WO2018043456A1 - 高強度冷延薄鋼板及びその製造方法 - Google Patents

高強度冷延薄鋼板及びその製造方法 Download PDF

Info

Publication number
WO2018043456A1
WO2018043456A1 PCT/JP2017/030849 JP2017030849W WO2018043456A1 WO 2018043456 A1 WO2018043456 A1 WO 2018043456A1 JP 2017030849 W JP2017030849 W JP 2017030849W WO 2018043456 A1 WO2018043456 A1 WO 2018043456A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
martensite
hot
grain size
Prior art date
Application number
PCT/JP2017/030849
Other languages
English (en)
French (fr)
Inventor
美絵 小幡
克利 ▲高▼島
崇 小林
松田 広志
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2019001794A priority Critical patent/MX2019001794A/es
Priority to JP2017558043A priority patent/JP6323627B1/ja
Priority to US16/325,299 priority patent/US11136644B2/en
Priority to EP17846461.6A priority patent/EP3476963B1/en
Priority to CN201780049503.XA priority patent/CN109642281B/zh
Priority to KR1020197004127A priority patent/KR102197431B1/ko
Publication of WO2018043456A1 publication Critical patent/WO2018043456A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc

Definitions

  • the present invention relates to a high-strength cold-rolled thin steel sheet having a tensile strength (TS) of 980 MPa or more and suitable for automobile parts and a method for producing the same.
  • TS tensile strength
  • a DP steel sheet made of a composite structure of soft ferrite and hard martensite is known.
  • C 0.07 to 0.25%
  • Si 0.07 to 0.25%
  • Mn 1.5 to 3.0%
  • Ti 0.005 to 0.09%
  • B 0.0001 to 0.01%
  • P 0.001 to 0.03%
  • S 0.0001 to 0.01%
  • Al 2.5% or less
  • N 0.00.
  • a high-strength steel sheet having a maximum tensile strength of 900 MPa or more with good ductility is disclosed, which is a martensite having a block size of 1 ⁇ m or less and a C concentration in the martensite of 0.3 to 0.9%.
  • the DP steel sheet has a defect that since martensite having high hardness exists in the steel sheet structure, voids are generated at the interface with the soft ferrite during the punching process, and the hole expandability is poor.
  • a TRIP steel sheet containing retained austenite is known as a steel sheet having both high ductility and high strength. Residual austenite undergoes a processing-induced transformation to martensite during deformation, so that both high strength and high ductility can be achieved.
  • the TRIP steel sheet also has a drawback that voids tend to be generated at the interface with soft ferrite due to transformation of retained austenite into martensite during punching, resulting in poor hole expandability.
  • Patent Document 2 by mass, C: 0.05 to 0.35%, Si: 0.05 to 2.0%, Mn: 0.8 to 3.0%, P: 0.0010 to A component satisfying 0.1%, S: 0.0005 to 0.05%, N: 0.0010 to 0.010%, Al: 0.01 to 2.0%, the balance being Fe and inevitable impurities
  • the steel structure is mainly composed of ferrite, bainite, or tempered martensite, and contains a residual austenite phase of not less than 3% and not more than 30%.
  • the central concentration Cgc of the retained austenite phase and the grain boundary concentration of the retained austenite grain By including 50% or more of retained austenite grains in a range where Cgb satisfies Cgb / Cgc> 1.3, the stability of the retained austenite phase interface is improved, and a high-strength thin steel sheet excellent in elongation and hole-expandability is obtained. Shows.
  • the high-strength cold-rolled thin steel sheet is required not to crack during welding in order to obtain excellent joint strength during resistance welding.
  • zinc on the steel sheet surface melts during resistance welding, and tensile stress is generated in the vicinity of the weld, resulting in liquid metal embrittlement and cracking in the steel sheet. May occur. Therefore, in Patent Document 3, by mass%, C: 0.015 to 0.072%, Si: 1.2% or less, Mn: 0.5 to 3.0% or less, P: 0.020% or less, S: 0.030% or less, sol. Al: 0.002 to 1.20%, Si + sol.
  • galvanized steel sheet with a tensile strength of 450 MPa or more, satisfying Al + 0.4 ⁇ Mn ⁇ 1.4%, with the balance being composed of Fe and inevitable impurities An excellent high tensile galvanized steel sheet is disclosed.
  • Japanese Patent No. 4925611 JP 2011-195957 A Japanese Patent No. 3758515
  • Patent Document 1 In order to have both high ductility and hole expansibility in a high-strength cold-rolled thin steel sheet, it is necessary to add C, Si, Mn, etc., but there is a problem that resistance weldability decreases as the content of these increases.
  • the steel sheet of Patent Document 1 actively uses Si to obtain 50% or more ferrite and martensite with a C concentration of 0.3 to 0.9%. Not considered.
  • the high-strength thin steel sheet of Patent Document 2 also contains a large amount of C and Si in order to obtain retained austenite, but no consideration is given to weldability.
  • the steel plate In resistance welding (spot welding), the steel plate normally contacts the electrode vertically, but when assembling automobile parts, depending on the welding location, the steel plate or electrode tilts and the angle between the steel plate and electrode deviates from the vertical ( Striking angle). In that case, the stress load applied to the steel sheet during welding becomes non-uniform, and cracks are likely to occur at places where the load is large.
  • the steel sheet of Patent Document 3 no consideration is given to weld cracking when the hitting angle is applied, and no consideration is given to hole expansibility.
  • the present invention advantageously solves the above-mentioned problems of the prior art, has a tensile strength of 980 MPa or more, has high ductility, and has high resistance weldability with high hole expansibility, and production thereof It aims to provide a method.
  • the inventors of the present invention are keen to obtain a high-strength cold-rolled steel sheet having a tensile strength (TS) of 980 MPa or more, excellent not only in ductility but also in hole expandability, and also in weldability, and a method for producing the same. Repeated examination. As a result, the inventors built fine ferrite, retained austenite, martensite (as-quenched martensite), bainite, and tempered martensite, and further controlled the inter-particle distance of martensite (as-quenched martensite).
  • TS tensile strength
  • the cooling stop temperature after hot rolling is controlled, and further, cold rolling is performed within an appropriate condition range, and further annealing conditions
  • the crystal grains of ferrite, retained austenite, martensite, bainite, and tempered martensite can be made minute in the final steel structure.
  • the present invention has been made based on the above knowledge and has the following features.
  • B 0.0002% or more and 0.0040% or less
  • the component composition comprising the balance Fe and inevitable impurities, Contains 35% or less ferrite, 1% or more and 10% or less retained austenite, 2% or more and 12% or less as-quenched martensite, and 25 to 70% bainite and tempered martensite in total.
  • the component composition further includes, by mass%, V: 0.005% to 0.200%, Cr: 0.05% to 0.20%, Mo: 0.01% to 0.20 %: Cu: 0.05% to 0.20%, Ni: 0.01% to 0.20%, Sb: 0.002% to 0.100%, Sn: 0.002% to 0 100% or less, Ca: 0.0005% or more and 0.0050% or less, Mg: 0.0005% or more and 0.0050% or less, REM: 0.0005% or more and 0.0050% or less.
  • a steel slab having the composition described in [1] or [2] is hot-rolled at a hot rolling start temperature of 1100 ° C. or higher and 1300 ° C. or lower, and a finish rolling temperature of 800 ° C. or higher and 1000 ° C. or lower, After the hot rolling, hot rolling is performed after cooling to a cooling stop temperature of 500 ° C. or less under conditions where the average cooling rate in the temperature range from 700 ° C. to the cooling stop temperature is 5 ° C./s or more and 50 ° C./s or less.
  • a cold rolling step in which cold rolling is performed, and the cold-rolled steel sheet obtained in the cold rolling step is held at a temperature range of 750 ° C. to 900 ° C. for 10 seconds to 900 seconds, and after the holding, 5 ° C.
  • a high-strength cold-rolled thin steel sheet having a tensile strength of 980 MPa or more, having both excellent ductility and hole expandability, and excellent weldability can be obtained.
  • the high-strength cold-rolled thin steel sheet of the present invention is, in mass%, C: 0.04% to 0.12%, Si: 0.15% to 0.95%, Mn: 2.00% to 3. 50% or less, P: 0.050% or less, S: 0.0050% or less, N: 0.0100% or less, Al: 0.010% or more and 2.0% or less, Ti: 0.005% or more. 075% or less, Nb: 0.005% or more and 0.075% or less, B: 0.0002% or more and 0.0040% or less, and has a component composition composed of the balance Fe and inevitable impurities.
  • the above component composition is further in mass%, V: 0.005% to 0.200%, Cr: 0.05% to 0.20%, Mo: 0.01% to 0.20% Cu: 0.05% to 0.20%, Ni: 0.01% to 0.20%, Sb: 0.002% to 0.100%, Sn: 0.002% to 0.000%. 100% or less, Ca: 0.0005% or more and 0.0050% or less, Mg: 0.0005% or more and 0.0050% or less, REM: 0.0005% or more and 0.0050% or less These elements may be contained.
  • % representing the content of the component means “% by mass”.
  • C 0.04% or more and 0.12% or less
  • C has a high solid solution strengthening ability and is effective for increasing the strength of the steel sheet, and is also effective for residual austenite, martensite, bainite and tempered martensite in the present invention. Contributes to formation. In order to obtain such an effect, a content of 0.04% or more is required. If C is less than 0.04%, it becomes difficult to obtain desired retained austenite and martensite. On the other hand, when the content exceeds 0.12%, retained austenite, martensite, bainite, and tempered martensite are excessively formed, so that ductility and hole expandability are lowered, and weldability is further lowered. Therefore, the C content is 0.04% or more and 0.12% or less.
  • the preferable C content for the lower limit is 0.05% or more. More preferably, it is 0.06% or more, More preferably, it is 0.07% or more.
  • the preferable C content for the upper limit is 0.11% or less. More preferably, it is 0.10% or less or less than 0.10%, and further preferably 0.09% or less.
  • Mn 2.00% or more and 3.50% or less
  • Mn contributes to increasing the strength of the steel sheet by solid solution strengthening or improving hardenability, and is an austenite stabilizing element, so that desired retained austenite and martensite are secured. It is an indispensable element. In order to acquire such an effect, content of 2.00% or more is required. On the other hand, if the content exceeds 3.50%, the weldability is deteriorated, excessive austenite and martensite are generated excessively, and the hole expandability is further deteriorated. For this reason, Mn content shall be the range of 2.00% or more and 3.50% or less.
  • the preferable Mn content for the lower limit is 2.20% or more. More preferably it is 2.40% or more, and still more preferably 2.60% or more.
  • a preferable Mn content for the upper limit is 3.30% or less. More preferably it is 3.10% or less, and still more preferably 2.90% or less.
  • P 0.050% or less
  • P is an element contributing to an increase in the strength of the steel sheet by solid solution strengthening.
  • the content exceeding 0.050% causes a decrease in weldability and promotes grain boundary fracture due to grain boundary segregation. Therefore, the P content is 0.050% or less.
  • the lower limit of the P content is not particularly limited, but excessively reducing the P content leads to an increase in production cost, so the P content is preferably 0.0001% or more.
  • S 0.0050% or less
  • S is an element that segregates at the grain boundaries and embrittles the steel during hot working, and also exists in the steel as a sulfide such as MnS and lowers local deformability. If the content exceeds 0050%, the hole expandability is lowered. For this reason, S is limited to 0.0050% or less.
  • the lower limit of the S content is not particularly limited, but excessively reducing the S content leads to an increase in production cost, so the S content is preferably 0.0001% or more.
  • N 0.0100% or less
  • N is an element that is present in the steel as a nitride and lowers the local deformability, and if it exceeds 0.0100%, the hole expandability is lowered. For this reason, N content is limited to 0.0100% or less.
  • the lower limit of the N content is not particularly limited, but excessively reducing the N content leads to an increase in manufacturing cost, so the N content is preferably 0.0001% or more.
  • Al 0.010% or more and 2.0% or less
  • Al is a ferrite-forming element, and is an element that suppresses the formation of carbide (cementite) and contributes to the stabilization of retained austenite in the same manner as Si.
  • it is necessary to contain 0.010% or more.
  • it is 0.015% or more, More preferably, it is 0.020% or more.
  • the Al content is set to 2.0% or less.
  • it is 1.8% or less, More preferably, it is 1.6% or less. Even if the total of Al and Si is 0.95% or less, the effect of the present invention is obtained.
  • Ti not only forms fine carbides and nitrides, but also suppresses coarsening of crystal grains and refines the steel structure after heating, thereby increasing the strength. It is an element that contributes to the rise of. Furthermore, addition of Ti is effective in order not to react B with N. In order to obtain such an effect, it is necessary to contain 0.005% or more of Ti. Preferably it is 0.010% or more, More preferably, it is 0.020% or more. On the other hand, if the Ti content exceeds 0.075%, carbides and nitrides are excessively generated, resulting in a decrease in ductility. For this reason, Ti content is taken as 0.005% or more and 0.075% or less of range. Further, the Ti content is preferably 0.060% or less, more preferably 0.050% or less.
  • B 0.0002% or more and 0.0040% or less
  • B is an effective element that improves hardenability and contributes to an increase in strength. In order to acquire such an effect, it is necessary to contain 0.0002% or more. Preferably it is 0.0007% or more, More preferably, it is 0.0011% or more. On the other hand, if the content exceeds 0.0040%, martensite is excessively generated, so that ductility and hole expandability are lowered. For this reason, B content is taken as 0.0002% or more and 0.0040% or less of range. Further, the B content is preferably 0.0035% or less, more preferably 0.0030% or less.
  • the above-described components are basic components.
  • V 0.005% to 0.200%
  • Cr 0.05% to 0.20%
  • Mo 0.01% to 0.20%
  • Cu 0.05% to 0.20%
  • Ni 0.01% to 0.20%
  • Sb 0.002% to 0.100%
  • Sn 0.002% to 0.100%
  • Ca 0.0005% to 0.0050%
  • Mg 0.0005% to 0.0050%
  • REM 0.0005% to 0.0050%
  • V contributes to strengthening of the steel sheet by generating V-based precipitates, and also contributes to the refinement and homogenization of the steel structure.
  • the V content is set to 0.005% or more. Preferably it is 0.007% or more, More preferably, it is 0.010% or more. On the other hand, if the content exceeds 0.200%, V-based precipitates are excessively generated and ductility is lowered. For this reason, when it contains V, it is preferable to limit V content to the range of 0.005% or more and 0.200% or less. Further, the V content is preferably 0.100% or less, more preferably 0.050% or less.
  • Cr contributes to an increase in strength by solid solution strengthening and contributes to an increase in strength by improving hardenability and promoting martensite formation. In order to acquire such an effect, 0.05% or more of content is required. More preferably, it is 0.06% or more, More preferably, it is 0.07% or more. On the other hand, when it contains Cr exceeding 0.20%, a martensite will produce
  • ⁇ Mo contributes to increasing the strength of the steel sheet by solid solution strengthening, improves hardenability, and promotes the formation of martensite, thereby contributing to an increase in strength.
  • a content of 0.01% or more is required. More preferably, it is 0.02% or more, More preferably, it is 0.04% or more.
  • Mo content when it contains exceeding 0.20%, a martensite will produce
  • it contains Mo it is preferable to limit Mo content to 0.01% or more and 0.20% or less of range. Further, the Mo content is preferably 0.15% or less, more preferably 0.10% or less.
  • Cu contributes to an increase in strength by improving the hardenability and promoting the formation of martensite while contributing to an increase in strength of the steel sheet by solid solution strengthening.
  • 0.05% or more of content is required.
  • it is 0.06% or more, More preferably, it is 0.07% or more.
  • the Cu content is preferably 0.15% or less, more preferably 0.10% or less.
  • Ni contributes to an increase in strength by solid solution strengthening and contributes to an increase in strength by improving hardenability and promoting martensite formation.
  • 0.01% or more of content is required.
  • it is 0.02% or more, More preferably, it is 0.05% or more.
  • it is preferable to limit Ni content to the range of 0.01% or more and 0.20% or less.
  • the Ni content is preferably 0.15% or less, more preferably 0.10% or less.
  • Sb and Sn have an action of suppressing decarburization of the steel sheet surface layer (region of about several tens of ⁇ m from the surface in the thickness direction) caused by oxidation of the steel sheet surface.
  • By suppressing such decarburization of the steel sheet surface layer it is possible to prevent a reduction in the amount of martensite produced in the steel sheet surface layer, which is effective in securing a desired steel sheet strength.
  • Sb and Sn are respectively contained exceeding 0.100%, the effect is saturated. For this reason, when it contains these, it is preferable to limit Sb and Sn to the range of 0.002% or more and 0.100% or less, respectively.
  • Ca, Mg, and REM are all elements used for deoxidation, and are elements that have an action of spheroidizing the shape of the sulfide and improving the adverse effects on the local ductility and hole expansibility of the sulfide.
  • the contents of Ca, Mg, and REM need to be 0.0005% or more, respectively.
  • it exceeds 0.0050% and contains excessively inclusions and the like are increased, and surface defects and internal defects are generated, resulting in a decrease in ductility and hole expandability. For this reason, when it contains these, it is preferable to limit Ca, Mg, and REM to the range of 0.0005% or more and 0.0050% or less, respectively.
  • the balance other than the above components is Fe and inevitable impurities.
  • the element when the said arbitrary component is included below the said lower limit, the element shall be included as an unavoidable impurity.
  • the steel structure contains 35% or less ferrite, 1% or more and 10% or less retained austenite, and 2% or more and 12% or less as-quenched martensite, with the balance being from bainite and tempered martensite. Become.
  • the average crystal grain size of ferrite is 5.0 ⁇ m or less
  • the average crystal grain size of retained austenite is 2.0 ⁇ m or less
  • the average crystal grain size of martensite is 3.0 ⁇ m or less
  • bainite and tempered martensite is 3.0 ⁇ m or less
  • the average crystal grain size of the site phase 4.0 ⁇ m or less
  • the average inter-particle distance of martensite satisfies 1.0 ⁇ m or more.
  • Ferrite Volume ratio of 35% or less and an average crystal grain size of 5.0 ⁇ m or less
  • Ferrite is a structure that contributes to improvement of ductility (elongation).
  • the ferrite has a volume fraction of 35% or less.
  • Range Preferably it is 33% or less, More preferably, it is 30% or less.
  • the volume fraction of ferrite is preferably 10% or more from the viewpoint of improving ductility. More preferably, it is 15% or more, More preferably, it is 20% or more.
  • the average crystal grain size of ferrite exceeds 5.0 ⁇ m, voids generated at the punched end during the hole expansion are easily connected during the hole expansion, so that a good hole expansion property cannot be obtained.
  • the average crystal grain size of ferrite is set to a range of 5.0 ⁇ m or less. Preferably it is 4.5 micrometers or less, More preferably, it is 4.0 micrometers or less.
  • the average crystal grain size of ferrite is usually 1.0 ⁇ m or more and 2.0 ⁇ m or more.
  • Residual austenite volume ratio of 1% or more and 10% or less and an average crystal grain size of 2.0 ⁇ m or less
  • Residual austenite is a ductile phase itself, but it is a structure that contributes to further improving ductility by strain-induced transformation. Yes, it contributes to improvement of ductility and improvement of strength-ductility balance.
  • the retained austenite needs to be 1% or more by volume ratio. Preferably it is 2% or more, more preferably 3% or more. On the other hand, if it exceeds 10%, the hole expandability is lowered. For this reason, a retained austenite shall be 1% or more and 10% or less by volume ratio. Further, the retained austenite is preferably 8% or less, more preferably 6% or less.
  • the average crystal grain size of retained austenite is set to a range of 2.0 ⁇ m or less. Preferably it is 1.5 micrometers or less, More preferably, it is 1.0 micrometers or less. Moreover, the average crystal grain size of retained austenite is usually 0.1 ⁇ m or more or 0.3 ⁇ m or more.
