遠位側(図13の左側)から近位側(図13の右側)に向けて挿入される。嵌合部153の外径はロック部169の外径よりも若干大きいが、嵌合部153は樹脂材料で形成されているため、弾性変形可能である。したがって、把持部品141をコネクタ本体142内に押し込むように外力が加えられることにより、嵌合部153はロック部169を乗り越えて近位側に移動できる。嵌合部153がロック部169の近位側に位置すると、嵌合部153がロック部169に当接することによって、把持部品141のコネクタ本体142からの脱落が防止される。また、把持部品141をコネクタ本体142から引き抜くように外力が加えられることにより、嵌合部153はロック部169を乗り越えて遠位側に移動し、把持部品141がコネクタ本体142から取り外される。
 嵌合部153がロック部169の近位側に位置するとき、コネクタ140は非ロック状態とロック状態とを切り替え可能である。嵌合部153がガイド部品147の第2筒部166に嵌合していないとき、コネクタ140は非ロック状態(図13)にある。嵌合部153がガイド部品147の第2筒部166に嵌合しているとき、コネクタ140はロック状態(図14)にある。非ロック状態では、ガイドワイヤ130がコネクタ140に対してロックされない。非ロック状態では、把持片151はガイド部165内に位置するが、ガイド面165aに当接していない。2つの把持片151は離間した状態に保たれるので、ガイドワイヤ130がコネクタ140内に挿入されても、2つの把持片151はガイドワイヤ130を把持しない。
 2つのフック部152を挟むように外力が加えられることにより、2つのフック部152が弾性変形して径方向内側へ移動する。これにより、フック部152の近位端がロック部169より径方向内側となり、フック部152の近位端がロック部169よりコネクタ本体142の近位端側へ移動可能となる。把持部品141がさらに近位側に移動すると、嵌合部153が第2筒部166に嵌合して当接し、把持部品141がコネクタ本体142の近位側へ更に移動することが制止される。嵌合部153が第2筒部166に嵌合した状態において、フック部152の凹部152aはロック部169と対向している。2つのフック部152に加えられている外力が解除されると、弾性復元するフック部152が径方向外側に移動して、凹部152aとロック部169とが係合される。この結果、コネクタ140は、図14に示されるロック状態となる。ロック状態において、把持部品141はコネクタ本体142に対して軸線130Aに沿った方向に相対移動することができないが、把持部品141は、コネクタ本体142に対して軸線130A周りに回転可能である。
 ガイドワイヤ130は、非ロック状態のコネクタ140に挿入される。ガイドワイヤ130の近位端が、把持部品141の挿通孔150aから、2つの把持片151の隙間及びワイヤガイド部品157を介して、内部ケース154の近位端の内壁に当接するまで挿入される。このとき、ガイドワイヤ130の4つの接点137は、それぞれ、空間160において4つの端子144に接触する。
 把持部品141がコネクタ本体142に対して近位側へ移動されることによって、コネクタ140は、非ロック状態からロック状態となる。このとき、把持片151の近位端部がガイド面165aに当接しながら近位側へ移動することによって、2つの把持片151の近位端部が互いに径方向内側へ移動するように弾性変形される。これによりコネクタ140に挿入されたガイドワイヤ130が、2つの把持片151によって挟み込まれるように把持される。これにより、通常の操作においてガイドワイヤ130に加わる外力によっては、ガイドワイヤ130がコネクタ140から抜け出さないように把持される。また、ガイドワイヤ130は、把持部品141と一体に回転するので、把持部品141がコネクタ本体142に対して軸線130A周りに相対的に回転すると、ガイドワイヤ130も把持部品141と共にコネクタ本体142に対して軸線130A周りに相対的に回転する。ここで、把持片151がガイド面165aに当接しているので、ガイド部品147も把持部品141と共に回転する。
 ロック状態のコネクタ140において、把持部品141は、外力により2つのフック部152が径方向内側に移動させることによって、フック部152の凹部152aがロック部169から離れて、軸線130Aに沿って移動可能となる。この状態において、把持部品141がコネクタ本体142に対して遠位側へ移動されることによって、コネクタ140は、ロック状態から非ロック状態となる。
<端子144>
 図16から図18を参照して、端子144が説明される。図16、図17に示されるように、端子144は、接続部170と、第1連結部171と、3つの端子部172と、第2連結部173と、を備える。端子144の材料は導電性を有し、曲げ加工が可能な金属であり、バネ鋼であることが好ましい。接続部170、第1連結部171、3つの端子部172及び第2連結部173は、金属板が打ち抜かれて曲げ加工されることにより一体に形成されている。
 接続部170は、ケーブル143の導電線126に電気的に接続される部分である。接続部170は、L字に折れ曲がった細長な平板形状である。第1連結部171及び第2連結部173は、それぞれが、3つの端子部172の軸線130Aの両端を連結する。第1連結部171及び第2連結部173は、それぞれが概ね円筒形状である。
 3つの端子部172は、軸線130A周りに配置されている。各端子部172は、同形状であって、それぞれが軸線130Aに沿って細長な板形状であり、かつ軸線130Aに沿った方向の中央が径方向内側へ膨らむように湾曲している。隣り合う端子部172における軸線130A周りのピッチ(間隔)となる角度θは、120°である(図18(A))。換言すれば、各端子部172において軸線130Aを向く面の中央又は一方の縁は、それぞれ120°ずつ位相が異なる。
 端子部172の内面は、ガイドワイヤ130の接点137に対向する接触面172aである。図16、図17(C)に示されるように、軸線130Aを含む平面で切断された接触面172aの断面は、軸線130Aに対する径方向内向きへ凸となるように湾曲している。また、図16、図17(A)に示されるように、軸線130Aと直交する切断面における接触面172aは、直線である。ガイドワイヤ130がコネクタ140に把持されたときに、各接触面172aは、最も軸線130Aに近い箇所において接点137と接触する。接点137は、円周面なので、接触面172aと接点137との接触は、謂わば点接触である。
 端子部172は、湾曲形状によって板バネとしての弾性を有する。各端子部172にガイドワイヤ130の各接点137が当接した状態において、各端子部172は径方向外側に弾性変形する。
 図18を参照して、3つの端子部172の位置の変化が説明される。図18の各図には、端子部172において最も軸線130Aに近い位置における端子144の断面が示されている。
 図18(A)には、自然状態、すなわちガイドワイヤ130の接点137が端子144に当接していない状態における端子部172の位置が示されている。
 図18(B)には、ガイドワイヤ130の接点137が端子144に当接した状態における端子部172の位置が示されている。接点137の外周面の半径は、軸線130Aから端子部172の接触面172aまでの最短距離よりも大きいため、各端子部172は、接点137に当接することにより、径方向外側へ弾性変形する。これにより、各接触面172aが自然状態から径方向外側へ移動する。図18(B)におけるガイドワイヤ130の軸線は、コネクタ140における軸線130Aと一致している。そのため、各端子部172の接触面172aは、接点137の外周面の半径に等しい距離だけ軸線130Aから離れた位置にある。各端子部172は弾性変形しているので、その復元力によって、各端子部172は、接点137に向かって付勢されている。これにより、各端子部172は接点137に圧接し、端子144と接点137との電気的な接続が保たれている。
 図18(C)にも、ガイドワイヤ130の接点137が端子144に当接した状態における端子部172の位置が示されている。図18(C)におけるガイドワイヤ130の軸線130Bは、コネクタ140の軸線130Aから外れた位置にある。このような状態は、ユーザがガイドワイヤ130を回転させるなどの操作を行うことにより発生する。ガイドワイヤ130の操作は、例えば、血管内でガイドワイヤ130を進退させる際に行われる。例えばガイドワイヤ130が回転すると、ガイドワイヤ130を把持する把持部品141も一緒に回転する。把持部品141は支持部品148に回転自在に支持されている。そのため、ガイドワイヤ130は、例えば机上に載置されているコネクタ本体142に対して相対的に回転する。コネクタ本体142は、例えば筒状カバー145の長方形の外形部分が机の載置面と当接することによって、回転が抑制される。
 ガイドワイヤ130がコネクタ本体142に対して相対的に回転すると、ガイドワイヤ130の接点137がコネクタ140の端子144に対して相対的に回転する。ガイドワイヤ130を把持する把持部品141がコネクタ本体142に対して相対的に回転するために、両者間には公差やガタが存在する。ガイドワイヤの回転トルクによって、把持部品141がコネクタ本体142に対してがたつき、その結果、接点137が径方向に移動して、ガイドワイヤ130の軸線130Bがコネクタ140の軸線130Aから外れる。このように接点137が径方向に移動しても、3つの端子部172の弾性変形によって生じた付勢力により、3つの端子部172は接点137の移動に追従する。したがって、3つの端子部172と接点137との電気的接続が保たれる。加えて、3つの端子部172の付勢力のバランスにより、接点137が軸線130Aの位置に戻されるので、接点137の位置は、図18(C)の位置から図18(B)の位置に復帰しやすい。
<ガイドワイヤシステム110の使用例>
 ガイドワイヤシステム110は、例えば、冠動脈内において血圧を測定するために使用される。ガイドワイヤ130は、先端ガイド部132が設けられた遠位端を、血管への挿入向きの先頭として冠動脈内に挿入される。
 圧力センサ111が、冠動脈内における血圧の測定位置に到達すると、ガイドワイヤ130の挿入が中断される。このような状態で、ユーザの操作によって、電源部121から、圧力センサ111に一定の電圧が供給される。
 血管内では、ハウジング134の内部空間内に血液が流入し、圧力センサ111のダイヤフラム113の表面に血圧が作用する。これにより、ダイヤフラム113が弾性変形し、それに伴って4つの抵抗体117の電気抵抗値が変化する。
 血流には、心臓の動きによって血圧の上昇及び下降が繰り返される脈動が生じている。4つの抵抗体117は、血流の脈動に追従して弾性変形する。これにより、脈動する血流の血圧に対応して、4つの抵抗体117の電気抵抗値が変化する。
 演算装置120の演算部122は、圧力センサ111から出力される電気情報を取得する。演算部122は、上述したように、この電気情報に基づいて、圧力センサ111に作用する血圧を演算する。
 血圧の測定中に、血圧の測定位置を変更する場合、ガイドワイヤ130の位置を変更するために必要に応じてガイドワイヤ130の回転やスライドなどの操作が行われる。ガイドワイヤ130が操作されると、例えば回転トルクによってガイドワイヤ130の接点137が径方向に移動する。コネクタ140に設けられた端子144の各端子部172は、接点137の径方向の移動に追従する。そのため、回転トルクが加えられた状況でも、接点137と端子144との電気的な接続が維持される。したがって、圧力センサ111から演算装置120に送信されるデータに飛びやドリフトが発生しにくい。
<第2実施形態の作用効果>
 第2実施形態に係るコネクタ140によれば、把持片151は、把持部品141が支持部品148に対して挿通孔150aの軸線130Aに沿ってスライドされることによって、ガイド面165aに当接して径方向内向きへ弾性変形する。その結果、把持片151によりガイドワイヤ130が把持される。逆方向にスライドされると、把持片151がガイド面165aから外れて、ガイドワイヤ130の把持が解除される。したがって、把持部品141をスライドさせることにより、ガイドワイヤ130が把持され又は当該把持が解除される。
 各凹部152aが、支持部品148のロック部169と係合することによって、把持部品141が、支持部品148に対して軸線130Aに沿って相対的に移動することが規制される。
 把持片151がガイド面165aに当接している場合、仮にフック部152が弾性変形されることによってロック部169が凹部152aと係合していない状態でも、嵌合部153が第2筒部166に嵌合して当接し、把持部品141が支持部品148の近位側へ移動することが制止される。
 隣り合う2つの端子部172間のガイドワイヤ130の軸線130A周りの角度θが、90°<θ<180°の関係を満たしているので、ガイドワイヤ130の軸線130A、130Bがずれるように接点137が径方向に移動しても、端子部172の弾性変形により、各端子部172が接点137の移動に追従する。したがって、接点137と端子144との電気的な接続が瞬間的に切断される不具合が発生しにくい。
 角度θがθ=120°の関係を満たしているので、3つの端子部172が均等な間隔に配置されている。そのため、ガイドワイヤ130が径方向のいずれに移動しても、各端子部172が接点137に追従する。したがって、接点137と端子144との電気的な接続が瞬間的に切断される不具合がより発生しにくい。
 ガイドワイヤ130の軸線130Aに沿って、各端子部172が接点137に点接触するので、ガイドワイヤ130が軸線130Aに沿って移動すると、各端子部172が容易に軸線130Aから離れる方向へ退避する。したがって、ガイドワイヤ130が、容易にコネクタ140に対して挿抜できる。
 ロック部169は、把持片151がガイド面165aに当接した位置においてスライドをロックし、かつガイド部品147をガイドワイヤ130の軸線130A周りに回転可能とする。したがって、ガイドワイヤ130が把持部品141に把持された状態で、コネクタ本体142を作業机に設置された際に、筒状カバー145自体が回転せず、ガイド部品147と把持部品141は回転可能となる。したがって、コネクタ本体142自体がガイドワイヤ操作時における振動によって回転しないので、電気的な接続が瞬間的に切断される不具合が発生しにくい。
<接点安定性データ>
 図21から図23を参照して、端子144の接点安定性を確認する実験方法及び実験結果が説明される。
 第2実施形態に係るコネクタ140、及び比較品について、メス端子としての電気接点安定性を評価する実験を行った。比較品として、Volcano社Combowire、及びSt Jude Medical社サルタスを用いた。これら比較品は、コネクタ140における把持部品141及びコネクタ本体142に相当する部材がネジ式により固定されており、相対的に回転しない構成である(例えば、特表2001-516938号公報参照)。コネクタ140及び比較品について、ガイドワイヤ末端電極を接続した状態を模擬するため、0.014mmガイドワイヤと同径であるφ0.36mmの金メッキSUSピンをオス端子として用いた。オス端子の基端側に100Ωの模擬抵抗をハンダ付けにより接続した。オス端子の先端側を、メス端子へ挿入し、オス端子基端‐メス端子間の接触抵抗を評価した。
 接触抵抗の評価には、ホイートストンブリッジを含むアンプ回路を使用した。オス端子基端‐メス端子間の抵抗(約100Ω)と、リファレンス抵抗100Ωとの差分を増幅して出力するものを設計し使用した。オフセット調整のため、リファレンス抵抗を100Ωから僅かに増減させ、ベースラインが3Vとなるようにした。本アンプ回路では、出力電圧1Vの変化が接触抵抗0.5Ωの変化に相当する。アンプ回路からの出力電圧を、データロガー(YOKOGAWA, DL850)で記録した。上記のような接続状態で、手術中に想定されるガイドワイヤの動きを模擬しオス端子に振動および回転を負荷し、そのときのアンプ回路出力のぶれを確認した。結果を図21から図23に示した。コネクタ140(図21)では、オス端子に振動および回転を与えた時のアンプ出力変化(すなわち接触抵抗変化)が比較品(図22、図23)よりも抑えられていることが確認された。これは、手術中のガイドワイヤの動きに起因する接点不良と、それによるセンサ出力のドリフトを抑える可能性を示している。
[第3実施形態]
<端子244>
 図19、図20を参照して、第3実施形態に係る端子244が説明される。第3実施形態に係るコネクタ140は、端子244の構成において、第2実施形態に係るコネクタ140とは異なる。それ以外の点では、第3実施形態は、第2実施形態と同様である。以下では、第3実施形態に係る端子244の構成が説明される。なお、第2実施形態と共通の部材には同一の符号が付されており、これらの部材についての説明は省略されている。
 端子244は、本体180と、収束管181と、を備える。本体180は、接続部170と、第1連結部171と、3つの端子部272と、を備える。本体180の材料は導電性を有し、曲げ加工が可能な金属であり、バネ鋼であることが好ましい。接続部170、第1連結部171及び3つの端子部272は、金属板が打ち抜かれて曲げ加工されることにより一体に形成されている。
 端子部272は、軸線130Aにおける一端が開放されている点を除いて、第2実施形態に係る端子部172と同様に構成されている。端子部272の内面は、ガイドワイヤ130の接点137に対向する接触面272aであり、この接触面272aは径方向内向きへ凸となるように湾曲している。
 端子部272の軸線130Aに沿った方向の一端には、収束管181が外嵌されている。収束管181の形状は、円筒形状である。収束管181の材料は、樹脂材料である。したがって、収束管181は、拡径するように弾性変形可能である。
 各端子部272の一端部は、第1連結部171によって支持され、他端部は、収束管181によって支持されている。そのため、各端子部272は、ガイドワイヤ130の接点が3つの端子部272の内部に配置されたときに、板バネとして機能する。
<第3実施形態の作用効果>
 第3実施形態に係るコネクタ140によれば、収束管181は、各端子部172の他端に外嵌されており、拡径するように弾性変形可能である。端子部172である板バネは、板バネ自身の付勢力だけでなく、筒状バネである第1連結部171による付勢力を受ける。したがって、端子部172の付勢力の調整が容易である。
[第2実施形態及び第3実施形態の変形例]
 以上、本発明の実施の形態を詳細に説明してきたが、前述までの説明はあらゆる点において本発明の例示に過ぎない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。各実施形態に係るコネクタ140の各構成要素に関して、実施の形態に応じて、適宜、構成要素の省略、置換、及び追加が行われてもよい。また、上記コネクタ140の各構成要素の形状及び大きさも、実施の形態に応じて、適宜、設定されてよい。例えば、以下の変更が可能である。
 第2及び第3実施形態では、端子144、244は、3つの端子部172、272を備えているが、この構成に限定されない。端子144、244は、4つ以上の端子部172、272を備えてもよい。この場合、4つ以上の端子部172、272のうちの少なくとも3つの端子部172、272について、隣り合う2つの端子部172、272間の角度θは、90°<θ<180°の関係を満たしている。
 第2及び第3実施形態では、隣り合う2つの端子部172、272間の角度θは、θ=120°の関係を満たしているが、この構成に限定されない。角度θは、90°<θ<180°の関係を満たしていれば、他の角度であってもよい。軸線130A周りのピッチ(間隔)は、均等でなくてもよい。
 第2及び第3実施形態では、軸線130Aに沿った断面における接触面172a、272aの形状は、径方向内向きに凸となる湾曲形状であるが、この構成に限定されない。接触面172a、272aの形状は、接点137に接触可能な形状、すなわち接触面172a、272aと軸線130Aとの距離がガイドワイヤ130の接点137の半径よりも小さな形状であれば、限定されない。接触面172a、272aの形状は、軸線130Aと平行に延びる曲面又は平面であってもよい。
 第2及び第3実施形態では、軸線130Aと垂直な断面における接触面172a、272aの形状は、直線形状であるが、この構成に限定されない。この断面における接触面172a、272aの形状は、軸線130A側に凸となる曲線であっても、逆に軸線130A側に凹となる曲線であってもよい。軸線130A側に凹となる曲線の場合、ガイドワイヤ130の挿脱時の抵抗とならないように、接触面172a、272aの曲率半径が、接点137の外面の曲率半径よりも大きいことが好ましい。
 第2及び第3実施形態では、コネクタ140は、4つの端子144、244を備えているが、この構成に限定されない。端子144、244の数は、対応するガイドワイヤ130の接点137の数と同数であればよく、例えば、2つ又は3つあるいは5つ以上であってもよい。
 第2及び第3実施形態では、各フック部152の遠位端を支点として、近位端側が軸線130Aに対する径方向の内向きへ弾性変形して把持部品141をガイド部品147にスライドしているが、把持部品141とガイド部品147はネジ嵌合されていてもよく、その形態は特に限定されない。また把持部品141の把持片151は単数でも複数でもよく、把持部品141は本体150と把持片151とが別部材であってもよい。
 第2及び第3実施形態では、支持部品148の内表面にロック部169を設けているが、支持部品148が筒状カバー145と一体に形成されて、一体に形成された筒状カバー145自体の内表面にロック部169を設けていてもよい。またロック部169は、対応する把持部品141の凹部152aの数に合わせておればよく、例えば、2つ又は3つあるいは5つ以上であってもよい。