  • Martensite Volume ratio 2% or more and 12% or less and average grain size 3.0 ⁇ m or less Martensite needs 2% or more by volume ratio to obtain a tensile strength of 980 MPa or more. Preferably it is 4% or more, more preferably 6% or more. On the other hand, if it exceeds 12%, voids are likely to occur at the interface with the ferrite during the hole expansion test, leading to a decrease in the hole expansion rate. For this reason, martensite is in a range of 2% to 12% by volume. Further, the volume ratio of martensite is preferably 11% or less, more preferably 10% or less. The martensite here is martensite as it is quenched and is distinguished from tempered martensite described later.
  • the average crystal grain size of martensite is set to a range of 3.0 ⁇ m or less. It is preferably 2.5 ⁇ m or less, more preferably 2.0 ⁇ m or less. Moreover, the average crystal grain size of martensite is usually 0.5 ⁇ m or more or 0.7 ⁇ m or more.
  • Bainite and tempered martensite Average crystal grain size of 4.0 ⁇ m or less
  • tempered martensite means that martensite generated when cooled to a cooling temperature range is heated to a reheating temperature range in an annealing process. , Martensite that has been tempered when held. Bainite and tempered martensite reduce the difference in hardness between soft ferrite, hard martensite and retained austenite, and contribute to the improvement of hole expansibility. For this reason, it is necessary to contain bainite and tempered martensite having an average crystal grain size of 4.0 ⁇ m or less in the structure.
  • the average crystal grain size of bainite and tempered martensite is set to a range of 4.0 ⁇ m or less. Preferably it is 3.8 micrometers or less, More preferably, it is 3.4 micrometers or less.
  • the average crystal grain size is usually 1.5 ⁇ m or more and 2.0 ⁇ m or more.
  • the “average crystal grain size of bainite and tempered martensite” means an average crystal grain size derived without distinguishing between bainite and tempered martensite.
  • the total volume ratio of bainite and tempered martensite is 25% or more because it reduces the hardness difference between soft ferrite, hard martensite, and retained austenite and contributes to improvement of hole expansibility. Preferably it is 30% or more, more preferably 35% or more. Further, if the total volume ratio becomes excessively large, the ductility is lowered, so that it is made 70% or less. Preferably it is 65% or less, More preferably, it is less than 60%. The volume ratio of tempered martensite is often 59% or less.
  • Martensite average inter-particle distance 1.0 ⁇ m or more Voids are formed at the interface between the soft phase and the hard phase, and grow by joining adjacent voids to form cracks. If the distance between the voids is small, the connection of the voids is easily generated, which causes a decrease in local deformability and hole expansibility. Therefore, in order to ensure good ductility and hole expansibility, it is necessary that the average inter-particle distance of martensite be 1.0 ⁇ m or more. Preferably it is 1.5 micrometers or more, More preferably, it is 2.0 micrometers or more. The average interparticle distance is preferably 9.0 ⁇ m or less, more preferably 7.0 ⁇ m or less.
  • the martensite average interparticle distance ⁇ m was calculated using the following equation (1) (Tetsu-to-Hagane, vol. 91, (2005), p. 796-802). Moreover, as mentioned above, martensite means martensite as quenched. Moreover, it exists in the tendency for uniform elongation (uEl) to increase by making the average inter-particle distance of a martensite into the said range.
  • ⁇ m ⁇ 0.9 (V m / 100) ⁇ 1/2 ⁇ 0.8 ⁇ ⁇ d m (1)
  • V m volume fraction of martensite (%)
  • d m the average grain size of martensite ([mu] m).
  • non-recrystallized ferrite, pearlite, and cementite may be generated. If the above limitation is satisfied, the object of the present invention can be achieved. However, the volume ratio is preferably 10% or less for non-recrystallized ferrite, 5% or less for pearlite, and 5% or less for cementite.
  • the thickness of the high-strength cold-rolled thin steel sheet can be appropriately set according to the application. Generally, it is 0.8 to 2.5 mm.
  • the high-strength cold-rolled thin steel sheet having the composition and structure described above may further have a plating layer on the surface in order to improve corrosion resistance.
  • the plating layer is preferably any one of a hot dip galvanized layer, an alloyed hot dip galvanized layer, or an electrogalvanized layer.
  • a hot dip galvanized layer, the alloyed hot dip galvanized layer, and the electrogalvanized layer a known hot dip galvanized layer, alloyed hot dip galvanized layer, and electrogalvanized layer are all suitable.
  • the high-strength cold-rolled thin steel sheet of the present invention has a tensile strength (TS) of 980 MPa or more, a breaking elongation (El) of 12% or more, and a hole expansion ratio ⁇ of 40% or more, as measured in Examples.
  • TS tensile strength
  • El breaking elongation
  • hole expansion ratio
  • TS is usually 1200 MPa or less
  • El is 20% or less
  • is 80% or less.
  • uEl is often 9.5% or more.
  • uEl is 10.0% or more.
  • a hot rolling process, a pickling process, a cold rolling process, and an annealing process are sequentially performed on the steel material having the above composition to obtain a high-strength cold-rolled thin steel sheet.
  • Steel slabs to be used for hot rolling are prepared by casting a slab of a predetermined size by a continuous casting method because the molten steel having the above composition is melted by a conventional melting method such as a converter and segregation of components is less likely to occur. It is preferable to use a piece (steel material). In addition, what was obtained by the ingot-making method or the thin slab casting method may be used.
  • the steel material having the above composition is subjected to a hot rolling process to obtain a hot rolled sheet (hot rolled sheet steel).
  • the steel material having the above composition is reheated, and in addition to the method of performing hot rolling, the cast steel slab is inserted into a heating furnace without being cooled and reheated.
  • a method of rolling the steel slab immediately after it is heated without cooling the steel slab a method of rolling the steel slab immediately after casting, or the like can be applied. Specific conditions in the hot rolling process will be described below.
  • Hot rolling start temperature 1100 ° C. or higher and 1300 ° C. or lower If the hot rolling start temperature is lower than 1100 ° C., the rolling load increases and the productivity decreases, whereas if it exceeds 1300 ° C., the heating cost only increases. Therefore, the hot rolling start temperature is set to a range of 1100 ° C. or higher and 1300 ° C. or lower.
  • Finish rolling temperature 800 ° C. or more and 1000 ° C. or less If the finish rolling temperature is less than 800 ° C., the steel structure becomes non-uniform, and the ductility and hole expandability after the annealing process are lowered. By setting the finish rolling temperature to 800 ° C. or higher, rolling is completed in the austenite single phase region, and a homogeneous steel sheet structure is obtained. Preferably it is 850 degreeC or more. On the other hand, if the finish rolling temperature exceeds 1000 ° C., the structure of the hot-rolled steel sheet becomes coarse, and a structure having a desired crystal grain size cannot be obtained after the annealing process. Preferably it is 950 degrees C or less. Therefore, finish rolling temperature shall be 800 degreeC or more and 1000 degrees C or less.
  • the hot-rolled steel sheet is controlled to a structure mainly composed of bainite. If it is less than 5 ° C./s, ferrite or pearlite is excessively generated in the structure of the hot-rolled steel sheet. Preferably it is 15 degrees C / s or more. On the other hand, if it exceeds 50 ° C./s, the effect of suppressing the formation of ferrite or pearlite is saturated.
  • the average cooling rate is set to 5 ° C./s or more and 50 ° C./s or less.
  • about 700 degreeC after hot rolling may be allowed to cool or may be cooled by a cooling means, and the cooling conditions are not particularly limited.
  • Cooling stop temperature 500 ° C. or less
  • the hot-rolled steel sheet is homogenized into a bainite-based structure.
  • the steel structure after the annealing step particularly ferrite and martensite, is refined, and an effect of obtaining a desired inter-particle distance of martensite is obtained.
  • it exceeds 500 ° C. ferrite or pearlite is excessively generated in the steel structure of the hot-rolled steel sheet, and the steel structure after the annealing process becomes inhomogeneous.
  • the lower limit of the cooling stop temperature is not particularly specified, but if it is less than 350 ° C., hard martensite is excessively generated in the structure of the hot-rolled steel sheet, and the rolling load during cold rolling may increase. For this reason, the cooling stop temperature is preferably 350 ° C. or higher.
  • the pickling conditions are not particularly limited, and any conventional pickling method using hydrochloric acid, sulfuric acid or the like can be applied.
  • the cold rolling step is a step of cold rolling the hot-rolled sheet that has undergone the pickling process to obtain a cold-rolled sheet (cold-rolled steel sheet) having a predetermined thickness.
  • Rolling ratio of cold rolling 30% or more and 70% or less
  • processing strain is introduced into the steel sheet.
  • the annealing process which is the next process
  • recrystallization in the annealing temperature region is promoted, and the crystal grain size of the final structure is controlled.
  • the rolling reduction is less than 30%, the processing strain applied to the steel sheet is insufficient, and recrystallization cannot be sufficiently achieved in the annealing process. Since the average inter-particle distance of martensite cannot be obtained, ductility and hole expandability deteriorate.
  • the rolling reduction exceeds 70%, processing strain is excessively introduced into the steel sheet, and recrystallization in the annealing temperature region is excessively promoted in the annealing process, and ferrite, martensite, bainite, or tempered martensite.
  • the average crystal grain size becomes coarse. Therefore, the rolling rate of cold rolling is in the range of 30% to 70%.
  • the obtained thin cold-rolled sheet is subjected to an annealing process.
  • the annealing process is performed to form desired ferrite, retained austenite, martensite, bainite, and martensite on the steel sheet, thereby obtaining a high-strength cold-rolled thin steel sheet having both high ductility and high hole expansibility.
  • Specific conditions for this annealing step are as follows.
  • Annealing temperature 750 ° C. or more and 900 ° C. or less If the annealing temperature is less than 750 ° C., the volume fraction of austenite in the annealing temperature region decreases, so not only the ferrite is generated excessively, but also recrystallization does not proceed sufficiently. Unrecrystallized ferrite is also generated excessively, and the hole expandability is reduced. On the other hand, if the annealing temperature exceeds 900 ° C., the austenite grains become excessively coarse and it is difficult to obtain a desired crystal grain size. For this reason, annealing temperature shall be 750 degreeC or more and 900 degrees C or less. A preferable annealing temperature for the lower limit is 770 ° C. or higher. A preferable annealing temperature for the upper limit is 880 ° C. or lower. The heating conditions up to the annealing temperature are not particularly limited.
  • Holding time in the annealing temperature range 10 seconds or more and 900 seconds or less If the holding time in the annealing temperature range is less than 10 seconds, not only recrystallization does not proceed sufficiently, but austenite cannot be sufficiently generated in the annealing temperature range, Ultimately, unrecrystallized ferrite and ferrite are excessively formed. Moreover, even if it hold
  • “holding” includes not only isothermal holding but also slow cooling and heating in the temperature range.
  • Average cooling rate to the cooling stop temperature 5 ° C / s or more If the average cooling rate from the annealing temperature to the cooling stop temperature is less than 5 ° C / s, not only ferrite but also pearlite is generated excessively during cooling. It is difficult to obtain a desired amount of bainite and tempered martensite.
  • the cooling is preferably gas cooling, but may be performed by combining furnace cooling, mist cooling, roll cooling, water cooling, and the like.
  • the upper limit of an average cooling rate is not specifically limited, Usually, it is 50 degrees C / s or less.
  • Cooling stop temperature 100 ° C. or more and 250 ° C. or less
  • the cooling stop temperature is less than 100 ° C.
  • a large amount of martensite is generated when cooling is stopped, and a large amount of tempered martensite is formed when reheating is performed.
  • the cooling stop temperature exceeds 250 ° C., not only the finally obtained martensite becomes excessive, but also the desired average interparticle distance ⁇ m cannot be obtained, and the hole expandability is lowered. Therefore, the cooling stop temperature is limited to a temperature in the cooling stop temperature range of 100 ° C. or more and 250 ° C. or less.
  • Reheating temperature 300 ° C. or more and 400 ° C. or less Reheating is performed in order to temper martensite generated during cooling and transform untransformed austenite to bainite to obtain bainite and retained austenite. If the reheating temperature is less than 300 ° C., the martensite is not sufficiently tempered, the resulting martensite phase is excessive, and the desired average interparticle distance ⁇ m cannot be obtained. Spreadability is reduced. On the other hand, when the reheating temperature exceeds 400 ° C., not only ferrite is generated excessively but also a desired amount of martensite cannot be obtained. Therefore, the reheating temperature is limited to 300 ° C. or more and 400 ° C. or less. The heating conditions up to the reheating temperature are not particularly limited.
  • Holding time in the reheating temperature region 10 seconds or more and 1800 seconds or less If the holding time in the reheating temperature region is less than 10 seconds, the martensite is not sufficiently tempered, and the final martensite is excessive. In addition, the desired average interparticle distance ⁇ m cannot be obtained, and the hole expandability is reduced. On the other hand, even if it exceeds 1800 seconds, the steel structure is not affected. For this reason, the holding time in the reheating temperature region was set to 10 seconds or more and 1800 seconds or less.
  • “holding” includes not only isothermal holding but also slow cooling and heating in the temperature range.
  • the cooling after holding in the reheating temperature range does not need to be specified, and can be cooled to a desired temperature such as room temperature by an arbitrary method such as cooling.
  • temper rolling may be performed after annealing.
  • the elongation rate in this temper rolling is not particularly defined, excessive elongation is preferably from 0.1% to 2.0% because ductility is lowered.
  • a plating process may be further performed to form a plating layer on the surface.
  • the plating treatment is preferably galvanizing treatment, galvanizing treatment and alloying treatment, or electrogalvanizing treatment.
  • hot dip galvanizing treatment hot dip galvanizing treatment, alloying treatment, and electrogalvanizing treatment, all known processing methods are suitable.
  • Molten steel having the composition shown in Table 1 was melted in a converter and formed into a slab having a thickness of 230 mm by a continuous casting method.
  • the obtained steel material was subjected to a hot rolling process under the conditions shown in Table 2 to obtain a hot-rolled steel sheet.
  • the obtained hot-rolled steel sheet was pickled and subjected to a cold rolling process at a cold reduction rate shown in Table 2 to obtain a cold-rolled steel sheet.
  • hydrochloric acid was used for pickling. Subsequently, it annealed on the conditions shown in Table 2.
  • GI hot dip galvanized thin steel sheet
  • the hot dip galvanizing treatment uses a continuous hot dip galvanizing line to reheat the annealed cold-rolled annealed plate to a temperature in the range of 430 to 480 ° C. as necessary, and a hot dip galvanizing bath (bath temperature: 470). C.) and adjusted so that the adhesion amount of the plating layer was 45 g / m 2 per side.
  • the bath composition was Zn-0.18 mass% Al.
  • the bath composition was Zn-0.14 mass% Al, and after the plating treatment, alloying was performed at 520 ° C. to obtain alloyed hot dip galvanized thin steel sheets (GA).
  • the Fe concentration in the plating layer was set to 9% by mass or more and 12% by mass or less.
  • some cold-rolled steel sheets are further subjected to electrogalvanizing treatment using an electrogalvanizing line after the annealing process so that the amount of coating is 30 g / m 2 per side.
  • a plated thin steel sheet (EG) was used.
  • a specimen for microstructural observation is taken from a high-strength cold-rolled thin steel sheet that has been annealed or further plated, and corresponds to 1 ⁇ 4 of the plate thickness in the rolling direction cross section (L cross section). It was polished, corroded (3 vol.% Nital liquid corrosion) so that the position to be observed became an observation surface, and observed at a magnification of 5000 times using an SEM (scanning electron microscope). Using the obtained SEM image, the tissue fraction (area ratio) of each phase was determined by image analysis, and the value was treated as the volume ratio. In the image analysis, “Image-Pro” (trade name) of Media Cybernetics was used as analysis software.
  • ferrite is gray
  • as-quenched martensite and retained austenite cementite is white
  • bainite and tempered martensite are intermediate colors between gray and white, so each phase was judged from the color tone.
  • the structure in which retained austenite and cementite are observed in fine lines or spots in ferrite is bainite
  • the structure in which cementite is observed in fine lines or spots in martensite is tempered martensite.
  • the area of each ferrite grain, bainite and tempered martensite grain is obtained by image analysis, the equivalent circle diameter is calculated from the area, and the average crystal is obtained by arithmetically averaging these values. The particle size was taken.
  • the average crystal grain size of the residual austenite grains was observed at a magnification of 15000 times using a TEM (transmission electron microscope), and the area of the residual austenite grains was determined from the obtained TEM image by image analysis. The equivalent circle diameter was calculated, and these values were arithmetically averaged to obtain the average crystal grain size.
  • a specimen for X-ray diffraction is taken from a cold-rolled steel sheet that has been annealed or further plated, and is ground and polished so that the position corresponding to 1/4 of the sheet thickness becomes the measurement surface.
  • the amount of retained austenite was determined from the diffracted X-ray intensity by the X-ray diffraction method.
  • the incident X-ray was a CoK ⁇ ray.
  • all of the integrated intensities of the peaks of the ⁇ 111 ⁇ , ⁇ 200 ⁇ , ⁇ 220 ⁇ , ⁇ 311 ⁇ planes of austenite and the ⁇ 110 ⁇ , ⁇ 200 ⁇ , ⁇ 211 ⁇ planes of ferrite are used.
  • the strength ratio was calculated for the combination, the average value thereof was determined, and the amount of retained austenite (volume ratio) of the steel sheet was calculated.
  • the welding current and welding time were adjusted so that the nugget diameter was 4 ⁇ t mm (t: the thickness of the high-strength cold-rolled steel sheet). After welding, the test piece is cut in half, and the cross section is observed with an optical microscope. If no crack of 0.1 mm or more is observed, the resistance weld cracking resistance is considered good, and is evaluated as “ ⁇ ”. The case where a crack of 1 mm or more was observed was designated as “x”.
  • Each of the present invention examples 1 to 13 has a structure containing predetermined ferrite and retained austenite, martensite, bainite and tempered martensite, high tensile strength TS: 980 MPa or more, and total elongation El It is a high-strength cold-rolled thin steel sheet having a high ductility of 12% or more, a high hole-expandability of 40% or more, and an excellent resistance spot weldability.
  • No. Nos. 15, 17, and 19 contain C, Si, and Mn in excess, so that cracks are generated during welding. In 15 and 19, a desired structure cannot be obtained, and El and ⁇ are insufficient.
  • No. Nos. 14, 16, 18, 20 to 22 are inferior in at least one characteristic of TS, El, and ⁇ because the component composition in the steel is out of the limited range.
  • the composition of the components in the steel is within the limited range, but the manufacturing method is out of the scope of the present invention. Therefore, in the final steel sheet structure, the ferrite phase in the proper form, the retained austenite phase, the martensite phase, A structure containing a bainite phase and a tempered martensite phase cannot be obtained, and at least one characteristic of TS, El, and ⁇ is inferior.
  • the examples of the present invention are high-strength cold-rolled thin steel sheets having high strength, high ductility and high hole expansibility, and excellent weldability.