 第2及び第3実施形態では、圧力センサ111のコネクタ140としているが、圧力センサに限らず、血管内において血液の物理量を測定できるものであればよい。計測素子は、例えば、血管内の血液の流速を計測する流速センサ、血管内の血流の流量を測定する流量センサ、血液の温度を測定する温度センサ等であってもよい。
[第4実施形態]
[ガイドワイヤシステム310]
 図24に示されるように、ガイドワイヤシステム310は、ガイドワイヤ330と、演算装置320と、ガイドワイヤ330及び演算装置320を接続するメス型コネクタ340と、を備える。ガイドワイヤ330は、細長な索体であり、冠状動脈等の血管内に挿入可能である。ガイドワイヤ330は、血管内の圧力に応じて電気情報を出力する圧力センサ311(図26参照、センサの一例)を遠位端部に備えている。
 演算装置320は、ガイドワイヤ330の圧力センサ311に電流を供給する電源部321と、圧力センサ311から出力される電気情報を演算処理する演算部322と、演算処理に必要な情報を記憶するメモリ323と、を備える。圧力センサ311から出力される電気情報は、ガイドワイヤ330からメス型コネクタ340及びケーブル324を経由して演算部322に伝達される。演算部322は、圧力センサ311から出力される電気情報に基づいて、血圧を演算する。つまり、ガイドワイヤシステム310は、血圧の測定に使用される。
 図24において、ガイドワイヤ330の両端のうち、固定端(メス型コネクタ340に接続された端)が近位端(図24における左下側の端)であり、自由端(血管へ挿入されるときの先端)が遠位端(図24における左上側の端)である。本明細書においては、ガイドワイヤ330において、近位端のある側を近位端側とし、遠位端のある側を遠位端側とする。
[ガイドワイヤ330]
 図25には、ガイドワイヤ330が示されている。図25において、左側が、ガイドワイヤ330の遠位端側であり、右側が、ガイドワイヤ330の近位端側である。ガイドワイヤ330は、先端部分330A(遠位端部の一例)と、コアワイヤ331(本体の一例)と、オス型コネクタ339(コネクタの一例)と、に大別される。先端部分330Aは、先端ガイド部332と、第1螺旋体333と、ハウジング334と、第2螺旋体335と、を有する。コアワイヤ331とオス型コネクタ339とは、接続管336を介して接続されている。先端部分330A、コアワイヤ331、接続管336、及びオス型コネクタ339は、軸線350に沿って直線状に配置されている。なお、軸線350は、ガイドワイヤ330が撓んだり湾曲したりせず、真っ直ぐな状態にあるときのガイドワイヤ330の軸線を指している。
 コアワイヤ331は、ガイドワイヤ330の骨格を構成する円筒形状の部材であり、例えばステンレス製の管である。先端ガイド部332は、遠位端に配置された遠位端側に凸となる半球状部材であり、血管壁に当接することにより、ガイドワイヤ330の進行方向を血管に沿うように案内する。第1螺旋体333及び第2螺旋体335は、螺旋形状に巻回された線材であり、ガイドワイヤ330の遠位端部が血管に沿いやすいように、コアワイヤ331よりも曲がりやすく構成されている。
 ハウジング334は、その内部空間に圧力センサ311(電子部品の一例)を収納する筐体である。ハウジング334は、2つの貫通孔334aを有する。なお、2つの貫通孔334aは、軸線350に対して180°対称に配置されており、図24においては、一方の貫通孔334aのみが現れている。貫通孔334aを介して、ハウジング334の内部に血液が進入して、圧力センサ311のダイヤフラム313(図26)に接触する。
 コアワイヤ331の遠位端からハウジング334へ向かって、第2螺旋体335の内部空間をテーパピン338が延びている。テーパピン338は、第2螺旋体335の曲げ剛性を補強する部材である。テーパピン338は円柱形状であり、コアワイヤ331の遠位端からハウジング334へ向かって徐々に外径が小さくなっている。なお、各図には示されていないが、ハウジング334の遠位端から先端ガイド部332へ向かって、第1螺旋体333の内部空間を先端ガイドピンが延びている。先端ガイドピンは、円柱形状であり、第1螺旋体333の曲げ剛性を補強する部材である。先端ガイドピンは、ハウジング334及び先端ガイド部332に固定されている。
 図26に示されるように、圧力センサ311は、センサ本体312と、ダイヤフラム313と、ブリッジ回路314と、4つの導電線315と、接続部316と、を備える。センサ本体312は、コアワイヤ331に固定されたテーパピン338に、例えば接着剤で構成された接続部316により固定されている。センサ本体312には、ダイヤフラム313、ブリッジ回路314、及び4つの導電線315が取り付けられている。ブリッジ回路314は、4つの抵抗体317の全てが測定用の歪みゲージとして機能するフルブリッジ回路である。ブリッジ回路314は、4つの抵抗体317と、4つの端子318A、318Bと、4つの接続体319とを備える。4つの抵抗体317は、ダイヤフラム313に固定されている。4つの端子318A、318Bは、2つの入力端子318Aと、2つの出力端子318Bとからなる。各接続体319は、各抵抗体317を各端子318A、318Bに電気的に接続する。各導電線315は、各端子318A、318Bに電気的に接続されており、コアワイヤ331の内部空間を基端へ向かって延びている。
 ガイドワイヤ330が血管内に挿入されて、圧力センサ311に血圧が加わった状態では、血圧に応じてダイヤフラム313が弾性変形する。ダイヤフラム313の弾性変形に伴って、4つの抵抗体317が弾性変形し、4つの抵抗体317の電気抵抗値が変化する。この状態で、2つの入力端子318A間に電圧が印加されると、2つの出力端子318Bの間に電位差が発生する。この電位差に基づいて、演算装置320(図24)において血圧が演算される。
 図27に示されるように、コアワイヤ331の近位端部には、近位端に向かって外径が縮小するテーパ部341と、テーパ部341から近位端へ延出された小径部342と、が形成されている。小径部342の外径は、テーパ部341より遠位端におけるコアワイヤ331の外径より小さく、且つ軸線350に沿って一定の外径である。小径部342の軸線350に沿った長さは、接続管336の軸線350に沿った長さよりも長い。コアワイヤ331の近位端は開口しており、コアワイヤ331の内部空間に挿通された4本の導電線315が、近位端の開口から外部へ延びている。
 図25,27に示されるように、接続管336は、コアワイヤ331の近位端部とオス型コネクタ339の遠位端部とを接続する。接続管336は、例えばステンレスなどの導電性材料からなる管であり、近位端及び遠位端がそれぞれ開口している。接続管336の外径は、コアワイヤ331のテーパ部341から遠位端側の外径と、ほぼ等しい。接続管336の内径は、コアワイヤ331の小径部342の外径と、ほぼ等しい。接続管336の内面が、小径部342の外面に接触することによって、接続管336とコアワイヤ331とが電気的に接続されている。接続管336は、小径部342に対して接着剤などで固定されていない状態において、小径部342に対して軸線350に沿って移動可能である。接続管336は、小径部342に固定された状態において、コアワイヤ331の近位端から延びる4本の導電線315を覆う。
 図25,27に示されるように、オス型コネクタ339は、4つの電極リング337A,337B,337C,337D及び5つの絶縁リング343が交互に繋ぎ合わされてなる円管形状の複合体344の内部空間に、4本の電極ピン345が挿入されたものである。
 各電極リング337A,337B,337C,337Dは、円筒形状であり、内面と外面とが導通される導電性を有する。各電極リング337A,337B,337C,337Dは、例えば導電性部材から形成されたものであってもよいし、円筒形状の部材の表面に導電性部材がメッキなどされたものであってもよい。絶縁リング343は、円筒形状であり、ポリイミドなどの絶縁性材料からなるものである。各電極リング337A,337B,337C,337Dの内径及び外径と絶縁リング343の内径及び外径は、それぞれ等しい。5つの絶縁リング343の間に各電極リング337A,337B,337C,337Dがそれぞれ配置されて、一体に固定されることによって、円管形状の複合体344が形成されている。各電極リング337A,337B,337C,337D及び各絶縁リング343は、例えば軸線350に沿った長さが同じであってもよいし、それぞれ異なっていてもよい。複合体344の外径は、接続管336の外径と、ほぼ等しい。
 図28に示されるように、4本の電極ピン345A,345B,345C,345Dは、軸線350に沿った長さがそれぞれ異なる円柱形状の部材である。4本の電極ピン345A,345B,345C,345Dは、導電性材料からなるもの又は表面に導電性部材がメッキされたものであり、最外面が絶縁コートされたものである。4本の電極ピン345A,345B,345C,345Dの外径は等しい。本明細書において、4本の電極ピン345A,345B,345C,345Dを、特に区別せずに説明する場合には、単に「電極ピン345」と称することがある。
 図28に示されるように、4本の電極ピン345A,345B,345C,345Dの各遠位端部は、絶縁コートが無い導通部346である。各導通部346は、各導電線315と、一対一に接続される。同図に示されるように、4本の電極ピン345A,345B,345C,345Dが、各近位端の軸線350に沿った方向の位置を併せて並べられた状態において、各遠位端部の導通部346(図28における左側に位置する導通部346)は、軸線350に沿った方向の位置が重複しない。
 4本の電極ピン345A,345B,345C,345Dは、それぞれ2つの導通部346を有する。軸線350に沿った長さが4本の中で最も短い電極ピン345Aは、近位端部(図28における右側の端部)から若干離れた位置に、絶縁コートが無い導通部346を有する。電極ピン345Aの近位端側の導通部346は、複合体344において最も近位端側に位置する電極リング337Aの軸線350に沿った方向の位置に対応している。
 次に短い電極ピン345Bは、近位端から離れた位置に導通部346を有する。電極ピン345Bの近位端側の導通部346は、複合体344において近位端から2つめの電極リング337Bの軸線350に沿った方向の位置に対応している。図28に示される状態において、電極ピン345Aの近位端側の導通部346と、電極ピン345Bの近位端側の導通部346とは、軸線350に沿った方向(図28における左右方向)の位置が重複しない。
 同様に、3番目に短い電極ピン345Cにおける近位端側の導通部346は、複合体344において近位端から3つめの電極リング337Cの軸線350に沿った方向の位置に対応している。また、最も長い電極ピン345Dにおける近位端側の導通部346は、複合体344において近位端から4つめの電極リング337Dの軸線350に沿った方向の位置に対応している。図28に示される状態において、4本の電極ピン345A,345B,345C,345Dのいずれの導通部346も、軸線350に沿った方向の位置が他の導通部346と重複しない。
 図27に示されるように、4本の電極ピン345A,345B,345C,345Dは、各近位端の位置を合わせた状態で複合体344の内部空間に挿入されている。4本の電極ピン345A,345B,345C,345Dの遠位端部は、複合体344の遠位端から外部へ延びており、遠位端側の各導通部346が外部へ露出されている。4本の電極ピン345A,345B,345C,345Dは、複合体344の内部空間に挿入された状態において、各遠位端の軸線350に沿った方向の位置が異なっている。
 図29に示されるように、4本の電極ピン345A,345B,345C,345Dは、複合体344の内部空間において、周方向の位置が異なって配置されている。つまり、4本の電極ピン345A,345B,345C,345Dは、1つに束ねられた状態となっている。4本の電極ピン345A,345B,345C,345Dは、それぞれが複合体344の内面に当接しており、且つ他の2つの電極ピン345とそれぞれ当接している。これにより、複合体344の内部空間において、4本の電極ピン345A,345B,345C,345Dが安定的に配置されている。なお、同図には示されていないが、複合体344の中心(軸線350の位置)に、4本の電極ピン345A,345B,345C,345Dとそれぞれ当接する円柱形状の芯材が配置されてもよい。
 図29に示されるように、例えば、複合体344において近位端から3番目の電極リング337Cにおいては、3番目に短い電極ピン345Cの近位端側の導通部346が、3番目の電極リング337Cの内面に接触しており、半田付けなどによって固定されることによって、電気的に導通されている。その他の電極ピン345A,345B,345Dの外周面は絶縁コートされているので、3番目の電極リング337Cとは当接しているものの絶縁されている。このようにして、4本の電極ピン345A,345B,345C,345Dのそれぞれの近位端側の導通部46が、各電極リング337A,337B,337C,337Dと一対一に電気的に接続されている。
[ガイドワイヤ330の製造方法]
 以下、ガイドワイヤ330の製造方法、特にコアワイヤ331とオス型コネクタ339との接続方法が説明される。
 圧力センサ311などが予め組み付けられたコアワイヤ331の近位端からは、4本の導電線315が延びている。オス型コネクタ339は、複合体344の内部空間に4本の電極ピン345A,345B,345C,345Dが挿入されて、各導通部346が各電極リング337A,337B,337C,337Dとそれぞれ接続された状態に組み付けられている。
[第1工程]
 図30に示されるように、コアワイヤ331の小径部342に接続管336を外嵌させて、最も遠位端側へ移動させた外嵌状態とする。外嵌状態において、接続管336は、小径部342の近位端から軸線350に沿った方向へ突出していないか、突出していたとしても僅かである。また、外嵌状態において、4本の導電線315は、接続管336の近位端から外へ延びている。この外嵌状態において、各導電線315と各電極ピン345とを、半田付けなどによって電気的に接続する。各導電線315は、例えばそれぞれの絶縁コートが色分けされることにより種別が判別可能である。また、各電極ピン345は、複合体344から突出している遠位端の位置によって、いずれの電極リング337A,337B,337C,337Dに接続されたものであるかを判別可能である。
[第2工程]
 各導電線315と各電極ピン345とを電気的に接続した後、外嵌状態の接続管336を、コアワイヤ331の小径部342から軸線350に沿った方向へ突出するように移動させる。これにより、図25に示されるように、各導電線315と各電極ピン345の導通部346との接続箇所を接続管336が覆って、接続管336の近位端部がオス型コネクタ339に接触する。そして、接続管336を、コアワイヤ331の小径部342及びオス型コネクタ339に対して接着剤などによって固定することによって接続する。
[第4実施形態の作用効果]
 ガイドワイヤ330によれば、オス型コネクタ339を予め組立品としても、電極ピン345の導通部346が複合体344の遠位端から外方へ突出しているので、導通部346と導電線315との接続が容易である。また、仮に、導通部346と導電線315との接続工程において不具合が生じても、オス型コネクタ339のみを交換すればよいので、生産性がよい。
 また、各電極ピン345は、複合体344の内部空間において、周方向の位置が異なって配置されているので、複合体344の内部空間において各電極ピン345が束ねられた状態となることによって、オス型コネクタ339の強度が保持される。
 また、複合体344の内部空間に収容された各電極ピン345の遠位端側の導通部346は、軸線350に沿った方向の位置が異なるので、各電極ピン345と各電極リング337A,337B,337C,337Dとの接続関係が、導通部346の位置によって容易に把握することができる。
 また、各電極ピン345は、最外面が絶縁コートされており、遠位端部及び接続される各電極リング337A,337B,337C,337Dにそれぞれ対応する位置に導通部346を有しており、オス型コネクタ339において、各導通部346が軸線350に沿った方向において重複しないので、各電極ピン345の各導通部346同士の短絡を抑制することができる。
 また、各導電線315と各電極ピン345との接続部分を覆う接続管336が、コアワイヤ331及びオス型コネクタ339と別部品として構成されているので、接続管336がコアワイヤ331及びオス型コネクタ339に接続されていない状態において、各導電線315及び各電極ピン345の導通部346を覆う部材が無く、各導電線315と各電極ピン345の導通部346とを電気的に接続する作業が容易である。
 また、コアワイヤ331の遠位端部に小径部342が設けられており、接続管336が小径部342に対して軸線350に沿った方向へ移動可能なので、接続管336の移動によって、導電線315と電極ピン345の導通部346とが、容易に外部に露出されたり、覆われたりする。また、接続管336の外径と、コアワイヤ331のテーパ部341より遠位端側の外径とを等しくすることができる。
 また、接続管336は、導電性材料からなるものであってコアワイヤ331と電気的に接続されているので、接続管336を通じて、コアワイヤ331をアースすることが容易である。
 第4実施形態におけるガイドワイヤ330の製造方法によれば、接続管336がコアワイヤ331及びオス型コネクタ339に接続されていない状態において、各導電線315と各電極ピン345の導通部346との接続を行うので、各導電線315と各電極ピン345の導通部346とを覆う部材が無く、作業性がよい。
 また、接続管336がコアワイヤ331の小径部342に対して外嵌状態から移動されることによって、各導電線315と各電極ピン345の導通部346とが、容易に外部に露出されたり、覆われたりする。
[第4実施形態の変形例]
 前述された第4実施形態におけるガイドワイヤ330の製造方法においては、外嵌状態において接続管336がコアワイヤ331の小径部342に外嵌されているが、小径部342に代えて、オス型コネクタ339に接続管336を外嵌させた状態を外嵌状態としてもよい。この外嵌状態の場合、接続管336の内径は、オス型コネクタ339の外径と、ほぼ等しい。各導電線315と各電極ピン345の導通部346との接続が行われた後に、外嵌状態の接続管336が、オス型コネクタ339から軸線350に沿った方向へ突出するように移動される。
 また、前述された第4実施形態におけるガイドワイヤ330の製造方法において、接続管336が外嵌状態にされることなく、ガイドワイヤ330及びオス型コネクタ339のいずれにも外嵌されていない状態で、各導電線315と各電極ピン345の導通部346との接続が行われ、その後に、例えば、オス型コネクタ339の近位端部に接続管336が外嵌されつつ遠位端部へ移動されて、接続管336が、コアワイヤ331の小径部342及びオス型コネクタ339に外嵌されて接続されてもよい。
 また、ガイドワイヤ330において接続管336は必須の構成では無く、接続管336を有しないガイドワイヤ330として構成されてもよい。例えば、コアワイヤ331の近位端とオス型コネクタ339とが直接に連結されてもよい。その場合、コアワイヤ331の近位端から延びる各導電線315が、対応する各電極ピン345の導通部346と接続され、各導電線315が、撓んだ状態でコアワイヤ331の内部空間に収容される。
 また、前述された第4実施形態における導電線315、電極リング337A,337B,337C,337D、及び電極ピン345の本数は一例に過ぎず、導電線315、電極リング337A,337B,337C,337D、及び電極ピン345は単数であっても、任意の複数であってもよい。
 また、ガイドワイヤ330に設けられた圧力センサ311は、電子部品の一例に過ぎず、圧力以外の血液や血管の物理量(温度、流速など)を計測する他のセンサや電子回路が設けられてもよい。また、前述された第4実施形態において示されたガイドワイヤ330の遠位端側の構成は一例に過ぎず、螺旋体やテーパピン、ハウジングなどの構成は、適宜変更されてもよいことは言うまでもない。
10・・・圧力測定装置
11・・・圧力センサ
12・・・センサ本体
12a・・・遠位端面
12b・・・近位端面
13・・・ダイヤフラム
14・・・ブリッジ回路
15・・・導電線
16・・・被覆部材
17・・・抵抗体
17A・・・第1抵抗体
17B・・・第2抵抗体
18・・・端子
18A、18C・・・入力端子
18B、18D・・・出力端子
22・・・貫通孔
24・・・遠位導電層(導電層のうちの遠位端面に積層された部分)
26・・・接続部
30・・・ガイドワイヤ
30A・・・軸方向
31・・・コアワイヤ
34・・・ハウジング
39・・・テーパピン
110・・・ガイドワイヤシステム
111・・・圧力センサ
130・・・ガイドワイヤ
130A・・・軸線
135・・・第2螺旋体
137・・・接点
140・・・コネクタ
141・・・把持部品(把持部の一例)
142・・・コネクタ本体
143・・・ケーブル
144、244・・・端子
147・・・ガイド部品(ガイド部の一例)
148・・・支持部品(支持部の一例)
150・・・本体
150a・・・挿通孔
151・・・把持片
153・・・嵌合部
165a・・・ガイド面
169・・・ロック部
172、272・・・端子部
172a、272a・・・接触面
180・・・本体
181・・・収束管
θ・・・角度
311・・・圧力センサ(電子部品)
315・・・導電線
330・・・ガイドワイヤ
331・・・コアワイヤ(本体)
336・・・接続管
337A,337B,337C,337D・・・電極リング
339・・・オス型コネクタ
341・・・テーパ部
342・・・小径部
345・・・電極ピン
346・・・導通部
 