Abstract

980MPa以上の引張強さを有し、高延性、かつ高穴広げ性を併せ持つ抵抗溶接性に優れる高強度冷延薄鋼板およびその製造方法を提供する。 特定の成分組成と、体積率で、35%以下のフェライトと、1%以上10%以下の残留オーステナイトと、2%以上12%以下の焼入れままマルテンサイトと、合計で25~70%のベイナイトおよび焼戻しマルテンサイトとを含む鋼組織と、を有し、フェライトの平均結晶粒径:5.0μm以下であり、残留オーステナイトの平均結晶粒径:2.0μm以下であり、焼入れままマルテンサイトの平均結晶粒径:3.0μm以下であり、ベイナイトおよび焼戻しマルテンサイト相の平均結晶粒径:4.0μm以下であり、焼入れままマルテンサイトの平均粒子間距離が1.0μm以上を満たす高強度冷延薄鋼板とする。

Description

高強度冷延薄鋼板及びその製造方法
 本発明は、980MPa以上の引張強さ(TS)を有し、自動車部品用として好適な高強度冷延薄鋼板およびその製造方法に関する。
 自動車分野において、車体軽量化による燃費向上を目的に、自動車部品の高強度鋼板適用による薄肉化が促進されており、引張強さ(TS)が980MPa以上の高強度鋼板の適用が進んでいる。自動車の構造部材や補強部材用鋼板は、成形性に優れることが要求され、複雑形状を有する部品の成形には、高い延性や伸びフランジ性(穴広げ性)の両立が求められる。また、自動車部品は主に抵抗溶接(スポット溶接)により接合されるため、抵抗溶接性(溶接性)に優れることも要求される。
 成形性に優れた高強度冷延薄鋼板として、軟質なフェライトと硬質なマルテンサイトの複合した組織から成るDP鋼板が知られている。例えば、特許文献1では、質量%で、C:0.07~0.25%、Si:0.3~2.50%、Mn:1.5~3.0%、Ti:0.005~0.09%、B:0.0001~0.01%、P:0.001~0.03%、S:0.0001~0.01%、Al:2.5%以下、N:0.0005~0.0100%、O:0.0005~0.007%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、鋼組織が、体積率で50%以上のフェライトと、ブロックサイズが1μm以下のマルテンサイトであり、マルテンサイト中のC濃度が0.3~0.9%である、延性の良好な引張最大強度900MPa以上を有する高強度鋼板を開示している。しかし、DP鋼板は、鋼板組織中に高硬度を有するマルテンサイトが存在するため、打ち抜き加工時に軟質なフェライトとの界面にボイドが発生し、穴広げ性に劣るという欠点がある。
 また、高延性と高強度を兼ね備えた鋼板として、残留オーステナイトを含有したTRIP鋼板が知られている。残留オーステナイトは、変形中にマルテンサイトへ加工誘起変態するため、これにより、高強度と高延性の両立が可能となる。しかし、TRIP鋼板もまた、打ち抜き加工時に残留オーステナイトがマルテンサイトに変態することで、軟質なフェライトとの界面にボイドが発生しやすくなり、穴広げ性に劣る欠点がある。そこで、特許文献2では、質量%で、C:0.05~0.35%、Si:0.05~2.0%、Mn:0.8~3.0%、P:0.0010~0.1%、S:0.0005~0.05%、N:0.0010~0.010%、Al:0.01~2.0%を満たし、残部がFeおよび不可避的不純物からなる成分組成を有し、鋼組織はフェライトまたはベイナイトまたは焼戻しマルテンサイトを主体とし、残留オーステナイト相を3%以上30%以下含む鋼板において、上記残留オーステナイト相の中心濃度Cgcと残留オーステナイト粒の粒界の濃度CgbがCgb/Cgc>1.3を満たす範囲にある残留オーステナイト粒を50%以上含有させることで、残留オーステナイト相界面の安定性を高め、伸びと穴広げ性に優れた高強度薄鋼板を開示している。
 さらに、高強度冷延薄鋼板は、鋼板の成形性に加えて、抵抗溶接時に優れた継手強度を得るため、溶接時に割れが生じないことが求められている。しかし、鋼板の高強度化に伴い、特に亜鉛めっき鋼板では、抵抗溶接時に鋼板表面の亜鉛が溶融し、更に溶接部近傍に引張応力が生じることで、液体金属脆化が発生し鋼板に割れが生じる場合がある。そこで、特許文献3では、質量%で、C:0.015~0.072%、Si:1.2%以下、Mn:0.5~3.0%以下、P:0.020%以下、S:0.030%以下、sol.Al:0.002~1.20%、Si+sol.Al+0.4×Mn≦1.4%を満たし、残部がFeおよび不可避的不純物からなる成分を有する、引張強度が450MPa以上の鋼板に亜鉛めっきを施した、抵抗溶接の際の耐表面割れ性に優れた高張力亜鉛めっき鋼板が開示されている。
特許第4925611号公報 特開2011-195956号公報 特許第3758515号公報
 高強度冷延薄鋼板において、高い延性と穴広げ性を併せ持つには、C、Si、Mnなどの添加が必要であるが、これらの含有量が増加すると抵抗溶接性が低下する問題がある。特許文献1の鋼板は50%以上のフェライトと、C濃度が0.3~0.9%のマルテンサイトを得るためにSiを積極的に活用しているが、穴広げ性や溶接性に関しては考慮されていない。
 また、特許文献2の高強度薄鋼板も、残留オーステナイトを得るためにC、Siを多量に添加しているが、溶接性に関しては考慮されていない。
 抵抗溶接(スポット溶接)において、通常、鋼板は電極に対して垂直に接触するが、自動車部品の組み立ての際、溶接箇所によっては鋼板または電極が傾き、鋼板と電極の角度に垂直からのずれ(打角)が生じてしまう。その場合、溶接時に鋼板に付与される応力負荷が不均一となり、負荷が大きい箇所では割れが発生しやすくなる。しかし、特許文献3の鋼板は打角がついた場合の溶接割れに関しては考慮されておらず、穴広げ性についても考慮されていない。
 本発明は、上記した従来技術の問題を有利に解決し、980MPa以上の引張強さを有し、高延性、かつ高穴広げ性を併せ持つ抵抗溶接性に優れる高強度冷延薄鋼板およびその製造方法を提供することを目的とする。
 本発明者らは、980MPa以上の引張強さ(TS)を有し、延性のみならず、穴広げ性に優れ、更に溶接性にも優れる高強度冷延薄鋼板およびその製造方法を得るべく鋭意検討を重ねた。その結果、本発明者らは、微細なフェライト、残留オーステナイト、マルテンサイト(焼入れままマルテンサイト)、ベイナイト、焼戻しマルテンサイトを造り込み、更に、マルテンサイト(焼入れままマルテンサイト)の粒子間距離を制御することで、C,Siの含有量を抑えつつ、優れた延性と穴広げ性を併せもち、更に溶接性にも優れる高強度冷延薄鋼板が得られることを見出した。なお、本明細書において、単に「マルテンサイト」と表記したものは「焼入れままマルテンサイト」を意味する。
 穴広げ試験において、軟質相と硬質相の界面に発生したボイドは、成長、連結によってき裂となる。したがって、高い穴広げ性を得るにはボイドの発生を抑制することに加え、ボイドの成長および連結を抑制することも必要である。そこで、本発明者らは、この要求を満たすための検討を行った。その検討の結果、軟質相と硬質相の体積分率および平均結晶粒径を調整し、更に、硬質相であるマルテンサイトの粒子間距離を制御することで、穴広げ性が良好になる範囲を明らかとした。
 適正形態の鋼組織を得るために、TiおよびNbを所定量添加した鋼について、熱間圧延後の冷却停止温度を制御し、更に、冷間圧延を適切な条件範囲で施し、更に焼鈍の条件も適切に制御することで、最終的な鋼組織において、フェライト、残留オーステナイト、マルテンサイト、ベイナイトおよび焼戻しマルテンサイトの結晶粒を微小とすることを可能とした。さらに、マルテンサイトの粒子間距離を制御することを可能とし、C、Siの添加量を抑制しつつも、980MPa以上の引張強さを有し、優れた延性と穴広げ性のみならず、溶接性にも優れる高強度冷延薄鋼板が得られることを見出した。
 本発明は、以上の知見に基づいてなされたものであり、以下の特徴を備えている。
 [1]質量%で、C:0.04%以上0.12%以下、Si:0.15%以上0.95%以下、Mn:2.00%以上3.50%以下、P:0.050%以下、S:0.0050%以下、N:0.0100%以下、Al:0.010%以上2.0%以下、Ti:0.005%以上0.075%以下、Nb:0.005%以上0.075%以下、B:0.0002%以上0.0040%以下を含み、残部Feおよび不可避的不純物からなる成分組成と、
 体積率で、35%以下のフェライトと、1%以上10%以下の残留オーステナイトと、2%以上12%以下の焼入れままマルテンサイトと、合計で25~70%のベイナイトおよび焼戻しマルテンサイトとを含む鋼組織と、を有し、前記フェライトの平均結晶粒径:5.0μm以下であり、前記残留オーステナイトの平均結晶粒径:2.0μm以下であり、前記焼入れままマルテンサイトの平均結晶粒径:3.0μm以下であり、前記ベイナイトおよび焼戻しマルテンサイト相の平均結晶粒径:4.0μm以下であり、前記焼入れままマルテンサイトの平均粒子間距離が1.0μm以上を満たす高強度冷延薄鋼板。
 [2]前記成分組成は、さらに、質量%で、V:0.005%以上0.200%以下、Cr:0.05%以上0.20%以下、Mo:0.01%以上0.20%以下、Cu:0.05%以上0.20%以下、Ni:0.01%以上0.20%以下、Sb:0.002%以上0.100%以下、Sn:0.002%以上0.100%以下、Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0050%以下、REM:0.0005%以上0.0050%以下のうちから選ばれる少なくとも1種の元素を含有する[1]に記載の高強度冷延薄鋼板。
 [3]表面に、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、あるいは電気亜鉛めっき層のいずれかを有する[1]または[2]に記載の高強度冷延薄鋼板。
 [4][1]または[2]いずれかに記載の成分組成からなる鋼スラブを、熱間圧延開始温度1100℃以上1300℃以下、仕上げ圧延温度800℃以上1000℃以下で熱間圧延し、該熱間圧延後、700℃から冷却停止温度までの温度域の平均冷却速度が5℃/s以上50℃/s以下の条件で500℃以下の冷却停止温度まで冷却した後に巻取る熱間圧延工程と、前記熱間圧延工程で得られた熱延鋼板に、酸洗処理を施す酸洗工程と、前記酸洗工程で酸洗された熱延鋼板に、圧延率が30%以上70%以下の冷間圧延を施す冷間圧延工程と、前記冷間圧延工程で得られた冷延鋼板を750℃以上900℃以下の温度域で10秒以上900秒以下保持し、該保持後、5℃/s以上の平均冷却速度で、100℃以上250℃以下の冷却停止温度まで冷却した後、300℃以上400℃以下の再加熱温度域まで加熱し、再加熱温度域で10秒以上1800秒以下保持する焼鈍工程とを有する高強度冷延薄鋼板の製造方法。
 [5]前記焼鈍工程後に、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、あるいは電気亜鉛めっき層のいずれかを形成するためのめっき処理を施すめっき工程を有する[4]に記載の高強度冷延薄鋼板の製造方法。
 本発明によれば、980MPa以上の引張強さを有し、優れた延性と穴広げ性を併せ持ち、更に溶接性にも優れる高強度冷延薄鋼板が得られる。本発明の高強度冷延薄鋼板を、自動車構造部材に適用することにより、自動車車体の軽量化に大きく寄与でき、自動車の燃費向上に大きく貢献できるという効果もある。
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。
 本発明の高強度冷延薄鋼板は、質量%で、C:0.04%以上0.12%以下、Si:0.15%以上0.95%以下、Mn:2.00%以上3.50%以下、P:0.050%以下、S:0.0050%以下、N:0.0100%以下、Al:0.010%以上2.0%以下、Ti:0.005%以上0.075%以下、Nb:0.005%以上0.075%以下、B:0.0002%以上0.0040%以下を含み、残部Feおよび不可避的不純物からなる成分組成を有する。
 また、上記成分組成は、さらに、質量%で、V:0.005%以上0.200%以下、Cr:0.05%以上0.20%以下、Mo:0.01%以上0.20%以下、Cu:0.05%以上0.20%以下、Ni:0.01%以上0.20%以下、Sb:0.002%以上0.100%以下、Sn:0.002%以上0.100%以下、Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0050%以下、REM:0.0005%以上0.0050%以下のうちから選ばれる少なくとも1種の元素を含有してもよい。
 以下、各成分について説明する。成分の説明において、成分の含有量を表す「%」は「質量%」を意味する。
 C:0.04%以上0.12%以下
 Cは、高い固溶強化能を有し、鋼板強度の増加に有効であるとともに、本発明における残留オーステナイト、マルテンサイト、ベイナイト、および焼戻しマルテンサイトの形成に寄与する。このような効果を得るためには、0.04%以上の含有を必要とする。Cが0.04%未満では、所望の残留オーステナイトおよびマルテンサイトを得ることが困難になる。一方、0.12%を超える多量の含有は、残留オーステナイト、マルテンサイト、ベイナイト、および焼戻しマルテンサイトが過剰に生成するため、延性と穴広げ性が低下し、更に、溶接性の低下を招く。したがって、C含有量は0.04%以上0.12%以下とする。下限について好ましいC含有量は0.05%以上である。より好ましくは0.06%以上、さらに好ましくは0.07%以上である。上限について好ましいC含有量は0.11%以下である。より好ましくは0.10%以下や0.10%未満、さらに好ましくは0.09%以下である。
 Si:0.15%以上0.95%以下
 Siは、フェライト中で高い固溶強化能を有し、鋼板強度の増加に寄与するとともに、炭化物(セメンタイト)の生成を抑制し、残留オーステナイトの安定化に寄与する。また、フェライトに固溶したSiは、加工硬化能を向上させ、フェライト相自身の延性向上に寄与する。このような効果を得るためには、0.15%以上の含有を必要とする。一方、Si含有量が0.95%を超えると、残留オーステナイト安定化の寄与は飽和し、更に、溶接性の低下も招く。このため、Si含有量は0.15%以上0.95%以下の範囲とする。なお、下限について好ましいSi含有量は0.25%以上である。より好ましくは0.30%以上、さらに好ましくは0.35%以上である。上限について好ましいSi含有量は0.85%以下である。より好ましくは0.80%以下、さらに好ましくは0.70%以下である。
 Mn:2.00%以上3.50%以下
 Mnは、固溶強化あるいは焼入れ性向上により、鋼板の強度増加に寄与するとともに、オーステナイト安定化元素であるため、所望の残留オーステナイトおよびマルテンサイトの確保に必要不可欠な元素である。このような効果を得るためには2.00%以上の含有を必要とする。一方、3.50%を超える含有は、溶接性を低下させる上、残留オーステナイトおよびマルテンサイトを過剰に生成させ、更に、穴広げ性の低下を招く。このため、Mn含有量は2.00%以上3.50%以下の範囲とする。なお、下限について好ましいMn含有量は2.20%以上である。より好ましくは2.40%以上、さらに好ましくは2.60%以上である。上限について好ましいMn含有量は3.30%以下である。より好ましくは3.10%以下、さらに好ましくは2.90%以下である。
 P:0.050%以下
 Pは、固溶強化により鋼板の強度増加に寄与する元素である。一方、0.050%を超える含有は、溶接性の低下を招くとともに、粒界偏析による粒界破壊を助長する。このため、P含有量は0.050%以下とする。P含有量の下限は特に限定されないが、過剰にP含有量を低減することは製造コストの増加につながるため、P含有量は0.0001%以上が好ましい。
 S:0.0050%以下
 Sは、粒界に偏析して熱間加工時に鋼を脆化させるとともに、MnSなどの硫化物として鋼中に存在して局部変形能を低下させる元素であり、0.0050%を超える含有は穴広げ性の低下を招く。このため、Sは0.0050%以下に限定する。S含有量の下限は特に限定されないが、過剰にS含有量を低減することは製造コストの増加につながるため、S含有量は0.0001%以上が好ましい。
 N:0.0100%以下
 Nは、窒化物として鋼中に存在して局部変形能を低下させる元素であり、0.0100%を超える含有は穴広げ性の低下を招く。このため、N含有量は0.0100%以下に限定する。N含有量の下限は特に限定されないが、過剰にN含有量を低減することは製造コストの増加につながるため、N含有量は0.0001%以上が好ましい。
 Al:0.010%以上2.0%以下
 Alは、フェライト生成元素であり、Siと同様に炭化物(セメンタイト)の生成を抑制し、残留オーステナイトの安定化に寄与する元素である。このような効果を得るためには、0.010%以上含有する必要がある。好ましくは0.015%以上、より好ましくは0.020%以上である。一方、2.0%を超えると効果が飽和するため、Al含有量は2.0%以下とする。好ましくは1.8%以下、より好ましくは1.6%以下である。なお、AlとSiの合計が、0.95%以下であっても本発明の効果を奏する。
 Ti:0.005%以上0.075%以下
 Tiは、微細な炭化物や窒化物を形成するのみならず、結晶粒の粗大化を抑制し、加熱後の鋼組織を微細化することにより、強度の上昇に寄与する元素である。更に、BをNと反応させないために、Tiの添加は有効である。このような効果を得るためには、Tiを0.005%以上含有する必要がある。好ましくは0.010%以上、より好ましくは0.020%以上である。一方、Ti含有量が0.075%を超えると、炭化物や窒化物が過剰に生成し、延性の低下を招く。このため、Ti含有量は0.005%以上0.075%以下の範囲とする。また、Ti含有量は、0.060%以下が好ましく、より好ましくは0.050%以下である。
 Nb:0.005%以上0.075%以下
 Nbは、微細な炭化物や窒化物を形成するのみならず、結晶粒の粗大化を抑制し、加熱後の鋼組織を微細化させることにより、強度の上昇に寄与する。このような効果を得るためには、0.005%以上含有する必要がある。0.010%以上が好ましく、より好ましくは0.015%以上である。一方、Nb含有量が0.075%を超えると、炭化物や窒化物が過剰に生成し、延性の低下を招く。このため、Nb含有量は0.005%以上0.075%以下の範囲とする。また、Nb含有量は、0.060%以下であることが好ましく、より好ましくは0.050%以下である。さらに好ましくは0.040%未満である。
 B:0.0002%以上0.0040%以下
 Bは、焼入れ性を向上させ、強度の上昇に寄与する有効な元素である。このような効果を得るためには、0.0002%以上含有する必要がある。好ましくは0.0007%以上、より好ましくは0.0011%以上である。一方、0.0040%を超える含有は、マルテンサイトを過剰に生成させるため、延性および穴広げ性を低下させる。このため、B含有量は0.0002%以上0.0040%以下の範囲とする。また、B含有量は0.0035%以下が好ましく、より好ましくは0.0030%以下である。
 上記した成分が基本の成分であるが、本発明では基本の成分に加えてさらに、V:0.005%以上0.200%以下、Cr:0.05%以上0.20%以下、Mo:0.01%以上0.20%以下、Cu:0.05%以上0.20%以下、Ni:0.01%以上0.20%以下、Sb:0.002%以上0.100%以下、Sn:0.002%以上0.100%以下、Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0050%以下、REM:0.0005%以上0.0050%以下のうちから選ばれる少なくとも1種の元素(任意成分)を含有できる。
 Vは、V系の析出物を生成することにより、鋼板の強化に寄与するとともに、鋼組織の微細粒化、均一化に寄与する。このような効果を得るには、V含有量を0.005%以上とする。好ましくは0.007%以上、より好ましくは0.010%以上である。一方、0.200%を超える含有は、V系の析出物を過度に生成させ、延性が低下する。このため、Vを含有する場合には、V含有量は0.005%以上0.200%以下の範囲に限定することが好ましい。また、V含有量は、好ましくは0.100%以下、より好ましくは0.050%以下である。
 Crは、固溶強化により鋼板の強度増加に寄与するとともに、焼入れ性を向上させ、マルテンサイトの生成を促進することで強度増加に寄与する。このような効果を得るには、0.05%以上の含有を必要とする。より好ましくは0.06%以上、さらに好ましくは0.07%以上である。一方、0.20%を超えてCrを含有すると、マルテンサイトが過剰に生成し、延性や穴広げ性が低下する。このため、Crを含有する場合には、Cr含有量は0.05%以上0.20%以下の範囲に限定することが好ましい。また、Cr含有量は0.15%以下が好ましく、より好ましくは0.10%以下である。
 Moは、固溶強化により鋼板の強度増加に寄与するとともに、焼入れ性を向上させ、マルテンサイトの生成を促進することで強度増加に寄与する。このような効果を得るには、0.01%以上の含有を必要とする。より好ましくは0.02%以上、さらに好ましくは0.04%以上である。一方、0.20%を超えて含有すると、マルテンサイトが過剰に生成し、延性や穴広げ性が低下する。このため、Moを含有する場合には、Mo含有量は0.01%以上0.20%以下の範囲に限定することが好ましい。また、Mo含有量は0.15%以下が好ましく、より好ましくは0.10%以下である。
 Cuは、固溶強化により鋼板の強度増加に寄与するとともに、焼入れ性を向上させ、マルテンサイトの生成を促進することで強度増加に寄与する。このような効果を得るためには、0.05%以上の含有を必要とする。好ましくは0.06%以上、より好ましくは0.07%以上である。一方、0.20%を超えて多量に含有すると、強度増加の効果が過度となり、延性や穴広げ性が低下する。このため、Cuを含有する場合には、Cuは0.05%以上0.20%以下の範囲に限定することが好ましい。また、Cu含有量は0.15%以下が好ましく、より好ましくは0.10%以下である。
 Niは、固溶強化により鋼板の強度増加に寄与するとともに、焼入れ性を向上させ、マルテンサイトの生成を促進することで強度増加に寄与する。このような効果を得るためには、0.01%以上の含有を必要とする。好ましくは0.02%以上、さらに好ましくは0.05%以上である。一方、0.20%を超えて多量に含有すると、強度増加の効果が過度となり、延性や穴広げ性が低下するという問題がある。このため、Niを含有する場合には、Ni含有量は0.01%以上0.20%以下の範囲に限定することが好ましい。また、Ni含有量は0.15%以下が好ましく、より好ましくは0.10%以下である。
 SbおよびSnは、鋼板表面の酸化によって生じる、鋼板表層(表面から板厚方向に数十μm程度の領域)の脱炭を抑制する作用を有する。このような鋼板表層の脱炭を抑制すれば、鋼板表層においてマルテンサイトの生成量が減少するのを防止でき、所望の鋼板強度の確保に有効となる。このような効果を得るためには、Sb、Snをそれぞれ0.002%以上含有させることを必要とする。一方、Sb、Snをそれぞれ、0.100%を超えて含有するとその効果は飽和する。このため、これらを含有する場合には、Sb、Snはそれぞれ0.002%以上0.100%以下の範囲に限定することが好ましい。
 Ca、Mg、REMはいずれも、脱酸に用いる元素であるとともに、硫化物の形状を球状化し、硫化物の局部延性および穴広げ性への悪影響を改善する作用を有する元素である。このような効果を得るためには、Ca、Mg、REMの含有量は、それぞれ0.0005%以上とする必要がある。一方、0.0050%を超えて過剰に含有すると、介在物等の増加を招き、表面欠陥や内部欠陥を発生により、延性および穴広げ性が低下する。このため、これらを含有する場合には、Ca、Mg、REMは、それぞれ、0.0005%以上0.0050%以下の範囲に限定することが好ましい。
 上記した成分以外の残部は、Feおよび不可避的不純物である。なお、上記任意成分を上記下限値未満で含む場合、その元素を不可避的不純物として含むものとする。
 次に、本発明の高強度冷延薄鋼板の鋼組織について説明する。上記鋼組織は、体積率で、35%以下のフェライトと、1%以上10%以下の残留オーステナイトと、2%以上12%以下の焼入れままマルテンサイトとを含み、残部がベイナイトおよび焼戻しマルテンサイトからなる。
 また、フェライトの平均結晶粒径:5.0μm以下であり、残留オーステナイトの平均結晶粒径:2.0μm以下であり、マルテンサイトの平均結晶粒径:3.0μm以下であり、ベイナイトおよび焼戻しマルテンサイト相の平均結晶粒径:4.0μm以下であり、マルテンサイトの平均粒子間距離が1.0μm以上を満たす。
 フェライト:体積率35%以下かつ、平均結晶粒径5.0μm以下
 フェライトは、延性(伸び)の向上に寄与する組織である。しかし、体積率が35%を超えると、所望量のベイナイトおよび焼戻しマルテンサイトを得ることが困難となる等して、穴広げ性が低下してしまうため、フェライトは、体積率で35%以下の範囲とする。好ましくは33%以下、より好ましくは30%以下である。また、延性向上の観点からフェライトの体積率は10%以上が好ましい。より好ましくは15%以上、さらに好ましくは20%以上である。
 また、フェライトの平均結晶粒径が5.0μmを超えると、穴広げ時の打ち抜き端部に生成したボイドが穴広げ中に連結しやすくなるため、良好な穴広げ性が得られない。このため、フェライトの平均結晶粒径は5.0μm以下の範囲とする。好ましくは4.5μm以下、より好ましくは4.0μm以下である。また、フェライトの平均結晶粒径は、通常、1.0μm以上や2.0μm以上である。
 残留オーステナイト:体積率1%以上10%以下かつ、平均結晶粒径2.0μm以下
 残留オーステナイトは、それ自体、延性に富む相であるが、歪誘起変態してさらに延性の向上に寄与する組織であり、延性の向上および強度-延性バランスの向上に寄与する。このような効果を得るためには、残留オーステナイトは、体積率で1%以上とする必要がある。好ましくは2%以上、より好ましくは3%以上である。一方、10%を超えて多くなると、穴広げ性の低下を招く。このため、残留オーステナイトは、体積率で1%以上10%以下の範囲とする。また、残留オーステナイトは、8%以下が好ましく、より好ましくは6%以下である。
 また、残留オーステナイトの平均結晶粒径が2.0μmを超えると、穴広げ試験時に生じたボイドの成長が起こりやすくなり、穴広げ性の低下を招く。このため、残留オーステナイトの平均結晶粒径は2.0μm以下の範囲とする。好ましくは1.5μm以下、より好ましくは1.0μm以下である。また、残留オーステナイトの平均結晶粒径は通常0.1μm以上や0.3μm以上である。
 マルテンサイト:体積率2%以上12%以下かつ、平均結晶粒径3.0μm以下
 マルテンサイトは、980MPa以上の引張強さを得るために、体積率で2%以上必要である。好ましくは4%以上、より好ましくは6%以上である。一方、12%を超えると、穴広げ試験時にフェライトとの界面にボイドが生じやすくなり、穴広げ率の低下を招く。このため、マルテンサイトは、体積率で2%以上12%以下の範囲とする。また、マルテンサイトの体積率は11%以下が好ましく、より好ましくは10%以下である。なお、ここでいうマルテンサイトは、焼入れままマルテンサイトであり、後述する焼戻しマルテンサイトとは区別される。
 またマルテンサイトの平均結晶粒径が3.0μmを超えると、穴広げ試験時に生じたボイドの成長が起こりやすくなり、穴広げ性の低下を招く。このため、マルテンサイトの平均結晶粒径は3.0μm以下の範囲とする。2.5μm以下が好ましく、より好ましくは2.0μm以下である。また、マルテンサイトの平均結晶粒径は、通常、0.5μm以上や0.7μm以上である。
 ベイナイトおよび焼戻しマルテンサイト:平均結晶粒径4.0μm以下
 ここでいう「焼戻しマルテンサイト」とは、焼鈍工程において、冷却温度域まで冷却した際に生成したマルテンサイトが、再加熱温度域まで加熱され、保持された際に焼戻されたマルテンサイトのことである。ベイナイトおよび焼戻しマルテンサイトは、軟質なフェライトと、硬質なマルテンサイトおよび残留オーステナイトとの硬度差を小さくし、穴広げ性の向上に寄与する。このため、組織中に平均結晶粒径が4.0μm以下のベイナイトおよび焼戻しマルテンサイトを含有することが必要である。一方、4.0μmを超えると、穴広げ時の打ち抜き破面に生成したボイドが穴広げ中に連結しやすくなるため、良好な穴広げ性が得られない。このため、ベイナイトおよび焼戻しマルテンサイトの平均結晶粒径は4.0μm以下の範囲とする。好ましくは3.8μm以下、より好ましくは3.4μm以下である。また、上記平均結晶粒径は、通常、1.5μm以上や2.0μm以上である。なお、「ベイナイトおよび焼戻しマルテンサイトの平均結晶粒径」とは、ベイナイトと焼戻しマルテンサイトとを区別せずに導出した平均結晶粒径を意味する。
 ベイナイトと焼戻しマルテンサイトの合計体積率は、軟質なフェライトと、硬質なマルテンサイトおよび残留オーステナイトとの硬度差を小さくし、穴広げ性の向上に寄与するという理由で25%以上とする。好ましくは30%以上、より好ましくは35%以上である。また、合計体積率が過剰に大きくなると延性が低下するという理由で70%以下とする。好ましくは65%以下、より好ましくは60%未満である。また、焼戻しマルテンサイトの体積率は59%以下になることが多い。
 マルテンサイトの平均粒子間距離:1.0μm以上
 ボイドは軟質相と硬質相の界面に生成し、隣接するボイド同士が連結することで成長し、き裂となる。ボイド同士の距離が小さいとボイドの連結が容易に生じるため、局部変形能や穴広げ性の低下を招く。したがって、良好な延性や穴広げ性を確保するには、マルテンサイトの平均粒子間距離を1.0μm以上にすることが必要である。好ましくは1.5μm以上、より好ましくは2.0μm以上である。また、上記平均粒子間距離は、9.0μm以下が好ましく、より好ましくは7.0μm以下である。なお、マルテンサイトの平均粒子間距離Λは下記の(1)式を用いて算出した(Tetsu-to-Hagane,vol.91,(2005),p.796-802)。また、上記の通り、マルテンサイトは焼入れままマルテンサイトを意味する。また、マルテンサイトの平均粒子間距離を上記範囲にすることで、均一伸び(uEl)が高まる傾向にある。