Claims (27)

  1.  ガイドワイヤを把持する把持部と、
     上記把持部を、上記把持部に把持されたガイドワイヤの軸線周りに回転可能に支持する支持部と、
     上記把持部に把持されたガイドワイヤの接点と電気的に接続する端子と、
     上記支持部に対してガイドワイヤの軸線周りに回転可能なガイド部と、を備えており、
     上記把持部は、
     ガイドワイヤの挿通孔を有する本体と、
     上記本体から上記挿通孔の軸線に沿って延びており、当該軸線に対する径方向の内向きへ弾性変形可能な把持片と、を備えており、
     上記ガイド部は、上記把持片を上記径方向内向きへ案内するガイド面を有しており、
     上記把持片は、上記把持部が上記ガイド部に対して上記挿通孔の軸線に沿ってスライドされることによって、上記ガイド面に当接して上記径方向内向きへ弾性変形するガイドワイヤ用コネクタ。
  2.  上記支持部は、上記把持部を、上記把持片が上記ガイド面に当接した位置において上記スライドをロックし、かつ上記把持片を上記ガイドワイヤの軸線周りに回転可能とするロック部を備えており、
     上記把持部は、上記本体と一体的に成形され、上記径方向の内向きに弾性変形可能なフック部を備えており、
     上記フック部の近位端部には、凹部が形成され、上記凹部は、上記ロック部と係合可能である請求項1に記載のガイドワイヤ用コネクタ。
  3.  上記把持部は、上記把持片が上記ガイド面に当接した位置において上記ガイド部に当接して嵌合する嵌合部を備えており、
     上記ガイド部は、上記嵌合部に嵌合される被嵌合部を備えている、請求項1又は2に記載のガイドワイヤ用コネクタ。
  4.  上記端子は、上記把持部に把持された上記ガイドワイヤの軸線周りに配置された少なくとも3つの端子部を有しており、
     上記少なくとも3つの端子部のそれぞれは、上記把持部に把持された上記ガイドワイヤの径方向外向きへ弾性的に変位しつつ上記接点とそれぞれ当接している請求項1から3のいずれかに記載のガイドワイヤ用コネクタ。
  5.  隣り合う2つの端子部間における上記ガイドワイヤの軸線周りの角度θは、90°<θ<180°の関係を満たしている請求項1から4のいずれかに記載のガイドワイヤ用コネクタ。
  6.  上記角度θは、θ=120°の関係を満たしている請求項5に記載のガイドワイヤ用コネクタ。
  7.  上記各端子部は、上記ガイドワイヤの上記接点と対向する接触面を有しており、
     上記接触面は、上記把持部に把持された上記ガイドワイヤの軸線に沿った断面が、当該ガイドワイヤの径方向内向きへ凸となる湾曲形状である請求項1から6のいずれかに記載のガイドワイヤ用コネクタ。
  8.  上記各端子部は板バネであって、上記端子は、上記各板バネにおける上記ガイドワイヤの軸線に沿った方向の両端それぞれが周方向に沿って円筒形状に一体的に連続する形状である請求項1から7のいずれかに記載のガイドワイヤ用コネクタ。
  9.  上記端子は、
     上記各板バネにおける上記ガイドワイヤの軸線に沿った方向の一端が周方向に沿って円筒形状に一体的に連続する本体と、
     上記各板バネの他端に外嵌されており、拡径するように弾性変形可能な収束管と、を備える請求項1から8のいずれかに記載のガイドワイヤ用コネクタ。
  10.  管状の本体と、
     上記本体の内部空間に挿通されて、上記本体の近位端部から延出された導電線と、
     管状であって、当該管状の外周面に露出された電極リング、及び当該電極リングと接続されており当該管状の内部空間を通じて遠位端部から延出されて上記導電線と遠位端部において接続された電極ピンを有するコネクタと、を具備するガイドワイヤ。
  11.  複数の上記導電線と、
     軸線方向へ離れて位置する複数の上記電極リングと、
     上記各電極リングとそれぞれ接続された複数の上記電極ピンと、を有しており、
     上記各導電線と上記各電極ピンとが一対一にそれぞれ接続された請求項10に記載のガイドワイヤ。
  12.  上記各電極ピンは、上記コネクタの内部空間において、周方向の位置が異なって配置されている請求項11に記載のガイドワイヤ。
  13.  上記各電極ピンの遠位端部は、上記接続管の内部空間において、軸線方向の位置が異なって配置されている請求項11又は12に記載のガイドワイヤ。
  14.  上記電極ピンは、外周が絶縁コートされており、上記遠位端部及び接続される上記電極リングに対応する位置に当該絶縁コートが無い導通部を有しており、
     上記各導通部において、上記導電線及び上記電極リングとそれぞれ接続されており、
     上記各電極ピンの各導通部は、軸線方向において重複しない請求項11から13のいずれかに記載のガイドワイヤ。
  15.  上記導電線及び上記電極ピンを覆い、上記本体の近位端部及び上記コネクタの遠位端部を接続する接続管を、更に具備する請求項10から14のいずれかに記載のガイドワイヤ。
  16.  上記本体は、近位端に向かって外径が縮小するテーパ部と、当該テーパ部から近位端へ延出された小径部と、を有しており、
     上記接続管は、上記小径部に外嵌された状態で当該小径部に対して軸線方向へ移動可能である請求項15に記載のガイドワイヤ。
  17.  上記接続管は、導電性材料からなるものであって、上記本体と電気的に接続されている請求項15又は16に記載のガイドワイヤ。
  18.  上記本体の遠位端部に位置して上記導電線と接続されており、流体の物理量に応じた電気信号を出力する電子部品を、更に具備する請求項10から17のいずれかに記載のガイドワイヤ。
  19.  管状の本体の内部空間に挿通されて、上記本体の近位端部から延出された導電線と、管状のコネクタが具備する電極リングと接続されており、当該コネクタの内部空間を通じて遠位端部から延出された電極ピンと、を電気的に接続する第1工程と、
     上記導電線及び上記電極ピンを覆って、上記本体の近位端部及び上記コネクタの遠位端部に接続管を接続する第2工程と、を含むガイドワイヤの製造方法。
  20.  上記第1工程において、上記接続管を上記本体又は上記コネクタに外嵌させた外嵌状態として、上記導電線と上記電極ピンとを電気的に接続し、
     上記第2工程において、上記外嵌状態の上記接続管を、上記本体の近位端部から軸線方向へ突出する方向、又は上記コネクタの遠位端部から軸線方向へ突出する方向へ移動させる請求項19に記載のガイドワイヤの製造方法。
  21.  可撓性を有し、生体の管腔内に挿入可能なガイドワイヤと、上記ガイドワイヤ内に設けられたセンサと、を備える圧力測定装置であって、
     上記ガイドワイヤは、上記センサを収容する筒形状のハウジングを有しており、
     上記センサは、
     上記ガイドワイヤの軸方向の遠位側に面する遠位端面を有するセンサ本体と、
     上記遠位端面上に配置されたダイヤフラムと、
     上記遠位端面上に配置され、上記ダイヤフラムを囲むブリッジ回路と、
     上記ブリッジ回路と接続された4つの導電線と、を具備しており、
     上記ブリッジ回路は、上記ダイヤフラムの外周部に固定され、上記ダイヤフラムの弾性変形に伴って電気抵抗値が変化する4つの抵抗体と、
     上記4つの抵抗体及び上記4つの導電線と接続された4つの端子と、を備える圧力測定装置。
  22.  上記センサの上記遠位端面より遠位側に空間が形成されている請求項21に記載の圧力測定装置。
  23.  上記ダイヤフラムの形状は、円板形状である請求項21又は22に記載の圧力測定装置。
  24.  上記各端子は、上記4つの抵抗体のうち隣り合う2つの抵抗体の間に配置されている請求項21から23のいずれかに記載の圧力測定装置。
  25.  上記センサ本体は、
     上記軸方向の近位側に面する近位端面と、
     上記遠位端面及び上記近位端面に開口しており、上記軸方向に沿って形成された4つの貫通孔と、
     上記遠位端面のうち上記4つの貫通孔の開口の周囲にそれぞれ積層された4つの導電層と、を有しており、
     上記各端子は、上記各導電層である請求項21から24のいずれかに記載の圧力測定装置。
  26.  上記センサは、上記4つの導電層及び上記4つの導電線の一部を被覆し、かつ上記各導電層と上記各導電線との間の各接続部を少なくとも被覆する被覆部材を備える請求項25に記載の圧力測定装置。
  27.  上記ガイドワイヤは、コアワイヤと、上記コアワイヤの遠位端部に固定されたテーパピンとを備え、
     上記テーパピンは上記被覆部材に連結されている請求項26に記載の圧力測定装置。
     