Λ={0.9(V/100)-1/2-0.8}×d・・・(1)
ここで、V:マルテンサイトの体積率(%)、d:マルテンサイトの平均結晶粒径(μm)とする。
 また、上記した組織の他に、未再結晶フェライトやパーライト、セメンタイトが生成される場合があるが、上記の限定が満足されれば、本発明の目的を達成できる。ただし、体積率で、未再結晶フェライトは10%以下、パーライトは5%以下、セメンタイトは5%以下が好ましい。
 以上の面積率、平均結晶粒径、平均粒子間距離は、実施例に記載の方法で得られた値を採用する。
 上記高強度冷延薄鋼板の厚みは、用途に応じて適宜設定することができる。一般的には0.8~2.5mmである。
 上記した組成および組織を有する高強度冷延薄鋼板は、さらに表面に、耐食性向上のために、めっき層を有してもよい。めっき層としては、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、あるいは電気亜鉛めっき層のいずれかとすることが好ましい。溶融亜鉛めっき層、合金化溶融亜鉛めっき層、電気亜鉛めっき層は、公知の溶融亜鉛めっき層、合金化溶融亜鉛めっき層、電気亜鉛めっき層がいずれも好適である。
 本発明の高強度冷延薄鋼板は、実施例で測定した、引張強さ(TS)が980MPa以上、破断伸び(El)が12%以上、穴広げ率λが40%以上である。これらの上限値は特に限定されないが、本発明では、通常、TSが1200MPa以下、Elが20%以下、λが80%以下である。また、本発明の課題を解決するために必須ではないが、uElが9.5%以上であることが多い。好ましくはuElが10.0%以上である。
 次に、本発明の高強度冷延薄鋼板の製造方法について説明する。本発明では、上記した組成の鋼素材に、熱間圧延工程と、酸洗工程と、冷間圧延工程と、焼鈍工程とを、順次施して、高強度冷延薄鋼板とする。
 熱間圧延に供する鋼スラブは、転炉等の常用の溶製方法で上記した組成の溶鋼を溶製し、成分の偏析が生じにくいという点から、連続鋳造法で所定寸法のスラブ等の鋳片(鋼素材)とすることが好ましい。なお、造塊法や薄スラブ鋳造法で得られたものでもよい。
 上記した組成の鋼素材に対して、熱間圧延工程を施し、熱延板(熱延鋼板)とする。
 熱間圧延工程は、上記した組成の鋼素材を再加熱し、熱間圧延を施す方式の他に、鋳造された鋼スラブを冷却することなく温片のまま加熱炉に挿入し、再加熱して圧延する方式、鋼スラブを冷却することなく保熱を行った後に直ちに圧延する方式、鋼スラブを鋳造直後に圧延する方式なども適用できる。この熱間圧延工程における具体的条件について以下説明する。
 熱間圧延開始温度:1100℃以上1300℃以下
 熱間圧延開始温度が1100℃未満では圧延負荷が増大し、生産性が低下する一方、1300℃超では加熱コストが増大するだけである。したがって、熱間圧延開始温度は、1100℃以上1300℃以下の範囲とする。
 仕上げ圧延温度:800℃以上1000℃以下
 仕上げ圧延温度が800℃未満では、鋼組織が不均一となり、焼鈍工程後の延性や穴広げ性が低下する。仕上げ圧延温度を800℃以上とすることで、オーステナイト単相域で圧延が完了し、均質な鋼板組織が得られる。好ましくは850℃以上である。一方、仕上げ圧延温度が1000℃超では熱延鋼板の組織が粗大となり、焼鈍工程後に所望の結晶粒径を有する組織が得られない。好ましくは950℃以下である。したがって、仕上げ圧延温度は800℃以上1000℃以下とする。
 700℃から冷却停止温度までの平均冷却速度:5℃/s以上50℃/s以下
 熱間圧延後、700℃から冷却停止温度までの平均冷却速度を5℃/s以上50℃/s以下とすることで、熱延鋼板はベイナイトを主体とする組織に制御される。5℃/s未満では、熱延鋼板の組織にフェライトもしくはパーライトが過剰に生成してしまう。好ましくは15℃/s以上である。一方、50℃/sを超えるとフェライトもしくはパーライトの生成を抑制する効果が飽和する。そこで、上記平均冷却速度を5℃/s以上50℃/s以下とする。なお、熱間圧延後から700℃までについては、放冷でも、冷却手段による冷却でもよく、冷却条件は特に限定されない。
 冷却停止温度:500℃以下
 上記冷却の冷却停止温度を500℃以下とすることにより、熱延鋼板はベイナイト主体の組織に均質化される。この均質化により、焼鈍工程後の鋼組織、特にフェライトやマルテンサイトが微細化する上、所望のマルテンサイトの粒子間距離が得られる効果が得られる。一方、500℃を超えると熱延鋼板の鋼組織にフェライトもしくはパーライトが過剰に生成し、焼鈍工程後の鋼組織が不均質となる。この不均質により、所望の平均結晶粒径を有するフェライトまたはマルテンサイトが得られない上、所望のマルテンサイトの平均粒子間距離が得られなくなるため、穴広げ性が劣化する。なお、冷却停止温度の下限は特に規定しないが、350℃未満では、熱延鋼板の組織に硬質なマルテンサイトが過剰に生成し、冷間圧延時の圧延負荷が増大する場合がある。このため、冷却停止温度は350℃以上が好ましい。
 次いで、得られた熱延板に、酸洗工程を施し、鋼板表層のスケールを除去する。酸洗条件は、特に限定する必要はなく、塩酸、硫酸等を使用する常用の酸洗方法がいずれも適用できる。
 冷間圧延工程は、酸洗工程を経た熱延板に冷間圧延を施し、所定板厚の冷延板(冷延鋼板)とする工程とする。
 冷間圧延の圧延率:30%以上70%以下
 冷間圧延では、鋼板に加工歪が導入される。これにより、次工程である焼鈍工程で、焼鈍温度域での再結晶を促進し、最終組織の結晶粒径を制御する。圧下率が30%未満では、鋼板に加わる加工歪が不足し、焼鈍工程で再結晶が十分に達成しないため、最終組織の鋼組織には、未再結晶フェライトが過剰に生成する上、所望のマルテンサイトの平均粒子間距離を得られなくなるため、延性と穴広げ性が劣化する。一方、70%を超える圧下率は、鋼板に加工歪が過度に導入されてしまい、焼鈍工程で、焼鈍温度域での再結晶が過度に促進され、フェライト、マルテンサイト、ベイナイトまたは焼戻しマルテンサイトの平均結晶粒径が粗大となる。したがって、冷間圧延の圧延率は30%以上70%以下の範囲である。
 次いで、得られた薄冷延板は、焼鈍工程が施される。
 焼鈍工程は、鋼板に所望のフェライト、残留オーステナイト、マルテンサイト、ベイナイトおよびマルテンサイトを形成するために施され、これによって高延性、高穴広げ性を併せ持つ高強度冷延薄鋼板とする。この焼鈍工程の具体的条件は以下の通りである。
 焼鈍温度:750℃以上900℃以下
 焼鈍温度が750℃未満では、焼鈍温度域のオーステナイトの体積分率が少なくなるため、フェライトが過剰に生成するだけでなく、再結晶も十分に進行しないため、未再結晶フェライトも過剰に生成し、穴広げ性が低下する。一方、焼鈍温度が900℃を超えると、オーステナイト粒が過度に粗大化し、所望の結晶粒径を得ることが困難となる。このため、焼鈍温度は750℃以上900℃以下とする。下限について好ましい焼鈍温度は770℃以上である。上限について好ましい焼鈍温度は880℃以下である。なお、焼鈍温度までの加熱条件は特に限定されない。
 焼鈍温度域での保持時間:10秒以上900秒以下
 焼鈍温度域での保持時間が10秒未満では、再結晶が十分に進行しないだけでなく、焼鈍温度域でオーステナイトが十分に生成できず、最終的に未再結晶フェライトおよびフェライトが過剰に生成する。また、900秒を超えて保持しても、最終的に得られる鋼組織や機械的特性に影響は表れない。このため、焼鈍温度域での保持時間は10秒以上900秒以下の範囲とする。なお、ここで「保持」とは、等温保持以外に、当該温度域での徐冷、加熱をも含むものとする。
 冷却停止温度までの平均冷却速度:5℃/s以上
 焼鈍温度から冷却停止温度までの平均冷却速度が5℃/s未満では、冷却中にフェライトだけでなく、パーライトが過剰に生成するだけでなく、所望量のベイナイトおよび焼戻しマルテンサイトが得ることが困難になる。なお、冷却は、ガス冷却が好ましいが、炉冷、ミスト冷却、ロール冷却、水冷などを組み合わせて行うことも可能である。また、平均冷却速度の上限は、特に限定されないが、通常、50℃/s以下である。
 冷却停止温度:100℃以上250℃以下
 冷却停止温度が100℃未満では、冷却停止時に多量のマルテンサイトが生成し、再加熱時に多量の焼戻しマルテンサイトとなるため、延性が低下する。一方、冷却停止温度が250℃を超えると、最終的に得られるマルテンサイトが過剰となるだけでなく、所望の平均粒子間距離Λが得られなくなり、穴広げ性が低下する。したがって、冷却停止温度は100℃以上250℃以下の冷却停止温度域の温度に限定した。
 再加熱温度:300℃以上400℃以下
 再加熱は、冷却中に生成したマルテンサイトを焼戻すとともに、未変態オーステナイトをベイナイト変態させ、ベイナイトおよび残留オーステナイトを得るために施される。再加熱温度が300℃未満では、マルテンサイトの焼戻しが十分に施されず、最終的に得られるマルテンサイト相が過剰となる上、所望の平均粒子間距離Λが得られなくなり、延性および穴広げ性が低下する。一方、再加熱温度が400℃を超えると、フェライトが過剰に生成するだけでなく、所望量のマルテンサイトが得られなくなる。したがって、再加熱温度は、300℃以上400℃以下に限定した。なお、再加熱温度までの加熱条件は特に限定されない。
 再加熱温度域での保持時間:10秒以上1800秒以下
 再加熱温度域での保持時間が10秒未満では、マルテンサイトの焼戻しが十分に施されず、最終的に生成するマルテンサイトが過剰となる上、所望の平均粒子間距離Λが得られなくなり、穴広げ性が低下する。一方、1800秒を超えても鋼組織に影響しない。このため、再加熱温度域での保持時間は10秒以上1800秒以下とした。なお、ここで「保持」とは、等温保持以外に、当該温度域での徐冷、加熱をも含むものとする。
 また、再加熱温度域での保持後の冷却は、特に規定する必要がなく、放冷等の任意の方法で、室温等の所望の温度まで冷却することができる。
 本発明の製造方法では、焼鈍後に調質圧延を施してもよい。この調質圧延での伸長率は特に規定しないが、過度の伸長は延性が低下するため、好ましくは0.1%以上2.0%以下である。
 上記した焼鈍工程後に、さらに、めっき処理を施し、表面にめっき層を形成してもよい。めっき処理としては、溶融亜鉛めっき処理、あるいは溶融亜鉛めっき処理および合金化処理、または電気亜鉛めっき処理とすることが好ましい。溶融亜鉛めっき処理、溶融亜鉛めっき処理および合金化処理、電気亜鉛めっき処理は、いずれも公知の処理方法が好適である。
 表1に示す組成の溶鋼を、転炉で溶製し、連続鋳造法で230mm厚のスラブとした。得られた鋼素材に、表2に示す条件で熱間圧延工程を施し、熱延鋼板とした。得られた熱延鋼板を酸洗し、表2に示す冷間圧下率で冷間圧延工程を施し、冷延鋼板を得た。なお、酸洗は、塩酸を使用した。ついで、表2に示す条件で焼鈍した。
 なお、一部の冷延鋼板には、焼鈍後、さらに、溶融亜鉛めっき処理を施し、表面に溶融亜鉛めっき層を形成し、溶融亜鉛めっき薄鋼板(GI)とした。溶融亜鉛めっき処理は、連続溶融亜鉛めっきラインを利用して、焼鈍された冷延焼鈍板を必要に応じて430~480℃の範囲の温度に再加熱し、溶融亜鉛めっき浴(浴温:470℃)に浸漬し、めっき層付着量が片面あたり45g/mとなるように調整した。なお、浴組成をZn‐0.18質量%Alとした。また、一部の溶融亜鉛めっき鋼板では、浴組成をZn-0.14質量%Alとし、めっき処理後、520℃で合金化処理を施し、合金化溶融亜鉛めっき薄鋼板(GA)とした。なお、めっき層中のFe濃度は9質量%以上12質量%以下とした。
 また、一部の冷延鋼板には、焼鈍工程終了後にさらに、電気亜鉛めっきラインを利用して、めっき付着量が片面あたり30g/mとなるように、電気亜鉛めっき処理を施し、電気亜鉛めっき薄鋼板(EG)とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 得られた高強度冷延薄鋼板(溶融亜鉛めっき薄鋼板、合金化溶融亜鉛めっき薄鋼板、電気亜鉛めっき薄鋼板を含む)から、試験片を採取し、組織観察、引張試験、溶接試験を実施した。試験方法はつぎのとおりとした。
 (1)組織観察
 まず、焼鈍され、あるいはさらにめっき処理を施された高強度冷延薄鋼板から組織観察用試験片を採取し、圧延方向断面(L断面)で板厚の1/4に相当する位置が観察面となるように、研磨し、腐食(3vol.%ナイタール液腐食)し、SEM(走査型電子顕微鏡)を用いて5000倍の倍率で観察した。得られたSEM画像を用いて、画像解析により各相の組織分率(面積率)を求め、その値を体積率として扱った。なお、画像解析では、解析ソフトとしてMedia Cybernetics社の「Image-Pro」(商品名)を使用した。なお、SEM画像では、フェライトは灰色、焼入れままマルテンサイトおよび残留オーステナイト、セメンタイトは白色を呈し、更に、ベイナイトおよび焼戻しマルテンサイトは灰色と白色の中間色を呈するため、その色調から各相を判断した。また、フェライト中に残留オーステナイトやセメンタイトが微細な線状または点状に観察される組織はベイナイトとし、マルテンサイト中にセメンタイトが微細な線状または点状に観察される組織は焼戻しマルテンサイトとした。また、得られたSEM画像を用いて、画像解析により、各フェライト粒、ベイナイトおよび焼戻しマルテンサイト粒の面積を求め、該面積から円相当直径を算出し、それらの値を算術平均して平均結晶粒径とした。
 また、上記SEM画像と同視野の箇所をSEM-EBSD(後方散乱電子回折)で観察し、SEM画像で白色を呈する組織の内、Phase MapからFeのbcc構造に識別された組織を焼入れままマルテンサイトとした。また、得られたSEM画像とPhase Mapを用いて、画像解析により焼入れままマルテンサイト粒の面積を求め、該面積から円相当直径を算出し、それらの値を算術平均して平均結晶粒径とした。
 また、残留オーステナイト粒の平均結晶粒径はTEM(透過型電子顕微鏡)を用いて15000倍の倍率で観察し、得られたTEM画像から、画像解析により残留オーステナイト粒の面積を求め、該面積から円相当直径を算出し、それらの値を算術平均して平均結晶粒径とした。
 また、焼鈍され、あるいはさらにめっき処理を施された冷延鋼板からX線回折用試験片を採取し、板厚の1/4に相当する位置が測定面となるように、研削、および研磨して、X線回折法により、回折X線強度から残留オーステナイト量を求めた。なお、入射X線は、CoKα線を用いた。残留オーステナイト量の計算に際しては、オーステナイトの{111}、{200}、{220}、{311}面と、フェライトの{110}、{200}、{211}面のピークの積分強度のすべての組み合わせについて強度比を計算し、それらの平均値を求め、当該鋼板の残留オーステナイト量(体積率)を算出した。
 (2)引張試験
 焼鈍され、あるいはさらにめっき処理を施された高強度冷延薄鋼板から、引張方向が圧延方向と垂直な方向(C方向)となるようにJIS 5号引張試験片を採取し、JIS Z 2241(2011)の規定に準拠して、引張試験を実施し、引張特性(引張強さTS、破断伸びEl)を求めた。また、均一伸びuElも求めた。なお、TS:980MPa級では、El:12.0%以上である場合を、良好な強度延性バランスであるとした。また、均一伸び(uEl)が9.5%以上であることが多いことも確認した。
 得られた結果を表3に示す。
 
 (3)穴広げ試験
 焼鈍され、あるいはさらにめっき処理を施された高強度冷延薄鋼板から、100mmW×100mmLサイズの試験片を採取し、JIS Z 2256(2010)の規定に準拠して、クリアランス12±1%にて、10mmφの穴を打ち抜き、60°の円錐ポンチを上昇させ穴を広げた際に、き裂が板厚方向を貫通したところでポンチの上昇を止め、き裂貫通後の穴径と試験前の穴径から穴広げ率λ(%)を測定した。なお、TS:980MPa級では、λ:40%以上である場合を、良好な穴広げ性であるとした。
 得られた結果を表3に示す。
 (4)溶接試験
 焼鈍され、あるいはさらにめっき処理された高強度冷延薄鋼板から、150mmW×50mmLサイズの試験片を1枚用い、もう1枚は590MPa級溶融亜鉛めっき鋼板を用いて抵抗溶接(スポット溶接)を実施した。2枚の鋼板を重ねた板組について、溶接ガンに取付けられたサーボモータ加圧式で単相交流(50Hz)の抵抗溶接機を用いて板組を3°傾けた状態で抵抗スポット溶接した。溶接条件は加圧力を4.0kN、ホールドタイムを0.2秒とした。溶接電流と溶接時間はナゲット径が4√t mm(t:高強度冷延薄鋼板の板厚)になるように調整した。溶接後は試験片を半切して、断面を光学顕微鏡で観察し、0.1mm以上のき裂が認められないものを耐抵抗溶接割れ性が良好であるとし、「○」と評価し、0.1mm以上のき裂が認められたものを「×」とした。
Figure JPOXMLDOC01-appb-T000003
 No.1~13の本発明例はいずれも、所定のフェライトと、残留オーステナイト、マルテンサイト、ベイナイトおよび焼戻しマルテンサイトを含む組織を有し、引張強さTS:980MPa以上の高強度と、全伸びElが12%以上を有する高延性で、かつ穴広げ率λが40%以上を有する高穴広げ性で、更に、抵抗スポット溶接性にも優れた高強度冷延薄鋼板となっている。
 これに対し、No.15、17、19は、それぞれC、Si、Mnが過剰に含有しているため溶接時に割れが発生しており、更に、No.15、19は所望の組織が得られず、Elとλが不足している。
 また、No.14、16、18、20~22は、鋼中の成分組成が限定範囲から外れているため、TS、El、λの少なくとも1つの特性が劣っている。
 No.23~34は、鋼中の成分組成は限定範囲内であるが、製造方法が本発明範囲から外れているため、最終鋼板組織において、適正形態のフェライト相と、残留オーステナイト相、マルテンサイト相、ベイナイト相および焼き戻しマルテンサイト相を含む組織が得られず、TS、El、λの少なくとも1つの特性が劣っている。
 以上のように、本発明例は、高強度で、かつ高延性と高穴広げ性を併せ持ち、更に溶接性にも優れた高強度冷延薄鋼板となっている。