PCT/JP2017/030930 2016-08-31 2017-08-29 圧力測定装置、ガイドワイヤ用コネクタ、ガイドワイヤ及びガイドワイヤの製造方法 WO2018043483A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN202210147963.9A CN114533007A (zh) 2016-08-31 2017-08-29 导丝和制造导丝的方法
US16/318,820 US11707200B2 (en) 2016-08-31 2017-08-29 Pressure measurement device, guide wire connector, guide wire, and method for manufacturing guide wire
EP21177120.9A EP3903675A1 (en) 2016-08-31 2017-08-29 Pressure measurement device
CN201780052905.5A CN109688911B (zh) 2016-08-31 2017-08-29 压力测量装置
EP21177079.7A EP3903674A1 (en) 2016-08-31 2017-08-29 Guide wire and method for manufacturing guide wire
EP17846488.9A EP3508115A4 (en) 2016-08-31 2017-08-29 PRESSURE MEASURING DEVICE, GUIDEWIRE CONNECTOR, GUIDEWIRE, AND METHOD FOR MANUFACTURING A GUIDEWIRE
CN202210147959.2A CN114504307A (zh) 2016-08-31 2017-08-29 导丝连接器
US18/140,180 US20230293031A1 (en) 2016-08-31 2023-04-27 Guide wire and method for manufacturing guide wire
US18/140,785 US20230263413A1 (en) 2016-08-31 2023-04-28 Guide wire connector