Claims (5)

  1.  質量%で、
    C:0.04%以上0.12%以下、
    Si:0.15%以上0.95%以下、
    Mn:2.00%以上3.50%以下、
    P:0.050%以下、
    S:0.0050%以下、
    N:0.0100%以下、
    Al:0.010%以上2.0%以下、
    Ti:0.005%以上0.075%以下、
    Nb:0.005%以上0.075%以下、
    B:0.0002%以上0.0040%以下を含み、残部Feおよび不可避的不純物からなる成分組成と、
     体積率で、35%以下のフェライトと、1%以上10%以下の残留オーステナイトと、2%以上12%以下の焼入れままマルテンサイトと、合計で25~70%のベイナイトおよび焼戻しマルテンサイトとを含む鋼組織と、を有し、
     前記フェライトの平均結晶粒径:5.0μm以下であり、前記残留オーステナイトの平均結晶粒径:2.0μm以下であり、前記焼入れままマルテンサイトの平均結晶粒径:3.0μm以下であり、前記ベイナイトおよび焼戻しマルテンサイト相の平均結晶粒径:4.0μm以下であり、
     前記焼入れままマルテンサイトの平均粒子間距離が1.0μm以上を満たす高強度冷延薄鋼板。
  2.  前記成分組成は、さらに、質量%で、
    V:0.005%以上0.200%以下、
    Cr:0.05%以上0.20%以下、
    Mo:0.01%以上0.20%以下、
    Cu:0.05%以上0.20%以下、
    Ni:0.01%以上0.20%以下、
    Sb:0.002%以上0.100%以下、
    Sn:0.002%以上0.100%以下、
    Ca:0.0005%以上0.0050%以下、
    Mg:0.0005%以上0.0050%以下、
    REM:0.0005%以上0.0050%以下のうちから選ばれる少なくとも1種の元素を含有する請求項1に記載の高強度冷延薄鋼板。
  3.  表面に、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、あるいは電気亜鉛めっき層のいずれかを有する請求項1または2に記載の高強度冷延薄鋼板。
  4.  請求項1または2いずれかに記載の成分組成からなる鋼スラブを、熱間圧延開始温度1100℃以上1300℃以下、仕上げ圧延温度800℃以上1000℃以下で熱間圧延し、該熱間圧延後、700℃から冷却停止温度までの温度域の平均冷却速度が5℃/s以上50℃/s以下の条件で500℃以下の冷却停止温度まで冷却した後に巻取る熱間圧延工程と、
     前記熱間圧延工程で得られた熱延鋼板に、酸洗処理を施す酸洗工程と
     前記酸洗工程で酸洗された熱延鋼板に、圧延率が30%以上70%以下の冷間圧延を施す冷間圧延工程と、
     前記冷間圧延工程で得られた冷延鋼板を750℃以上900℃以下の温度域で10秒以上900秒以下保持し、該保持後、5℃/s以上の平均冷却速度で、100℃以上250℃以下の冷却停止温度まで冷却した後、300℃以上400℃以下の再加熱温度域まで加熱し、再加熱温度域で10秒以上1800秒以下保持する焼鈍工程とを有する高強度冷延薄鋼板の製造方法。
  5.  前記焼鈍工程後に、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、あるいは電気亜鉛めっき層のいずれかを形成するためのめっき処理を施すめっき工程を有する請求項4に記載の高強度冷延薄鋼板の製造方法。
PCT/JP2017/030849 2016-08-31 2017-08-29 高強度冷延薄鋼板及びその製造方法 WO2018043456A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2019001794A MX2019001794A (es) 2016-08-31 2017-08-29 Lamina de acero laminada en frio de alta resistencia y el metodo para su produccion.
JP2017558043A JP6323627B1 (ja) 2016-08-31 2017-08-29 高強度冷延薄鋼板及びその製造方法
US16/325,299 US11136644B2 (en) 2016-08-31 2017-08-29 High-strength cold rolled steel sheet and method for producing the same
EP17846461.6A EP3476963B1 (en) 2016-08-31 2017-08-29 High-strength cold rolled steel sheet and method for producing the same
CN201780049503.XA CN109642281B (zh) 2016-08-31 2017-08-29 高强度冷轧薄钢板及其制造方法
KR1020197004127A KR102197431B1 (ko) 2016-08-31 2017-08-29 고강도 냉연 박강판 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016168905 2016-08-31
JP2016-168905 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018043456A1 true WO2018043456A1 (ja) 2018-03-08