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2016-170383 2016-08-31
JP2016170384A JP6699463B2 (ja) 2016-08-31 2016-08-31 ガイドワイヤ用コネクタ
JP2016170383 2016-08-31
JP2016-170384 2016-08-31
JP2017018408A JP6874400B2 (ja) 2017-02-03 2017-02-03 ガイドワイヤ及びガイドワイヤの製造方法
JP2017-018408 2017-02-03
JP2017-115312 2017-06-12
JP2017115312A JP6866779B2 (ja) 2016-08-31 2017-06-12 圧力測定装置

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US16/318,820 A-371-Of-International US11707200B2 (en) 2016-08-31 2017-08-29 Pressure measurement device, guide wire connector, guide wire, and method for manufacturing guide wire
US18/140,180 Division US20230293031A1 (en) 2016-08-31 2023-04-27 Guide wire and method for manufacturing guide wire
US18/140,785 Division US20230263413A1 (en) 2016-08-31 2023-04-28 Guide wire connector

Publications (1)

Publication Number Publication Date
WO2018043483A1 true WO2018043483A1 (ja) 2018-03-08

Family

ID=61301849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030930 WO2018043483A1 (ja) 2016-08-31 2017-08-29 圧力測定装置、ガイドワイヤ用コネクタ、ガイドワイヤ及びガイドワイヤの製造方法

Country Status (3)

Country Link
US (2) US20230293031A1 (ja)
CN (3) CN109688911B (ja)
WO (1) WO2018043483A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112378557B (zh) * 2020-11-12 2022-03-18 北京航空航天大学 一种基于x光图像的介入器械前端受力检测方法及系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376880U (ja) * 1977-07-13 1978-06-27
JPH07503163A (ja) * 1992-01-28 1995-04-06 バクスター インターナショナル インコーポレーテッド ガイドワイヤ伸張装置
JPH09499A (ja) * 1995-06-22 1997-01-07 Terumo Corp ガイドワイヤ
JPH11178932A (ja) * 1997-12-18 1999-07-06 Terumo Corp 生体内挿入用装置
JP2001516938A (ja) * 1997-09-10 2001-10-02 ラディ・メディカル・システムズ・アクチェボラーグ ワイパ装置を有する雌型コネクタ
JP2002542864A (ja) * 1999-05-04 2002-12-17 アペックス メディカル、インコーポレイテッド 平坦チューブ式圧力センサー
JP2003525638A (ja) * 1997-09-29 2003-09-02 シメッド ライフ システムズ インコーポレイテッド 脈管内画像ガイドワイヤ
JP2006519072A (ja) * 2003-02-26 2006-08-24 ボストン サイエンティフィック リミテッド 長尺状体内医療器具
US20080294030A1 (en) * 2007-05-24 2008-11-27 Radi Medical Systems Ab Torque device for a sensor guide wire
JP2013102845A (ja) * 2011-11-11 2013-05-30 Piolax Medical Device:Kk ガイドワイヤ保持具
WO2014188969A1 (ja) * 2013-05-21 2014-11-27 テルモ株式会社 カテーテル

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023562A (en) * 1975-09-02 1977-05-17 Case Western Reserve University Miniature pressure transducer for medical use and assembly method
US4566456A (en) * 1984-10-18 1986-01-28 Cordis Corporation Apparatus and method for adjusting heart/pacer rate relative to right ventricular systolic pressure to obtain a required cardiac output
US4886070A (en) * 1988-05-11 1989-12-12 Thermometrics, Inc. Method of in vivo calibration of a pressure sensor
US5181860A (en) * 1990-03-28 1993-01-26 Daiichi Denshi Kogyo Kabushiki Kaisha Electrical connector with rotatable locking ring
EP0738495B1 (en) * 1995-04-18 2002-06-26 Schneider (Europe) GmbH Pressure measuring guide wire
WO1997035636A1 (en) * 1996-03-28 1997-10-02 Medtronic, Inc. Detection of pressure waves transmitted through catheter/lead body
JP4233173B2 (ja) * 1999-04-28 2009-03-04 ウィリアム・クック・ユーロップ・アークシャセールスカブ 生体管組織に塞栓コイルを位置決めする組立体
DE10205721A1 (de) * 2002-02-12 2003-08-21 Biotronik Mess & Therapieg Führungsdraht und implantierbare Elektrodenleitung
US6968237B2 (en) * 2002-05-22 2005-11-22 Pacesetter, Inc. Implantable coronary sinus lead and lead system
EP1378968B1 (en) * 2002-07-04 2007-11-07 Sumitomo Wiring Systems, Ltd. A connector
US20040039372A1 (en) * 2002-08-21 2004-02-26 Carmody Patrick J. Over-the-wire catheter having a slidable instrument for gripping a guidewire
US7917228B2 (en) * 2003-05-13 2011-03-29 Medtronic, Inc. Medical lead adaptor assembly
US7155295B2 (en) * 2003-11-07 2006-12-26 Paracor Medical, Inc. Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
CN1882285B (zh) * 2003-11-20 2011-05-11 瑞特医疗技术公司 用于引导导丝在股骨中的安置的引导夹具
US7052310B2 (en) * 2004-01-20 2006-05-30 Sumitomo Wiring Systems, Ltd. Connector
KR20050115535A (ko) * 2004-06-04 2005-12-08 주식회사 이노스테크놀러지 쉴드와이어 단말의 탈피, 납땜 가공방법과 그 가공장치
US20060122681A1 (en) * 2004-12-06 2006-06-08 Kroll Mark W Automatic capture pacing lead
US7691095B2 (en) * 2004-12-28 2010-04-06 St. Jude Medical, Atrial Fibrillation Division, Inc. Bi-directional steerable catheter control handle
JP2006247040A (ja) * 2005-03-09 2006-09-21 Terumo Corp カテーテル組立体
US8545450B2 (en) * 2005-04-08 2013-10-01 Ethicon Endo-Surgery, Inc. Multi-port laparoscopic access device
US20070088230A1 (en) * 2005-09-06 2007-04-19 Fmd Co., Ltd Medical instrument and medical equipment for treatment, and rotational handle device
JP5290630B2 (ja) * 2007-06-05 2013-09-18 ニプロ株式会社 医療用コネクタおよびその製造方法
JP5151322B2 (ja) * 2007-08-31 2013-02-27 住友ベークライト株式会社 ガイドワイヤー固定用医療用具
US8876861B2 (en) * 2007-09-12 2014-11-04 Transluminal Technologies, Inc. Closure device, deployment apparatus, and method of deploying a closure device
US8287458B2 (en) * 2008-04-25 2012-10-16 Pacesetter, Inc. Coronary venous system pressure sensing
CN201223445Y (zh) * 2008-06-23 2009-04-22 北京有色金属研究总院 一种射频消融导管
BRPI1008845B8 (pt) * 2009-02-05 2021-06-22 Synthes Gmbh dispositivo guia para broca e mandril
US20100273355A1 (en) * 2009-04-22 2010-10-28 Tyco Electronics Corporation Image guide wire connection
JP5431038B2 (ja) * 2009-06-17 2014-03-05 モレックス インコーポレイテド 端子及びそれを有するコネクタ
CN102686273B (zh) * 2009-12-30 2015-04-22 心脏起搏器公司 用于医疗电导线的终端连接器装置
SE534960C2 (sv) * 2010-04-30 2012-02-28 St Jude Medical Systems Ab En långsträckt hankontakt för en medicinsk anordning samt metod för att tillverka nämnda hankontakt
JP2012138171A (ja) * 2010-12-24 2012-07-19 Auto Network Gijutsu Kenkyusho:Kk ジョイントコネクタ
JP2012216343A (ja) * 2011-03-31 2012-11-08 Sumitomo Wiring Syst Ltd コネクタ
US9895108B2 (en) * 2012-08-31 2018-02-20 Volcano Corporation Pressure sensing intravascular devices with reduced drift and associated systems and methods
US8965528B2 (en) * 2012-12-03 2015-02-24 Boston Scientific Neuromodulation Corporation Systems and methods for making and using electrical stimulation leads with shaped mesh contact assemblies
WO2014105578A1 (en) * 2012-12-27 2014-07-03 Volcano Corporation Intravascular guidewire with hyper flexible distal end portion
EP2938397B1 (en) * 2012-12-31 2018-10-24 Shanghai MicroPort Medical (Group) Co., Ltd. Cardiac electrical lead
DE102013200154A1 (de) * 2013-01-08 2014-07-10 AdjuCor GmbH Herzunterstützungsvorrichtung mit einer Schale und einer ersten und einer zweiten Hülle
JP6124133B2 (ja) * 2013-07-26 2017-05-10 住友電装株式会社 コネクタ
US9949652B2 (en) * 2013-10-25 2018-04-24 Ablative Solutions, Inc. Apparatus for effective ablation and nerve sensing associated with denervation
US9974573B2 (en) * 2014-10-24 2018-05-22 Mis Ip Holdings Llc Minimally invasive approaches, methods and apparatuses to accomplish sacroiliac fusion
CN204885653U (zh) * 2015-08-27 2015-12-16 桐城信邦电子有限公司 一种导线接头

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376880U (ja) * 1977-07-13 1978-06-27
JPH07503163A (ja) * 1992-01-28 1995-04-06 バクスター インターナショナル インコーポレーテッド ガイドワイヤ伸張装置
JPH09499A (ja) * 1995-06-22 1997-01-07 Terumo Corp ガイドワイヤ
JP2001516938A (ja) * 1997-09-10 2001-10-02 ラディ・メディカル・システムズ・アクチェボラーグ ワイパ装置を有する雌型コネクタ
JP2003525638A (ja) * 1997-09-29 2003-09-02 シメッド ライフ システムズ インコーポレイテッド 脈管内画像ガイドワイヤ
JPH11178932A (ja) * 1997-12-18 1999-07-06 Terumo Corp 生体内挿入用装置
JP2002542864A (ja) * 1999-05-04 2002-12-17 アペックス メディカル、インコーポレイテッド 平坦チューブ式圧力センサー
JP2006519072A (ja) * 2003-02-26 2006-08-24 ボストン サイエンティフィック リミテッド 長尺状体内医療器具
US20080294030A1 (en) * 2007-05-24 2008-11-27 Radi Medical Systems Ab Torque device for a sensor guide wire
JP2013102845A (ja) * 2011-11-11 2013-05-30 Piolax Medical Device:Kk ガイドワイヤ保持具
WO2014188969A1 (ja) * 2013-05-21 2014-11-27 テルモ株式会社 カテーテル

Also Published As

Publication number Publication date
CN114504307A (zh) 2022-05-17
CN109688911A (zh) 2019-04-26
CN114533007A (zh) 2022-05-27
CN109688911B (zh) 2022-03-29
US20230293031A1 (en) 2023-09-21
US20230263413A1 (en) 2023-08-24

Similar Documents

Publication Publication Date Title
JP6615852B2 (ja) 直列的に接続された検知構造を有するカテーテル、並びに較正及び検出の方法
JP5964043B2 (ja) 相互インダクタンス測定に基づいて金属障害を検出するシステム及び方法
JP6324718B2 (ja) 複合型の位置及び圧力検出構造を備えたカテーテル
JP5523775B2 (ja) 接合された中心支柱を備えた力感知カテーテル
US8380276B2 (en) Catheter with thin film pressure sensing distal tip
JP5992163B2 (ja) 直交場成分に基づいて金属障害を検出するシステム及び方法
CN101780303A (zh) 高灵敏度压力感测探针
CN102727207A (zh) 用于导管的大弯曲角度的力测量
US20230263413A1 (en) Guide wire connector
JP6866779B2 (ja) 圧力測定装置
JP6874400B2 (ja) ガイドワイヤ及びガイドワイヤの製造方法
JP6290250B2 (ja) 圧力検出血管内装置、システム、および方法
US11707200B2 (en) Pressure measurement device, guide wire connector, guide wire, and method for manufacturing guide wire
JP6699463B2 (ja) ガイドワイヤ用コネクタ
JP6880583B2 (ja) 圧力測定装置
US20230158278A1 (en) Guide wire
JP6902681B2 (ja) 圧力センサ
US11707231B2 (en) Apparatuses, methods, and systems for contact force sensing
CN114040723A (zh) 接触力传感器以及包括接触力传感器的装置
JP2023504553A (ja) カテーテル接触力センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017846488

Country of ref document: EP

Effective date: 20190401