Family

ID=61309450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030849 WO2018043456A1 (ja) 2016-08-31 2017-08-29 高強度冷延薄鋼板及びその製造方法

Country Status (7)

Country Link
US (1) US11136644B2 (ja)
EP (1) EP3476963B1 (ja)
JP (1) JP6323627B1 (ja)
KR (1) KR102197431B1 (ja)
CN (1) CN109642281B (ja)
MX (1) MX2019001794A (ja)
WO (1) WO2018043456A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080407A1 (ja) * 2018-10-18 2020-04-23 Jfeスチール株式会社 鋼板およびその製造方法
WO2020145108A1 (ja) * 2019-01-09 2020-07-16 Jfeスチール株式会社 高強度冷延鋼板及びその製造方法
JP6750759B1 (ja) * 2019-05-09 2020-09-02 日本製鉄株式会社 鋼板及びその製造方法
EP3757242A4 (en) * 2018-02-19 2020-12-30 JFE Steel Corporation HIGH STRENGTH STEEL SHEET AND ITS MANUFACTURING PROCESS
KR20210059747A (ko) * 2018-10-17 2021-05-25 제이에프이 스틸 가부시키가이샤 강판 및 그 제조 방법
KR20210059748A (ko) * 2018-10-17 2021-05-25 제이에프이 스틸 가부시키가이샤 강판 및 그 제조 방법
CN113166837A (zh) * 2018-11-29 2021-07-23 杰富意钢铁株式会社 高强度钢板及其制造方法
KR20210106556A (ko) * 2019-01-29 2021-08-30 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
WO2023162190A1 (ja) * 2022-02-28 2023-08-31 Jfeスチール株式会社 鋼板、部材、それらの製造方法、冷延鋼板用熱延鋼板の製造方法及び冷延鋼板の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6874919B1 (ja) * 2019-08-06 2021-05-19 Jfeスチール株式会社 高強度薄鋼板およびその製造方法
MX2022004100A (es) * 2019-10-10 2022-04-26 Nippon Steel Corp Lamina de acero laminada en frio y metodo para producir la misma.
JP7006848B1 (ja) * 2020-02-28 2022-01-24 Jfeスチール株式会社 鋼板、部材及びそれらの製造方法
DE102020110319A1 (de) * 2020-04-15 2021-10-21 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Stahlbandes mit einem Mehrphasengefüge und Stahlband hinzu
JP7417169B2 (ja) * 2020-09-11 2024-01-18 日本製鉄株式会社 鋼板およびその製造方法
CN112410685A (zh) * 2020-11-12 2021-02-26 包头钢铁(集团)有限责任公司 一种冷轧980MPa级淬火配分钢及其生产方法
CN116043120B (zh) * 2023-01-19 2023-10-27 鞍钢股份有限公司 一种成型性能优异的1000MPa级冷轧复相钢及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283838A (ja) * 1995-04-17 1996-10-29 Nippon Steel Corp 強度、靱性および延性に優れた低降伏比高延性鋼の製造方法
JP2011001579A (ja) * 2009-06-17 2011-01-06 Jfe Steel Corp 加工性および耐疲労特性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法
JP2011149066A (ja) * 2010-01-22 2011-08-04 Sumitomo Metal Ind Ltd 冷延鋼板および熱延鋼板ならびにそれらの製造方法
WO2014061270A1 (ja) * 2012-10-18 2014-04-24 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
WO2015151427A1 (ja) * 2014-03-31 2015-10-08 Jfeスチール株式会社 高降伏比高強度冷延鋼板およびその製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925611B1 (ja) 1969-06-04 1974-07-02
US5628044A (en) * 1995-06-02 1997-05-06 Old Dominion University Pure iron-zinc intermetallic galvanneal calibration standards
JP3758515B2 (ja) 2001-04-03 2006-03-22 住友金属工業株式会社 抵抗溶接性に優れた高張力亜鉛めっき鋼板
JP4486336B2 (ja) 2003-09-30 2010-06-23 新日本製鐵株式会社 溶接性と延性に優れた高降伏比高強度冷延鋼板および高降伏比高強度溶融亜鉛めっき鋼板、並びに、高降伏比高強度合金化溶融亜鉛めっき鋼板とその製造方法
KR20060096002A (ko) 2003-09-30 2006-09-05 신닛뽄세이테쯔 카부시키카이샤 용접성과 연성이 우수한 고항복비 고강도 박강판 및고항복비 고강도 용융 아연 도금 박강판 및 고항복비고강도 합금화 용융 아연 도금 박강판과 그 제조 방법
JP4445365B2 (ja) 2004-10-06 2010-04-07 新日本製鐵株式会社 伸びと穴拡げ性に優れた高強度薄鋼板の製造方法
JP4925611B2 (ja) 2005-06-21 2012-05-09 住友金属工業株式会社 高強度鋼板およびその製造方法
CN101960034B (zh) 2008-03-27 2012-10-31 新日本制铁株式会社 成形性和焊接性优良的高强度冷轧钢板、高强度镀锌钢板、高强度合金化热浸镀锌钢板、及它们的制造方法
JP5206244B2 (ja) 2008-09-02 2013-06-12 新日鐵住金株式会社 冷延鋼板
JP5418047B2 (ja) 2008-09-10 2014-02-19 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP5365112B2 (ja) 2008-09-10 2013-12-11 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP4924730B2 (ja) * 2009-04-28 2012-04-25 Jfeスチール株式会社 加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP5589893B2 (ja) 2010-02-26 2014-09-17 新日鐵住金株式会社 伸びと穴拡げに優れた高強度薄鋼板およびその製造方法
JP5327106B2 (ja) 2010-03-09 2013-10-30 Jfeスチール株式会社 プレス部材およびその製造方法
JP5333298B2 (ja) 2010-03-09 2013-11-06 Jfeスチール株式会社 高強度鋼板の製造方法
CN102892910B (zh) * 2010-05-10 2016-11-16 新日铁住金株式会社 高强度钢板及其制造方法
CA2805834C (en) 2010-08-12 2016-06-07 Jfe Steel Corporation High-strength cold rolled sheet having excellent formability and crashworthiness and method for manufacturing the same
WO2013051238A1 (ja) * 2011-10-04 2013-04-11 Jfeスチール株式会社 高強度鋼板およびその製造方法
EP2799568A4 (en) 2011-12-26 2016-04-27 Jfe Steel Corp FINE HIGH-STRENGTH STEEL SHEET AND MANUFACTURING METHOD THEREOF
JP5821911B2 (ja) * 2013-08-09 2015-11-24 Jfeスチール株式会社 高降伏比高強度冷延鋼板およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283838A (ja) * 1995-04-17 1996-10-29 Nippon Steel Corp 強度、靱性および延性に優れた低降伏比高延性鋼の製造方法
JP2011001579A (ja) * 2009-06-17 2011-01-06 Jfe Steel Corp 加工性および耐疲労特性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法
JP2011149066A (ja) * 2010-01-22 2011-08-04 Sumitomo Metal Ind Ltd 冷延鋼板および熱延鋼板ならびにそれらの製造方法
WO2014061270A1 (ja) * 2012-10-18 2014-04-24 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
WO2015151427A1 (ja) * 2014-03-31 2015-10-08 Jfeスチール株式会社 高降伏比高強度冷延鋼板およびその製造方法

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11466350B2 (en) 2018-02-19 2022-10-11 Jfe Steel Corporation High-strength steel sheet and production method therefor
EP3757242A4 (en) * 2018-02-19 2020-12-30 JFE Steel Corporation HIGH STRENGTH STEEL SHEET AND ITS MANUFACTURING PROCESS
KR20210059747A (ko) * 2018-10-17 2021-05-25 제이에프이 스틸 가부시키가이샤 강판 및 그 제조 방법
KR102514898B1 (ko) 2018-10-17 2023-03-30 제이에프이 스틸 가부시키가이샤 강판 및 그 제조 방법
KR102514897B1 (ko) 2018-10-17 2023-03-30 제이에프이 스틸 가부시키가이샤 강판 및 그 제조 방법
KR20210059748A (ko) * 2018-10-17 2021-05-25 제이에프이 스틸 가부시키가이샤 강판 및 그 제조 방법
WO2020080407A1 (ja) * 2018-10-18 2020-04-23 Jfeスチール株式会社 鋼板およびその製造方法
JPWO2020080407A1 (ja) * 2018-10-18 2021-02-15 Jfeスチール株式会社 鋼板およびその製造方法
KR20210061370A (ko) * 2018-10-18 2021-05-27 제이에프이 스틸 가부시키가이샤 강판 및 그 제조 방법
KR102514896B1 (ko) 2018-10-18 2023-03-30 제이에프이 스틸 가부시키가이샤 강판 및 그 제조 방법
US20210324492A1 (en) * 2018-10-18 2021-10-21 Jfe Steel Corporation Steel sheet and method for producing same
US20210310095A1 (en) * 2018-11-29 2021-10-07 Jfe Steel Corporation High-strength steel sheet and method for manufacturing the same
CN113166837A (zh) * 2018-11-29 2021-07-23 杰富意钢铁株式会社 高强度钢板及其制造方法
JPWO2020145108A1 (ja) * 2019-01-09 2021-02-18 Jfeスチール株式会社 高強度冷延鋼板及びその製造方法
CN113272465A (zh) * 2019-01-09 2021-08-17 杰富意钢铁株式会社 高强度冷轧钢板及其制造方法
EP3910087A4 (en) * 2019-01-09 2021-11-17 JFE Steel Corporation HIGH STRENGTH COLD-ROLLED STEEL SHEET AND MANUFACTURING PROCESS FOR IT
KR20210096215A (ko) * 2019-01-09 2021-08-04 제이에프이 스틸 가부시키가이샤 고강도 냉연 강판 및 그 제조 방법
CN113272465B (zh) * 2019-01-09 2022-12-20 杰富意钢铁株式会社 高强度冷轧钢板及其制造方法
KR102488156B1 (ko) 2019-01-09 2023-01-16 제이에프이 스틸 가부시키가이샤 고강도 냉연 강판 및 그 제조 방법
WO2020145108A1 (ja) * 2019-01-09 2020-07-16 Jfeスチール株式会社 高強度冷延鋼板及びその製造方法
KR20210106556A (ko) * 2019-01-29 2021-08-30 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
EP3919637A4 (en) * 2019-01-29 2021-12-08 JFE Steel Corporation HIGH STRENGTH STEEL SHEET AND METHOD OF MANUFACTURING ITEM
KR102508292B1 (ko) * 2019-01-29 2023-03-09 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
WO2020225936A1 (ja) * 2019-05-09 2020-11-12 日本製鉄株式会社 鋼板及びその製造方法
JP6750759B1 (ja) * 2019-05-09 2020-09-02 日本製鉄株式会社 鋼板及びその製造方法
WO2023162190A1 (ja) * 2022-02-28 2023-08-31 Jfeスチール株式会社 鋼板、部材、それらの製造方法、冷延鋼板用熱延鋼板の製造方法及び冷延鋼板の製造方法

Also Published As

Publication number Publication date
MX2019001794A (es) 2019-06-13
US11136644B2 (en) 2021-10-05
KR20190028758A (ko) 2019-03-19
JPWO2018043456A1 (ja) 2018-08-30
EP3476963B1 (en) 2020-04-08
EP3476963A1 (en) 2019-05-01
CN109642281B (zh) 2021-02-23
US20190203315A1 (en) 2019-07-04
EP3476963A4 (en) 2019-06-19
KR102197431B1 (ko) 2020-12-31
JP6323627B1 (ja) 2018-05-16
CN109642281A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
JP6323627B1 (ja) 高強度冷延薄鋼板及びその製造方法
JP6501046B1 (ja) 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法
KR102173601B1 (ko) 고강도 박강판 및 그 제조 방법
JP6525114B1 (ja) 高強度亜鉛めっき鋼板およびその製造方法
JP6777173B2 (ja) スポット溶接用高強度亜鉛めっき鋼板
JP6394812B2 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP6424967B2 (ja) めっき鋼板およびその製造方法
JP6501045B1 (ja) 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法
JP6597889B2 (ja) 高強度冷延薄鋼板および高強度冷延薄鋼板の製造方法
JP2017002384A (ja) 耐スポット溶接部破断特性に優れた鋼板及びその製造方法
JP6308333B2 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP6432705B2 (ja) 高強度めっき鋼板及びその製造方法
JP6354918B1 (ja) 高強度鋼板およびその製造方法
WO2019003450A1 (ja) 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板
CN113272465A (zh) 高强度冷轧钢板及其制造方法
JP2018003114A (ja) 高強度鋼板およびその製造方法
JP2018003115A (ja) 高強度鋼板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017558043

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846461

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017846461

Country of ref document: EP

Effective date: 20190128

ENP Entry into the national phase

Ref document number: 20197004127

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE